

Keyword(s):

Abstract:



The Who, What, Why and How of High Performance Computing Applications
in the Cloud
Abhishek Gupta, Laxmikant V. Kale, Filippo Gioachin, Verdi March, Chun Hui Suen, Bu-Sung
Lee, Paolo Faraboschi, Richard Kaufmann, Dejan Milojicic

HP Laboratories
HPL-2013-49

High Performance Computing; Cloud; Applications; Supercomputers; Performance Evaluation; Economics

Cloud computing is emerging as an alternative to supercomputers for some of the high-performance
computing (HPC) applications that do not require a fully dedicated machine. With cloud as an additional
deployment option, HPC users are faced with the challenges of dealing with highly heterogeneous
resources, where the variability spans across a wide range of processor configurations, interconnections,
virtualization environments and pricing rates and models. In this paper, we take a holistic viewpoint to
answer the question ? why and who should choose (or not choose) cloud for HPC, for what applications,
and how should cloud be used for HPC? To this end, we perform a comprehensive performance evaluation
of a set of benchmarks and complex HPC applications on a range of platforms, varying from
supercomputers to commodity clusters, both in-house and in the cloud. Having identified the performance
bottlenecks in cloud, we demonstrate that alternative lightweight virtualization mechanisms such as thin
VMs and OS-level containers, and hypervisor and applicationlevel CPU affinity can greatly lower the
overhead and noise of virtualization. Next, we discuss the economic aspects of HPC in the cloud, which we
believe is an important area that has not been sufficiently addressed by past research. Finally, we explore
the benefits of an intelligent matching of an HPC application to the best deployment platform within a
given set, discussing how we can combine a cloud deployment with a supercomputer. Overall results
indicate that current public clouds are cost-effective only at small scale ? 4 to 16 cores for the chosen HPC
applications, when considered in isolation, but can complement (and co-exist with) supercomputers using
models such as cloud burst and application-aware mapping to achieve significant cost benefits.

External Posting Date: July 21, 2013 [Fulltext] Approved for External Publication
Internal Posting Date: July 21, 2013 [Fulltext]

Copyright 2013 Hewlett-Packard Development Company, L.P.

The Who, What, Why and How of High
Performance Computing Applications in the Cloud

Abhishek Gupta,
Laxmikant V. Kale

University of Illinois at
Urbana-Champaign

Urbana, IL 61801, USA
(gupta59,

kale)@illinois.edu

Filippo Gioachin,
Verdi March,

Chun Hui Suen,
Bu-Sung Lee

HP Labs, Singapore
(gioachin, verdi.march,

chun-hui.suen, francis.lee)@hp.com

Paolo Faraboschi,
Richard Kaufmann,

Dejan Milojicic
HP Labs

Palo Alto, CA, USA
(paolo.faraboschi, richard.kaufmann,

dejan.milojicic)@hp.com

Abstract—Cloud computing is emerging as an alternative to
supercomputers for some of the high-performance computing
(HPC) applications that do not require a fully dedicated machine.
With cloud as an additional deployment option, HPC users are
faced with the challenges of dealing with highly heterogeneous
resources, where the variability spans across a wide range of
processor configurations, interconnections, virtualization environ-
ments and pricing rates and models.

In this paper, we take a holistic viewpoint to answer the
question – why and who should choose (or not choose) cloud
for HPC, for what applications, and how should cloud be used
for HPC? To this end, we perform a comprehensive performance
evaluation of a set of benchmarks and complex HPC applications
on a range of platforms, varying from supercomputers to com-
modity clusters, both in-house and in the cloud. Having identified
the performance bottlenecks in cloud, we demonstrate that
alternative lightweight virtualization mechanisms such as thin
VMs and OS-level containers, and hypervisor and application-
level CPU affinity can greatly lower the overhead and noise of
virtualization. Next, we discuss the economic aspects of HPC in
the cloud, which we believe is an important area that has not been
sufficiently addressed by past research. Finally, we explore the
benefits of an intelligent matching of an HPC application to the
best deployment platform within a given set, discussing how we
can combine a cloud deployment with a supercomputer. Overall
results indicate that current public clouds are cost-effective only
at small scale – 4 to 16 cores for the chosen HPC applications,
when considered in isolation, but can complement (and co-exist
with) supercomputers using models such as cloud burst and
application-aware mapping to achieve significant cost benefits.

Keywords-High Performance Computing, Cloud, Applications,
Supercomputers, Performance Evaluation, Economics

I. INTRODUCTION

Setting up a dedicated infrastructure for HPC is a complex
endeavor that requires a long lead time, high capital expendi-
ture, and large operational costs. Increasingly, academic and
commercial HPC users are looking at cloud computing as a
cost effective alternative with the potential of reducing some of
these heavy upfront financial commitments, while yielding to
faster turnaround times [1]. By moving HPC applications to
the cloud, additional advantages come in form of elasticity,
which reduces the risks caused by under-provisioning, and
reduces the underutilization of resources caused by over-

provisioning. Also, the built-in virtualization support in the
cloud offers an alternative way to support flexibility, cus-
tomization, security, migration and resource control to the
HPC community.

Despite these advantages, it still remains unclear whether,
and when, HPC in the cloud can become a feasible substitute
or complement to supercomputers. Traditionally, clouds have
been designed for efficient execution of business and web
applications which have very different demands than HPC
applications. Previous studies have shown that commodity
interconnects and the overhead of virtualization on network
and storage performance are major performance barriers to the
adoption of cloud for HPC [1–4]. While the outcome of these
studies paints a rather pessimistic view of HPC clouds, recent
efforts towards HPC-optimized clouds, such as Magellan [5]
and Amazon’s EC2 Cluster Compute [6], point to a promising
direction to overcome some of the fundamental inhibitors.

HPC clouds rapidly expand the application user base and
the available platform choices to run HPC workloads: from
in-house dedicated supercomputers, to commodity clusters
with and without HPC-optimized interconnects and operating
systems, to resources with different degrees of virtualization
(full, CPU-only, none), to hybrid configurations that offload
part of the work to the cloud. HPC users and cloud providers
are faced with the challenge of choosing the optimal platform
based upon a limited knowledge of application characteristics,
platform capabilities, and the target metrics such as, QoS, cost.

Building upon previous research [1–5, 7–10], we start with
the hypothesis that the cost/performance-optimal execution
platform varies from supercomputer to cloud depending upon
application characteristics, such as sensitivity to network per-
formance and parallel scaling. To validate our hypothesis,
we present a comparison of various platforms (see Table I)
commonly available to HPC users, using microbenchmarks
and real-world applications.

Unlike previous works on benchmarking clouds for science,
we take a more holistic and practical viewpoint and go
beyond performance comparison to explore techniques for
reducing the performance gap between native and virtualized
environment. Rather than limiting ourselves to the problem –

TABLE I: Testbed

Resource Platform
Ranger Taub Open Cirrus Private Cloud Public Cloud

Processors
in a Node

16×AMD Opteron
QC @2.3 GHz

12×Intel Xeon
X5650 @2.67 GHz

4×Intel Xeon
E5450 @3.00 GHz

2×QEMU Virtual
CPU @2.67 GHz

4×QEMU Virtual
CPU @2.67 GHz

Memory 32 GB 48 GB 48 GB 6 GB 16 GB
Network Infiniband

(1 GB/s)
QDR
Infiniband

10GigE internal,
1GigE x-rack

Emulated
1GigE

Emulated
1GigE

OS Linux Sci. Linux Ubuntu 10.04 Ubuntu 10.04 Ubuntu 10.10

what is the performance achieved on cloud vs supercomputer,
we address the bigger and more important question – why and
who should choose (or not choose) cloud for HPC, for what
applications, and how should cloud be used for HPC? To an-
swer this question, we leverage the results of the performance
benchmarking, investigation of performance bottlenecks on
cloud, the co-relation between application characteristics and
observed performance, and the analyses of economic aspects
of HPC in cloud. Also, instead of considering cloud as a
substitute of supercomputer, we investigate the co-existence of
supercomputer and cloud. We provide a proof-of-concept of
this approach and the associated benefits through an intelligent
tool based on application characterization and smart mapping.

We believe that it is important to consider views of both,
HPC users and cloud providers, who sometimes have con-
flicting objectives: users must see tangible benefits (in cost
or performance) while cloud providers must be able to run
a profitable business. The insights from comparing HPC
applications execution on different platforms is useful for both.
HPC users can better quantify the benefits of moving to a
cloud and identify which applications are better candidates
for the transition from in-house to cloud. Cloud providers can
optimize the allocation of applications to their infrastructure
to maximize utilization, while offering best-in-class cost and
quality of service. In our terminology, the term cloud provider
refers to public cloud providers that offer various flavors of
platforms with a pay-per-use business model.

The contributions of this paper are summarized as follows.
• We analyze the performance of HPC applications on

a range of platforms varying from supercomputer to
cloud, study performance bottlenecks and identify what
applications are suitable for cloud. (§ IV,§ V)

• We analyze the impact of virtualization on HPC applica-
tions and propose techniques, specifically thin hypervi-
sors, OS-level containers, and hypervisor and application-
level CPU affinity, to mitigate performance overhead and
noise, addressing – how to use cloud for HPC. (§ VI)

• We investigate the economic aspects of running in cloud
vs. supercomputer and discuss why it is challenging to
make a profitable business for cloud providers for HPC
compared to traditional cloud applications. We also show
that small/medium-scale HPC users are the most likely
candidates who can benefit from an HPC-cloud. (§ VII)

• We demonstrate that rather than running all the applica-
tions on a single platform (in-house or cloud), a more
cost-effective approach is to leverage multiple platforms
(dedicated and in the cloud) and use a smart application-
aware mapping of applications to platforms, addressing

– how to use cloud for HPC.(§ VIII)
The remainder of the paper is organized as follows. Sec-

tion II discusses related work and Section III explains our
evaluation methodology. Section IV presents evaluation re-
sults, Section V analyzes the bottlenecks in cloud and Sec-
tion VI highlights techniques for optimizing clouds for HPC.
Section VII introduces a few usage scenarios with a focus
on cost and business aspects and Section VIII recommends
how to find a good mapping of applications to platforms for a
“cloud bursting” scenario. Finally, section IX covers insights
and lessons learned, and leads to conclusions and future work
directions in Section X.

II. RELATED WORK

Walker [2], followed by several others [3,7,8], conducted the
study on HPC in cloud by benchmarking Amazon EC2 [11].
The work by He et al. [12] extended the research to three
public clouds and real applications and compared the results
with dedicated HPC systems. Ekanayake et al. [13] compared
applications with different communication and computation
complexities and observed that latency-sensitive applications
experience higher performance degradation than bandwidth-
sensitive applications.

We address these issues by exploring existing techniques in
open-source virtualization, such as OS-level containers and
thin virtualization, and we quantify how close we can get
to physical machine performance for communication and I/O
intensive HPC workloads.

Perhaps the most comprehensive evaluation of HPC in cloud
to date was performed under the US Department of Energy’s
(DoE) Magellan project [1, 4, 5]. Jackson et al. [4] compared
conventional HPC platforms to Amazon EC2 and used real
applications representative of the workload at a typical DoE
supercomputing center. They concluded that the interconnect
and I/O performance on commercial cloud severely limits
performance and causes significant variability in performance
across different executions. A key take-away of the Magellan
project is that it is more cost-effective to run DOE applications
on in-house supercomputers rather than on current public
cloud offerings. However, their analysis is based on heavy
usage (like DoE) which justifies building a dedicated super-
computer, and benefits from economy of scale. Our work looks
at similar questions from the perspective of smaller scale HPC
users, such as small companies and research groups who have
limited access to supercomputer resources and varying demand
over time. We also consider the perspective of cloud providers
who want to expand their offerings to cover the aggregate of
these smaller scale HPC users, for whom an attractive option is

to look at a combination of own infrastructure and commercial
clouds based on pricing and demand.

Kim et al. [14] discuss autonomic management of scientific
workflow applications on hybrid infrastructures such as those
comprising HPC grids and on-demand pay per use clouds.
They present three usage models for hybrid HPC grid and
cloud computing: acceleration, conservation, and resilience.
However, they use cloud for sequential simulation and do not
consider execution of parallel applications on cloud.

Napper and Bientinesi [9] also performed some cost eval-
uation and concluded that cloud cannot compete with super-
computers based on the metric $/GFLOPS, since memory and
network performance is insufficient to compete with existing
scalable HPC systems. In our earlier work [10], we also
studied the performance-cost tradeoffs of running different
applications on supercomputer vs. cloud.

Our approach in this paper is somewhat different: our hy-
pothesis is that the optimal platform depends upon application
characteristics and performance requirements. We consider
benchmarks and applications which differ in computation and
communication characteristics, and investigate what applica-
tions better map to which platform.

III. EVALUATION METHODOLOGY

In this section, we describe the platforms which we com-
pared and the applications which we chose for this study.

A. Experimental Testbed

We selected platforms with different interconnects, oper-
ating systems and virtualization support for the purpose of
this study. We believe that these platforms cover the major
classes of infrastructures available today to an HPC user.
Table I shows the details of each platform. In case of cloud
a node refers to a virtual machine and a core refers to a
virtual core. For example, “2QEMU VirtualCPU@2.67GHz”
means each VM has 2 virtual cores. Ranger [15] at TACC is a
supercomputer and Taub at UIUC is an HPC-optimized cluster.
Both use Infiniband [16] as interconnect. Moreover, Taub uses
scientific Linux as operating system and has QDR Infiniband
with bandwidth of 40 Gbps. We used physical nodes with
commodity interconnect at Open Cirrus testbed at HP Labs
site [17]. The final two platforms are clouds – a private cloud
which was setup using Eucalyptus [18], and a public cloud.
Both these clouds use KVM [19] for virtualization. We chose
KVM since it is considered by past research as one of the best
candidates for HPC virtualization [20].

To get maximum performance from virtual machines, we
avoided any sharing of physical cores between virtual cores.
In case of cloud, most common deployment of multi-tenancy
is not sharing individual physical cores, but rather done at
the node, or even coarser level. This is even more true with
increasing number of cores per server. Our cloud experiments
involve nodes which shared physical cores with other applica-
tions from multiple users, since default VM allocation policy
was round robin and only half of total capacity was available
to us, hence addressing multi-tenancy.

TABLE II: Virtualization Testbed

Resource Virtualization
Phy., Container Thin VM Plain VM

Processors in
a Node/VM

12×Intel Xeon
X5650
@2.67 GHz

12×QEMU
Virtual CPU
@2.67 GHz

12×QEMU Vir-
tual CPU
@2.67 GHz

Memory 120 GB 100 GB 100 GB
Network 1GigE 1GigE Emulated 1GigE
OS Ubuntu 11.04 Ubuntu 11.04 Ubuntu 11.04

Another dedicated physical cluster at HP Labs Singapore
(HPLS) is used for controlled tests of the effects of virtual-
ization (see Table II). This cluster is connected with a Gigabit
Ethernet network on a single switch. Every server in this
cluster has two CPU sockets, each populated with a six-core
CPU. Thus, each HPLS server has 12 physical cores. The
experiment on the HPLS cluster involved benchmarking on
four configuration: physical machines (bare), LXC contain-
ers [21], virtual machines configured with the default emulated
network (plain VM), and virtual machines with pass-through
networking (thin VM). Both the plain VM and thin VM run on
top of the KVM hypervisor. In the thin VM setup, we enable
Input/Output Memory Management Unit (IOMMU) on the
Linux hosts to allow virtual machines to directly the Ethernet
hardware, thus improving the network I/O performance [22].

B. Benchmarks and Applications

The choice of suitable benchmarks and applications is
critical to analyze the validity of our hypothesis. To gain
insights into the performance of selected platform over a
range of applications, we chose benchmarks and applications
from different scientific domains and which differ in nature,
amount, and pattern of inter-processor communication. More-
over, we selected benchmarks written in two different parallel
programming environments - MPI [23] and CHARM++ [24].
Similarly to previous work [2,3,7,10], we used NAS Parallel
Benchmarks (NPB) class B [25] (the MPI version, NPB3.3-
MPI), which exhibit a good variety of computation and com-
munication requirements, and are widely used.

In addition, we chose some additional benchmarks and real
world applications:

• Jacobi2D – A kernel which performs 5-point stencil
computation to average values in a 2-D grid. Such stencil
computation is very commonly used in scientific simula-
tions, numerical algebra, and image processing.

• NAMD [26] – A highly scalable molecular dynamics
application and representative of a complex real world
application used ubiquitously on supercomputers. We
used the ApoA1 input (92k atoms) for our experiments.

• ChaNGa [27] (Charm N-body GrAvity solver) – A highly
scalable application used to perform collisionless N-body
simulation. It can be used to perform cosmological sim-
ulation and also includes hydrodynamics. It uses Barnes-
Hut tree to calculate forces between particles. We used a
300, 000 particle system for our runs.

• Sweep3D [28] – A particle in transport code which is
widely used for evaluating high performance parallel

 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 128

 1 2 4 8 16 32 64 128 256

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of cores

NPB Class B - EP

Public Cloud
Private Cloud

Open Cirrus
Ranger

Taub

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024

 1 2 4 8 16 32 64 128 256

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of cores

NPB Class B - LU

 0.0625
 0.25

 1
 4

 16
 64

 256
 1024

 1 2 4 8 16 32 64 128 256

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of cores

NPB Class B - IS

2-92-82-72-62-52-42-32-22-120

 1 2 4 8 16 32 64 128 256

E
xe

cu
tio

n
Ti

m
e

pe
r s

te
p

(s
)

Number of cores

Jacobi2D - 4K by 4K matrix

2-82-72-62-52-42-32-22-1202122

 1 2 4 8 16 32 64 128 256

E
xe

cu
tio

n
Ti

m
e

pe
r s

te
p

(s
)

Number of cores

NAMD (Molecular Dynamics)

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1 2 4 8 16 32 64 128 256

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of cores

NQueens (State Space Search)

 0.0625
 0.125

 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 1 2 4 8 16 32 64 128 256

E
xe

cu
tio

n
Ti

m
e

pe
r s

te
p

(s
)

Number of cores

ChaNGa (Cosmology)

 0.125
 0.25

 0.5
 1
 2
 4
 8

 16
 32
 64

 128

 1 2 4 8 16 32 64 128 256

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of cores

Sweep3d (Weak Scaling)

Fig. 1: Execution Time vs. Number of cores (strong scaling for all except Sweep3D) for different applications. All
applications scale very well on Taub and Ranger and moderately well on Open Cirrus. On Private Cloud, IS does not
scale at all, LU and NAMD stop scaling after 32 cores whereas EP, Jacobi2D and NQueens scale well. Public cloud
exhibits poor scalability.

architectures [29]. Sweep3D is the heart of a real Accel-
erated Strategic Computing Initiative (ASCI) application
and exploits parallelism via a wavefront process. We used
the code written in Fortran77 and MPI. We ran Sweep3D
in weak scaling mode maintaining 5× 5× 400 cells per
processor with 10 k-planes/3 angles per block.

• NQueens – A backtracking state space search problem
where the goal is to determine a placement of N queens
on an N by N chessboard (18-queens in our runs) so that
no two queens can attack each other. This is implemented
as a tree structured computation, and communication
happens only for load-balancing purposes.

We used the available installation of MVAPICH2 [30] for
MPI and ibverbs implementation of CHARM++ on Ranger
and Taub. On rest of the platforms we installed Open MPI [31]
and used net layer build of CHARM++.

IV. BENCHMARKING HPC PERFORMANCE

Figure 1 shows the scaling behavior of our testbeds for
the selected applications. These results are averaged across
multiple runs (5 executions) performed at different times.

We show strong scaling results for all applications except
Sweep3D, where we chose to perform weak scaling runs.
For NPB, we present results for only Embarrassingly parallel
(EP), LU solver (LU), and Integer sort (IS) benchmarks due
to space constraints. The first observation is the difference in
sequential performance: Ranger takes almost twice as long
as the other platforms, primarily because of the older and
slower processors. The slope of the curve shows how the
applications scale on different platforms. Despite the poor
sequential speed, Ranger’s performance crosses Open Cirrus,
private cloud and public cloud for some applications at around
32 cores, yielding a much more linearly scalable parallel
performance. We investigated the reasons for better scalability
of these applications on Ranger using application profiling,
performance tools and microbenchmarking the platforms and
found that network performance is a dominant factor (sec-
tion V). While all applications scale well on Ranger and
Taub, some applications, especially the NPB IS (Integer Sort)
benchmark, fail to scale on the clouds and Open Cirrus. IS
is a communication intensive benchmark and involves data
reshuffling and permutation operations for sorting. Sweep3D

also exhibits poor weak scaling after 4–8 cores on cloud. Other
communication intensive applications such as LU, NAMD
and ChaNGa also stop scaling on private cloud around 32
cores, but do reasonably well on Open Cirrus, because of the
impact of virtualization on network performance (which we
confirm below). The remaining applications, EP, Jacobi2D,
and NQueens, scale well on all the platforms up to 256 cores
except the public cloud where most applications suffer a hit
above 4 cores. On public cloud, we used VM instances with
4 virtual cores, hence there is no inter-VM communication
up to 4 cores, resulting in good parallel scaling and a sudden
performance penalty as the communication starts happening
across VMs.

When running experiments on cloud, we observed variabil-
ity in the execution time across runs. To quantify the amount
of variability on cloud and compare it with a supercomputer,
we calculated the coefficient of variation (standard devia-
tion/mean) for execution time of ChaNGa across 5 executions.
Figure 2 shows that there is a significant amount of variability
on cloud compared to supercomputer (Ranger) and that the
amount of variability increases as we scale up, partially due
to decrease in computational granularity. For the case of 256
cores at public cloud, standard deviation is equal to half the
mean, implying that on average, values are spread out between
0.5×mean and 1.5×mean resulting in low predictability of
performance across runs. In contrast, private cloud shows less
variability.

One potential reason for the significant performance vari-
ation is the use of shared resources. We emphasize that we
deliberately chose shared systems, shared at node level or
higher granularity, not at the core level, for cloud. Results
from isolated system would be misleading and likely result
in far better performance than what one can get from current
cloud offerings. Noise induced by multi-tenancy is an intrinsic
component of the cloud. One can of course get rid of that
through dedicated instances, but that will break the fundamen-
tal business model of the cloud providers, and will reflect on
the cost to the point that it quickly becomes uneconomical.

Clearly, more analysis is required to determine what applica-
tion and platform characteristics are degrading performance on
cloud and introducing variability. In the following subsection
we present our findings.

V. PERFORMANCE BOTTLENECKS FOR HPC IN CLOUD

We used the Projections [32] tool to analyze the per-
formance bottlenecks on cloud. Figure 3 shows the CPU
utilization for a 64-core Jacobi2D experiment on private cloud,
x-axis being the (virtual) core number. It is clear that CPU is
under-utilized for almost half the time, as shown by the idle
time (white portion) in the figure. A detailed time-line view
revealed that this time was spent waiting to receive data from
other processes. Similarly, for NAMD, communication time is
a considerable portion of the parallel execution time on cloud.

Since HPC applications are highly sensitive to commu-
nication latency, we focused on network performance. Fig-
ures 4a–4b shows the results obtained by a simple ping-pong

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64 128 256

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Number of cores

Public Cloud
Private Cloud

Open Cirrus
Ranger

Taub

Fig. 2: Performance Variation for ChaNGa

Fig. 3: CPU utilization for execution of Jacobi2D (4K by
4K) on 32 2-core VMs of private cloud: white portion
shows idle time while colored portions represent applica-
tion functions.

benchmark written in Converse, the underlying substrate of
CHARM++ [33]. Unsurprisingly, we found that the latencies
and bandwidth on cloud are a couple of orders of magnitude
worse compared to Ranger and Taub, making it challenging for
communication-intensive applications, such as IS, LU, NAMD
and ChaNGa, to scale.

While the inferior network performance explains the large
percentage of idle time in Figure 3, the surprising obser-
vation is the notable difference in idle time for alternating
cores (0 and 1) of each VM. We traced this effect to net-
work virtualization. The light (green) colored portion at the
very bottom in the figure represents the application function
begin_iteration which initiates inter-processor commu-
nication and socket operations (such as select, recv,
send) and interacts with the virtual network. The application
process on core 0 of the VM shares the CPU with the virtual
network driver emulator, and this interference (sometimes
called noise or jitter) increases as the application communi-
cates more over the network. Hence, network virtualization
has multiple negative effects on HPC application performance:
it increases network latency, it decreases bandwidth, and it
decreases application performance by interfering with the
application processes.

We also observed that, even when we only used core 0
of each VM, for iterative applications containing a barrier
after each iteration, there was a lot of idle time on some
processes. Our first hypothesis was communication time, but
that alone could not explain the significant amount of idle

 1
 4

 16
 64

 256
 1024
 4096

 16384
 65536

8 32 128
512

2K 8k 32K
128K

512K
2M

La
te

nc
y

(u
s)

Message Size (bytes)

Public Cloud
Private Cloud

Open Cirrus
Ranger

Taub

(a) Latency

0.1
1

10
100

1000
10000

100000

8 32 128
512

2K 8k 32K
128K

512K
2M

B
an

dw
id

th
 (M

b/
s)

Message Size (bytes)

Taub
Ranger

Open Cirrus
Private Cloud
Public Cloud

(b) Bandwidth

 1000

 1200

 1400

 1600

 1800

 2000

0 20K 40K 60K 80K 100K

Ti
m

e
(u

se
c)

Step Number

(c) Noise

Fig. 4: (a,b) Latency and Bandwidth vs. Message Size on all platforms. Network performance on cloud is off by almost
two orders of magnitude compared to Supercomputers. (c) Fixed Work Quantum Benchmark on a VM for measuring
OS noise; in a noise-less system every step should take 1000 µs.

10-1

100

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
Ti

m
e

pe
r s

te
p

(s
)

Number of cores

plainVM
thinVM

container
physical

(a) NAMD

102

103

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of cores

plainVM
thinVM

container
physical

(b) ChaNGa

100

101

102

103

104

105

32 128
512

2K 8k 32K
128K

512K
2M

La
te

nc
y

(u
s)

Message Size (bytes)

plainVM
thinVM

container
bare

(c) Ping-Pong Test

Fig. 5: Impact of Virtualization on Application Performance
time. Hence, we used the Netgauge [34] tool for measuring
operating system noise. We ran a benchmark (Figure 4c)
that performs a fixed amount of work multiple times and
records the time it takes for each run. Each benchmark step
is designed to take 1000 microseconds in absence of noise,
but as we can see from the figure, interference from the OS
and the hypervisor results in a large fraction of steps taking
significantly longer time – from 20% up to 200% longer.

In general, system noise has detrimental impact on per-
formance, especially for HPC applications that frequently
synchronize using barriers since the slowest thread dictates
the speed [35]. Unlike supercomputers, which come with an
OS specifically designed to minimize noise, e.g., Scientific
Linux on Taub, cloud deployments typically run non-tuned
operating systems, and have a further intrinsic disadvantage
due to the presence of the hypervisor which increases noise.
This represents an additional impediment to HPC in the cloud.

VI. OPTIMIZING CLOUD VIRTUALIZATION FOR HPC

To mitigate the overhead of cloud platform, we investigate
two optimization techniques for cloud: lightweight virtualiza-
tion and CPU affinity.

A. Lightweight Virtualization

We consider two lightweight virtualization techniques, thin
VMs configured with PCI pass-through for I/O, and contain-
ers, that is OS-level virtualization. Lightweight virtualization
reduces the latency overhead of network virtualization by
granting virtual machines native accesses to physical network

interfaces. In the thin VM configuration with IOMMU, a
physical network interface is allocated exclusively to a thin
VM, preventing the interface to be shared by the sibling VMs
and the hypervisor. This may lead to under utilization when
the thin VM generates insufficient network load. Containers
such as LXC [21] share the physical network interface with its
sibling containers and its host. However, containers must run
the same operating system as their underlying host. Thus, there
is a trade-off between resource multiplexing and flexibility
offered by VM.

Figure 5 validates that network virtualization is the primary
bottleneck of cloud. These experiments were conducted on
the virtualization testbed described earlier (Table II). On plain
VM, the scalability of NAMD and ChaNGa (Figure 5a–5b)
is similar to that of private cloud (Figure 1). However, on
thin VM, NAMD execution times closely track that of the
physical machine even as multiple nodes are used (i.e., 16
cores onwards). The performance trend of containers also
resembles the one of the physical machine. This demonstrates
that thin VM and containers impose a significantly lower com-
munication overhead. This low overhead is further validated
by the ping-pong test (Figure 5c).

It should be noted that it is not our intention in this study
to exhaustively compare multiple hypervisors. Our goal is
to concentrate on the current state of device virtualization
and provide valuable insights to cloud operators. We are
aware of other research in the virtualization and networking
communities to improve virtual drivers offering performance

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

E
xe

cu
tio

n
tim

e
(s

)

Iteration number

proc 1
proc 2
proc 3
proc 4

proc 5
proc 6
proc 7
proc 8

proc 9
proc 10
proc 11
proc 12

(a) Physical Machine (No CPU Affinity)

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

)

Iteration number

VM min-max
physical min-max

(b) Thin VM (Application-level Affinity only)
and Physical Machine (CPU Affinity)

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0 100 200 300 400 500

E
xe

cu
tio

n
tim

e
(s

)

Iteration number

thin VM
plain VM
container
physical

(c) All Configurations (CPU Affinity)

Fig. 6: Impact of CPU Affinity on CPU Performance

102

103

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of cores

ChaNGa, Plain VM

hyperAFF + appAFF

10-1

100

 1 2 4 8 16 32 64 128
E

xe
cu

tio
n

Ti
m

e
pe

r s
te

p
(s

)
Number of cores

NAMD, Plain VM

appAFF

102

103

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of cores

ChaNGa, Thin VM

hyperAFF

10-1

100

 1 2 4 8 16 32 64 128

E
xe

cu
tio

n
Ti

m
e

pe
r s

te
p

(s
)

Number of cores

NAMD, Thin VM

no aff

Fig. 7: Application Performance with various CPU Affinity Settings, using thin VM and plain VM; legend is at the
bottom
and multi-tenancy. While HPC will of course benefit from that,
we consider it orthogonal to the findings of this paper.

B. Impact of CPU Affinity

CPU affinity instructs the operating system to bind a process
(or thread) to a specific CPU core. This prevents the operating
systems to inadvertently migrate a process. If all important
processes have non-overlapping affinity, it practically prevents
multiple processes or threads to share a core. In addition, cache
locality can be improved by processes or threads remaining
on the same core throughout their execution. However, in the
cloud, CPU affinity can be enforced at the application level,
which refers to binding processes to the virtual CPUs of a VM,
and at the hypervisor level, which refers to binding virtual
CPUs to physical CPUs.

Figure 6 presents the results of our micro-benchmarks with
various CPU affinity settings on different types of virtual
environments. In this experiment, we executed 12 processes
on a single 12-core virtual or physical machine. Each pro-
cess runs 500 iterations, where each iteration executes 200
millions of y = y + rand()/c operations. Without CPU
affinity (Figure 6a), we observe wide fluctuation on the process
execution times, up to over twice of the minimum execution
time (i.e., 2.7s). This clearly demonstrates that frequently two
or more of our benchmark processes are scheduled to the same
core. The impact of CPU affinity is even more profound on
virtual machines: Figure 6b shows the minimum and maxi-
mum execution times of the 12 processes with CPU affinity
enabled on the physical machine, while only application-level

affinity is enabled on the thin VM. We observe that the gap
between minimum and maximum execution times is narrowed,
implying that load balance takes effect. However, on the thin
VM, we still notice the frequent spikes, which is attributed to
the absence of hypervisor-level affinity. Hence, even though
each process is pinned to a specific virtual CPU core, multiple
virtual cores may still be mapped onto the same physical core.
When hypervisor-level affinity is enabled, execution times
across virtual cores stabilizes close to those of the physical
machine (Figure 6c). In conducting these experiments, we
have learned several lessons. Firstly, virtualization introduces
a small amount of computation overhead, where the execution
times on containers, thin VM, and plain VM are higher
by 1–5% (Figure 6c). We also note that it is crucial to
minimize I/O operations unrelated to applications to attain
the maximum application performance. Even on the physical
machine, the maximum execution time is increased by 3–5%
due to disk I/O generated by the launcher shell script and its
stdout/stderr redirection (result not shown due to space
limitation). The spikes on the physical machine in Figure 6c
are caused by short ssh sessions which simulate the scenarios
whereby users logging in to check the job progress. Thus,
minimizing the unrelated I/O is another important issue for
HPC cloud providers to offer maximum performance to their
users.

Figure 7 shows the positive impact of CPU affinity on
thin VM and plain VM. In this figure, hyperAFF denotes
the execution where hypervisor-level affinity is enabled and
appAFF denotes the case when application-level affinity is

enabled. We see significant benefits, especially for thin-VM,
when using both application-level and hypervisor-level affinity
compared to the case when no affinity is used. However, the
impact on NAMD running on plain VMs is not clear, which
suggests that optimizing cloud for HPC is non-trivial. Hence,
there remains a gap between the expectations of HPC users
and cloud offerings, then the question is why and when should
one move to cloud?

VII. HPC ECONOMICS IN THE CLOUD

There are several reasons why many commercial and web
applications are migrating to public clouds from fully owned
resources or private clouds. Variable usage in time (resulting
in lower utilization), trading CAPEX for OPEX, and the shift
towards a delivery model of Software as a Service are some
of the primary motivations fueling the shift to the cloud in
commercial environments. These arguments apply both to
cloud providers and cloud users. Cloud users benefit from
running in the cloud when their applications fit the profile
we described e.g., variable utilization, sensitivity to CAPEX.
Cloud providers can justify their business if the aggregated
resource utilization of all their tenants can sustain a profitable
pricing model when compared to the substantial infrastructure
investments required to offer computing and storage resources
through a cloud interface.

HPC applications are however quite different from the typi-
cal Web and service-based applications. First of all, utilization
of the computing resources is typically quite high on HPC
systems. Queue-based approach to scheduling always makes
sure that a supercomputer is kept busy 24x7. This conflicts
with the desirable properties of high-variability and low aver-
age utilization that make the cloud business model viable, as
we describe above. In other words, an HPC cloud user would
ideally want a dedicated instance, but for a cloud provider
that means that the multi-tenancy opportunities are limited
and the pricing has to be increased to be able to profitably
rent a dedicated computing resource to a single tenant. Then,
the performance of many HPC applications is very sensitive to
the interconnect, as we showed in our experimental evaluation.
In particular low latency requirements are typical for the HPC
applications that incur substantial communication. This is in
contrast with the commodity Ethernet network (1Gbps today
moving to 10Gbps) typically deployed in cloud infrastructure.

As we showed above, the noise caused by virtualization
and multi-tenancy can significantly affect HPC applications
in terms of performance predictability and scalability. Virtu-
alization is a foundational technology for the cloud to enable
improved consolidation and easier management (moving VMs
around for performance, support, and reliability), but it needs
to be carefully tuned for HPC applications. Again, these
limitations constrain the number of HPC application that are
a good fit for the cloud: when networking performance is
important, we quickly reach diminishing returns of scaling-
out a cloud deployment to meet a certain performance target.
Depending on the pricing model, if too many VMs are
required to meet performance because of lack of scalability, the

cloud deployment quickly becomes uneconomical. Finally, the
CAPEX/OPEX argument is less clear-cut for HPC users. Pub-
licly funded supercomputing centers typically have CAPEX in
the form of grants, and OPEX budgets may actually be tighter
and almost fully consumed by the support and administration
of the supercomputer with little headroom for cloud bursting.
Software-as-a-Service offering are also rare in HPC to date,
although that might change in the future.

So, what are the conditions that can make HPC in the
cloud a viable business model for both HPC users and cloud
providers? Unlike large supercomputing centers, HPC users
in small-medium enterprises are much more sensitive to the
CAPEX/OPEX argument. For example, startups with HPC
requirements (e.g., simulation or modeling) in general have
little choice but to go to the cloud for their resources and
buying a supercomputer is not an option. Similarly, small-
medium enterprises with growing business and an existing
HPC infrastructure may be reluctant to grow on-premise re-
sources in volatile markets and would rather take a pay-as-you-
go approach. The ability to take advantage of a large variety of
different architectures (with different interconnects, processor
types, memory sizes, etc.) can result in better utilization at
global scale, compared to the limited choices available in
any individual organization. Running HPC applications on the
most economical architecture while meeting the performance
expectations can result in overall savings for consumers.

To illustrate a few possible HPC-in-the-cloud scenarios, we
collected and compared cost and price data of supercomputer
installation and typical cloud offering. Unfortunately, while
cloud pricing is readily available, it is quite difficult to
obtain reliable cost information. In some cases, like for cloud
operators, the sensitivity of the information is intimately tied
to the business model and is treated as proprietary and closely
guarded. In other cases, like for supercomputing center, the
complexity of accounting for and disentangling the per-node
administrative, support and software licensing components
makes it very difficult to compute the per-node total cost of
ownership.

Based on our survey of cloud prices, known financial of
cloud operators, published supercomputing costs, and a variety
of internal and external data sources [36], we estimate that a
cost ratio between 2x and 3x1 is a reasonable approximate
range capturing the differences between a cloud deployment
and on-premise supercomputing resources today. Of course,
these values will continue to fluctuate, possibly in unforeseen
ways, so we expand the range between 1x and 5x to capture
different future scenarios.

Using the performance evaluations for different applica-
tions that we presented in Figure 1, we calculated the cost
differences for an HPC user of running the application in
the public cloud vs. running it in a dedicated supercomputer
(Ranger), assuming different per-core-hour cost ratios from
1x to 5x. For example, Figure 8a-c show the cost differences

1To clarify our terminology, 2x indicates the case where 1 supercomputer
core-hour is twice as expensive as 1 cloud core-hour.

0.01

0.1

1

10

100

1 2 4 8 16 32 64 128 256

C
o

st
 R

at
io

:
Su

p
e

rc
o

m
p

u
te

r
v.

C

lo
u

d

Cores

Cost Ratio for ChaNGa

5x

4x

3x

2x

1x

(a) ChaNGa

0.001

0.01

0.1

1

10

1 2 4 8 16 32 64 128 256

C
o

st
 R

at
io

: S
u

p
e

rc
o

m
p

u
te

r
v.

cl

o
u

d

Cores

Cost Ratio for NAMD

5x

4x

3x

2x

1x

(b) NAMD

0.01

0.1

1

10

1 2 4 8 16 32 64 128 256

C
o

st
 R

at
io

:
Su

p
e

rc
o

m
p

u
te

r
v.

C

lo
u

d

Cores

Cost Ratio for Sweep3D

5x

4x

3x

2x

1x

(c) Sweep3D
Fig. 8: Cost ratio of running in cloud and a dedicated supercomputer for different scale (cores) and cost ratios (1x–5x).
Ratio>1 imply savings of running in the cloud, <1 favor supercomputer execution.

for three applications (where values>1 indicate savings of
running in the cloud and values<1 an advantage of running
it on a dedicated supercomputer). We can see that for each
application there is a scale in terms of the number of cores
up to which it is more cost-effective to execute in the cloud
vs. on a Supercomputer. For example, for Sweep3D, NAMD
and ChaNGa, this scale is higher than 4, 8 and 16 cores
respectively. We can see that smaller-scale executions in the
cloud are advantageous, but after a certain scale it becomes
counterproductive. This observation is consistent with the use
of clouds for smaller runs (or peak burst) and for testing. The
break-even point is a function of the application scalability and
the cost ratio. However our observation is that there is little
sensitivity to the cost ratio and it is relatively straightforward
to determine the breakpoint. This is true even for the cost ratio
of 1. This might be the artifact of slower processors for the
Ranger vs. newer and faster processors in the cloud.

In practice, HPC users will need to run a portfolio of ap-
plications and distribute them among dedicated resources and
cloud. In that case, the techniques and analyses methodology
we present in this work, are going to be very important to
determine which of the application are the most profitable
candidates for cloud execution.

VIII. DISCUSSION: CLOUD BURSTING AND BENEFITS

In the previous sections, we provided empirical evidence
that our hypothesis holds: applications behave quite differently
on different platforms, and interesting cross-over points appear
when taking cost into the equation. This observation opens
up several opportunities to optimize the mapping between
applications and platforms, and pass the benefits to both cloud
providers and end users. In this section, we discuss the case
when the dedicated infrastructure cannot meet peak demands
and the user is considering “cloud bursting” as a way to
offload the peaks to the cloud. In this case, the knowledge
of application and platform characteristics and its impact on
performance can help answer (1) which application to burst to
cloud, and (2) which cloud to burst to.

To further explore (1), let’s consider a practical scenario
where an organization needs to run a set of HPC applications,
each requiring a performance guarantee (e.g., needing to meet
a deadline), and has access to in-house, dedicated, HPC
optimized resources that cannot meet the aggregated demand.

Under a given performance constraint, how do we find a
mapping of the application set to the available resources that
makes best use of the dedicated HPC-optimized resources,
minimizes the cost of bursting to the cloud, and meet the
performance targets?

A simple allocation scheme may not even find a feasible
solution, regardless of the cost. For example, first-come-first-
served may exhaust the dedicated resources on cloud-friendly
applications, and attempt bursting to the cloud, applications
that do not scale and have no chance of meeting the per-
formance target. An intelligent mapping algorithm should
be aware of application characteristics and understand that
application which scale poorly on cloud should be allocated
to dedicated resources first to maximize the utilization of an
optimized supercomputer infrastructure. We believe that these
techniques and associated tools for automating the mapping of
applications to platforms will become increasingly important
in the future.

Knowledge of application characteristics can also help to
answer (2), that is which cloud to select from the several
commercially available options, each having different charac-
teristics and pricing rates. For example, for some applications
demonstrating good scalability within a given range, it would
be cost effective to run on a low-cost ($ per core-hour) cloud.
For other applications that are more sensitive to networking
performance, selecting a higher-cost HPC-optimized cloud,
such as the offering that has Infiniband or 10G Ethernet.
An intelligent mapper can provide guidance in selecting the
best platform, thus enabling the end users to concentrate on
application development by leaving the burden of platform
choices to a semi-automated tool.

Figure 9 shows the conceptual architecture of the mapping
tool. We start from an HPC application, and through off-line
characterization extract an application signature capturing the
most important dimensions such as communication profiles
and problem size. Subsequently, given a set of applications
to execute and a set of target platforms, we define a set of
heuristics to map the applications to the platforms that opti-
mize parallel efficiency (static mapping in Figure 9). Parallel
efficiency (E) is a crucial metric and a concept central to our
approach towards application characterization. It is defined as:
E = S/P where P is the number of processors, and Speedup
(S) is defined as: S = Ts/Tp where Ts is the sequential

Figure 3. Mapping of an application to a platform. We consider platforms with varying resources such as servers

with different processor type and speed, different interconnection network and servers with and without virtualization.

Cloud with

virtualization

Cluster with gigabit

Ethernet

interconnect

Supercomputer

User

Tool

Application

Characterization

Static Mapping

Cluster with

Infiniband

interconnect

.

Fig. 9: Mapping of HPC applications to platforms with
varying resources (e.g., different processor types and speed,
interconnection networks, and virtualization overhead)

 1

 4

 16

 64

 256

 1024

 4096

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1 1.1

S
lo

w
do

w
n

on
 p

riv
at

e
cl

ou
d

 w
rt.

 R
an

ge
r

Parallel Efficiency Achieved on Ranger

NPB Class A
NPB Class B Rest
NPB Class B - EP
NPB Class B - LU

NAMD

Fig. 10: Applications with high parallel efficiency are good
candidates for cloud.

execution time and Tp is the parallel execution time. To study
its impact, in Figure 10 we plotted the slowdown caused by
moving an application from supercomputer to cloud vs. the
parallel efficiency achieved on supercomputer. This was done
for all applications run across different number of processors.

From Figure 10, we see the trend that applications which
achieve high parallel efficiency on supercomputer suffer less
slowdown when moved to cloud compared with applications
with low parallel efficiency. Applications which achieved
less than 90% parallel efficiency on Ranger suffered serious
degradation on cloud implying that only applications with
high parallel efficiency are possible candidates for execution
on cloud. Hence, performance degradation on cloud will
be less for applications with high computational granularity
(hence low communication to computation ratio and high
parallel efficiency). For mapping purposes, we focus on those
application characteristics which can contribute to difference
in application’s expected parallel efficiency across different
platforms. From the performance analysis, it is clear that
communication time (and more precisely the communication-
to-computation ratio) is a major contributor.

Using the application signature and platform characteristics,
we can estimate relative application performance, execution
cost and other relevant metrics of the available platforms and
recommend the best platform for a given application instance

based on user preferences. For each platform, the algorithm
estimates the communication to computation ratio, calculates
parallel efficiency, scales it by sequential performance, and
normalizes it. Subsequently, it calculates normalized cost and
recommends the best platform based on user preferences.
For estimating communication time (Tcomm) of an N -byte
message, we can use the formula Tcomm = α+N × β where
α is the per-message cost (startup cost) and β is the per-byte
cost (inversely proportional of bandwidth).

Such a tool can be used to provide mapping recommen-
dations under various scenarios: to maximize performance
under budget constraints, to minimize cost under performance
guarantees, or to consider an application set as a whole
instead of individual application instances. For example, we
can minimize cost of a set of applications under a hard
allocation limitation while providing performance guarantees.

To demonstrate the potential impact of such a tool and
provide a proof-of-concept, we evaluate the results obtained
by a simple mapper based on the characterization mentioned
above. It is not our intention in this paper to research accurate
techniques for parallel performance prediction of complex
applications. Our goal is to quantify the benefits of smart
mapping to develop an understanding and foundation for
HPC in cloud, which can promote further research towards
additional techniques for more accurate results and complex
applications. With this goal. we consider an application set
with well-understood computation and communication pat-
terns and available combination of two platforms: supercom-
puter (Ranger) and Eucalyptus cloud. From now on, we
use “cloud” for Eucalyptus cloud (typical hypervisor-based
resources), and “supercomputer” for Ranger.

A. Cost with Performance Guarantees

The question that we explore here is whether we can
reduce the cost of an application execution while maintaining
the desired level of performance. The Mapper estimates the
number of processors required to achieve the same perfor-
mance on cloud (typically larger than the number needed on
supercomputer), and recommends the cost-optimal platform.

Figure 11 shows the results for various supercomputer/cloud
pricing ratios. The application suffix is the number of proces-
sors (when run on supercomputer); for Jacobi, we consider
multiple problem sizes, that is input matrix dimensions (e.g.
size 1k × 1k). The target performance is that obtained by
running the application on supercomputer. We normalized
results with respect to execution on supercomputer, so that
a normalized cost of 1 means that it is optimal to run
the application on supercomputer for that pricing ratio, for
example, that happens to all IS instances, regardless of the
pricing ratio. The pricing ratio where the normalized cost
6= 1 is when the mapper recommends cloud as the optimal
platform. Thus, we can deduce the pricing ratio at which the
optimal platform shifts from supercomputer to cloud for each
application. We see that this cross-over point occurs at pricing
ratio of 1, 2, and 4, for different applications. Another impor-
tant observation is that savings vary for different applications;

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.25 0.5 1 2 4 8 16 32 64 128

N
or

m
al

iz
ed

 C
os

t

Price of supercomputer relative to cloud (pricing ratio)

IS_classB_4
IS_classB_16
IS_classB_64

Jacobi1k_4
Jacobi1k_16
Jacobi1k_64
Jacobi2k_4

Jacobi2k_16
Jacobi2k_64
Jacobi4k_4

Jacobi4k_16
Jacobi4k_64

EP_classB_4
EP_classB_16
EP_classB_64

Fig. 11: Normalized Cost vs. execution on supercomputer
vs. pricing ratio for FixedPerfMapper

for example, maximum savings were obtained for Jacobi4k 4
running on cloud. This observation is pivotal to intelligently
map a group of applications under some constraints (e.g., a
fixed SU budget) as discussed earlier.

The IS benchmark contains all-to-all collective commu-
nication as its dominant communication pattern. Using a
theoretical estimation for this collective primitive is non-trivial
since different MPI implementations use different broadcast
algorithms which may even change with message sizes. Hence,
we benchmarked the MPI_Alltoall for relevant message
sizes for different processor counts on our platforms, and
used these values in the mapper to predict parallel efficiency.
Scientific applications are typically long-running, and are
executed many times with different inputs, but same problem
size. Such one-time benchmarking can be useful in those cases.

B. Performance with Constrained Budget

Another common situation is an HPC user with hard budget
constraints wanting to find the execution platform that max-
imizes performance. We can use the Mapper by constraining
the budget of each application, for example with the cost of its
execution on supercomputer, and using a fixed-cost mapping
algorithm to estimate the number of processors that fit the
budget, while taking into account the parallel efficiency drop
as we scale. The Mapper recommends the platform which
would provide best performance, as shown in Figure 12,
where we summarize the achieved performance benefits under
budget constraints. We can see that with marginal performance
penalty, significant cost benefits can be attained. A subtle point
is that cost is affected by run-time since longer running means
larger cost. Hence most supercomputer-friendly applications
will still execute on supercomputer.

IX. LESSONS LEARNED

We summarize here some important insights we found.

A hybrid cloud-supercomputer platform environment can out-
perform its individual constituents. While it may sound ob-
vious that an application should be run on the environment
it was initially developed and tuned for, there might be an

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Average

IS_classB_4

IS_classB_16

IS_classB_64

Jacobi1k_4

Jacobi1k_16

Jacobi1k_64

Jacobi2k_4

Jacobi2k_16

Jacobi2k_64

Jacobi4k_4

Jacobi4k_16

Jacobi4k_64

N
or

m
al

iz
ed

 T
im

e,
N

or
m

al
iz

ed
 C

os
t

Application

Normalized Time
Normalized Cost

Fig. 12: Normalized Performance and Cost vs. execution
on supercomputer for FixedCostMapper
underutilized resource which is “good enough” to get the job
done sooner cheaper. Based on the study of the performance-
cost tradeoffs, it is possible to get better performance for
the same cost on one platform for some applications, and
on another platform for another application. Hence, a hybrid
environment can potentially perform better when catered to
a wide class of HPC applications. More work is needed to
better quantify the “good enough” dimension, as well as the
deep ramification of cloud business models on HPC.

Lightweight virtualization is important to remove overheads
for HPC in cloud. We have shown that giving VMs a more
direct access to I/O (network and storage) reduces the per-
formance gap between cloud and bare metal. For the HPC
applications used, we have shown that the computational
overhead of virtualization is negligible, and that much more
important is the communication overhead of virtualized net-
working. We believe that a promising research direction is to
use thin virtualization and container-based virtualization for
HPC. In particular, since the same hardware of a web-oriented
cloud infrastructure can be reused, this approach shows the
potential for building hybrid clouds that can support both HPC
and commercial workloads. Such a hybrid cloud stack would
however require proper tuning or VM re-provisioning for HPC
applications, which is a fertile topic for future research.

Application characterization in the HPC-cloud space is chal-
lenging but the benefits are substantial. As expected, identifi-
cation of the main application characteristics which influence
performance-cost tradeoffs for complex HPC applications is a
non-trivial task. However, it is critical for the identification
of an application’s suitability for cloud. More research is
necessary to be able to quickly identify important traits for
complex applications such as those with dynamic and irregular
communication patterns. Once the application is characterized,
it is possible to determine if there is an economic benefit to
execute it in the cloud and up to what scale specifically.

X. CONCLUSIONS AND FUTURE WORK

Through a performance analysis of HPC applications and
a comparison on a range of platforms, we have shown that

different applications exhibit different characteristics that make
them more or less suitable to run in a cloud environment.
Applications with non-intensive communication patterns are
good candidates for cloud deployments. For communication-
intensive applications, supercomputers remain the optimal
platform, largely due to the overhead of network virtualization
in the cloud.

Although the findings are similar to the behaviour of early
Beowulf clusters, those clusters are quite different from todays
clouds: processor, memory, and networking technologies have
tremendously progressed. The appearance of virtualization be-
tween hardware and the OS introduces multi-tenancy, resource
sharing and several other new effects. We believed it was time
to repeat these experiments. The fact that they generate similar
results (to the extent they do), while not shocking, is valuable
information for the community and helps to better understand
which applications are cloud candidates, and where we should
focus our efforts to improve the cloud performance.

In addition to evaluating the suitability of HPC applications
in cloud and identifying performance bottlenecks, we also sug-
gested techniques for improving performance in cloud, specif-
ically CPU affinity and alternative lightweight virtualization
mechanisms. We also dived into economic aspects of HPC in
cloud and showed that there is significant cost-saving potential
in using hybrid platform environments and intelligent mapping
of applications to available platforms. Finally, we described
how we could automate the mapping using a combination
of application characteristics, platform parameters, and user
preferences. In the future, we plan to enhance the techniques to
generate better “application signatures” and smarter mapping.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Lavanya Ramakrishnan
of US DoE’s Magellan project and Robert Schreiber of HP labs
for reviewing this paper and providing valuable feedback.

REFERENCES

[1] “Magellan Final Report,” U.S. Department of Energy (DOE), Tech. Rep.,
2011.

[2] E. Walker, “Benchmarking Amazon EC2 for high-performance scientific
computing,” LOGIN, pp. 18–23, 2008.

[3] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, and R. Biswas, “Performance Evaluation of Amazon EC2
for NASA HPC applications,” in Proceedings of the 3rd workshop on
Scientific Cloud Computing, ser. ScienceCloud ’12. New York, NY,
USA: ACM, 2012, pp. 41–50.

[4] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance Analysis
of High Performance Computing Applications on the Amazon Web
Services Cloud,” in CloudCom’10, 2010.

[5] “Magellan - Argonne’s DoE Cloud Computing,” http://magellan.alcf.anl.
gov.

[6] “High Performance Computing (HPC) on AWS,” http://aws.amazon.
com/hpc-applications.

[7] C. Evangelinos and C. N. Hill, “Cloud Computing for parallel Scientific
HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean
Climate Models on Amazon’s EC2.” Cloud Computing and Its
Applications, Oct. 2008.

[8] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 22, pp. 931–945, June 2011.

[9] J. Napper and P. Bientinesi, “Can Cloud Computing reach the Top500?”
ser. UCHPC-MAW ’09. ACM, 2009.

[10] A. Gupta and D. Milojicic, “Evaluation of HPC Applications on Cloud,”
in Open Cirrus Summit (Best Student Paper), Atlanta, GA, Oct. 2011,
pp. 22 –26. [Online]. Available: http://dx.doi.org/10.1109/OCS.2011.10

[11] “Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.amazon.
com/ec2.

[12] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case Study for
Running HPC Applications in Public Clouds,” ser. HPDC ’10. ACM,
2010.

[13] J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, and G. C. Fox, High
Performance Parallel Computing with Clouds and Cloud Technologies,
07/2010 2010.

[14] H. Kim, Y. el Khamra, I. Rodero, S. Jha, and M. Parashar, “Autonomic
Management of Application Workflows on Hybrid Computing Infras-
tructure,” Scientific Programming, vol. 19, no. 2, pp. 75–89, Jan. 2011.

[15] “Ranger User Guide,” http://services.tacc.utexas.edu/index.php/
ranger-user-guide.

[16] Infiniband Trade Association, “Infiniband Architecture Specification,
Release 1.0,” Tech. Rep. RC23077, October (2004).

[17] A. I. Avetisyan et al., “Open Cirrus: A Global Cloud Computing
Testbed,” Computer, vol. 43, pp. 35–43, April 2010.

[18] D. Nurmi et al., “The Eucalyptus Open-source Cloud-computing Sys-
tem,” in Proceedings of Cloud Computing and Its Applications, Oct.
2008.

[19] “KVM – Kernel-based Virtual Machine,” Redhat, Inc., Tech. Rep., 2009.
[20] A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu,

and G. C. Fox, “Analysis of Virtualization Technologies for High
Performance Computing Environments,” Cloud Computing, IEEE In-
ternational Conference on, vol. 0, pp. 9–16, 2011.

[21] D. Schauer et al., “Linux containers version 0.7.0,” June 2010,
http://lxc.sourceforge.net/.

[22] “Intel(r) Virtualization Technology for Directed I/O,” Intel Corporation,
Tech. Rep., Feb 2011, http://download.intel.com/technology/computing/
vptech/Intel(r) VT for Direct IO.pdf.

[23] “MPI: A Message Passing Interface Standard,” in M. P. I. Forum, 1994.
[24] L. Kale and S. Krishnan, “Charm++: A portable concurrent object

oriented system based on C++,” in Proceedings of the Conference on
Object Oriented Programming Systems, Languages and Applications,
September 1993.

[25] “NPB,” http://www.nas.nasa.gov/Resources/Software/npb.html.
[26] A. Bhatele et al., “Overcoming Scaling Challenges in Biomolecular

Simulations across Multiple Platforms,” in IPDPS 2008.
[27] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn,

“Massively Parallel Cosmological Simulations with ChaNGa,” in IPDPS
2008, 2008, pp. 1–12.

[28] “The ASCII Sweep3D code,” http://wwwc3.lanl.gov/pal/software/
sweep3d.

[29] Y. Yoon, J. C. Browne, M. Crocker, S. Jain, and N. Mahmood, “Pro-
ductivity and Performance through Components: the ASCI Sweep3D
Application: Research Articles,” Concurrency and Computation: Prac-
tice and Experience, vol. 19, no. 5, pp. 721–742, 2007.

[30] M. Koop, T. Jones, and D. Panda, “MVAPICH-Aptus: Scalable high-
performance multi-transport MPI over InfiniBand,” in Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium
on, april 2008, pp. 1 –12.

[31] E. Gabriel et al., “Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation,” in Proc. of 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, 2004.

[32] L. Kalé and A. Sinha, “Projections : A Scalable Performance Tool,”
in Parallel Systems Fair, International Parallel Processing Sympos ium,
Apr. 1993, pp. 108–114.

[33] The CONVERSE programming language manual, Department of Com-
puter Science,University of Illinois at Urbana-Champaign, Urbana, IL,
2006.

[34] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm, “Netgauge: A
Network Performance Measurement Framework,” in Proceedings of
High Performance Computing and Communications, HPCC’07.

[35] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the Influ-
ence of System Noise on Large-Scale Applications by Simulation,” in
Supercomputing 10, Nov. 2010.

[36] C. Bischof, D. anMey, and C. Iwainsky, “Brainware for Green
HPC,” Computer Science - Research and Development, pp. 1–7, 2011.
[Online]. Available: http://dx.doi.org/10.1007/s00450-011-0198-5

http://magellan.alcf.anl.gov
http://magellan.alcf.anl.gov
http://aws.amazon.com/hpc-applications
http://aws.amazon.com/hpc-applications
http://dx.doi.org/10.1109/OCS.2011.10
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://services.tacc.utexas.edu/index.php/ranger-user-guide
http://services.tacc.utexas.edu/index.php/ranger-user-guide
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
http://www.nas.nasa.gov/Resources/Software/npb.html
http://wwwc3.lanl.gov/pal/software/sweep3d
http://wwwc3.lanl.gov/pal/software/sweep3d
http://dx.doi.org/10.1007/s00450-011-0198-5

