

Keyword(s):

Abstract:



Introducing Pathogen: A Real-Time Virtual Machine Introspection
Framework
Anthony Roberts, Richard McClatchey, Saad Liaquat, Nigel Edwards, Mike Wray

HP Laboratories
HPL-2013-55

Security; Monitoring; Introspection; Malware

In recent years, malware has grown extremely rapidly in complexity and rates of system infection. Current
generation anti-virus and anti-malware software provides system protection through the use of locally
installed monitoring agents, which are dependent upon vendor generated signature and heuristic based
rules. However, because these monitoring agents are installed within the systems they are trying to protect,
they themselves are potential targets of attack by malware. Pathogen overcomes this issue by using a
real-time system monitoring and analysis framework that utilises Virtual Machine introspection (VMI) to
allow the monitoring of a system without the need for any locally installed agents. One of the main
research problems in VMI is how to parse and interpret the memory of an executing system from outside of
that system. Pathogen's contribution is a lightweight introspection framework that bridges the semantic gap.

External Posting Date: August 21, 2013 [Fulltext] Approved for External Publication
Internal Posting Date: August 21, 2013 [Fulltext]
To be published in CCS 2013: 20th ACM Conference on Computer and Communications Security (ACM CCS)

Copyright 2013 Hewlett-Packard Development Company, L.P.

POSTER: Introducing Pathogen: A Real-Time Virtual
Machine Introspection Framework

Anthony Roberts, Richard McClatchey,
Saad Liaquat

University of the West of England
Bristol, BS16 1QY, UK

anthony2.roberts@live.uwe.ac.uk
saad2.liaquat@uwe.ac.uk

richard.mcclatchey@uwe.ac.uk

Nigel Edwards, Mike Wray
Hewlett-Packard Laboratories

Long Down Avenue
Bristol, BS34 8QZ, UK

<firstname.lastname>@hp.com

ABSTRACT
In recent years, malware has grown extremely rapidly in
complexity and rates of system infection. Current genera-
tion anti-virus and anti-malware software provides system
protection through the use of locally installed monitoring
agents, which are dependent upon vendor generated sig-
nature and heuristic based rules. However, because these
monitoring agents are installed within the systems they are
trying to protect, they themselves are potential targets of
attack by malware. Pathogen overcomes this issue by us-
ing a real-time system monitoring and analysis framework
that utilises Virtual Machine introspection (VMI) to allow
the monitoring of a system without the need for any locally
installed agents. One of the main research problems in VMI
is how to parse and interpret the memory of an executing
system from outside of that system. Pathogen’s contribu-
tion is a lightweight introspection framework that bridges
the semantic gap.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information]:
Security and Protection

Keywords
Security; Monitoring; Introspection; Malware

1. INTRODUCTION
The overall goal of the Pathogen project is to develop a

system that can be used to monitor multiple virtual ma-
chines (VMs) within an organisation’s infrastructure. Cur-
rently, Pathogen is in an early stage of development, and
supports the monitoring of a single VM.
Motivations. Current generation security products rely
upon the installation of an in-system monitoring agent which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2512518.

performs real-time analysis of file and code execution within
the system. However, these monitoring agents are them-
selves at risk of malware attack, and many pieces of sophisti-
cated malware attempt to identify, and disable any detected
security software upon infecting a system [2]. Pathogen over-
comes this issue by performing all system analysis externally
using Virtual Machine Introspection [9] and therefore re-
mains completely transparent to the monitored system.
At present Pathogen monitors Microsoft Windows 7 x64 sys-
tems, however it is being developed to be as OS agnostic as
is possible. This is achieved by performing an offline foren-
sic analysis of the VMs hard disk image, prior to starting
the VM. This forensic analysis first identifies the OS ver-
sion, and then locates core OS files, which are then analysed
and used to obtain the correct operating system structure
definitions (symbols) directly from Microsoft’s Public Sym-
bol Server [6]. This offline forensic analysis is designed to
eliminate the so called “semantic gap” [7].
The semantic gap refers simply to the fact that when per-
forming external analysis, the view of the monitored system
is raw binary data, which must then be reconstructed. In-
system monitoring agents are able to draw semantic knowl-
edge directly from the OS’s APIs, however, external moni-
toring agents have no access to these APIs, so must acquire
semantic knowledge through other methods. This problem
is exacerbated by the need for regular system updates, which
change the layout of key OS data structures.
Related Work. To retain access to OS APIs so that seman-
tic knowledge can be obtained, the Secure In-VM Monitor-
ing (SIM) [8] project installs an in-system monitoring agent,
but protects this agent against malicious modifications by
utilising Intel’s hardware assisted virtualisation technologies
(Intel-VT) [4]. Whilst this approach aims to protect the
monitoring agent from tampering, the authors state that it
is still potentially possible for malware to detect the pres-
ence of the agent, and therefore alter its behaviour.
The Blacksheep project [1] attempts to detect malicious ac-
tions within systems by monitoring groups of similar (homo-
geneous) systems, and then comparing memory snapshots
taken from each to detect unknown, or unexpected system
behaviour. This approach of monitoring multiple similar
systems to detect irregularities is unique, however makes as-
sumptions that systems are uninfected prior to beginning
analysis.
VMITools [10] & Volatility [11] are two of the most com-
monly used forensic tools for performing analysis of a sys-

tem’s memory (either via snapshots or through VMI). How-
ever, whilst these tools are widely used, they both per-
form system analysis using hard-coded symbolic informa-
tion, meaning that the software must be manually updated
in the event of an OS update.

Contributions. The contributions made by Pathogen are
two-fold:
(1) The creation of a lightweight VMI framework.
Pathogen is currently being developed on Linux based op-
erating systems, and utilises the open-source system emu-
lator QEMU with additional current generation virtualisa-
tion hardware assistance provided by KVM. Introspection
is made possible by making minor modifications to both of
these systems.
(2) Semantic-gap reconstruction through offline foren-
sic analysis. To perform introspection correctly, it is essen-
tial that the correct semantic knowledge be applied for the
particular OS version. Pathogen ensures this by analysing
the VMs hard disk image prior to performing introspection.
After analysis has been completed, the Microsoft public sym-
bol server is contacted, and the relevant Program Database
File (PDB) is downloaded. PDB files contain specific debug-
ging information for use in the event of a program or system
crash, but more importantly they also contain the exact OS
structure definitions required for accurate introspection.

2. IMPLEMENTATION
The sequence of events taken by Pathogen begins with the

initial forensic analysis of the VMs disk image. Once this
analysis is complete, the introspection portion of the system
is ready to be used. The offline analysis of the VMs hard
disk image serves two purposes; first it allows for the location
of core OS files and the generation of the correct symbols
for use by the introspector. Secondly, during introspection
Pathogen monitors all VM disk activity (reads/writes), and
by using the recorded file offsets can determine which files
the OS is currently accessing.

2.1 Emulator Modifications
To perform live introspection, Pathogen must first locate

within the host system the virtual memory allocated to the
VM for use as its own emulated physical memory. During
the creation of the VM, QEMU allocates a single region of
host memory for use by the guest. This memory region
is then made available to Pathogen through the use of the
Linux mmap command, which presents the guests memory
as a standard file within the host system.

2.2 Hardware Virtualisation Technologies
Hardware Virtualisation Technologies (HVT) allow VMs

to run at speeds similar to physical systems by allowing the
VM direct access to the physical CPU within the host sys-
tem. This is in direct contrast to older generation virtualisa-
tion technologies in which a VMs CPU required significant
emulation in software. HVT also reduce the interaction be-
tween the VM and the hypervisor (KVM). HVT introduce
two core concepts that Pathogen utilises in order to perform
introspection.

1. VMENTER/VMEXIT: Certain events that occur
within a VM (e.g. page faults) require the interven-

tion of the underlying hypervisor, which is triggered
through the vmexit instruction. A vmexit passes con-
trol of execution to the hypervisor, which performs the
necessary operation and returns control to the VM
with the associated vmenter instruction. Pathogen
makes modifications to KVM’s vmexit handler to de-
tect changes to the VMs memory structures.

2. Virtual Machine Control Structure (VMCS): A
VMCS is a 4KB structure used to maintain transi-
tions between vmexits and vmenters. In the event of
a vmexit, both the host’s and VM’s CPU states are
recorded so that they can be restored upon the follow-
ing vmenter. Pathogen utilises existing VMCS man-
agement functions present within KVM to extract VM
CPU state information, such as the values of key Model
Specific Registers (MSR). MSR are a form of control
register within the x86 instruction set and are used to
store OS configuration data, such as kernel memory lo-
cations and flags to enable/disable hardware features.

At present Pathogen performs introspection on VMs using
Intel-VT HVT, however future implementations for AMD-V
HVT [3] are planned.

2.3 Windows 7 x64 Introspection
After generation of the required OS symbols through of-

fline analysis, introspection begins with the location of the
Kernel Processor Control Region (KPCR), a structure con-
taining kernel specific data and pointers to additional control
structures. Upon creation of the KPCR, the OS stores its
physical address within the GS-MSR (FS-MSR on 32-bit),
and KVM is able to detect its creation through a modifi-
cation made to KVM’s vmexit handler, which monitors the
GS-MSR on every vmexit during the system’s early boot
process. Once KVM has detected the creation of the KPCR,
its physical address is transferred to Pathogen through the
use of the Linux /proc file system.
Pathogen must now locate the OS page tables, which are
necessary for performing virtual-to-physical address trans-
lation. The base address of the OS page tables are stored
within the CPU’s CR3 register, and within a secondary ker-
nel structure; the Kernel Processor Region Control Block
(KPRCB). Figure 1 shows the relevant parts of the OS
structure layouts from KPCR to OS page table address.

KPCR{
0x020 CurrentPrcb _KPRCB

_KPRCB{
0x040 ProcessorState _KPROCESSOR_STATE

_KPROCESSOR_STATE{
0x000 SpecialRegisters _KSPECIAL_REGISTERS

_KSPECIAL_REGISTERS{
0x010 Cr3 Uint8B

Figure 1: KPRCB structure leading to page table
address

Windows 7 x64 uses a standard 4-level page table hier-
archy [5], and once located all virtual-to-physical address
translations are performed by the Pathogen function walk-
PageTables.
To determine the correct offsets of elements within struc-
tures, Pathogen must first generate an in-memory hashmap

of the necessary structure; for example, to generate the
structure of the KPCR, the symbol information obtained
from the PDB is parsed, and each element’s offset, name,
and type is recorded. To display a list of all currently active
processes, the structure KDDEBUGGER DATA64 (KDBG)
which is used for OS kernel debugging is located. Prior to
the release of Windows Vista, an element within the KPCR
named KdVersionBlock stored a pointer to the KDBG, how-
ever this field is now nullified by the OS during the boot
process. The KDBG is stored in a memory location rela-
tive to the start of the KPCR, and by performing a mem-
ory search through the two pages prior to the start of the
KPCR, the KDBG can be located by its header which con-
tains the fixed string ‘KDBG’. Upon location of the KDBG,
the element ‘PsActiveProcessHead’ is parsed to locate an
OS maintained doubly-linked list of active processes.
Each active process within the OS is referenced through an
EPROCESS structure, which contains data relating to the
processes current system activity, such as the number of
active threads, current memory utilisation, and a unique
numeric identifier (PID). As each EPROCESS structure is
within a doubly linked list, each contains a link to the next
(flink), and previous (blink) process in the list, Pathogen
is able to parse each active process by following each flink
within the list. A partial example of this is shown in fig-
ure 2. In addition, Pathogen also monitors the currently
executing thread, and by comparing what is currently exe-
cuting with the data obtained from the EPROCESS linked
list can identify potentially hidden processes.

Figure 2: Pathogen showing active processes

3. EXAMPLE MALWARE ANALYSIS
To demonstrate Pathogen’s current capabilities, a VM run-

ning Windows 7 x64 was created and infected with a variant
of the sirefef malware (TrojanDropperWin32Sirefef.B). Af-
ter infection, Pathogen’s log files were examined to identify
any symptoms of malicious behavior.
Following execution of the malware, Pathogen detected the
creation of the files ‘msimg32.dll’ & ‘InstallFlashPlayer.exe’,
which were followed by a User Access Control (UAC) prompt
to allow the execution of the Adobe Flash player installer.
Upon confirmation of the UAC prompt, the Adobe Flash
player installer was able to execute with administrator level
privileges.
To deliver its malicious payload, sirefef takes advantage of
the way in which Windows locates and loads dynamic li-
brary files (DLLs). The legitimate msimg32.dll is located
in the Windows\System32 directory, however on loading an
executable, Windows will first check to see if any DLLs re-
quired exist within the same directory as the executing file,

and if so, will load the local DLL, rather than performing
an additional search. This results in the legitimate Adobe
Flash player installer self-injecting the malicious payload
contained within the local copy of msimg32.dll. In addition,
Pathogen also detected the creation of the file ‘consrv.dll’
which is reported by Microsoft’s Security Protection Center
to be associated with sirefef malware families.

4. CONCLUSIONS
The purpose of this poster is to highlight Pathogen’s cur-

rent capabilities in performing VMI whilst narrowing the se-
mantic gap through the use of offline forensic analysis. Cur-
rent VMI solutions perform introspection using hard coded
symbolic definitions which must be updated manually. This
issue is further compounded by the frequency of OS updates
which alter structure definitions. Now that a reliable VMI
framework has been established, the next stage of Pathogen’s
development is to introduce malware detection techniques,
along with additional live disk and network monitoring.

5. REFERENCES
[1] A. Bianchi et al. Blacksheep: Detecting compromised

hosts in homogeneous crowds. In Proceedings of the
2012 ACM conference on Computer and
communications security. P.341-352., 2012.

[2] Microsoft Protection Center. Sirefef malware
definition.
http://www.microsoft.com/security/portal/threat/
encyclopedia/entry.aspx?Name=Win32%2FSirefef,
2013.

[3] AMD Corporation. AMD Virtualization (AMD-V)
Technology. http://sites.amd.com/uk/business/
it-solutions/virtualization/Pages/amd-v.aspx, 2013.

[4] Intel Corporation. Hardware-Assisted Virtualization
Technology. http://www.intel.com/content/www/us/
en/virtualization/virtualization-technology/
hardware-assist-virtualization-technology.html, 2013.

[5] Intel Corporation. IA-32e Paging. Intel Developer’s
Manual. Volume 3. http:
//www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html, 2013.

[6] Microsoft Corporation. Microsoft Public Symbol
Server. http://support.microsoft.com/kb/311503,
2013.

[7] Simon. Crosby. Mind the Gap!” The Limitations of
VM Introspection.
http://blogs.bromium.com/2012/10/01/
mind-the-gap-the-limitations-of-vm-introspection/,
2012.

[8] M. Sharif et al. Secure in-vm monitoring using
hardware virtualization. In Proceedings of the 16th
ACM conference on Computer and Communications
Security, P.447-487, 2009.

[9] T.Garfinkel and M.Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2003.

[10] VMI Tools. VMI memory analysis framework.
https://code.google.com/p/vmitools/, 2013.

[11] Volatility. Volatile memory analysis framework.
https://www.volatilesystems.com/default/volatility,
2013.

http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2FSirefef
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2FSirefef
http://sites.amd.com/uk/business/it-solutions/virtualization/Pages/amd-v.aspx
http://sites.amd.com/uk/business/it-solutions/virtualization/Pages/amd-v.aspx
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://support.microsoft.com/kb/311503
http://blogs.bromium.com/2012/10/01/mind-the-gap-the-limitations-of-vm-introspection/
http://blogs.bromium.com/2012/10/01/mind-the-gap-the-limitations-of-vm-introspection/
https://code.google.com/p/vmitools/
https://www.volatilesystems.com/default/volatility

