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ABSTRACT
One potential disadvantage of social tagging systems is that
due to the lack of a centralized vocabulary, a crowd of users
may never manage to reach a consensus on the description of
resources (e.g., books, images, users or songs) on the Web.
Yet, previous research has provided interesting evidence that
the tag distributions of resources in social tagging systems
may become semantically stable over time as more and more
users tag them and implicitly agree on the relative impor-
tance of tags for a resource. At the same time, previous work
has raised an array of new questions such as: (i) How can
we assess semantic stability in a robust and methodical way?
(ii) Does the semantic stabilization varies across different so-
cial tagging systems and ultimately, (iii) what are the factors
that can explain semantic stabilization in such systems? In
this work we tackle these questions by (i) presenting a novel
and robust method which overcomes a number of limitations
in existing methods, (ii) empirically investigating semantic
stabilization in different social tagging systems with distinct
domains and properties and (iii) detecting potential causes
of stabilization and implicit consensus, specifically imitation
behavior, shared background knowledge and intrinsic prop-
erties of natural language. Our results show that tagging
streams which are generated by a combination of imitation
dynamics and shared background knowledge exhibit faster
and higher semantic stability than tagging streams which
are generated via imitation dynamics or natural language
phenomena alone.

∗A preliminary version of this paper was presented at the
World Wide Web Conference (WWW2014) in Seoul, South
Korea.
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1. INTRODUCTION
Instead of enforcing rigid taxonomies or ontologies with

controlled vocabulary, social tagging systems allow users to
freely choose so-called tags to annotate resources on the Web
such as users, books or videos. A potential disadvantage of
tagging systems is that due to the lack of a controlled vo-
cabulary which is a central element of traditional forms of
organizing information, a crowd of users may never manage
to reach a consensus or may never produce a semantically
stable description of resources. By semantically stable we
mean that users have implicitly agreed on a set of descrip-
tors and their relative importance for a resource which both
remain stable over time. That means, the concept of seman-
tic stability implies stability (i.e., tolerance to deviations or
perturbations in time) as well as implicit consensus on the
description of a resource (i.e., the collective formation of a
clear ranking of tags which exposes the relative importance
of tags for a resource). Note that implicit consensus and sta-
bility are interdependent in social tagging systems. If users
do not agree on the description of a resource, they would
produce a relatively flat list of descriptors where many de-
scriptors would be equally important for the resource and
therefore the ranking of descriptors would be unstable and
prone to perturbations.

Yet, when we observe real-world social tagging processes,
we can identify interesting dynamics from which a seman-
tically stable set of descriptors may emerge for a given re-
source. This semantic stability has important implications
for the collective usefulness of individual tagging behavior
since it suggests that information organization systems can
achieve meaningful resource descriptions and interoperabil-
ity across distributed systems in a decentralized manner [21].
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(a) Nathan Fillion

●

0 1000 2000 3000 4000

0.
00

0.
05

0.
10

0.
15

0.
20

Consecutive Tags

R
el

at
iv

e 
Ta

g 
P

ro
po

rt
io

n

(b) Sky Sports

Figure 1: Relative proportion of the top 25 tags (i.e.,
user list names) assigned to one heavily tagged Twit-
ter user and one moderately tagged Twitter user.
The relative tag proportions become stable as more
users tag the two sample users. Each line corre-
sponds to one tag.

Semantically stable social tagging streams of resources1 are
not only essential for attaining meaningful resource interop-
erability across distributed systems and search, but also for
learning lightweight semantic models and ontologies from
tagging data (see e.g., [27, 29, 23]). Ontologies are often
defined as agreed-upon and shared conceptualizations of a
domain of interest [12]. Hence, consensus as well as stability
are essential for ontologies and can consequently be seen as
a prerequisite for learning ontologies from tagging data.

These observations have sparked a series of research ef-
forts focused on (i) methods for assessing semantic stability
in tagging streams (see e.g., [10, 13]), (ii) empirical investi-
gations into the semantic stabilization process and the cog-
nitive processes behind tagging (see e.g., [8, 20]) and (iii)
models for simulating the tagging process (see e.g., [4, 7]).

Research questions. While previous work makes a promis-
ing case for the existence of semantic stabilization in tagging
streams, it raises more questions that require further atten-
tion, including but not limited to the following: (i) What
exactly is semantic stabilization in the context of social tag-
ging streams, and how can we assert it in a robust way?
(ii) How suitable are the different methods which have been
proposed so far and how do they differ? (iii) Does seman-
tic stabilization vary across different social tagging systems
and if yes, in what ways? And finally, (iv) what are the fac-
tors that may explain the emergence of semantic stability in
social tagging streams?

Contributions. The main contributions of this work are
threefold. We start by making a methodological contribu-
tion. Based on a systematic discussion of existing methods
for asserting semantic stability in social tagging systems we
identify potentials and limitations. We illustrate these on
a previously unexplored people tagging dataset and a syn-
thetic tagging dataset. We explore different subsamples of
our dataset including heavily or moderately tagged resources
(i.e., a high or moderate amount of users have tagged a re-
source). Using these insights, we present a novel and flexible
method which allows to measure and compare the seman-
tic stabilization in different tagging systems. Flexibility is
achieved through the provision of two meaningful parame-

1We define a (social) tagging stream as a a temporally or-
dered sequence of tags produced by a group of users that
annotate the same resource.

ters, robustness is demonstrated by applying it to random
control processes.

Our second contribution is empirical. We conduct empir-
ical analysis of semantic stabilization in a series of distinct
social tagging systems using our method. We find that the
semantic stability of tagging streams in systems which sup-
port imitation mechanisms goes clearly beyond what can be
explained by the semantic stability of natural language and
randomly generated tag distributions drawn from uniform
or power law tag distributions. For social tagging systems
which do not support imitation we observe the same level of
semantic stabilization as for natural language and the syn-
thetic power law tag distributions.

Our final contribution is explanatory. We investigate fac-
tors which may explain the stabilization and implicit con-
sensus formation processes in social tagging systems. Our
results show that tagging streams which are generated by a
combination of imitation dynamics and shared background
knowledge exhibit faster and higher semantic stability than
tagging streams which are generated via imitation dynamics
or natural language streams alone.

Structure. This paper is structured as follows: We start
in Section 2 by highlighting that not all state-of-the-art
methods are equally suited for measuring semantic stability
in tagging systems, and that some important limitations hin-
der progress towards a deeper understanding about social-
semantic dynamics involved. Based on this discussion, we
introduce the data used for our empirical study in Section 3
and present a novel method for assessing semantic stabil-
ity in Section 4. In Section 5 we aim to shed some light
on the factors which may influence the stabilization process.
We discuss our results in Section 6 and related work in Sec-
tion 7. and conclude our work in Section 8.

2. STATE-OF-THE-ART METHODS FOR
ASSESSING SEMANTIC STABILIZATION

In the following, we compare and discuss three existing
and well-known state-of-the-art methods for measuring sta-
bility of tag distributions: Stable Tag Proportions [10], Sta-
ble Tag Distributions [13] and Power Law Fits [4]. We define
tag distributions of resources as rank-ordered tag frequen-
cies where the frequency of a tag depends on how many users
have assigned the tag to a resource. We illustrate the use-
fulness and limitations of these methods on a previously un-
explored people tagging dataset2 and a synthetic uniformly
random tagging dataset which will both be described in Sec-
tion 3. Each section (i) points out the intuition and defini-
tion of the method, (ii) applies the method to the data, and
(iii) describes limitations and potentials of the method at
hand.

2.1 Method 1: Stable Tag Proportions [10]
Intuition and Definition: In previous work, Golder and

Huberman [10] analyzed the relative proportion of tags as-
signed to a given resource (i.e., P (t|e) where t is a tag and e is
an resource) as a function of the number of tag assignments.
In their empirical study on Delicious the authors found a
stable pattern in which the proportions of tags are nearly
fixed for each website after a few hundred tag assignments.

2The limitations of the methods are independent of the
dataset and we get similar results using the other datasets
introduced in Section 3.
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Figure 2: Relative tag proportion of a uniformly
random tagging process where each tag assignment
on the x-axis corresponds to picking one of the five
tags uniformly at random. All tag proportions be-
come relatively stable over time but are all similar.
Each line corresponds to one synthetic tag.

Demonstration: In Figure 1 we see that the top tags of
a different type of resource (Twitter users rather than web-
sites) also give rise to a stable pattern in which the propor-
tions of tags are nearly fixed. This indicates that, although
users keep creating new tags and assign them to resources,
the proportions of the tags per resource become stable.

Limitations and Potentials: In [10] the authors sug-
gest that the stability of tag proportions indicates that users
have agreed on a certain vocabulary which describes the re-
source. However, also tag distributions produced by a uni-
formly random tagging process (see Figure 2) become stable
as more tag assignments take place since the growing de-
nominator (i.e., the total sum of the tag frequencies) will
flatten any local deviations over time.

However, the stable tagging patterns which are e.g. shown
in Figure 1 go beyond what can be explained by a uniformly
random tagging process3 which produces similar proportions
for all tags (see Figure 2). Hence, small changes in the
tag frequency vector are enough to change the order of the
ranked tags (i.e., the relative importance of the tags for the
resource). For real tag distributions this is not the case since
these tag distributions are distributions with short heads
and heavy tails – i.e., few tags are used far more often than
most others. We exploit this observation for defining our
novel method for assessing semantic stability in Section 4.

2.2 Method 2: Stable Tag Distributions [13]
Intuition and Definition: Halpin et al. [13] present a

method for measuring the semantic stabilization by using
the Kullback Leibler (KL) divergence between the tag dis-
tributions of a resource at different points in time. The KL
divergence between two probability distributions Q and P
(where x denotes an element of the distributions) is defined
as follows:

DKL(P ||Q) =
∑
x

P (x)ln(
P (x)

Q(x)
) (1)

The authors use the rank-ordered tag frequencies of the 25
highest ranked unique tags per resource at different points in
time to compute the KL divergence. They use each month
where the tag distribution had changed as a time point in-

3tags are randomly picked from a synthetic uniform tag dis-
tribution
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(a) Heavily tagged users
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(b) Moderately tagged users

Figure 3: KL divergence between the tag distribu-
tions at consecutive time points. Each colored line
corresponds to one Twitter user, while the black
dotted line depicts a randomly simulated tag dis-
tribution. One can see that the KL divergence de-
creases as a function of the number of tag assign-
ments. The KL divergence of a uniformly random
tagging process decreases slightly slower than the
KL divergence of the real tagging data.

stead of using a fixed number of tag assignments as Golder
and Huberman [10] did or we do. This is important since
their measure, per definition, converge towards zero if the
number of tag assignments is constant as shown later.

Demonstration: We use the rank-ordered tag frequen-
cies of the 25 highest ranked tags of each resource and a
constant number (M) of consecutive tag assignments. We
compare the KL divergence of tag distributions after N and
N+M consecutive tag assignments. Using a fixed number of
consecutive tag assignments allows exploring the properties
of a random and uniform tag distribution which is generated
by drawing M random samples from a uniform multinomial
distribution.

In Figure 3, each point on the x-axis consists of M = 10
consecutive tag assignments and N ranges from 0 to 1000.
The black dotted line indicates the KL divergence of a uni-
formly random tag distribution. One can see from this fig-
ure that not only the tag distributions of resources (colored
lines) seem to converge towards zero over time (with few
outliers), but also uniformly random tag distributions (black
line) do.

Limitations and Potentials: A single tag assignment in
month j has more impact on the shape of the tag distribution
of a resource than a single tag added in month j + 1, if we
assume the number of tags which are added per month is
relatively stable over time. However, if the number of tag
assignments per resource varies a lot across different months,
convergence can be interpreted as semantic stabilization.

This suggests that without knowing the frequencies of tag
assignments per month, the measure proposed by Halpin
et al. [13] is limited with regard to its usefulness since one
never knows whether stabilization can be observed due to
the fact that users agreed on a certain set of descriptors and
their relative importance for the resource or due to the fact
that the tagging frequency in later months was lower than in
earlier months. In our work (see Figure 3), we compare the
KL divergence of a randomly generated tag distribution with
the KL divergence of real tag distributions. This reveals
how much faster users reach consensus compared to what
one would expect.



Even though we believe this method already improves the
original approach suggested by Halpin et al. [13], it is still
limited because it requires to limit the analysis to the top k
tags. The KL divergence is only defined between two distri-
butions over the same set of tags. We address this limitation
with the new method which we propose in Section 4.

2.3 Method 3: Power Law Fits [22]
Intuition and Definition: Tag distributions which fol-

low a power law are sometimes regarded as semantically sta-
ble, (i) because of the scale invariance property of power
law distributions – i.e., that regardless how large the system
grows, the slope of the distribution would stay the same,
and (ii) because power law distributions are heavy tail dis-
tributions – i.e., few tags are applied very frequently while
the majority of tags is hardly used. Adam Mathes [22] orig-
inally hypothesized that tag distributions in social tagging
systems follow a power law function. Several studies empir-
ically show that the tag distributions of resources in social
tagging systems indeed follow a power law [28, 17, 3, 4]. A
power law distribution is defined by the function:

y = cx−α + ε (2)

Both c and α are constants characterizing the power law dis-
tribution and ε represents the uncertainty in the observed
values. The most important parameter is the scaling param-
eter α as it represents the slope of the distribution [2, 5]. It
is also important to remark that real world data nearly never
follows a power law for the whole range of values. Hence,
it is necessary to find some minimum value xmin for which
one can say that the tail of the distribution4 with x ≥ xmin
follows a power law [5].

Demonstration: We first visualize the rank frequency
tag distributions (see Figure 4(a) and Figure 4(b)) and the
complementary cumulated distribution function (CCDF) of
the probability tag distributions (see Figure 4(c) and Fig-
ure 4(d)) on a log-log scale. We see that for heavily and
moderately tagged resources, few tags are applied very fre-
quently while the vast majority of tags are used very rarely.
Figure 4(c) and Figure 4(d) show that the tag distributions
of heavily and moderately tagged resources are dominated
by a large number of tags which are only used once.

Figure 4 reveals that the tails of the tag distributions
(starting from a tag frequency 2) are close to a straight line.
The straight line, which is a main characteristic for power
law distributions plotted on a log-log scale, is more visi-
ble for heavily tagged resources than for moderately tagged
ones. We can now hypothesize that a power law distribution
could be a good fit for our data if we look at the tail of the
distribution with a potential xmin ≥ 2.

For finding the scaling parameter α we use a maximum
likelihood estimation and for finding the appropriate xmin
value we use the Kolmogorov-Smirnov statistic as suggested
by Clauset et al. [5]. As proposed in previous work [2, 5],
we also look at the Kolmogorov-Smirnov distance D of the

4We use the term tail to characterize the end of a distribu-
tion in the sense of probability theory.

corresponding fits – the smaller D the better the fit. Table 1
shows the parameters of the best power law fits, averaged
over all heavily tagged or moderately tagged resources. One
can see from this table that the α values are very similar
for both datasets and also fall in the typical range of power
law distributions. Further, one can see that the power law
fits are slightly better for heavily tagged resources than for
moderately tagged ones, as also suggested by Figure 4.

Although our results suggest that it is likely that our dis-
tributions have been produced by a power law function, fur-
ther investigations are warranted to explore whether other
heavy-tailed candidate distributions are better fits than the
power law [5, 1]. We compare our power law fit to the
fit of the exponential function, the lognormal function and
the stretched exponential (Weibull) function. We use log-
likelihood ratios to indicate which fit is better.

The exponential function represents the absolute mini-
mal candidate function to describe a heavy-tailed distribu-
tion. That means, if the power law function is not a bet-
ter fit than the exponential function, it is difficult to assess
whether the distribution is heavy-tailed at all. The lognor-
mal and stretched exponential function represent more sen-
sible heavy-tailed functions. Clauset et al. [5] point out that
there are only a few domains where the power law function is
a better fit than the lognormal or the stretched exponential.

Our results confirm this as we do not find significant dif-
ferences between the power law fit and the lognormal fit (for
both heavily and moderately tagged users). However, most
of the time the power law function is significantly better than
the stretched exponential function and the power law func-
tion is a significantly better fit than the exponential function
for all heavily tagged users and for most moderately tagged
users. This indicates that the tag distributions of heavily
tagged resources and most moderately tagged resources are
clearly heavy tail distributions and the power law function
is a reasonable well explanation. Nonetheless, it remains un-
clear from which heavy tail distribution the data has been
drawn since several of them produce good fits.

Limitations and Potentials: As we have shown, one
limitation of this method is that it is often difficult to deter-
mine which distribution has generated the data since sev-
eral distributions with similar characteristics may produce
an equally good fit. Furthermore, the automatic calculation
of the best xmin value for the power law fit has certain con-
sequences since xmin might become very large and therefore
the tail to which the power law function is fitted may be-
come very short. Finally, there is still an ongoing discussion
about the informativeness of scaling laws (see [16] for a good
overview), since some previous work suggests that there ex-
ist many ways to produce scaling laws and some of those
ways are idiosyncratic and artifactual [26, 18].

3. EXPERIMENTAL SETUP AND DATASETS
We empirically analyze the semantic stabilization process

in a series of different social tagging systems using the state-
of-the-art methods described in Section 2 and using a new
method introduced in Section 4. Table 2 gives an overview

Table 1: Parameters of the best power law fits.
α std xmin std D std

Heavily tagged users 1.9793 0.0841 4.5500 1.9818 0.0299 0.0118
Moderately tagged users 2.0558 0.1529 3.1200 0.0570 0.0570 0.0218



(a) Heavily tagged users (b) Moderately tagged users (c) Heavily tagged users (d) Moderately tagged users

Figure 4: Rank-ordered tag frequency and CCDF plots for heavily tagged and moderately tagged users on
log-log scale. The illustrations show that for both heavily and moderately tagged resources, few tags are
applied very frequently while the vast majority of tags is applied very rarely. In Figure 4(c) and Figure 4(d)
we can see that a large number of tags are only used once. The figures visualizes that the tails of the tag
distributions are close to a straight line which suggests that the distributions might follow a power law.

of the datasets obtained from distinct tagging systems using
the nature of the resource being tagged, the sequential order
of the tagging process (i.e., is the resource selected first or
the tag), the existence or absence of tag suggestions and the
visibility of the tags which have been previously assigned to
a resource. We say that tags have a low visibility if users do
not see them during the tagging process and if they are not
shown on the page of the resource being tagged. Otherwise,
tags have a high visibility. Also, the number of resources,
users and tags per dataset are shown.

Delicious dataset: Delicious is a social tagging system
where users can tag any type of website. We use the De-
licious dataset crawled by Görlitz et al. [11]. From this
dataset we randomly selected 100 websites which were tagged
by many users (more than 4k users) and 100 websites which
were moderately tagged (i.e., by less than 4k but more than
1k users) and explore the consecutive tag assignments for
each website. The original dataset is available online5.

LibraryThing dataset: LibraryThing is a social tagging
system which allows to tag books. We use the LibraryThing
dataset which was crawled by Zubiaga et al. [34]. Again,
we randomly sampled 100 books that were heavily tagged
(more than 2k users) and 100 books which were moderately
tagged (less than 2k and more than 1k users) and explore
the consecutive tag assignments for each book.

Twitter dataset: Twitter is a microblogging service that
allows users to tag their contacts by grouping them into user
lists with a descriptive title. The creation of such list titles
can be understood as a form of tagging since list titles are
free form words which are associated with one or several
resources (in this case users). What is unique about this
form of tagging is that the tag (aka the list title) is usually
produced first, and then users are added to this list, whereas
in more traditional tagging systems such as Delicious, the
process is the other way around. That means, the user first
creates a new tag (see Figure 5) and second looks for users
he wants to assign to this tag (see Figure 6). Users are

5http://www.uni-koblenz-landau.de/koblenz/fb4/
AGStaab/Research/DataSets/PINTSExperimentsDataSets

Figure 5: User creates a new list on Twitter.

Figure 6: User can assign users to his newly created
list by searching people on Twitter or by browsing
through the list of users he/she is following.

not provided with any tag (aka the list title) suggestions.
If they want to see which other tags have previously been
assigned to their contacts they need to visit the profile page
of each users and navigate to their list membership section.
Since this is fairly time intensive we can speculate that it
is unlikely that users imitate the previously assigned tags
but create their own tags and assign users to them based on
what they know about them and how they want to organize
them.

From a Twitter dataset which we described in previous
work [30], we selected a sample of 100 heavily tagged users

Table 2: Description of the datasets and characteristics of the social tagging system the data stem from.
System Entity Type Tag First Tag Suggestions Tags Visible #Resources #Users #Tags
Delicious websites no yes low 17,000k 532k 2,400k

LibraryThing books no no high 3,500k 150k 2,000k
Twitter lists users yes no low 3,286 2,290k 1,111k



(which are mentioned in more than 10k lists) and 100 mod-
erately tagged users (which are mentioned in less than 10k
lists and more than 1k lists). For each of these sample users
we crawled the full history of lists to which a user was as-
signed. We do not know the exact time when a user was
assigned to a list but we know the relative order in which a
user was assigned to different lists. Therefore, we can study
the tagging process over time by using consecutive list as-
signments as a sequential ordering6.

It needs to be noted that the thresholds we have used
above during the data collection are distinct for each tagging
system since those systems differ amongst others in their
number of active users and size. We chose the thresholds
empirically and found that the choice of threshold does not
impact our results since heavily tagged as well as moderately
tagged resources show similar characteristics.

Finally, we also contrast our tagging datasets with a nat-
ural language corpus (see Section 5.2) and two randomly
generated tagging dataset. This allows us on one hand, to
explore to what extent semantic stabilization which can be
observed in tagging systems goes beyond what one would
expect to observe if the tagging process would be a random
process; and on the other hand, to compare the semantic
stabilization of the tag distributions of resources with the
semantic stabilization of co-occurring word distributions of
resources.

Natural Language corpus: As a natural language cor-
pus we use a sample of tweets which refer to the same re-
source. Therefore, we selected a random sample of users
from our Twitter dataset which have received tweets from
many distinct users (more than 1k). For those users, we se-
lect a sample of up to 10k tweets they received. The words
of those tweets are extracted and interpreted as social an-
notations of the receiver. This allows us to compare tags
with words, both annotating a resource (in this case a user).
We removed URLs, usernames, punctuations, numbers and
Twitter syntax such as RT using the part of speech tagger
presented in [9].

Synthetic random tagging datasets: Given a fixed
vocabulary size we create two random tagging dataset by
simulating the tagging process as random draws from a uni-
form and a power law tag distribution.

4. MEASURING SEMANTIC STABILITY
Based on the analysis of state-of-the-art methods pre-

sented in Section 2, we (i) present a novel method for as-
sessing the semantic stability of individual tagging streams
and (ii) show how this method can be used to assess and
compare the stabilization process in different tagging sys-
tems. Our new method incorporates three new ideas:

Ranking of tags: A tagging stream can be considered
as semantically stable if users have implicitly agreed on a
ranking of tags which remains stable over time. Importantly,
the ranking of frequent tags remains more stable than the
ranking of less frequent tags since frequent tags are those
which might be more relevant for a resource. They have been
applied by many users to a resource and therefore stable

6We share the Twitter user handles to allow other re-
searchers to recreate our dataset and reproduce our results
for our heavily tagged http://claudiawagner.info/data/
gr_10k_username.csv and moderately tagged http://
claudiawagner.info/data/less_10k_username.csv Twit-
ter users.

rankings of these tags indicate that a large group of users
has agreed on the relative importance of the tags for that
resource.

Random baselines: Semantic stability of random tag-
ging processes needs to be considered as a baseline for stabil-
ity since we are interested in exploring stable patterns which
go beyond what can be explained by a random tagging pro-
cess.

New tags over time: New tags can be added over time
and therefore, a method which compares the tag distribu-
tions of one resource at different points in time must be able
to handle mutually non-conjoint tag distributions – i.e., dis-
tributions which contain tags that turn up in one distribu-
tion but not in the other one. Most measures used in previ-
ous work (e.g., the KL divergence) only allow to compare the
agreement between mutually conjoint lists of elements and
a common practice is to prune tag distributions to their top
k elements – i.e., the most frequently used tags per resource.
However, this pruning requires global knowledge about the
tag usage and only enables a post-hoc rather than a real-
time analysis of semantic stability.

4.1 Rank Biased Overlap: RBO(σ1, σ2, p)

Intuition and Definition: The Rank Biased Overlap
(RBO) [31] measures the similarity between two rankings
and is based on the cumulative set overlap. The set overlap
at each rank is weighted by a geometric sequence, providing
both top-weightedness and convergence. RBO is defined as
follows:

RBO(σ1, σ2, p) = (1− p)
∞∑
d=1

σ11:d ∩ σ21:d

d
p(d−1) (3)

Let σ1 and σ2 be two not necessarily conjoint lists of rank-
ing. Let σ11:d and σ21:d be the ranked lists at depth d. The
RBO falls in the range [0, 1], where 0 means disjoint, and 1
means identical. The parameter p (0 ≤ p < 1) determines
how steep the decline in weights is. The smaller p is, the
more top-weighted the metric is. If p = 0, only the top-
ranked item of each list is considered and the RBO score is
either zero or one. On the other hand, as p approaches arbi-
trarily close to 1, the weights become arbitrarily flat. These
weights, however, are not the same as the weights that the
elements at different ranks d themselves take, since these
elements contribute to multiple agreements.

In the following, we use a version of RBO that accounts
for tied ranks. As suggested in [31], ties are handled by
assuming that if t items are tied for ranks d to d+(t−1), they
all occur at rank d. RBO may account for ties by dividing
twice the overlap at depth d by the number of items which
occur at depth d, rather than the depth itself:

RBO(σ1, σ2, p) = (1− p)
∞∑
d=1

2 ∗ σ11:d ∩ σ21:d

|σ11:d + σ21:d|
p(d−1) (4)

We modify RBO by summing only over occurring depths
rather than all possible depths. Therefore, our RBO mea-
sure further penalizes ties and assigns a lower RBO value
to pairs of lists containing ties. For example, consider the
following two pairs of ranked lists of items: (i) (A=1, B=2,
C=3, D=4), (A=3, B=2, C=1, D=4) and (ii) (A=1, B=1,
C=1, D=4), (A=1, B=1, C=1, D=4). Both pairs of lists
have the same concordant pairs: (A,D) and (B,D) and (C,D).
The RBO value of the first pair is 0.2 according to the origi-
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(b) Moderately tagged users

Figure 7: Rank Biased Overlap (RBO) measures
with p = 0.9. The black dotted line shows the
weighted average RBO of a uniformly random tag-
ging process over time, while each colored line cor-
responds to the RBO of one Twitter user.

nal measure and also according to our tie-corrected variant.
The RBO value of the second pair is 0.34 according to the
original measure and 0.17 according to our tie-corrected vari-
ant. This example nicely shows that while the original RBO
measure tends to overestimate ties, our variant slightly pe-
nalizes ties. For our use case this makes sense since we do
not want to overestimate the semantic stability of a resource
where users have not agreed on a ranking of tags but only
find that all of tags are equally important.

Demonstration: Figure 7 shows the RBO of the tag
distributions of resources over time for our people tagging
dataset. The RBO value between the tag distribution after
N and N +M tag assignments is high if the M new tag as-
signments do not change the ranking of the (top-weighted)
tags. One can see that the RBO of a randomly generated tag
distribution is pretty low and increases slowly as more and
more tags are added over time. Contrary, the RBO of real
tag distributions increases as more and more tags are added.
At the beginning, it increases quickly and remains relatively
stable after few thousand tag assignments. This indicates
that RBO allows identifying an implicit consensus in the
tag distributions which may emerge over time and which
goes beyond what one would expect from a uniformly random
tagging process. A uniformly random tagging process pro-
duces relative tag proportions which are all very similar (i.e.,
all tags are equally important or unimportant). Therefore,
the probability that the ranking changes after new tag as-
signments is higher than it is for real tagging streams where
users have produced a clear ranking of tags where some tags
are much more important for a resource than others. Over
time, the gap between real tagging streams and random tag-
ging streams will decrease. Yet, one can see that within the
time-window in which real tagging streams semantically sta-
bilize (i.e., few thousand tag assignments) tag distributions
produced by a random process are significantly less stable.
Again, we can see that the tag distributions of heavily tagged
resources are slightly more stable than those of moderately
tagged ones.

In our work, we empirically chose p = 0.9 which means
that the first 10 ranks have 86% of the weight of the evalua-
tion. We got similar results when choosing higher values of
p. For example, when choosing p = 0.98 the first 50 items
get 86% of the weight. If one would chose a lower value for p
such as p = 0.1 (or p = 0.5) the first two elements would get
99.6% (or 88.6%) of the weight. That means, all elements
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Figure 8: The percentage of resources (in this case
heavily tagged Twitter users) stabilized at time t
with stability threshold k. For example, point P
indicates that after 1250 tag assignments 90% of re-
sources exhibit semantic stability (an RBO value) of
0.61 or higher.

with a rank lower than two would be almost ignored and
therefore the RBO values show more fluctuation. However,
in all our experiments with different p values the RBO of
real tag distributions was significantly higher than the RBO
of uniform random tag distributions.

Limitations and Potentials: One advantage of RBO is
that it handles mutually non-conjoint lists of tags, weights
highly ranked tags more heavily than lower ranked tags, and
is monotonic with increasing depth of evaluation. Another
advantage is that rank agreements are measured rather than
distances between distributions. While the deviations in the
distributions decrease with increasing denominators, the de-
viations in the rankings do not necessarily decrease. The
probability of observing local deviations in the rankings de-
pends on the shape of the distribution, the flatter the distri-
bution the more likely the rankings will continue changing
over time.

A potential limitation of RBO is that it requires to pick
the parameter p which defines the decline in weights - i.e.,
how top-weighted the RBO measure is. Which level of top-
weightness is appropriate for the tag distributions in dif-
ferent tagging systems might be a controversial question.
However, our experiments revealed that as long as the pa-
rameter p was not chosen to be small (i.e., p < 0.5), the
results remained essentially the same.

4.2 A Rank-based Semantic Stability Method
Based on the previously defined Rank Biased Overlap we

propose a method which allows to investigate the seman-
tic stabilization process in a social tagging system (or other
systems in which social streams are generated) based on the
stabilization and consensus formation process of individual
social tagging streams of resources. This method allows to
compare the semantic stabilization process of different social
stream based systems over time. Given a sample of tagged
resources (the sample size N and the type of resources can
be chosen arbitrarily) the goal is to specify how many re-
sources of the sample have stabilized after a certain number
of consecutive tag assignments.

We propose a flexible and fluid definition of the concept
of semantic stabilization by introducing (a) a parameter k
that constitutes a threshold for the RBO value and (b) a
parameter t that specifies the number of consecutive tag
assignments. We call a resource in a social tagging system
semantically stable at point t, if the RBO value between its
tag distribution at point t− 1 and t is equal or greater than



0 500 1000 1500 2000 2500 3000 3500 4000
nr. of consecutive tag assignments t

0.0

0.2

0.4

0.6

0.8

1.0

se
m

a
n
ti

c 
st

a
b
ili

ty
 k

0.450

0.600
0.750 0.900

0.450

0.600

0.750 0.900
0.450

0.600

0.750

0.900

0.450
0.600

0.7500.900

Tag streams (Delicious URL)
Tag streams (LibraryThing book)
Random power law baseline
Random uniform baseline

Figure 9: Semantic stabilization in different social tagging datasets which goes beyond what one would expect
from two random control processes. The x axis represents the consecutive tag assignments t while the y-axis
depicts the RBO (with p = 0.9) threshold k. The contour lines illustrate the curve for which the function
f(t, k) has constant values. These values are depicted in the lines and represent the percentage of stabilization
f . Each dataset is represented by a distinct color map. Lines which belong to the same color map show for
each number of tag assignments t the k threshold for which 90%, 75%, 60% and 45% of all resources have an
RBO value equal or higher than k. On can see that tagging streams in Delicious and LibraryThing stabilize
faster and reach higher levels of semantic stability than one would expect according to both baseline tagging
processes.

k. Our proposed method allows to calculate the percentage
of resources that have semantically stabilized after a number
of consecutive tag assignments t according to some threshold
for stabilization k. We can define this function by:

f(t, k) =
1

N

N∑
i=1

{
1, if RBO(σit−1 , σit , p) > k.

0, otherwise.
(5)

We illustrate the semantic stabilization for our sample
of heavily tagged Twitter users in Figure 8. The contour
plot depicts the percentage of resources (i.e., Twitter users)
which have become semantically stable according to some
RBO threshold k after t tag assignments. The figure shows
that after 1k tag assignments 90% of Twitter users have an
RBO value above 0.5 which can be considered as a medium
level of stability. We define RBO values below 0.4 as a sign
for no stability, values between 0.4 and 0.7 as medium sta-
bility and values above 0.7 as high stability.

4.2.1 Results & Discussion
In this section we use our novel method to explore and

compare the semantic stabilization process of different social
tagging systems introduced in Section 3.

The contour plots in Figure 9 and Figure 10 depict the per-
centage of resources which have become semantically stable
(i.e., users have agreed on a stable and focused list of tags)
according to some RBO threshold k after t tag assignments
in different social tagging systems. Two randomly generated
tagging datasets are added for control. One is drawn from
a uniform tag distribution and the other one is drawn from
a tag distribution which follows a power law. Figure 9 only
includes social tagging systems which semantically stabilize
faster and reach higher levels of semantic stability than both

baselines, while Figure 10 only includes those social tagging
systems which do not beat both baselines.

In both figures we can see that the tag distributions gen-
erated by a uniform tagging process7 exhibits by far the
lowest stabilization since the resources just stabilize for low
k (k < 0.2) even after a large amount of tag assignments t.
That means, the k threshold for which 90%, 75%, 60% and
45% of all resources have an equal or higher RBO values
than k is very low. Contrary, we can see that all real-world
tagging systems exhibit much higher stability and consen-
sus. The tag distributions that are generated by a random
power law tagging process8 show higher and faster stabiliza-
tion. However, Figure 9 shows that some real-world tagging
systems such as Delicious and LibraryThing reveal higher
and faster semantic stabilization than both baselines – i.e.,
they show higher k values for lower t values. It is interesting
to note that both of these systems encourage imitation be-
havior by suggesting previously assigned tags (see Delicious)
and by making previously assigned tags visible during the
tagging process (see LibraryThing).

In Twitter users first have to create a tag (aka user list)
and afterwards select the resources (aka users) to which they
want to assign the tag. During this tagging process, tags
which have been previously assigned to users are not visible
and therefore it is unlikely that imitation behavior plays a
major role in Twitter9.

7tags are randomly picked from a synthetic uniform tag dis-
tribution
8tags are randomly picked from a synthetic tag distribution
that follows a power law
9If users want to see which other tags have previously been
assigned to a user they need to visit her profile page and
navigate to the list membership section. Since this is fairly
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Figure 10: Semantic stabilization in different social tagging datasets and a natural language dataset. One
can see that there is no significant difference between the stabilization and consensus formation process in
the synthetically generated tag streams which have been drawn from a power law distribution, the natural
language and the tag streams in Twitter. The x axis represents the consecutive tag assignments t while
the y-axis depicts the RBO (with p = 0.9) threshold k. The contour lines illustrate the curve for which the
function f(t, k) has constant values. These values are depicted in the lines and represent the percentage of
stabilization f .

Interestingly, our results show (cf. Figure ??) that there
are no significant differences between the stabilization and
consensus formation process of synthetically generated tag
streams that have been drawn from a power law distribution,
natural language streams and the tag streams in Twitter.
All three streams reach a medium level of semantic stability
for different values of t which is significantly lower than the
semantic stability level reached by social tagging systems
which support imitation. Our empirical results from differ-
ent social tagging systems are in line with the results from a
user study presented in [2] which also shows that tag distri-
butions of resources become stable regardless of the visibility
of previously assigned tags. The presence of tag suggestions
may provoke a higher and faster agreement between users
who tag a resource and may therefore lead to higher levels of
stability, but it is clearly not the only factor causing stability.
Our results suggest that in tagging systems which encourage
imitation less than 1k tag assignments are necessary before
a tagging stream becomes semantically stable (i.e., the rank
agreement has reached a certain level and does not change
anymore), while in tagging systems which do not encourage
imitation more than 1k tag assignments are required.

5. EXPLAINING SEMANTIC STABILITY
The experimental results reported in [2] as well as our own

empirical results on the people tagging dataset from Twitter
suggest that stable patterns may also arise in the absence
of imitation behavior. As a consequence, other factors that
might explain semantic stabilization, such as shared back-

time intensive one can speculate that it is unlikely that users
imitate the previously assigned tags but create their own
tags and assign users to them based on what they know
about them and how they want to organize them.

ground knowledge and stable properties of natural language,
deserve further investigation.

5.1 Imitation and Background Knowledge
To explore the potential impact of imitation and shared

background knowledge we simulate the tag choice process.
According to [7] there are several plausible ways how the tag
choice process can be modeled:

Random tag choice: Each tag is chosen with the same
probability. This corresponds to users who randomly choose
tags from the set of all available tags which seems to be only
a plausible strategy for spammers

Imitation: The tags are chosen with a probability that
is proportional to the tag’s occurrence probability in the
previous stream. This selection strategy corresponds to the
Polya Urn model described in [10] where only tags that have
been used before are in the urn and can be selected. Users
who are easily influenced by other users might apply this
tag selection strategy.

Background Knowledge: The tags are chosen with a
probability that is proportional to the tag’s probability in
the shared background knowledge of users. This corresponds
to users who choose tags that seem appropriate based on
their own background knowledge.

In our simulation, we assume that the tag choice of users
might be driven by both imitation and background knowl-
edge. Similar to the epistemic model [7] we introduce a
parameter I describing the impact of imitation. Conse-
quently, the impact of shared background knowledge is 1−I.
We run I from 0 to 1 – i.e., we simulate tagging streams
which have been generated by users who only use the im-
itation strategy to choose their tags (I = 1), users who
only rely on their background knowledge when selecting
tags (I = 0), and users who adapt both strategies. We use



a word-frequency corpus10 from Wikipedia to simulate the
shared background knowledge. That means, if only back-
ground knowledge (I = 0) is used, we sample tags from the
word frequency distribution of Wikipedia. Since this distri-
bution follows Zipf law, we do not need to include our second
baseline for which we synthetically generate tag distributions
by drawing them from a power law distribution because they
would be identical. If only imitation is used (I = 1) the first
user picks a tag which is added to the urn and afterwards the
Polya Urn model [10] is used. That means, in an extreme
tagging scenario where every user always imitates the pre-
vious user, the same tag will be re-assigned to the resource.
For each synthetic dataset we simulate 100 tagging streams
in order to have the same sample size as for our real-world
datasets introduced in Section 3.

Our results in Figure 11 show the percentage of resources
which have a RBO value equal or higher than k after t tag
assignments for different synthetic tagging datasets. One
can see from this figure that a synthetic tagging dataset
with I = 1 (i.e., a datasets which was solely created via
imitation behavior) does not stabilize over time since more
than 90% of the resources have very low RBO values (i.e.,
k < 0.1) also after a few thousand tag assignments. This is
consistent with our intuition since a model which is purely
based on imitation dynamics fails to introduce new tags and
therefore no ranked lists of tags per resource can be created.

Further, one can see that a synthetic tagging dataset with
I = 0 (i.e., a tagging datasets which was solely created
via background knowledge and therefore reflects the proper-
ties of a natural language system) stabilizes slightly slower
than a synthetic tagging dataset which was generated by a
mixture of background knowledge and imitation dynamics
(I = 0.7). This is particularly interesting since it suggests
that when shared background knowledge (encoded in natural
language) is combined with social imitation, tagging streams
reach higher levels of semantic stability (0.7 < k < 0.8)
quicker (for lower t) than if users either only rely on imita-
tion behavior or on background knowledge. Our findings are
in line with previous research [7] which showed that an imi-
tation rate between 60% and 90% is best for simulating real
tag streams of resources. However, unlike our work their
work focuses on reproducing the sharp drop between rank 7
and 10 in the rank-ordered tag frequency distribution of a
resource at one time point and does not explore the stabiliza-
tion process over time. However, as described in Section 7
their work has certain limitations which we address by (i)
exploring a range of different social tagging systems includ-
ing one where no tags are suggested and previously assigned
tags are not visible during the tagging process and (ii) study-
ing the semantic stabilization process over time rather than
the shape of the rank-ordered tag frequency distribution at
a single time point.

5.2 Stability and Consensus in Natural Lan-
guage Streams

Since tagging systems are natural language systems, the
regularities and the stability of natural language (see e.g.,
[33] and [15]) may cause the stable patterns which we ob-
serve in tagging systems. That means, one can argue that
tagging systems become stable because they are built on top
of natural language which itself is stable.

10http://www.monlp.com/2012/04/16/calculating-word-
and-n-gram-statistics-from-a-wikipedia-corpora/

Our results presented in Figure 10 show that a natural
language corpus (see Section 3) – where users talk about
a set of sample resources – also becomes semantically sta-
ble and reaches a medium level of semantic stability (with
k > 0.6 if t > 1, 000), but does not go beyond what one
would expect from a random process which draws tags a
power law tag distribution. According to the Wilcoxon rank
sum test with continuity correction the differences between
the stabilization levels of the natural language streams, the
tagging streams in Twitter and the random power law tag
distributions after different numbers of tag assignments t are
not significant.

Also, our simulation results in Figure 11 show that a syn-
thetic dataset which is generated using Wikipedia word fre-
quencies as background knowledge (I = 0) and is therefore
reflecting the properties of the natural language, becomes
semantically stable over time and reaches a medium level
of stability and consensus (with k > 0.6 if t > 1, 000). In
both cases one can see that the stabilization and consensus
formation process of natural language systems clearly dif-
fers from the stabilization process of real tagging streams
which are produced in systems supporting imitation and
synthetic tagging streams which are generated by included
imitation mechanisms. The RBO curve of natural language
systems is flatter at the beginning than the RBO curve of
tagging streams which are partly generated via imitation
mechanisms which suggests that more word assignments are
needed until a high percentage of resources have RBO values
at or above a certain threshold k. The only tagging stream
dataset which shows a similar stabilization process as the
natural language dataset is the people tagging dataset ob-
tained from Twitter which does not support any imitation
mechanisms. This suggests, that the stability of natural lan-
guage systems can indeed explain a large proportion of the
stability which can be observed in tagging systems where
the tagging process is not really social (i.e., each user an-
notates a resource separately without seeing the tags others
used) and no imitation dynamics are supported. However,
tagging systems which support the social aspect of tagging
by e.g., showing tags which have been previously applied by
others, exhibit a faster and higher level of semantic stabi-
lization than tagging systems which do not implement these
social functionalities. This suggests that the semantic sta-
bility which can be observed in social tagging systems goes
beyond what one would expect from natural language sys-
tems and that higher and faster degree of stability and con-
sensus are achieved through the social dynamics in tagging
systems; concretely, the imitation behavior of users.

6. DISCUSSION
The main implications of our work are: (i) We highlight

limitations of existing methods for measuring semantic sta-
bility in social tagging streams and introduce a new and
more robust method which allows to analyze the stabiliza-
tion and consensus formation process in social tagging sys-
tems. However, our method is not limited to social tagging
systems and tagging streams and can be used to measure
stability and user agreement in other types of data streams,
such as word-streams of hashtags in Twitter or word streams
of Wikipedia concepts. (ii) Our empirical results as well
as our simulation results suggest that when aiming to im-
prove semantic stability of social tagging systems, system
designers can exploit the insights gained from our work by
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Figure 11: Semantic stabilization of synthetic (i.e., simulated) tagging processes. Tagging streams which are
generated by a combination of imitation dynamics (70%) and background knowledge (30%) tend to stabilize
faster and reach higher levels of stability than streams which are generated by imitation behavior (I=1) or
background knowledge (I=0) alone.

implementing mechanisms which - for example - augment
imitation in 70% of cases (e.g., by suggesting or showing
previously assigned tags) while tapping into the background
knowledge of users in 30% of cases (e.g., by requiring users to
tag without recommendation mechanisms at place, thereby
utilizing background knowledge).

In future we also want to explore the lowest number of
users that need to tag a resource in order to produce a stable
tag description of the resource for which we would also need
to model the number of tags users simultaneously assign to
resources into our experiments. Further, we want to point
out that for the sake of simplicity we used the same back-
ground knowledge corpus for all resources and neglected the
impact of the user interface (i.e., the number of suggested
tags and the number of previously used tags from which they
are chosen) on the imitation process. These user interface
parameters are different for distinct tagging systems and
have been varied over time. Without exactly knowing how
the user interface looked like when the data was generated
and how the algorithm for suggesting and displaying tags
worked, it is difficult to properly choose these parameters.

7. RELATED WORK
Social tagging systems have emerged as an alternative to

traditional forms of organizing information which usually
enforce rigid taxonomies or ontologies with controlled vo-
cabulary. Social tagging systems, however, allow users to
freely choose so-called tags to annotate resources such as
websites, users, books, videos or artists.

In past research, it has been suggested that stable pat-
terns may emerge when a large group of users annotates
resources on the Web. That means, users seem to reach a
consensus about the description of a resource over time, de-
spite the lack of a centralized vocabulary which is a central
element of traditional forms of organizing information [10,
13, 4]. Several methods have been established to measure
this semantic stability: (i) in previous work one co-author of

this paper suggested to assess semantic stability by analyz-
ing the proportions of tags for a given resource as a function
of the number of tag assignments [10]. (ii) Halpin et al. [13]
proposed a direct method for quantifying stabilization by us-
ing the Kullback-Leibler (KL) divergence between the rank-
ordered tag frequency distributions of a resource at different
points in time. (iii) Cattuto et al. [4] showed that power law
distributions emerge when looking at rank-ordered tag fre-
quency distributions of a resource which is an indicator of
semantic stabilization. Lin et al. [19] investigate dynamic
properties of social tagging systems (e.g., tag growth) on a
macro level (i.e., per system) and on a micro level (i.e., per
resource). They analyze amongst others the tag growth in
different systems and argue that a slower growth rate indi-
cates a larger portion of tag reusing, which further implies a
stronger collective feedback and higher level consensus over
time. The semantic stability measure which we propose in
our work goes beyond the notion of stability and consensus
described by Lin et al. since the relative importance of tags
for a resource may change over time though no new tags are
introduced. Therefore, we believe that a slow tag growth
rate is not a sufficient criteria for semantic stability, though
it might often be observed in social tagging systems where
users imitate the tags of others.

Several attempts and hypotheses aiming to explain the ob-
served stability have emerged. In [10] the authors propose
that the simplest model that results in a power law distribu-
tion of tags would be the classic Polya Urn model. The first
model that formalized the notion of new tags was proposed
by Cattuto et al. [4] by utilizing the Yule-Simon model [32].
Also, models like the semantic imitation model [8] or simple
imitation mechanisms [20] have been deployed for explaining
and reconstructing real world semantic stabilization.

While above models mainly focus on the imitation behav-
ior of users for explaining the stabilization process, shared
background knowledge might also be a major factor as one
co-author of this work already hypothesized in previous work
[10]. Research by Dellschaft et al. [7] picked up this hypoth-



esis and explored the utility of background knowledge as an
additional explanatory factor which may help to simulate
the tagging process. Dellschaft et al. show that combin-
ing background knowledge with imitation mechanisms im-
proves the simulation results. Although their results are very
strong, their evaluation has certain limitations since they fo-
cus on reproducing the sharp drop of the rank-ordered tag
frequency distribution between rank 7 and 10 which was
previously interpreted as one of the main characteristics of
tagging data [3]. However, recent work by Bollen et al. [2]
questions that the flatten head of these distributions is a
characteristic which can be attributed to the tagging pro-
cess itself. Instead, it may only be an artifact of the user
interface which suggests up to ten tags. Bollen et al. show
that power law forms regardless of whether tag suggestions
are provided to the user or not, making a strong point to-
wards the utility of background knowledge for explaining the
stabilization.

In addition to imitation and background knowledge, an
alternative and completely different explanation for the sta-
ble patterns which one can observe in tagging systems exists,
namely the regularities and stability of natural language sys-
tems. Tagging systems are built on top of natural language
and if all natural language systems stabilize over time, also
tagging streams will stabilize. Zipf’s law [33] states that the
frequency of a word in a corpus is proportional to the inverse
of its frequency rank and was found in many different nat-
ural language corpora (cf. [25]) However, some researcher
claim that Zipf’s law is inevitable and also a randomly gen-
erated letter sequence exhibits Zipf’s law [24, 18]. Recent
analysis refuted this claim [6, 14] and further showed that
language networks (based on word co-occurrences) exhibit
small world effects and scale-free degree distributions [15].

8. CONCLUSIONS
Based on an in-depth analysis of existing methods, we

have presented a novel method for assessing the semantic
stabilization in social streams. We have applied our method
to different social tagging streams and to different synthetic
tagging streams via simulations. Our results reveal that sta-
bility and implicit consensus on the description of resources
in social tagging systems cannot solely be explained by the
imitation behavior of users; however a combination of imita-
tion and background knowledge exhibits highest and fastest
semantic stabilization and consensus formation. Summariz-
ing, our work makes contributions on three different levels.

Methodological : Based on systematic investigations we
identify potentials and limitations of existing methods for
asserting semantic stability in social tagging systems. Us-
ing these insights, we present a novel, yet flexible, method
which allows to measure and compare the semantic stability
in different tagging systems in a robust way. Flexibility is
achieved through the provision of two meaningful parame-
ters, robustness is demonstrated by applying it to two ran-
dom control processes. Our method is general enough to be
applicable beyond social tagging systems and we believe it is
also useful for analyzing stabilization in other stream based
systems such word-streams of the edit history of Wikipedia
pages or word-streams of hashtags or URLs.

Empirical : We conduct empirical analysis of semantic sta-
bilization of distinct social tagging streams and natural lan-
guage streams using our method. We find that the semantic
stabilization of tagging streams in systems which support

imitation mechanisms goes beyond what can be explained
by the semantic stability of natural language and random
control processes, while the stability of tagging streams in
systems which do not support any imitation show similar se-
mantic stabilization patterns than natural language streams
and synthetically generated tag streams drawn from power
law tag distributions.

Explanatory : We investigate factors which may explain
the stabilization and consensus formation process in social
tagging systems using simulations. Our results show that
tagging streams which are generated by a combination of
imitation dynamics and shared background knowledge ex-
hibit faster and higher semantic stability than tagging streams
which are generated via imitation dynamics or natural lan-
guage phenomena alone.

Our findings are relevant for researchers interested in de-
veloping more sophisticated methods for assessing semantic
stability and agreement in tagging streams and for practi-
tioners interested in assessing the extent of semantic stabi-
lization in social tagging systems on a system scale.
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