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ABSTRACT

Preserving the integrity of application data across updates in
the presence of failure is an essential function of computing
systems, and byte-addressable non-volatile memory (NVM)
broadens the range of fault-tolerance strategies that imple-
ment it. NVM invites programs to manipulate durable data
directly via load and store instructions, but overheads due
to the widely used mechanisms that ensure consistent recov-
ery from failures impair performance, e.g., the logging over-
heads of transactions. We introduce the concept of Timely
Sufficient Persistence (TSP) mechanisms, which is relevant
to both conventional and emerging computer architectures.
For a broad spectrum of fault-tolerance requirements, satis-
factory TSP mechanisms typically involve lower overheads
during failure-free operation than their non-TSP counter-
parts; hardware and OS support can facilitate TSP mecha-
nisms. We present TSP variants of programs representing
two very different classes of shared-memory multi-threaded
software that store application data in persistent heaps: The
first employs conventional mutexes for isolation, and TSP
substantially reduces the overhead of a fault-tolerance mech-
anism based on fine-grained logging. The second class of
software employs non-blocking algorithms; remarkably, TSP
is very easy to retrofit onto a non-resilient design and en-
joys zero runtime overhead. Extensive experiments confirm
that TSP yields robust crash resilience with substantially
reduced overhead.

1. INTRODUCTION

Runtime failures such as process crashes, operating system
kernel panics, and power outages can corrupt or destroy
application data unless effective measures protect applica-
tion data integrity. Traditional relational database man-
agement systems running on conventional hardware with
volatile byte-addressed memory and non-volatile block stor-
age employ sophisticated techniques to preserve the integrity
of application data across updates in the presence of fail-
ures [14]. Unfortunately these techniques sometimes suffer
painful runtime overheads due to the performance charac-
teristics of hard drives and solid state drives.

Emerging hardware promises durability with greatly improved
performance. Byte-addressable non-volatile memory (NVM)
is becoming available [2] and has enabled new database sys-
tem designs with improved performance [22, 26]. NVM has

also sparked increased interest in programming styles that
directly manipulate durable data in persistent heaps via
load and store instructions rather than through database
or filesystem interfaces [25]. Such approaches offer supe-
rior performance compared to disk- and SSD-based systems
with comparable fault tolerance, but they suffer noticeable
overheads during failure-free operation [15].

We begin by introducing a conceptual framework that en-
compasses both conventional and emerging hardware. We
then systematically characterize as a function of fault-tolerance
requirements the circumstances under which runtime over-
heads may safely be postponed until failures actually occur
and/or eliminated outright, and we tailor the specific mea-
sures taken to the available hardware. The result is the con-
cept of Timely Sufficient Persistence (TSP). Loosely speak-
ing, a TSP fault-tolerance mechanism eschews costly pre-
ventive measures in favor of minimalist remediation when
failure is imminent, which typically reduces runtime over-
heads substantially. It furthermore helps us to identify new
hardware and OS support to facilitate new fault tolerance
mechanisms. We restrict ourselves in this paper to the con-
text of a single computer, and the following types of failures:
process crashes, kernel panics, and power outages. Our on-
going work applies TSP to our previous contributions to
replicated high-availability databases [13,16,19].

The remainder of this paper is organized as follows: Sec-
tion 2 reviews emerging hardware architectures, describes
corresponding fault tolerance mechanisms and application
programming styles, and discusses how these new develop-
ments relate to traditional fault-tolerance objectives. Sec-
tion 3 defines Timely Sufficient Persistence and describes
how it can be implemented on both conventional and emerg-
ing hardware. Section 4 presents two case studies illustrat-
ing the benefits of TSP: In one case, TSP imbues a pro-
gram with crash resilience while adding zero runtime over-
head; in another case, TSP substantially reduces the runtime
overhead of an existing fault-tolerance technique. Section 5
presents experimental results confirming both the fault tol-
erance properties and performance advantages of TSP in our
two case studies, and Section 6 concludes with a discussion.

2. NEW HARDWARE & SOFTWARE

Traditional relational database management systems are de-
signed to survive severe failures, e.g., power outages. When



they run on conventional hardware with volatile DRAM
memory, they must therefore write data to block-addressed
storage devices, which perform poorly for random writes.
Write-ahead logging and grouping partially mitigate the stor-
age I/O bottleneck [14]: Updates are added to an append-
only log buffered in volatile memory, which is written se-
quentially to a write-ahead log on stable storage, where-
upon the updates are protected from damage caused by fail-
ure. The need to synchronously commit such writes to block
storage may limit overall database performance to storage
bandwidth [10]. Solid state drives (SSDs) enable databases
with improved performance compared with disk-based de-
signs [21]. However SSDs still suffer from the same funda-
mental drawback as HDDs: both kinds of storage devices
require databases to synchronously commit data via a rel-
atively slow block I/O interface [21]. Traditional filesys-
tems running on conventional hardware provide an alterna-
tive means of manipulating durable data, but they suffer the
same storage bottlenecks that afflict databases [5].

Byte-addressable non-volatile memory (NVM) has recently
become available. Conventional DRAM is approaching den-
sity scaling limits [2], and the most promising replacement
technologies—phase change memory, spin-torque transfer mem-
ory, and memristors—all happen to be non-volatile [26]. If
any of these technologies architecturally supplants or supple-
ments DRAM it will provide inherently non-volatile random-
access memory (NVRAM). Meanwhile, hybrid DRAM/flash
memory DIMM packages backed by batteries or supercapac-
itors (NVDIMMs) implement NVM by persisting the con-
tents of DRAM to flash when power is lost [15]. Non-volatile
CPU caches have been proposed to complement NVM [29].
Another way to preserve the contents of volatile DRAM
across utility power outages is to fail over to an uninter-
ruptible power supply, a traditional building block of fault-
tolerant systems [12]. Regardless of the underlying technol-
ogy, all forms of NVM share several advantages over block-
addressed storage devices. NVM is installed on the memory
bus and enjoys access latencies and bandwidth comparable
to DRAM. NVM is accessed at cache-line granularity via
load and store instructions. In contrast to the relatively
coarse, slow, mediated updates offered by databases and file
systems atop block storage devices, NVM enables fast, fine-
grained, direct updates by application software.

The potential of NVM has been explored in the context
of databases [22, 26] and filesystems [6]. However the ar-
rival of new forms of NVM has also renewed interest in a
style of application programming that has long been possi-
ble but that has remained outside the mainstream until re-
cently. Since the days of MULTICS, some operating systems
have offered application programs the illusion that load

and store instructions operate upon durable data [7]; file-
backed memory mappings provide this illusion on modern
POSIX systems [23]. Atop such mechanisms it is possible to
layer higher-level abstractions ranging from straightforward
persistent heaps [18] to sophisticated object databases [27].
The latter are easier to implement in today’s spacious virtual
address spaces than in the cramped 32-bit address spaces of
yesteryear because today we can find empty virtual address
ranges where a file can be reliably mapped to the same vir-
tual address on every invocation of a program [28], elimi-

nating the need for tracking and swizzling pointers for relo-
catability.

Compared with the more mainstream approach in which ap-
plications manipulate durable data via filesystem or database
interfaces, the“NVM style”of direct manipulation offers sev-
eral attractions. The most obvious is that in-memory data
structures and algorithms are sometimes more convenient
and more natural than the storage-oriented alternatives. A
related issue is that translating between in-memory and se-
rial data formats can be cumbersome: Typed inheritance
hierarchies favored by many application developers do not
always correspond cleanly to raw byte ranges in flat files
or to relational database tables. Translation between serial
and in-memory formats can also be slow and error-prone;
parsers, for example, are notorious for harboring bugs.

Supporting fault-tolerant “NVM-style programming” in the
age of genuine NVM presents interesting new opportunities
and challenges. Failures that abruptly terminate program
execution can leave application data in NVM in an incon-
sistent state, so the challenge is to ensure that recovery can
always restore consistency to data that survives the failure.
Recent research has proposed transactional updates of per-
sistent heaps, where transactions are defined either explicitly
by the programmer [25] or are automatically inferred from
the target program’s use of mutual exclusion primitives [3,4].
In the latter approach, synchronously flushing UNDO log
entries to NVM immediately before store instructions exe-
cute enables recovery code to roll back transactions as neces-
sary to restore the persistent heap to a consistent state, and
such synchronous flushing adds noticeable overhead during
failure-free operation.

Fortunately, some characteristics of emerging hardware work
to our advantage when addressing specific kinds of failures.
For example, the time and energy costs of flushing volatile
CPU cache contents to the safety of NVM are miniscule
compared to the corresponding costs of evacuating data in
volatile DRAM to block storage [15]—a crucial difference
that helps enormously if we must quickly panic-halt a faulty
OS kernel. In general, the key to finding the best designs
for meeting given fault-tolerance requirements on emerging
hardware is to systematically consider the costs of moving
data out of harm’s way and to devise contingency plans
that replace burdensome migrations during failure-free op-
eration with guarantees of last-minute rescue. We shall see
that emerging architectures sometimes reward procrastina-
tion handsomely.

3. TIMELY SUFFICIENT PERSISTENCE

Application requirements must distinguish tolerated failures
from non-tolerated failures. Process crashes and kernel pan-
ics resulting from software or hardware errors are frequently
placed in the former category, as are power outages. Appli-
cation requirements must furthermore specify what subset of
critical application data must survive tolerated failures. For
example, requirements might declare that the entire state of
a process is critical; more selective requirements might in-
stead deem the process heap to be critical but permit thread
execution stacks to be lost. Requirements might even desig-
nate different fault tolerance requirements for different sub-



sets of application data. Requirements must also distinguish
between fail-stop failures that abruptly halt process/thread
execution and failures that first corrupt application data.
For example, when a process on a POSIX system receives a
SIGKILL signal, all threads merely halt; the same is some-
times true when a process triggers a trap, e.g., by executing
illegal instructions. By contrast, memory corruption errors
in C/C++ programs often corrupt critical application data.

Fault-tolerance strategies typically move data from places
where tolerated failures threaten corruption or destruction
to places beyond the reach of tolerated failures; we respec-
tively refer to such locations as vulnerable and safe. Safety
can be defined only with respect to fault-tolerance require-
ments and is orthogonal to hardware characteristics such
as volatility. For example, ordinary volatile DRAM can be
safe with respect to process crashes, but even hard disks may
be deemed vulnerable if we must tolerate catastrophes that
wipe out entire data centers. Finally, we must ask whether
we have adequate notice of tolerated failures to move crit-
ical data from vulnerable locations to safe ones. If so, we
may seek improved performance while still meeting fault-
tolerance requirements by trading runtime guarantees that
critical data is in a safe location for guarantees that the data
will be moved to safety should the need ever arise.

Timely Sufficient Persistence (TSP) describes fault-tolerance
mechanisms that make such tradeoffs. A TSP design satis-
fies its requirements by moving a minimal amount of data
(typically only critical data) to a location that is adequately
safe (typically no safer) and does so in a timely manner
(typically “just in time”). For example, Whole System Per-
sistence [15] is an ingenious two-stage TSP design that pro-
tects the entire state of a computer from power outages
by first flushing the contents of volatile CPU registers and
caches into volatile DRAM using residual energy stored in
the system power supply and then evacuating the contents
of DRAM into flash storage using energy stored in superca-
pacitors. This design completely avoids any overhead during
failure-free operation. Presently we shall consider other TSP
designs that tolerate a wider range of failures (e.g., due to
software errors), that protect critical data more selectively,
and that offer similarly attractive performance.

In our experience it is instructive to ask simple questions
about the minimum support needed to satisfy given fault tol-
erance requirements—if only just barely—and to ask what
“hidden” support may be present in the hardware and sys-
tems we are already using. Such exercises have more than
once led the authors to insights that in turn informed im-
proved TSP designs that, in retrospect, had been right un-
der our noses but that we had overlooked before we began
to seek TSP solutions explicitly. For example, consider the
requirement that critical data that is explicitly placed in
memory allocated through a special interface must survive
process crashes only. A näıve approach might begin with
the observation that physical memory allocated to a process
is promptly reclaimed by the OS when the process crashes,
with no opportunity for the process to rescue its contents.
This line of reasoning might then conclude that crash tol-
erance in this context requires preemptively (and perhaps
synchronously) committing data to durable media during
failure-free operation.

A better approach begins by asking what minimal degree of
“durability” suffices to survive process crashes: POSIX calls
it “kernel persistence,” and files in memory-backed filesys-
tems have this property. We then consider what happens
when such a file is memory mapped into the address space
of a process that stores data into the mapping region and
then crashes. The modified physical memory page frames
corresponding to the mapping are also pages in the back-
ing file and are not reclaimed by the OS when the process
crashes. Furthermore stored data in the CPU cache at the
time of the crash will eventually be evicted into the memory-
backed file and meanwhile will be visible from the cache to
any process that reads the file. Therefore if the process
places critical data in memory corresponding to a memory-
mapped file from a DRAM-backed file system, following a
crash the file will contain all data stored by the process
up to the instant of the crash, and we obtain this guarantee
with no overhead during failure-free operation. (Appendix A
provides additional detail and references on the interaction
between process crashes and file-backed memory mappings.)
Of course, additional measures may be required to ensure
that application data stored in the file can be restored to a
consistent state following a crash; we consider two different
ways of ensuring consistent recoverability in Section 4. The
important point is that seeking a TSP solution has gotten
us halfway to our goal with zero runtime overhead.

Different kinds of failures call for different TSP designs. If
we are required to tolerate kernel panics, for example, we
must arrange for the dying OS to flush volatile CPU caches
to memory. This suffices to meet the requirement if memory
is non-volatile (or if the machine architecture preserves the
contents of memory across “warm reboots” [17]). If mem-
ory is volatile and is not preserved across OS re-starts, the
contents of memory must be written to stable storage be-
fore the panic’d OS shuts down the machine. An HP team
has implemented the required support in the Linux kernel’s
panic handler, which required a relatively small amount of
straightforward code. Power outages admit a spectrum of
TSP designs ranging from mundane uninterruptible power
supplies to sophisticated and resourceful strategies for stor-
ing and scrounging just enough energy to rescue critical
data [15]. Emerging non-volatile memories can dramatically
reduce the time and energy cost of keeping a machine run-
ning long enough to rescue critical data after utility power
fails.

Conventional relational database management systems allow
the user to trade consistency for performance via configura-
tion parameters. For example, serializability and snapshot
isolation offer different performance and consistency guar-
antees. TSP designs provide a wider range of applications
with analogous tradeoffs among failure toleration require-
ments, hardware and system software support, and perfor-
mance during failure-free operation.

4. CASE STUDIES

We now consider in detail two approaches to ensuring con-
sistent recovery of application data in multi-threaded pro-
grams that manipulate persistent heaps via CPU load and
store instructions. Both approaches share several features
in common: the programming model is convenient, famil-



iar, and readily implementable in mainstream programming
languages such as C++; the programmer obtains access
to address space regions backed by durable media via a
conventional memory allocation interface (e.g., malloc for
C/C++); and the programmer assists recovery by ensur-
ing that all live application data in the persistent heap are
reachable from a heap-wide root pointer manipulated via
simple get_root() and set_root() interfaces. Finally, in
both approaches the application programmer must ensure
that concurrent threads access shared data in an orderly
manner, free of data races and other concurrency bugs. In
one of our approaches, multithreaded isolation depends upon
conventional synchronization primitives (e.g., Pthread mu-
texes); the other relies upon non-blocking algorithms. We
describe how TSP enables both kinds of multithreaded soft-
ware to ensure consistent recovery of the persistent heap
without high-latency CPU cache flushing during failure-free
operation.

Implementations of both approaches on emerging architec-
tures featuring NVRAM or NVDIMM memory offer sub-
stantial advantages, but implementation on conventional hard-
ware (volatile DRAM and block-addressed storage) is also
possible. To tolerate process crashes only, it suffices to en-
sure that the persistent heap is backed by a memory-mapped
file in an ordinary filesystem or even a file in a DRAM-
backed file system (e.g, /dev/shm). To tolerate kernel pan-
ics, the kernel must flush volatile CPU caches to memory; if
the latter is volatile, memory regions corresponding to per-
sistent heaps must be written to durable storage. To tolerate
power outages, sufficient standby power must be available to
flush CPU caches and move persistent heap data to durable
media. As noted in Section 1, NVRAM and NVDIMMs dra-
matically reduce the time and energy cost of tolerating both
kernel panics and power outages.

Sections 4.1 and 4.2 describe the principles underlying the
two approaches; Section 5 describes corresponding imple-
mentations and our empirical evaluation of their correctness
and performance overheads.

4.1 Non-Blocking Algorithms

This section presents the remarkable observation that a well-
known class of multi-threaded isolation mechanisms, together
with TSP, guarantee consistent recovery from crashes with-
out the need for any additional mechanisms or precautions
whatsoever.

Following the terminology of Fraser & Harris [9], we say
that an algorithm that ensures orderly multi-threaded ac-
cess to shared in-memory data is non-blocking if the suspen-
sion or termination of any subset of threads cannot prevent
remaining active threads from continuing to perform cor-
rect computation. Non-blocking algorithms cannot employ
conventional mutual exclusion because a mutex held by a
terminated thread will never be released, which prevents all
surviving threads from accessing data protected by the mu-
tex. Threads in non-blocking algorithms typically employ
atomic CPU instructions such as compare-and-swap to up-
date shared memory while precluding the possibility that
other threads may observe inconsistent states of application
data. Lock-free algorithms, a special case of non-blocking al-

gorithms, offer the stronger guarantee that forward progress
occurs even in the presence of contention for shared data.
One additional definition helps us to reason about the ef-
fects of crashes: Following Pelley et al. [20], we imagine a
thread called the recovery observer that is created at, and
observes the state of program memory at, the instant when
all other threads in a program abruptly halt due to a crash.

Consider a program whose application-level data resides in
a persistent heap and is manipulated with a non-blocking
algorithm. The heap is furthermore updated in TSP fash-
ion, i.e., in the event of a crash due to any tolerated failure,
data in volatile locations (e.g., CPU caches or DRAM) will
be flushed to durable media (NVRAM/NVDIMMs or sta-
ble storage) as necessary. We shall see that under these
assumptions, a crash cannot prevent consistent recovery of
the application data in the persistent heap.

Consider a crash that abruptly terminates all of the pro-
gram’s threads. We imagine a recovery observer created at
the instant of the crash and consider its view of memory.
Thanks to TSP, practical/implementable recovery code will
have precisely the same view of memory as our hypothetical
recovery observer. In particular, TSP ensures that the state
of recovered memory will reflect a strict prefix of the store

instructions issued by the terminated threads. By definition
of non-blocking algorithm, the termination of the program’s
threads by the crash cannot prevent the recovery observer
from making correct progress based on its view of memory,
regardless of what the recovery observer intends to do. In
particular, the recovery observer may traverse application
data in the persistent heap by starting at the heap’s root
pointer; again by the definition of non-blocking algorithm,
the recovery observer will never thereby encounter corrupt
or inconsistent application data. Identical reasoning applies
to any number of recovery observers, which collectively could
resume correct execution from the consistent state of appli-
cation data that they find in the persistent heap.

The main advantage of the approach outlined above is that
it requires relatively little additional effort for the class of
software to which it applies. Unlike whole-system persis-
tence (WSP) [15], our technique does not simply resume
thread execution where a crash suspended it—which would
be fine for power outages but which isn’t the right remedy
for crashes induced by software bugs. Instead, we require ap-
plication code to resume execution from a consistent state
of the persistent heap. However our technique is potentially
applicable to a broader range of failures, including not only
the power outages handled byWSP but also software failures
including kernel panics and process crashes, so long as the
failures do not corrupt the persistent heap. One restriction
of the approach outlined above is the requirement that appli-
cations manipulate data in persistent heaps exclusively via
non-blocking algorithms. Such algorithms may offer excel-
lent performance, but they are less general, more complex,
and less widely used than alternative approaches. We now
consider how TSP enables efficient support for consistent
recoverability in a much wider class of software.



4.2 Mutex-Based Software

The Atlas system employs compile-time analysis and instru-
mentation, run-time logging, and sophisticated recovery-time
analysis to imbue conventional mutex-based multithreaded
software with crash resilience [3, 4]. Atlas operates upon
multi-threaded programs that correctly employ mutexes to
prevent concurrency bugs and ensure appropriate inter-thread
isolation but that take no measures whatsoever to ensure
consistent recovery from durable media. Atlas is nearly
transparent, requiring minimal changes to target programs:
durable data must reside in a persistent heap and all active
data structures in the persistent heap must be reachable
from the persistent heap’s root pointer. Atlas guarantees
that recovery will restore the persistent heap to a consistent
state and that crashes cannot corrupt the integrity of data
within it. We explain how TSP improves performance dur-
ing failure-free operation after briefly reviewing the workings
of Atlas; previous publications supply the details [3, 4].

Atlas leverages the fact that shared heap data may only be
modified within critical sections protected by mutexes and
assumes that each outermost critical section (OCS) in the
target program both finds and leaves the heap in a consistent
state according to application-level integrity criteria. There-
fore each OCS represents a bundle of changes to the persis-
tent heap that should be applied failure-atomically. Atlas
instruments target programs with logging mechanisms to en-
sure that an OCS interrupted by a crash can be rolled back
during recovery. Furthermore, subtle interactions among
OCSes can produce situations where OCSes that completed
prior to a crash must nonetheless be rolled back upon re-
covery (see Section 2.3 of [4]); Atlas recovery code correctly
handles such situations. Finally, it is possible for crashes to
cause Atlas-fortified software to leak memory; Atlas recently
incorporated a recovery-time garbage collector to reclaim
leaked memory.

Compared with the approach to consistent recovery of pro-
grams that employ non-blocking algorithms described in Sec-
tion 4.1, Atlas offers several advantages: Atlas operates
upon more general classes of software that employ famil-
iar isolation mechanisms, as opposed to more restricted and
much more esoteric non-blocking algorithms. Furthermore,
because Atlas rolls back critical sections interrupted by crashes,
it can tolerate failures that cause data corruption within
such critical sections; thus Atlas-fortified software is robust
against a wider range of failures.

Timely Sufficient Persistence brings substantial performance
benefits to Atlas-fortified software. Atlas employs undo log-
ging at run time to retain the ability to roll back OCSes
during recovery: Before allowing a store instruction in the
target program to alter a persistent heap location for the first
time in an OCS, Atlas first adds an entry to its undo log.
If TSP is not available, Atlas must synchronously flush the
undo log entry from the CPU cache into memory before al-
lowing the store to occur. This synchronous flushing adds
considerable overhead beyond the unavoidable Atlas over-
head of logging. However if TSP is available, synchronously
flushing CPU caches is no longer necessary because TSP
guarantees that recovery will read the most recent state of
all persistent memory locations, regardless of what tolerated
failure has occurred. The details of how TSP delivers on this

guarantee will of course depend on the details of how TSP
tolerates failures (Section 3).

5. EXPERIMENTS

We performed fault-injection experiments to confirm that
both of the approaches described in Section 4 do indeed
ensure consistent recovery of persistent heap data. We also
measured the overhead of the logging required by Atlas (Sec-
tion 4.2) and of the failure-free cache flushing that Atlas
would require if TSP were not available. Previously pub-
lished experiments applying Atlas to real applications (OpenL-
DAP and memcached) and benchmarks (Splash2) have shown
a 3× performance overhead of logging alone and 5× over-
head when both logging and synchronous flushing are en-
abled [3]. The more recent results in Section 5.2 below ex-
tend and confirm our earlier findings.

5.1 Map Interface & Implementations

Our experiments employ two different multi-threaded im-
plementations of the familiar “map” interface, i.e., a local
key-value store that in the present case maps integer keys to
integer values. We divide the key space into a small lower
range L used for integrity checks and the remaining much
larger higher range H . Each thread t ∈ [1 . . . T ] maintains
in the map two private counters indexed with keys c1,t and
c2,t in L. Iteration i of the main loop of each worker thread
performs three steps as atomic and isolated operations: it
first sets the value associated with c1,t to i, then increments
the value associated with a key drawn with uniform proba-
bility from H , then sets the value associated with c2,t to i.
The correctness invariants of the map are the following two
inequalities:

T∑

t=1

c1,t −

T∑

t=1

c2,t ≤ T (1)

T∑

t=1

c1,t ≥
∑

keyk∈H

map[k].value ≥

T∑

t=1

c2,t (2)

Our non-blocking map implementation is based on a lock-
free skip list by Herlihy & Shavit [11]. We employ a mature
and stable C implementation by Dybnis that is believed to
be bug-free [8]. We wrote our own mutex-based map imple-
mentation in C. It employs a separate-chaining hash table
and moderate-grain locking (one mutex per 1000 buckets).

Our fault-injection methodology mimics the effects of a sud-
den process crash caused by an application software error,
e.g., a segmentation violation, illegal instruction, or integer
divide-by-zero. We abruptly and simultaneously terminate
all threads in a running process by sending the process a
SIGKILL signal, which cannot be caught or ignored. Recov-
ery code then attempts to locate the map in the persistent
heap by starting from the heap’s root pointer, traverse the
contents of the map, and verify the integrity of the map by
testing the invariants of Equations 1 and 2.

5.2 Results

Both our mutex-based and non-blocking map implementa-
tions recovered completely successfully after hundreds of in-



Hardware Platform Throughput (millions iter/sec)
CPU type hardware Mutex-Based

Computer @ GHz threads DRAM no Atlas log only log + flush Non-Blocking
ENVY Phoenix 800 Desktop i7-4770 @ 3.4 8 32 GB 3.66 2.36 1.58 2.54
DL580 Gen8 Server E7-4890v2 @ 2.8 30 1.5 TB 2.13 1.50 1.06 2.00

Table 1: Hardware platforms & experimental results. All computers are HP, all CPUs Intel.

jected process crashes, consistent with previous findings con-
cerning Atlas [3] and with the reasoning in Section 4.1. Sim-
ilar results would occur under other kinds of non-corrupting
failures, e.g., power outages and kernel panics, provided that
TSP is implemented correctly.

We measured the performance of four variants of our map
implementations, where the metric used is “total number
of iterations of all worker threads per second” (recall from
Section 5.1 that each iteration performs three atomic oper-
ations). The throughput of our native unmodified mutex-
based code is compared with two Atlas-fortified variants of
the same code, one with UNDO logging alone and one with
both logging and synchronous CPU cache flushing. We can
thus quantify the overhead of logging alone, which is suf-
ficient for consistent recovery if TSP is available, and of
synchronous flushing, which is necessary for consistent re-
covery if TSP is not available. We include the performance
of the non-blocking map for completeness, noting that com-
parisons with the mutex-based map are problematic because
the two maps employ different data structures (hash table
vs. skip list). All performance and fault-injection experi-
ments were conducted on the HP/Intel computers described
on the left-hand side of Table 1.

The right-hand side of Table 1 presents our performance
results. In all cases we report results for runs with eight
worker threads. For the server experiment we pinned all
software threads to a single one of the DL580’s four CPU
sockets; each socket has 15 cores and 30 hardware threads.
Running Atlas in “TSP mode” (logging enabled but syn-
chronous flushing disabled) compared with unfortified code
reduces throughput by roughly 35% on the desktop and by
roughly 30% on the server. This is the price we pay for using
Atlas to ensure consistent recovery when TSP is available.
When TSP is not available Atlas must synchronously flush
log entries, and the throughput reduction resulting from At-
las fortification increases to 57% on the desktop and 50% on
the server. Comparing the throughput of TSP vs. non-TSP
modes of Atlas, we see that TSP increases throughput by
49% on the desktop machine and 42% on the server.

6. CONCLUSIONS

Timely Sufficient Persistence brings substantial benefits when
application fault tolerance requirements and available hard-
ware and system software support enable TSP. Our experi-
ence with both real applications [3] and small benchmarks
(Section 5.2) shows that TSP designs outperform their non-
TSP counterparts by wide margins. Remarkably, readily
implementable TSP designs for non-blocking algorithms can
sometimes completely eliminate runtime overheads while sat-
isfying stringent fault tolerance requirements. Looking for-
ward, we believe that TSP points the way to more efficient

tradeoffs among runtime overheads, fault tolerance objec-
tives, and hardware and system software support.

APPENDIX

A. PROCESS CRASHES AND SHARED FILE-

BACKED MEMORY MAPPINGS

This appendix provides additional detail on the scenario dis-
cussed in a single paragraph in Section 3: The effect of pro-
cess crashes on cached modifications to shared file-backed
memory mappings.

The POSIX Standard’s description of the required behavior
is unequivocal [23]: “If MAP SHARED is specified, write
references shall change the underlying object.” This behav-
ior is required even if the process responsible for the writes
crashes after writing; the language in the standard admits
no exceptions or deviations.

On today’s conventional hardware, different implementa-
tions of Unix-like OSes are free to satisfy the POSIX re-
quirements in different ways. Linux, being a portable, well-
documented, open-source, and POSIX-compliant OS, illus-
trates one reasonable implementation on today’s hardware.
In Linux, memory pages corresponding to shared memory
mappings are always included in the page cache [1, p. 659].
Furthermore the page frames for such page cache entries are
directly accessible to user-space programs [24]. The conse-
quences for both CPU caching and file caching are that the
right thing happens, effortlessly: Upon termination of a pro-
cess by crash or by normal exit, the objects associated with
that process are dissociated from it [1, p. 127] but page cache
page frames corresponding to files remain in the page cache,
where they are immediately visible to other processes that
subsequently read data from those files—precisely as though
the terminated process had simply ceased to perform mod-
ifications. If necessary (e.g., due to memory pressure) the
modifications will be written from the page cache down into
the backing file. Something analogous happens to data in
CPU caches: Modifications to shared file-backed mappings
begin as store instructions. If such modifications reach the
CPU cache but not the corresponding page frames of mem-
ory and the process then crashes, the data in the dirty cache
lines will be visible to other threads or processes that subse-
quently read the data. If the dirty cache lines are evicted by
the cache replacement policy, the dirty data will be written
back to the underlying memory pages. In either case, reads
will always see the modifications, as required by POSIX.

Future machines that incorporate byte-addressable non-volatile
memory (NVM) on the memory bus might have no con-
ventional volatile DRAM, so today’s page cache would be
unnecessary on such future machines. Instead, the most
natural thing for an operating system such as Linux to do



would be to map NVM pages directly into the address space
of user-level processes, in which case the above discussion
of CPU caching suffices to reassure us that data in dirty
cache lines corresponding to memory-mapped objects that
outlive processes will survive process crashes. We can be
confident that the POSIX standard’s requirement regarding
writes to MAP SHARED objects will continue to be imple-
mented correctly on future NVM-based machines; there is
no reason to fear that NVM will lead to weaker semantics
or other deviation from the standard.

As noted in Section 3, the consequences for process crash
resilience are quite fortunate: All stores to a shared file-
backed memory mapping that occur before a process crash
are immediately visible to any and all readers; furthermore
the stored data is safe from corruption or destruction by
the process crash. If space in the CPU cache or the page
cache becomes scarce, the modifications will eventually reach
the backing file via ordinary eviction from the CPU cache
and the page cache. For transaction systems such as Atlas,
which maintains UNDO logs to roll back failed transactions
following crashes, process crash resilience therefore does not
require forcing data from the CPU cache into durable media
during failure-free operation.
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