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Mobile cloud computing enables numerous associated mobile users to access the abundant cloud
computing resources, thereby complements the resource constrain of mobile devices. A fundamental issue
in the mobile application platform is to make deployment decision for individual tasks when the battery life
of the mobile device is a major concern for the mobile user's experience. We propose a deployment scheme
to offload expensive computational tasks from thin, mobile devices to powered, powerful devices on the
cloud so that we could prolong battery life for mobile devices, meanwhile provide rich user experiences for
such mobile applications. We envision that the scheme can be extended to other type of smart devices such
as smart printers, smart TVs or sensors where offloading tasks is required to trade-off between performance
and battery life.
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Abstract—Mobile cloud computing enables numerous asso-
ciated mobile users to access the abundant cloud computing
resources, thereby complements the resource constrain of
mobile devices. A fundamental issue in the mobile application
platform is to make deployment decision for individual tasks
when the battery life of the mobile device is a major concern
for the mobile user’s experience. We propose a deployment
scheme to offload expensive computational tasks from thin,
mobile devices to powered, powerful devices on the cloud so
that we could prolong battery life for mobile devices, meanwhile
provide rich user experiences for such mobile applications. We
envision that the scheme can be extended to other type of smart
devices such as smart printers, smart TVs or sensors where
offloading tasks is required to trade-off between performance
and battery life.
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I. INTRODUCTION

Advances in mobile hardware and software techniques

have enabled mobile phones to support rich multimedia ca-

pability such as image recognition, video/audio processing,

natural language processing, etc. As estimated by Gartner,

mobile devices are going to overtake the PC sales with more

than 40 million units by 2013 [1]. According to the various

market review and forecast, the landscape of ubiquitous

smart devices such as smart printers, smart TVs or sensors

is expanding even rapidly. A critical challenge of rich mo-

bile applications is to maximize both the performance and

battery life on executing resource-intensive tasks. This can

potentially be addressed by complementing resource-starved

mobile devices with cloud resources, whereby compute-

intensive tasks in mobile devices are shifted to the cloud. The

technologies for replicating and migrating execution among

connected computing substrates, including virtual machine

migration and incremental checkpoints, have matured. An

intuitive solution for executing mobile applications is to shift

all computationally expensive workload to the cloud and

leave the relatively cheap tasks with mobile client, to guaran-

tee the performance of application. However, task offloading

incurs overhead of data transmission across mobile and the

cloud in terms of time and power consumption on mobile

devices [2]. Hence, the aggressiveness of offloading needs

to be calibrated to prevent diminished (or even degraded)

performance and power saving.
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Figure 1. extraction component on mobile device.
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Figure 2. extraction component on the cloud.

In this paper, we propose GMoCA (Green Mobile Cloud

Application), a power-performance optimization scheme

based on control theory for our existing µCloud platform

[3]. A µCloud application is composed of mobile, cloud and
hybrid components. Hybrid components can be deployed to

the cloud or mobile devices. Figure 1 and 2 illustrate an

example of face recognition application which takes a photo

using the camera of a mobile phone, automatically detects

the face in the captured photo and then retrieves the profile

information associated with the detected face. Figure 1

shows the hybrid component - extraction is executed on

mobile device, while it is migrated to the cloud as shown

in Figure 2. Task migration attempts to opportunistically

offload hybrid components from mobile devices to the

cloud to reduce both the execution time and mobile power

consumption. To ensure that the task migration is effective,

we propose a control theory-based model to estimate the

potential performance gain and power reduction due to task

migration.



The rest of this paper is organized as follows. The next

section discusses some related work for partitioning of mo-

bile applications and deployment of application to the cloud.

Section III describes the power-efficient scheme for task

offloading. In Section IV, we evaluate the performance of

our proposed scheme and finally we conclude in Section V

by outlining some directions for future work.

II. RELATED WORK

There are few existing work on dynamic offloading [4],

[5], [6]. Liu et al. proposed a heuristic searching algorithm to

determine the destination host for the application migration

in [5]. In their migration scheduling engine, they employed

the feature of live migration for Xen [7] virtual machine.

CloneCloud [4] automatically offloads part of the execu-

tion of mobile applications from mobile devices to the cloud.

The right partition of a mobile application to be migrated

to the cloud is determined by performing on-line static and

dynamic profiling. They used a randomly chosen set of input

data for the application to generate the workload profile.

Each application is executed once on the mobile device and

once on the cloud to generate the workload. However, the set

of input could not represent the whole input space. It is hard

to extrapolate the workload on cross-platform scenarios. As

such, the scalability of such profiling is unclear.

MAUI [6] presents a platform to minimize power con-

sumption of mobile devices by offloading tasks to the cloud.

It requires the engineers’ effort to analyze the code of

application offline and annotate the methods for remote

executions manually. In runtime, their profiler monitoring

the resource predicts whether the method should be of-

floaded to the cloud. In the end, the platform reintegrates the

results back into the mobile device. While our work provides

a control theory-based prediction model, which generates

much better results than history-based approach.

Usually, the control-theory based approaches adjust the

system performance by periodically feeding the output back

to the system. Such models are widely used to estimate the

application workload, such as video decoding [8], [9], [10],

[11], [12], [13], [14] and game applications [15].

Lu et al. presented a feedback-control scheduling algo-

rithm for dynamic voltage scaling (DVS) in [8], [9], with

the decoding application as as M/M/1 queue system. Wu

et al. modelled multiple-clock-domain processors as queue

system, in which queue occupancies are used to trigger DVS

algorithm [10], [11].

Gu et al. is the first time to introduce the feedback control

mechanism in the context of interactive games [15].

In our work, we bring in control theory to provide better

estimation for hybrid components in the task offloading. To

our knowledge, no such scheme has been proposed targeted

towards mobile cloud applications.

III. POWER-EFFICIENT COMPONENT OFFLOADING

GMoCA is our proposed scheme for dynamically offload-

ing hybrid components that are computational intensive from

mobile devices to the cloud.

Given the illustrated example of task migration in Figure 1

and Figure 2, the hybrid component - extraction is denoted

as component i, the mobile component - detection is denoted
as component h and the cloud component - recognition is

denoted as component j in this section.

A. Objective Functions

To ensure that component migration yields significant

performance improvement and mobile power reduction, we

define an objective function that must be met in order for

a particular component to be offloaded to the cloud. Let Ei

and Pi denote the execution time and power consumption of

component i on a mobile device, respectively. In addition,

let E′i and P ′i denote the execution time and power con-

sumption of component i on the cloud. A task migration is

effective, i.e., yields performance gain and power reduction,

if objective function (E′i < Ei) ∧ (P ′i < Pi) is satisfied,

where ∧ denotes the logical AND. In practise, we could

relax the objective function and further define two metrics

to determine the component offloading.

• Power Scalability is to provide the minimal power

consumption, given a fixed quality of application. In

this case, we would migrate the component i to the

cloud when the follow equations are satisfied.

{

E′i ≤ ei

P ′i < Pi

(1)

where ei is the threshold execution time for the com-

ponent i.
• Power-bounded Scalability is to provide the maximum

quality of application, given a fixed power consump-

tion. In this case, we would migrate the component i
to the cloud when the follow conditions are met.

{

E′i < Ei

P ′i ≤ pi
(2)

pi is the threshold power for the component i.

B. Cost Functions

In order to determine which components and when the

components should be offloaded to the cloud, given the

resource availability, e.g. mobile processor and network

bandwidth, we formulate the problem by cost functions,

detailed as follow.



Ei =
Dhi

Bm
+

Ci

Fm
+ (

Dij

Bmc
+ Lmc

ij ) (3)

E′i = (
Dhi

Bmc
+ Lmc

hi ) +
Ci

F c
+

Dij

Bc
(4)

Pi = Pi + Pij (5)

P ′i = Phi (6)

where

• F c and Fm denote the processor frequencies on the

cloud and mobile device, respectively. As we know, the

mobile processor is enabled with scalable frequency,

we define Fmax as the fixed maximal frequency of the

processor. While F c is a fixed frequency for a cloud

processor.

• Bc denotes the I/O bandwidth within the cloud, Bm

denotes the I/O bandwidth within a mobile device and

Bmc denotes the available network bandwidth between

a mobile device and the cloud.

• Lmc denotes the network latency from a mobile device

to the cloud. The size of data affects the latency. Here

we assume the latency among mobile devices and the

latency among cloud servers are negligible.

• Pij denotes the power required to transmit data from

component i to component j.
• Pi denotes the power required to execute component i
on a mobile device.

• Dij denotes the data volume transmitted from compo-

nent i to component j.
• Ci denotes the number of processor cycles required to

execute component i.

Here, we assume I/O speeds of mobile and cloud server,

i.e., Bm and Bc are constants. As we host the components

on the components repository, whenever it is beneficial to

migrate a component from a mobile device to a cloud

server, the same component will be directly retrieved from

repository to the cloud server. By this manner, we avoid the

migration overhead for the component source codes. Dhi,

Dij , Ci, Pi, Pij , Phi are predicted by using our designed

predictor, which are illustrated in section III-C.

C. Predictor

To predict the gain of migrating component i, in terms

of performance improvement and power reduction, we need

to derive Ei, Pi, E
′
i and P ′i prior to the execution of i

is started. As such, we propose a general proportional-

integral-derivative (PID) controller (Equation 9) to predict

the following parameters: Dhi, Dij , Ci, Pi, Pij and Phi.

1) PID Controller Fundamentals: We describe a general

proportional-integral-derivative (PID) controller for close-

loop systems with an emphasis on the aspects that are

important for understanding our scheme.

Feedback control is one of the fundamental mechanisms

for dynamic systems to achieve equilibrium. In a feedback

system, some variables – measured process variables, are

monitored and measured by the feedback controller and

compared to their desired values – set points. The differences

(errors) between the controlled variable and the set point are

fed back to the controller repeatedly. Corresponding system

states are usually adjusted according to the differences to let

the system variables approximate the set points as closely

as possible.

A PID controller is a generic control loop feedback

mechanism that is used to adjust system parameters based

on the feedback from the recent error between a measured

process variable and a desired set point. The measured

variable usually reaches its set point and stabilizes within

a short period. It involves three separate components – Pro-

portional Control, Integral Control and Derivative Control.

The proportional control determines the speed of the system

in reacting to errors. The integral control is used to determine

the accuracy of the system based on recent errors. Finally,

the derivative control determines the system reaction based

on the rate at which the error changes.

The PID feedback controller can be described in three

major forms: the ideal form, the discrete form and the

parallel form. Although the discrete form is often used

in digital algorithms to keep tuning similar to electronic

controllers, the parallel form is the simplest one where each

control element is given the same error input in parallel. The

output of the controller is given by

Output(t) = Rcontrib +Gcontrib + Vcontrib (7)

where Rcontrib, Gcontrib and Vcontrib are the proportional,

integral and derivative contributors of the PID controller.










Rcontrib = KR · ǫ(t)

Gcontrib = 1
KG

·
∫

ǫ(t)dt

Vcontrib = KV ·
dǫ(t)
dt

(8)

where ǫ(t) is defined as the difference between a measured
variable and a desired set point. KR, KG and KV are the

constants, which are defined as proportional gain, integral

gain and derivative gain respectively.

By tuning the values of these gains, the PID controller

can provide individualized control specific to process re-

quirements involving error responsiveness, overshoot of the

set point and system oscillation.

A high proportional gain results in a large change in the

controller’s output, given a changed system error. In contrast,

a small proportional gain results in a small system response

to a large system error, i.e., a less sensitive controller.

The integral contributor accelerates the movement of

process towards set point and eliminates the residual steady-

state error that occurs with a proportional-alone controller.

However, since the integral contributor is responding to

accumulated errors from the past, it can cause the present

value to overshoot the set point (i.e. cross over the set point

and then create a deviation in the other direction).



The derivative controller slows the rate at which the

system output changes. Hence, it is used to reduce the mag-

nitude of the overshoot produced by the integral contributor

and improve the controller stability. However, differentiation

of an input error amplifies noise in the error, and thus the

derivative controller is highly sensitive to noise in the error

and can cause a process to become unstable, if the noise and

the derivative gain are sufficiently large.

2) PID Controller Design:

{

∆ω̄(t) = KR · ǫ(t) +
1

KG
·
∑

Gc
ǫ(t) +KV ·

ǫ(t)−ǫ(t−Vc)
Vc

ω̄(t+ 1) = ω̄(t) + ∆ω̄(t)
(9)

Using the PID controller, each of the above-mentioned

six parameters is estimated as the sum of the previously

predicted value (i.e., ω̄(t)) and the controller feedback (i.e.,
∆ω̄(t)). The feedback is derived from the prediction errors

of previous predictions. The error is periodically measured

by the PID controller and is given by ǫ(t) = ω(t) − ω̄(t),
where t denotes the sample index, ω(t) denotes the actual

value and ω̄(t) denotes the predicted value. KR, KG and

KV are the proportional, integral and derivative coefficients,

respectively. Gc and Vc are the tunable parameters of the

controller. For example, Gc is set to 2, i.e.,
∑

Gc
ǫ(t) =

ǫ(t) + ǫ(t − 1) + ǫ(t − 2). We further define ǫ(t − Vc) as
the prediction error at sample t − Vc. The output ∆ω̄(t) is
fed back to the controller and regulates the next estimated

value ω̄(t+ 1) of the component.

IV. PRELIMINARY EXPERIMENT

We implemented our proposed prediction schemes on

HTC Nexus One mobile device. It runs on Android 2.3.4.

The mobile device is running on ARM R© processor which

supports the frequency scaling with as many as 12 different

levels. The preliminary experiments are conducted on an

object feature detection component. In this section, we

evaluate the performance of our predictor (Equation 9) with

two parameters in the cost functions, Ci and Pi respectively.

In order to measure the component execution time (Ci) on

the mobile device, we fixed the frequency to the maximum

Fmax = 998 MHz by writing the system files and invoked

Android clock functions from SystemClock class to collect

the system time. The power consumption (Pi) to execute a

component is measured by using PowerTutor [16]. As we fix

the processor frequency to the maximum (Fmax), the CPU

utilization has linear correlation to the power consumption.

Therefore, in the paper, the resultant CPU utilization is

compared to indict the power consumption in the figures.

To illustrate the performance of the predictor (Equation 9),

we define two metrics. (i) the absolute prediction error

which is defined as the absolute difference in processor

cycles or CPU utilization between the actual and predicted

values, and (ii) the relative prediction error which is defined

as the ratio (%) between the absolute prediction error and

the actual value.

To compare the performance of PID predictor with other

history-based predictors, we introduce another predictor

based on an auto-regressive (AR) model [17]. AR model

is a well-known approach in time series systems to predict

an output of a system based on history outputs. An auto-

regressive model ω(t) is given by a weighted sum of ρ
previous values, where ρ is the order of the model. The

model is given by ω̄(t+1) = c+
∑

ρ ϕ(t)ω(t)+ǫ(t), where
ϕ(t), ϕ(t− 1), ..., ϕ(t− ρ) are the parameters of the model
and the summation of those parameters equals to 1. ǫ(t)
is white noise and it is defined as prediction error in our

scheme, i.e. ǫ(t) = ω(t) − ω̄(t), where t is the index of

sample. c is a constant.
Selecting an order for the model, in this context, is similar

to that of selecting the sample size. As the system becomes

more complex, we expect the value of ρ to steadily increase.
However, an excessively large value of ρ will result in

overfitting. This trend can be seen in Figure 3(a) and 3(b),

which shows the accuracy of predicting changes significantly

with different values of ρ. In our experiment, we select ρ = 2
for workload and CPU utilization prediction.

A. Tuning PID Parameters

In our experiments, we observe that the selection of values

impacts the prediction results significantly. By manually

tuning the parameters, we obtain the best prediction when

KR = 0.5, KG = 28, KV = 0.001 and chose Gc = 2
and Vc = 1 for the prediction of workload as shown in

Figure 4(a). It compares the prediction errors for workload

with the above tested values for KR, respectively. Note that

the PID model produces the best prediction whenKR = 0.5.
The absolute prediction error is as high as 103121 cycles

when KR is set to 0.1, while its error drops to 49091 cycles
with KR = 0.5. Similarly, the relative prediction error drops
significantly when KR is set to 0.5.

While for the prediction of CPU utilization, we obtain

the best prediction when KR = 0.9, shown in Figure 4(b).

When KR is set to 0.9, the absolute error drops to 5.9 and

the relative error is decreased to 2.4 %.

Due to the limited space, we do not elaborate the com-

parison with different values for each parameter.

B. Results

The overhead of our proposed PID predictor and the AR

model is negligible as both of them are based on linear

operations.

Our initial results show that the PID model outperforms

over AR model. In order to eliminate the effects in transient

state when we start the prediction, we plot the results from

index 5 to 100 when the prediction reaches the steady state.

Figure 5 shows the comparison of workload prediction with

the best setting for AR and PID models, i.e., rho = 2 and
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Figure 3. Average absolute and relative prediction errors with different ρ
in AR model.

KR = 0.5. While Figure 6 shows the prediction of CPU

utilization with the best setting for AR and PID models,

i.e., rho = 2 and KR = 0.9. Both figures show that the

predicted values with PID model match the real values much

more closely than AR model.

The same predictor could be applied to estimate the other

parameters in our cost functions and achieve good results.

V. CONCLUDING REMARKS

In the paper, we have implemented prediction method

and conducted preliminary experiments on the Android

devices for individual components. The results show that the

control theory-based method gives better results comparing

with history-based AR model, for workload and power

consumption. Those results show that our proposed scheme

could give much better estimation for other parameters in

our cost functions. We are currently building the migration

framework in which the proposed objective functions are ex-

amined to selectively offload the components across mobile

device and the cloud.
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Figure 4. Average absolute and relative prediction errors with different
KR in PID model.
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Moreover, although GMoCA is originated to assist the

deployment of hybrid components, it is easily decoupled

and extended to other scenarios where offloading tasks are
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needed across smart devices, e.g. smart printers, smart TVs

or sensors.
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