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Kemal Güler · Evren Körpeoğlu
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We consider a problem faced by a procurement manager who needs to purchase a large volume of multiple
items over a planning horizon (a quarter or a year) that consists of multiple periods (months). There are multiple
suppliers that are qualified to offer all or a portion of the items in consideration. Each supplier provides a base
price for each item that it offers. In addition, suppliers offer various discounts to the manufacturer. The discounts
are contingent on meeting various conditions on total available market, volume or spend for a single item or a
group of items and reflect economies of scale and scope that may exist in suppliers’ operations. Some of these
discounts may be tied to future realization of a random event that can be mutually verified. We formulate the
problem as a scenario based multi-stage stochastic optimization model. The model is general in the sense that
it allows us to consider random events such as a drop in price that a supplier offers to other customers (which
the company in consideration may also benefit if it obtains the most favored customer status from the supplier
by meeting various conditions in the earlier periods), a price change in the spot market or other events that may
force a supplier to disclose a new discount offer in the middle of the planning horizon. We propose two certainty-
equivalent heuristics for this problem and show how one can evaluate the regret of using these heuristics instead
of an optimal solution. We finally present an application of our model on three procurement bidding events that
took place at a major manufacturing company in 2010. The results show that considering most favored customer
terms in supplier offers may create substantial savings and under certain settings, these savings may even surpass
the savings that can be obtained from regular discount offers.
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1. Introduction

Procurement is a core strategic function that affects the profitability of a firm as the cost of
goods and services acquired through procurement typically constitutes a majority of operat-
ing expenses. A fundamental problem in procurement is supplier selection or sourcing, i.e.,
how to allocate the firm’s business across suppliers, considering factors such as cost, quality,
responsiveness and risk.

The industry has seen two shifts in supplier selection in the past two decades. First, with
the advent of the Internet, procurement organizations moved away from manual bidding
processes and negotiations to electronic sourcing. For example, between 2001 and 2006,
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Hewlett-Packard increased its total spend through e-sourcing events to $30 billion, a 100-
fold increase (Carbone, 2004, Moody, 2006). Electronic sourcing not only allowed firms to
expand their supply pool to more competition, but also made the supplier selection process
faster and more structured, enabling a simultaneous evaluation and negotiation of supplier
offers. A second shift is an organizational change with which corporations started to procure
centrally to leverage economies of scale of their global business. For example, Hewlett-
Packard combined even its indirect and services procurement globally and started to use
category based sourcing to leverage its total spend of $16.5 billion (Avery, 2008). While these
two shifts increased the potential value of the procurement function, they also made the
decisions faced by procurement managers more complex and challenging. A procurement
manager now needs to distribute a large volume of many items required at multiple locations
across many global suppliers that approach the firm with various terms and offers.

A complicating feature of this problem is regarding how the suppliers present their price
offers in a procurement environment. Many suppliers often exhibit economies of scale and
scope in their production activities. Some others have growth and market share targets for a
specific group of items. Suppliers express these internal efficiencies and pressures by offering
discounts to the buyer. These offers are usually complex and are contingent on meeting
various conditions on total available market, volume or spend for a single item or a set of
items and the discounts may be applicable to the same or a different set of items.

It is not possible to incorporate these complex discount offers into a simple reverse auction.
Ignoring these (potential) offers and selecting the lowest bidding supplier for each item or lot
would lead to inefficiencies. We have recently seen efforts to develop tools that would enable
suppliers to express these offers and buyers to evaluate them. The success of the software tool
CombineNet is described in Sandholm (2007). Between 2001 and 2006, 447 bidding events
are administered totaling a spend of $35 billion. It is believed that CombineNet delivered
savings of $4.4 billion in these events. Bichler et al. (2011) proposed a bidding language and
an optimization model to express and evaluate more complex offers.

Both of these efforts and many other research in this area assume that the important param-
eters of the problem are perfectly known in advance. However, procurement environments
are replete with uncertainties. A primary uncertainty is in the volume that needs to be pro-
cured. Since the demand for end-products is often volatile, it is also very hard to predict the
amounts of goods and services that need to be procured to make them. For example, global
shipments of personal computers declined in the first quarter of 2011, by 3.2% according to
an estimate by International Data Corp., and by 1.1% according to an another estimate by
Gartner Inc., while both tracking firms previously predicted an increase (Sherr, 2011).

Another important uncertainty is in the prices of components that need to be procured. For
example, prices of many components that are used in personal computers fluctuate heavily
and these shifts in prices are also very hard to predict. The price of the DRAM memory that
Hewlett-Packard uses dropped by over 90 percent in 2001, and then more than tripled in
early 2002 (Nagali et al., 2008). Supplier offers usually state a commitment to base prices and
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discounts that will be given if certain conditions are met. However, price uncertainty in the
market may still have an impact on how a procurement manager would evaluate such offers
through a number of ways. First, if the procurement is through a contracted supplier, the
future prices of this supplier to other customers may have an impact on an existing contract
based on certain clauses. These clauses usually refer to what is known as a most-favored-
customer (MFC) status. A customer who obtains a MFC status from a company is guaranteed
to receive the best price the company gives to anyone. If the supplier lowers price to someone
else, then the customer’s price will be lowered to match. In some cases, a customer may need
to purchase a minimum volume of a set of items over a specified time period to obtain this
status. In other cases, the customer (such as a government agency) may demand MFC status
for any contract without any condition. Lowest prices can be verified and contract compliance
can be ensured through third-party audits.

MFC clauses are commonly used in procurement contracts in many industries. For example
a contract (Sample Business Contracts, 2012) between Cisco Systems Inc. and one of its
suppliers, Frontier Software Development Inc., stipulates “Frontier represents and warrants
to Cisco that the product prices/license fees offered to Cisco under this agreement are no
less favorable than the product prices/license fees offered to any other party purchasing or
licensing similar quantities. In the event Frontier offers more favorable product prices/license
fees to any other party, Frontier will promptly notify Cisco of such event and offer such more
favorable product prices/license fees to Cisco commencing upon the date such more favorable
product prices/license fees were offered to the other party.”

As an example of a contract that guarantees a government agency to purchase at the lowest
price, we note the following price reductions clause stated in a contract between Hewlett-
Packard and US Department of Defense (DoD-ESI, 2012): “The prices under this BPA (blanket
purchase agreement) shall be at least as low as the prices that the contractor has under any
other contract instrument under like terms and conditions. If at any time the prices under any
other contract instrument become lower than the prices in this BPA, this BPA will be modified
to include the lower prices”. Governments usually enforce the compliance to these clauses
strictly. In a recent settlement, Oracle accepted to pay the US government $199.5 million after
a file suit claiming that Oracle was not providing the government discounts that were as deep
as some other customers were receiving (Montalbano, 2011).

Another contract clause that price uncertainty can have an effect is what is called meet-the-
competition-clause (MCC). An MCC clause (sometimes also referred to as meet-or-release
clause) in a procurement contract gives the seller an option to retain the customer’s business
by matching any lower price offer that may be coming in the future. A third contract type that
may lead to uncertainty in price is price indexing. In this case, the contract price of a product
is indexed to the price of a commodity or an official price index (such as consumer price
index). For example, in the UK, 85% of natural gas is sold under long-term contracts in which
prices are indexed to the spot market (Neumann and von Hirschhausen, 2004). Uncertainty
in the commodity prices or price index obviously creates uncertainty on the prices that the
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seller would charge to the buyer. Finally, if some of the products under consideration are
commodity-like products and can also be procured from the spot market, an uncertainty in
spot prices has a clear and direct effect on how much the manager should procure from the
spot market or using a fixed-price contract now and in the future.

In this study, we develop a model that incorporates price uncertainty to the supplier
selection problem when the suppliers offer complex discount offers. The formal problem we
consider may be stated as follows. A buyer needs to purchase a large volume of multiple
items over a planning horizon (a quarter or a year) that consists of multiple periods (months).
The demand for each item can be different in each period, but is known. There are multiple
suppliers that are qualified to offer all or a portion of the items in consideration. Each supplier
provides a base price for each item that it offers. In addition, suppliers propose various
discount offers to the buyer that are contingent on meeting various conditions on a single
item or a group of items, over a single period or multiple periods. An offer may provide
per unit discounts that can be applied to a single item or a group of items, over a single
period or multiple periods and on all units purchased (all-units discount) or units purchased
above a threshold (incremental discounts). Alternatively, an offer may provide the buyer a
lump sum. Some of these offers may be tied to realization of random events in the future
which can be mutually verified. The buyer’s problem is to select suppliers and determine
the amount of each item to be procured from each supplier in each period of the planning
horizon to minimize its expected procurement and inventory holding costs while satisfying
item demands in each period. There could be also capacity constraints which limit how
much the buyer can procure from a supplier. In addition, the buyer may also enforce certain
side constraints (e.g., enforce a minimum and maximum number of suppliers for each item)
to properly manage other procurement risks. While the procurement decisions for the first
period are executed immediately, the decisions in the latter periods will be contingent on the
realization of random events in those periods (i.e., recourses).

We formulate the buyer’s problem as a multi-stage stochastic mixed-integer program using
a scenario tree. To our knowledge, this is the first model for the supplier selection problem
that simultaneously considers uncertainty and discount offers of combinatorial nature. This
is also one of the first multi-period models and allows the buyer to consider discount rules
defined over multiple periods and carry inventory from one period to another to be eligible
for a favorable discount. The formulation is also very general in two aspects. First, we can
represent a variety of random events that have direct or indirect effects on the discounts that
the buyer gets from the suppliers. Second, we can represent many different forms of supplier
offers with very complex conditions and discounts. For example, the model supports the
separation of items (periods) for which the conditions are imposed and items (periods) on
which the discounts apply, pricing with multiple price breaks and incremental or all-units
discounts.

We also suggest two certainty-equivalent heuristics that can be used for this problem. In
both of these heuristics, a deterministic version of the problem is solved by setting the prices
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in later periods to their expected values. The static heuristic solves the problem only once
at the beginning of the horizon and does not respond to the actual realizations of events in
the later periods. The dynamic heuristic, on the other hand, resolves the problem at each
period. We show how one compute the performance of these heuristics by using our stochastic
formulation.

The multi-stage stochastic programming model is used to evaluate MFC status benefits and
regular discount offers for three bidding events that took place in 2010 at a major manufac-
turing company. The results of this case study show that considering MFC terms in addition
to the regular discount offers may lead to substantial savings. In some of the events, the incre-
mental savings by taking MFC terms into account may be larger than the savings that can
be obtained by only evaluating regular discount offers. The results also show that the price
certainty-equivalent heuristics, the static version in particular, fail to capture the benefits of
MFC terms in contracts.

The rest of the paper is organized as follows. In Section 2, we analyze a single-item, two-
period problem with two suppliers to gain insight into the trade-offs. In Section 3, we review
the literature on supplier selection problem. In Section 4, we present our model. In Section 5,
we propose the two certainty-equivalent heuristics. In Section 6, we provide the results of our
case study and analyze the effects of various model elements and parameters on the benefits
of considering MFC terms and effectiveness of the two heuristics. We conclude in Section 7.

2. A Motivating Example

In order to explain the basic trade-offs in evaluating discount offers under uncertainty and to
show the need to use a formal stochastic model to support decision making in this context,
we provide the following stylized example.

A company needs to procure an item over a two-period horizon. The demand in the first
and second periods are δ1 and δ2. There are two suppliers that offer this item. Supplier a
charges µa per unit and offers a most favored customer clause in the contract. Under this
contract, if the firm procures 100 m percent of its demand from supplier a in period 1, it will
benefit from any possible reduction in price (to other customers) in period 2. The price per
unit is to reduce by πa with a probability γ and to remain constant with probability 1 − γ.
Supplier b charges µb per unit and offers a volume discount contract. Under this contract, if
the firm procures a total of ρ in two periods from supplier b, it will receive a discount of πb

per unit. We assume that
δ1 + δ2 ≥ ρ > (1−m)δ1 + δ2.

That is, i-) the firm can always qualify for a volume discount from supplier b by buying
enough and ii-) the firm cannot qualify for the volume discount offer from supplier b and
buy enough from supplier a to benefit from a possible price drop at the same time. We also
assume that

µb < µa < µb −πb +πa,



6

i.e., firm will choose supplier a over b, if MFC clause in supplier a is used, and supplier b over
supplier a, otherwise. If the firm buys enough from supplier a to benefit from a potential price
drop, its expected cost will be

Φa
0 = µamδ1 +µb(1−m)δ1 +γ(µa −πa)δ2 + (1−γ)µbδ2.

On the other hand, if the firm chooses to use supplier b and benefit from the volume discount
offer, its cost will be

Φb = (µb −πb)(δ1 + δ2).

The firm will opt for supplier a’s MFC clause (Φa
0 <Φ

b) if and only if

γ > γ0 =
πb(δ1 + δ2)+ (µa −µb)mδ1

(πa +µb −µa)δ2
.

An alternative to using the stochastic formulation is to use a certainty-equivalent argument
and assume that supplier a’s second period price will be the expected price µa − γπa. In this
case, we can write firm’s cost if it chooses to use the MFC clause as

Φa
1 = µamδ1 +µb(1−m)δ1 + (µa −γπa)δ2.

In this case, the firm will opt for supplier a’s MFC clause (Φa
1 <Φ

b) if and only if

γ > γ1 =
πb(δ1 + δ2)+ (µa −µb)mδ1 + (µa −µb)δ2

πaδ2
.

Denoting α = πb(δ1 + δ2) + (µa − µb)mδ1, β = (πa + µa − µb)δ2 and γ = (µa − µb)δ2, we have
γ0 = α/β and γ1 = (α+γ)/(β+γ). It is then easy to see that γ0 is strictly smaller than γ1 if and
only if γ0 < 1, i.e., unless it is never optimal for the firm to consider the supplier a which
offers the MFC clause. In this case for γ0 < γ ≤ γ1, the firm’s optimal action is to procure mδ1

from supplier a in period 1. However, this action will not be taken if a certainty-equivalent
approach is used. In general, the decisions taken using a certainty-equivalent approach would
be different from optimal decisions (using stochastic formulations) and therefore lead to
expected costs that are higher than optimal.

3. Literature Review

The impact of quantity discounts on replenishment and procurement decisions of a company
is well-studied in the operations management literature (Munson and Rosenblatt, 1998). Most
of the basic textbooks in this area include a section on extensions of the economic order
quantity (EOQ) model that consider quantity discounts (e.g., Silver et al., 1998, §5.5). Another
line of research focuses on sourcing, i.e., how a company should select and allocate its spend
to different suppliers based on different factors such as cost, quality, lead time and reliability
(Chopra and Meindl, 2013, §13).
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While the extensions of the EOQ model for the case of quantity discounts and single-item,
single-supplier problems are usually tractable, the problem becomes difficult, even for the
case of a single item when there are multiple suppliers whose price offers are functions of the
quantity purchased. For example, consider a buyer who needs to purchase a predetermined
amount of a single item from a set of suppliers. Each supplier offers a certain price, but the
price is valid only if the quantity purchased is in a specific interval, reflecting the cost and
capacity structure of the supplier. Chauhan et al. (2005) show that the problem is NP-hard.

For reviews on the supplier selection problem, we refer the reader to Benton and Park
(1996), Munson and Rosenblatt (1998) and Aissaoui et al. (2006). Here we briefly summarize
some examples on different variants of the problem.

Most studies on supplier selection for multiple items consider single period problems.
Goossens et al. (2007) study the problem of deciding on purchase quantities for multiple items
from multiple suppliers that offer total quantity discounts based on total purchase quantities.
The authors prove that this problem is NP-hard even for some specific discount structures.
They present an MIP formulation and model the LP relaxation as a min cost network flow
problem. They extend their results to variants of the problem with market share constraints,
limited number of winning suppliers and multiple periods. Manerba and Mansini (2012)
study the same problem under capacity constraints and present valid inequalities and a
branch and cut algorithm. Qin et al. (2012) study a distribution planning problem where
shipping companies offer total quantity discounts. Crama et al. (2004) consider the supplier
selection problem with alternative product recipes and Mansini et al. (2012) incorporate
transportation costs. A different setting where suppliers offer their products in bundles is
studied by Murthy et al. (2004). In this problem, decisions regarding the purchase quantities
for different items are related not only through bundles but also through fixed costs of buying
from suppliers. A Lagrangian relaxation based heuristic is proposed to solve this problem.
Sadrian and Yoon (1994) and Katz et al. (1994) present MIP formulations for the problem in
the presence of business volume discounts. Bichler et al. (2011) introduce a comprehensive
bidding language that allows for elaborate discount structures. Total quantity and incremental
quantity discounts as well as lump sum discounts and markups with conditions on spend or
purchase quantities can be expressed with this bidding language. The authors present a MIP
model to solve the supplier selection problem and report the results of their experiments in
solving the model under different scenarios.

There are few studies on the supplier selection problem with multiple periods and dynamic
demand. Tempelmeier (2002) presents formulations and a heuristic solution approach for the
single-item problem with both total quantity discounts and incremental discounts. van de
Klundert et al. (2005) study the problem of selecting telecommunications carriers under total
quantity discounts. The discounts are given based on the total call-minutes over the planning
horizon, but lower and upper bounds are imposed on call-minutes per period routed via each
carrier.
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The multi-item problem with dynamic demand is studied by Stadtler (2007). Different from
our study, discount rules involve a single item and decisions concerning different items are
related through a fixed cost of buying from suppliers. Xu et al. (2000) study the single supplier
problem in the presence of business volume discounts and setup costs.

The present study extends the literature on multi-item problems with multiple suppliers
and dynamic demand by considering very general discount rules and price uncertainty.

4. The Multi-stage Stochastic Programming Model

A firm (buyer) needs to procure a set of items I over a set of periods T . For each item i ∈ I
and period t ∈ T , the firm has to satisfy demand denoted by δit (a deterministic quantity)
without a backlog. The firm works with a set of suppliersN . For each item i, there is a subset
of suppliers Ni ⊆ N that are qualified. Supplier j in Ni charges a unit price µi j t and has a
capacity κi j t for item i in period t. The firm can also carry inventory from one period to the
next by incurring an inventory holding cost of ηit for each unit of item i’s ending inventory
in period t.

A set of discount rules D and a set of lump sum rebate rules L are available. These rules
involve a set of conditions C on order quantities. The quantity ρc is the minimum order
quantity that the firm needs to purchase from items in set Ic ⊆ I over periods Tc ⊆ T for
condition c ∈ C to be satisfied. Let E be the set of conflicting pairs of rules.

We define R =D∪L. The buyer can benefit from the rule r offered by supplier j(r) ∈N if it
satisfies the conditions Cr ⊆C and if it does not benefit from any other rule in Rr ⊂R. If r ∈L,
then a lump sum rebate of ωr is offered. If r ∈D, the supplier provides a set of discounts Kr.
The discount k ∈Kr reduces the price by πk per unit for items in the set Ik ⊆I purchased over
periods Tk ⊆T exceeding the quantity θk (Ik1 ∩Ik2 = ∅ for all k1, k2 ∈Kr, k1 , k2).

Let V be the set of nodes of the scenario tree with node 0 corresponding to the root and
Vt be the set of nodes in layer t ∈ T . For a given node s ∈ V, let τ(s) be its layer, a(s) be its
predecessor in the scenario tree,P s be the set of nodes on the path from the root to node s, and
γs be its probability. We define the rules at the terminal nodes. Let Rs be the set of discount
rules available at node s. Define Ds =D∩Rs and Ls = L∩Rs. Let Es be the set of pairs of
conflicting rules at node s, i.e., Es =E∩ (Rs ×Rs).

We demonstrate the construction of the scenario tree for the example problem discussed in
Section 1 in Figure 4.

At the beginning of horizon, the orders are placed for the first period. Recourse actions
are taken at the beginning of each other period based on actual realizations. We define the
following decision variables. The quantity xi js is the order quantity for item i ∈ I and supplier
j ∈ Ni at node s ∈ V. Iis stands for the ending inventory for item i ∈ I at node s ∈ V. The
binary variable zs

r takes value 1 if rule r ∈ Rs applies at node s ∈V and takes value 0 otherwise.
Finally, ys

k is the total amount of units of items in the set Ik that are discounted with discount
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0

Period 1: Supplier a’s lowest price µa

1

Period 2: Supplier a’s lowest price µa2

Period 2: Supplier a’s lowest price µa −πa

γ1

γ2 = 1−γ1

Figure 1 N = {a,b},T = {1,2},I = {1}, V = {0,1,2}, a(1) = a(2) = 0, τ(0) = 1, τ(1) = τ(2) = 2. Supplier a offers the discount

rule r1. The discount rule r1 is available only at node 2 (if supplier a lowers its price to other customers)

contingent on conditions in set Cr1 = {c1}. Condition c1 states that the volume of products Ic1 = {1} in

periods Tc1 = {1} purchased from supplier a exceeds ρc1 =mδ1. Rule r1 allows discounts in the set Kr1 =

{k1}. Discount k1 provides a discount of πk1 = πa per unit for products Ik1 = {1} bought in quantity above

θk1 = 0 in periods Tk1 = {2}. Supplier b offers the discount rule r2. The discount rule r2 is available in nodes

1 and 2 and is contingent on conditions in set Cr2 = {c2}. Condition c2 states that the volume of products

Ic2 = {1} in periods Tc2 = {1,2} purchased from supplier b exceeds ρc2 = ρ. Rule r2 allows discounts in

the set Kr2 = {k2}. Discount k2 provides a discount of πk2 = πb per unit for products Ik2 = {1} bought in

quantity above θk2 = 0 in periods Tk2 = {1,2}.

k ∈ Kr as a part of rule r ∈Ds at node s ∈V, i.e., ys
k =
(∑

i∈Ik

∑
ŝ∈Ps:τ(ŝ)∈Tk

xi j(r)ŝ −θk

)+
zs

r. Now we

can model our problem as follows:

min
∑
s∈V
γs

∑
i∈I

∑
j∈Ni

µi jτ(s)xi js +
∑
i∈I
ηiτ(s)Iis −

∑
r∈Ds

∑
k∈Kr

πkys
k −
∑
r∈Ls

ωrzs
r

 (1)

s.t. Iis = Iia(s) +
∑
j∈Ni

xi js − δiτ(s) ∀i ∈ I, s ∈V, (2)

xi js ≤ κi jτ(s) ∀i ∈ I, j ∈Ni, s ∈V, (3)∑
i∈Ic

∑
ŝ∈Ps:τ(ŝ)∈Tc

xi j(r)ŝ ≥ ρczs
r ∀s ∈V, r ∈ Rs, c ∈ Cr, (4)

ys
k ≤
∑
i∈Ik

∑
ŝ∈Ps:τ(ŝ)∈Tk

xi j(r)ŝ −θkzs
r ∀s ∈V, r ∈Ds, k ∈Kr, (5)

ys
k ≤
∑

i∈Ik

∑
t∈Tk

κi j(r)t −θk

zs
r ∀s ∈V, r ∈Ds, k ∈Kr, (6)

zs
r + zs

r′ ≤ 1 ∀s ∈V, {r, r′} ∈ Es, (7)

xi js ≥ 0 ∀i ∈ I, j ∈Ni, s ∈V, (8)

Iis ≥ 0 ∀i ∈ I, s ∈V, (9)

zs
r ∈ {0,1} ∀s ∈V, r ∈ Rs, (10)

ys
k ≥ 0 ∀s ∈V, r ∈Ds, k ∈Kr. (11)

Constraints (2) are inventory balance equations. The capacities of suppliers are respected

due to constraints (3). Constraints (4) impose the minimum order quantity conditions for the

rules. Conditions on minimum spend can be modeled similarly. Constraints (5), (6), and (11)
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compute the amount of discounted units (we assume that
∑

i∈Ik

∑
ŝ∈Ps:τ(ŝ)∈Tk

xi j(r)ŝ ≥ θk is implied
by the conditions for discount rule r and discount k ∈ Kr). If, in scenario s ∈ S, discount rule
r ∈Ds applies, then constraints (6) is redundant and the maximum of zero and the right hand
side of constraint (5) is equal to the amount of discounted units. If this rule does not apply, then
constraint (5) is redundant and constraints (6) and (11) force ys

kr to zero. Finally constraints
(7) ensure that conflicting rules do not apply at the same time. The objective function (1) is
equal to the expected total cost.

The formulation can be strengthened by replacing conflict constraints (7) with inequalities
corresponding to cliques in the conflict graphGs = (Rs,Es). In some cases, the same information
can be used to strengthen constraints (4). We sketch this with a very simple example. Suppose
that we consider a single period problem where supplier 1 offers total quantity discounts for
item 1. The unit price reduces by a factor for every 1000 items purchased and the capacity is
4000. To handle this discount, we define four discount rules r ∈ {1, . . . ,4}, each with a single
condition. We replace constraint (4) with x110 ≥

∑4
r=1 1000rz0

r and use the clique inequality∑4
r=1 z0

r ≤ 1.
The mixed-integer program given in (1-11) can be used to model various forms of regular

discount offers and other discounts that are contingent on realization of random events.
We discuss some of these here. First, traditional quantity discounts schemes can be easily
modeled. Consider for example an incremental discount rule r that requires condition c and
applies a discount k. The condition and discount are applied on the same item set and same
period set, i.e., Ic = Ik, and Tc =Tk. Thresholds are then also set to be the same, i.e., ρc = θk.
The rule is defined in all terminal nodes. Multiple price breaks can be modeled using multiple
rules that are disjoint. An all-units discount rule can be modeled similarly except that now
we set θk = 0. One can also separate the periods (items) for which the conditions are imposed
and the periods (items) for which the discounts are applied on.

In addition to MFC terms which is explained by an example in Figure 4, various other
uncertainties can be modeled. For the case of index pricing, various scenarios can be created
for the value of the index in the later periods. For each scenario, we define a discount rule
which provides a discount in the amount of price difference without a condition. One can also
model spot price uncertainty by defining a dummy supplier for spot purchases and creating
a scenario for each possible price change in the spot market. We can then define a discount
rule for every terminal node whose path from the root node has a price change. These rules
will also have no conditions and will provide a discount in the amount of price change for
all units purchased in periods after the price change took place. Finally, any potential regular
discount offer in the future (for example, if the buyer thinks that there is a chance that one
of the suppliers will offer a new discount in the middle of the planning horizon) can be
easily incorporated in the model provided that the conditions and discounts can be properly
estimated.
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5. Heuristics

A usual approach in practice to solve problems under uncertainty is to use certainty-
equivalent heuristics. These heuristics solve a deterministic version of the problem in which
the random elements are replaced by their average values. The approach can also be used
for our problem. For example, for the case of a possible price drop in a given future period
that the buyer will also benefit due to MFC clauses in the contract, one can set the discount
amount to be equal to the difference between the current price and the expected price in that
period. Note that to be eligible for this discount, the buyer still has to abide by the rules of
obtaining MFC status. For the case of spot price uncertainty, one can use the expected spot
price in each period as the price for that period in the deterministic formulation. For the case
of index pricing, one can index the product prices to the expected price of the commodity or
index.

We consider two versions of the certainty-equivalent heuristic. In the first version, certainty-
equivalent deterministic problem is solved only once at the beginning of the planning horizon
and the decisions are never changed. In the second version, the deterministic problem is
re-solved at the beginning of each period after random events for that period are observed.
We next explain how one can compute the solution and obtain the expected cost for each
heuristic.

5.1. Static Certainty-Equivalent Heuristic
In this heuristic, the problem is solved only once at the beginning of the horizon (at node 0) and
the solution is followed regardless of the actual realizations of the random events throughout
the planning horizon. In order to compute the solution for the certainty-equivalent heuristic,
one can solve the following mathematical program.

min
∑
i∈I

∑
j∈Ni

∑
t∈T
µi j txi j t +

∑
i∈I

∑
t∈T
ηitIit −

∑
r∈D

∑
k∈Kr

π0
k yk −

∑
r∈L
ω0

r zr (12)

s.t. Iit = Ii,t−1 +
∑
j∈Ni

xi j t − δit ∀i ∈ I, t ∈ T , (13)

xi j t ≤ κi j t ∀i ∈ I, j ∈Ni, t ∈ T , (14)∑
i∈Ic

∑
t∈Tc

xi j(r)t ≥ ρczr ∀r ∈ R, c ∈ Cr, (15)

yk ≤
∑
i∈Ik

∑
t∈Tk

xi j(r)t −θkzr ∀r ∈D, k ∈Kr, (16)

yk ≤
∑

i∈Ik

∑
t∈Tk

κi j(r)t −θk

 zr ∀r ∈D, k ∈Kr, (17)

zr + zr′ ≤ 1 ∀{r, r′} ∈ E, (18)
xi j t ≥ 0 ∀i ∈ I, j ∈Ni, t ∈ T , (19)
Iit ≥ 0 ∀i ∈ I, t ∈ T , (20)
zr ∈ {0,1} ∀r ∈ R, (21)
yk ≥ 0 ∀r ∈D, k ∈Kr. (22)
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Note that the formulation above is the same as the model in (1-11) except that the scenarios
are removed. In this formulation, xi jt is the order quantity for item i from supplier j in period
t and Iit is the ending inventory for item i in period t. The binary variable zr takes value 1 if
rule r ∈ R applies and takes value 0 otherwise. The variable yk is the total amount of items in
the set Ik that are discounted with discount k ∈Kr as a part of rule r ∈D. The only parameters
that are different from the model in (1-11) are π0

k which stands for the expected value of the
discount given by the discount k and ω0

r which stands for the expected lump sum discount
given by the rule r. Both of these expectations are taken at node 0 (unconditional expectation).

Let x0
i j t be the optimal order quantity for item i from supplier j in period t obtained by

solving (12-22) (superscript 0 is used to denote that this is the certainty-equivalent solution
obtained at node 0). Note that the optimal value of the model in (12-22) is not the true expected
value obtained by following the ordering decisions obtained by solving (12-22). To calculate
the expected cost of the certainty-equivalent heuristic, we need to reinstate the scenarios and
solve the following mathematical program.

min
∑
s∈V
γs

∑
i∈I

∑
j∈Ni

µi jτ(s)xi js +
∑
i∈I
ηiτ(s)Iis −

∑
r∈Ds

∑
k∈Kr

πkys
k −
∑
r∈Ls

ωrzs
r


s.t. (2− 11),

xi js = x0
i jτ(s) ∀s ∈V, i ∈ I, j ∈Ni.

5.2. Dynamic Certainty-Equivalent Heuristic

In this heuristic, the problem is re-solved at the beginning of each period to account for
realizations of all random events and prior decisions until that node. At node 0, we solve the
same model given in (12-22). We then need to re-solve the problem at every node (going layer
by layer) as well. At node s, we need to solve the following mathematical program.

min
∑
i∈I

∑
j∈Ni

∑
t∈T
µi j txi j t +

∑
i∈I

∑
t∈T
ηitIit −

∑
r∈D

∑
k∈Kr

π s
k yk −

∑
r∈L
ω s

r zr (23)

s.t. (13− 22),
xi jτ(ŝ) = xŝ

i j ŝ ∀ŝ ∈P s, i ∈ I, j ∈Ni. (24)

The last set of constraints enforces that the order quantity decisions taken prior to node s
(nodes in the path from node 0 to node s, P s) are followed. Note also that we use π s

k for the
expected discount given by discount k and ω s

r for the expected lump sum amount given by
rule r. These reflect the fact that expectations are taken at node s (conditioning on the fact
that we are already at node s). If a discount or a rule depends only on random events that
materialize in time periods before and at node s (t ≤ τ(s)), this means that we know these
parameters with certainty at node s.
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Let xs
i j t be the optimal order quantity for item i from supplier j in period t obtained by

solving model (23, 13-22, 24) at node s. In order to compute the expected cost of the dynamic
certainty-equivalent heuristic, we need to solve the following program.

min
∑
s∈V
γs

∑
i∈I

∑
j∈Ni

µi jτ(s)xi js +
∑
i∈I
ηiτ(s)Iis −

∑
r∈Ds

∑
k∈Kr

πkys
k −
∑
r∈Ls

ωrzs
r


s.t. (2− 11),

xi js = xs
i jτ(s) ∀s ∈V, i ∈ I, j ∈Ni.

The last constraint enforces that order quantity decisions at each node are taken according to
the solution of the certainty-equivalent model at that node.

6. Case Study

We test our model and the implications of its use using data from actual bidding events that
took place in 2010 at a global manufacturing company. Each event was a major quarterly
event to procure an important family of components required for various products in different
divisions of the company. These events are held for 40-45 items (components) and involve
3-5 suppliers. For most of the items, there are two or more suppliers that are competing for
the buyer’s business. Each supplier offers a base price for each of the items it is offering. In
addition, suppliers also offer discounts that reflect their economies of scale in costs and market
share targets. Each discount offer requires a minimum volume or a minimum spend on an
item or a group of items and provides a discount on a set of items (which can be different from
the set that the conditions are imposed on). The discounts are either incremental or all-units
discounts.

In addition to these usual discount offers, at least one supplier in each bidding event
provides most favored customer benefits in its offers. If the supplier offering the MFC clause
reduces the price in the middle of the quarter to other customers, it would extend the price
reduction to the buyer in consideration as well if the buyer has already procured a minimum
fraction of its demand (for this item or a group of items) from the supplier until that time.
In order to model these possible discounts, we split the quarter into two periods and created
scenarios to represent possible price reductions in items for which MFC clauses apply.

Table 1 The impact of discount offers and MFC clauses on total spend
Events

Test 1a 1b 2a 2b 3a 3b
Ignore MFC clauses

(regular discount offers only) 0.93 1.26 2.29 2.31 3.22 3.23
Consider MFC clauses when the probability of a price drop is

low 0.97 1.67 2.29 2.31 3.70 3.71
medium 1.48 2.29 2.29 2.31 4.42 4.42

high 1.98 2.91 2.30 2.32 5.14 5.13
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Table 1 summarizes our tests for these three bidding events. The buyer gets price and
discount offers from the suppliers in two rounds. The suppliers submit initial bids in round 1
and revise them after getting some feedback from the buyer’s procurement organization. We
represent each round separately in Table 1 (ia and ib stand for the first and second round offers
for bidding event i, respectively). Our baseline for each event is disregarding all discounts
offers (regular and MFC clauses). This corresponds to selecting the supplier that offers the
minimum base price for each item.

In our first test for each bidding event, we run a version of our model where we ignore all
MFC clauses. In the last three tests, we run our model considering the MFC clauses in the
contracts. For each event, we consider three sub-scenarios: the prices for the items covered in
MFC clauses may drop with a low probability, a medium probability and a high probability.
The entries in Table 1 show the reduction in total procurement costs (as a percentage of total
procurement costs when all discount offers are ignored). First notice that regular discount
offers lead to savings in the range of 0.93-3.23% for the company. In absolute terms, these
savings are substantial for the company.

Optimizing sourcing decisions by also considering MFC clauses lead to important addi-
tional savings for bidding events 1 and 3. Even under a scenario when the price drops are not
very likely, MFC clauses lead to additional savings up to 0.48% of the total spend. When the
price drop probability is medium, the additional savings for bidding events 1 and 3 are in the
range of 0.55-1.20%. When the price drops are considered very likely, the incremental savings
are in the range 1.05-1.92%. Under some scenarios, incremental savings through MFC clauses
are more than savings that are possible with only regular discount offers. Once again, these
additional percentage gains correspond to substantial monetary savings for the company. In
event 2, the base prices and regular discount offers given by the MFC suppliers are either
already very competitive (leading the buyer to select them even without MFC clauses) or very
uncompetitive (leading the buyer to select other suppliers despite the possible MFC benefits).

6.1. Detailed Analysis

In order to test our model and the performance of heuristics proposed in Section 5 in various
other settings, we study bidding event 1a and variations of it in more detail. This event was
held for 44 items. There were 4 qualified suppliers which we name them as A, B, C, and D.
Table 2 shows the number of items offered by different groups of suppliers. For example, 4

Table 2 Suppliers and their offerings in bidding event 1

Suppliers A,B,C,D A,B,C A,B A,C A,D A C
Number of items 4 3 11 4 7 13 2

items are offered by all suppliers, while 3 items are offered by suppliers A, B and C, but not D.
For 29 items, 2 or more suppliers compete for the buyer’s spend. There may be considerable
differences between the prices offered by competing suppliers. In this event, the maximum
bid can be as much as 34.71% higher than the minimum bid. On the average, the maximum
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bids are 8.29% higher than the minimum bids. Note that there are 15 items that are offered by
a single supplier (13 by supplier A and 2 by supplier B), but they still cannot be removed from
the model and solved independently since some of the discount offers and MFC conditions
involve these items together with other items offered by multiple firms.

Apart from base prices, suppliers propose various discount offers. In particular, supplier A
submits 4, supplier B submits 3 and supplier C submits 1 discount offers. The offers involve
multiple conditions on how much the buyer should buy from a set of items to qualify for
the discount. The number of items in the condition sets is between 6 and 21. The discounts
usually apply to the same set of items. However, some offers may apply a discount on items
that are not in the condition set. Each offer provides a price reduction between of 3% and 7%
of the base price.

In addition to these 8 discount offers, supplier A is offering a MFC term for 4 items in its
contract. According to this term, if the buyer procures a certain percentage of total demand
from supplier A, supplier A will ensure that the buyer will get the lowest price throughout the
quarter. That is, if supplier A drops the price for some or all of the items during the quarter,
the buyer will also benefit from these price drops. We consider various scenarios for the drop
in prices for these 4 items.

Since the procurement costs are usually very large, we measure the effect of MFC clauses
on procurement costs as a percentage of the savings obtained through regular discount
offers. Let S be the total procurement spend in the absence of any discount offers. Let D be
the procurement spend when only regular discount offers are utilized (those offers that are
granted regardless of the price drops to other customers). In this particular event, S −D is
about 0.9321% of S. That is, regular discount offers lead to 0.9321% cost savings. Let D∗ be the
optimal expected procurement spend when MFC clauses are also used. Then we denote the
effect of MFC terms as

J∗ = 100× D−D∗

S−D
. (25)

That is, J∗ measures the additional benefit of considering MFC clauses as a percentage of
savings through regular discount offers.

Let DSCE and DDCE be the expected procurement spend if static and dynamic certainty-
equivalent heuristics are used. Then, we measure the regrets of these heuristics (given that
MFC terms provide savings, i.e., D∗ <D) as follows

∆SCE = 100× DSCE −D∗

D−D∗
and ∆DCE = 100× DDCE −D∗

D−D∗
. (26)

We first consider two-period instances with different scenario trees. In our simplest exper-
iment, two scenarios are considered: the prices drop by π units in period 2 with probability
γ or the prices remain the same with probability 1 − γ. The corresponding scenario tree is
depicted in Figure 2.

The results are given in Table 3 for different values of γ and π. First, notice that MFC terms
lead to important savings in this bidding event and, as expected, the benefits increase as
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Figure 2 Scenario Tree for Experiment 1

0

1

Prices drop for all 4 items 2 Prices remain the same

γ

the probability or the magnitude of price drops increase. The condition of the MFC clause is

on the amount ordered in the first period. Consequently, the static and dynamic certainty-

equivalent heuristics behave the same way in the first period. The dynamic heuristic has a

possibility to correct its decision by recourse in the second period. We observe that when γ

is small, the stochastic optimization model chooses not to fulfill the condition of the MFC

clause and the heuristics behave the same way. However, when γ is large enough so that it is

optimal to satisfy the condition of the MFC clause, then the gain obtained using the stochastic

optimization model is greater than that of the static certainty-equivalent heuristic in all cases.

The dynamic certainty-equivalent heuristic obtains the same amount of reduction as our

stochastic programming model if it opts for satisfying the MFC condition in the first period.

Hence there is a difference between the cost reductions obtained with these two methods only

when the stochastic model choses to satisfy the MFC condition and the dynamic heuristic

does not (when γ= 0.5 for a 5% decrease and when γ= 0.2 for a 10% decrease). In these cases,

∆DCE = 100%. One final observation is that the performance of the static certainty-equivalent

heuristic is always worse than or equal to that of dynamic certainty-equivalent heuristic.

Table 3 Results for Experiment 1
Discount Amount 5% Discount Amount 10%

γ J∗ ∆SCE ∆DCE J∗ ∆SCE ∆DCE

0.1 0.00 0.00 0.00 0.00 0.00 0.00

0.2 0.00 0.00 0.00 3.81 100.00 100.00

0.3 0.00 0.00 0.00 21.99 84.12 0.00

0.4 0.00 0.00 0.00 40.17 46.79 0.00

0.5 3.36 100.00 100.00 58.35 32.72 0.00

0.6 10.54 66.84 0.00 76.53 23.35 0.00

0.7 17.72 29.82 0.00 94.71 14.15 0.00

0.8 24.90 14.15 0.00 112.89 7.91 0.00

0.9 32.08 5.49 0.00 131.06 3.41 0.00

We next run another two-period experiment in which the prices may drop in different

amounts: 5% or 10% of the original price. The scenario tree for this experiment is given in

Figure 3. The results for various values of γ1 and γ2 are provided in Table 4. Once again,

the possibility of a MFC status provide important benefits. The performances of the static

and dynamic certainty-equivalent heuristics are similar to those seen for experiment 1. Static

certainty-equivalent heuristic may lead to significant suboptimality in a variety of settings

especially when the price drop probability is small. Dynamic certainty-equivalent heuristic,
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Figure 3 Scenario Tree for Experiment 2

0

1

Prices drop 5% for all 4 items

2

Prices drop 10% for all 4 items3 Prices remain the same

γ1

γ2

Table 4 Results for Experiment 2
γ1 γ2 J∗ ∆SCE ∆DCE γ1 γ2 J∗ ∆SCE ∆DCE

0.1 0.1 0.00 0.00 0.00 0.3 0.3 43.53 30.36 0.00

0.2 0.1 0.00 0.00 0.00 0.4 0.3 50.71 22.59 0.00

0.3 0.1 7.18 100.00 100.00 0.5 0.3 57.89 16.75 0.00

0.4 0.1 14.36 75.66 0.00 0.1 0.4 47.35 35.98 0.00

0.5 0.1 21.54 42.26 0.00 0.2 0.4 54.53 28.01 0.00

0.1 0.2 10.99 100.00 100.00 0.3 0.4 61.71 21.90 0.00

0.2 0.2 18.17 80.78 0.00 0.4 0.4 68.89 14.85 0.00

0.3 0.2 25.35 50.96 0.00 0.5 0.4 76.07 8.00 0.00

0.4 0.2 32.53 34.30 0.00 0.1 0.5 65.53 26.45 0.00

0.5 0.2 39.71 23.67 0.00 0.2 0.5 72.71 19.32 0.00

0.1 0.3 29.17 57.38 0.00 0.3 0.5 79.89 12.40 0.00

0.2 0.3 36.35 41.20 0.00 0.4 0.5 87.07 6.62 0.00

on the other hand, captures either all or none of the additional savings possible with MFC

terms.
In the third experiment, we group the items into two groups and assume that each group’s

price drops or stays the same independently from the other group. The scenario tree for this

experiment is given in Figure 4.

Figure 4 Scenario Tree for Experiment 3

0

1

Prices drop 10% for item group 1 only

2

Prices drop 10% for item group 2 only

3

Prices drop 10% for both groups4 Prices remain the same

γ 1

γ 2

γ 3
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The results for various values of γ1, γ2 and γ3 are provided in Table 5. The results are not
structurally different from the first two experiments, except that we now have more instances
where the certainty-equivalent heuristic cannot capture any of the benefits of MFC terms.

Table 5 Results for Experiment 3
γ1 γ2 γ3 J∗ ∆SCE ∆DCE γ1 γ2 γ3 J∗ ∆SCE ∆DCE

0.1 0.1 0.0 0.00 0.00 0.00 0.1 0.2 0.1 7.99 100.00 100.00
0.2 0.1 0.0 0.00 0.00 0.00 0.1 0.3 0.1 12.16 100.00 100.00
0.3 0.1 0.0 13.65 98.98 0.00 0.1 0.4 0.1 16.33 100.00 100.00
0.4 0.1 0.0 27.66 44.03 0.00 0.2 0.2 0.1 21.99 84.12 0.00
0.1 0.2 0.0 0.00 0.00 0.00 0.2 0.3 0.1 26.17 76.94 0.00
0.2 0.2 0.0 3.81 100.00 100.00 0.3 0.3 0.1 40.17 46.79 0.00
0.3 0.2 0.0 17.82 94.65 0.00 0.4 0.4 0.1 58.35 32.72 0.00
0.4 0.2 0.0 31.83 48.81 0.00 0.0 0.0 0.2 3.81 100.00 100.00
0.1 0.3 0.0 0.00 0.00 0.00 0.1 0.1 0.2 21.99 84.12 0.00
0.2 0.3 0.0 7.99 100.00 100.00 0.2 0.2 0.2 40.17 46.79 0.00
0.3 0.3 0.0 21.99 84.12 0.00 0.3 0.3 0.2 58.35 32.72 0.00
0.4 0.3 0.0 36.00 47.68 0.00 0.0 0.0 0.3 21.99 84.12 0.00
0.1 0.4 0.0 0.00 0.00 0.00 0.1 0.1 0.3 40.17 46.79 0.00
0.2 0.4 0.0 12.16 100.00 100.00 0.2 0.2 0.3 58.35 32.72 0.00
0.3 0.4 0.0 26.17 76.94 0.00 0.3 0.3 0.3 76.53 23.35 0.00
0.4 0.4 0.0 40.17 46.79 0.00 0.0 0.0 0.4 40.17 46.79 0.00
0.1 0.1 0.1 3.81 100.00 100.00 0.1 0.1 0.4 58.35 32.72 0.00
0.2 0.1 0.1 17.82 94.65 0.00 0.2 0.2 0.4 76.53 23.35 0.00
0.3 0.1 0.1 31.83 48.81 0.00 0.0 0.0 0.5 58.35 32.72 0.00
0.4 0.1 0.1 45.83 30.98 0.00 0.1 0.1 0.5 76.53 23.35 0.00

Our final experiment models three periods. Reflecting the regular pattern in practice, the
demand in each of the periods 1 and 2 is assumed to be 30% of the total demand, while demand
in period 3 is assumed to be 40%. Figure 5 shows the scenario tree for this experiment. In
order to obtain the MFC status and benefit from a possible price drop in period 2, a minimum
amount should be purchased in period 1. In order to obtain the MFC status and benefit from
a possible price drop in period 3, the sum of purchases in period 2 and 3 should be above
another threshold.

Figure 5 Scenario Tree for Experiment 4

0

1

Prices drop 5% for all 4 items

2 Prices remain the same

3

Prices drop another 5% for all 4 items

4

Prices remain the same

5

Prices drop 5% for all 4 items 6 Prices remain the same

γ1

γ2

γ2
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The results of experiment 4 are shown in Table 6 for different values of γ1 and γ2. Con-
sidering MFC clauses still leads to important savings in the three-period model and savings
increase as the probability of a price drop increases. The percentage gap of the static certainty-
equivalent heuristic can be significant, especially when the price drop probability is low.
Structurally, the performance of the dynamic certainty-equivalent heuristic in the three-period
problem is different than what we observe in the two-period problem. It is now possible that
dynamic certainty-equivalent heuristic lead to a gap other than 0% and 100%.

Table 6 Results for Experiment 4
γ1 γ2 J∗ ∆SCE ∆DCE

0.05 0.05 0.00 0.00 0.00
0.10 0.10 1.87 100.00 100.00
0.15 0.15 6.71 85.92 2.50
0.20 0.20 11.17 53.93 1.76
0.25 0.25 15.28 36.28 1.40
0.30 0.30 19.09 27.13 1.17
0.35 0.35 22.63 21.42 1.00
0.40 0.40 25.93 17.14 0.87
0.45 0.45 29.00 14.26 0.75
0.50 0.50 31.88 12.28 0.64
0.55 0.55 34.57 10.90 0.54
0.60 0.60 37.09 8.55 0.45

7. Conclusion

In this paper, we study the problem of a buyer who has to procure large volumes of multiple
items over multiple periods and needs to evaluate discount offers from multiple suppliers
for this purpose. Some of these discounts are tied to future realizations of random events.
The objective of the buyer is to minimize his expected procurement and inventory holding
costs subject to satisfying its demand and other various side constraints. We formulate the
problem as a scenario based multi-stage stochastic optimization model. The formulation
is very general in the sense that we can model various random events such as a supplier
dropping price for other customers or a change in a price-index or spot price of a commodity.
We can also model very complex offers that are frequently observed in industry such as those
that involve conditions on multiple items and periods and apply incremental or all-units
discounts to multiple items and periods that are potentially different from those for which the
conditions are imposed on. The model also allows the buyer to carry inventory to benefit from
a discount offer. Apart from the optimization model, we propose two certainty-equivalent
heuristics that can be used for this problem and show how we can evaluate the performance
of these heuristics. We use our model in a case study to see the effect of MFC status benefits
on three bidding events that were administered by a global manufacturing company in 2010.
The results show that taking the MFC terms into account using our model leads to significant
savings for the company and using heuristics may fail to capture most of these savings.
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There are many avenues for future research. First, one may consider modeling uncertainty
on other parameters of the problem. Relevant uncertain parameters for procurement bidding
events include item demands and supplier capacities. For some of these uncertain parameters,
scenario based formulations may not be adequate and other approaches may be necessary
to model uncertainty. Second, one may relax the assumption that the buyer is risk-neutral
and consider alternative risk profiles. Finally, for very large problems, one may focus on
developing efficient approaches for solving the mixed integer program that we propose.
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