)

invent

Evolutionary optimization of market-based contr ol
systems for resour ce allocation in compute farms

Neil Robinson

Internet Storage and Systems L aboratory
HP Laboratories Bristol

HPL-2002-284

October 23", 2002*

market- based This thesis describes the development of a market-based control
control, (MBC) system used to alocate and balance computational tasks
trader agents, across a minimal simulated Utility Data Centre (UDC). Firstly, are-
Zip traders, implementation of the original ZIP trading-agent was developed
auctions, and tested in a variety of basic markets. The re-implementation
genetic faithfully replicated the market equilibration behavior of the
algorithms, original system, and aevolutionary algorithm was then employed to
BICAS successfully fine-tune the performance of the system. The MBC

UDC simulation is then presented as the first of its kind based on
ZIP trading agents and also being fully distributed and autonomous
in its operation. Experiments indicate a successful proof-of-concept
and an efficient computational |oad-balancing performance under
different scenarios. Use of an evolutionary algorithm is then made
to both further improve the market equilibration performance of the
ZIP traders operating within the MBC simulation and to evolve the
marketplaces they operate within. Thus this thesis presents the first
ever (preliminary) results from using artificial evolution to
automatically design the auction mechanism for an MBC system.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2002

Evolutionary optimisation of market-based
control systems for resource allocation in

compute farms.

Master’s Thesis!

Neil Robinson
COGS, University Of Sussex, U.K.
Hewlett-Packard Labs, Bristol, U.K.

!This thesis was submitted as partial fulfilment of the requirements of the Master
of Science degree in Evolutionary and Adaptive Systems from the School of Cognitive

and Computing Sciences within the University of Sussex at Brighton, U.K.

Acknowledgements

By far my biggest thanks go to Dave Cliff who has almost singlehandedly steered
me through the project and with whom I have had many an informative and
inspiring discussion. Thanks also to Peter Toft and Chris Thornton who were

always there for further advice and comment.

Contents

1 Introduction

2 Background

2.1 Utility Data Centres and their Control

2.2 Market-Based Control

221 How MBC Works

2.2.2 Market Structureo

2.2.3 A Simple MBC System Example

2.24 Previous Work using MBC

2.2.5 DAI and the Contract Net Protocol

2.2.6 MBC Summaryo

2.3 ZIP Trading Agentso

2.3.1 Rationale
2.3.2 Evolutionary Optimisation of ZIP-traders

and Marketplaces

2.3.3 Arbitrageurs and Segmented Markets

A Re-implementation of Previous ZIP-Trader Research

3.1 Imtroduction

3.2 Operation of ZIP-Trading Agent Simulation
3.2.1 Initialisation and the Trading Procedure
3.2.2 Adaptation of ZIP-Trading Agents
3.2.3 Measuring and Analysing Trading Activity

3.3 Experimental Results.
3.3.1 Symmetric Supply and Demand Curves
3.3.2 Flat Curves with Excess Demand

11
12
13
13
14
15
16
18
19
19
19

20
21

3.4

3.3.3 Summary of Results 34
Evolutionary Optimisation of ZIP-Agent

Parameter Setso 34
3.4.1 The Evolutionary Algorithm 35
3.4.2 Adaptation Parameters and the Encoding Scheme 36
3.4.3 Fitness Evaluation Scheme 37
3.44 Experiments 0. 37
345 Results L 38
3.4.6 Easy Initial Conditions 41
3.4.7 Use of the Flat Curves with Excess Demand Market . . . 44
3.4.8 Summary of Results 49

4 MBC of a Minimal UDC Model with ZIP-Traders in Distributed

Markets 50
4.1 Introduction and Rationale 51
4.2 The MBC Simulation 51
4.2.1 System Structure 51
4.2.2 System Operation 52
4.2.3 The Resource Allocation Process 52
4.2.4 Additional Extensions 55
4.3 Simulation Experiments 57
4.3.1 Tlustrative Tests and Proof Of Concept 57
4.3.2 Task-Shifting Policies 58
4.3.3 Varying Task Load Requirements and Server
Capacities 70
4.3.4 Competitive and Non-Competitive Outcomes 75
4.4 Summary . o.o.o.c ..o e e 78
5 Evolutionary Optimisation of the MBC System 79
5.1 Introduction. 80
5.2 The Evolution of Market Mechanisms 80
5.3 Experimental Details 81
5.3.1 Evolutionary Algorithm and Encoding Scheme 81
5.3.2 Fitness Evaluation Scheme 82
5.3.3 The Experimental UDC Network 82
54 Results. 83

5.4.1 Evolving the ZIP Agent Parameter Sets along with the

Qs Parametero Lo 83
5.4.2 Evolving ZIP Agent Parameter Sets with the Q)
Parameterset to 0.5 o Lo 85
5.4.3 Evolving ZIP Agent Parameter Sets with the Q)
Parameter set to 0.0 o oL 87
5.4.4 An Analysis of the Evolved ZIP-Agent Parameter Sets . . 89
5.5 SUmMmMAary e e e e e e e 90
Future Work and Conclusions 91
6.1 Future Work 92
6.2 Conclusions 93
Background Economics 94
A1 Introduction 95
A2 Microeconomics oL Lo 95
A3 Supply and Demand oL oo 0oL 95
A.3.1 The Supply and Demand Curves 96
A4 Experimental Economics oo 98
Additional ZIP-Trading Agent Experimental Results 99
B.1 Introduction 100
B.2 Re-implementation of the ZIP-trading Agent Simulation 100
B.2.1 Flat Supply Curve 100
B.2.2 Flat Curves with Excess Supply 103
B.2.3 Shift in Demand Curve 106
B.2.4 Symmetric Supply and Demand Curves using the NYSE
Rule o 109
B.3 Evolutionary Optimisation of ZIP-Trading Agent Parameter Sets 111
B.3.1 Zero Initial Conditions 111
B.3.2 Hard Initial Conditions 114
Source Code 118
C.1 ZIP Simulation Classes 119
C.1.1 ZIP Agentjava 119
C.1.2 ZIP Constants.java v v v v v v v oo 125
C.1.3 ZIP_Data_Day.java with GA Fitness Evaluation 126

C.2

C.1.4 ZIP Data Tradejava 129
C.1.5 ZIP_Exp_Controljava 130
C.1.6 ZIP Exp Paramsjava 135
C1.7 ZIP.GAjava i 137
C.1.8 ZIP Sched_Agent.java 144
C.1.9 ZIPSchedSD.java 145
C.1.10 ZIPSD_Visjava v v v v i v i i e e e e 146
C.1.11 ZIP Sim.java v o v v v e e e 152
MBC Simulation Classes 177
C.2.1 MBC.GAjava 177
C.2.2 MBCSimjava 184
C.2.3 MBC. Statsjava. 201
C.24 UDC.Network.java 207
C.2.5 UDCServerjava 208
C.2.6 UDC.Taskjava oo .. 234
C.2.7 UDC.Visjava v v v v i i i ittt 236

Chapter 1

Introduction

The creation and use of Utility Data Centres (UDCs), where upwards of 10%
computers are all networked together (either locally or across several sites) has
opened new avenues for utility computing and in the execution of computa-
tionally demanding applications [1]. Given this potential, issues surrounding
the design and management of UDCs have become increasingly active topics of
research.

The sheer magnitude of UDC systems suggests that managing the load of
hundreds or thousands of simultaneously running compute jobs is a vital task,
necessary to ensure that the underlying compute resources are used efficiently.
This task becomes inherently more complex when it is noted that, in most cases
of interest, the compute jobs are heterogeneous in nature and are constantly
fluctuating in their demand for compute resources. Further, these dynamic
changes in the demand for compute resources are complemented by dynamic
changes in the supply for compute resources as UDC system components such
as processors, disk drives, or network links go down either due to failure or for
scheduled servicing.

Thus UDC’s present a resource allocation problem: that of balancing the
supply and demand of scarce compute resources. The resolution of supply and
demand for scarce resources is a matter well framed within the field of microe-
conomics. Taking inspiration from these economic metaphors, a relatively novel
technique termed Market Based Control (MBC) is proposed [2] as an ideal can-
didate to address the UDC resource allocation challenge. However, almost all of
the resource allocation problems managed by existing MBC systems have been
deficient by either being centralised (relying on a central controller) or not fully
autonomous (relying on human input to some degree). Clearly an autonomous
and decentralised MBC is required for UDC’s.

In order to provide this decentralisation and autonomy, it is necessary for
all computing nodes in a UDC to be potential suppliers of compute resource
to outside entities, and also for an ‘internal market’ to operate so that jobs
can be reallocated within the UDC as necessary. Such buying and selling of
compute resources requires ‘trader’ software agents be attached to resources and
to jobs. Thus, this project reports on the development and use of a UDC MBC
system based on Zero-Intelligence-Plus (z1P) trading agents, already well-proven
as minimal, autonomous bargaining agents, able to adapt rapidly and smoothly

to changes in supply and demand. To further fine-tune the resource allocation

efficiency of MBC control system, a genetic algorithm (GA) is employed to evolve
the adaptation parameters of the zip-trading agents and of the marketplace that
the agent operate within.

To the best of my knowledge, this is the first time ever that a GA has been

used to automatically design the auction market mechanism for any MBC system.

The remainder of this report is organised as follows:

Chapter 2 — Background: provides an overview of the relevant background
material. It introduces the concept of UDC’s and the field of market-based con-
trol. Following this, an illustrative sketch of how an MBC system might operate
in a UDC is presented, making clear the need for trading agents to act as inter-
faces to the UDC and also to act as arbitrageurs within the UDC. It concludes
with an overview of the zIp traders of Cliff [3], recently demonstrated by IBM

researchers to outperform human traders [4].

Chapter 3 — A Re-implementation of Previous ZIP-Trader Research:
presents a detailed description of zip traders, and presents selected results from
re-implementing the basic zIP trader markets used in 1996/97 [3]. Following
this, replication of more recent results where a GA is used to find appropriate
settings of key zip-market initialisation parameters are also presented. The re-
sults presented in this chapter demonstrate that relevant prior work has been

replicated successfully.

Chapter 4 — MBC of a Minimal UDC Model with ZIP-Traders in
Distributed Markets: Shows, for the first time, the successful use of zip
traders for MBC resource-allocation in a minimal model of a UDC. Presents ex-
perimental results illustrating proof of concept and explores the performance of

the resource allocation given different task-shifting policies.

Chapter 5 — Evolutionary Optimisation of the MBC System: presents
use of a GA to evolve ZIP-trading agent parameter sets and marketplaces within
the MBC simulation. The results presented show that, by use of evolutionary
techniques, the market equilibration performance of the MBC has been improved

upon.

Chapter 6 — Future Work and Conclusions: Details possible avenues for
taking the work further, presents a summary of the main results, and reiterates

the main findings.

Appendix A — Background Economics: this thesis assumes that the reader
is familiar with the fundamental microeconomics of supply and demand that un-
derlies MBC; but for completeness Appendix A presents an introductory overview

of the relevant economics literature.
Appendix B — Additional ZIP-Trading Agent Experimental Results:
presents additional results from experiments with the re-implementation of the

ZIP simulation.

Appendix C — Source Code: contains the commented simulation source

code.

10

Chapter 2

Background

11

2.1 Utility Data Centres and their Control

Utility Data Centres (termed UDCs or ‘compute farms’) are warehouse-style fa-
cilities where very large numbers of computers are networked together, contain-
ing upwards of 10* processor units. They offer supercomputing-scale provisions
for general utility computing and a range of other computationally intensive
applications such as genome sequencing and graphics rendering.

As UDCs are large and complex systems, this indicates that the control of
such systems is of primary concern in ensuring both a cost-effective resource
utilisation and an optimal quality of service (e.g. resource availability) to the
end user. In order to simplify the management of UDC and PSC systems, a
service-oriented view is adopted where a number of abstractions and separa-
tions to the system structure are made [5]. For example, the overall ‘control
space’ of the system is divided into a number of interacting control layers. The
resource control level that manages the physical resources of the UDC represents
the lower-level control layer — in summary the task of this layer is to optimise
the placement of services on servers, monitor the balance, and then re-deploy
whenever the balance is lost. It is this task of balancing the demanded and sup-
plied capacity that is the main interest of this thesis. Further, the number of
controlled objects in the system is reduced by making them of higher granularity
so that they are both uniform and simple.

However, even given these abstracted simplifications, traditional methods of
system management that often rely on a central controller process of some sort
simply cannot meet the necessary scale and reactivity requirements for UDCs
[5]. Thus, a number of different control algorithms have been proposed which
aim to decentralise the decision making of service placement across a UDC, the
overall idea being that these algorithms seamlessly fit within the overall control
infrastructure of the unC (part of the ‘intelligent’ middleware).

The algorithms have ranged from using Integer Optimisation techniques [5]
which give a highly accurate but slow resource allocation, through to an Ant
Colony Optimisation (Ac0, [6]) approach which is faster but more approximate
in its allocation. Further up this scale, the ‘Agents in overlay networks’ [6] and
‘Broadcast of Local Eligibility’ (BLE)-based algorithms [6] are, along with Aco,
fundamentally agent-based approaches which have many advantages in enabling

a distributed schema of control. The autonomy and local decision making made

12

possible by these approaches facilitate self-organisation, a fast reaction time and
a scalability devoid from traditional control architectures. Nonetheless, taking
into account the issues of global accuracy and complexity, they are not perfect
and thus improved agent-based approaches are sought. The use of economically

motivated agents within a MBC approach is one proposal.

2.2 Market-Based Control

The application of processes derived from free-market economics in adaptively
controlling complex distributed systems has increasingly become an attractive
proposition. In particular, the allocation of scarce resources by groups of self-
optimising individuals is a central concept to microeconomics and is directly
relevant to the allocation and adaptive control of scarce computational resources
in a unpc. The application of economic principles in the allocation of scarce
resources is termed market-based control (MBC). There are several conceived
benefits to employing the MBC approach; primarily, the decentralised nature of
such systems offer robustness and a graceful degradation to failed nodes and

links that is unmatched by brittle, centralised controllers.

2.2.1 How MBC Works

Operationally, MBC systems consist of groups of software trading agents that
interact within a pre-determined market structure and use a supplied currency to
buy or sell the commodity that represents the scarce resource. The seller agents
within the market are assigned to unit(s) of the commodity to sell, and the
buyer agents purchase this commodity on behalf of an entity that requires some
amount of commodity in order to perform some goal (e.g. in routing calls across
a telecommunications network, individual calls may be the resource-requiring
entities, and network bandwidth would be the required resource). Elementary
economic principles regarding the global (market) supply and demand of the
commodity in question determine the price. If there is a high demand for a
commodity, its price will rise; and if demand lessens, its price will fall. It
is usually desired that transaction prices will eventually converge to a stable
equilibrium price as the true cost of the good is sought by the trading agents. The
optimal balance of supply and demand is achieved at this equilibrium price, and

so transactions at the equilibrium price represent an optimal and fair allocation

13

of resources (is Pareto-efficient [7]). Thus, in a similar vein to the other agent-
based approaches mentioned in the previous section, the local decisions made
by the trading agents in the system lead to a globally efficient allocation, or in

computing terms, load balance.

2.2.2 Market Structure

Agents can interact within any of a number of different market mechanisms,
and each has its own specific characteristics. Easily the most common market
structure is the auction, a familiar example being the ascending bid or English
auction, where, under co-ordination from an auctioneer, buyers make increas-
ingly higher bids for an item until no one makes any further bids. The highest
remaining bidder purchases the item. The descending offer or Dutch auction
is in basic terms an opposite of the English auction where the sellers announce
decreasing offer prices until a buyer accepts.

However, it is noted that in these auctions a central auctioneer is required
and this goes against the decentralised principles of the MBC approach. The
continuous double auction (CDA) offers an alternative market structure; here a
group of buyers and sellers interact by announcing bids or offers at any time,
often simultaneously and asynchronously transactions occur whenever a buyers
bid and a sellers offer is accepted. Given the asynchronous and decentralised
properties associated with the CDA it is perhaps no surprise that this mechanism
is the most suited for use in an MBC system — indeed, much of the interest in the
CDA stems from the fact the many of the world’s financial markets have long
been based around such a structure.

Within an MBC implementation, all the agents are privy to information re-
garding transactions that have occurred between other agents in the system,
and possibly also to information regarding ‘failed’ bids and offers. This infor-
mation consists of whether the last quote was a bid or an offer, the price of the
bid or offer and whether a transaction took place. Thus an agent can make a
competitive bid or offer based on the prices that are currently being asked for a
commodity in the market and according to the prices at which transactions are
occurring. This process plays a part in the system’s overall approach towards

the market equilibrium price for the commodity.

14

2.2.3 A Simple MBC System Example

In order to aid a greater understanding of the principles underlying MBC, a
simple example of how a such a system could operate in a UDC is now described
using basic notation.

Firstly, let the uDC ‘network’ consist of a set of servers, denoted by Sy, S2,
wesy Sp. A given server can talk to any other server on the network, and each
has a capacity, denoted C}, for ‘resource units’ — this could be processing power
or disk storage. The compute tasks that come onto the UDC have a required
resource capacity and a duration (for example, a required amount disk-storage
for a certain duration of time).

For this example, let the UDC contain n = 4 servers, with the resource unit
capacities C; to Cy being 7, 4, 3, and 2 respectively. To begin with the uDC
is populated with some initial loadings (denoted L1, Lo, ..., L), and for the
servers S1, So, S3 and Sy these are 4, 3, 1 and 1. The respective loads and
capacities on the network N can then be denoted as pairs (L;, C;) as follows:
N = ((4,7)(3,4)(1,3)(1,2)).

Now, say a compute task comes in with a required resource unit capacity of
5. The place where the currently unassigned tasks are is denoted as the market
M, and so the market now becomes M = (5). Now the resource allocation
procedure commences. Firstly, Server S; notes that it could run the new 5-unit
task if it could buy resources elsewhere for its (currently running) 4-unit task,
so it puts out a bid for a 4-unit task. As a result, the market now contains
two tasks, M = (4,5). Server Sy then notes that it could run the 4-unit task
if it could buy resources elsewhere for its 3-unit task, so it puts out a bid for
a 3-unit task. The market becomes M = (3,4,5). Lastly, Server S3 notes that
it could do the 3-unit task if it could buy resources to do its 1-unit task, so it
puts out a bid for a 1-unit task. Now the market consists of 4 compute tasks
(as identified by their respective resource unit capacity requirements), denoted
as M = (1,3,4,5).

Next, server Sy takes the 1-unit task off the market, so now N = ((4,7)(3,4)
(0,3)(2,2)) and M = (3,4,5). This leaves Server Ss free to take the 3-unit
task, giving server loads and capacities of N = ((4,7)(0,4)(3,3)(2,2)) and the
market as M = (4,5). Server Ss is then free to take the 4-unit task, leaving
N =((0,7)(4,4)(3,3)(2,2)) and M = (5). And lastly, Server S; takes the 5-unit
task with N = ((5,7)(4,4)(3,3)(2,2)) and M = (.).

15

So in conclusion it is seen that the load has been dynamically re-distributed
over the UDC network to accommodate the new task. Now if a new 1-unit or
2-unit task comes in, there is spare capacity on Server S;. However, if the
case arises that a task with a resource requirement of more than 2 units comes
in, then either it would just have to wait, or alternatively a server with the
potential capacity could try to unload its current commitments. Then if there
are no takers the server has the option of dropping its current commitment and
taking the new task if the new task will pay a higher price for the resource.

In the example above, the loads and capacities on the uDC network ended
with N = ((5,7)(4,4)(3,3)(2,2)) and the market finished containing no tasks,
M = (.). But, say, if a new 3-unit task comes in, servers S, S, and Ss could all
potentially run it. If the new 3-unit task pays more than their current loadings
then a little auction is run between the resource sellers (Servers Si, So and S3)
and the owners of the tasks. On the assumption that a higher purchase price
is a fair reflection of greater need, then the tasks that get run are those that
most need to be done. This means that the agents are re-negotiating prices
dynamically — prices rise in times of high demand and fall in times of reduced
demand.

However, as mentioned, this is a trivially simple example. The system is
centralised in that every server can see the whole market. The uDC-based MBC
system described in Chapter 4 is based on an arbitrary number of markets that
are topologically distributed across the network of servers. Nomnetheless, the
example given provides an insight of the core supply and demand principles

used by the MBC system to allocate and distribute resources.

2.2.4 Previous Work using MBC

Conveniently, much of the early MBC work is documented in a published col-
lection by Clearwater [8] which contains applications of MBC in a number of
diverse areas such as in the allocation of tradable pollution permits and in the
provisioning of air in an air-conditioning system of a building. However, this
work has been amply reviewed elsewhere [9], and given the reported deficiencies
of being either not fully decentralised (relying on a central controller or process
of some kind) or not fully autonomous (relying on human input to some degree),
they are not considered further here. Instead, a couple of recent applications of

MBC are reviewed.

16

Resource Allocation over the Computational Grid

Wolski, Plank and Bryan [10] have applied an MBC system to optimally allo-
cate resources over the Computational Grid. This is in effect a ‘power grid’
in which applications running over the internet plug into in order to obtain
computational resources to execute, in much the same way that appliances plug
into the national grid for electricity. The rationale for using MBC within this
domain is highlighted in [10]: ‘modelling the Grid as a commodities market is
natural since the Grid strives to allow applications to treat disparate resources
as interchangeable commodities’.

Within this system, resource producers and resource consumers are clearly
and separately defined — a producer model involves two different types of com-
modity (one being cpU and another disk storage) spread over a network repre-
sentation of the Grid, and consumers express their needs to the market in the
form of tasks. Each producer and consumer respectively uses a producer supply
function and a consumer demand function in order to calculate how much to
bid or offer for resources. The differences in the functions means that the pro-
ducers will consider long-term profit and past performance when deciding to sell
whereas consumers will spend opportunistically according to periodic budget re-
plenishments. Both a commodities market (trading multiple commodities) and
a second-price auction are employed for comparison in system experiments. Re-
ferring to theoretical work from Smale [11] regarding price adjustment towards
equilibrium, it was concluded that, as Smale’s results held for the simulated
Grid, the use of a modified price adjustment mechanism within a commodities
market approached the equilibrium price faster than the auction market used.

Because of this fairly theoretical analysis of price dynamics, it is difficult to
tell how efficient this MBC implementation was in controlling resource allocation
as no comparisons were made with more traditional methods. The consumer
and producer efficiency statistics did however suggest that favourable results
were achieved. Description of the system architecture was also sparse but it
is assumed that the system described operates both autonomously and in a

decentralised fashion (which, in the case of the commodities market, it does).

17

Routing in Telecommunications Networks

Gibney, Jennings, Vriend and Griffiths [12] discuss an MBC system to optimise
call routing over a simulated telecommunications network. This problem is of
crucial importance to a network provider whose profit may be compromised by
lost calls brought about by inefficient routing over the finite bandwidth resources
of the network.

In its entirety the system described consists of three layers; the bottom layer
is the network over which calls are to be routed, the middle layer is the MBC
system that performs the network management function, and the top layer is
the user layer from which the calls originate. The MBC system is itself layered
and contains multiple market types and agent types — this architecture is an
artefact of the way the system operates. In summary, so-called link agents
trade the underlying network resources (network link capacity) to sell on in link
markets to path agents which buy bandwidth capacity across the network to
form routes between a source node and a destination node. Lastly, call agents
purchase a given path from path agents in order to route an incoming call.

Although at first this seems fairly complex, using adaptive pricing and in-
ventory strategies the agents are able to route calls with reasonable success.
However, the performance of the system only starts to show an improvement
over conventional static routing when network call traffic is relatively dense and
call duration is long. At the time of writing the system was still largely at a
proof of concept stage and so many avenues regarding system improvement are
proposed [12]. But, unlike a few of the earlier examples in MBC [8], the sys-
tem is both fully decentralised (through use of the double auction market) and

autonomous in its operation.

2.2.5 DAI and the Contract Net Protocol

Although not part of MBC, an important early predecessor to it was the field
of Distributed AI (DAI) and the development of the Contract Net Protocol
[13], where a number of analogies to and features of MBC can be traced back
to. Specifically, the contract net protocol facilitates distributed problem solv-
ing by decomposing a (for example, resource allocation) task into a number of
sub-tasks and sharing these among idle compute nodes through means of ne-

gotiation. This negotiation affects the task distribution among a network of

18

nodes (and thus the efficiency), but once distributed and in turn accomplished
the tasks can solve a number of ‘goals’ such as distributing control and data to
avoid bottlenecks, and allocating resources [13]. Back in 1980 when the contract
net protocol was first developed, a number of advantages over traditional meth-
ods such as providing a means of distributed control and exhibiting graceful
degradation meant that it was very much a forerunner to the MBC systems of
today. However, the node-to-node negotiation of the task distribution (which
marks out the difference between the control net protocol and MBC systems) has
limitations in its rudimentary mechanisms and for making the actual task distri-
bution decisions, and unlike MBC systems had no formal model for announcing,

bidding and ‘awarding’ decisions.

2.2.6 MBC Summary

It is clear that MBC is a rapidly developing field and one that is being applied
to a wide diversity of problems in distributed resource allocation and control. It
is also apparent that there is no ‘standard form’ MBC system — the architecture
of the two systems reviewed in Section 2.3.4 differ in almost every detail, al-
though the underlying principles remain the same. Tailoring an MBC system to
a particular control problem is evidently very important and the large number
of parameters in such systems means that the fine tuning of the system can be
crucial to ensuring a superior performance. In this respect the examples sur-
veyed still require more development, but are able to demonstrate able use of

MBC principles within each domain.

2.3 ZIP Trading Agents

2.3.1 Rationale

For the MBC system to be both fully decentralised and autonomous, it is required
that the trading agents be able to act on bid or offer prices both intelligently
and autonomously. Thus the bargaining mechanisms made possible by a basic
machine learning rule are desirable. Zero-Intelligence-Plus (ziP) trading agents
were the first trading agent to be developed (by CIliff [3]) with such a ‘minimal
intelligence’ capability, and in their basic form will be employed within the MBC

system introduced in Chapter 4.

19

However, it has not always been obvious that any trading agent intelligence
be required at all. Gode and Sunder [14] presented results using zero-intelligence
(z1) agents which suggested that by means of random stochastic bids and offers
the market would still approach an equilibrium price in very similar circum-
stances to that achieved in earlier experiments with human subjects [15]. In
light of this, Gode and Sunder claimed that the dynamics of market activity
was largely if not solely due to the market structure in operation. But this was
subsequently shown to be an inaccurate claim [3], as Gode and Sunder’s results
turned out to be an artefact of the implementation they used.

Thus it was proven that to obtain market behaviour (in ¢DA markets) similar
to that obtained by human agents, some form of intelligent bargaining mecha-
nism was necessary, and so the rationale for zip trading agents endowed with
a minimal learning capability was established. More recently, the interest sur-
rounding z1P traders has increased following results obtained by Das et al. [4]
showing that they can outperform human traders.

The specific details of how zIP trading agents work is amply covered in
Section 3.2 and so is not discussed further here. However, a brief review of later
work on zIp traders by Cliff [16] and Van Montfort [17] is now made.

2.3.2 Evolutionary Optimisation of ZIP-traders
and Marketplaces

For the zip-trading agents to perform reasonably well (i.e. to be efficient al-
locators and to trade at the market equilibrium value) it is required that the
parameters governing the adaptation of the agents be hand-tuned to specific
values. To get around this trial and error means of setting the parameters, Cliff
[16] used a genetic algorithm to automate the process. The results showed that
the GA was able to evolve zZIP agent parameter sets that gave improved market
equilibration performance over the manually picked values.

As is discussed by Cliff in [16], the automatic optimisation of z1p-trading
parameters will be crucial in more realistic and complex markets involving, for
example, continuous markets and situations where agents receive noisy and de-
layed information (see below). Thus it can be concluded that use of evolutionary
techniques will be invaluable in improving the performance of an MBC system
used to control very large scale and high-complexity distributed systems such

as a UDC. Finally, Clff [18, 19] also looked at the evolutionary optimisation of

20

the market mechanisms in which the agents operate. The resulting hybrid-like
market structures were shown to give even greater allocative efficiency.

As a final point regarding the delays and noise inherent from complex dis-
tributed systems, it is a requirement that the trading agents be robust in the
face of limited knowledge. It is noted by Hogg and Huberman [20] that imper-
fect knowledge and delays in information may well introduce chaotic dynamics
into a large autonomous computational system such as a UDC. The possible ef-
fects this would have on the resource allocation performance of an MBC system

is a further consideration, especially concerning real-world deployment.

2.3.3 Arbitrageurs and Segmented Markets

Van Montfort [17] extended the use of zIP agents to that of arbitrageur agents
— a special kind of agent that can buy or sell commodities over any number of
spatially distributed and partially overlapping markets. By doing this they can
maximise their own profits by taking advantage of price differences in different
markets, thus increasing supply in markets where prices are high and increasing
demand in markets where prices are low. It was shown by Van Montfort [17]
that arbitrageurs, acting only to increase their own wealth, can globally stabilise
(i.e. equilibrate) spatially distributed and segmented markets. The use of such
arbitrageur agents would be useful within a spatially distributed MBC system
in order to obtain such price stabilisation dynamics across topologically local
markets.

The simulation used by Van Montfort [17] does, however, have some lim-
itations — for example, only buyer and seller agents or arbitrageur agents are
permitted in any one particular market setup. As it would be quite fundamen-
tal to have all agent types operating both in local markets (buyer and seller
agents) and globally across segmented markets (arbitrageurs), this would need
to be resolved, along with other considerations such as the best neighbourhood

structure to use between agents on the grid.

21

Chapter 3

A Re-implementation of
Previous ZIP-Trader

Research

22

3.1 Introduction

The Zero-Intelligence Plus (zip) trading agents were originally developed as
minimal mechanisms able to engage in rudimentary bargaining behaviours in
market-based environments. The original programs developed for the simula-
tion were implemented in the ANSI C programming language and are shown
as an Appendix in [3]. The first part of this chapter presents results using a
re-implementation of the original zIiP simulation, in the Java programming lan-
guage, as a prelude and basis to the MBC simulation introduced in Chapter 4.
The second part of this chapter then presents a replication and extension of
work in [16] using a GA to evolve ZIP agent parameter sets, in order to improve
their market equilibration performance.

The program structure of the simulation remains to all intents and purposes
the same as that in the original implementation with the exception of the neces-
sary language porting changes. The aim of the re-implementation was primarily
to gain a greater understanding of the simulation to which the MBC system would
be based, and to ensure that it matched the results reported with the original
implementation. The simulation source code for this re-implementation can be

found in Appendix C.

3.2 Operation of ZIP-Trading Agent Simulation

This section will briefly summarise the main aspects concerning the design of
the zIP trading agents and the market structure of the simulation (for a com-

prehensive description of the original simulation, see [3]).

3.2.1 Initialisation and the Trading Procedure

Before the simulation is run, the supply and demand curves of the market must
be specified. This is done by distributing a set of limit prices to all of the
agents involved in the market. A buyer can’t pay more than its limit price for
a unit of commodity and a seller can’t sell a unit of commodity for less than
its limit price. A number of different supply and demand curves are used in
the experiments reported in Section 3.3, as are markets (in Appendix B) where
the supply and demand curves undergo a ‘shock’ change partway through the

simulation.

23

Once running the simulation iterates over a number of ‘trials’. In the spirit
of the pioneering experimental economics work of Smith, each trial is run as
a series of trading periods or ‘days’, within which each agent has the right to
engage in a pre-set number of trades dependent on the number of commodity
units the agent has the right to buy or sell.

At the beginning of each trading session an able agent is randomly selected
to make a bid or an offer. If there are any willing agents (i.e. sellers if the quote
was a bid or buyers if the quote was an offer) that are able to trade at this price
then one of these is selected at random and the deal proceeds. The bank balances
of the agents involved in the deal are updated and the trading strategies (profit
margins) of all the agents are adjusted accordingly. This adaptation process is

formalised below.

3.2.2 Adaptation of ZIP-Trading Agents

The rationale behind each zIp trader agent is an ability to adapt (in order to
maximise) a profit margin based on previous market activity, specifically the
previous quotes and transactions made by other agents in the market. These
quotes are identified by the quote price and whether the quote resulted in a
successful trade or not, and determine when and by how much an agent should
adjust its profit margin. It is this profit margin that the agent uses to calculate
the price it quotes (offers or bids) in the market.

A number of factors verify the qualitative issue of when a profit margin
should be adjusted [3]. Firstly, to do so the agent must be active in the market
(i.e. still have an entitlement of units to buy or sell). After this, the agent
refers to the last bid or offer made in the market and will alter its own profit
margin according to the whether it was an offer or a bid, whether it resulted
in a successful trade or not, and whether the last quote price, ¢(t), was greater
than or less than the price the zip trader would currently quote.

Briefly, a zip seller increases its profit margin whenever the last quote
was accepted and its own quote price p;(t) < ¢(¢). It reduces its margin only if
it is still active and @) was an offer with p;(t) > ¢(t), or if) was an accepted
bid and p;(t) > ¢(t). Similarly, a ZIP buyer raises its profit margin whenever @
was accepted and p;(t) > ¢(t), and it lowers its margin when it is active and
either) was a rejected bid with p;(t) < ¢(t) or @ was an accepted offer with

pit) < qlt).

24

The quantitative issue of by how much the profit margin p;(¢) should be
adjusted is controlled by a Widrow-Hoff with momentum machine-learning al-
gorithm. Here the use of a learning rate parameter § and a ‘momentum’ pa-
rameter v guide the current quote price of an agent towards some target price
7;(t). In each zIp trader 7 this target price constitutes a stochastic perturbation

of the quote price ¢(t), as follows:
7i(t) = Ri(t)q(t) + Ai(?)

where R; is a randomly generated coefficient that provides a relative pertur-
bation of the last quote price ¢(t), and A;(t), an additional randomly determined
absolute perturbation. Using U(cy, ¢,,) to signify a uniform distribution over the
range [c;, ¢,], for buyers the R; value is generated at random from U (1.0 - ¢,,1.0),
and for sellers from U(1.0,1.0 + ¢,), whereas the A; values for buyers are gen-
erated at random from U(-¢,,0.0) and for sellers from U(0.0,c,). The target
price 7;(t) is updated using the f3; and 7; parameters by each trader i via the

following rule:

pi(t+1) = (pa(t) + Ai(8)) /Ay — 1

where A;(t) is the Widrow-Hoff delta value, calculated using the trader’s

learning rate f;:

Ai(t) = Bi(mi(t) — pi(t))

Lastly, as mentioned, a zIP trader computes its quote price p;(t) at time ¢
for a unit j with limit price J; ;, using the trader’s profit margin value p;(t).

Specifically, this is calculated according to the following equation:

pi(t) = Nij (14 pi(t))

For all trading agents participating in the market, the learning rate f; is
initially assigned a value generated at random from U(B8y, 8y + Sa) where [
equals 0.1 and Ba equals 0.4; the momentum parameter +; is initially assigned
a value generated at random from U(ys, 7 + ya), where 7, equals 0.00 and
va equals 0.10; and the agents’ profit margin u; is initially assigned a value
U(up, pp) for sellers and U(—pp, —pp) for buyers, where pp, = pp + pa, e
equals 0.05, and pua equals 0.30. The ¢, and ¢, parameters are set to 0.05.

25

Finally, it is noted that all of these parameters are set identically to that in the
original implementation [3] except the learning rate 8; which has been adjusted
to match that used in [16] (in the evolution of ZIP parameter sets), and thus to
be consistent with the results presented in later in this chapter.

This summarises how the agents calculate and adapt their quote prices in
response to quotes made by other agents, be they successful or not. The result
of this adaptive trading behaviour is a market that should quickly approach
the equilibrium price as indicated by the intersect of the supply and demand
curves. There are several means of measuring the activity of the market that
makes analysis of this, along with other metrics, possible, and these are now

outlined.

3.2.3 Measuring and Analysing Trading Activity

Several measures concerning the convergence of transaction prices towards the
equilibrium price Py can be sought. The most prominent of these is that of
Smith’s a parameter, also termed the coefficient of convergence, for measuring
the price stability for a good. It is computed at the end of each trading day
within a trial, and is defined as a = 1000¢ / Po, where oy equals the standard
deviation of transaction prices around the equilibrium price. Other metrics
recorded at the end of each trading day in the simulation include that of alloca-
tive efficiency, which is a percentage expressing the total profit earned by all
traders divided by the maximum total profit that could have been earned by
all of the traders; profit dispersal, which is defined by [14] as the cross-sectional
root mean squared difference between the actual profits and the equilibrium
profits of the individual traders (the profit the trader would realise if all units
are traded at the equilibrium price); and the mean transaction prices. Plots of
these statistics will be used to illustrate the behaviour of the Z1P traders within

the markets tested in the next section.

3.3 Experimental Results

A number of experiments with the re-implemented simulation were carried out
with the aim of matching the results reported with the original ¢ implementation
[3], thus demonstrating that the replication was faithful. The purpose of the

experiments were to not only test that the simulation would work as expected,

26

but to also explore market behaviour given various supply and demand schedules
—i.e. different numbers of buyer and seller agents were tried with each set being
assigned different limit price distributions. The ability of the zip traders to
efficiently and profitably trade within changing market conditions is an essential
attribute for use in a MBC system. The most prominent test results are presented
in the Sections 3.3.1 and 3.3.2, with an analysis of the remaining tests given in

Appendix B.

3.3.1 Symmetric Supply and Demand Curves

In the first test, a total of 22 zip-trader agents split into 11 buyer and 11 sellers
were used with the limit prices for each uniquely chosen from the range of $0.75
to $3.25 in steps of $0.25. This gives symmetric supply and demand curves, an
equilibrium price of $2.00 and an equilibrium quantity of 6 (Fig 3.1). Within
this market, each agent could only buy or sell a single unit (i.e. only engage
in one transaction). One simulation trial constituted a period of 10 trading
days, and each trial was repeated 50 times and averaged so that all results were
representative of actual market behaviour.

The trading statistic plots generated from this test are shown in Figures
3.2 through 3.7. The mean transaction prices plot (Fig. 3.2) clearly indicates
a swift convergence of the market towards the equilibrium price of $2.00, and
this is confirmed in the plot of alpha values (Fig. 3.3), matching the results
gained with the original implementation in [3]. The effectiveness of the zip
agents in being able to maximise their profits is illustrated in the allocative
efficiency plot (Fig. 3.4) by showing that after 4 trading days, the agents are
able to earn the maximum total profit available. Further, the profit dispersion
(Fig. 3.5) illustrates that the profit of the traders quickly equals that if all the
units are traded at the equilibrium price. The quantity plot (Fig. 3.6) shows
a stabilisation at the equilibrium quantity of 6 units, while the transaction-
price time series (Fig. 3.7) from one trial also shows that from random initial
profit margins the transactions prices stabilise at around $2.00. The speed by
which the ZIP agents are facilitating market equilibration is a positive sign and

indicates that the simulation is working as expected.

27

340
325
300
275
280
225
200
175
150
125
1.00
075
050

Price

12 3 4 5 6 7 & 9 10MN1
CQuantity

Figure 3.1: Symmetric supply and demand curves with 11 buyers and 11 sellers,
where Py = $2.00 (taken from [15] and [3]).

Price
(o=
f=]
[}

150

1.00
12 3 4 5 6B 7 8 9 10

Day MNurrber

Figure 3.2: Mean transaction prices, averaged over 50 ZIP trials, for the sup-
ply and demand curves shown in Figure 3.1 (P, = $2.00). The middle line is
the mean value, upper and lower lines indicates the mean plus and minus one

standard deviation.

28

45

a0 |
3 |

Alpha

Day Murmber

Figure 3.3: Smith’s alpha value, averaged over 50 zip trials, for the supply and
demand curves shown in Figure 3.1 (P, = $2.00). Format as for Fig. 3.2.

1o

1058

100 g

[La]
(53}
T

'

Efficiency

o | oo
g |

a0t

75

12 3 4 5 B 7 8 58 10
Day Murrber

Figure 3.4: Mean allocative efficiency, averaged over 50 Zip trials, for the supply

and demand curves shown in Figure 3.1 (P = $2.00). Format as for Fig. 3.2.

29

Profit Dispersion
-
e
[)

Day Nurrber

Figure 3.5: Mean profit dispersion, averaged over 50 zip trials, for the supply
and demand curves shown in Figure 3.1 (Py = $2.00). Format as for Fig. 3.2.

=

CQuantity

L R s B = Y R w « S Y w]

=

12 3 4 5 6 7 8 9 10
Day Murmber

Figure 3.6: Mean quantity, averaged over 50 zip trials, for the supply and
demand curves shown in Figure 3.1 (Py = $2.00). Format as for Fig. 3.2.

30

250
2 200 qﬁ . ey e e,
o MH’ il

1.50

1.00

17 13 19 25 31 37 43 49 55

Transaction

Figure 3.7: Transaction-price time series from one 10-day market zIP trial using

the supply and demand curves shown in Figure 3.1 (P, = $2.00).

3.3.2 Flat Curves with Excess Demand

The purpose of this test is to clarify the market behaviour when there is a clear
excess of demand. The flat supply and demand schedules shown in Figure 3.8
provide this, indicating that there are more buyer agents (11) than seller agents
(6). Once again, the intersection of the curves gives an equilibrium price of
$2.00. The trading statistic plots generated from this test are shown in Figures
3.9 through 3.11, with a sample transaction price time-series taken from one of
the individual trials in Figure 3.12.

The mean transaction price plot (Fig. 3.9) indicates a relatively slow ap-
proach towards the equilibrium price, although as with all of the statistic plots,
this difference is purely an artefact of the particular ZIP agent parameter settings
used (e.g. distributions of learning rate and momentum values) and could well
be fine-tuned to improve the convergence [3]. Having said this, the overall con-
vergence of transaction price and profit dispersion (Fig. 3.11) is an improvement
to that shown in [3].

31

175

150

125

Price

1.00

|
| D

3

4 5 B 7 8 9 101
Cluantity

Figure 3.8: Flat supply and demand curves with excess demand: 11 buyers and

6 sellers, where Py, = $2.00

Price

1.00

4 5 6 7 8§ 9 10

Day MNurrber

Figure 3.9: Mean transaction prices, averaged over 50 zip trials, for the flat

supply and demand curves shown in Figure 3.8 (P, = $2.00). Format as for

Fig. 3.2.

32

Alpha

12 3 4 5 6 7 8 9 10
Day Murmber

Figure 3.10: Smith’s alpha value, averaged over 50 ZIP trials, for the flat supply
and demand curves shown in Figure 3.8 (P = $2.00). Format as for Fig. 3.2.

Profit Dispersion
[
=y
[mm]

12 3 4 5 6B 7 8 9 10
Day MNurrber

Figure 3.11: Mean profit dispersion, averaged over 50 zip trials, for the flat
supply and demand curves shown in Figure 3.8 (P, = $2.00). Format as for
Fig. 3.2.

33

Price

1.00

17 13 19 25 31 37 43 49 55

Transaction

Figure 3.12: Transaction-price time series from one 10-day market trial using

the flat supply and demand curves shown in Figure 3.8 (Py = $2.00).

3.3.3 Summary of Results

This first set of experiments have indicated that the zip-trader re-implementation
exhibits market equilibration in different market conditions (i.e. supply and de-
mand schedules), and can adapt ‘mid-trial’ to changes in market conditions
(Section B.2.3). The trading statistics plotted from each of the tests show that
this is the case and closely matches the results gained with the original im-
plementation. The next section looks at use of an evolutionary algorithm to
optimise the zIP agent adaptation parameters in order to fine-tune the perfor-

mance of the system.

3.4 Evolutionary Optimisation of ZIP-Agent

Parameter Sets

In all experiments carried out thus far, the values of the adaptation parameters
used by the zIP agents have been pre-determined — selected after a period of
trial and error experimentation in order to obtain something in the range of

the desired performance of the system. However, it was later shown in [16]

34

that by placing these parameters under evolutionary control, from a variety
of initial parameter starting values, equally good and in some cases superior
parameter values could be obtained that fine-tuned the trading performance of
the zIP agents involved in the market. The aim of this set of experiments is to
replicate those carried out in [16] by using a simple genetic algorithm (GA) and
a suitable evaluation function to evolve the adaptation parameters of the zip

trading agents.

3.4.1 The Evolutionary Algorithm

A single evolutionary algorithm implementation was used in all the following
experiments. A simple generational GA was employed using linear rank-based

selection, a form of uniform crossover and elitism. The procedure was as follows:

For n times around the generation loop

Evaluate fitness of all genomes in the population

Select preferentially the fitter genomes as parents

For <population size> times around the reproduction loop
Pick 2 from the parental pool
Recombine to make 1 offspring
Mutate the offspring

End reproduction loop

Throw away parental generation and replace with offspring

End generation loop

Specifically, within the reproduction loop, a rank-based tournament selection
was used where, for every member of the new population, three unique genomes
were randomly selected from the existing (evaluated) population. The two fittest
of these three genomes were then selected as the parents (denoted here by Viom
and Vgaq) of a new offspring genome (Vj;q). This method of selection was used
to impose a fairly weak selection pressure, with the aim of preventing premature
convergence to sub-optimal genomes.

Next, from the genomes Vo, and Vgaq, the offspring genome Vi;q was
created, via crossover and mutation. As in [16], stochastic multi-point crossover
was employed, whose first stage involves copying the first element of V., into
the first element of Vj,;4. Then a uniform random value € [0.0,1.0] is generated.

If z is less than a threshold value T,, then the copying process ‘crossed-over’

35

so that the next element of Vj;q would be copied from Vjy,4; otherwise copying
continued from Vj,,n,- This process of copying from the current parent and then
crossing over to the other parent with probability T, was repeated at each of the
eight elements. Again, to faithfully replicate [16], T, was set to a value of 0.125.
Each element in the genome was then mutated by adding a real random value
generated from U (-0.05,+0.05), clipping at 0.0 and 1.0 to ensure that V; €[0,1]3.

Elitism was included to ensure that the fittest genome found so far was
always retained. However, as pointed out in [16], because the overall z1p trader
market is stochastic, the fitness evaluation procedure is non-deterministic, and
hence if the same population were to be evaluated twice, there is no guarantee
that the same individual would be identified as the elite both times. The real-

valued genome encoding of the agent adaptation parameters is now described.

3.4.2 Adaptation Parameters and the Encoding Scheme

As mentioned earlier, the value of the learning rate ;, the momentum ; and the
initial profit coefficient 11;(0) parameters is assigned to each trader in the market
using a random value from a uniform distribution [16]: thus, §; is assigned a
value from U(By, By + Ba); 7 is assigned a value from U (7,7 + 7a); and the
initial profit coefficient u;(0) is assigned a value from U (up, up,) for sellers, and
U(—pp, —pp) for buyers, where pn, = pp + pa.

Therefore, the genome consists of the following eight real-valued param-
eters by which the adaptation of a zip-trader market is determined: the 3
pairs of bounds on the distribution of parameters for the individual agents
(Bo, Ba,Vos YA, b, and pa), and the two parameters ¢, and ¢, (referring to
section 3.2.2) that define the distributions of the stochastic perturbations used
in calculating each agents target price. As a vector V, this is represented as

follows:

V= [ﬂbaﬁAvvbaf}/AvlJ’bvlJ’Av Cr, ca] € §R8

A set of parameter values thus corresponds to a single point in the 8-
dimensional space of possible parameter values.

In the experiments carried out earlier in this chapter, the default values of
the these parameters were set as follows (to follow the convention used in [16],
denoted as V.):

Ver = [0.10,0.40,0.00,0.10,0.05,0.30,0.05,0.05]

36

To reiterate, there is nothing especially significant about these values other

than that they were selected as a result of trial and error experimentation.

3.4.3 Fitness Evaluation Scheme

In order to facilitate a reliable comparison to the results originally presented in
[16], the fitness evaluation of each genome V; in the population has been exactly
replicated. This was done by monitoring the price convergence (Smith’s alpha)
in a series of 50 independent trials, using the symmetric supply and demand
schedules shown in Figure 3.1. At the start of each trial the parameter values
represented on V; were used to generate §;, v; and u;(0) values for the 22 zip
traders, as were the values of ¢, and ¢, used to calculate the traders’ target
prices in each experiment. As in [16], the experiment lasted for six trading
periods. At the end of each day d, Smith’s @ measure was calculated (denoted
a(d)). The score for V; on experiment number e, denoted by S(V;,e), was given
by a weighted sum of the six «a(d) values, where wy denotes the weight on day
d. In the trials, wy = 1.75, wy = 1.5, wz = 1.25, and w4, ws and wg equal to
1.0. These weights place greater emphasis on the early trading days, when the
71P traders are undergoing their initial adaptation to the market. The fitness
evaluation function for V;, denoted F'(V;) was calculated as the arithmetic mean
of S(Vi,e) over n = 50 trials:

6

AR SEI D SES SItt)
d=1

e=1 e=1
In this scheme the GA is attempting to minimise the fitness score, with the
optimum being F(V;) = 0.0.

3.4.4 Experiments

Each experiment consisted of 50 independent evolutionary runs of 200 gener-
ations each, within which each genome, in a population of 30 genomes, was
evaluated on the average of 50 trials.

Three sets of experiments were carried out, differing in the parameter values
initially set on all of the genomes in the population —i.e. the choice of bounds on
the distributions that generate the initial random population of V; individuals.
These determine the initial conditions of the evolutionary search, and have a

significant effect on the success of the search. The results report on the best

37

evolutionary run from the 50 (i.e. the one giving the fittest elite genome at the
final generation), for each of the three initial conditions. The three sets of initial

conditions were as follows [16]:
e Easy: V; = V; Vi
e Zero: V; =[0,0,0,0,0,0,0,0]; Vi

e Hard: V; € [0.75,U4,0.75,Ua ,0.75,Ua,U.,U]; Vi where Ua = U(0.00,0.25)
and U,(0.75,1.00).

The purpose of starting an evolutionary search from the ‘easy’ initial con-
ditions is to see whether and by how much the GA can improve (if at all) the
fitness of the agents from the benchmark values used earlier in this chapter.
The ‘zero’ initial conditions aim to illustrate whether the GA can find ‘good’
adaptation parameters starting from a highly sub-optimal parameter set (i.e.
one that gives the agents no capacity for adaptation). Finally, the ‘hard’ initial
conditions seek to obtain if the GA will again obtain fitter parameters and how
these compare with the other two experiments should they be found. Given the
results, the aim will also be to either confirm or question the original results

presented in [16].

3.4.5 Results

The first set of plots (Figures 3.13, 3.14 and 3.15) show the fitness (weighted
alpha value) of the elite genome at every generation for all 50 evolutionary runs,
for each initial starting condition. For the ‘easy’ (Fig. 3.13) and ‘zero’ (Fig.
3.14) initial conditions, all 50 runs exhibit a (relatively) similar fitness level
over all generations, the actual values of which can be considered even more
similar given the stochastic nature of the ZIP fitness evaluation. Further, on the
‘zero’ plot it can be seen that the fitness values rapidly improve (after around
2 generations) from an expectedly very sub-optimal fitness score. For the 50
runs based on the ‘hard’ initial conditions (Fig. 3.15), there is clearly a much
more noticeable divergence in the fitness of the elite genomes — a small group
of evolutionary runs manages to maintain an increased fitness level that is very
noticeable after 30 generations, then goes on to steadily maintain this fitness

advantage through to the final generation. The group of runs above this are

38

more spread in their fitness levels throughout the 200 generations, indicating
convergence to local optimums.

The best evolutionary runs from the 50 independent runs from each initial
starting condition are now singled out for further analysis. To show a compar-
ison of these ‘best’ runs, the fitness of the elite genome at every generation is
shown in Figure 3.16. This plot shows the fitness level of the best ‘zero’ evo-
lutionary run quickly converging to the same fitness level as the elite genome
of the best ‘easy’ run, while in the best ‘hard’ evolutionary run, where initially
starting with a better fitness than the ‘zero’ run, takes as long as 110 genera-
tions to attain the same fitness levels. By the final generation, all runs exhibit
fitness levels that are a slight improvement over the initial ‘easy’ (V) fitness
score.

The following section presents an analysis of the best evolutionary run from
the ‘easy’ initial starting conditions, while similar analysis from the ‘zero’ and

‘hard’ starting conditions can be found in Appendix B.

EASY: Hite genomes of 50 runs over 200 generations

25

20 rmmmemmm e

1B frmsmmmm s

Fitness

1 12 23 34 45 56 B VYo B9 100 111 122133 144 195 166 177 1858 1939

Generation

Figure 3.13: Elite genomes of 50 runs over 200 generations for the ‘easy’ initial

conditions.

39

LERC: Hite genomes of 50 runs over 200 generations

25 g

Fitness

o
1 12 23 34 45 56 B VYo B9 100 111 122133 144 195 166 177 1858 1939

Generation

Figure 3.14: Elite genomes of 50 runs over 200 generations for the ‘zero’ initial

conditions.

HARD: Hite genomes of 50 runs over 200 generations

25

Fitness

a
1 12 23 34 45 56 B7 78 89 100 111 122135 144 185 166 177 158 199

Generation

Figure 3.15: Elite genomes of 50 runs over 200 generations for the ‘hard’ initial

conditions.

40

—BEasy —— fero —— Hard

25

20 [l

Fitness

1 12 23 34 45 56 B VYo B9 100 111 122133 144 195 166 177 1858 1939

Generation

Figure 3.16: Fitness of the elite genome at each generation for each of the ‘best’

three evolutionary runs (Easy, Zero and Hard).

3.4.6 Easy Initial Conditions

To firstly clarify the behaviour of the market after zero generations, 6 trad-
ing days and using the default parameters V,, Figure 3.17 shows a sample
transaction-price time series from one trial in the market of Fig. 3.1. To con-
firm the results reported in Section 3.3.1, it can be seen that after some initial
volatility the transaction prices have closely converged to the equilibrium price
of $2.00. This convergence is confirmed in Figure 3.18, which shows an aver-
age of the a measure over 50 trials swiftly falling. By the 200th generation
the transaction price time series (Fig. 3.19) has, as expected, converged more
rapidly to the equilibrium price with subsequent quote prices diverging less from
this equilibrium value. This is confirmed in the alpha plot (Fig. 3.20) which
converges more closely to 0. The final generation elite genome for this run has

the following parameter vector Veusy:

Viasy = [0.549,0.041,0.090, 0.178,0.146,0.000, 0.001, 0.061]

Apart from the fa (2nd) parameter, the values on the Vqs, vector that

have resulted from this evolutionary run have matched surprisingly closely the

41

parameter values evolved in the original experiment [16], with six of the param-
eters having less than a difference of 0.1. In real terms, the V4, parameter
set favours a relatively high learning rate §;, but a low momentum parameter
; and initial profit coefficient p;(0), and a very low perturbation (¢,,c,) to the
agents target price. The final fitness score of 4.45 also represents (as with the
original results [16]), an improvement of the 5.49 weighted alpha score with the
original V., parameter values, thus confirming that the evolutionary algorithm
has successfully managed to fine-tune the market equilibration behaviour of the

ZIP agents.

Easy: Gen=0

Frice
m
_

1T 4 7 10 13 16 19 22 25 283 31 34

Transaction

Figure 3.17: Transaction-price time series from one trial of the elite genome in
the first generation from ‘easy’ initial conditions, with parameters set by Vg

42

Easy: Gen=0

Alpha

Day Murrber

Figure 3.18: Smith’s alpha value, averaged over 50 zIp trials, for the elite genome
in the first generation from ‘easy’ initial conditions, with parameters set by Vg
(Py = $2.00). Format as for Fig. 3.2.

Easy: Gen=200

300

280

200 jRW“ s -
1560

Price

100 ¢

0s0

0.0a
1 4 7 1013 16 19 22 25 283 31 34

Transaction

Figure 3.19: Transaction-price time series from one trial of the elite genome in

the final generation from ‘easy’ initial conditions.

43

Easy: Gen=200

Alpha

Day Mumber

Figure 3.20: Smith’s alpha value, averaged over 50 zIp trials, for the elite genome

in the final generation from ‘easy’ initial conditions.

3.4.7 Use of the Flat Curves with Excess Demand Market

In the results just presented, even though an improvement was made over the
V.» parameter values, the improvement was not huge, and as it is now proven
that the V., parameter values are well suited to the supply and demand curves
used (Fig. 3.1, see Section 3.3.1), they compare very well to the evolved values.
This is where a further test (extending that originally presented in [16]) comes in
— for this experiment the GA will evolve parameter values to the excess demand
market of Fig. 3.8 — a market where it was shown in Section 3.3.2 that the
original parameter values V., were not particularly well suited. Thus, the sole
aim of this test is to identify whether the GA can evolve parameter sets in
a market where the V,;, parameters did not originally perform well (i.e. that
shown in Fig. 3.8). For this reason, only a single set of (25) evolutionary runs
is carried out from the ‘easy’ initial conditions.

Fig. 3.21 shows the fitness of the elite genome at every generation for each
of the 25 evolutionary runs. It indicates that after 40 or so generations, the GA
has managed to find parameter sets that are very well suited to the Fig. 3.8
market. The ‘best’ evolutionary run from the 25 (Fig. 3.22) is now analysed.

The sample transaction price time-series (Fig. 3.23) and alpha plot (Fig.

44

EASY (Flat S200: Bite genorres of all runs over 200 generations

Fitness

1 12 23 34 45 56 B 78 89 100 111 122 133 144 155 166 177 153 159

Generation

Figure 3.21: Elite genomes of 25 runs over 200 generations for the ‘easy’ initial

conditions, using the flat supply and demand curves with excess demand as

shown in Figure 3.8.

EASY (Flat S%0)

Fitness

1 12 23 34 45 55 BY 78 83 100 111 122 133 144 155 1686 177 185 199

Generation

Figure 3.22: Fitness of the elite genome at each generation for the ‘best’ evo-

lutionary run using the flat supply and demand curves with excess demand as

shown in Figure 3.8.

45

3.24) confirm the results of Section 3.3.2 showing a slow approach towards the
equilibrium price of $2.00. It was also noted in Section 3.3.2 that this conver-
gence could be improved on by fine-tuning the agent parameter settings. Well,
the sample transaction price time-series (Fig. 3.25) and alpha plots (Fig. 3.26)
generated from the agent parameters of the final generation show very clearly
that this has been the case. On closer inspection of the alpha plot, although
the alpha value is fairly large in the early trading days, it swiftly converges to
an extremely low value by the 4th trading period. The final generation elite

genome for this run has the following parameter vector, denoted Vjq;:

Vet = [0.797,0.167,0.633, 0.095, 0.039, 0.067, 0.000, 0.028]

In comparison to the other evolved parameter sets (Veasy, Vzero and Viara),
all of the Vy;,; parameters are quantitatively similar (with the last three pa, ¢,
and ¢, for all evolved vectors < 0.1), except the 7, (third) parameter, where for
Vgt it is noticeably larger in value. This parameter represents the lower bound
by which the momentum parameter -; is calculated, so it can be concluded that
for a market where there is excess demand (and flat supply and demand curves
in this case) a larger momentum parameter is favoured, indicating a pronounced

adaptation by the ziP agents to quotes made in the market.

46

Easy (Flat S20): Gen =0

200 wv"w"w

Price
-
[ay]
_

1 4 7 1013 16 19 22 25 28 31 34

Transaction

Figure 3.23: Transaction-price time series from one trial of the elite genome
in the first generation from ‘easy’ initial conditions, using the flat supply and

demand curves with excess demand as shown in Figure 3.8.

Easy (Flat S20): Gen =0

45—
0 |
|
a0 |
%5t

Alpha

20 -
15
10

Day Murrber

Figure 3.24: Smith’s alpha value, averaged over 50 ZIP trials, for the elite genome

in the first generation, using the market shown in Figure 3.8.

47

Easy (Flat SA00: Gen =200

Price
-
m
_

1 4 7 10 13 16 19 22 25 28 31 34

Transaction

Figure 3.25: Transaction-price time series from one trial of the elite genome
in the final generation from ‘easy’ initial conditions, using the flat supply and

demand curves with excess demand as shown in Figure 3.8.

Easy (Flat S&0): Gen =200

Alpha

Day Murrber

Figure 3.26: Smith’s alpha value, averaged over 50 ZIP trials, for the elite genome
in the final generation from ‘easy’ initial conditions, using the flat supply and

demand curves with excess demand as shown in Figure 3.8.

48

3.4.8 Summary of Results

The results presented in this section have indicated that the zip agent adaptation
parameters can be successfully fine-tuned. This is very beneficial given that
manually-tuned parameters (such as those in the vector V,;) cannot be exactly
determined a priori to give the best possible market performance. The GA was
also able to evolve agent parameter sets for a market where the initial parameter
settings were not well suited.

The attention of this report now switches to that of extending the z1p simu-
lation for use within a distributed MBC system which is described further in the

next chapter.

49

Chapter 4

MBC of a Minimal UDC
Model with ZIP-Traders in
Distributed Markets

50

4.1 Introduction and Rationale

In the previous chapter I demonstrated a replication of the original zip-trader
system and also a replication of the use of a GA for optimising zIP-trader market
parameters. This demonstrated that the performance of the traders in maximis-
ing profit margins can be fine-tuned, further improving the equilibration of the
market and the ability of the market to be ‘well-damped’ to shock changes in the
market supply and demand curves. This chapter describes a novel adaptation
of the ZIP re-implementation, into a market-based control (MBC) system used to
allocate and balance compute tasks to resources over a simulated Utility Data
Centre (UDC).

To model how zIP trading agents could be used within such an MBC applica-
tion domain, a distributed ziP-trading agent system running over a minimal sim-
ulation of a UDC has been developed. Briefly, the interactions of the zip-agents
acting on behalf of UDC servers and computational tasks occur in topologically
local markets, trading compute resources in order to distribute the load appro-
priately. The following sections describe the operation of the system in more

detail and experiment with a highly simplified example for proof of concept.

4.2 The MBC Simulation

4.2.1 System Structure

As this is the first study of using zip traders within a MBC system in UDCs, 1
chose to work with a minimal abstract simulation of a unc. Use of a minimal
simulation allows for the fundamental actions and effects of the zZipP-based MBC
to be clearly identified and explored.

The uDC model itself consists of an arbitrary network of interconnected
servers, each holding a number of resource units available to run computational
tasks. Each server is assigned a buyer and a seller zIP agent, and each computa-
tional task a buyer ZIP agent, whose logic and means of quote price adaptation
remain as in the original 1P re-implementation (Section 3.2.2). However, the
logic concerning the initiation and execution of auctions is now held locally
on every server. Significantly, this means that trades occur with topologically
neighbouring servers in a distributed fashion, in effect spreading and balancing

the computational tasks, enabling the MBC system to potentially scale to any

o1

size of UDC, and also to exhibit graceful degradation given individual server fail-
ures. Each server has a local market to which new computational tasks ‘arrive’
in order to be first allocated resources on the UDC.

The number of servers and their connectivity are parameters of the UDC
network. Thus any arbitrary server connectivity can be employed or specific

neighbourhood function used.

4.2.2 System Operation

The MBC simulation runs for an arbitrary number of timesteps. At each timestep,
the system randomly cycles through all servers in the UDC network until each
has completed a single ‘operation’. This server operation may be, for example,
putting a task waiting in a local market up for auction or indicating if it is will-
ing to participate in a neighbouring servers’ auction. Specifically, each server is
always in any one of the following five states: Free; Pending Acceptance; Wait-
ing Acceptance; and Waiting Market. A given servers’ state at timestep t+1 is
dictated by the state of itself and of its n neighbouring servers at timestep t.

The server states and the transitions between them is illustrated in Fig. 4.1.

4.2.3 The Resource Allocation Process

In order to best explain how the MBC simulation initiates and performs localised
auctions for compute resources, a simple example scenario is now described in
detail over several timesteps (for a simplified example see Section 2.3.3). 30
servers are used in this example, which can be thought of as being contiguously
spread in a line. The connectivity of a given server is defined as the 5 neigh-
bouring servers on each side (see Fig 4.2), so that each server has a total of 10
neighbouring servers. Servers at the end of the contiguous line ‘wrap around’ to
the start of the line (is circular) in order to prevent any boundary effects from
occurring. At the beginning of the simulation, all of the servers are running no
tasks so that they have all of their resource unit capacity available. So in a case
where only a single compute task enters the local market of Server 15, the MBC

simulation proceeds at each timestep as follows (visualised in Fig. 4.3):

e Timestep 1: All servers on the UDC are in a Free state. When the MBC
system (randomly) passes over Server 15, a single new task enters its local

market. Server 15 detects the new task and (as it is in a Free state) puts

92

Requestauction for
local market task

[FREE < > WAITING ACCEPTANCE |
4 Auction taken place --
U return to a FREE state U
Mo tasks in local (rec_|_eu13[_i all Sener Allserver
sener market/ nofifications) nofifications
no localseners yetto be
willing to partake fecieved
inauction
Lacal Sener
requesting aucton Meed o offload a tagk--
participation/ request auction far
initiated a task shift currently running task
forariginal auction
sener not Cormpleted auction
willing (hot to tryand offload task: .
enu_ugh indicate willingness Auction taken place --
availahle to partake in return to a FREE state
capacity/ original auction
cannotoffload
task)
Waiting for
auction to take
place
Senerwilling (enough capacity O
h 4 available / made available)
[PENDING ACCEPTANCE } > WAITING MARKET]

Figure 4.1: Server State Transition Diagram.

the task up for auction. As its neighbouring servers are also in a Free state,
Server 15 changes the state of these neighbours to a Pending Acceptance
state and sends it the bid price and resource unit requirements of the task.
The state of Server 15 now becomes that of Waiting Acceptance, as it is
waiting for notification of all neighbouring servers ability to partake in the
auction. In the case where no neighbouring servers are in a Free state, in
other words not able to participate in a new (prospective) auction, then
this auction is terminated and the task returns to its local market for a

potential re-auction in a future timestep.

Timestep 2: The neighbouring servers, now in a state of Pending Ac-
ceptance, will indicate that one of their neighbouring servers (Server 15

in this example) has put out a bid price and a request for participation

93

SEner:
1 2

24 56 7 8 3101 121314@16 171819 20 21 22 23 24 25 26 27 28 29 30

Figure 4.2: Local neighbourhood of Server 15.

in a local auction. As they are randomly passed over, each will return
an indication of whether it is willing to partake in the auction. This is
determined by taking the load requirements of the bidding task and ver-
ifying if the server currently has enough awvailable capacity to potentially
run the task. If this is the case, the server will change its state to that
of Waiting Market to indicate its participation. If there is not enough
available capacity but there is enough total capacity on the server (i.e.
capacity subtracting that used by currently running tasks), one or more
of these currently running tasks on the server may be put up for auction
(‘offloaded’), in order that the server can partake in the auction for the
original task. However, whether this ‘sub’ auction is initiated within the
process of the original auction depends on the state of the current task
shifting policy in place (see Section 4.2.4). In the case where the server
does not have enough total capacity to run the bidding task, the neigh-
bouring server will indicate its exclusion from the impending auction by

returning to a Free state.

Timestep 3: When the system again passes over Server 15, it will check
whether any of its neighbouring servers have indicated if they are willing to
participate in the auction or not. This process can take several timesteps
(i.e. the auction is put on hold) if one or more neighbouring servers
attempt to offload any currently running tasks. When all neighbouring
servers have indicated if they are able to participate or not, the auction
proceeds (in the same timestep) as it would do in the original simulation
with servers willing to sell resources according to the bid price put forward
by or on behalf of the task. If successful, the task then ‘moves’ to the server
who was successful in selling resources to it (see section 4.2.4 for how this
is resolved). With the auction completed, Server 15 and all neighbouring

servers go to a Free state until a new task enters a local server market.

o4

Timestep 1
1 234 56 7 8 910111213 14@16 171819 20 21 22 23 24 25 26 27 28 29 30

FFFFFFFFFFFFFFFFFFFFFFFFFFFFEFF

1234567339 1011121314@16 171819 20 21 22 22 24 25 26 27 25 28 30

FFFFFFFFFPPPPPWPPPPPFFFFFFFFEFF

1234567339 1011121314@16 171819 20 21 22 22 24 25 26 27 25 28 30

FFFFFFFFFMMMMMWMMMMMEFTFTFTFTFTFTFTFTFTF
Timestep 4:
1 2345687 8 91011121314@161?1819202122232425262?282930

FFFFFFFFFFFFFFFFFFFFFFFFFFFFEFF

Figure 4.3: Server states at each timestep for the example scenario described in
Section 4.2.3 (where F = Free, P = Pending Acceptance, W = Waiting Accep-
tance and M = Waiting Market).

4.2.4 Additional Extensions

There are a number of additional considerations that have to be taken into
account regarding the operation and behaviour of the MBC system — for example,
how the zip agent limit prices are set in order to determine the supply and
demand curves in the global market, and how servers decide whether to shift
currently running tasks in order to participate in auctions for new tasks. These

are addressed in the following sections.

Setting of Agent Limit Prices

In the original zip simulation, the distribution of limit prices to buyer and seller
agents corresponded to particular supply and demand curves. For example, 11
buyer and 11 seller agent limit prices set within a range of $0.75 to $3.25 in steps
of $0.25 gave an equilibrium price of $2.00 (Fig. 3.1). But in the MBC system,

larger numbers of servers and arbitrary numbers of tasks mean that the market

35

supply and market demand curve cannot be so precisely defined beforehand.
However, to maintain similar ‘market conditions’ to those given by Fig. 3.1, all
agent limit prices are still set within approximate ranges (for example between
$0.75 and $3.25), even though the means by which this is done varies for each
type of agent. The idea is to set limit prices sensibly so as to have buyer and
seller agents’ supply and demand curves crossing (otherwise no trades would

occur) and have a realistic chance of successful trades occurring. Specifically:

e Server seller agents have their limit prices set in proportion to the total
or available (dependent on the server auction eligibility criteria) number
of resource units on the server. This means that a server with a propor-
tionally higher resource unit capacity (as compared to all other servers on
the UDC network) will have a proportionally higher limit price. This is

justified as, in general, more resources cost more money.

e Server buyer agents have their limit prices set equal to whatever price
the local server originally paid for the computational task (that it is trying
to buy resources for), so that the server does not end up making a net loss
on the task, should it offload. For this reason a small profit margin may

also be added onto the limit price.

e Lastly, the limit price for a task buyer agent is set equal to the amount
of funds the task has for buying resources, as intuitively the task buyer

cannot spend more for resources than it has in funds to pay for it.

It is also noted that the task buyer agent will only be involved in an auction
for the initial resource purchase and that after this any subsequent auctions
involving the task will be dealt with by the server agents only as they will

subsequently ‘own’ the task.

Task-Shifting Policies

As was described in the example given in Section 4.2.3, a situation will readily
occur whereby a given server can participate in an auction for a task that
has made a bid from a neighbouring servers’ local market only if it attempts
to offload a currently running task, in order to free up enough resource unit
capacity. A decision must be made to either attempt to offload the currently

running task (i.e. initiate a new auction), or to continue running the task and

96

reject participation in the neighbouring servers’ proposed auction. This decision
will be made against the auction rules used and thus is not a choice for the server
to make itself. There are several different ‘policies’ that can be employed here,
including ‘always task shift’; ‘task shift if the new task would pay more for
resources than the task currently running’; and ‘randomly shift one task’. Each
has a significant effect on how tasks ‘spread’ and organise over the UDC network
within periods of high task traffic, and are explored in the experiments carried
out in Section 4.3. Also, it is noted that each market auction involves only
a single computational task, in order that a (neighbouring) server can decide
whether to unload a currently running task based on the resource requirements
and priorities of the auction task only (i.e. the UDC network locally ‘re-organises’

around the new task).

Closing Auction Deals

Within the process of an auction itself, if there is more than one willing server
wanting to participate in a deal for a given task, then there are two means by
which a task buyer or a server buyer agent can select a willing server (seller)
to trade with and purchase resource unit capacity to run the task. In a non-
competitive outcome, this server may be selected on a random basis with no
need to maximise the profits of the individual servers or tasks involved in the
deal. This is analogous to an intra-company situation where a UDC is utilised
by a single organisation. On the other hand, use of a UDC may be loaned or
rented out to many organisations and this is analogous to an inter-company
or competitive outcome. Here a computational task going onto the UDC or a
server currently owning a task that is purchasing resources will look to seek
the cheapest price for resources from all of the willing servers in the auction.
Each situation may well have a significant effect on the dynamics of the resource

allocation.

4.3 Simulation Experiments

4.3.1 Illustrative Tests and Proof Of Concept

To demonstrate the viability of the distributed MBC system, initially a very

simple setup is used (similar to that described with the example in Section 4.2.3)

a7

where the UDC network constitutes 100 servers spread in a line with connectivity
5 to each side. As before, each server has a total of 10 neighbouring servers with
circular boundary conditions.

Only a single server, in this instance server 50 of 100, is fed computational
tasks at a rate of 1 task per timestep. Further constraints dictate that all tasks
have a set load requirement of 1 resource unit, are of infinite duration, and that
all servers have a total capacity of 1 resource unit. This means that a given
server can only be running at maximum one task at a time. The limit prices of
all agents were set within the bounds of $0.75 and $3.25, and non-competitive
auction outcomes are used.

Smith’s a parameter is recorded at each timestep of the simulation where
trade(s) have occurred, as is the transaction price for every trade. To reiterate,
the a parameter measures the root mean square deviation of the transaction
price from the equilibrium price, and thus can provide, over several auctions,
a measure of whether and to what degree the market is equilibrating and thus
whether the relative worth of computational resources is being sought.

It is expected that as tasks ‘drip-feed’ into the local market of server 50, they
will, over time, propagate out to neighbouring servers and eventually across the
whole UDC network. However, as explained the speed and means by which the
tasks are ‘traded’ across the network is expected to be determined largely by

the policy used for task shifting.

4.3.2 Task-Shifting Policies

The first set of tests experiment with different task shifting policies in order to

observe how this affects the dynamics of the task distribution across the UDC.

No Inter-Server Task Shifting

To begin with, the servers are not permitted to shift currently running tasks
in order to partake in a new task auction under any circumstances. Intuitively
this limits the coverage of a single task to the local neighbourhood of servers
to which it enters the uDC. The simulation was run for 100 timesteps with the
output visualisations and statistic plots shown in Figures 4.4 through 4.9.
Figure 4.4 shows that, as expected, the tasks entering server 50 spread to

run both on this server and all neighbouring servers but not any further (by

98

the 100th timestep, 11 tasks are running). The server seller agent quote price
plot of Figure 4.6 shows that after a very small number of timesteps, the quote
price of the server seller agents rise rapidly (to a near maximum) as new tasks
enter the local market of Server 50 and the demand for server resources steadily
increases. As the neighbouring servers are not able to shift tasks, the server
buyer agents are in effect never used to buy resources on behalf of their servers,
and so the adjustment of the quote prices of these agents is minimal (Fig. 4.7).

To recap, in this test, all servers have a total resource unit capacity of 1.
As the server seller agents’ limit prices are set relative to this resource unit
capacity, this creates a flat supply curve giving an equilibrium price of $0.5.
This may go some way in explaining the volatility of the transaction prices
(Fig. 4.8) and « parameter values (Fig. 4.9). A much more likely reason is
that, as computational tasks are only entering the local market of server 50 and
as a result a limited number of auctions are going ahead (further exemplified by
the no task-shift policy), the opportunities for the zIpP agents to adapt to other
agents quotes is severely limited. With such a small number of auctions going
ahead any convergence to the equilibrium price is not possible. This point is
touched upon again with the experiments carried out in Section 4.3.3.

Over 50 trials within the 100 timesteps, the average percentage of tasks allo-
cated onto the UDC network over all tasks that have entered the unDc (markets)
was 11.0%.

99

Y

Server

Timestep

Figure 4.4: No task shifting: MBC simulation output visualisation of server load,
with axes labels indicating meaning. A filled cell indicates that the Server is

running a computational task.

Server

Timestep

Figure 4.5: Tasks in local market (same output for all tests in Section 4.3.2).

60

Timestep

Server
T
rl Cuote Price:
$2.00
$2.00
$150
$1.00
$0.00

Figure 4.6: No task shifting: server seller zip agent quote price (with legend)

Server

Timestep

Figure 4.7: No task shifting: server buyer zZIP agent quote price.

61

WBC: notask shifting

3.00

250

200

150

Price

1.00

s -

0.00
12 3 4 58 B ¥ 8 9 10N

Tranzaction Mo.

Figure 4.8: No task shifting: transaction prices.

WBC: notask shifting

300

250

200

Alpha
i
_

100

a0

1 2 3 4 5 B 7 8 9 10 11

Transaction Mo

Figure 4.9: No task shifting: Smith’s alpha.

62

Always Task Shift

For this test, the task-shifting policy was changed to dictate that, when an auc-
tion is initiated by a given server, all the neighbouring servers that have the
potential capacity to participate in an auction (i.e. have enough total capac-
ity but not enough available capacity) will endeavour to shift existing running
task(s) onto one of their neighbouring servers, so in effect a ‘sub’ auction is ini-
tiated. As long as a neighbouring server is currently running an existing task,
it will attempt to initiate an auction to offload it. This means that the origi-
nal auction for the market task will not commence until all sub-auctions have
been resolved (should there be any). In this test the simulation was run for 150
timesteps, with the output visualisations and statistic plots shown in Figures
4.10 through 4.14.

In analysis, the Server load plot (Fig. 4.10) shows the computational tasks
entering the uDC quickly spreading out to neighbouring servers in order to make
space for servers (local to Server 50) wishing to participate in auctions for new
tasks. The neighbouring servers to the left of Server 50 especially indicate repet-
itive ‘outward’ shifting of groups of tasks. While the MBC simulation has been
successful in initiating this task shifting behaviour, the apparent disadvantage
is that there are large gaps where servers are not running tasks, or at least not
running them for very long. This is due to the continual task shifting by servers
in order to participate in new auctions. The server seller zip agent quote prices
(Fig. 4.11) are seen to rise considerably in the area around Server 50 where the
demand is clearly highest, although the quote prices tail off towards the end of
the run. The plot also shows that the quote prices fall away rapidly from the
servers not in the local neighbourhood of Server 50, and this is reflected in the
server buyer zIP agent quote price plot (Fig. 4.12) whose quote prices similarly
fall, but again less so around Server 50.

As this policy of always shifting tasks has intuitively led to more auctions
occurring across the UDC (some to first allocate tasks computational resources
and others between servers shifting tasks), this has led to more opportunity for
‘local’ agents (in local neighbourhoods where successful / unsuccessful auctions
occur) to adapt their quote prices accordingly. This is reflected in the trans-
action price (Fig. 4.13) and « parameter (Fig. 4.14) plots, where a (although
still highly volatile) trend of equilibrium price ($0.50) convergence is shown,

indicating a clear improvement over the ‘no task shifting’ policy of the previous

63

test.
Over 50 trials within the 150 timesteps, the average percentage of tasks

allocated onto the UDC network over all tasks that have entered the UDC was

26.6%.

Timesteg

Figure 4.10: Always task shift: server load.

64

Timestep

Figure 4.11: Always task shift: server seller zIp agent quote price.

Server

Timesteg

Figure 4.12: Always task shift: server buyer zip agent quote price.

65

WBC: alw ays task shift

3.00

250
200

180 [

Price

1.00

050

0.00
14 7 101316 19 22 25 28 31 34 37 40

Transaction Mo

Figure 4.13: Always task shift: transaction prices.

WBC: alw ays task shift

Transaction Mo

Figure 4.14: Always task shift: Smith’s alpha.

66

Randomly Shift One Task

For this test, the task shifting policy proceeded as follows: given an auction
request by a server, all neighbouring servers would initially indicate their will-
ingness to participate only if they had enough available capacity. If the case
occurs that none of them can participate due to them all currently running tasks
(which is very likely to occur given anything more than moderate task traffic),
a randomly selected neighbouring server is then selected to attempt to offload
a task. As with the other task-shifting policies, this is continued over as many
server ‘hops’ as is necessary. This gives a reasonable chance that a new auction
can go ahead (regardless of whether or not it is successful), but does not ‘upset’
large numbers of neighbouring servers by spending valuable timesteps offloading
their currently running tasks.

Thus the idea behind this policy is to ‘squeeze’ new tasks onto the UDC
network with the minimum of disruption. If traffic on the network is very high,
however, and a free server cannot be found after a pre-set number of timesteps,
the auction for the new task is terminated. In this test the simulation was run
for 150 timesteps, with the output visualisations and statistic plots shown in
Figures 4.15 through 4.19.

In comparison to the ‘always task shift’ policy, the server load plot (Fig. 4.15)
indicates a more progressive spread of tasks to neighbouring servers, where it
can be seen that servers running tasks in the local neighbourhood of Server 50
have been selected to offload tasks in order to participate in auctions for new
computational tasks. This behaviour has led to several rises and falls in the
quote prices of server seller (Fig. 4.16) and server buyer zip agents (Fig. 4.17)
over the 150 timesteps. This could be the result of equal numbers of successful
and unsuccessful auctions as it certainly does not indicate an increase in demand
for the server resources (as indicated in the earlier quote price plots of Figures
4.6 and 4.11). While the transaction prices of this particular simulation run
(Fig. 4.18) are, as with the other simulation tests thus far, relatively volatile
(due to the agents adapting to quite a small number of auctions), an overall
trend towards the equilibrium price of $0.50 has still been made (Fig. 4.19).

Over 50 trials within the 150 timesteps, the average percentage of tasks
allocated onto the UDC network over all tasks that have entered the UDC was
21.4%.

67

Server

Timestep

Figure 4.15: Randomly shift one task: server load.

Timesteg

Figure 4.16: Randomly shift one task: server seller ZIP agent quote price.

68

Servar

Timestep

A _

Figure 4.17: Randomly shift one task: server buyer zIP agent quote price.

WBC: randamly shift one task

3.00

250

200

150

Price

1.00

0.50

0.00
1 4 7 10 13 16 18 22 25 23 3

Tranzaction Mo.

Figure 4.18: Randomly shift one task: transaction prices.

69

WBC: randamly shift one task

300

250

200

Alpha
i
_

100

a0

1 4 7 10 13 16 19 22 25 28 31

Transaction Mo

Figure 4.19: Randomly shift one task: Smith’s alpha.

4.3.3 Varying Task Load Requirements and Server

Capacities

In all tests carried out so far, a number of simplifying constraints have been
applied — for the computational tasks entering the UDC network for allocation,
all task resource unit requirements have been set to one, and the duration of the
tasks set as infinite (i.e. to beyond the length of the simulation running time).
For the servers on the UDC network, their maximum resource unit capacity has
been restricted to one. These constraints have meant that a given server could
only run a single computational task at a time.

For this set of simulation runs, these constraints are removed to allow for
tasks that have varying resource requirements and durations, and servers that
have varying levels of total resource unit capacity, thus making the resource
allocation process more challenging. As the limit prices for the zIP agents are
dependent upon such factors (Section 4.2.4), the network wide equilibrium price
is now set at a level around $2.00. A comparison of the resource allocation

performance over 50 trials is now made between the ‘always task shift’ and

70

‘randomly shift one task’ task shifting policies.

Always Task Shift

In this experiment, computational tasks entering the UDC network for allocation
can randomly enter the local market of any server. Now the MBC system must
allocate resources for tasks across the entire network. In particular, for every
server on the network, a new task has a 10% chance of entering its local market
at each timestep, which gives enough task traffic for swift network saturation.
Figure 4.20 shows a sample server load plot over 150 timesteps using the
‘always task shift’ task shifting policy — the rather scant allocation of tasks onto
the network is somewhat confirmed by a task allocation percentage of 17.1%
(averaged over 50 simulation trials). This can be explained by the continual
task shifting of tasks already running on the network effectively preventing the
initiation of auctions for new tasks waiting in the local markets of servers.
One of the points made in the analysis of Section 4.3.2 tests concerned the
market equilibration of the zIP agent quote prices, and how the limited number
of auctions brought about by ‘drip feeding’ tasks into the local market of Server
50 caused a very volatile and weak convergence trend towards the equilibrium
price of $0.50. In this test, as computational tasks are entering local markets
and being allocated across the entire network, the ZIP agents across the network
are given many opportunities to locally adapt their quote prices to successful
and unsuccessful quote prices. This hypothesis is reflected in the a statistic
plot (Fig. 4.21) for a sample trial — a much less volatile and closer convergence
towards the equilibrium price is made, even though (as expected) it changes

slightly over the course of the simulation run (Fig. 4.22).

71

Serwer

Tazk load:
]

Timesteg

Figure 4.20: Always task shift, with variation of task load requirements, dura-

tion and server load capacity: server load.

WEC: always task shift

a0

a0t

30

Alpha

1 9 17 25 33 41 48 57 65 73 B1 BB 97

Transaction Mo.

Figure 4.21: Always task shift, with variation of task load requirements, dura-

tion and server load capacity: Smith’s alpha.

72

WEC: alw ays task shift

[y
=
=

Equilibrium Price
] i
(=] [m]

=
i
=

o
=
=

121 41 BT 81 101 121 141 161 181 201

Transaction Mo

Figure 4.22: Always task shift, with variation of task load requirements, dura-

tion and server load capacity: equilibrium price.

Randomly Shift One Task

An improved resource allocation performance is shown by the ‘randomly shift
one task only’ task shifting policy (Fig. 4.23). Using this policy the resource al-
location performance over 50 trials was 24.1%. The minimal ‘disruption’ caused
by this task shifting policy obviously pays off when used across the entire net-
work, which is contrary to the situation of tasks singularly entering Server 50,
where it was seen that the ‘always task shift’ gave better resource allocation
performance (Section 4.3.2). However, the a plot for a sample trial (Fig. 4.24)

gives a very similar convergence trend to that in Fig. 4.21.

73

Timesteg

Figure 4.23: Randomly shift one task, with variation of task load requirements,

duration and server load capacity: server load.

WEC: randomly shift one task

a0

40

30

Alpha

9 17 25 33 41 4% 57 65 73 B1 B3 O7

1

Transaction Mo.

Figure 4.24: Randomly shift one task, with variation of task load requirements,

duration and server load capacity: Smith’s alpha.

74

4.3.4 Competitive and Non-Competitive Outcomes

The ‘Closing Auction Deals’ part of Section 4.2.4 explained the two means by
which a given zIP agent involved in a successful trade can close an auction
deal — by either randomly selecting a willing server (termed a non-competitive
outcome) or by specifically selecting the server giving the best price (termed a
competitive outcome). The purpose of this final set of tests is to see whether
either outcome will effect the dynamics of the MBC resource allocation, and the
convergence of the zip agents towards the equilibrium price. Two sets of 15
MBC simulation trials were run (each of 150 timesteps), one set using the non-
competitive outcome and the other the competitive outcome. As for the tests in
the previous section (4.3.3), no constraints were applied to the server capacities
nor task resource requirements, and computational tasks were allowed to enter
the local market of all UDC network servers.

The average transaction price and a plots are shown in Figures 4.25 through
4.28. Tt is clear from these plots that the market equilibration behaviour is near
to identical when using either non-competitive or competitive outcomes. Add
to this the similarity in transaction prices (Figures 4.25 and 4.26), and it is
concluded from this experiment that there is no difference in the dynamics of

the resource allocation when using either outcome.

75

WMBC: non-cormpetitive

300

240

Price

050

ooo

1 16 31 46 61 76 91 106121136151166181196

Transaction Mo.

Figure 4.25: Non-competitive outcome: transaction prices averaged over 15 MBC

trials.

WBC: cormpetithe

300

250

200

150

Price

1.00

0a0

ooo

1168 31 468 B1 76 91 106121136151 166

Transaction Mo.

Figure 4.26: Competitive outcome: transaction prices averaged over 15 MBC

trials.

76

MBC: non-competitive

Alpha

T 11 21 3 41 51 61 71 B 31 1M

Transaction Mo.

Figure 4.27: Non-competitive outcome: Smith’s alpha averaged over 15 MBC

trials.

WEC: competitive

Alpha

71 Bl 811N

1711 21 31 41 51 &1
Transaction Mo.

Figure 4.28: Competitive outcome: Smith’s alpha averaged over 15 MBC trials

7

4.4 Summary

The presented results have shown that the MBC simulation has been successful
in efficiently allocating compute resources to the computational tasks that come
onto the market, and in trading them server-to-server across the ubc. However,
whether the design of this particular MBC simulation is comparable to that of
other such systems is definitely something that would be of use in judging its
overall ‘performance’ even though to date (as discussed in Chapter 2), there are
still very few distributed and autonomous systems such as the one developed
here.

Additionally, the tests have highlighted that the means by which the tasks
are allocated (and the number that are allocated) is greatly affected by a mul-
titude of parameters, some less so than others. The task-shifting policies intro-
duced in this chapter no doubt have a very large effect — even the optimality
of each policy can vary depending on the amount of computational task traffic
coming onto the network. For example, the ‘always task shift’ policy proved to
allocate tasks onto the network most efficiently when tasks were only entering
the local market of Server 50, but when they were coming from all over the ubcC
network, the ‘randomly shift one task’ policy proved more effective.

Thus it is concluded that, just as for the zip trading-agent simulation before
it, the MBC simulation has many parameters that could, using an evolutionary
algorithm, be fine-tuned in order to hone the resource allocation efficiency and
market equilibration performance of the system. This is now explored in the

next chapter.

78

Chapter 5

Evolutionary Optimisation
of the MBC System

79

5.1 Introduction

As was explained in the summary of Chapter 4, the resource allocation and mar-
ket equilibration performance of the MBC simulation is dependent on the settings
of multiple parameters such as, for example, those dictating the operation of the
task-shifting policy used, and how many timesteps an auction-initiating server
should wait for every neighbouring servers ability to partake in a proposed auc-
tion. It is therefore postulated that the particular values of these parameters
can have a significantly fundamental effect on both the performance and overall
(macro-scale) behaviour of the system. This is an important issue given that,
without complete and exhaustive testing, the settings of these parameters can-
not be optimally determined a priori. For this reason, it is apparent that use of
a GA to evolve particular (sets of) parameters within the MBC simulation would
help in fine-tuning system performance.

Thus, in a similar experimental setup to that described in Chapter 3, this
chapter describes the use of a GA to evolve the ZIP trading-agent parameter sets
acting within the MBC simulation, but with the added addition of a parameter

dictating the particular market mechanism that the agents operate within.

5.2 The Evolution of Market Mechanisms

In all of the experiments carried out so far with both the zip simulation and the
MBC simulation, the type of auction that the zIpP agents have been interacting
within has been that of a continuous double auction (CDA). In the cDA, sellers
quote decreasing offer prices while at the same time the buyers are making
quotes of increasingly higher bid prices, and where at any time the sellers are
free to accept any buyer’s bid and the buyers being free to accept any seller’s
offer. However, it cannot be proven that use of the CDA market would give the
most desirable dynamics, or best allocative efficiency. As reviewed in Section
2.4.2, this was a point was first brought to the fore by Cliff [18, 19], when it
was suggested that the market mechanism be put under evolutionary control
in order to (perhaps) seek markets that give better dynamics than that of the
CDA.

These ‘other’ markets exist on a continuum of possible auction types dic-

tated by a parameter Qs [18], which determines the probability that a seller

80

quotes within a given timeslice of the market (noting that, if), represents the
probability that a buyer quotes within a timeslice, as @, = 1.0 - Qs, it is only
necessary to determine @ [18]). So for a cDA market, Qs would equal 0.5 (i.e. a
quote is equally likely from each side), for an English Auction (where only buy-
ers quote prices), s = 0.0 and for a Dutch Auction (where only sellers quote),
Qs = 1.0. However, as explained in [18], in between these human-designed mar-
ketplaces is a space of market types where it is conceivable that)5 could take
on any possible value. The details of using a GA to evolve the ()5 parameter

along with the zip-trading agent parameter sets is now described.

5.3 Experimental Details

5.3.1 Evolutionary Algorithm and Encoding Scheme

The evolutionary algorithm employed for all of the experiments carried out in
this section is exactly the same as that presented in Section 3.4.1, and so will not
be described further here. The encoding scheme used for the genome, however,
differs in two respects from that used in Chapter 3 — firstly, two sets of ZIP agent
adaptation parameter sets are specified, one set for the buyer zip agents in the
MBC simulation, and another for the seller zIp agents in the MBC simulation.
Secondly, the addition of the ()5 parameter on the genome.

Thus, the genome now consists of the following 17-real valued parameters
by which the adaptation of the zip trader market is determined: the 3 pairs of
bounds on the distribution of the (learning rate (;, momentum -; and initial
profit coefficient p;(0)) parameters for the individual agents (Bs, Ba, 76, YA, Mo,
and pa), the two parameters ¢, and ¢, (see Section 3.2.2) that define the distri-
butions of the stochastic perturbations used in calculating each agent’s target

price, and of course the), parameter. As a vector V, this is defined as follows:

V' = [Bub, Bab, Yob, YA Hbbs HAB, Crbs Cabs Bbs)
17
ﬁAs: Ybs> YAsy Mbsy HAs, Crs, Cas, Qs] € R

where the second appended subscript ‘b’ denotes a buyer parameter and
‘s’ denotes a seller parameter. For all experiments, the zip agent adaptation
parameters are initially set (as in Chapter 3) to the V., values, which were

originally hand-picked to give reasonable market performance. Add in the @,

81

parameter, which is set to 0.5 in order to resemble a CDA market, and the

following parameter vector, denoted Vi,p¢, results:

Vimpe = [0.1,0.4,0.00,0.1,0.05,0.3,0.05,0.05,0.1,0.4,0.00,0.1,0.05,0.3,0.05,0.05,0.5]

5.3.2 Fitness Evaluation Scheme

The fitness of each genome V; was calculated as the mean average of the Smith’s
alpha statistic for every transaction that occurred across the UDC within the
specified number of timesteps, over the number of independent genome MBC

trials (see next section). Formally:

where n is equal to the number of MBC trials and ¢ the number of transactions
within a single trial. Finally, as before, the GA is attempting to minimise the

fitness score, with the optimum being F(V;) = 0.0.

5.3.3 The Experimental UDC Network

The UDC network was setup to contain 100 servers with (as in the experiments
carried out in Chapter 4) each server having a connectivity 5 to each side.
The ‘always task shift” policy was used, with computational tasks able to enter
the local markets of all servers on the network, and using variable task load
requirements and server capacities. The limit prices of all agents on the network
were set in accordance of the description given in Section 4.2.4, within the ranges
of $0.75 to $3.25, to give an equilibrium price on or around $2.00.

Each experiment consisted of 8 independent evolutionary runs of 100 gen-
erations each, within which each genome, in a population of 30 genomes, was
evaluated on the average of 20 MBC trials. Each trial consisted of a 100 timestep

run of the MBC simulation.

82

5.4 Results

5.4.1 Evolving the ZIP Agent Parameter Sets along with

the (), Parameter

The first plot (Fig. 5.1) shows the fitness of the elite genome at every generation
for each of the 8 evolutionary runs. It indicates that the GA was able to steadily
improve the market equilibration performance of the zip trading agents, but
after 30 generations the mean alpha fitness score levelled out. However, the
final fitness scores (in the range of around 2.8 to 4.0) show a performance easily
comparable to that found by the GA evolving the ZIP agents operating in basic
markets (Fig. 3.16).

The plot of Figure 5.2 shows the evolved value of the Qs parameter at each
of the 100 generations, again for all 8 runs. Interestingly, the sharp evolution-
ary trajectory indicates that the MBC simulation has given favourable market
equilibration performance to markets where the @5 value is set at 0.0. This
corresponds to the (human designed) English Auction, where only the buyers
quote prices. Fig. 5.3 shows a sample MBC simulation trial transaction price
time-series at the final generation of the ‘best’ evolutionary run (where Q4 =
0.0), together with the underlying equilibrium price, and Fig. 5.4 the accompa-
nying « plot. In comparison with a sample « plot taken after O generations (see
Fig. 4.20), it can be seen that there is much less volatility in the transaction
prices, confirming that the market equilibration has improved considerably.

In light of these results, a further two sets of experiments were carried out:
one where the Qs was ‘clamped’ to 0.0, and another where @, is set to 0.5.
The purpose of setting Qs to 0.0 is to see whether the GA can find a fitness
improvement from the value converged upon in this first set of experiments,
and when @ is equal to 0.5 (the CDA value), to indicate if a value of 0.0 is

indeed optimal. The experiments where @), is set to 0.5 are reported on first.

83

WARYING QF: Hite genomes of 8 runs aver 100 generations

Fitness

1T F 13 18 258 3 37 43 43 5 B1 BF V3 78 88 91 W7

Generation

Figure 5.1: Elite genomes of 8 runs over 100 generations with evolution of the

() s parameter.

WVARYING QS Walue of Q3 Parameter for 8 runs over 100 generations

8 frmmmmmm
2 0B
i
& 04

nz2

. R _ . _

1T 7 13 19 25 31 37 43 49 55 Bl B Y379 BA 91 97
Generation

Figure 5.2: Value of the (), parameter for each of the 8 runs over 100 generations.

84

WARYING QF: Gen =200

300

250

b B A
S RVATRE

180

Price

1.00

050

0.0o0
2 5 11 1519 28 32 35 37 &0 56 B1 94

Transaction Mo

Figure 5.3: A sample transaction price time-series (with underlying equilibrium
price) from one trial of the final generation of the ‘best’ evolutionary run, when

evolving the); parameter.

5.4.2 Evolving ZIP Agent Parameter Sets with the (),

Parameter set to 0.5

For this set of evolutionary runs, only the separate sets of buyer and seller
Z1p agent parameter sets were evolved, as the value of) was clamped to 0.5,
i.e. that of a CDA market. Figure 5.5, a plot of the elite genomes at each of
100 generations for the 8 runs, shows that, when the MBC simulation uses cDA
markets, the GA is unable to find market equilibration dynamics as desirable
as that found when @ is allowed to take on any value (Fig. 5.1). Figure 5.6
shows a plot of a sample MBC simulation trial transaction price series at the final
generation of the ‘best’ evolutionary run — in comparison with that of Figure
5.3, it is extremely volatile and not many transactions are closed around the
equilibrium price. This volatility is also reflected in the « statistic plot of Fig.
5.7.

85

YARYING QIS Gen =200

45
40
3|t
30
2t

Alpha

20
15 F

0 Sa
1 4 MW 16 23 2B 33 37 52 56 BS OB

Transaction Mo

Figure 5.4: A sample alpha parameter statistic plot from one trial of the final

generation of the ‘best’ evolutionary run, when evolving the)5 parameter.

(15 at 05 Hite genomes of & runs over 100 generations

Fitness

17 13 19 28 3 3 43 43 85 BY B V3 Y9 88 W W7

Generation

Figure 5.5: Elite genomes of 8 runs over 100 generations with ()s parameter set
at 0.5.

86

Q5 at 0.5 Gen =200

300

240

200

150

Price

1.00

050

ooo

2 75 19 30 #1499 B8O 75 9

Transaction Mo.

Figure 5.6: A sample transaction price time-series (with the underlying equilib-
rium price) from one trial of the final generation of the ‘best’ evolutionary run,
when Qs is set at 0.5.

5.4.3 Evolving ZIP Agent Parameter Sets with the (),

Parameter set to 0.0

For the final set of evolutionary runs, the value of Qs was clamped to 0.0, to
resemble an English Auction. Figure 5.8, the plot of the elite genomes at each
of 100 generations for the 8 runs, shows that the GA evolves fitness scores to the
same level of that found when varying @5 (Fig. 5.1), although converges to it
faster by virture of the fact that the @ is already at 0.0 — the value at which we
have already seen the GA evolve to in Section 5.4.1. The plots of both the sample
MBC simulation trial transaction price series (Fig. 5.9)and the « statistic (Fig.
5.10) at the final generation of the ‘best’ evolutionary run confirms that a @,
of 0.0 must be optimal by showing the exhibiting the best market equilibration
behaviour of all the experiments. However, although not considered here (see
next section), the zip trading agent parameters were also evolved and thus it
is concluded that a combination of the final generation parameter set together

with @5 equalling 0.0 gives the most desirable market dynamics.

87

Q5 at 0.5 Gen =200

Alpha

Transaction Mo

Figure 5.7: A sample alpha parameter statistic plot from one trial of the final

generation of the ‘best’ evolutionary run, when @) is set at 0.5.

(215 at 0.0: Bite genorres of 8 runs over 100 generations

Fitness

1T 7 13 19 25 31 3FF 43 49 55 BT B F3 V9 85 91 97

Generation

Figure 5.8: Elite genomes of 8 runs over 100 generations with ()s parameter set

at 0.0.

88

Q5 at0.0: Gen=20

3.00

2480

200 [

1450 |

Price

100

050

0.00

2 B2 12 195 33 43 89 &7 81 95

Transaction Ma.

Figure 5.9: A sample transaction price time-series (with underlying equilibrium
price) from one trial of the final generation of the ‘best’ evolutionary run, when
Qs is set at 0.0.

5.4.4 An Analysis of the Evolved ZIP-Agent Parameter
Sets

Finally, a brief analysis is made of the ziP agent parameter sets evolved by the
evolutionary run (over all three experiments) giving the best fitness score at the
final generation. This was identified to be Run 4 in the experiment where the
Qs value was set at 0.0. To aid a comparison of the separate buyer and seller
ZIP agent parameter vectors evolved in this run, they are split into two vectors,

denoted Viuyer and Viegier, as follows:
Viuyer = [0.341,0.076,0.000,0.023,0.255,0.013,0.192,0.111]
Vsetter = [0.247,0.315,0.072,0.427,0.227,0.523,0.081,0.366]

As can be seen, there is a marked difference in most of the parameter settings
for the buyer and seller agents — in general, the zIP seller agents parameters are
generally higher than that of the z1P buyer agents. This indicates that the seller

agents have been evolved to adapt more rapidly to the buyer agent quote prices

89

0% &t 0.0: Gen=2400

Alpha

T F 13 2 34 48 58 66 V7 B9

Transaction Mo.

Figure 5.10: A sample alpha parameter statistic plot from one trial of the final

generation of the ‘best’ evolutionary run, when @) is set at 0.0.

in the market, which makes sense given that the 0.0)5 value (i.e. that earlier
evolved to by the GA) is a market where only the buyers quote prices. Thus,
the ¢A has taken advantage of the ability to evolve separate buyer and seller

parameter sets by ‘moulding’ them to work well within a s = 0.0 market.

5.5 Summary

The results presented in this chapter have demonstrated that the market equi-
libration behaviour of the MBC simulation can be improved by placing both the
71P trading agent parameter sets and a parameter dictating the market mech-
anism, under evolutionary control. In summary, the convergence towards the
transaction price was most marked when only the buyer zIP agents in the market

were able to quote prices.

90

Chapter 6

Future Work and

Conclusions

91

6.1 Future Work

Even though the project has been successful in attaining its original aims, there
are many areas of development and further paths of investigation that, given
more time, could be explored. A selection of the more pertinent and promising

avenues for future work are summarised as follows:

e Further experiments and exploration with the MBC simulation:
the tests reported on in Chapter 4 have only touched the surface concern-
ing (for example) the experimentation with different parameter values and
the means by which computational tasks are traded across the UDC net-
work. Other areas of potential investigation include how the system would
react to server node and / or connectivity failures, and the use of different

server connectivities and neighbourhood functions.

e Modelling effects of noise or information delays within the sys-
tem: looking at how the resource allocation and market equilibration be-
haviour of the zip agents could be affected by locally imperfect or delayed
information (in similar lines to the original work by Hogg and Huberman

[20] on the dynamics of large distributed computational systems).

e Use of co-evolutionary techniques to co-evolve the ZIP trading
agent parameters and computational task schedules: in a similar
vein to Hillis” work on host-parasite co-evolution of sorting networks [21],
a possible area for further investigation could be to co-evolve the perfor-
mance of the Z1P trading agents with specific computational task schedules
(i-e. areal time stream of computational tasks). A more rapidly fine-tuned
MBC could result, as the parasites that show up weaknesses in the MBC

simulation would be widely represented in their population.

e Increasing the realism and complexity of the simulated UDC: the
difficulty of the MBC resource allocation could be increased by introducing
more specific task constraints — for example, by having the process mod-
elled around the Resource Allocation Problem (RAP, [22]) which takes
into consideration very specific computational task requirements and re-
quires that bandwidth constraints on the network are satisfied while the
communication delays between the assigned servers is minimised. The

UDC in this case would consist of a hierarchical tiered tree of servers.

92

6.2 Conclusions

In summary this project has developed and reported on the use of a zip-based
market-based control system for allocating computational resources on a UDC,
and evolved ZIP agent parameter sets and marketplaces in order to fine-tune the
performance of the system.

To firstly gain an understanding of the zip trading agents originally devel-
oped by CIliff [3], a re-implementation of the zIP simulation was tested in a
variety of basic market scenarios that demonstrated the agents’ ability to adapt
to market quote prices and converge to an equilibrium price. A GA was then
employed to evolve the zip trading agent parameters and to improve on the
initial ziP agent market equilibration behaviour.

Once this z1p trading agent grounding had been established, a MBC simula-
tion was designed and implemented, the first of its kind to utilise ziP trading
agents within topologically distributed markets and for the purpose of perform-
ing computational load balancing and scheduling of compute tasks over a UDC.
Control experiments indicated that the simulation was successful in being able
to efficiently allocate and trade tasks among a network of UDC servers. These
results have justified the ability for a MBC system such as this to provide a
fully distributed, autonomous, and lightweight solution to load balance compu-
tational tasks in a UDC, and, indeed, open new avenues for MBC in a plethora
of similarly complex control problems.

So, to summarise, this thesis presents the first results ever from the use of a
GA to optimise the parameter values and market mechanism for zip traders in a
UDC MBC context. Although the results are preliminary, the fact that (as shown
in Section 5.4.4) nonstandard values of @)s are found to be useful because the
parameter vectors for buyers and sellers have evolved to different values is likely

to be significant and deserves exploration in less minimal UDC simulations.

93

Appendix A

Background Economics

94

A.1 Introduction

This appendix gives a brief overview of the economic principles underlying
market-based control. The first part deals with microeconomics which describes
how supply and demand for a given commodity functions in a typical market.
The second part briefly describes Vernon Smith’s pioneering work in experimen-

tal economics.

A.2 Microeconomics

In succinct terms, microeconomics deals with the allocation of scarce resources,
or, put another way, how individuals choose among particular commodities. The
central concept within the standard economic framework is that of a market con-
taining buyers (consumers) and of sellers (producers) of arbitrary commodities.
The interaction of buyers and sellers within the market introduces the additional
concepts of supply, demand and that of equilibrium.

A market is defined by Begg [7] as ‘a set of arrangements by which buyers and
sellers are in contact to exchange goods or services’. Asreviewed in Section 2.3.2,
there are a number of different market structures that the buyers and sellers

trade within, although all perform essentially the same economic function.

A.3 Supply and Demand

The supply of a good refers to the quantity of a given commodity that the sellers
in the market are willing to sell (i.e. the behaviour of the sellers) at each possible
price. Conversely, the demand for a good refers to the quantity that the buyers
are willing to purchase, or the behaviour of the buyers, at each possible price.
In more specific terms, one can talk about a quantity supplied and a quantity
demanded at each price of the commodity.

Intuitively it can be stated that as the price of a commodity rises, the supply
rises but the demand falls, and if the price falls the demand rises but the supply
falls. For example, sellers would wish to sell a good at a high price in order to
get an increased profit on each unit but buyers would not wish to purchase the
good at a high price because they only have limited funds in which to spend.

However, as supply needs a demand and, equally, demand needs a supply, given

95

a high price (or a low price) there will be an excess supply (or excess demand).
This is where the equilibrium price comes in as this is the intermediate price
in which the supply equals the demand and the market clears. In other words,
there is no excess supply or demand.

The mechanism by which markets achieve this equilibrium price point is a
by-product of the participants desire to increase their own profit margin and to
obtain the best possible deal. The incentive to change prices remains whenever
there is an excess supply or an excess demand in the market and so over time it
will approach the equilibrium price. In this sense the market is self-correcting.
The equilibration that arises through the forces of supply and demand occurs
naturally within a free-market, and so external price-fixing (for example by
government regulation) would seriously disrupt the market because in reality

the buyers do not have to buy and the sellers do not have to sell.

A.3.1 The Supply and Demand Curves

The relationship between the supply and demand of a good and its price can be
illustrated by supply and demand curves (see Fig. A.1), where the intersection
of the curves represents the equilibrium price. The vertical axis on the graph
represents the price of the commodity in question, and the horizontal axis the
quantity of the good. The graph provides a means of analysing the supply and
demand at different prices. It is seen that (Fig. A.1), as the supply rises as
the price of the product rises, the supply curve is upward sloping and, as the
demand rises as the price of the product falls, the demand curve is downward
sloping. The demand curve is effectively a summary of the various cost-benefit
calculations that buyers make with respect to a good, or in another way reflects
the set of price-quantity pairs for which buyers are satisfied.

The discussion so far has assumed that the supply and demand curves are
fixed for the duration of market transactions. It must be noted that a change
in demand is different from a change in the quantity demanded: a change in
demand represents a shift in the entire demand curve, while a change in quantity
demanded represents a movement along the demand curve. In economic terms
the supply and demand curves in Figure A.1 depict the relation between price
and quantity supplied (or demanded) holding other things constant. These ‘other
things’ represent the factors that shape the supply or demand curve in the first

place.

96

Price Supply

FPo

Demand

Cluartity

Figure A.1: Supply and Demand curves

For the supply curve these determining factors include:

e Technology: determines how much quantity of a commodity can be pro-

duced at a given price.

e Input Costs: includes factors such as labour and fuel costs which also

affect how much of a commodity can be produced at a given price.

e Government Regulation: including, for example, safety regulation that
puts a limit on the amount of commodity that can be produced at a given

price.
The factors influencing the demand curve are summarised as:

e The price of related goods: the price of substitute goods affects the

demand for the commodity in question.
e Consumer incomes: dictates the level of funds the buyers have to spend.

e Tastes: how ‘popular’ or sought after the commodity is (i.e. fashion,
trends).

Of course these relate to external factors relevant to a real economy and not
within an MBC system where the supply and demand curves are set arbitrarily
before hand.

97

A.4 Experimental Economics

It is a fact that, after any reasonable length of time, human trading agents
acting within a double-auction market do not have the cognitive power to make
optimal decisions based on all of the transactions made in the market. And,
as no-one can predict exactly what will happen in the future, it is said that
humans do not act rationally. Instead, they act with a bounded rationality.

This makes the dynamics of human double-auctions somewhat unpredictable
and so it is difficult to quantify to what extent the market behaviour is depen-
dent on human intelligence or on the structure of the market itself. The field
of experimental economics aimed to shed light on these issues by means of con-
trolled experiments with human subjects.

Smith [15] carried out just such experiments and in each, every human sub-
ject was given the means to buy or sell a unit of commodity according to a limit
price. This pre-determined the supply and demand in the (double-auction) mar-
ket. From these tests a wide variety of adjustments could be made in order to
study the dynamics of the market and how quickly the market approached equi-
librium. In summary it was found that with a fairly small number of human

traders the market could quickly converge on the equilibrium price.

98

Appendix B

Additional ZIP-Trading
Agent Experimental Results

99

B.1 Introduction

This first part of this appendix presents further results obtained with the re-
implementation of the ziP-trading agent simulation using supply and demand
schedules taken from [3]. The second part presents additional results evolving
ZIP agent parameters, specifically an analysis of the parameter sets generated
by the best evolutionary runs (as shown in Fig. 3.16) starting from ‘zero’ and

‘hard’ starting conditions.

B.2 Re-implementation of the ZIP-trading Agent

Simulation

B.2.1 Flat Supply Curve

For this test the demand curve was set to remain the same as that shown in Fig.
3.1, but the supply curve set to be flat with all the seller agents’ limit prices
set at $2.00 (Fig B.1). This gives an equilibrium price of $2.00. The mean
transaction price, alpha and profit dispersion plots generated from this test are
shown in Figures B.2 through B.4. A sample transaction price time-series is
shown in Figure B.5.

Figure B.2 shows the mean transaction price quickly falling into line with
the $2.00 equilibrium price, and, as with the results given in [3], the approach
to the equilibrium price happens from initially higher transaction prices (from
above) rather than from initially lower prices. This indicates that the sellers
have higher percentage profit margins than the buyers [3]. The alpha plot (Fig.
B.3) indicates an even faster equilibration process than that shown in Figure 3.3,
as does the profit dispersion (Fig. B.4), qualitively and quantitatively matching
that shown in [3]. The sample transaction price series (Fig. B.5) also shows

much less volatility than Figure 3.7 concerning early transaction prices.

100

350 3
325
300
275
250
225
200
175 |
150
125 |
1.00 |
|
|

Price

075
050

12 3 4 5 6 7 & 9 10MN1
CQuantity

Figure B.1: Flat supply curve with 11 buyers and 11 sellers, where Py = $2.00

Price
(o=
f=]
[}

150

1.00
12 3 4 5 6B 7 8 9 10

Day MNurrber

Figure B.2: Mean transaction prices, averaged over 50 ZIP trials, for the flat

supply curve shown in Figure B.1 (P, = $2.00). Format as for Fig. 3.2.

101

Alpha

12 3 4 5 B 7 8 9 10
Day Murmber

Figure B.3: Smith’s alpha value, averaged over 50 zip trials, for the flat supply
curve shown in Figure B.1 (P, = $2.00). Format as for Fig. 3.2.

Profit Dispersion

12 3 4 5 B 7 8 9 10
Day Murrber

Figure B.4: Mean profit dispersion, averaged over 50 zip trials, for the flat
supply curve shown in Figure B.1 (P, = $2.00). Format as for Fig. 3.2.

102

Price

150

1.00

17 13 18 25 3 3FF 43 48 85

Transaction

Figure B.5: Transaction-price time series from one 10-day market zIP trial using

the flat supply curve shown in Figure B.1 (P, = $2.00).

B.2.2 Flat Curves with Excess Supply

For completeness, and in contrast to the test carried out in Section 3.3.2, the
schedule for this test has an excess of supply (11 sellers and six buyers), and an
equilibrium price of $2.00 (Fig. B.6). The trading statistic plots for this test are
shown in Figures B.7 to B.9, with a sample transaction price time-series taken
from one of the individual trials in Figure B.10. The equilibration convergence
indicated by these plots shows an improvement over the Section 3.3.2 test (and
in terms of profit dispersion, as in [3]), and as expected this convergence happens
from above in contrast to from below (as was the case where there was an excess

demand).

103

Price
(o]
@
(]

12 3 4 5 B 7 8 9 10 M1
CQuantity

Figure B.6: Flat supply and demand curves with excess supply: 6 buyers and
11 sellers, where Py = $2.00

Price
(o=
f=]
[}

150

1.00
12 3 4 5 6B 7 8 9 10

Day MNurrber

Figure B.7: Mean ZIP transaction prices, averaged over 50 zIP trials, for the flat
supply and demand curves shown in Figure B.6 (P, = $2.00). Format as for
Fig. 3.2.

104

Alpha

Day Murmber

Figure B.8: Smith’s alpha value, averaged over 50 zIP trials, for the flat supply
and demand curves shown in Figure B.6 (P, = $2.00). Format as for Fig. 3.2.

Profit Dispersion
[
=y
[mm]

Day MNurrber

Figure B.9: Mean profit dispersion, averaged over 50 zip trials, for the flat
supply and demand curves shown in Figure B.6 (P, = $2.00). Format as for
Fig. 3.2.

105

300

Price

150

1.00

17 13 19 25 31 37 43 49 55

Transaction

Figure B.10: Transaction-price time series from one 10-day market trial using

the flat supply and demand curves shown in Figure B.6 (P, = $2.00).

B.2.3 Shift in Demand Curve

For zIP traders to be of any real use within an MBC system, it is imperative
that they be able to adapt quickly and efficiently to (often constantly) changing
market conditions. For example, allocating and re-organising resource usage
equally well in times of peak demand as well as in times where units supplying
the commodity in question fail (i.e. representing a fall in supply). This test
demonstrates a simple shift in the demand of the market partway through a
single trial in order to quantify whether this desired adaptation occurs.

Specifically, for the first 10 trading periods the zip trial initially uses the
original supply and demand schedules shown in Figure 3.1, but then changes
for an additional 5 trading periods to use a schedule where the demand curve
has shifted upwards (Fig. B.11) — where $0.50 is added to each buyer agents’
limit price. The equilibrium price changes in this instance from $2.00 to $2.25,
and it is expected that the zip agents will quickly adapt and converge to this
new price. The trading statistic plots for this test are shown in Figures B.12 to
B.14.

As expected, the mean transaction price plot (Fig. B.12) shows a rapid re-

alignment towards the new equilibrium price, and this adaptation is confirmed

106

in the alpha (Fig. B.13) and profit dispersion (Fig. B.14) plots by the ‘blip’
starting on the 10th trading period as it takes the zip agents a couple of trading

periods to complete the adjustment.

400
375
350
325
300
275
280
225
200
175
150
125
1.00
075
050

Price

1.2 3 4 5 6 7 & 9 101
CQuantity

Figure B.11: Upward shifted demand curve on schedule shown in Figure 3.1,
where Py = $2.25.

107

Price
(o]
f=)
(=]

150

1.00

1 3 5 7 9 1M1 13 15
Day Nurrber

Figure B.12: Mean transaction prices, averaged over 50 ZIP trials, for a mid-
trial change in supply and demand curves from that shown in Figure 3.1 to that
shown in Figure B.11 (Py = $2.25). Format as for Fig. 3.2.

45

4t
35 |

Alpha

0 B

123 45 67 8 9101112131415

Day Murmber

Figure B.13: Smith’s alpha value, averaged over 50 zIP trials, for a mid-trial
change in supply and demand curves from that shown in Figure 3.1 to that
shown in Figure B.11 (Py = $2.25). Format as for Fig. 3.2.

108

Profit Dispersion
[
o
(]

Day Murrber

Figure B.14: Mean profit dispersion, averaged over 50 ZIP trials, for a mid-trial
change in supply and demand curves from that shown in Figure 3.1 to that
shown in Figure B.11 (P, = $2.25). Format as for Fig. 3.2.

B.2.4 Symmetric Supply and Demand Curves using the
NYSE Rule

Finally, use of the NYSE rule was made in order to see how it affected the
dynamics of the market. The symmetric supply and demand curves, with an
equilibrium price of $2.00, were used (Fig. 3.1). Briefly, the NYSE acts as an
improvement rule by stipulating that each bid or offer leading to a transaction
must be an improvement on the previous bid or offer until a deal goes through,
at which time the process starts again. The trading statistic plots for this test
are given in Figures B.15 through B.17.

It is clear from the mean transaction price (Fig. B.15) and the sample
transaction price time-series (Fig. B.17) plots that use of the NYSE rule is
hampering the performance of the market as after the 10 trading periods of the
trial, a full convergence to the equilibrium price of $2.00 had not been made.
This is due to the zIP agents not getting access to and thus adapting themselves
to bids or offers that are not necessarily an improvement over the previous quote
price (have ‘incomplete knowledge’ [20]) — the NYSE rule restricts the full range

of successful and unsuccessful quote prices from occurring in the market.

109

2580
§ 200 @ g, ..Q-ssEestlessg---8---0---0
o = n/_n_V—E—E’—‘“’_‘E_’H(_J
e & -.n...u-...,___n._.u
go--meoe@ees ;
1480 a
1.00

12 3 4 5 B 7 B 9 10
Day Nurrber

Figure B.15: Mean transaction prices, averaged over 50 ZIP trials using the NYSE
rule, for the supply and demand curves in Figure 3.1 (Py = $2.00). Format as
for Fig. 3.2.

Alpha

12 3 4 5 B 7 8 9 10
Day Murmber

Figure B.16: Smith’s alpha value, averaged over 50 zip trials using the NYSE
rule, for the supply and demand curves in Figure 3.1 (Py = $2.00). Format as
for Fig. 3.2.

110

300

250

Price

1 7 13 19 25 31 37 43

Transaction

Figure B.17: Transaction-price time series from one 10-day market Z1P trial with

the NYSE rule using the supply and demand curves in Figure 3.1 (P, = $2.00).

B.3 Evolutionary Optimisation of ZIP-Trading

Agent Parameter Sets

B.3.1 Zero Initial Conditions

Predictably, the sample transaction-price time series (Fig. B.18) and alpha
plot (Fig. B.19) indicate that when setting the agent adaptation parameters
to zero, the market is extremely volatile and no convergence is made to the
equilibrium price (i.e. the agents cannot adapt). After the zero parameter values
have evolved for 200 generations however, this situation improves considerably,
as illustrated by the plots of Figures B.20 and B.21 showing an even better
convergence to the equilibrium price than from the ‘easy’ initial conditions after
200 generations (Figures 3.19 and 3.20). The final generation elite genome for

this run has the following parameter vector V,e,o:

Viero = [0.381,0.194, 0.045, 0.005,0.209, 0.090, 0.012, 0.063]

On average the parameter values in the vector matched fairly closely those
found in the original results [16], and qualatively that of Viqs,. The final
recorded fitness value for this genome was 4.08, confirming the alpha (Fig. B.20)

111

and sample transaction price time-series (Fig. B.21) plots that indicated an even
better performing parameter set than that found after 200 generations with the
‘easy’ initial conditions. However, because Figure 3.16 shows that the fitness
values of these two evolutionary runs quickly reached to within the same fitness
range this improved parameter vector cannot be a reflection on the initial ‘zero’

starting conditions.

=1 I/l
| HW W Y L

Price
[hy]
[}

100 p

0&o

000

14 7 101316159 22 2528 31 34 57 40

Trangaction

Figure B.18: Transaction-price time series from one trial of the elite genome in

the first generation from ‘zero’ initial conditions.

112

Zero Gen=0

45
@ - _---0_
A0 F mee-oe@es T TTET RS Tt-em
35 L L‘—‘——_g,_/—'—'a_/_'_e—'_a\‘\n
= L .O=es_..O_
I S e
© 25 b
=
=
< 20t
15
0
5t
0
1 2 3 4 5 B
Day Mumber

Figure B.19: Smith’s alpha value, averaged over 50 zip trials, for the elite

genome in the first generation from ‘zero’ initial conditions.

Zero: Gen=200

250
200 00000 e ted T - T

Price
[hy]
[}

1 4 7 1013 16 19 22 25 28 31 34

Transaction

Figure B.20: Transaction-price time series from one trial of the elite genome in

the final generation from ‘zero’ initial conditions.

113

Zero: Gen=200

Day Mumber

Figure B.21: Smith’s alpha value, averaged over 50 zip trials, for the elite

genome in the final generation from ‘zero’ initial conditions.

B.3.2 Hard Initial Conditions

As mentioned in Section 3.4.4, the ‘hard’ parameter values are highly sub-
optimal and when used by the zip agents will, like the ‘zero’ parameters, produce
erratic market dynamics with little or no convergence to the equilibrium price
(Figures B.22 and B.23). However, although not desirable, the resulting market
dynamics are not quite as bad as for ‘zero’, with the alpha values (Fig. B.23)
for example being quantitatively lower. After the ‘hard’ parameters are evolved
for 200 generations (Figures B.24 and B.25), the much more stable equilibrating
behaviour as seen for the other ‘best’ evolutionary runs, results — in fact, their
similarity to the final generation plots with ‘zero’ initial conditions means that
they are not discussed further here. The final generation elite genome for this

run has the following parameter vector Vj,q,q:
Vhara = [0.473,0.573,0.213, 0.380, 0.200, 0.082, 0.012, 0.031]

While not quite as closely matching the final ‘hard’ parameter vector gained
after 200 generations in the original experiments [16] (with a few of the param-
eters having a difference in value of 0.150 or more), a very favourable weighted

alpha fitness score of 4.35 was attained, proving in no way that an inferior

114

genome was evolved in comparison to the ‘easy’ and ‘zero’ runs. This is per-
haps not surprising given that the Sy, up, pa, ¢ and ¢, (1st, 5th, 6th, 7th and
8th) parameters on the V.4 vector were quantitatively very similar to those on
the Viasy and V.epo vectors. The bigger parameter value differences (of about
0.2 to 0.5) on the other parameters shows that a larger learning rate, momentum
parameter and initial profit co-efficient can be favourable, and also that there is
quite a large subset of parameter vectors that are able to give good performance

when transplanted into the zip trading agents.

Hard: Gen=0

L b g L
N \/(V ¥y

Price
[hy]
o

1 4 7 1013 16 19 22 25 28 31 34

Transaction

Figure B.22: Transaction-price time series from one trial of the elite genome in

the first generation from ‘hard’ initial conditions.

115

Hard: Gen=0

45
a |
3 |
o |
pL A SN
20|
15 |
0} RS

Alpha

1 2 3 4 5 B
Day Murmber

Figure B.23: Smith’s alpha value, averaged over 50 zip trials, for the elite

genome in the first generation from ‘hard’ initial conditions.

Hard: Gen=200

Price

—_ (o]
i =)
o (=]
nﬁ_ﬂ

1 4 7 10 13 16 19 22 25 28 31 34

Transaction

Figure B.24: Transaction-price time series from one trial of the elite genome in

the final generation from ‘hard’ initial conditions.

116

Hard: Gen="200

Alpha

Day Murmber

Figure B.25: Smith’s alpha value, averaged over 50 zip trials, for the elite

genome in the final generation from ‘hard’ initial conditions.

117

Appendix C

Source Code

118

C.1 ZIP Simulation Classes

The simulation source code is decomposed into a number of well-defined classes.
A brief description accompanies each class, and each is comprehensively com-

mented.

C.1.1 ZIP_Agent.java

Description: Defines a ZIP trading agent. Adapts the agents profit margin in

response to successful and unsuccessful market quotes.

// Class: ZIP_Agent.java

import java.io.PrintStream;

import java.util.Random;

public class ZIP_Agent implements ZIP_Constants

{

// ZIP_AGENT PARAMETERS

// agent buyer or seller

public boolean blnAGNTtype;

// agent being active in market or not

public boolean blnAGNTactive;

// if agent is willing to trade at this price
public boolean blnAGNTwilling;

// allowed to trade at this price?

public boolean blnAGNTable;

// number of deals done
public int intAGNTnumdeals;

// the bottom line price for this agent
public double dblAGNTlimit;

// profit coeff in determining bid/offer price (GA PARAMETER)
public double dblAGNTprofit;

// coeff for changing profit over time (beta) (GA PARAMETER)
public double dblAGNTlearnrate;

// momentum in changing profit (GA PARAMETER)
public double dblAGNTmomentum;

// last change

public double dblAGNTlastchange;

// what the agent will actually bid

public double dblAGNTprice;

// how much commodity the agent has

public double dblAGNTquantity;

// how much money the agent has in the bank
public double dblAGNTmoney;

// actual gain

public double dblAGNTactualgain;

// theoretical gain

public double dblAGNTtheorgain;

// in determining average reward

public double dblAGNTsum;

// average reward

public double dblAGNTaverage;

// agent adaptation parameters

public double dblAGNT_lr_L = 0.10;

public double dblAGNT_lr_H = 0.40;
public double dblAGNT_mm_L = 0.00;
public double dblAGNT_mm_H = 0.10;
public double dblAGNT_pf_L = 0.05;
public double dblAGNT_pf_H = 0.30;
public double dblAGNT_tr_R = 0.05;
public double dblAGNT_tr_A = 0.05;

119

/

// AGNT_CALCPRICE: set the price of an agent from its limit and profit
// values (called by ZIP_Sim.SIM_init_day, AGNT_profit_alter)

public void AGNT_calcPrice()

{

dblAGNTprice = dblAGNTlimit * (1 + dblAGNTprofit);

// normalise to 1.d.p

dblAGNTprice = (Math.floor((dblAGNTprice * 100) + 0.5)) / 100;

// AGNT_INIT: intialise the common (buyer or seller) elements of an
// agent (called by ZIP_Agent.AGNT_init_buyer and AGNT_init_seller)
public void AGNT_init(boolean blnOutput, PrintStream psOUT, Random
random)

blnAGNTactive = true;

intAGNTnumdeals = 0;

// (random range [dblAGNT_lr_L, (dblAGNT_lr_L + dblAGNT_1lr_H)])
dblAGNTlearnrate = dblAGNT_lr_L + (random.nextDouble() *
dblAGNT_1lr_H);

dblAGNTmoney = 0.0;

dblAGNTsum = 0.0;

dblAGNTlastchange = 0.0;

// (random range [dblAGNT_mm_L, (dblAGNT_mm_L + dblAGNT_mm_H)])
dblAGNTmomentum = dblAGNT_mm_L + (random.nextDouble()

* dblAGNT_mm_H);

if (blnOutput)

{

psOUT.println(" profit = " + dblAGNTprofit + ", beta = "

+ dblAGNTlearnrate + ", momentum = " + dblAGNTmomentum +

", money = " + dblAGNTmoney);

}

¥

/== e

// AGNT_INIT_BUYER: initialise buyer agent specifics (called by
// ZIP_Sim.SIM_main)

public void AGNT_init_buyer(int intBuyer, boolean blnQutput,
PrintStream psOUT, Random random)

glnAGNTtype = BUY;

// initialise PROFIT VALUE (random range [dblAGNT_pf_L,

// (dblAGNT_pf_L + dblAGNT_pf_H)])

dblAGNTprofit = -1.0 * (dblAGNT_pf_L + (random.nextDouble()
* dblAGNT_pf_H));

if (blnOutput)

{
psOUT.print("ZIP_AGENT: BUYER " + intBuyer);
¥

// initialise common agent elements
AGNT_init(blnQOutput, psOUT, random);
}

/

// AGNT_INIT_SELLER: initialise seller agent specifics (called by
// ZIP_Sim.SIM_main)

public void AGNT_init_seller(int intSeller, boolean blnOutput,
PrintStream psOUT, Random random)

glnAGNTtype = SELL;

// initialise PROFIT VALUE (random range [dblAGNT_pf_L,
// (dblAGNT_pf_L + dblAGNT_pf_H)])

dblAGNTprofit = dblAGNT_pf_L + (random.nextDouble() x*
dblAGNT_pf_H);

if (blnOutput)

{
psOUT.print("ZIP_AGENT: SELLER " + intSeller);
}

// initialise common agent elements
AGNT_init(blnQOutput, psOUT, random);

120

// AGNT_WILLING_TRADE: returns boolean indicating whether agent will
// trade at this price (called by ZIP_Sim.SIM_main,

// ZIP_Sim.SIM_get_willing)

public boolean AGNT_willing_trade(double dblPrice)

{
// if BUYER agent
if (blnAGNTtype == BUY)

// if active and agents current bid price is >= to sellers offer
// price then set as willing
if ((blnAGNTactive) && (dblAGNTprice >= dblPrice))

{
blnAGNTwilling = true;

else

blnAGNTwilling = false;
}

}
// if SELLER agent
else if (blnAGNTtype == SELL)

// if active and agents current offer price is <= to buyers
// offer price then set as willing
if ((blnAGNTactive) && (dblAGNTprice <= dblPrice))

{
blnAGNTwilling = true;

else

blnAGNTwilling = false;

¥

}

return blnAGNTwilling;

¥

/== e e e

// AGNT_PROFIT_ALTER: update profit margin on basis of sale price

// using Widrow-Hoff style update with learning rate beta (called by
// ZIP_Agent.AGNT_shout_update_buyer and AGNT_shout_update_seller)
public void AGNT_profit_alter(int intAgent, boolean blnAgentType,
double dblPrice, boolean blnOutput, PrintStream psOUT,

int intStatus)

double dblPriceDiff;
double dblPriceChange;
double dblNewProfit;
String strAgentType = "";

if (blnAgentType)

{

strAgentType = "BUYER";
}

else

strAgentType = "SELLER";
}
if (blnOutput)

{

psOUT.println("ZIP_AGENT: " + strAgentType + " " + intAgent
+ ": Limit = " + dblAGNTlimit + ", Profit = " +
dblAGNTprofit + ", Price " + dblPrice);

// calculate price difference between last marker quote price

// and agents (current) price

dblPriceDiff = dblPrice - dblAGNTprice;

// CALCULATE PRICE CHANGE using momentum in changing profit, price
// difference, last change etc.

dblPriceChange = ((1.0 - dblAGNTmomentum) * dblAGNTlearnrate

* dblPriceDiff) + (dblAGNTmomentum * dblAGNTlastchange);

121

if (blnOutput)

{

psOUT.println("ZIP_AGENT: " + strAgentType + " " + intAgent +
": Last Change = " + dblAGNTlastchange +

", Price Difference = " + dblPriceDiff +

", Price Change = " + dblPriceChange);

¥

// make the price change the last change value for agent
dblAGNTlastchange = dblPriceChange;

// set new prices by altering profit margin (keep within bottom
// line price for agent)

dblNewProfit = ((dblAGNTprice + dblPriceChange) / dblAGNTlimit)
-1.0;

// (only going through here if there is a deal...)

if (blnAGNTtype == SELL)

{
if (dblNewProfit > 0.0)

dblAGNTprofit = dblNewProfit;
}

else
if (dblNewProfit < 0.0)

dblAGNTprofit = dblNewProfit;

}
}

// set the price of an agent from its limit and profit values
AGNT_calcPrice();
if (blnOutput)

{

psOUT.println("ZIP_AGENT: " + strAgentType + " " + intAgent +
": New Profit = " + dblAGNTprofit + ", New Price = "

+ dblAGNTprice);

psOUT.println();

// AGNT_SHOUT_UPDATE_BUYER: update strategy of buyer agent after a
// shout (called by ZIP_Sim.SIM_main, ZIP_Sim.SIM_trade)

public void AGNT_shout_update_buyer(int intBuyer,

boolean blnDealType, int intStatus, double dblPrice,

boolean blnOutput, PrintStream psOUT, Random random)

{
boolean blnAgentType = true;
double dblTargetPrice = 0.0;

if (blnOutput)

{

psOUT.println("ZIP_AGENT: BUYER " + intBuyer + ": Active = "
+ blnAGNTactive);

}

// IF A DEAL has taken place
if (intStatus == DEAL)

// if agents current bid price is >= deal price (bid price too
// high)

if (dblAGNTprice >= dblPrice)

{

// see if can get lower price by cutting bid price (hence
// raise profit margin)

dblTargetPrice = (dblPrice * (1.0 - (random.nextDouble()
* dblAGNT_tr_R))) - (random.nextDouble()

* dblAGNT_tr_A);

// (update profit margin on basis of sale price using

// Widrow-Hoff update with learning rate)
AGNT_profit_alter(intBuyer, blnAgentType, dblTargetPrice,
blnOutput, psOUT, intStatus);

}

122

else

// bid price too low so wouldn’t have got this deal...
if ((blnDealType == QOFFER) &&

(AGNT_willing_trade(dblPrice) == false) &&

% blnAGNTactive))

// ...so raise bid price (hence reducing profit)
dblTargetPrice = (dblPrice * (1.0 + (
random.nextDouble() * dblAGNT_tr_R))) +

(random.nextDouble() * dblAGNT_tr_A);

// (update profit margin on basis of sale price using

// Widrow-Hoff update with learning rate)
AGNT_profit_alter(intBuyer, blnAgentType, dblTargetPrice,
blnOutput, psOUT, intStatus);

}

}

3
// IF NO DEAL taken place
else

if (blnDealType == BID)

// if agents current bid price is <= deal price (bid price
// too low)
if ((dblAGNTprice <= dblPrice) && (blnAGNTactive))

// would have bid less and also lost the deal, so raise
// bid price (reduce profit)

dblTargetPrice = (dblPrice * (1.0 + (
random.nextDouble() * dblAGNT_tr_R))) +

(random.nextDouble() * dblAGNT_tr_A);

// (update profit margin on basis of sale price using

// Widrow-Hoff update with learning rate)
AGNT_profit_alter(intBuyer, blnAgentType, dblTargetPrice,
blnOutput, psOUT, intStatus);

// AGNT_SHOUT_UPDATE_SELLER: update strategy of seller agent after a
// shout (called by ZIP_Sim.SIM_main, ZIP_Sim.SIM_trade)

public void AGNT_shout_update_seller(int intSeller,

boolean blnDealType, int intStatus, double dblPrice,

boolean blnOutput, PrintStream psOUT, Random random)

i
double dblTargetPrice;
boolean blnAgentType = false;

if (blnOutput)

{

psOUT.println("ZIP_AGENT: SELLER " + intSeller + ": Active = "
+ blnAGNTactive);

}

// IF A DEAL has taken place
if (intStatus == DEAL)

// if agents current offer price <= deal price (offer too low)
if (dblAGNTprice <= dblPrice)

// see if can get more by raising offer price (try and

// increase profits next time around)

dblTargetPrice = (dblPrice * (1.0 + (random.nextDouble()
* dblAGNT_tr_R))) + (random.nextDouble()

* dblAGNT_tr_A);

AGNT_profit_alter(intSeller, blnAgentType, dblTargetPrice,
blnOutput, psOUT, intStatus);

else

123

// offer too high so wouldn’t have got this deal...
if ((blnDealType == BID) &%

(AGNT_willing_trade(dblPrice) == false) &&

% blnAGNTactive == true))

// ...so reduce offer price (decrease profit margin)
dblTargetPrice = (dblPrice * (1.0 - (

random.nextDouble() * dblAGNT_tr_R))) -

(random.nextDouble() * dblAGNT_tr_A);

AGNT_profit_alter(intSeller, blnAgentType, dblTargetPrice,
blnOutput, psOUT, intStatus);

3

}

}
// IF NO DEAL taken place
else

if (blnDealType == OFFER)

// if agents current bid price is >= deal price (offer too
// high)
if ((dblAGNTprice >= dblPrice) && (blnAGNTactive))

// would have asked for more and lost the deal, so
// reduce profit

dblTargetPrice = (dblPrice * (1.0 - (
random.nextDouble() * dblAGNT_tr_R))) - (
random.nextDouble() * dblAGNT_tr_A);
AGNT_profit_alter(intSeller, blnAgentType,
dblTargetPrice, blnQutput, psOUT, intStatus);

N Y

124

C.1.2 ZIP _Constants.java

Description: System wide constants.

// Class: ZIP_Exp_Control.java
public interface ZIP_Constants

{
// SYSTEM WIDE CONSTANTS

public static int MAX_N_DAYS = 30;
public static int MAX_TRADES = 100;
public static int TOT_TRADES = (MAX_N_DAYS % MAX_TRADES);
public static int MAX_BUYERS = 100;

public static int MAX_SELLERS = 100;

public static int MAX_AGENTS = 100;

// max no. of bid/offer fails before day’s trading closes
public static int MAX_FAILS = 100;

// max no. of units an agent can sell / buy

public static int MAX_UNITS = 3;

// max no. of supply or demand schedules in an experiment
public static int MAX_SCHED = 2;

public static int NULL_EQ = -1
public static int EQ_THEORY
public static int EQ_ACTUAL
// AGENT CONSTANTS

// agent type

public static boolean BUY = true;

// agent type

public static boolean SELL = false;
// deal/shout type

public static boolean BID = true;

// deal/shout type

public static boolean OFFER = false;
// status (shout accepted)

public static int DEAL = 1;

// status (shout rejected)

public static int NO_DEAL = 0;

// status (end day)

public static int END_DAY = 2;

}

0;
1;

125

C.1.3 ZIP Data _Day.java with GA Fitness Evaluation

Description: Records system day statistics, and for the GA calculates the

weighted alpha fitness score.

// Class: ZIP_Data_Day.java
import java.io.PrintStream;
public class ZIP_Data_Day implements ZIP_Constants

{

// SMITH’S ALPHA

ZIP_Day_Stat dblSTAT_alpha;

// QUANTITY

ZIP_Day_Stat dblSTAT_quant;

// EFFICIENCY

ZIP_Day_Stat dblSTAT_effic;

// PRICE

ZIP_Day_Stat dblSTAT_price;

// PROFIT DISPERSAL

ZIP_Day_Stat dblSTAT_pdisp;

// TRANSACTION PRICE VOLATILITY
ZIP_Day_Stat dblSTAT_volty;

// (used to dodge rounding errors on sqrt)
public static double SMALLREAL = 0.0000001;
public static int DD_ALPHA = 0;

public static int DD_QUANT
public static int DD_EFFIC
public static int DD_PRICE
public static int DD_PDISP
public static int DD_VOLTY
// STAT_ZERO: set everything to zero in one Real-stat structure

// (called by ZIP_Data_Day.data_day_init)

public void stat_zero(ZIP_Day_Stat day_stat)

// initialise
day_stat = new ZIP_Day_Stat();
day_stat.dblSum = 0.0;
day_stat.dblSumSq = 0.
day_stat.intN = 0

0;

// DATA_DAY_INIT: initialise day data (called by ZIP_Sim.SIM_main)
public void data_day_init()

{

dblSTAT_alpha
dblSTAT_quant
dblSTAT _effic

new ZIP_Day_Stat();
new ZIP_Day_Stat();
new ZIP_Day_Stat();
dblSTAT_price = new ZIP_Day_Stat();
dblSTAT _pdisp new ZIP_Day_Stat();
dblSTAT_volty = new ZIP_Day_Stat();
stat_zero(dblSTAT_alpha);
stat_zero(dblSTAT_quant);
stat_zero(dblSTAT_effic);
stat_zero(dblSTAT_price);
);
)

stat_zero(dblSTAT_pdisp
stat_zero(dblSTAT_volty

3

// DATA_DAY_UPDATE: update day data (called by ZIP_Sim.SIM_main)
public void data_day_update(int intNoDeals, double dblSumPrice,
double dblAlpha, double dblPDisp, double dblEffic,

double dblPriceDiff)

if (intNoDeals > 0)
{

126

dblSTAT price
dblSTAT _price
(dblSumPrice
dblSTAT _price

double TMPdblVolty = Math.sqrt(dblPriceDiff / intNoDeals);
dblSTAT _volty.
dblSTAT _volty.
dblSTAT _volty.
dblSTAT_alpha.
dblSTAT_alpha.
dblSTAT_alpha.
dblSTAT effic.
dblSTAT effic.
dblSTAT effic.
dblSTAT_quant.
dblSTAT_quant.
dblSTAT_quant.
dblSTAT _pdisp.
dblSTAT pdisp.
dblSTAT pdisp.

.dblSum += (dblSumPrice / intNoDeals);
.dblSumSq += ((dblSumPrice / intNoDeals) *

/ intNoDeals));
.intN++;

dblSum += TMPdblVolty;

dblSumSq += (TMPdblVolty * TMPdblVolty);
intN++;

dblSum += dblAlpha;

dblSumSq += (dblAlpha * dblAlpha);
intN++;

dblSum += dblEffic;

dblSumSq += (dblEffic * dblEffic);
intN++;

dblSum += intNoDeals;

dblSumSq += (intNoDeals * intNoDeals);
intN++;

dblSum += dblPDisp;

dblSumSq += (dblPDisp * dblPDisp);
intN++;

// DATA_DAY_STATS: output mean plus and minus one standard deviation
// (called by ZIP_Sim.SIM_main)

public void data_day_stats(String strField, double[] TMPdblSum,
double[] TMPdblSumSq, int[] TMPintN, int intNoDays, int intExpNo,
double[] dbl_Mean, double[] dbl_miSD, double[] dbl_p1SD,

PrintStream psDAY)

{
psDAY.println(" " + strField + " (MEAN) n=" + intExpNo);
for (int intDayNo = 0; intDayNo < intNoDays; intDayNo++)

{

psDAY.println((intDayNo + 1) + " " + (TMPdblSum[intDayNo]
/ TMPintN([intDayNo]));

dbl_Mean[intDayNo] += (TMPdblSum[intDayNo] /
TMPintN[intDayNo]);

¥
if (intExpNo > 0)
{

psDAY.println(" " + strField + " (-S.D.) n=" + intExpNo);
for (int intDayNo = 0; intDayNo < intNoDays; intDayNo++)

{

double TMPdblMean = TMPdblSum[intDayNo] / TMPintN[intDayNo];
double TMPdblMeanSq = TMPdblMean * TMPdblMean;

double TMPdblDiff (TMPdblSumSq[intDayNo] /
TMPintN[intDayNo]) - TMPdblMeanSq;

if (TMPdblDiff < SMALLREAL)

TMPdb1Diff = 0.0;
}

psDAY.println((intDayNo + 1) + " " + (TMPdblMean -
Math.sqrt(TMPAdblDiff)));

dbl_m1SD[intDayNo] += (TMPdblMean -

Math.sqrt(TMPdblDiff));

}

psDAY.println(" " + strField + " (+S.D.) n=" + intExpNo);
for (int intDayNo = 0; intDayNo < intNoDays; intDayNo++)

{

double TMPdblMean = TMPdblSum[intDayNo] / TMPintN[intDayNol];
double TMPdblMeanSq = TMPdblMean * TMPdblMean;

double TMPdblDiff = (TMPdblSumSq[intDayNo] /
TMPintN[intDayNo]) - TMPdblMeanSq;

if (TMPdblDiff < SMALLREAL)

TMPdblDiff = 0.0;
}

psDAY.println((intDayNo + 1) + " " + (TMPdblMean +

127

Math.sqrt(TMPAdblDiff)));
dbl_p1SD[intDayNo] += (TMPdblMean +
Math.sqrt(TMPAdblDiff));

1

1

//

// DATA_DAY_ALPHA_FITNESS: used to calculate GA fitness value which is
// a weighted n-day combination of mean alpha parameter values.

// (called by ZIP_Sim.SIM_main)

public double data_day_alpha_fitness(double[] TMPdblSum,

%nt[] TMPintN)

// day 1 has a weighting of 1.75

double dblALPHA_dayl = (TMPdblSum[0] / TMPintN[0]) * 1.75;
// day 2 has a weighting of 1.5

double dblALPHA_day2 = (TMPdblSum[1] / TMPintN[1]) * 1.5;
// day 3 has a weighting of 1.25

double dblALPHA_day3 = (TMPdblSum[2] / TMPintN[2]) * 1.25;
// days 4, 5 and 6 have a weighting of 1.0

double dblALPHA_day4 = TMPdblSum[3] / TMPintN[3];

double dblALPHA_day5 TMPdblSum[4] / TMPintN[4];

double dblALPHA_day6 TMPdblSum[5] / TMPintN[5];

double dblExpFitness = (dblALPHA_dayl + dblALPHA_day2

+ dblALPHA_day3 + dblALPHA_day4 + dblALPHA_day5

+ dblALPHA _day6) / 7.5;

return dblExpFitness;

// data type for stat sum and sum of squares, used in calculating mean
// and s.d. (used by ZIP_Data_Day)
class ZIP_Day_Stat implements ZIP_Constants

{
public int intN;

public double dblSum;
public double dblSumSq;

128

C.1.4 ZIP_Data_Trade.java

Description: Defines a structure for recording the details of a single trade: the
transaction price, whether the quote was a bid or an offer, and what the theo-
retical and actual equilibrium prices were at the time of the trade.

// Class: ZIP_Data_Trade.java
public class ZIP_Data_Trade implements ZIP_Constants

// price at which deal succeeds
public double dblTDATdeal_price;

// type of deal accepted (bid or offer)
public boolean blnTDATdeal_type;

// theoretical equilibrium price
public double dblTDATtheor_eq_price;
// theoretical equilibrium quantity
public int intTDATtheor_eq_quant;

// actual equilibrium price

public double dblTDATactual_eq_price;
// actual equilibrium quantity
public int intTDATactual_eq_quant;

}

129

C.1.5 ZIP _Exp_Control.java

Description: Reads in experiment control parameters and supply / demand
schedule data.

// Class: ZIP_Exp_Control.java
import java.io.PrintStream;
public class ZIP_Exp_Control implements ZIP_Constants

{

// ZIP_Exp_Control PARAMETERS

// id characters for output files
public String strEXPCid;

// number of trading periods to run for
public int intEXPCno_days;

// minimum number of trades per day
public int intEXPCmin_trades;

// maximum number of trades per day
public int intEXPCmax_trades;

// 0 = ZIP, 1 = ZI-C

public boolean blnEXPCrandom;

// 0 = nyse off, 1 = nyse on

public boolean blnEXPCnyse;

// number of demand schedules
public int intEXPCno_ds;

// number of supply schedules

public int intEXPCno_ss;

// details of ds’s

public ZIP_Sched_SD[] EXPCds = new ZIP_Sched_SD[MAX_SCHED];

// details of ss’s

public ZIP_Sched_SD[] EXPCss = new ZIP_Sched_SD[MAX_SCHED];

// index of currently active ds

public int intEXPCds;

// index of currently active ss

public int intEXPCss;

ZIP_Exp_Params expParams;

]/ e
// EXPC_IN: get control file data (called by: ZIP_Sim.SIM_main)
public void EXPC_in(boolean blnOutput, PrintStream psOUT)

{

expParams = new ZIP_Exp_Params();

// get strEXPCid

strEXPCid = expParams.strEXPCid;

// get intEXPCno_days

intEXPCno_days = expParams.intEXPCno_days;

if ((intEXPCno_days < 1) || (intEXPCno_days > MAX_N_DAYS))

psOUT.println("FAIL: # trading days must be in range {1,...,"
+ MAX_N_DAYS + "}");

System.out.println(

"FAIL: # trading days must be in range {1,...,"
+ MAX_N_DAYS + "}");

System.exit(0);

¥

// get intEXPCmin_trades

intEXPCmin_trades = expParams.intEXPCmin_trades;
if ((intEXPCmin_trades < 1) ||

(intEXPCmin_trades > MAX_TRADES))

{

psOUT.println("FAIL: min # trades must be in range {1,...,"
+ MAX_TRADES + "}");

System.out.println(

"FAIL: min # trades must be in range {1,...,"

+ MAX_TRADES + "}");

System.exit(0);

T

// get intEXPCmax_trades

130

intEXPCmax_trades = expParams.intEXPCmax_trades;

if ((intEXPCmax_trades < intEXPCmin_trades) ||
(intEXPCmax_trades > MAX_TRADES))

{

psOUT.println("FAIL: max # trades must be in range {"

+ intEXPCmin_trades + ",...," + MAX_TRADES + "}");
System.out.println("FAIL: max # trades must be in range {"
+ intEXPCmin_trades + ",...," + MAX_TRADES + "}");
System.exit(0);

}

// get blnEXPCrandom

blnEXPCrandom = expParams.blnEXPCrandom;

// get b1lnEXPCnyse

blnEXPCnyse = expParams.blnEXPCnyse;

// get intEXPCno_ds

intEXPCno_ds = expParams.intEXPCno_ds;

if ((intEXPCno_ds < 1) || (intEXPCno_ds > MAX_SCHED))

psOUT.printlin(

"FAIL: # demand schedules must be in range {1,...,"
+ MAX_SCHED + "}");

System.out.println(

"FAIL: # demand schedules must be in range {1,...,"
+ MAX_SCHED + "}");

System.exit(0);

// get intEXPCno_ss
intEXPCno_ss = expParams.intEXPCno_ss;

if ((intEXPCno_ss < 1) || (intEXPCno_ss > MAX_SCHED))

psOUT.printlin(

"FAIL: # supply schedules must be in range {1,...,
+ MAX_SCHED + "}");

System.out.println(

"FAIL: # supply schedules must be in range {1,...,"
+ MAX_SCHED + "}");

System.exit(0);

// output control file parameter values to the log file
if (blnOutput)

{

psOUT.println();

psOUT.println("ZIP_EXP_CONTROL: ID string: " + strEXPCid);
psOUT.println("ZIP_EXP_CONTROL: Number of days: "

+ intEXPCno_days);

psOUT.println(

"ZIP_EXP_CONTROL: Minimum number of trades per day: "
+ intEXPCmin_trades);

psOUT.println(

"ZIP_EXP_CONTROL: Maximum number of trades per day: "
+ intEXPCmax_trades);

if (blnEXPCrandom == true)

{
psOUT.println("ZIP_EXP_CONTROL: Random (ZI-C) traders");
}

else

psOUT.printlin(
"ZIP_EXP_CONTROL: Intelligent (ZIP) traders");

}

if (blnEXPCnyse == true)

{

psOUT.println("ZIP_EXP_CONTROL: NYSE trading rules");
}

else

psOUT.println("ZIP_EXP_CONTROL: No NYSE trading rules");
}

psOUT.println("ZIP_EXP_CONTROL: Number of demand schedules: "

131

+ intEXPCno_ds);

psOUT.println("ZIP_EXP_CONTROL: Number of supply schedules: "
+ intEXPCno_ss);

psOUT.println();

¥

// get demand schedules

for (int intSched = 0; intSched < intEXPCno_ds; intSched++)
{

if (blnOutput)

{
psOUT.println("ZIP_EXP_CONTROL: Demand schedule "
+ intSched);

// initialise array

EXPCds[intSched] = new ZIP_Sched_SD();

ZIP_Sched_SD s = expParams.EXPCds[intSched];
EXPC_read_schedule(EXPCds[intSched], s, blnQOutput, psOUT);

// set index of currently active demand schedule to 0
intEXPCds = 0;

EXPCds[intEXPCds] .intSDSHfirst_day = 0;

// get supply schedules

for (int intSched = 0; intSched < intEXPCno_ss; intSched++)

if (blnOutput)

{

psOUT.println("ZIP_EXP_CONTROL: Supply schedule "
+ intSched);

}

// initialise array

EXPCss[intSched] = new ZIP_Sched_SD();

ZIP_Sched_SD s = expParams.EXPCss[intSched];
EXPC_read_schedule(EXPCss[intSched], s, blnQOutput, psOUT);

// set index of currently active supply schedule to 0
intEXPCss = 0;
EXPCds[intEXPCss] .intSDSHfirst_day = 0;

// EXPC_READ_SCHEDULE: read supply or demand schedule (called by

// ZIP_Exp_Control.EXPC_in)

public void EXPC_read_schedule(ZIP_Sched_SD schedule, ZIP_Sched_SD s,
boolean blnOutput, PrintStream psQUT)

{

// get intSDSHno_agents
schedule.intSDSHno_agents = s.intSDSHno_agents;
if ((schedule.intSDSHno_agents < 1) ||

(schedule.intSDSHno_agents > MAX_AGENTS))

{

psOUT.println("FAIL: # agents must be in range {1,...,"

+ MAX_AGENTS + "}");

System.out.println("FAIL: # agents must be in range {1,...,
+ MAX_AGENTS + "}");

System.exit(0);

}

// get intSDSHfirst_day

schedule.intSDSHfirst_day = s.intSDSHfirst_day;

// get intSDSHlast_day

schedule.intSDSHlast_day = s.intSDSHlast_day;

if (schedule.intSDSHlast_day < schedule.intSDSHfirst_day)

{

psOUT.println("FAIL: Last Day " + schedule.intSDSHlast_day
+ " < First Day " + schedule.intSDSHfirst_day);
System.out.println(

"FAIL: Last Day " + schedule.intSDSHlast_day

+ " < First Day " + schedule.intSDSHfirst_day);
System.exit(0);

132

}

// get blnSDSHcan_shout

schedule.blnSDSHcan_shout = s.blnSDSHcan_shout;

// output control file parameter values to the log file
if (blnOutput)

{

psOUT.println("ZIP_EXP_CONTROL: No. of agents: "
+ schedule.intSDSHno_agents);

psOUT.println("ZIP_EXP_CONTROL: First day: "

+ schedule.intSDSHfirst_day);

psOUT.println("ZIP_EXP_CONTROL: Last day: "

+ schedule.intSDSHlast_day);

if (schedule.blnSDSHcan_shout)

ésDUT.println("ZIP_EXP_CONTROL: Traders can shout");
glse

psOUT.println("ZIP_EXP_CONTROL: Traders cannot shout");
%sUUT.println();

// get intAGSHno_units

for (int intAgent = 0; intAgent < schedule.intSDSHno_agents;

intAgent++)

// initialise array

schedule.SDSHagent [intAgent] = new ZIP_Sched_Agent();
schedule.SDSHagent [intAgent] .intAGSHno_units =
s.SDSHagent [intAgent] . intAGSHno_units;

if ((schedule.SDSHagent[intAgent].intAGSHno_units < 1)
(schedule.SDSHagent[intAgent].intAGSHno_units >
MAX_UNITS))

psOUT.println("FAIL: # units must be in range {1,..., "
+ MAX_UNITS + "} ");

System.out.println("FAIL: # units must be in range {1,...

+ MAX_UNITS + "} ");
System.exit(0);

¥
if (blnOutput)

{

psOUT.println("ZIP_EXP_CONTROL: Agent " + intAgent +
" number of units: "

+ schedule.SDSHagent [intAgent] .intAGSHno_units);

}

// get dblAGSHlimit (loop through units)

for (int intUnit = 0; intUnit <
schedule.SDSHagent [intAgent] .intAGSHno_units;
intUnit++)

schedule.SDSHagent [intAgent] .dbl1AGSHlimit [intUnit] =
s.SDSHagent [intAgent] .db1AGSHlimit [intUnit];

if (schedule.SDSHagent[intAgent].dblAGSHlimit [intUnit]
<0.0)

{

psOUT.println("FAIL: negative price " +
s.SDSHagent [intAgent] .dbl1AGSHlimit [intUnit]);
System.out.println("FAIL: negative price " +
s.SDSHagent [intAgent] .dbl1AGSHlimit [intUnit]);
System.exit(0);

}

if (blnOutput)
{
psOUT.println("ZIP_EXP_CONTROL: Limit price for unit "

+ intUnit + ": "
+ schedule.SDSHagent [intAgent] .dbl1AGSH1limit [intUnit]);

}

133

¥
¥
if (blnOutput)

{
psOUT.println();

134

C.1.6 ZIP Exp_Params.java

Description: The ZIP experimental parameters.

// Class: ZIP_Exp_Params.java

// (used by ZIP_Exp_Control)
public class ZIP_Exp_Params

{

// ZIP_Control_File PARAMETERS
public String strEXPCid;
public int intEXPCno_days;
public int intEXPCmin_trades;
public int intEXPCmax_trades;
public boolean blnEXPCrandom;
public boolean blnEXPCnyse;
public int intEXPCno_ds;
public int intEXPCno_ss;
public ZIP_Sched_SD[] EXPCds;
public ZIP_Sched_SD[] EXPCss;

public ZIP_Exp_Params()

gtrEXPCid = "ziplhi";

intEXPCno_days = 10;

intEXPCmin_trades = 9;

intEXPCmax_trades = 9;

blnEXPCrandom = false;

blnEXPCnyse = false;

intEXPCno_ds = 1;

intEXPCno_ss = 1;

EXPCds = new ZIP_Sched_SD[intEXPCno_ds];
EXPCss = new ZIP_Sched_SD[intEXPCno_ss];
for (int intSchedule = 0; intSchedule < intEXPCno_ds; intSchedule++)

{

EXPCds[intSchedule] = new ZIP_Sched_SD();

¥

for (int intSchedule = 0; intSchedule < intEXPCno_ss; intSchedule++)
{

EXPCss[intSchedule] = new ZIP_Sched_SD();

¥

// set values for all demand schedule parameters
EXPCds[0] .intSDSHno_agents = 11;
EXPCds[0] .intSDSHfirst_day 0;
EXPCds[0] .intSDSHlast_day = 9;
EXPCds [0] .b1nSDSHcan_shout = true;
ZIP_Sched_Agent[] dsAgent = EXPCds[0].SDSHagent;
int intNoAgents = EXPCds[0].intSDSHno_agents;
for (int intAgent = 0; intAgent < intNoAgents; intAgent++)

// initialise array

dsAgent [intAgent] = new ZIP_Sched_Agent();
dsAgent[intAgent].intAGSHno_units = 1;

}

dsAgent [0] .dblAGSH1imit[0] = 3.25; //3.25; // 2.00; // 3.25;
dsAgent[1].dblAGSH1imit[0] = 3.00; //3.00; // 2.00; // 3.00;
dsAgent [2] .dblAGSH1imit[0] = 2.75; //2.75; // 2.00; // 2.75;
dsAgent [3] .dblAGSH1imit[0] = 2.50; //2.50; // 2.00; // 2.50;
dsAgent [4] .db1AGSH1imit[0] = 2.25; //2.25; // 2.00; // 2.25;
dsAgent [5] .db1AGSH1imit[0] = 2.00; //2.00;

dsAgent [6] .dblAGSH1imit[0] = 1.75; //1.75; // 2.00; // 1.75;
dsAgent [7].dblAGSH1imit[0] = 1.50; //1.50; // 2.00; // 1.50;
dsAgent [8] .db1AGSH1imit[0] = 1.25; //1.25; // 2.00; // 1.25;
dsAgent [9] .db1AGSH1imit[0] = 1.00; //1.00; // 2.00; // 1.00;

dsAgent[10] .db1AGSH1imit [0] = 0.75; //0.75; // 2.00; // 0.75;
// set values for all supply schedule parameters

EXPCss[0] .intSDSHno_agents = 11;

EXPCss[0] .intSDSHfirst_day = O;

EXPCss[0] .intSDSHlast_day = 9;

135

EXPCss[0] .b1nSDSHcan_shout = true;
ZIP_Sched_Agent[] ssAgent = EXPCss[0].SDSHagent;

intNoAgents = EXPCss[0].intSDSHno_agents;
for (int intAgent = 0; intAgent < intNoAgents; intAgent++)

// initialise array
ssAgent [intAgent] = new ZIP_Sched_Agent();
ssAgent [intAgent] .intAGSHno_units = 1;

¥
ssAgent [0] .db1AGSH1imit [0]

= 0.75; // 0.75; // 0.50; // 2.00;
ssAgent[1] .db1AGSH1imit[0] = 1.00; // 1.00; // 0.50; // 2.00;
ssAgent [2] .db1AGSH1imit[0] = 1.25; // 1.25; // 0.50; // 2.00;
ssAgent [3] .db1AGSH1imit[0] = 1.50; // 1.50; // 0.50; // 2.00;
ssAgent [4] .db1AGSHlimit[0] = 1.75; // 1.75; // 0.50; // 2.00;
ssAgent [5] .db1AGSH1imit[0] = 2.00; // 2.00; // 0.50; // 2.00;
ssAgent [6] .db1AGSH1imit[0] = 2.25;
ssAgent [7] .db1lAGSH1imit[0] = 2.50;
ssAgent [8] .dblAGSH1imit [0] = 2.75;
ssAgent [9] .db1AGSH1imit[0] = 3.00;

ssAgent [10] .db1AGSH1imit [0] = 3.25;
/*
// set values for all demand schedule parameters
EXPCds[1].intSDSHno_agents 11;
EXPCds[1].intSDSHfirst_day 10;
EXPCds[1].intSDSHlast_day = 14;
EXPCds[1] .b1nSDSHcan_shout true;
ZIP_Sched_Agent[] dsAgentl = EXPCds[1].SDSHagent;
int intNoAgentsl = EXPCds[1].intSDSHno_agents;
for (int intAgent = 0; intAgent < intNoAgentsl; intAgent++)

// initialise array
dsAgent1[intAgent] = new ZIP_Sched_Agent();
dsAgenti[intAgent].intAGSHno_units = 1;

}
dsAgent1[0] .dblAGSHlimit [0]

.75; //3.25; // 2.00; // 3.25;
dsAgent1[1] .dblAGSHlimit [0] .50; //3.00; // 2.00; // 3.00;
dsAgent1[2] .dblAGSH1limit [0] .25; //2.75; // 2.00; // 2.75;
dsAgent1[3].dblAGSHlimit [0] .00; //2.50; // 2.00; // 2.50;
dsAgent1[4] .db1AGSH1imit [0] .75; //2.25; // 2.00; // 2.25;

dsAgent1[5] .dblAGSHlimit [0]
dsAgent1[6] .dbl1AGSH1imit [0] 1
dsAgent1[7] .dblAGSHlimit [0] .00; //1.50; // 2.00; // 1.
dsAgent1[8] .dbl1AGSH1imit [0] .75; //1.25; // 2.00; // 1.25;
dsAgent1[9] .dblAGSH1imit [0] .50; //1.00; // 2.00; // 1.00;
dsAgent1[10] .dblAGSHlimit[0] = 1.25; //0.75; // 2.00; // 0.75;
*/

}

}

.60; //2.00;
.25; //1.75; // 2.00; //

FENNNDNDWWWW

136

C.1.7 ZIP_GA.java

Description: The GA used to evolve the ZIP trading agent parameter sets.

// Class: ZIP_GA.java

// ALGORITHM:

// £ill population with random values

// for n times round generation loop

// evaluate fitness of all genomes in the population
// select preferentially the fitter ones as parents
// for <intPopSize> times round repro loop

// pick 2 from parental pool

// recombine to make 1 offspring

// mutate the offspring

// end repro loop

// throw away parental generation and replace with offspring
// end generation loop

import java.io.FileOutputStream;

import java.io.PrintStream;

import java.text.DecimalFormat;

import java.util.Random;

public class ZIP_GA

{

PrintStream psDAY, psTRA, psGA, psGEN;

// genome consists of eight real-valued parameters
int intGenSize 8;

int intPopSize 30;

public static int ZERO = O;
public static int EASY = 1;
public static int HARD = 2;

public void GA(int intGARun, String strInitConds)
{

Random random = new Random();

//random.setSeed(500);

String strFileNamel;

String strFileName2;

double dblPop[]l[] = new doublel[intGenSize] [intPopSize];

double dblNewPop[]l[] = new double[intGenSize] [intPopSize];
double dblFitnessScore[] = new double[intPopSizel;

double dblFittestGen[] = new double[intGenSize];

double dblCrossoverProb = 0.125;

double dblMutationProb = 0.3;

int intNoOfGens = 200;

int intGen = 1;

// number of ZIP_Sim experiments to carry out for each individual
int intNoExps = 50;

int intInitConds = EASY;

strFileNamel = "ZIP_GA_EASY_ELITE_GEN_exp" + intGARun + ".txt";
strFileName2 = "ZIP_GA_EASY_POP_SCORES_exp" + intGARun + ".txt";

if (strInitConds.equals("zero"))

intInitConds = ZEROD;
strFileNamel = "ZIP_GA_ZERO_ELITE_GEN_exp" + intGARun + ".txt";
strFileName2 = "ZIP_GA_ZERO_POP_SCORES_exp" + intGARun + ".txt";

}
else if (strInitConds.equals("hard"))

intInitConds = HARD;
strFileNamel = "ZIP_GA_HARD_ELITE_GEN_exp" + intGARun + ".txt";
strFileName2 = "ZIP_GA_HARD_POP_SCORES_exp" + intGARun + ".txt";

}
try

psGA = new PrintStream(new FileOutputStream(strFileNamel));
psGEN = new PrintStream(new FileOutputStream(strFileName2));

catch(Exception exception)

137

{

System.out.println("IOException: " + exception);
System.exit(0);
}

psGA.println(strInitConds + " initial conditiomns");
psGA.println(

"LR_MIN LR_MAX MM_MIN MM_MAX PR_MIN PR_MAX TR_R TR_A"
+ " GEN BEST FITNESS");

try

// initialise file to write day data to

psDAY = new PrintStream(new FileQutputStream(
"ZIP_DAY_exp" + intGARun + ".txt"));

//+ "_gen" + intGen

// initialise file to write trade data to
psTRA = new PrintStream(new FileQutputStream(
"ZIP_TRA_exp" + intGARun + ".txt"));
//"_gen" + intGen +

catch(Exception exception)

{

System.out.println("IOException: " + exception);
System.exit(0);
}

//

// FILL POPULATION WITH INITIAL PARAMETER VALUES

// find initial parameter values for hard initial population

// genomes (range [0.00, 0.25])

double dblHardRandl = random.nextDouble() * 0.25;

// (range [0.75, 1.00])

double dblHardRand2 = (random.nextDouble() * 0.25) + 0.75;

// (the whole population starts with the same ’easy’, ’zero’ or

// ’hard’ values)
for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)
{
if (intInitConds == ZERO)

dblPop[0] [intPopPos]
dblPop[1] [intPopPos]
dblPop[2] [intPopPos]
dblPop[3] [intPopPos]
dblPop[4] [intPopPos]
dblPop[5] [intPopPos]
dblPop[6] [intPopPos]
dblPop[7] [intPopPos]

[| 1 1 T [R 1}
[eReNeoRoNoNoNoNol
[eNeoNoNoNoNoloNo]

}
else if (intInitConds == EASY)

dblPop[0] [intPopPos] = 0.10;
dblPop[1] [intPopPos] = 0.40;
dblPop[2] [intPopPos] = 0.00;
dblPop[3] [intPopPos] = 0.10;
dblPop[4] [intPopPos] = 0.05;
dblPop[5] [intPopPos] = 0.30;
dblPop[6] [intPopPos] = 0.05;
dblPop[7] [intPopPos] = 0.05;

}

else if (intInitConds == HARD)
{

dblPop[0] [intPopPos]

= 0.75;
dblPop[1] [intPopPos] = dblHardRandl;
dblPop[2] [intPopPos] = 0.75;
dblPop[3] [intPopPos] = dblHardRandl;
dblPop[4] [intPopPos] = 0.75;
dblPop[5] [intPopPos] = dblHardRandl;
dblPop[6] [intPopPos] = dblHardRand2;

138

dblPop[7] [intPopPos] = dblHardRand2;
}

}
}

//

// EVALUATE FITNESS OF GENOMES IN POPULATION

dblFitnessScore = fitness_function(dblPop, dblFitnessScore,
intNoExps, random, intGen, intGARun);

e ———
// (OUTPUT GA GENERATION DATA)

System.out.print(".");

if ((intGen % 10) == 0)

{

System.out.println();

// (set to a high value as minimising)

double dblFittestScore = 100000.0;

// identify fittest genome for output purposes (and for elitism)
for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

{
// (MINIMISING HERE)
if (dblFitnessScore[intPopPos] < dblFittestScore)

{
dblFittestScore = dblFitnessScore[intPopPos];

for (int intGenPos = 0; intGenPos < intGenSize;
intGenPos++)

dblFittestGen[intGenPos] = dblPop[intGenPos] [intPopPos];

¥

¥

}

DecimalFormat df = new DecimalFormat("0.00000");

// output fittest genome to console

for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

{
psGA.print(df.format(dblFittestGen[intGenPos]) + " ");

psGA.println(intGen + " " + dblFittestScore);
// output the entire population to a different file
for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

{
PsSGEN.print (dblFitnessScore[intPopPos] + " ");

psGEN.println();

[/ mm oo e e e o oo
// SELECT PREFERENTIALLY FITTER GENOMES AS PARENTS

double[] dblGenomel = new double[intGenSize];

double[] dblGenome2 = new double[intGenSize];

double[] dblGenome3 = new double[intGenSize];

//

// REPRODUCTION LOOP (for intPopSize times)

// create a new population

for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

// randomly select three (unique) genomes from existing

// population

// generate a first random genome selection

int intSelectedGenl = random.nextInt(intPopSize);

int intSelectedGen2 = intSelectedGenl;

// generate a second random genome selection not the same as
// the first

ghile (intSelectedGen2 == intSelectedGenl)

intSelectedGen2 = random.nextInt(intPopSize);

}

139

int intSelectedGen3 = intSelectedGenl;

// generate a third random genome selection not the same as the
// first two

while (intSelectedGen3 == intSelectedGenl)

{
intSelectedGen3 = intSelectedGen2;
while (intSelectedGen3 == intSelectedGen2)

intSelectedGen3 = random.nextInt(intPopSize);

}

}

// get the randomly selected genomes from the population

for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

{

dblGenomel[intGenPos]
dblGenome2[intGenPos]
dblGenome3[intGenPos]

dblPop[intGenPos] [intSelectedGenl];
dblPop[intGenPos] [intSelectedGen2];
dblPop[intGenPos] [intSelectedGen3];

// identify the fittest two (become parents) of these three

// (discard most unfit)

// fittest parent genome becomes Vmom, other parent genome Vdad
double dblFitnessl = dblFitnessScore[intSelectedGenl];

double dblFitness2 dblFitnessScore[intSelectedGen2] ;

double dblFitness3 dblFitnessScore[intSelectedGen3];

double dblMom = 100000.0;

double dblDad = 100000.0;

if (dblFitnessl < dblMom)

{
dblMom = dblFitnessli;
if (dblFitness2 < dblMom)

dblMom = dblFitness2;
}

if (dblFitness3 < dblMom)
dblMom = dblFitness3;
¥

}

int intMaPos 0;

int intPaPos = 0;

// if dblFitnessl was the fittest
if (dblFitnessl == dblMom)

intMaPos = intSelectedGenl;
// identify fittest between dblFitness2 and dblFitness3
if (dblFitness2 < dblFitness3)

{
dblDad = dblFitness2;
intPaPos = intSelectedGen2;

else

dblDad = dblFitness3;
intPaPos = intSelectedGen3;
}

}
// if dblFitness2 was the fittest
else if (dblFitness2 == dblMom)

intMaPos = intSelectedGen2;
// identify fittest between dblFitnessl and dblFitness3
if (dblFitnessl < dblFitness3)

dblDad = dblFitnessl;
intPaPos = intSelectedGenl;

else

dblDad = dblFitness3;
intPaPos = intSelectedGen3;
}

T
// if dblFitness3 was the fittest
else

140

{

intMaPos = intSelectedGen3;

// identify fittest between dblFitnessl and dblFitness2
if (dblFitnessl < dblFitness2)

dblDad = dblFitnessli;
intPaPos = intSelectedGenl;

else

dblDad = dblFitness2;
intPaPos = intSelectedGen2;
}

}

// CROSSOVER: recombine to make 1 offspring

// begin by copying the first element of the Ma genome into
// new Pop

dblNewPop[0] [intPopPos] = dblPop[0] [intMaPos];

boolean blnParent = true;

// uniform recombination of ma and pa genomes

// (with probability dblCrossoverProb)

for (int intGenPos = 1; intGenPos < intGenSize;
intGenPos++)

if (random.nextDouble() < dblCrossoverProb)

// change parent
if (blnParent == true)

{

dblNewPop[intGenPos] [intPopPos]
dblPop[intGenPos] [intPaPos];
blnParent = false;

else

dblNewPop[intGenPos] [intPopPos]
dblPop[intGenPos] [intMaPos];
blnParent = true;

else
{

// stay with same parent
if (blnParent == true)

dblNewPop[intGenPos] [intPopPos]
dblPop[intGenPos] [intMaPos] ;

else

dblNewPop [intGenPos] [intPopPos]
dblPop[intGenPos] [intPaPos];

1
1

¥

// MUTATION: mutate the offspring

for (int intGenPos = 0; intGenPos < intGenSize;
intGenPos++)

// (mutation always carried out)

// generate a random number in range [-0.05,0.05]
double dblRandMut = (random.nextDouble() * 0.10) - 0.05;
dblNewPop [intGenPos] [intPopPos] += dblRandMut;

// clip to ensure value in range [0,1]
if (dblNewPop[intGenPos][intPopPos] > 1.0)

{

dblNewPop[intGenPos] [intPopPos] = 1.0;

}

if (dblNewPop[intGenPos] [intPopPos] < 0.0)

{
dblNewPop[intGenPos] [intPopPos] = 0.0;

141

1
1

}
;/ END REPRODUCTION LOOP

// ELITISM: retain best genome of this generation (put into first
// slot of new population)
for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

{
dblNewPop[intGenPos] [0] = dblFittestGen[intGenPos];
¥

// throw away parental generation and replace with offspring
for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

{

dblPop[intGenPos] [intPopPos] =
dblNewPop[intGenPos] [intPopPos];
¥

intGen++;

T
// END GENERATION LOOP
while(intGen <= intNoOfGens);

2 —
// FITNESS_FUNCTION: returns a fitness score (hamming distance to
// a target string)

public double[] fitness_function(double dblPop[][],

double dblFitnessScore[], int intNoExps, Random random,

int intGen, int intGARun)

// call main function

ZIP_Sim sim = new ZIP_Sim();

// iterate through each member of the population

for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

{
if ((intGen == 1) || (intGen == 200))

{

psDAY.println();

psDAY .println(M--————mm e e e e e ")
psDAY.println("POPULATION MEMBER: " + intPopPos);

psDAY .println();

psTRA.println();

psTRA.println("-----———————————————— -~ "),
psTRA.println("POPULATION MEMBER: " + intPopPos);
psTRA.println();

}

dblFitnessScore[intPopPos] = sim.SIM_main(intNoExps,
dblPop[0] [intPopPos], dblPop[1] [intPopPos],

dblPop[2] [intPopPos], dblPop[3][intPopPos],

dblPop[4] [intPopPos], dblPop[5] [intPopPos],

dblPop[6] [intPopPos], dblPop[7][intPopPos], intGen,
intPopPos, random, psDAY, psTRA);

return dblFitnessScore;

public static void main (String args[])

{
ZIP_GA ga = new ZIP_GA(Q);
try

{
String strInitConds = args[0];

if ((strInitConds.equals("easy")) ||
(strInitConds.equals("zero")) ||

(strInitConds.equals("hard")))

{

142

int intNoGARuns = 50;
for (int intGARun = 1; intGARun <= intNoGARuns;
intGARun++)

ga.GA(intGARun, strInitConds);
}

else

System.out.println(
"usage: java ZIP_GA <init_conds> (init_conds = easy,
+ "zero or hard)");

}

catch (ArrayIndexOutOfBoundsException exception)

{
System.out.println(

"usage: java ZIP_GA <init_conds> (where init_conds = "
+ "easy, zero or hard)");

143

C.1.8 ZIP _Sched_Agent.java

Description: Data associated with an agents number of units and buy / sell
limits.

// Class: ZIP_Sched_Agent.java

// (used by ZIP_Sched_Agent, ZIP_Exp_Control and ZIP_Exp_Params)
public class ZIP_Sched_Agent implements ZIP_Constants

{

// how many units the agent has / wants

public int intAGSHno_units;

// limit price of each unit

public double[] dblAGSHlimit = new double[MAX_UNITS];

¥

144

C.1.9 ZIP_Sched_SD.java

Description: Data associated with a supply and demand schedule.

// Class: ZIP_Sched_SD.java

// (used by ZIP_Exp_Control and ZIP_Exp_Params)
public class ZIP_Sched_SD implements ZIP_Constants
{

// number of agents involved

public int intSDSHno_agents;

// first day this schedule applies to
public int intSDSHfirst_day;

// last day this schedule applies to
public int intSDSHlast_day;

// 0 = silent traders, 1 = can shout
public boolean blnSDSHcan_shout;

// details of individual agents
public ZIP_Sched_Agent[] SDSHagent = new ZIP_Sched_Agent[MAX_AGENTS];
}

145

C.1.10 ZIP_SD_Vis.java

Description: Calculates both the underlying (theoretical) and apparent (actual)
equilibrium price, equilibrium quantity and maximum available surplus.

// Class: ZIP_SD_Vis.java

import java.io.FileQutputStream;

import java.io.PrintStream;

import java.text.DecimalFormat;

public class ZIP_SD_Vis implements ZIP_Constants

grivate static int MAX_PRICES MAX_AGENTS * MAX_UNITS;
private static int MAX_POINTS MAX_PRICES * 3;

// signifies no equilibrium price / quantity

private static int NULL_EQ = -1;

public double dblEgPrice;

public int intIQuant;

public double dblSurplus;

/

// SDVIS_SUP_DEM: returns either the UNDERLYING (theoretical) or

// APPARENT (actual) values of EQUILIBRIUM PRICE, EQUILIBRIUM QUANTITY,
// and MAXIMUM AVAILABLE SURPLUS. (called by ZIP_Sim.SIM_main,

// ZIP_Sim.SIM_Trade and ZIP_Sim.SIM_init_day)

public void SDVIS_sup_dem(int intNoSellers, ZIP_Agent[] agent_s,

int intNoBuyers, ZIP_Agent[] agent_b, int intMaxTrades,

double TMPdblEqPrice, int TMPintIQuant, double TMPdblSurplus,

int intField, double dblBounds, boolean blnOutput,

PrintStream psSDO)

gblEqPrice = TMPdblEqgPrice;

intIQuant = TMPintIQuant;

dblSurplus = TMPdblSurplus;

// used to set maximum quantity on graph

int intMaxNo;

// agent indices

int intAgent;

// seller indices

int intSeller;

// buyer indices

int intBuyer;

// unit quantity indices

int intQuantity;

// flag for whether an intersect point exists
boolean blnNoIntersect;

// flag for whether an intersect point has been found
boolean blnNotFound;

// seller limit and quote prices

double[][] dblSellerLimPr = new double[MAX_PRICES][2];
// buyer limit and quote prices

double[][] dblBuyerLimPr = new double[MAX_PRICES][2];
// profit

double dblProfit;

// maximum available surplus

double dblTotalSurplus;

// maximum price

double dblMaxPrice = 0.0;

// minimum price

double dblMinPrice = 0.0;

// declarations for S/D visualisation

// point index

int intVISpoint_index;

// minimum quantity on the graph

int intVISmin_quantity;

// maximum quantity on the graph

int intVISmax_quantity;

// (requires initialisation by java)

int intVISdx = 0;

146

// (requires initialisation by java)

int intVISdy = 0;

// (requires initialisation by java)

int intVIStx = O0;

// (requires initialisation by java)

int intVISty = 0;

// (requires initialisation by java)

int intVISmin_y = O;

int intVISfy;

// (requires initialisation by java)

int intVISmax_y = O;

// coordinate points in polyline etc.

int intVIScoords[][] = new int[MAX_POINTS][2];
String strVISlabel;

// initially set equilibrium price to -1.0
dblEqPrice = -1.0;

// initially set equilibrium quantity to -1
intIQuant = NULL_EQ;

// if there are too many units for this function
if (((intNoBuyers * MAX_UNITS) > MAX_PRICES) ||
i(intNoSellers * MAX_UNITS) > MAX_PRICES))

psSDO.println(

"FAIL: Too many units in SDVIS_sup_dem() -- recompile");
System.out.println(

"FAIL: Too many units in SDVIS_sup_dem() -- recompile");
System.exit(0);

intSeller = 0;
for (intAgent = 0; intAgent < intNoSellers; intAgent++)

{
// if SELLER active
if (agent_s[intAgent].blnAGNTactive)

for (intQuantity = 0; intQuantity <
agent_s[intAgent] .dblAGNTquantity; intQuantity++)

{

// get the SELLERS limit price
dblSellerLimPr[intSeller][0] =
agent_s[intAgent] .dblAGNTlimit;
// get the SELLERS price
dblSellerLimPr[intSeller] [1] =
agent_s[intAgent] .dblAGNTprice;
// if the first seller agent
if (intSeller == 0)

// set the minimum and maximum price variables...
dblMaxPrice = agent_s[intAgent].dblAGNTprice;
dblMinPrice = agent_s[intAgent].dblAGNTlimit;

}

else

// ...or update the minimum and maximum price variables
if (agent_s[intAgent].dblAGNTprice > dblMaxPrice)

{

dblMaxPrice = agent_s[intAgent].dblAGNTprice;

}

if (agent_s[intAgent].dblAGNTlimit < dblMinPrice)
{

dblMinPrice = agent_s[intAgent].dblAGNTlimit;

// go to the next seller agent
intSeller++;

147

intBuyer = 0;
for (intAgent = 0; intAgent < intNoBuyers; intAgent++)

// if buyer active
if (agent_b[intAgent].blnAGNTactive)

{

for (intQuantity = 0; intQuantity <
agent_b[intAgent] .dblAGNTquantity;
intQuantity++)

{

// get the BUYERS limit price

dblBuyerLimPr [intBuyer] [0] = agent_b[intAgent].dblAGNTlimit;
// get the BUYERS price

dblBuyerLimPr [intBuyer] [1] = agent_b[intAgent].dblAGNTprice;
// update the minimum and maximum price variables

if (agent_b[intAgent].dblAGNTlimit > dblMaxPrice)

{
dblMaxPrice = agent_b[intAgent].dblAGNTlimit;

}
if (agent_b[intAgent].dblAGNTprice < dblMinPrice)

{
dblMinPrice = agent_b[intAgent].dblAGNTprice;

3

// go to the next buyer agent

intBuyer++;

¥

¥

¥

// sort buyer and seller quote prices (call bubble sort method)
SDVIS_bubble_sort(true, intField, intBuyer, dblBuyerLimPr, psSDO);
SDVIS_bubble_sort(false, intField, intSeller, dblSellerLimPr,
psSDO) ;

// (VIS) identify the maximum quantity needed on the graph

if (intSeller > intBuyer)

intMaxNo = intSeller;

else

intMaxNo = intBuyer;

// (VIS) set the minimum and maximum quantities on the graph
intVISmin_quantity = 1;

intVISmax_quantity = intMaxNo;

if (blnOutput)

psSDO.println("SDVIS_sup_dem: Maximum trades: " + intMaxTrades);
psSDO.println("SDVIS_sup_dem: Minimum price: " + dblMinPrice +

", Maximum price: " + dblMaxPrice + ", Minimum Quantity: " +
intVISmin_quantity + ", Maximum Quantity: "

+ intVISmax_quantity);

psSDO.println();

}

// (VIS) (-1.0 == null)
if (dblBounds != -1.0)

// autoscaling is off

intVISmin_quantity = (int) dblBounds;
intVISmax_quantity = (int) (dblBounds + 1);
dblMinPrice = (dblBounds + 2);

dblMaxPrice = (dblBounds + 3);

if (blnOutput)

{

psSDO.println(

"SDVIS_sup_dem: Autoscaling is OFF. Bounds are:");
psSDO.println("SDVIS_sup_dem: Minimum Price: " + dblMinPrice
+ ", Maximum Price: " + dblMaxPrice + ", Minimum Quantity: "
+ intVISmin_quantity + ", Maximum Quantity: "

148

+ intVISmax_quantity);
psSDO.println();
1

}

// initialise maximum available surplus
dblTotalSurplus = 0.0;

//
if (dblSellerLimPr[0] [intField] > dblBuyerLimPr[0][intField])

// lowest selling price is larger than the highest bidding price
blnNoIntersect = true;

else

// FIND INTERSECT POINT

blnNoIntersect = false;

blnNotFound = true;

for (intQuantity = 0; intQuantity < intMaxNo; intQuantity++)
{

// intersection?

dblProfit = dblBuyerLimPr[intQuantity] [intField] -
dblSellerLimPr[intQuantity] [intField];

if (blnNotFound)

if (dblSellerLimPr[intQuantity] [intField] >
dblBuyerLimPr[intQuantity] [intField])

// straightforward intersect

dblEgPrice = (dblSellerLimPr[intQuantity - 1][intField]
+ dblBuyerLimPr[intQuantity - 1][intField]) / 2.0;
intIQuant = intQuantity;

// intersect found

blnNotFound = false;

else

if (((intQuantity + 1) == intSeller) &%
((intQuantity + 1) == intBuyer))

{

// last buyer and seller

dblEgPrice = (dblSellerLimPr[intQuantity] [intField]
+ dblBuyerLimPr[intQuantity] [intField]) / 2.0;
intIQuant = (intQuantity + 1);

if (intQuantity < intMaxTrades)

gblTotalSurplus += dblProfit;
%lnNotFound = false;

else

if ((intQuantity + 1) == intSeller)

// run out of active sellers but still some

// buyers

dblEqPrice = (dblBuyerLimPr[intQuantity][intField]
+ dblBuyerLimPr[intQuantity + 1][intField])

/ 2.0;

intIQuant = (intQuantity + 1);

if (intQuantity < intMaxTrades)

{
dblTotalSurplus += dblProfit;

}
blnNotFound = false;
¥

else

if ((intQuantity + 1) == intBuyer)

{

// run out of active buyers but still some
// sellers

149

dblEqgPrice = (

dblSellerLimPr[intQuantity] [intField]

+ dblSellerLimPr[intQuantity + 1][intField])
/ 2.0;

intIQuant = (intQuantity + 1);

if (intQuantity < intMaxTrades)

{

dblTotalSurplus += dblProfit;
}

blnNotFound = false;

}

}
}

}
if (blnNotFound)
if (intQuantity < intMaxTrades)

{
dblTotalSurplus += dblProfit;

}
}

¥

if (blnOutput)

{

//psv.println("Quantity: " + (intQuantity + 1));
if (intQuantity < intSeller)

{
psSDO.println("SDVIS_sup_dem: Supply: "
+ dblBuyerLimPr[intQuantity] [intField])
}

else

psSDO.println(" ");
¥
if (intQuantity < intBuyer)

{
psSDO.println("SDVIS_sup_dem: Demand: "
+ dblBuyerLimPr[intQuantity] [intField]);
}

else

psSDO.println(" ");
¥

psSDO.println("SDVIS_sup_dem: Profit: " + dblProfit
+ ", Total Surplus " + dblTotalSurplus);
1

}
dblSurplus = dblTotalSurplus;
if (blnOutput)

{
psSDO.println();
switch (intField)

{

case 0: // (EQ_THEORY)

psSDO.print("SDVIS_sup_dem: THEORETICAL");
break;

case 1: // (EQ_ACTUAL)

psSDO.print("SDVIS_sup_dem: ACTUAL");

break;

default:

psSDO.print("FAIL: bad field " + intField +

" in supdem");

System.out.println("FAIL: bad field " + intField
+ " in supdem");

System.exit(0);

}

psSDO.println(" EQUILIBRIUM PRICE: " + dblEgPrice
+ " at EQUILIBRIUM QUANTITY: " + intIQuant +

", MAXIMUM SURPLUS: " + dblSurplus);
psSDO.println();

150

// bubble sort (called by ZIP_SD_Vis.SDVIS_sup_dem)

public void SDVIS_bubble_sort(boolean blnOrder, int intField, int n,
double[][] dblArray, PrintStream psSDO)

gnt i;

int j;

boolean blnSwap;

double t;

if ((intField < 0) || (intField > 1))

{

psSDO.println("FAIL: bad field " + intField + " in sort");
System.out.println("FAIL: bad field " + intField

+ " in sort");

System.exit(0);

}

for (i =0; i < n; i++)

for (j =0; j < i; j++)

if (blnOrder)

if (dblArray[i] [intField] > dblArray[j][intField])
blnSwap = true;

else

blnSwap = false;

}
}

else

if (dblArray[i] [intField] < dblArray[j][intField])
blnSwap = true;

else

blnSwap = false;
}

}
if (blnSwap)

{

t = dblArray[i][0];
dblArray[i] [0] = dblArray[j][0];
dblArray[j1[0] = t;

t = dblArray[i][1];
dblArray[i] [1] = dblArray[j][1];
dblArray[jI[1] = t;

NS

151

C.1.11 ZIP_Sim.java

Description: Main simulation class. Initialises ZIP agents and co-ordinates all
trading activity (Nb. extra additions for the GA are commented ‘GA’).

// Class: ZIP_Sim.java

import java.io.FileQutputStream;

import java.io.PrintStream;

import java.text.DecimalFormat;

import java.util.Random;

public class ZIP_Sim implements ZIP_Constants

PrintStream psOUT, psSDO;

// GLOBAL PARAMETERS

private int intStatus = 0;

private double dblPrice_0;

private double dblSurplus;

private double dblMaxSurplus;

private ZIP_Data_Day[] DayData;

private ZIP_Exp_Control ec;
et T

public static void main(String args[])

ZIP_Sim sim = new ZIP_Sim();

try

{
int intNoExps = Integer.parseInt(args[0]);
sim.SIM_main(intNoExps);

catch (Exception exception)

{

System.out.println("usage: java ZIP_Sim <no_experiments>");

// SIM_MAIN (called by ZIP_Sim.main)
public void SIM_main(int TMPintNoExps)

{

// SIM_MAIN (called by ZIP_Sim.main) (GA -- CONSTRUCTOR)
public double SIM_main(int TMPintNoExps, double dblAGNT_lr_L,
double dblAGNT_lr_H, double dblAGNT_mm_L, double dblAGNT_mm_H,
double dblAGNT_pf_L, double dblAGNT_pf_H, double dblAGNT_tr_R,
double dblAGNT_tr_A, int intGen, int intPopPos, Random random,
PrintStream psDAY, PrintStream psTRA)

// initialise output files and output streams
try

{

psOUT = new PrintStream(new FileQutputStream(
"ZIP_QUT.txt"));

psSDO = new PrintStream(new FileQutputStream(
;ZIP_SDU.txt"))

catch(Exception exception)

{

System.out.println("IOException: " + exception);

¥

// ZIP_Sim PARAMETERS
// number of transactions on a day
int intNoTrans;

// day indices

int intDayNo;

// random seed

int intRandSeed;

// number of buyers
int intNoBuyers;

// number of sellers
int intNoSellers;

152

// number of trades done in a day

int intNoTrades;

// number of experiments to run

int intNoExps = TMPintNoExps;

// maximum number of trades in a session

int intMaxTrades = 0;

// equilibrium quantity

int intEqQuantity;

// (used in calling ZIP_SD_Vis.SDVIS_sup_dem method)
int intDummy = O0;

// experiment number (indices)

int intExpNo;

// transaction number within a day

int intDayTransNo;

// number of Alpha over Transaction Sequences (in array dblATS)
int[] intNoATS = new int[MAX_TRADES];

// (initialised for use below)
double dblPrice = 0.0;

// sum the s.d. of the transaction (deal) price around the
// equilibrium price

double dblSigmaSum;

// smith’s alpha (initialised to send to data_day_update

// method below)
double dblAlpha = 0.0;

// equilibrium price

double dblEqgPrice;

// the last deal price

double dblLastPrice = 0.0;

// sum of the price difference between the last deal price
// and the current deal price

double dblPriceDiffSum;

// used in calling ZIP_SD_Vis.SDVIS_sup_dem method
double dblDummyl = 0.0;

// used in calling ZIP_SD_Vis.SDVIS_sup_dem method
double dblDummy2 = 0.0;

// sum of the deal prices

double dblPriceSum;

// difference between actual gain and theoretical gain
double dblDiff;

// square difference between actual gain and theoretical gain
double dblPD;

// profit dispersal

double dblProfitDisp;

// s.d. of the transaction price around the equilibrium price
// (used to calculate smith’s alpha)

double dblPDS;

// alpha over transaction sequence

double dblAlphaTrans;

// alpha over transaction sequence

double[] dblATS = new double[MAX_TRADES];

// can be used to inhibit autoscaling on supdem
double[] dblBoundData = new double[4];

double dblBounds;

// (initialised to send to data_day_update method below)
double dblEfficiency = 0.0;

boolean blnOutput = false;

DayData = new ZIP_Data_Day[MAX_N_DAYS];
ZIP_Data_Trade[][] TradeData =

new ZIP_Data_Trade[MAX_N_DAYS][MAX_TRADES];

// for summarising ats[] over (several?) experiments
ZIP_Day_Stat[] ats_e = new ZIP_Day_Stat[MAX_TRADES];
ZIP_Agent[] buyers = new ZIP_Agent[MAX_AGENTS];
ZIP_Agent[] sellers = new ZIP_Agent[MAX_AGENTS];
double[] TMPdblSum = new double[MAX_N_DAYS];

double[] TMPdblSumSq = new double[MAX_N_DAYS];

int[] TMPintN = new int[MAX_N_DAYS];

ec = new ZIP_Exp_Control();

ZIP_SD_Vis sdvis = new ZIP_SD_Vis();

153

/] = e e e e e
// ZIP_Sim CODE:
if (blnOutput)

psOUT.println("ZIP_SIM: " + intNoExps + " experiments");

// GET EXPERIMENT PARAMETERS AND READ S/D SCHEDULES (control data)
ec.EXPC_in(true, psOUT);

// arrays used to store cumulative values of day parameters in
// order to obtain average values over all experiments carried out
double[] dblAlpha_Mean new double[ec.intEXPCno_days];
double[] dblAlpha_m1SD new double[ec.intEXPCno_days];
double[] dblAlpha_p1SD = new double[ec.intEXPCno_days];
double[] dblQuant_Mean new double[ec.intEXPCno_days];
double[] dblQuant_mi1SD new double[ec.intEXPCno_days];
double[] dblQuant_p1SD new double[ec.intEXPCno_days];
double[] dblEffic_Mean new double[ec.intEXPCno_days];
double[] dblEffic_m1SD new double[ec.intEXPCno_days];
double[] dblEffic_p1SD new double[ec.intEXPCno_days];
double[] dblPrice_Mean new double[ec.intEXPCno_days];
double[] dblPrice_miSD new double[ec.intEXPCno_days];
double[] dblPrice_p1SD new double[ec.intEXPCno_days];
double[] dblPDisp_Mean = new double[ec.intEXPCno_days];
double[] dblPDisp_m1SD new double[ec.intEXPCno_days];
double[] dblPDisp_p1SD = new double[ec.intEXPCno_days];
double[] dblVolty_Mean new double[ec.intEXPCno_days];
double[] dblVolty_miSD = new double[ec.intEXPCno_days];
double[] dblVolty_plSD = new double[ec.intEXPCno_days];

// INITIALISE DAY DATA RECORDS (for all days)

for (intDayNo = 0; intDayNo < ec.intEXPCno_days; intDayNo++)

// (initialise array)
DayData[intDayNo] = new ZIP_Data_Day();
DayData[intDayNo] .data_day_init();

// (initialise TradeData array)
for (intDayNo = 0; intDayNo < MAX_N_DAYS; intDayNo++)

{
for (intDayTransNo = 0; intDayTransNo < MAX_TRADES;
intDayTransNo++)

{

TradeData[intDayNo] [intDayTransNo] = new ZIP_Data_Trade();

}

}

// initialise alpha parameter related arrays (for visualisation)
for (intDayTransNo = 0; intDayTransNo < MAX_TRADES;
intDayTransNo++)

{

intNoATS[intDayTransNo] =
dblATS[intDayTransNo] = 0.
ats_e[intDayTransNo] = new ZIP_Day_Stat();
ats_e[intDayTransNo].intN = 0;
ats_e[intDayTransNo].dblSum = 0.
ats_e[intDayTransNo] .dblSumSq =
¥

psTRA.println("ZIP_SIM TRADE DATA");
psDAY.println("ZIP_SIM DAY DATA");
psSDO.println("ZIP_SIM SUPPLY AND DEMAND DATA");

0;
0;

0;
0.0;

T
// EXPERIMENT LOOP

for (intExpNo = 0; intExpNo < intNoExps; intExpNo++)

for (int intBuyer = 0; intBuyer < MAX_AGENTS; intBuyer++)

{
// INITIALISE BUYER AGENTS (parameters and profit value)

154

buyers [intBuyer]

new ZIP_Agent();

// (GA) SET BUYER AGENT GA PARAMETERS

buyers[intBuyer]
buyers[intBuyer]
buyers [intBuyer]
buyers[intBuyer]
buyers [intBuyer]
buyers[intBuyer]
buyers[intBuyer]
buyers [intBuyer]
buyers[intBuyer]
psOUT, random);

¥
if (blnOutput)

{
psOUT.println();
}

.dblAGNT_1lr_L
.dblAGNT_1lr_H
.dblAGNT_mm_L
.dblAGNT _mm_H
.dblAGNT_pf_L
.dblAGNT_pf_H
.dblAGNT_tr_R
.dblAGNT_tr_A
.AGNT_init_buyer(intBuyer, blnOutput,

dblAGNT_1r_L;
dblAGNT_1r_H;
dblAGNT _mm_L;
dblAGNT_mm_H;
dblAGNT_pf_L;
dblAGNT_pf_H;
dblAGNT_tr_R;
dblAGNT _tr_A;

for (int intSeller 0; intSeller < MAX_AGENTS; intSeller++)

{
// INITIALISE SELLER AGENTS (parameters and profit value)
sellers[intSeller] new ZIP_Agent();

// (GA) SET SELLER
sellers[intSeller].
sellers[intSeller].
sellers[intSeller].
sellers[intSeller].
sellers[intSeller].
sellers[intSeller].

dblAGNT_1r_L
dblAGNT_lr_H
dblAGNT_mm_L
dblAGNT_mm_H
dblAGNT_pf_L
dblAGNT_pf_H

AGENT GA PARAMETERS

dblAGNT_1r_L;
dblAGNT_lr_H;
dblAGNT_mm_L;
dblAGNT_mm_H;
dblAGNT_pf_L;
dblAGNT_pf_H;

sellers[intSeller].
sellers[intSeller].
sellers[intSeller].
psOUT, random);

T

/
// DAY LOOP
for (intDayNo

dblAGNT_tr_R dblAGNT_tr_R;
dblAGNT_tr_A dblAGNT_tr_A;

AGNT_init_seller(intSeller, blnOutput,

0; intDayNo < ec.intEXPCno_days; intDayNo++)
// one day or ’trading period’

// set maximum number of trades in this day

intMaxTrades ec.intEXPCmax_trades;

// (output day and maximum number of trades)

if (blnOutput)

{

psOUT.println();

psOUT.println("ZIP_SIM: Day " + intDayNo

+ ": Maximum number of trades: " + MAX_TRADES);
psOUT.println();

}

// INITIALISE ALL DATA STRUCTURES FOR START OF DAY
SIM_init_day(intDayNo, ec, sellers, buyers, blnOutput,
psOUT, sdvis);

// get number of buyer and seller agents

intNoBuyers = ec.EXPCds[ec.intEXPCds].intSDSHno_agents;
intNoSellers ec.EXPCss[ec.intEXPCss].intSDSHno_agents;

// initialise variables used in calculating trade statistics

// (below)
dblSurplus = 0.0;

intNoTrades = 0;
dblSigmaSum = 0.0;
dblPriceSum = 0.0;
dblPriceDiffSum = 0.0;

// (VIS) (-1.0 counts as null)
dblBounds = - H
dblBoundData[0] = 0;
dblBoundDatal[1] = 12;
dblBoundData[2] = 0.0;
dblBoundDatal[3] = 3.75;

// if the first experiment

155

if (intExpNo == 0)

// write a figure of the actual supply and demand curves
sdvis.SDVIS_sup_dem(intNoSellers, sellers, intNoBuyers,
buyers, intMaxTrades, dblDummyl, intDummy, dblDummy2,
EQ_ACTUAL, dblBounds, blnOutput, psSDO);

dblDummyl = sdvis.dblEqPrice;

intDummy = sdvis.intIQuant;

dblDummy2 = sdvis.dblSurplus;

¥

//

// TRADING SESSION LOOP

for (intDayTransNo = 0; intDayTransNo < intMaxTrades;
intDayTransNo++)

// one trading session: either a trade occurs or a fail is
// recorded
if (blnOutput)

{

psOUT.println();

psOUT.println("----——————————————————— o ")
psOUT.println("ZIP_SIM: DAY: " + intDayNo + " TRADE: "
+ (intDayTransNo + 1));

psOUT.println("M-=-——————— e e e ")
psOUT.println();

}

// SEE IF A BUYER OR A SELLER CAN BE FOUND WHO WILL ENTER
// INTO A TRADE

SIM_trade(TradeDatal[intDayNo] [intDayTransNo], sellers,
buyers, ec, blnOutput, psOUT, sdvis, random);

// if first experiment print a figure of the actual

// supply and demand curves

if ((blnOutput) &% (intExpNo == 0))

sdvis.SDVIS_sup_dem(intNoSellers, sellers, intNoBuyers,
buyers, intMaxTrades, dblDummyl, intDummy, dblDummy2,
EQ_ACTUAL, dblBounds, blnOutput, psSDO);

dblDummyl = sdvis.dblEqPrice;

intDummy = sdvis.intIQuant;

dblDummy2 = sdvis.dblSurplus;

// if a buyer and a seller entered into a trade (a deal
// occured)

// CALCULATE DAY AND TRADE STATISTICS

if (intStatus == DEAL)

// if not the first day transaction
if (intDayTransNo > 0)

// literally make the last deal price the last deal
// price

dblLastPrice = dblPrice;

}

// now obtain the the current (last) deal price
dblPrice =
TradeData[intDayNo] [intDayTransNo] .dblTDATdeal_price;

if (intDayTransNo > 0)

// sum of the price difference between the last deal
// price and the current deal price

dblPriceDiffSum += ((dblPrice - dblLastPrice) *

(dblPrice - dblLastPrice));

// calculate s.d. of the transaction price around the
// equilibrium price

dblPDS = ((dblPrice - dblPrice_0) *

(dblPrice - dblPrice_0));

// add alpha over transaction sequence array
dblATS[intNoTrades] += dblPDS;

156

// increment number of alpha over transaction sequences
// array
intNoATS[intNoTrades]++;

// increment number of trades count
intNoTrades++;

// sum current deal prices

dblPriceSum += dblPrice;

// sum current s.d. of the transaction (deal) price
// around the equilibrium price

dblSigmaSum += dblPDS;

// DAY STAT: use this to calculate the SMITH’S ALPHA
// parameter

dblAlpha = (100 * Math.sqrt(dblSigmaSum

/ intNoTrades)) / dblPrice_0;

// DAY STAT: calculate the EFFICIENCY parameter
dblEfficiency = (dblSurplus / dblMaxSurplus) * 100;

if (blnOutput)

{

psOUT.println("ZIP_SIM: Day " + intDayNo + " DEAL "
+ intNoTrades + " alpha " + dblAlpha

+ " efficiency " + dblEfficiency);

} // end of calculate day/trade statistics
else

// give up
if (intStatus == END_DAY)

intDayTransNo = intMaxTrades;

}
} // END OF TRADING SESSION (LOOP)
/

// UPDATE DATA FOR THIS DAY

// DAY STAT: calculate profit dispersal

dblPD = 0.0;

for (int intBuyer = 0; intBuyer < intNoBuyers; intBuyer++)

// calculate difference between actual gain and theoretical
// gain

dblDiff = ((buyers[intBuyer].dblAGNTactualgain) -

(buyers[intBuyer] .dblAGNTtheorgain));

// square this difference

dblPD += (dblDiff * dblDiff);

¥

for (int intSeller = 0; intSeller < intNoSellers;
intSeller++)

// calculate difference between actual gain and

// theoretical gain

dblDiff = ((sellers[intSeller].dblAGNTactualgain) -
(sellers[intSeller].dblAGNTtheorgain));

// square this difference

dblPD += (dblDiff * dblDiff);

}

// DAY STAT: finish calculating profit dispersal stat
dblProfitDisp = Math.sqrt((1 / ((double)(intNoBuyers
+ intNoSellers))) * dblPD);

if (blnOutput)

{

psOUT.println("ZIP_SIM: Profit Dispersal = "
+ dblProfitDisp);

psOUT.println();

psOUT.println();

¥

// UPDATE DAY DATA

DayData[intDayNo] .data_day_update(intNoTrades,
dblPriceSum, dblAlpha, dblProfitDisp, dblEfficiency,
dblPriceDiffSum);

157

} // END OF DAY LOOP

// (VIS) OUTPUT TRADE STATISTICS

// if the first experiment

if (intExpNo == 0)

{

DecimalFormat df = new DecimalFormat("0.0");
DecimalFormat DF new DecimalFormat("0.00");
double dblDGX = (1.0 / ((double) intMaxTrades));
// (VIS) TRADE DATA QUTPUT: PRICE

psTRA.println(" PRICE (n=0 only)");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

double dblGX = (intDayNo + 1);

double dblSum = DayDatal[intDayNo] .dblSTAT_quant.dblSum;
for (intDayTransNo = 0; intDayTransNo < dblSum;
intDayTransNo++)

{

if (

TradeData[intDayNo] [intDayTransNo] .dblTDATdeal_price
>= 0.0)

psTRA.println(df.format(dblGX) + " "
+ TradeData[intDayNo] [intDayTransNo].dblTDATdeal_price);

}
dblGX += dblDGX;
3

}

// (VIS) TRADE DATA OUTPUT: ACTUAL EQUILIBRIUM PRICE
psTRA.println(

" ACTUAL EQUILIBRIUM PRICE (n=0 output only)");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

double dblGX = (intDayNo + 1);

double dblSum =

DayData[intDayNo] .db1STAT_quant .dblSum;

for (intDayTransNo = 0; intDayTransNo < dblSum;
intDayTransNo++)

{

if (

TradeData[intDayNo] [intDayTransNo] .intTDATactual_eq_quant
= NULL_EQ)

{

psTRA.println(df.format(dblGX) + " " +

DF.format(TradeDatal[intDayNo] [intDayTransNo] .dblTDATactual_eq_price));
dblGX += dblDGX;

¥

¥

3

// (VIS) TRADE DATA OUTPUT: THEQORETICAL EQUILIBRIUM PRICE
psTRA.println(

" THEORETICAL EQUILIBRIUM PRICE (n=0 output only)");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

double dblGX = (intDayNo + 1);

double dblSum = DayDatal[intDayNo].dblSTAT_quant.dblSum;
for (intDayTransNo = 0; intDayTransNo < dblSum;
intDayTransNo++)

{
if (TradeDatal[intDayNo] [intDayTransNo].intTDATtheor_eq_quant
= NULL_EQ)

psTRA.println(df.format(dblGX) + " " +
TradeData[intDayNo] [intDayTransNo] .dblTDATtheor_eq_price);
dblGX += dblDGX;

¥

158

¥
¥
// (VIS) output this experiments’ per-transaction rms

// deviation of deal price from equilibrium
// (not output as same as MEAN below)

for (intDayTransNo = 0; intDayTransNo < intMaxTrades;
intDayTransNo++)

{
if (intNoATS[intDayTransNo]l > 0)

{

dblAlphaTrans = Math.sqrt(dblATS[intDayTransNo]
/ intNoATS[intDayTransNo]);
ats_e[intDayTransNo] .dblSum += dblAlphaTrans;
ats_e[intDayTransNo] .dblSumSq += (dblAlphaTrans
* dblAlphaTrans);

ats_e[intDayTransNo] .intN++;

}
}
if (blnOutput)

{
psOUT.println("ZIP_SIM: Experiment " + intExpNo +
" done");

//
// (VIS) DAY DATA OUTPUT: plot the mean (and the s.d. for the

// daily stats if more than one experiment) -- for output via
// excel

ZIP_Data_Day ddVIS = new ZIP_Data_Day();

// PRICE

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

TMPdblSum[intDayNo] =
DayData[intDayNo] .dblSTAT _price.dblSum;
TMPdblSumSq[intDayNo] =
DayDatal[intDayNo] .dblSTAT _price.dblSumSq;
TMPintN[intDayNo] =
DayDatal[intDayNo] .dblSTAT _price.intN;

¥

ddVIS.data_day_stats("PRICE", TMPdblSum, TMPdblSumSq,
TMPintN, ec.intEXPCno_days, intExpNo, dblPrice_Mean,
dblPrice_mi1SD, dblPrice_p1SD, psDAY);

// SMITH’S ALPHA

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

TMPdblSum[intDayNo] =

DayDatal[intDayNo] .db1STAT _alpha.dblSum;

TMPdblSumSq[intDayNo] =

DayData[intDayNo] .db1STAT_alpha.dblSumSq;

TMPintN[intDayNo] =

DayData[intDayNo] .db1STAT_alpha.intN;

}

ddVIS.data_day_stats("ALPHA", TMPdblSum, TMPdblSumSq,
TMPintN, ec.intEXPCno_days, intExpNo, dblAlpha_Mean,
dblAlpha_miSD, dblAlpha_p1SD, psDAY);

/] === o
// (GA) CALCULATE FITNESS USING WEIGHTED ALPHA

// PARAMETER OVER 6 DAYS

dblExpFitness += ddVIS.data_day_alpha_fitness(TMPdblSum,
TMPintN);
S
// EFFICIENCY

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;

intDayNo++)

{
TMPdblSum[intDayNo] =

159

DayData[intDayNo] .dblSTAT effic.dblSum;
TMPdblSumSq[intDayNo] =
DayData[intDayNo] .db1STAT _effic.dblSumSq;
TMPintN[intDayNo] =

DayDatal[intDayNo] .dblSTAT_effic.intN;

}

ddVIS.data_day_stats("EFFICIENCY", TMPdblSum, TMPdblSumSq,
TMPintN, ec.intEXPCno_days, intExpNo, dblEffic_Mean,
dblEffic_mi1SD, dblEffic_p1SD, psDAY);

// QUANTITY

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

TMPdblSum[intDayNo] =

DayDatal[intDayNo] .db1STAT_quant.dblSum;
TMPdblSumSq[intDayNo] =

DayDatal[intDayNo] .dblSTAT_quant.dblSumSq;
TMPintN[intDayNo] =

DayDatal[intDayNo] .dblSTAT_quant.intN;

¥

ddVIS.data_day_stats("QUANTITY", TMPdblSum, TMPdblSumSq,
TMPintN, ec.intEXPCno_days, intExpNo, dblQuant_Mean,
dblQuant_miSD, dblQuant_p1SD, psDAY);

// PROFIT DISPERSAL

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

TMPdblSum[intDayNo] =
DayData[intDayNo] .dblSTAT _pdisp.dblSum;
TMPdblSumSq[intDayNo] =

DayData[intDayNo] .db1STAT_pdisp.dblSumSq;
TMPintN[intDayNo] =

DayData[intDayNo] .db1STAT_pdisp.intN;

}

ddVIS.data_day_stats("PROFIT DISPERSAL", TMPdblSum,
TMPdblSumSq, TMPintN, ec.intEXPCno_days, intExpNo,
dblPDisp_Mean, dblPDisp_miSD, dblPDisp_p1SD, psDAY);
// VOLATILITY

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

TMPdblSum[intDayNo] =
DayDatal[intDayNo] .db1STAT _volty.dblSum;
TMPdblSumSq[intDayNo] =
DayDatal[intDayNo] .db1STAT _volty.dblSumSq;
TMPintN[intDayNo] =

DayDatal[intDayNo] .dblSTAT_volty.intN;

¥

ddVIS.data_day_stats("VOLATILITY", TMPdblSum, TMPdblSumSq,
TMPintN, ec.intEXPCno_days, intExpNo, dblVolty_Mean,
dblVolty_miSD, dblVolty_p1SD, psDAY);

} // END OF EXPERIMENT LOOP

// plot per-transaction rms deviation of deal price from
// equilibrium, over exp

// mean

psTRA.println(" MEAN");

for (intDayTransNo = 0; intDayTransNo < intMaxTrades;
intDayTransNo++)

{

if (ats_e[intDayTransNo].intN > 0)

{

double dblMean = (ats_e[intDayTransNo].dblSum /
ats_e[intDayTransNo].intN);

psTRA.println((intDayTransNo + 1) + " " + dblMean);
}

}

160

// + 1 standard deviation

psTRA.println(" MEAN + 1 S.D.");

for (intDayTransNo = 0; intDayTransNo < intMaxTrades;
intDayTransNo++)

{
if (ats_e[intDayTransNo].intN > 0)

{

dblAlphaTrans = ats_e[intDayTransNo].dblSum /
ats_e[intDayTransNo].intN;

psTRA.println((intDayTransNo + 1) + " " +
(dblAlphaTrans + Math.sqrt((
ats_e[intDayTransNo] .dblSumSq /
ats_e[intDayTransNo].intN)

- (dblAlphaTrans * dblAlphaTrans))));

¥

¥

// - 1 standard deviation

psTRA.println(" MEAN - 1 S.D.");

for (intDayTransNo = 0; intDayTransNo < intMaxTrades;
intDayTransNo++)

{
if (ats_e[intDayTransNo].intN > 0)

{

dblAlphaTrans = ats_e[intDayTransNo].dblSum /
ats_e[intDayTransNo].intN;

psTRA.println((intDayTransNo + 1) + " " +
(dblAlphaTrans - Math.sqrt((
ats_e[intDayTransNo].dblSumSq /
ats_e[intDayTransNo].intN)

- (dblAlphaTrans * dblAlphaTrans))));

¥

¥

// experiment n as a proportion of n experiments (will be
// 1.0 if 1 experiment)

psTRA.println(" N/NEXPS");

for (intDayTransNo = 0; intDayTransNo < intMaxTrades;
intDayTransNo++)

{
if (ats_e[intDayTransNo].intN > 0)

{

double dblNExps = (double) (ats_e[intDayTransNo].intN
/ intNoExps);

psTRA.println((intDayTransNo + 1) + " "

+ dblNExps);

¥

¥

psDAY.println();

psDAY.println("END OF EXPERIMENTS: DAY DATA AVERAGES");
psDAY.println(" PRICE MEAN");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblPrice_Mean[intDayNo] / intNoExps));

}

psDAY.println(" PRICE MEAN (-1 S.D.)");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblPrice_m1SD[intDayNo] / (intNoExps - 1)));

}

psDAY.println(" PRICE MEAN (+1 S.D.)");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "

161

+ (dblPrice_p1SD[intDayNo]l / (intNoExps - 1)));

}

psDAY.println(" ALPHA MEAN");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblAlpha_Mean[intDayNo] / intNoExps));

psDAY.println(" ALPHA MEAN (-1 S.D.)");
for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblAlpha_m1SD[intDayNo] / (intNoExps - 1)));

psDAY.println(" ALPHA MEAN (+1 S.D.)");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

psDAY.println((intDayNo + 1) + " "

+ (dblAlpha_p1SD[intDayNo] / (intNoExps - 1)));
}

psDAY.println(" EFFICIENCY MEAN");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblEffic_Mean[intDayNo] / intNoExps));

}

psDAY.println(" EFFICIENCY MEAN (-1 S.D.)");
for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblEffic_mi1SD[intDayNo] / (intNoExps - 1)));

}

psDAY.println(" EFFICIENCY MEAN (+1 S.D.)");
for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

psDAY.println((intDayNo + 1) + " "

+ (dblEffic_p1SD[intDayNo] / (intNoExps - 1)));
}

psDAY.println(" QUANTITY MEAN");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblQuant_Mean[intDayNo] / intNoExps));

}

psDAY.println(" QUANTITY MEAN (-1 S.D.)");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblQuant_mi1SD[intDayNo] / (intNoExps - 1)));

}

psDAY.println(" QUANTITY MEAN (+1 S.D.)");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

psDAY.println((intDayNo + 1) + " "

+ (dblQuant_p1SD[intDayNo]l / (intNoExps - 1)));
}

psDAY.println(" PROFIT DISPERSAL MEAN");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

162

{
psDAY.println((intDayNo + 1) + " "
+ (dblPDisp_Mean[intDayNo] / intNoExps));

}

psDAY.println(" PROFIT DISPERSAL MEAN (-1 S.D.)");
for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblPDisp_m1SD[intDayNo] / (intNoExps - 1)));

}

psDAY.println(" PROFIT DISPERSAL MEAN (+1 S.D.)");
for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{

psDAY.println((intDayNo + 1) + " "

+ (dblPDisp_p1SD[intDayNo] / (intNoExps - 1)));
}

psDAY.println(" VOLATILITY MEAN");

for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblVolty_Mean[intDayNo]l / intNoExps));

}

psDAY.println(" VOLATILITY MEAN (-1 S.D.)");
for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblVolty_miSD[intDayNo]l / (intNoExps - 1)));

}

psDAY.println(" VOLATILITY MEAN (+1 S.D.)");
for (intDayNo = 0; intDayNo < ec.intEXPCno_days;
intDayNo++)

{
psDAY.println((intDayNo + 1) + " "
+ (dblVolty_p1SD[intDayNo] / (intNoExps - 1)));

}
// (GA)
dblExpFitness = dblExpFitness / intNoExps;

// (Gh) ,
return dblExpFitness;

// SIM_INIT_DAY: initialise all data structures for start of day
// (called by ZIP_Sim.SIM_main)

public void SIM_init_day(int intDayNo, ZIP_Exp_Control ec,
ZIP_Agent[] sellers, ZIP_Agent[] buyers, boolean blnOutput,
PrintStream psQUT, ZIP_SD_Vis sdvis)

{

int intQ_0 = 0;

double dblEqProfit;

e e e
// INITIALISE BUYERS

// if first day

if (intDayNo == 0)

// read the first demand schedule
ec.intEXPCds = 0;
T

// if last day
else if ((intDayNo - 1) == (
ec.EXPCds[ec.intEXPCds] .intSDSHlast_day))

// previous day was last day on that demand schedule: update

ec.intEXPCds++;
if (ec.intEXPCds == ec.intEXPCno_ds)

163

psOUT.println("FAIL: ran out of demand schedules on day "
+ intDayNo);

System.out.println(

"FAIL: ran out of demand schedules on day " + intDayNo);
System.exit(0);

}

// set index of currently active demand schedule

int intDemSched = ec.intEXPCds;

// get number of buyer agents from experiment control data (demand
// schedule no. of agents)

int intNoBuyers = ec.EXPCds[intDemSched].intSDSHno_agents;

// MARK ALL BUYERS ACTIVE, SET QUANTITIES AND LIMIT PRICES

for (int intBuyer = 0; intBuyer < intNoBuyers; intBuyer++)

buyers[intBuyer] .dblAGNTquantity =

ec.EXPCds [intDemSched] .SDSHagent [intBuyer] . intAGSHno_units;
buyers[intBuyer] .blnAGNTactive = true;

buyers[intBuyer] .dblAGNTactualgain = 0.0;

// (note: only allows for one limit price)

buyers[intBuyer] .dblAGNT1limit =

ec.EXPCds [intDemSched] .SDSHagent [intBuyer] .dbl1AGSH1imit [0] ;

// SET THE PRICE OF THE AGENT FROM ITS LIMIT AND PROFIT VALUES
buyers[intBuyer] .AGNT_calcPrice();

if (blnOutput)

{

psOUT.println("ZIP_SIM.init_day: Buyer " + intBuyer
+ " price " + buyers[intBuyer].dblAGNTprice);

1

¥
if (blnOutput)

{
psOUT.println();

// INITIALISE SELLERS
// if first day
if (intDayNo == 0)

// read the first demand schedule
ec.intEXPCss = 0;
}

// if last day
else if ((intDayNo - 1) ==
ec.EXPCss[ec.intEXPCss] .intSDSHlast_day))

// previous day was last day on that demand schedule: update
ec.intEXPCss++;
if (ec.intEXPCss == ec.intEXPCno_ss)

{

psOUT.println("FAIL: ran out of supply schedules on day "
+ intDayNo);

System.out.println(

"FAIL: ran out of supply schedules on day " + intDayNo);
System.exit(0);

}

3

// set index of currently active supply schedule

int intSupSched = ec.intEXPCss;

// get number of seller agents from experiment control data (supply
// schedule no. of agents)

int intNoSellers = ec.EXPCss[intSupSched].intSDSHno_agents;

// MARK ALL SELLERS ACTIVE, SET QUANTITIES AND LIMIT PRICES
for (int intSeller = 0; intSeller < intNoSellers; intSeller++)

{
sellers[intSeller] .dblAGNTquantity =
ec.EXPCss[intSupSched] .SDSHagent [intSeller].intAGSHno_units;

164

sellers[intSeller] .blnAGNTactive = true;
sellers[intSeller].dblAGNTactualgain = 0.0;

// (note: only allows for one limit price)

sellers[intSeller] .dblAGNTlimit =
ec.EXPCss[intSupSched] .SDSHagent [intSeller] .dblAGSH1imit [0];
// SET THE PRICE OF THE AGENT FROM ITS LIMIT AND PROFIT VALUES
sellers[intSeller] .AGNT_calcPrice();

if (blnOutput)

{
psOUT.println("ZIP_SIM.init_day: Seller " + intSeller
+ " price " + sellers[intSeller].dblAGNTprice);

}
}
if (blnOutput)

{
psOUT.println();

// IDENTIFY THEORETICAL EQUILIBRIUM PRICE

sdvis.SDVIS_sup_dem(intNoSellers, sellers, intNoBuyers, buyers,
ec.intEXPCmax_trades, dblPrice_0, intQ_0, dblMaxSurplus,
EQ_THEORY, 0.0, blnOutput, psSDO);

dblPrice_0 = sdvis.dblEqPrice;

intQ_0 = sdvis.intIQuant;

dblMaxSurplus = sdvis.dblSurplus;

// SET THEORETICAL GAINS FOR BUYERS AND SELLERS

for (int intBuyer = 0; intBuyer < intNoBuyers; intBuyer++)

{

dblEqProfit = buyers[intBuyer].dblAGNTquantity *
(buyers[intBuyer] .dblAGNTlimit - dblPrice_0);
if (dblEqProfit < 0.0)

{

dblEqProfit = 0.0;

}

buyers[intBuyer] .dblAGNTtheorgain = dblEqProfit;

for (int intSeller = 0; intSeller < intNoSellers; intSeller++)

{

dblEqProfit = sellers[intSeller].dblAGNTquantity *
(dblPrice_0 - sellers[intSeller].dblAGNTlimit);
if (dblEqProfit < 0.0)

{
dblEqProfit = 0.0;

sellers[intSeller] .dblAGNTtheorgain = dblEqProfit;

1
}

//

// SIM_TRADE: see if a buyer and seller can be found who will enter
// into a trade (called by ZIP_Sim.SIM_main)

public void SIM_trade(ZIP_Data_Trade data_trade, ZIP_Agent[] sellers,
ZIP_Agent[] buyers, ZIP_Exp_Control ec, boolean blnQutput,

PrintStream psOUT, ZIP_SD_Vis sdvis, Random random)

{

// index of buyer randomly selected to be able to trade
int intBuyer = 0;

// index of seller randomly selected to be able to trade
int intSeller = 0;

// deal type

boolean blnDealType;

// status (deal or no deal?)

// (a global variable)

// equilibrium quantity

int intEqQuantity = 0;

// no. of agents willing to trade at a given price

int intNoWilling = 0;

// number of agents able to trade at a given price

int intNoAble;

// number of failed / declined bids / offers

165

int intNoFails;

// number of buyers

int intNoBuyers;

// number of sellers

int intNoSellers;

// number of active buyers

int intNoBuyActive;

// number of active sellers

int intNoSellActive;

// can buyer shout offers?

boolean blnBuyShout;

// can sellers shout offers?

boolean blnSellShout;

// number of traders to choose from when generating a shout
int intTraders;

// flag raised until an opening offer is made
boolean blnFirst0ffer;

// flag raised until an opening bid is made
boolean blnFirstBid;

// list of agent indices

int[] intAgentList = new int[MAX_AGENTS];
// equilibrium price

double dblEgPrice = 0.0;

// current actual maximum surplus

double dblCurrMaxSurp = 0.0;

// used in NYSE rules

double dblBestOffer = 0.0;

// used in NYSE rules

double dblBestBid = 0.0;

// price of bid / offer

double dblPrice = 0.0;

// get number of buyer and seller agents

intNoBuyers = ec.EXPCds[ec.intEXPCds].intSDSHno_agents;
intNoSellers = ec.EXPCss[ec.intEXPCss].intSDSHno_agents;
// get whether they can shout

blnBuyShout = ec.EXPCds[ec.intEXPCds].blnSDSHcan_shout;
blnSellShout = ec.EXPCss[ec.intEXPCss] .blnSDSHcan_shout;
if ((blnBuyShout == false) && (blnSellShout == false))

{

psOUT.printlin(

"FAIL: Can’t have both buyers AND sellers silent");
System.out.println(

"FAIL: Can’t have both buyers AND sellers silent");
System.exit(0);

¥

// FIND THE THEORETICAL EQUILIBRIUM PRICE

sdvis.SDVIS_sup_dem(intNoSellers, sellers, intNoBuyers, buyers,
ec.intEXPCmax_trades, dblEqPrice, intEqQuantity, dblCurrMaxSurp,
EQ_THEORY, 0.0, blnOutput, psSDO);

dblEqPrice = sdvis.dblEqPrice;

intEqQuantity = sdvis.intIQuant;

dblCurrMaxSurp = sdvis.dblSurplus;

// UPDATE TRADE STATISTICS

if (dblEgPrice != NULL_EQ)

{
data_trade.dblTDATtheor_eq_price
data_trade.intTDATtheor_eq_quant

dblEqgPrice;
intEqQuantity;

else

data_trade.intTDATtheor_eq_quant = NULL_EQ;

¥

// FIND THE ACTUAL EQUILIBRIUM PRICE

sdvis.SDVIS_sup_dem(intNoSellers, sellers, intNoBuyers, buyers,
ec.intEXPCmax_trades, dblEqPrice, intEqQuantity, dblCurrMaxSurp,
EQ_ACTUAL, 0.0, blnQOutput, psSDO);

dblEqPrice = sdvis.dblEqPrice;

intEqQuantity = sdvis.intIQuant;

dblCurrMaxSurp = sdvis.dblSurplus;

// UPDATE TRADE STATISTICS

166

if (dblEgPrice !'= NULL_EQ)

{
data_trade.dblTDATactual_eq_price
data_trade.intTDATactual_eq_quant

dblEqgPrice;
intEqQuantity;

else

data_trade.dblTDATactual_eq_price = NULL_EQ;

intNoFails = 0;

intStatus = NO_DEAL;

blnFirst0ffer = true;

blnFirstBid = true;

/] == e e
// WHILE NO DEAL

while ((intStatus == NO_DEAL) && (intNoFails < MAX_FAILS))

// count active agents and mark them as able (i.e. allowed
// to trade at this price) to bid (buyers) or offer (sellers)
intNoBuyActive = 0;

for (intBuyer = 0; intBuyer < intNoBuyers; intBuyer++)

{

if (buyers[intBuyer].blnAGNTactive)

{
buyers[intBuyer] .blnAGNTable = true;

intNoBuyActive++;

else

buyers[intBuyer] .blnAGNTable = false;
}

intNoSellActive 0;

for (intSeller 0; intSeller < intNoSellers; intSeller++)
{

if (sellers[intSeller].blnAGNTactive)

{

sellers[intSeller] .blnAGNTable = true;
intNoSellActive++;

else

sellers[intSeller] .blnAGNTable false;
}

}

intTraders = 0;
if (blnSellShout)

intTraders += intNoSellActive;
1f (blnBuyShout)

intTraders += intNoBuyActive;
1f (blnOutput)

// output number of buyers and sellers active
psOUT.println("ZIP_SIM.sim_trade: " + intTraders

+ " traders, " + intNoSellActive + " SELLERS active, "
+ intNoBuyActive + " BUYERS active");
psOUT.println();

¥

/

// SELECT A SELLER TO OFFER (randomly determined)
if ((int) (random.nextDouble() * intTraders) <
intNoSellActive)

{

// is there a seller able to make an offer?
blnDealType = OFFER;

// if using nyse rule and not first offer

if ((ec.blnEXPCnyse) && (blnFirstOffer == false))
{

167

// if ZI traders
if (ec.blnEXPCrandom)

// any seller with a limit price higher than best offer
// can’t deal

for (intSeller = 0; intSeller < intNoSellers;
intSeller++)

{

if (sellers[intSeller].dblAGNTlimit > dblBestOffer)
{

sellers[intSeller] .blnAGNTable = false;

}

}

}
// if ZIP traders
else

// any seller with an equal or higher price can’t offer
for (intSeller = 0; intSeller < intNoSellers;
intSeller++)

if (sellers[intSeller].dblAGNTprice >= dblBestOffer)
{

sellers[intSeller] .blnAGNTable = false;

1

1

1

}

// form a list of seller agents able to deal
intNoAble = SIM_get_able(0.0, sellers, intNoSellers,
intAgentList, blnOutput, psOUT);

if (blnOutput)

{
psOUT.println();
¥

// if there are any sellers able to trade
if (intNoAble > 0)
{

// RANDOMLY SELECT A SELLER AGENT ABLE TO TRADE

int intTemp = (int) (random.nextDouble() * intNoAble);
intSeller = intAgentList[intTemp];

// get the offer price for the seller

dblPrice = SIM_get_price(sellers[intSeller], intSeller,
ec.blnEXPCrandom, blnOutput, psOUT, random);

// if using nyse rule

if (ec.blnEXPCnyse)

{
// make seller offer the (best) offer
if (blnFirstOffer)

{
dblBestOffer = dblPrice;
blnFirst0ffer = false;

else
{

// (nyse rule for bid price improvement)
if (dblPrice < dblBestOffer)

dblBestOffer = dblPrice;
¥

¥

¥

if (blnOutput)

{

psOUT.println();

}

// get willing buyers

intNoWilling = SIM_get_willing(dblPrice, buyers,
intNoBuyers, intAgentList, ec.blnEXPCrandom, blnOutput,
psOUT, random);

if (blnOutput)

168

{
psOUT.println();
}

// if there are any willing buyers then enter into a DEAL
if (intNoWilling > 0)

{
intStatus = DEAL;

else
if (blnOutput)

{
psOUT.printlin(
"ZIP_SIM.sim_trade: No sellers able to offer");

}

intNoFails = MAX_FAILS;
intStatus = END_DAY;

}

¥

//
// ELSE RANDOMLY SELECT A BUYER AGENT TO BID
else

// is there a buyer able to make a bid?
blnDealType = BID;

// if using nyse rule and not first bid
if ((ec.blnEXPCnyse) && (blnFirstBid == false))

// if ZI traders
if (ec.blnEXPCrandom)

// any buyer with limit lower than best buyer bid can’t
// deal
for (intBuyer = 0; intBuyer < intNoBuyers; intBuyer++)

if (buyers[intBuyer] .dblAGNT1limit < dblBestBid)
éuyers[intBuyer].blnAGNTable = false;

3

else

// any buyer with an equal or lower price can’t bid
for (intBuyer = 0; intBuyer < intNoBuyers; intBuyer++)

{

if (buyers[intBuyer].dblAGNTprice <= dblBestBid)
{

buyers[intBuyer] .blnAGNTable = false;

¥

3

3

}

// form a list of buyer agents able to deal
intNoAble = SIM_get_able(0.0, buyers, intNoBuyers,
intAgentList, blnOutput, psOUT);

if (blnOutput)

{
psOUT.println();
}

// if there are any buyer agents able to trade at this price
// in the market
if (intNoAble > 0)

{

// randomly select a buyer able to trade

int intTemp = (int) (random.nextDouble() * intNoAble);
intBuyer = intAgentList[intTemp];

// get the bid price price for the buyer

dblPrice = SIM_get_price(buyers[intBuyer], intBuyer,
ec.blnEXPCrandom, blnQutput, psOUT, random);

169

// if using nyse rule
if (ec.blnEXPCnyse)

{
// make buyer bid the (best) bid
if (blnFirstBid)

dblBestBid = dblPrice;
blnFirstBid = false;

else
{

// (nyse rule for bid price improvement)
if (dblPrice > dblBestBid)

dblBestBid = dblPrice;
}

}

}

if (blnOutput)

{

psOUT.println();

¥

// get willing sellers

intNoWilling = SIM_get_willing(dblPrice, sellers,
intNoSellers, intAgentList, ec.blnEXPCrandom, blnOutput,
psOUT, random);

if (blnOutput)

{
psOUT.println();
}

// if there are any willing sellers then enter into a DEAL
if (intNoWilling > 0)

{
intStatus = DEAL;
}
}

else
if (blnOutput)

{
psOUT.println(
"ZIP_SIM.sim_trade: No buyers able to bid");

}

intNoFails = MAX_FAILS;
intStatus = END_DAY;

}

¥

//
// IF RANDOMLY SELECTED BUYER OR SELLER AGENT ABLE TO TRADE
if (intStatus == DEAL)

{
// if deal based on a SELLER’s offer
if (blnDealType == OFFER)

// randomly select a willing buyer for this offer

int intTemp = (int) (random.nextDouble() * intNoWilling);
intBuyer = intAgentList[intTemp];

if (blnOutput)

{

psOUT.println("ZIP_SIM.sim_trade: SELLER " +
intSeller + " SELLS TO BUYER " + intBuyer +

" (reward = " + SIM_reward(buyers[intBuyer],
dblPrice) + ")");

}

T
// if deal based on a BUYER’s bid
else

// randomly select a willing seller for this bid
int intTemp = (int) (random.nextDouble() * intNoWilling);

170

intSeller = intAgentList[intTemp];
if (blnOutput)

{

psOUT.println("ZIP_SIM.sim_trade: BUYER " + intBuyer +
" BUYS FROM SELLER " + intSeller + " (reward = " +
SIM_reward(sellers[intSeller], dblPrice) + ")");

¥

3

// UPDATE TRADE DATA: record trade price and deal type
data_trade.dblTDATdeal_price = dblPrice;
data_trade.blnTDATdeal_type = blnDealType;

if (blnOutput)

{

psOUT.println();

¥

// now a trade has taken place, update the trading strategies
// of buyers

for (int intBuyerAg = 0; intBuyerAg < intNoBuyers;
intBuyerAg++)

{

buyers[intBuyerAg] .AGNT_shout_update_buyer(intBuyerAg,
blnDealType, intStatus, dblPrice, blnOutput, psOUT,
random);

if (blnOutput)
{
psOUT.println();
}

// now a trade has taken place, update the trading strategies
// of sellers

for (int intSellerAg = 0; intSellerAg < intNoSellers;
intSellerAg++)

{

sellers[intSellerAg] .AGNT_shout_update_seller(intSellerAg,
blnDealType, intStatus, dblPrice, blnOutput, psOUT,

random) ;

// update the bank accounts of buyer and seller
SIM_bank(sellers[intSeller], buyers[intBuyer], dblPrice,
blnQutput, psOUT);

if (blnOutput)

{
psOUT.println();
¥

//
// IF RANDOMLY SELECTED BUYER OR SELLER AGENT NOT ABLE TO TRADE
else

{

// NO DEAL or END DAY

// increment number of fails count (if not already set at max
// fails)

if (intNoFails < MAX_FAILS)

intNoFails++;
if (blnOutput)

{

psOUT.println(

"ZIP_SIM.sim_trade: No willing takers (fails = "
+ intNoFails + ")");

psOUT.println();

¥

// (negative price in trade data = no deal)
data_trade.dblTDATdeal_price = -1.0;

// update the trading strategies of buyers

for (int intBuyerAg = 0; intBuyerAg < intNoBuyers;
intBuyerAg++)

{

171

buyers[intBuyerAg] .AGNT_shout_update_buyer(intBuyerAg,
blnDealType, intStatus, dblPrice, blnOutput, psOUT,
random) ;

// update the trading strategies of sellers
for (int intSellerAg = 0; intSellerAg < intNoSellers;
intSellerAg++)

{

sellers[intSellerAg] .AGNT_shout_update_seller(
intSellerAg, blnDealType, intStatus, dblPrice,
blnOutput, psOUT, random);

// SIM_REWARD: given a bid or offer price, returns the monetary reward
// for a deal (called by ZIP_Sim.SIM_trade, SIM_get_price,

// SIM_get_willing, SIM_get_able and SIM_bank)

public double SIM_reward(ZIP_Agent agent, double dblAGNTprice)

{

double dblReward = 0.0;

// if a SELLER agent

if (agent.blnAGNTtype == SELL)

// reward
dblReward

= offer price - agent limit price

= (dblAGNTprice - agent.dblAGNTlimit);
3

// if a BUYER agent

if (agent.blnAGNTtype == BUY)

// reward
dblReward
T

// ensure any negative rewards set at 0.0
if (dblReward < 0.0)

{
dblReward = 0.0;

agent limit price - bid price
(agent.dblAGNTlimit - dblAGNTprice);

return dblReward;

// SIM_GET_PRICE: get a (bid or offer) price for an agent
// (called by ZIP_Sim.SIM_trade, SIM_get_willing)

public double SIM_get_price(ZIP_Agent agent, int intID,
boolean blnRandom, boolean blnOutput, PrintStream psOUT,
Random random)

gouble dblPrice;
// bounds on random prices
double dblRandomMin = 0.01;
double dblRandomMax = 4.0;
// if ZI trader
%f (blnRandom)

// maximum bound for random price must not be less than agent
// limit price
if (dblRandomMax < agent.dblAGNTlimit)

{

psOUT.printlin(

"FAIL: dblRandomMax too low in AGNT_get_price");
System.out.println(

"FAIL: dblRandomMax too low in AGNT_get_price");
System.exit(0);

}
// if a BUYER agent
if (agent.blnAGNTtype == BUY)

// calculate bid price randomly (within bounds)

172

dblPrice = dblRandomMin + ((random.nextDouble() / 10) *
(agent.dblAGNTlimit - dblRandomMin));

}
// else a SELLER agent
else

// calculate offer price randomly (within bounds)

dblPrice = agent.dblAGNTlimit + ((random.nextDouble() / 10)
* (dblRandomMax - agent.dblAGNTlimit));

¥

// adjust price

dblPrice = (Math.floor(0.5 + (dblPrice * 100))) / 100;
agent.dblAGNTprice = dblPrice;

}
// else if a ZIP trader
else

dblPrice = agent.dblAGNTprice;

3

// output to log bid or offer price
if (blnOutput)

// get monetary reward for the deal
double dblReward = SIM_reward(agent, dblPrice);
if (agent.blnAGNTtype == BUY)

psOUT.println("ZIP_SIM: BUYER " + intID + " BIDS AT "
+ dblPrice + " (reward = " + dblReward + ")");

else
{

psOUT.println("ZIP_SIM: SELLER " + intID + " OFFERS AT "
+ dblPrice + " (reward = " + dblReward + ")");

return dblPrice;

/

// SIM_GET_WILLING: form a list of agents willing to deal

// (called by ZIP_Sim.SIM_trade)

public int SIM_get_willing(double dblOtherPrice, ZIP_Agent agent[],
int intNoAgents, int intAgentList[], boolean blnRandom,

boolean blnOutput, PrintStream psOUT, Random random)

{

int intWilling = O;

double dblThisPrice;

double dblPrice = dblOtherPrice;

for (int intAgent = 0; intAgent < intNoAgents; intAgent++)

{
// if ZI trader
if (blnRandom)
{

// (agent generates a price at random and compares it to a

// given price and is willing IF random price makes a profit)
// set willing to trade at this price flag initially to false
agent [intAgent] .b1lnAGNTwilling = false;

if (agent[intAgent].blnAGNTactive)

{

// get the (bid or offer) price for the current agent
dblThisPrice = SIM_get_price(agent[intAgent], intAgent,
blnRandom, blnOutput, psOUT, random);

// if a BUYER
if (agent[intAgent].blnAGNTtype == BUY)

// if agents bid price is larger than the sellers offer
// price then set as willing

if (dblThisPrice > dblOtherPrice)

{

agent [intAgent] .b1lnAGNTwilling = true;
dblPrice = dblThisPrice;

173

}

¥
// if a SELLER
else

// if agents offer price is less than the buyers bid
// price then set as willing

if (dblThisPrice < dblOtherPrice)

{

agent [intAgent] .b1lnAGNTwilling = true;
dblPrice = dblThisPrice;

1
1
1

}
// else if ZIP trader
else

// use some intelligence to determine whether willing to
// trade at this price or not

agent [intAgent] .AGNT_willing_trade(dblPrice);

3

// if agent willing
if (agent[intAgent].blnAGNTwilling)

{

// add to the willing list and add to total number of willing
// agents

intAgentList[intWilling] = intAgent;

intWilling++;

// get monetary reward for the deal

double dblReward = SIM_reward(agent[intAgent], dblPrice);
if (blnOutput)

{
if (agent[intAgent].blnAGNTtype == BUY)

{

psOUT.println("ZIP_SIM: BUYER " + intAgent +
" willing (reserve) price = " + dblPrice

+ " (reward = " + dblReward + ")");

else

psOUT.println("ZIP_SIM: SELLER " + intAgent +
" willing (reserve) price = " + dblPrice +
" (reward = " + dblReward + ")");

}
}

¥
if (blnOutput)

{

psOUT.println();

psOUT.println("ZIP_SIM: " + intWilling +
" traders willing to deal");

}

return intWilling;

/

// SIM_GET_ABLE: form a list of agents able to deal

// (called by ZIP_Sim.SIM_trade)

public int SIM_get_able(double dblPrice, ZIP_Agent agent[],
int intNoAgents, int intAgentList[], boolean blnOutput,
PrintStream psOUT)

{
int intAble = 0;
for (int intAgent = 0; intAgent < intNoAgents; intAgent++)

{
// if agent able to trade
if (agent[intAgent].blnAGNTable)

// add agent index to the list of agents and add to total

174

// number of able agents

intAgentList[intAble] = intAgent;

intAble++;

// get the monetary reward for the deal

double dblReward = SIM_reward(agent[intAgent], dblPrice);

if (blnOutput)
{
if (agent[intAgent].blnAGNTtype == BUY)

{
psOUT.println("ZIP_SIM.SIM_get_able: BUYER "
+ intAgent + " able (reward = " + dblReward + ")");

else

psOUT.println("ZIP_SIM.SIM_get_able: SELLER "

+ intAgent + " able (reward = " + dblReward + ")");
}

}

3

}

return intAble;

2 ——
// SIM_BANK: adjust bank balances of buyer and seller agents involved
// in a deal (called by ZIP_Sim.SIM_trade)

public void SIM_bank(ZIP_Agent seller, ZIP_Agent buyer,

double dblPrice, boolean blnQutput, PrintStream psOUT)

gouble dblReward;

// SELLER

// get monetary reward for the deal

dblReward = SIM_reward(seller, dblPrice);

// add monetary reward for the deal to the agents’ bank account
seller.dblAGNTmoney += dblReward;

seller.dblAGNTactualgain += dblReward;

dblSurplus += dblReward;

// decrease by one the total number of commodities the agent has
seller .dblAGNTquantity--;

// if the agent has no quantity of the commodity then set as

// inactive

if (seller.dblAGNTquantity < 1)

{

seller.blnAGNTactive = false;
}

if (blnOutput)

{
psOUT.println();
psOUT.println("ZIP_SIM.SIM_bank: SELLER limit = "

+ seller.dblAGNTlimit + ", reward = " + dblReward +

", money = " + seller.dblAGNTmoney + ", quantity = " +
seller.dblAGNTquantity + " (surplus = " + dblSurplus

+ n)II);

}

// BUYER

// get monetary reward for the deal

dblReward = SIM_reward(buyer, dblPrice);

// add monetary reward for the deal to the agents’ bank account
buyer.dblAGNTmoney += dblReward;

buyer.dblAGNTactualgain += dblReward;

dblSurplus += dblReward;

// decrease by one the total number of commodities the agent has
buyer.dblAGNTquantity--;

// if the agent has no quantity of the commodity then set as

// inactive

if (buyer.dblAGNTquantity < 1)

{
buyer.blnAGNTactive = false;
}

if (blnOutput)

175

{
psOUT.println();
psOUT.println("ZIP_SIM.SIM_bank: BUYER limit = "

+ buyer.dblAGNTlimit + ", reward = " + dblReward +

", money = " + buyer.dblAGNTmoney + ", quantity = " +
buyer.dblAGNTquantity + " (surplus = " + dblSurplus + ")");

}

3

/] == e
}

176

C.2 MBC Simulation Classes

As for the ZIP simulation, the MBC simulation is decomposed into a number of
well-defined classes and data structures. The MBC Simulation also uses the
ZIP_Agent, ZIP_Constants, ZIP _Data_Day, ZIP_Data_Trade and ZIP_SD_Vis

classes.

C.2.1 MBC_GA.java

Description: The GA used to evolve MBC-based ZIP trading agent parameter
sets and marketplaces.

// Class: MBC_GA.java

// ALGORITHM:

// £ill population with random values

// for n times round generation loop

// evaluate fitness of all genomes in the population
// select preferentially the fitter ones as parents
// for <intPopSize> times round repro loop

// pick 2 from parental pool

// recombine to make 1 offspring

// mutate the offspring

// end repro loop

// throw away parental generation and replace with offspring
// end generation loop

import java.io.FileQutputStream;

import java.io.PrintStream;

import java.text.DecimalFormat;

import java.util.Random;

import java.util.Hashtable;

public class MBC_GA

// number of generations

private int intNo0OfGens = 100;
// number of MBC trials

private int intNoTrials = 20;

// population size

private int intPopSize = 30;

// genome contains 17 parameters
private int intGenSize = 17;
PrintStream psDAY, psTRA, psSDO, psGA, psGEN;
private UDC_Network UDCnet;
public void GA(int intGARun)

// number of ZIP_Sim experiments to carry out for each individual
int intNoTimeSteps = 125;

Random random = new Random();

//random.setSeed(500);

String strFileNamel;

String strFileName2;

double dblPop[][] = new double[intGenSize] [intPopSize];
double dblNewPop[]l[] = new double[intGenSize] [intPopSize];
double dblFitnessScore[] = new double[intPopSizel;

double dblFittestGen[] = new double[intGenSize];

double dblCrossoverProb = 0.125;

double dblMutationProb = 0.3;

int intGen = 1;

try

{

177

psGA = new PrintStream(new FileOutputStream(
"ZIP_GA_EASY_ELITE_GEN_exp" + intGARun + ".txt"));
pPSGEN = new PrintStream(new FileQutputStream(
"ZIP_GA_EASY_POP_SCORES_exp" + intGARun + ".txt"));

catch(Exception exception)
{

System.out.println("IOException: " + exception);
System.exit(0);
}

// header for ’elite genomes’ output file
psGA.println(

"LR_MIN LR_MAX MM_MIN MM_MAX PR_MIN PR_MAX TR_R TR_A "
+ "LR_MIN LR_MAX MM_MIN MM_MAX PR_MIN PR_MAX TR_R "

+ "TR_A QS GEN BEST FITNESS");

try

// initialise file to write timestep data to

psDAY = new PrintStream(new FileOutputStream("MBC_DAY_exp"
+ intGARun + ".txt"));

// initialise file to write trade data to

psTRA = new PrintStream(new FileQutputStream("MBC_TRA_exp"
+ intGARun + ".txt"));

catch(Exception exception)

{

System.out.println("IOException: " + exception);
System.exit(0);

// BUILD UDC_NETWORK

MBC_Sim sim = new MBC_Sim();

UDCnet = sim.SIM_build_udc(random, false);

final Hashtable UDC = UDCnet.getNetwork();
. TSR SRR
// FILL POPULATION WITH INITIAL PARAMETER VALUES

// whole population initialised with same parameter values

for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

dblPop[0] [intPopPos] = 0.10;
dblPop[1] [intPopPos] = 0.40;
dblPop[2] [intPopPos] = 0.00;
dblPop[3] [intPopPos] = 0.10;
dblPop[4] [intPopPos] = 0.05;
dblPop[5] [intPopPos] = 0.30;
dblPop[6] [intPopPos] = 0.05;
dblPop[7] [intPopPos] = 0.05;
dblPop[8] [intPopPos] = 0.10;
dblPop[9] [intPopPos] = 0.40;
dblPop[10] [intPopPos] = 0.00;
dblPop[11] [intPopPos] = 0.10;
dblPop[12] [intPopPos] = 0.05;
dblPop[13] [intPopPos] = 0.30;
dblPop[14] [intPopPos] = 0.05;
dblPop[15] [intPopPos] = 0.05;
dblPop[16] [intPopPos] = 0.5;
¥

¥

[/ —mmmmm o
é/ GENERATIONAL LOOP

o

{

System.out.print("RUN:" + intGARun + " GEN:" + intGen);

//

// EVALUATE FITNESS OF GENOMES IN POPULATION

dblFitnessScore = fitness_function(dblPop, dblFitnessScore,
intNoTimeSteps, random, intGen, intGARun, intNoOfGens, UDCnet);

178

//

// (OUTPUT GA GENERATION DATA)

// (set to a high value as minimising)

double dblFittestScore = 100000.0;

// identify fittest genome (for elitism and output)

for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

{
// (MINIMISING HERE)
if (dblFitnessScore[intPopPos] < dblFittestScore)

{
dblFittestScore = dblFitnessScore[intPopPos];
for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

{
dblFittestGen[intGenPos] = dblPop[intGenPos] [intPopPos];

¥

¥

¥

DecimalFormat df = new DecimalFormat("0.00000");

// output elite genome

for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

{
psGA.print(df.format(dblFittestGen[intGenPos]) + " ");
}

psGA.println(intGen + " " + dblFittestScore);
// output population
for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

{
PsSGEN.print (dblFitnessScore[intPopPos] + " ");

PSGEN.println();

double[] dblGenome2 = new double[intGenSize];
double[] dblGenome3 = new double[intGenSize];

//

// REPRODUCTION LOOP (for intPopSize times)

// create a new population

for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

// randomly select three (unique) genomes from existing

// population

// generate a first random genome selection

int intSelectedGenl = random.nextInt(intPopSize);

int intSelectedGen2 = intSelectedGenl;

// generate a second random genome selection not the same as the

// first
while (intSelectedGen2 == intSelectedGenl)

intSelectedGen2 = random.nextInt(intPopSize);

}
int intSelectedGen3 = intSelectedGenl;
// generate a third random genome selection not the same as the

// first two
while (intSelectedGen3 == intSelectedGenl)

intSelectedGen3 = intSelectedGen2;
while (intSelectedGen3 == intSelectedGen2)

intSelectedGen3 = random.nextInt(intPopSize);

}

¥

// get the randomly selected genomes from the population

for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

{

dblGenomel[intGenPos]
dblGenome2[intGenPos]
dblGenome3[intGenPos]

dblPop[intGenPos] [intSelectedGenl];
dblPop[intGenPos] [intSelectedGen2];
dblPop[intGenPos] [intSelectedGen3];

179

// identify the fittest two (become parents) of these three

// (discard most unfit)

// fittest parent genome becomes Vmom, other parent genome Vdad
double dblFitnessl = dblFitnessScore[intSelectedGenl];

double dblFitness2 dblFitnessScore[intSelectedGen2];

double dblFitness3 dblFitnessScore[intSelectedGen3];

double dblMom = 100000.0;

double dblDad = 100000.0;

if (dblFitnessl < dblMom)

{
dblMom = dblFitnessi;
if (dblFitness2 < dblMom)

dblMom = dblFitness2;

}

if (dblFitness3 < dblMom)
{

dblMom = dblFitness3;

¥

}

int intMaPos = 0;

int intPaPos = 0;

// if dblFitnessl was the fittest
if (dblFitnessl == dblMom)

{

intMaPos = intSelectedGenl;

// identify fittest between dblFitness2 and dblFitness3
if (dblFitness2 < dblFitness3)

dblDad = dblFitness2;
intPaPos = intSelectedGen2;

else
{

dblDad = dblFitness3;
intPaPos = intSelectedGen3;
}

}
// if dblFitness2 was the fittest
else if (dblFitness2 == dblMom)

intMaPos = intSelectedGen2;
// identify fittest between dblFitnessl and dblFitness3
if (dblFitnessl < dblFitness3)

dblDad = dblFitnessli;
intPaPos = intSelectedGenl;

else

dblDad = dblFitness3;
intPaPos = intSelectedGen3;
}

}
// if dblFitness3 was the fittest
else

intMaPos = intSelectedGen3;
// identify fittest between dblFitnessl and dblFitness2
if (dblFitnessl < dblFitness2)

dblDad = dblFitnessi;
intPaPos = intSelectedGenl;

else

dblDad = dblFitness2;
intPaPos = intSelectedGen2;
}

}

// CROSSOVER: recombine to make 1 offspring

// begin by copying the first element of the Ma genome into
// new Pop

dblNewPop[0] [intPopPos] = dblPop[0] [intMaPos];

180

boolean blnParent = true;

// uniform recombination of ma and pa genomes

// (with probability dblCrossoverProb)

for (int intGenPos = 1; intGenPos < intGenSize; intGenPos++)

{
if (random.nextDouble() < dblCrossoverProb)

// change parent
if (blnParent == true)

{

dblNewPop[intGenPos] [intPopPos]
dblPop[intGenPos] [intPaPos];
blnParent = false;

else

dblNewPop [intGenPos] [intPopPos]
dblPop[intGenPos] [intMaPos];
blnParent = true;

else
{

// stay with same parent
if (blnParent == true)

dblNewPop[intGenPos] [intPopPos]
dblPop[intGenPos] [intMaPos];

else

dblNewPop [intGenPos] [intPopPos]
dblPop[intGenPos] [intPaPos];

1
1

¥
// MUTATION: mutate the offspring
for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

// (mutation always carried out)

// generate a random number in range [-0.05,0.05]
double dblRandMut = (random.nextDouble() * 0.10) - 0.05;
dblNewPop [intGenPos] [intPopPos] += dblRandMut;

// clip to ensure value in range [0,1]
if (dblNewPop[intGenPos][intPopPos] > 1.0)

{

dblNewPop[intGenPos] [intPopPos] = 1.0;

}

if (dblNewPop[intGenPos] [intPopPos] < 0.0)
{

dblNewPop[intGenPos] [intPopPos] = 0.0;

3
// END REPRODUCTION LOOP
/

// ELITISM: retain best genome of this generation (put into first
// slot of new population)
for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

{
dblNewPop [intGenPos][0] = dblFittestGen[intGenPos];

// throw away parental generation and replace with offspring
for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

for (int intGenPos = 0; intGenPos < intGenSize; intGenPos++)

dblPop[intGenPos] [intPopPos] =
dblNewPop[intGenPos] [intPopPos];
¥

181

intGen++;

T
// END GENERATION LOOP
while(intGen <= intNoOfGens);

// FITNESS_FUNCTION: return fitness scores

public double[] fitness_function(double dblPop[]1[],

double dblFitnessScore[], int intNoTimeSteps, Random random,
int intGen, int intGARun, int intNoGens, UDC_Network UDCnet)

// iterate through each member of the population
for (int intPopPos = 0; intPopPos < intPopSize; intPopPos++)

{
if (((intGen % 50) == 0) || (intGen == 1))

psDAY.println();

psDAY .println(M——————mm e e e "
+ LLJp— | |);

psDAY.println("MBC_SIM TRIAL STATS, GEN: " + intGen + ", "
+ "POP MEMBER: " + intPopPos);

psDAY.println("-----—--mmmm oo e e "
+ n___n);

psDAY.println();

psTRA.println();

psTRA.println(M———————— o e e "
+ n___n ;

psTRA.println("MBC_SIM TRADE STATS, GEN: " + intGen + ", "
+ "POP MEMBER: " + intPopPos);

psTRA.println(M———————— o e "

4 Nem

psTRA.priﬁtln();
}
for (int intTrial = 0; intTrial < intNoTrials; intTrial++)

// call main function

MBC_Sim sim = new MBC_Sim();

// ’reset’ udc network

sim.reset_UDC(UDCnet, intNoTimeSteps);

// run MBC trial

dblFitnessScore[intPopPos] += sim.SIM_main(
intNoTimeSteps, dblPop[0][intPopPos],
dblPop[1] [intPopPos], dblPop[2] [intPopPos],
dblPop[3] [intPopPos], dblPop[4] [intPopPos],
dblPop[5] [intPopPos], dblPop[6][intPopPos],
dblPop[7] [intPopPos], dblPop[8] [intPopPos],
dblPop[9] [intPopPos], dblPop[10][intPopPos],
dblPop[11] [intPopPos], dblPop[12] [intPopPos],
dblPop[13] [intPopPos], dblPop[14] [intPopPos],
dblPop[15] [intPopPos], dblPop[16] [intPopPos],
intGen, intPopPos, random, psDAY, psTRA, psSDO,
intNoGens, UDCnet);

// output GA progress

if ((intPopPos % 10) == 0)
{

System.out.print(" ");

}
System.out.print("*");

if (intPopPos == (intPopSize - 1))
System.out.println();
// average fitness score over number of trials

double dblTemp = dblFitnessScore[intPopPos] / intNoTrials;
dblFitnessScore[intPopPos] = dblTemp;

182

return dblFitnessScore;

public static void main (String args[])

{

MBC_GA ga = new MBC_GAQ);

int intNoGARuns = 8;

for (int intGARun = 1; intGARun <= intNoGARuns; intGARun++)

{
ga.GA(intGARun);

183

C.2.2 MBC_Sim.java

Description: Main simulation class. Initialises and initiates updating of the
simulation at each timestep.

// Class: MBC_Sim.java

import java.io.FileQutputStream;

import java.io.PrintStream;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Random;

import java.util.Vector;

import java.text.DecimalFormat;

public class MBC_Sim implements ZIP_Constants

{

// GLOBAL OBJECTS/PARAMETERS

// flag for UDC network visualisation

private boolean blnSERVvis = true;

// flag for failing network servers

private boolean blnRemoveServers = false;

// timestep to remove servers from network

private int intRemTimeStep = 30;

// trial fitness value

private double dblTrialFitness = 0.0;

// equilibrium price calculated in initialisation method
private double dblPrice_0;

private double dblMaxSurplus;

// number of market auctions taken place

private double dblAuctions = 0.0;

// number of successful market auctions taken place
private double dblSuccAucs = 0.0;

// current simulation timestep

private int intTimeStep = 0;

private int[] intTrades;

// count of total number of tasks processed by the UDC at end of

// simulation
private int intTotalJobsPrsd = 0;

// count of total number of tasks allocated by the UDC at end of

// simulation
private int intTotalJobsAlloc = 0;

// percentage of tasks allocated to total number of tasks put onto

// network
private double dblTaskAllocPerc = 0.0;

private PrintStream psOUT;
// UDC_Vis DECLARATIONS

// number of servers in the UDC_Network
private int intVISno_servers = 100;

// stores each servers load at each timestep

private double[]1[] dblVISload;

// stores the number of tasks at each servers local market at each

// timestep

private double[][] dblVISno_tasks;

// stores the quote price of each server seller agent at each timestep
private double[][] dblVISpriceSS;

// stores the quote price of each server buyer agent at each timestep
private double[][] dblVISpriceSB;

// stores the number of tasks finished by each server up to each

// timestep

private double[][] dblVISjprsd;

// stores the number of tasks that have been allocated onto network
private double[]1[] dblVISalloc;

// stores percentage of tasks allocated over all tasks on network
private double[]1[] dblVISperf;

boolean blnTradel[];

e
// SIM_MAIN

public double SIM_main(int intVISno_timesteps,

184

double
double
double
double
double
double
double
double
double

BUYdb1AGNT_1r

BUYdblAGNT _mm_L,

BUYdb1AGNT_pf
BUYdb1AGNT_tr
SELdb1AGNT_1r

SELdbl1AGNT _mm_L,

SELdblAGNT_pf
SELdb1AGNT_tr

double
double
double
double
double
double
double
double

_L,

_L,
-R,
_L,

_L,
_R,

BUYdb1lAGNT_1r_H,
BUYdb1lAGNT _mm_H,
BUYdblAGNT _pf_H,
BUYdb1AGNT_tr_A,
SELdb1AGNT_1r_H,
SELdb1AGNT _mm_H,
SELdblAGNT_pf_H,
SELdb1AGNT_tr_A,
dblQS, int intGen, int intPopPos, Random

random,

PrintStream psDAY, PrintStream psTRA, PrintStream psSDO,
int intNoGens, UDC_Network UDCnet)

{
ZIP_Stats stats
ZIP_SD_

Vis SDVIS

boolean blnOutput = false;

intTrades
blnTrade

new ZIP_Stats();
new ZIP_SD_Vis();

new int[intVISno_timesteps];
new boolean[intVISno_timesteps];

// INITIALISE OUTPUT STREAMS AND QUTPUT FILES

try

{
psOUT = new PrintStream(new FileOutputStream("MBC_OUT.txt"));

catch(Exception exception)

{

System.out.println("IOException: " + exception);
System.exit(0);

Hashtable UDC = UDCnet.getNetwork();
// to store all server available capacities for intVisTS timesteps

dblVISload
dblVISno_tasks
dblVISpriceSS
dblVISpriceSB
dblVISjprsd
dblVISalloc
dblVISperf

//

// initialise server agents
for (int intServer

UDC_Server server

server.
server.
server.

server

server.
server.
server.

server

agtSERVseller.
agtSERVseller.
agtSERVseller.
.agtSERVseller.
agtSERVseller.
agtSERVseller.
agtSERVseller.
.agtSERVseller.

1;

intServer <= UDC.size();

new double[UDC.size()][intVISno_timesteps];
new double[UDC.size()][intVISno_timesteps];
new double[UDC.size ()] [intVISno_timesteps];
new double[UDC.size()] [intVISno_timesteps];
new double[UDC.size ()] [intVISno_timesteps];
new double[UDC.size ()] [intVISno_timesteps];
new double[UDC.size()][intVISno_timesteps];

intServer++)

(UDC_Server) UDC.get("S" + intServer);
// set QS value on server
server.dblQS = dblQS;

// (GA) SET SELLER AGENT GA PARAMETERS

dblAGNT _1r_L
dblAGNT _1r_H
dblAGNT _mm_L
dblAGNT _mm_H
dblAGNT _pf_L
dblAGNT_pf_H
dblAGNT_tr_R
dblAGNT_tr_A

SELdblAGNT_1r_L;
SELdblAGNT _1r_H;
SELdb1AGNT _mm_L;
SELdb1AGNT _mm_H;
SELdblAGNT _pf_L;
SELdblAGNT _pf_H;
SELdblAGNT_tr_R;
SELdb1AGNT _tr_A;

// (GA) SET BUYER AGENT GA PARAMETERS

server.
server.
.agtSERVbuyer.
.agtSERVbuyer.
server.
server.
server.
.agtSERVbuyer.

server
server

server

agtSERVbuyer.db

agtSERVbuyer.

agtSERVbuyer.
agtSERVbuyer.
agtSERVbuyer.

1AGNT _1r_L
dblAGNT_1r_H
dblAGNT_mm_L
dblAGNT_mm_H
dblAGNT_pf_L
dblAGNT_pf_H
dblAGNT_tr_R
dblAGNT_tr_A

// initialise the buyer and seller

server.agtSERVseller.AGNT_init_seller(intServer,

blnQutput);
server.agtSERVbuyer.AGNT_init_buyer(intServer, random,
blnOutput);

BUYdblAGNT_1r_L;
BUYdb1lAGNT_1r_H;

BUYdb1AGNT mm_L;

BUYdb1AGNT _mm_H;

BUYdb1AGNT _pf_L;
BUYdb1lAGNT_pf_H;
BUYdblAGNT_tr_R;
BUYdb1AGNT_tr_A;

agents on the UDC_Server objects
random,

185

// initialise simulation

SIM_init(blnOutput, psOUT, SDVIS, UDCnet, random, psSDO);
// initialise trade and timestep stat data structures
stats.STATS_init(intVISno_timesteps);

int intTASKid = 0;

for (int intTimeStep = 1; intTimeStep <= intVISno_timesteps;
intTimeStep++)

{
// remove server(s) from the network after n timesteps
if (blnRemoveServers == true)

if (intTimeStep == intRemTimeStep)
{

remove_servers(UDCnet);

¥

// PASS OVER UDC_NETWORK TO UPDATE SYSTEM

intTASKid = MBC_system_update(intTimeStep, UDCnet, intTrades,
SDVIS, blnOutput, random, BUYdblAGNT_lr_L, BUYdblAGNT_lr_H,
BUYdblAGNT _mm_L, BUYdblAGNT_mm_H, BUYdblAGNT_pf_L,
BUYdblAGNT_pf_H, BUYdblAGNT_tr_R, BUYdblAGNT_tr_A, intTASKid,
stats, psDAY, psTRA, psSDO, psOUT, intVISno_timesteps, intGen,
intNoGens);

// return trial fitness score
return stats.dblTrialFitness;

// MBC_SYSTEM_UPDATE: pass over UDC_Network to update system

// >> called by MBC_Sim.SIM_main

private int MBC_system_update(int intTimeStep, UDC_Network UDCnet,
int[] intTrades, ZIP_SD_Vis SDVIS, boolean blnOutput, Random random,
double dblAGNT_lr_L, double dblAGNT_lr_H, double dblAGNT_mm_L,
double dblAGNT_mm_H, double dblAGNT_pf_L, double dblAGNT_pf_H,
double dblAGNT_tr_R, double dblAGNT_tr_A, int intTASKid,

ZIP_Stats stats, PrintStream psDAY, PrintStream psTRA,

PrintStream psSDO, PrintStream psOUT, int intVISno_timesteps,

int intGen, int intNoGens)

{

blnTrade[intTimeStep-1] = false;
// OUTPUT TIMER

if (blnOutput)

{
psOUT.println();

psOUT.println("—---——-——— e ")

psOUT.println("MBC_SIM: Simulation Time Step " + intTimeStep);
psOUT.println("—-—--————— e ")

psOUT.println();

3
Tt

DecimalFormat format = new DecimalFormat("0.000");
// OUTPUT PERCENTAGE OF SUCCESSFUL AUCTIONS
if (dblAuctions != 0.0)

{
double dblTemp = (dblSuccAucs / dblAuctions);
if (blnOutput)

psOUT.println("MBC_SIM: Percentage of successful auctions "
+ format.format(dblTemp * 100) + "/ at Timestep "

+ intTimeStep);

psOUT.println();

3

intTrades[intTimeStep-1] = 0;

// INITIALISE VARIABLES USED IN CALCULATING TRADE AND TIMESTEP
// STATISTICS (done at the start of every timestep)
stats.STATS_reset();

/
// RANDOMLY PASS OVER ALL SERVERS

186

Hashtable UDC = UDCnet.getNetwork();

int intSERVER = 0;

int intCOUNT = O;

int[] intSERVERS = new int[UDC.size()];

boolean blnPassedOver = true;

for (int intServer = 1; intServer <= UDC.size(); intServer++)

{
intSERVERS [intServer-1] = -1;
}

int intTotalTasks = 0;

for (int intServer 1; intServer <= UDC.size(); intServer++)

while (blnPassedOver == true)

intSERVER = (int) ((random.nextDouble() * UDC.size()) + 1);
for (int intArrServ = 1; intArrServ <= UDC.size();
intArrServ++)

if (intSERVERS[intArrServ-1] != intSERVER)

blnPassedQver = false;

}

blnPassedOver = true;

// add to array (to make sure it is not picked again)
intSERVERS[intCOUNT] = intSERVER;

UDC_Server server = (UDC_Server) UDC.get("S" + intServer);
// RETRIEVE DATA FOR MBC VISUALISATIQNS
dblVISload[intServer-1] [intTimeStep-1] =
Double.parseDouble("" + server.intSERVtotal_ru) -
Double.parseDouble("" + server.intSERVavail_ru);

Vector vctSERVmarket = server.vctSERVmarket;
dblVISno_tasks[intServer-1] [intTimeStep-1] =
Double.parseDouble("" + vctSERVmarket.size());

// get visualisation stats from each server
dblVISpriceSS[intServer-1] [intTimeStep-1] =
server.agtSERVseller.dblAGNTprice;
dblVISpriceSB[intServer-1] [intTimeStep-1]
server.agtSERVbuyer.dblAGNTprice;
dblVISjprsd[intServer-1] [intTimeStep-1] = (double)
server.intSERVjprsd;

dblVISalloc[intServer-1] [intTimeStep-1] = (double)
server.intSERValloc;

if (dblVISno_tasks[intServer-1][intTimeStep-1] != 0)

{

dblVISperf[intServer-1] [intTimeStep-1] =
(double) (server.intSERValloc /

(dblVISno_tasks[intServer-1] [intTimeStep-1]
+ server.intSERValloc)) * 100;

}

else

dblVISperf [intServer-1] [intTimeStep-1] = 0.0;

// update counter of total number of server tasks processed
if (intTimeStep == (intVISno_timesteps - 1))

{
intTotalJobsPrsd += server.intSERVjprsd;

// update counter of total number of server tasks allocated
if (intTimeStep == (intVISno_timesteps - 1))

{

intTotalJobsAlloc += server.intSERValloc;

¥

if (intTimeStep == (intVISno_timesteps - 1))

{
intTotalTasks += (dblVISno_tasks[intServer-1][intTimeStep-1]
+ server.intSERValloc);

187

T
// act on local state of server only

// call thread to update the server state

intTASKid = server.updateServer(intTimeStep, intTASKid, blnQutput,
stats, random, psOUT, psSDO, dblAGNT_lr_L, dblAGNT_lr_H,

dblAGNT_mm_L, dblAGNT_mm_H, dblAGNT_pf_L, dblAGNT_pf_H,

dblAGNT_tr_R, dblAGNT_tr_A, dblPrice_0,dblMaxSurplus, UDCnet,

SDVIS, intVISno_timesteps);

// get from server whether a deal (trade) occured

if (server.blnTradeOccured)

intTrades [intTimeStep-1]++;

dblSuccAucs += 1.0;

blnTrade[intTimeStep-1] = true;

}

// get from server whether an auction occured (successful or not)
if (server.blnAuctionOccured)

{
dblAuctions += 1.0;

}
DecimalFormat decfor = new DecimalFormat("0.00");
if (intTimeStep == (intVISno_timesteps - 1))

{

dblTaskAllocPerc = (double) ((double) intTotalJobsAlloc
/ (double) intTotalTasks) * 100.0;

dblTaskAllocPerc = Double.parseDouble(decfor.format(
dblTaskAllocPerc));

¥

// update stats based on whether a deal occured
stats.STATS_update(intTimeStep, UDCnet, UDC.size(), UDC.size(),
blnTrade[intTimeStep-1], blnOutput);

// output visualisation

if (intTimeStep == intVISno_timesteps)

{

UDC_Vis loadVIS = new UDC_Vis(intVISno_servers, intVISno_timesteps,
"LOAD", dblVISload, intTotalJobsPrsd, dblTaskAllocPerc);

UDC_Vis taskVIS = new UDC_Vis(intVISno_servers, intVISno_timesteps,
"WAITING TASKS", dblVISno_tasks, intTotalJobsPrsd,

dblTaskAllocPerc);

UDC_Vis SSpriceVIS = new UDC_Vis(intVISno_servers, intVISno_timesteps,
"OFFER PRICE", dblVISpriceSS, intTotalJobsPrsd, dblTaskAllocPerc);
UDC_Vis SBpriceVIS = new UDC_Vis(intVISno_servers, intVISno_timesteps,
"BID PRICE", dblVISpriceSB, intTotalJobsPrsd, dblTaskAllocPerc);
UDC_Vis jprsdVIS = new UDC_Vis(intVISno_servers, intVISno_timesteps,
"JOBS PRSD", dblVISjprsd, intTotalJobsPrsd, dblTaskAllocPerc);

UDC_Vis allocVIS = new UDC_Vis(intVISno_servers, intVISno_timesteps,
"TASKS ALLOCATED", dblVISalloc, intTotalJobsAlloc,

dblTaskAllocPerc);

UDC_Vis perfVIS = new UDC_Vis(intVISno_servers, intVISno_timesteps,
"PERCENTAGE ALLOCATED", dblVISperf, intTotalJobsPrsd,

dblTaskAllocPerc);

if (blnSERVvis == true)

{
//taskVIS.show();
//jprsdVIS.show();
//allocVIS.show();
//perfVIS.show();
SBpriceVIS.show();
SSpriceVIS.show();
loadVIS.show();

¥
stats.TRADE_output(intTimeStep, intTrades, psTRA, intGen);
stats.DAY_output(intVISno_timesteps, psDAY, blnTrade, intGen);

¥
return intTASKid;

/
// SIM_BUILD_UDC: set-up the UDC_Network and populate with UDC_Server

188

// objects
public static UDC_Network SIM_build_udc(Random random,
boolean blnOutput)

{

UDC_Network UDCnet = new UDC_Network();
// INSTANTIATE UDC_SERVER OBJECTS
UDC_Server S1 new UDC_Server("S1",
UDC_Server S2 new UDC_Server("S2",
UDC_Server S3 new UDC_Server("S3",
UDC_Server S4 new UDC_Server("S4",
UDC_Server S5 new UDC_Server("S5",
UDC_Server S6 new UDC_Server("S6",
UDC_Server S7 new UDC_Server("S7",
UDC_Server S8 new UDC_Server("S8",
UDC_Server S9 new UDC_Server("S9",
UDC_Server S10 new UDC_Server("S10",
UDC_Server Si1 new UDC_Server("Si1",
UDC_Server S12 new UDC_Server("Si12",
UDC_Server S13 new UDC_Server("S13",
UDC_Server S14 new UDC_Server("S14",
UDC_Server S15 new UDC_Server("S15",
UDC_Server S16 new UDC_Server("Si6",
UDC_Server S17 new UDC_Server("S17",
UDC_Server S18 new UDC_Server("S18",
UDC_Server S19 new UDC_Server("S19",
UDC_Server S20 new UDC_Server("S20",
UDC_Server S21 new UDC_Server("S21",
UDC_Server S22 new UDC_Server("S22",
UDC_Server S23 new UDC_Server("S23",
UDC_Server S24 new UDC_Server("S24",
UDC_Server S25 new UDC_Server("S25",
UDC_Server S26 new UDC_Server("S26",
UDC_Server S27 new UDC_Server("S27",
UDC_Server S28 new UDC_Server("S28",
UDC_Server S29 new UDC_Server("S29",
UDC_Server S30 new UDC_Server("S30",
UDC_Server S31 new UDC_Server("S31",
UDC_Server S32 new UDC_Server("S32",
UDC_Server S33 new UDC_Server("S33",
UDC_Server S34 new UDC_Server("S34",
UDC_Server S35 new UDC_Server("S35",
UDC_Server S36 new UDC_Server("S36",
UDC_Server S37 new UDC_Server("S37",
UDC_Server S38 new UDC_Server("S38",
UDC_Server S39 new UDC_Server("S39",
UDC_Server S40 new UDC_Server("S40",
UDC_Server S41 new UDC_Server("S41",
UDC_Server S42 new UDC_Server("S42",
UDC_Server S43 new UDC_Server("S43",
UDC_Server S44 new UDC_Server("S44",
UDC_Server S45 new UDC_Server("S45",
UDC_Server S46 new UDC_Server("S46",
UDC_Server S47 new UDC_Server("S47",
UDC_Server S48 new UDC_Server("S48",
UDC_Server S49 new UDC_Server("S49",
UDC_Server S50 new UDC_Server("S50",
UDC_Server Sb51 new UDC_Server("S51",
UDC_Server S52 new UDC_Server("S52",
UDC_Server S53 new UDC_Server("S53",
UDC_Server S54 new UDC_Server("Sb54",
UDC_Server S55 new UDC_Server("S55",
UDC_Server S56 new UDC_Server("S56",
UDC_Server S57 new UDC_Server("S57",
UDC_Server S58 new UDC_Server("S58",
UDC_Server S59 new UDC_Server("S59",
UDC_Server S60 new UDC_Server("S60",
UDC_Server S61 new UDC_Server("S61",
UDC_Server S62 new UDC_Server("S62",
UDC_Server S63 new UDC_Server("S63",
UDC_Server S64 new UDC_Server("S64",
UDC_Server S65 new UDC_Server("S65",

mwnuwuwunwnmnn
RHRRERRR B

RRRERRERRERRRERRERRERRPRRERRERRRPRRBERERRRPRRPRRPRRPRRERRRERRRPRRERRRERERERRERERRERRERERRERRERRRBRRERRREBRBRERRERRERRERRERRERERRR U

R N A A A N S N AN

189

UDC_Server S66 = new UDC_Server("S66", 1);
UDC_Server S67 = new UDC_Server("S67", 1);
UDC_Server S68 = new UDC_Server("S68", 1);
UDC_Server S69 = new UDC_Server("S69", 1);
UDC_Server S70 = new UDC_Server("S70", 1);
UDC_Server S71 = new UDC_Server("S71", 1);
UDC_Server S72 = new UDC_Server("S72", 1);
UDC_Server S73 = new UDC_Server("S73", 1);
UDC_Server S74 = new UDC_Server("S74", 1);
UDC_Server S75 = new UDC_Server("S75", 1);
UDC_Server S76 = new UDC_Server("S76", 1);
UDC_Server S77 = new UDC_Server("S77", 1);
UDC_Server S78 = new UDC_Server("S78", 1);
UDC_Server S79 = new UDC_Server("S79", 1);
UDC_Server S80 = new UDC_Server("S80", 1);
UDC_Server S81 = new UDC_Server("S81", 1);
UDC_Server S82 = new UDC_Server("S82", 1);
UDC_Server S83 = new UDC_Server("S83", 1);
UDC_Server S84 = new UDC_Server("S84", 1);
UDC_Server S85 = new UDC_Server("S85", 1);
UDC_Server S86 = new UDC_Server("S86", 1);
UDC_Server S87 = new UDC_Server("S87", 1);
UDC_Server S88 = new UDC_Server("S88", 1);
UDC_Server S89 = new UDC_Server("S89", 1);
UDC_Server S90 = new UDC_Server("S90", 1);
UDC_Server S91 = new UDC_Server("S91", 1);
UDC_Server S92 = new UDC_Server("S92", 1);
UDC_Server S93 = new UDC_Server("S93", 1);
UDC_Server S94 = new UDC_Server("S94", 1);
UDC_Server S95 = new UDC_Server("S95", 1);
UDC_Server S96 = new UDC_Server("S96", 1);
UDC_Server S97 = new UDC_Server("S97", 1);
UDC_Server S98 = new UDC_Server("S98", 1);
UDC_Server S99 = new UDC_Server("S99", 1);
UDC_Server S100 = new UDC_Server("S100", 1);
/*

// randomly determine the total
// server

// (range [2,10]) to initialise
UDC_Server S1 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S2 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S3 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S4 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S5 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S6 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S7 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S8 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S9 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S10 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S11 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S12 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S13 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S14 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S15 new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S16 new UDC_Server(
(random.nextInt(9) + 2));

resource units available on each

each server (9 is exclusive below)

"s1M,
"s2",
"S3",
"s4n,
"Ss",
"S6",
"ST",
"sg",
"S9",
"s10",
"s11",
"s12",
"S13",
"s14",
"S15",

n"s16",

190

UDC_Server S17 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S18 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S19 = new UDC Server(
(random.nextInt(9) + 2));
UDC_Server S20 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S21 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S22 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S23 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S24 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S25 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S26 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S27 = new UDC Server(
(random.nextInt(9) + 2));
UDC_Server S28 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S29 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S30 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S31 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S32 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S33 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S34 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S35 = new UDC Server(
(random.nextInt(9) + 2));
UDC_Server S36 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S37 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S38 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S39 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S40 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S41 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S42 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S43 = new UDC Server(
(random.nextInt(9) + 2));
UDC_Server S44 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S45 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S46 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S47 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S48 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S49 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S50 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S51 = new UDC Server(
(random.nextInt(9) + 2));
UDC_Server S52 = new UDC_Server(

"S17",
"s18",
"S19",
"520",
"s21",
"s22",
"s23",
"s24",
"S25",
"s26",
"s27",
"528",
"s29",
"S30",
"s31",
"s32",
"S33",
"s34",
"S35",
"s36",
"S37",
"s38",
"S39",
"s40",
"s41",
"s42",
"s43",
"s44",
"s45",
"s46",
"s4T",
"s48",
"S49",
"S50",
"s51",

ngpon s

191

(random.nextInt(9) + 2));
UDC_Server S53 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S54 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S55 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S56 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S57 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S58 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S59 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S60 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S61 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S62 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S63 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S64 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S65 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S66 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S67 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S68 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S69 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S70 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S71 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S72 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S73 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S74 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S75 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S76 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S77 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S78 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S79 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S80 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S81 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S82 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S83 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S84 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S85 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S86 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S87 = new UDC_Server(
(random.nextInt(9) + 2));

"S53",
"s54",
"S855",
"S56",
"S5T",
"S58",
"S59",
"S60",
"s61",
"s62",
"S63",
"s64",
"S65",
"S66",
"S6T",
"s68",
"S69",
"ST70",
"sT1",
"sT72",
"S73",
"s74",
"S75",
"S76",
"STT",
"s78",
"ST79",
"S80",
"s81",
"s82",
"s83",
"s84",
"s85",
"s86",

ngg7h,

192

UDC_Server S88 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S89 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S90 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S91 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S92 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S93 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S94 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S95 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S96 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S97 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S98 = new UDC_Server(
(random.nextInt(9) + 2));
UDC_Server S99 = new UDC_Server(
(random.nextInt(9) + 2));

"s88",
"s89",
"S90",
"so1",
"s92",
"593",
"s94",
"S95",
"596",
"S9T",
"s98",

ngoo" s

UDC_Server S100 = new UDC_Server("S100",

(random.nextInt(9) + 2));
*/

// ADD SERVERS TO UDC_NETWORK
UDCnet.put(S1

UDCnet.put(S2

UDCnet.put(S3

UDCnet.put(S4

UDCnet.put(S5

UDCnet.put(S6

UDCnet.put(S7

UDCnet.put(S8

UDCnet.put(S9

UDCnet.put(S10
UDCnet.put(Si1
UDCnet.put(S12
UDCnet.put(S13
UDCnet.put(S14
UDCnet.put(S15
UDCnet.put(S16
UDCnet.put(S17
UDCnet.put(S18
UDCnet.put(S19
UDCnet.put(S20
UDCnet.put(S21
UDCnet.put(S22
UDCnet.put(S23
UDCnet.put(524
UDCnet.put(S25
UDCnet.put(526
UDCnet.put(S27
UDCnet.put(S28
UDCnet.put(S29
UDCnet.put(S30
UDCnet.put(S31
UDCnet.put(S32
UDCnet.put(S33
UDCnet.put(S34
UDCnet.put(S35
UDCnet.put(S36
UDCnet.put(S37
UDCnet.put(S38
UDCnet.put(S39

N N

N N N N N N N N N N N N N N N W N N A N N W W N N A N N N N e we e e e we e e e

193

UDCnet.put(S40
UDCnet.put(S41
UDCnet.put(S42
UDCnet.put(S43
UDCnet.put(S44
UDCnet.put(S45
UDCnet.put(S46
UDCnet.put(S47
UDCnet.put(S48
UDCnet.put(S49
UDCnet.put(S50
UDCnet.put(S51
UDCnet.put(S52
UDCnet.put(S53
UDCnet.put(S54
UDCnet.put(S55
UDCnet.put(S56
UDCnet.put(S57
UDCnet.put(S58
UDCnet.put(S59
UDCnet.put(S60
UDCnet.put(S61
UDCnet.put(S62
UDCnet.put(S63
UDCnet.put(S64
UDCnet.put(S65
UDCnet.put(S66
UDCnet.put(S67
UDCnet.put(S68
UDCnet.put(S69
UDCnet.put(S70
UDCnet.put(S71
UDCnet.put(S72
UDCnet.put(S73
UDCnet.put(S74
UDCnet.put(S75
UDCnet.put(S76
UDCnet.put(S77
UDCnet.put(S78
UDCnet.put(S79
UDCnet.put(S80
UDCnet.put(S81
UDCnet.put(S82
UDCnet.put(S83
UDCnet.put(S84
UDCnet.put(S85
UDCnet.put(S86
UDCnet.put(S87
UDCnet.put(S88
UDCnet.put(S89
UDCnet.put(S90
UDCnet.put(S91
UDCnet.put(S92
UDCnet.put(S93
UDCnet.put(S94
UDCnet.put(S95
UDCnet.put(S96
UDCnet.put(S97
UDCnet.put(S98
UDCnet.put(S99
UDCnet.put(S100);

Hashtable UDC = UDCnet.getNetwork();
Enumeration enum = UDC.elements();
if (blnOutput)

{

H
3
H
H
3
H
3
H
H
3

R N A A

H
3
3
H
3
H
3
H
H
3
H
3
H
H
3
H
3
H
H
3
H
3
H
3
3
H
3
H
3
3
H
3
H
3
H
H
3
H
3
H
H
3
H
3
H
H
3
H
3
H

194

while (enum.hasMoreElements())

UDC_Server server = (UDC_Server) enum.nextElement();
//psOUT.println("MBC_SIM: Server " + server.strSERVid
// + " with capacity " + server.intSERVtotal_ru +

// " initialised");

¥

// ADD SERVER CONNECTIVITIES

;/ (20-SERVER CONNECTIVITIES)

*

Sl.addUDg_Servers(si6, S17, S18, S19, S20, S2, 83,
S5, S6);

S2.addUDC_Servers(S17, S18, S19, S20, S1, 83, 54,
S6, S7);

S3.addUDC_Servers(S18, S19, S20, S1i, S2, S4, S5,
S7, S8);

S4.addUDC_Servers(S19, S20, S1, S2, S3, S5, S6,
S8, 89);

S5.addUDC_Servers(S20, Si, S2, S3, S4, S6, 87,
S9, 510);

S6.addUDC_Servers(S1, S2, S3, S4, S5, 87, S8,
S10, S11);
S7.addUDC_Servers(S2, S3, S4, S5, S6, S8, 89,
S11, S12);

S$8.addUDC_Servers(S3, S4, S5, S6, S7, S9, Si0,
S12, S13);

S9.addUDC_Servers(S4, S5, S6, S7, S8, S10, Sii,
S13, S14);
510.addUDC_Servers(S5, S6, S7, S8, 89, Si1, S12,
S14, S15);

S11.addUDC_Servers(S6, S7, 88, 59, S10, S12, S13,
S15, S16);

S12.addUDC_Servers(S7, S8, S9, S10, Si11, S13, Si4,
S16, S17);
513.addUDC_Servers(S8, S9, S10, Si11, S12, S14, S15,
S17, S18);

S14.addUDC_Servers(S9, S10, S11, S12, S13, Si5, Si6,
S18, S19);

S15.addUDC_Servers(S10, Si1, S12, S13, S14, S16, S17,
S19, S20);

S16.addUDC_Servers(S11, S12, S13, Si4, Si5, S17, S18,
520, S1);

S17.addUDC_Servers(S12, S13, S14, Si5, S16, S18, S19,
S1, S2);

S18.addUDC_Servers(S13, Si4, Si15, S16, S17, S19, S20,
52, S3);

S19.addUDC_Servers(S14, Si5, Si16, S17, S18, S20, Si,
S3, S4);

S20.addUDC_Servers(S15, Si6, S17, S18, S19, S1, S2, S
S4, S5);

*/

// (100-SERVER CONNECTIVITIES)

S1.addUDC_Servers(S96, S97, 598, S99, S100, S2, S3,
S5, S6);

52.addUDC_Servers(S97, S98, S99, S100, S1, S3, 54,
S6, S7);

S3.addUDC_Servers(S98, S99, S100, S1, S2, 5S4, Sb,
S7, S8);

S4.addUDC_Servers(S99, S100, Si, S2, S3, S5, S6,
S8, 89);

S5.addUDC_Servers(S100, Si, S2, S3, 5S4, S6, 87,
S9, 510);

S6.addUDC_Servers(S1i, S2, S3, S4, S5, 87, S8,
S10, S11);
S7.addUDC_Servers(S2, S3, S4, S5, S6, S8, 89,
S11, S12);

S$8.addUDC_Servers(S3, S4, S5, S6, S7, S9, Si0,
S12, S13);
S9.addUDC_Servers(S4, S5, S6, S7, S8, S10, Sii,
S13, S14);

195

s4,
S5,
s6,
s7,
ss,
s9,
S10,
Ssti1,
S12,
S13,
si4,
S15,
S16,
17,
s1s,
19,
$20,
st,
s2,

3,

s4,
S5,
s6,
s7,
S8,
s9,
S10,
Sti1,

512,

510.addUDC_Servers(
S14, S15);
S11.addUDC_Servers(
S15, S16);
S12.addUDC_Servers(
516, S17);
S513.addUDC_Servers(
517, S18);
S14.addUDC_Servers(
S18, S19);
S15.addUDC_Servers(
519, 520);
S16.addUDC_Servers(
S20, S21);
S17.addUDC_Servers(
S21, S22);
S518.addUDC_Servers(
522, 523);
519.addUDC_Servers(
S23, S24);
S20.addUDC_Servers(
S24, S25);
S521.addUDC_Servers(
525, 526);
522.addUDC_Servers(
S26, S27);
S23.addUDC_Servers(
S27, S28);
524 .addUDC_Servers(
528, 529);
S525.addUDC_Servers(
S29, S30);
S26.addUDC_Servers(
530, S31);
527.addUDC_Servers(
531, 832);
S28.addUDC_Servers(
S32, S33);
S29.addUDC_Servers(
533, 534);
530.addUDC_Servers(
534, S35);
S31.addUDC_Servers(
S35, S36);
S$32.addUDC_Servers(
536, S37);
5$33.addUDC_Servers(
537, S38);
S34.addUDC_Servers(
S38, S39);
S35.addUDC_Servers(
539, 540);
S536.addUDC_Servers(
5S40, S41);
S37.addUDC_Servers(
S41, S42);
538.addUDC_Servers(
542, 543);
5$39.addUDC_Servers(
S43, S44);
S40.addUDC_Servers(
S44, S45);
S41.addUDC_Servers(
545, 546);
S42.addUDC_Servers(
S46, S47);
S43.addUDC_Servers(
S47, S48);
S44.addUDC_Servers(
548, 549);
S45.addUDC_Servers(

S5,

s6,

s7,

S8,

s9,
S10,
Sti1,
S12,
S13,
S14,
S15,
S16,
S17,
s18,
S19,
$20,
s21,
S22,
S23,
S24,
S25,
S26,
s27,
$28,
$29,
$30,
31,
$32,
$33,
S34,
S35,
$36,
37,
$38,
39,
40,

s6,

s7,

S8,

s9,
S10,
sii,
S12,
S13,
si4,
S15,
S16,
S17,
si8,
19,
$20,
s21,
S22,
$23,
s24,
25,
$26,
s27,
28,
$29,
$30,
31,
$32,
$33,
S34,
S35,
$36,
37,
$38,
$39,
40,
s41,

s7,

S8,

s9,
S10,
sii,
s12,
S13,
sS4,
S15,
S16,
S17,
s18,
19,
$20,
s21,
S22,
$23,
S24,
25,
$26,
s27,
28,
$29,
$30,
31,
$32,
$33,
S34,
S35,
$36,
837,
$38,
$39,
40,
s41,
s42,

S8,

s9,
S10,
Sti1,
S12,
S13,
Si4,
S15,
S16,
S17,
s18,
S19,
$20,
s21,
S22,
$23,
S24,
S25,
S26,
s27,
$28,
$29,
$30,
31,
$32,
$33,
S34,
S35,
$36,
37,
$38,
39,
40,
s41,
S42,
$43,

s9,
S10,
si1,
S12,
S13,
sS4,
S15,
S16,
S17,
s18,
S19,
$20,
s21,
S22,
$23,
S24,
25,
$26,
s27,
28,
$29,
$30,
31,
$32,
33,
S34,
S35,
36,
37,
$38,
39,
40,
s41,
s42,
$43,
s44,

196

sti,
s12,
S13,
sS4,
S15,
S16,
S17,
s1s,
19,
$20,
s21,
S22,
$23,
S24,
25,
$26,
s27,
$28,
$29,
$30,
31,
$32,
$33,
S34,
S35,
$36,
37,
$38,
$39,
40,
s41,
s42,
$43,
s44,
45,
$46,

S12,
S13,
sS4,
S15,
S16,
S17,
s18,
19,
$20,
s21,
S22,
$23,
S24,
25,
$26,
s27,
28,
$29,
$30,
31,
$32,
$33,
S34,
S35,
$36,
837,
$38,
$39,
40,
s41,
s42,
$43,
s44,
45,
46,
47,

S13,
sS4,
S15,
S16,
S17,
s1s,
19,
$20,
s21,
S22,
$23,
s24,
$25,
$26,
s27,
$28,
$29,
$30,
31,
$32,
$33,
S34,
S35,
$36,
837,
$38,
$39,
40,
s41,
s42,
$43,
s44,
45,
46,
47,
S48,

549, S50);
546 .addUDC_Servers(
S50, S51);
S47.addUDC_Servers(
S51, S52);
S48.addUDC_Servers(
552, S53);
S549.addUDC_Servers(
S53, S54);
S50.addUDC_Servers(
S54, S55);
S51.addUDC_Servers(
S55, S56);
S52.addUDC_Servers(
S56, S57);
S53.addUDC_Servers(
S57, S58);
S54.addUDC_Servers(
558, S59);
S55.addUDC_Servers(
S59, S60);
S56.addUDC_Servers(
560, S61);
557 .addUDC_Servers(
S61, S62);
S58.addUDC_Servers(
S62, S63);
S59.addUDC_Servers(
563, S64);
S560.addUDC_Servers(
564, S65);
S61.addUDC_Servers(
S65, S66);
S$62.addUDC_Servers(
566, S67);
S563.addUDC_Servers(
S67, S68);
S64.addUDC_Servers(
S68, S69);
S65.addUDC_Servers(
569, S70);
566 .addUDC_Servers(
S70, S71);
S67.addUDC_Servers(
S71, S72);
S68.addUDC_Servers(
S72, S73);
S$69.addUDC_Servers(
S73, S74);
S70.addUDC_Servers(
S74, S75);
S71.addUDC_Servers(
S75, S76);
S72.addUDC_Servers(
S76, S77);
S73.addUDC_Servers(
S77, S78);
S74.addUDC_Servers(
S78, S79);
S75.addUDC_Servers(
S79, S80);
S76.addUDC_Servers(
580, S81);
S77.addUDC_Servers(
581, S82);
S78.addUDC_Servers(
S82, S83);
S79.addUDC_Servers(
583, 584);
580.addUDC_Servers(
584, 585);

s41,
s42,
$43,
s44,
45,
$46,
47,
48,
S49,
S50,
S51,
S52,
63,
S54,
S65,
S56,
S57,
S68,
S59,
S60,
s6e1,
62,
63,
se4,
S65,
S66,
S67,
S68,
69,
S70,
s71,
s72,
73,
S74,

875,

S42,
$43,
s44,
45,
46,
47,
s48,
$49,
S50,
51,
52,
53,
54,
S55,
56,
S57,
S58,
59,
S60,
s61,
$62,
63,
s64,
S65,
66,
S67,
S68,
69,
S70,
s71,
s72,
73,
s74,
S75,

s76,

543,
544,
545,
546,
547,
548,
549,
S50,
S51,
552,
553,
S54,
555,
556,
557,
558,
559,
560,
S61,
562,
563,
564,
565,
566,
567,
568,
569,
s70,
S71,
s72,
S73,
S74,
S75,
S76,

877,

s44,
45,
$46,
47,
48,
S49,
S50,
51,
S52,
S53,
S54,
S65,
S56,
S57,
S68,
S59,
S60,
s6e1,
62,
63,
se4,
S65,
S66,
S67,
68,
69,
S70,
s71,
s72,
S73,
S74,
S75,
S76,
S77,

578,

545,
546,
547,
548,
549,
S50,
551,
552,
553,
554,
555,
556,
557,
558,
559,
560,
S61,
562,
563,
564,
565,
566,
567,
568,
569,
s70,
S71,
S72,
S73,
574,
S75,
576,
S77,
S78,

579,

197

547,
548,
549,
550,
S51,
552,
553,
554,
555,
556,
S57,
558,
559,
560,
S61,
562,
563,
S564,
565,
566,
567,
568,
569,
s70,
s71,
s72,
S73,
sS74,
875,
S76,
s77,
s78,
S79,
580,

s81,

548,
549,
550,
S51,
552,
563,
554,
555,
556,
S57,
558,
559,
560,
S61,
562,
563,
564,
565,
566,
567,
568,
569,
s70,
S71,
s72,
S73,
S74,
S75,
s76,
s77,
sS78,
s79,
580,
s81,

582,

549,
S50,
S51,
552,
553,
S54,
555,
556,
557,
558,
559,
560,
S61,
562,
563,
564,
565,
566,
567,
568,
569,
s70,
S71,
s72,
S73,
S74,
875,
S76,
877,
sS78,
S79,
580,
s81,
582,

583,

581.addUDC_Servers(S76, S77, S78, S79, S80, S82, S83, S84,
585, 586);

S$82.addUDC_Servers(S77, S78, S79, S80, S81, S83, S84, S85,
S86, S87);

S$83.addUDC_Servers(S78, S79, S80, S81, S82, S84, S85, S86,
587, 588);

584 .addUDC_Servers(S79, S80, S81, S82, S83, S85, S86, S87,
588, 589);

S85.addUDC_Servers(S80, S81, S82, S83, S84, S86, S87, S88,
S89, S90);

S86.addUDC_Servers(S81, S82, S83, S84, S85, S87, S88, S89,
590, S91);

587 .addUDC_Servers(S82, S83, S84, S85, 586, S88, S89, S90,
S91, S92);

S88.addUDC_Servers(S83, S84, S85, S86, 587, S89, S90, S91,
S92, S93);

589.addUDC_Servers(S84, S85, S86, S87, S88, S90, S91, S92,
593, 594);

590.addUDC_Servers(S85, S86, S87, S88, S89, S91, S92, S93,
S94, S95);

S91.addUDC_Servers(S86, S87, S88, S89, S90, S92, S93, S94,
S95, S96);

592.addUDC_Servers(S87, S88, S89, S90, S91, S93, S94, S95,
596, S97);

593.addUDC_Servers(S88, S89, S90, S91, S92, S94, S95, S96,
S97, S98);

S94.addUDC_Servers(S89, S90, S91, S92, S93, S95, S96, S97,
S98, S99);

595.addUDC_Servers(S90, S91, S92, S93, 594, S96, S97, S98,
599, 5100);

596 .addUDC_Servers(S91, S92, S93, S94, S95, S97, S98, S99,
S100, S1);

SQ7.addU§C_Servers(592, S93, 594, S95, S96, S98, S99, S100,
S1, S2);

SQ8.addU2C_Servers(593, S94, S95, S96, S97, S99, S100, Si,
S2, S3);

S99.addUDC_Servers(S94, S95, S96, S97, S98, S100, S1, S2,
S3, S4);

S100.addUDC_Servers(S95, S96, S97, S98, S99, Si, S2, 83,
S4, S5);

return UDCnet;

// RESET_UDC: reset UDC_Server parameters for the next trial
public void reset_UDC(UDC_Network UDCnet, int intVISno_timesteps)

// reset the UDC network parameters -- i.e. server state; tasks
// running on the server; all visualisation parameters such as
// load etc.

Hashtable UDC = UDCnet.getNetwork();

for (int intServer = 1; intServer <= UDC.size(); intServer++)

UDC_Server server = (UDC_Server) UDC.get("S" + intServer);
server.intSERVstate = 0;
server.vctSERVmarket.clear();
server.vctSERVtasks.clear();
server.intSERVavail_ru = server.intSERVtotal_ru;
server.blnSERVret_willing = false;
server.blnSERVwilling = false;
server.blnWillingWaitType = false;
server.intNoStepsWaitingl H
server.intNoStepsWaiting2 0;
server.blnStopAuction = false;
server.blnAuctionOccured = false;
server.blnTradeOccured = false;
server.intSERVidl = 0;
//server.blnEnableShifting = false;

¥

dblAuctions = 0.0;
dblSuccAucs = 0.0;
intTimeStep = 0;

198

intTotalJobsPrsd = 0;

intTotalJobsAlloc = 0;

dblTaskAllocPerc = 0.0;

dblVISload = new double[UDC.size()][intVISno_timesteps];
dblVISno_tasks = new double[UDC.size()][intVISno_timesteps];
dblVISpriceSS = new double[UDC.size()][intVISno_timesteps];
dblVISpriceSB = new double[UDC.size()][intVISno_timesteps];
dblVISjprsd = new double[UDC.size()][intVISno_timesteps];
dblVISalloc new double[UDC.size()][intVISno_timesteps];
dblVISperf = new double[UDC.size()][intVISno_timesteps];
for (int intServer = 0; intServer < intVISno_servers;
intServer++)

for (int intTimeStep = 0; intTimeStep < intVISno_timesteps;
intTimeStep++)

{

dblVISload[intServer] [intTimeStep] = 0.0;
dblVISno_tasks[intServer] [intTimeStep]
dblVISpriceSS[intServer] [intTimeStep]
dblVISpriceSB[intServer] [intTimeStep]
dblVISjprsd[intServer] [intTimeStep] =
dblVISalloc[intServer] [intTimeStep] =
dblVISperf[intServer] [intTimeStep] = 0.0;

n
o
o

oo

// SIM_INIT: set agent parameters

// >> called by MBC_Sim.SIM_main

private void SIM_init(boolean blnOutput, PrintStream psOUT,
ZIP_SD_Vis SDVIS, UDC_Network UDCnet, Random random,
PrintStream psSDO)

{

Hashtable UDC = UDCnet.getNetwork();

[/ —=mmmmmm oo
// SET NUMBER OF BUYER AND SELLER AGENTS

// (one for each UDC_Server object)

int intNoBuyers = UDC.size();

int intNoSellers = UDC.size();

// iterate through the buyer and seller agents attached to the servers
for (int intServer = 1; intServer <= UDC.size(); intServer++)

// retrieve network server object

UDC_Server server = (UDC_Server) UDC.get("S" + intServer);

ZIP_Agent agtSERVbuyer = server.agtSERVbuyer;

ZIP_Agent agtSERVseller = server.agtSERVseller;
T Al L O S --E-
// SET AGENT AS ACTIVE

agtSERVbuyer.dblAGNTactualgain = 0.0;

agtSERVseller.dblAGNTactualgain = 0.0;

// SET AGENT LIMIT PRICES

// server buyer agents initially set a value within the range of the

// demand curve (until it needs to purchase some resources, then the

// limit price equals whatever price the server’s seller got for this
// job that now wants to be unloaded)

agtSERVbuyer .dblAGNTlimit = (random.nextDouble() * 2.5) + 0.75;

//(random.nextDouble() * 2.5) + 0.75;

// initially set server limit price in proportion to the *total* amount
// of resource units the server has -- i.e. re-scale the total resource
// units (range [2,10]) to [0.75, 3.25].

// (if all servers have the same total resource unit capacity

// this creates a flat supply curve)

agtSERVseller.dblAGNTlimit = server.intSERVtotal_ru * 0.325;

// server.intSERVtotal_ru * 0.325;

/

// CALCULATE PRICE OF AGENT FROM LIMIT AND PROFIT VALUES
agtSERVbuyer.AGNT_calcPrice();

199

agtSERVseller.AGNT_calcPrice();
if (blnOutput)

{

psOUT.println("MBC_SIM.init_day: Buyer on Server "

+ server.strSERVid + ": price " + agtSERVbuyer.dblAGNTprice);
psOUT.println("MBC_SIM.init_day: Seller on Server "

+ server.strSERVid + ": price " + agtSERVseller.dblAGNTprice);

// IDENTIFY THEORETICAL EQUILIBRIUM PRICE

int intQ_0 = 0;

double dblEqProfit;

SDVIS.SDVIS_sup_dem(intNoSellers, intNoBuyers, UDCnet, dblPrice_0,
intQ_0, dblMaxSurplus, EQ_THEORY, 0.0, blnOutput, psSDO);
dblPrice_0 = SDVIS.dblEgPrice;

intQ_O0 = SDVIS.intIQuant;

dblMaxSurplus = SDVIS.dblSurplus;

/
// SET THEORETICAL GAINS FOR BUYERS AND SELLERS
for (int intServer = 1; intServer <= UDC.size(); intServer++)

// retrieve network server object

UDC_Server server = (UDC_Server) UDC.get("S" + intServer);
ZIP_Agent agtSERVbuyer = new ZIP_Agent();

agtSERVbuyer = server.agtSERVbuyer;

dblEqProfit = agtSERVbuyer.dblAGNTlimit - dblPrice_0;

if (dblEgProfit < 0.0)

{

dblEqProfit = 0.0;

}

agtSERVbuyer .dblAGNTtheorgain = dblEqProfit;

for (int intServer = 1; intServer <= UDC.size(); intServer++)

// retrieve network server object

UDC_Server server = (UDC_Server) UDC.get("S" + intServer);
ZIP_Agent agtSERVseller = new ZIP_Agent();

agtSERVseller = server.agtSERVseller;

dblEqProfit = agtSERVseller.dblAGNTlimit - dblPrice_O;

if (dblEgProfit < 0.0)

dblEqProfit = 0.0;

}
agtSERVseller.dblAGNTtheorgain = dblEqProfit;

200

C.2.3 MBC_Stats.java

Description: Calculates and records trade and timestep statistics for the MBC
simulation.

// Class: MBC_Stats.java

import java.io.PrintStream;

import java.text.DecimalFormat;

import java.util.Hashtable;

public class MBC_Stats implements ZIP_Constants

// (initialised for use below)
private double dblPrice = 0.0;

// sum the s.d. of the transaction (deal) price around the

// equilibrium price

private double dblSigmaSum;

// smith’s alpha (initialised to send to data_day_update method below)
private double dblAlpha = 0.0;

// equilibrium price

private double dblEqPrice;

// the last deal price

private double dblLastPrice = 0.0;

// sum of the price difference between the last deal price

// and the current deal price

private double dblPriceDiffSum;

// sum of the deal prices

private double dblPriceSum = 0;

// difference between actual gain and theoretical gain
private double dblDiff;

// square difference between actual gain and theoretical gain
private double dblPD;

// profit dispersal

private double dblProfitDisp;

// s.d. of the transaction price around the equilibrium price
// (used to calculate smith’s alpha)

private double dblPDS;

// (initialised to send to data day update method below)
private double dblEfficiency = 0.0;

// trial fitness score

public double dblTrialFitness = 0.0;
// number of trades done in a timestep
private int intTradeNo;

// number of trades carried out over a trial
private int intNoTrades;

// equilibrium quantity

private int intEqQuantity;

// day (timestep) data array

private ZIP_Data_Day[] DayData;

// trade data array

private ZIP_Data_Trade[][] TradeData;
// trial stat arrays

private double[] TMPdblSum;

private double[] TMPdblSumSq;

private int[] TMPintN;
2 —
// STATS_RESET: reset stat parameters
public void STATS_reset()

{

dblSigmaSum = 0.0;
dblPriceSum = 0.0;
dblPriceDiffSum = 0.0;
intTradeNo = 0;

// STAT_INIT: initialise trade and timestep stat data structures
public void STATS_init(int intTimeSteps)
{

201

TMPdblSum = new double[intTimeSteps];

TMPdblSumSq = new double[intTimeSteps];

TMPintN = new int[intTimeSteps];

// initialise TradeData and DayData arrays

DayData = new ZIP_Data_Day[intTimeSteps];

TradeData = new ZIP_Data_Trade[intTimeSteps][1000];
for (int intTimeStep = 0; intTimeStep < intTimeSteps;
intTimeStep++)

DayData[intTimeStep] = new ZIP_Data_Day();
DayDatal[intTimeStep] .data_day_init();
for (int intServer = 0; intServer < 1000; intServer++)

TradeData[intTimeStep] [intServer] = new ZIP_Data_Trade();
// initially set deal prices to -1
TradeData[intTimeStep] [intServer] .db1TDATdeal _price = -1;

// TRADE_UPDATE_THE_EQ: update theoretical equilibrium price
public void TRADE_update_the_eq(int intTimeStep, double dblEqgPrice,
int intEqQuantity)

if (dblEgPrice != NULL_EQ)

{
TradeData[intTimeStep-1] [intTradeNo] .dblTDATtheor_eq_price
= dblEgPrice;

TradeData[intTimeStep-1] [intTradeNo].intTDATtheor_eq_quant
= intEqQuantity;

else
{

TradeData[intTimeStep-1] [intTradeNo].intTDATtheor_eq_quant
= NULL_EQ;

// TRADE_UPDATE_ACT_EQ: update actual equilibrium price
public void TRADE_updade_act_eq(int intTimeStep, double dblEqgPrice,
int intEqQuantity)

{
if (dblEqPrice !'= NULL_EQ)
{

TradeData[intTimeStep-1] [intTradeNo].db1TDATactual_eq_price
= dblEgPrice;

TradeData[intTimeStep-1] [intTradeNo].intTDATactual_eq_quant
= intEqQuantity;

}

else

TradeData[intTimeStep-1] [intTradeNo].db1TDATactual_eq_price
= NULL_EQ;

// TRADE_DEAL_TYPE_PRICE: record trade price and deal type
public void TRADE_deal_type_price(int intTimeStep, double dblPrice,
boolean blnDealType)

{
TradeData[intTimeStep-1] [intTradeNo].db1TDATdeal_price = dblPrice;
TradeData[intTimeStep-1] [intTradeNo].b1lnTDATdeal_type = blnDealType;

// TRADE_NO_DEAL: no deal so set negative price in trade data
public void TRADE_no_deal(int intTimeStep)

{
TradeData[intTimeStep-1] [intTradeNo] .dblTDATdeal_price = -1.0;
¥

202

/

// STATS_CALCULATE: if a buyer and a seller entered into a trade
// (a deal occured), calculate relevant stats

public void STATS_calculate(int intTimeStep, int intStatus,
double dblPrice, double dblPrice_0, double dblSurplus,

double dblMaxSurplus, boolean blnOutput)

{
if (intStatus == DEAL)

// obtain the last deal price
if (intNoTrades > 0)

{
dblLastPrice =
TradeData[intTimeStep-1] [intNoTrades-1].db1TDATdeal_price;

3

// sum the price difference between the last deal price and the
// current deal price (used to calculate volatility)

if (intNoTrades > 0)

{

dblPriceDiffSum += ((dblPrice - dblLastPrice) * (dblPrice -
?blLastPrice));

// calculate s.d. of the transaction (deal) price around the
// equilibrium price (nb. dblPrice_O is the *theoreticalx*

// eq. price)

dblPDS = ((dblPrice - dblPrice_0) * (dblPrice - dblPrice_0));
// sum current deal prices

dblPriceSum += dblPrice;

// sum current s.d. of the transaction (deal) price around the
// equilibrium price

dblSigmaSum += dblPDS;

intTradeNo++;

intNoTrades++;

if (intTradeNo != 0)

// calculate alpha
dblAlpha = (100 * Math.sqrt(dblSigmaSum / intNoTrades))
/ dblPrice_0;

// (to get round error on calculating square root)
else if (intTradeNo == 0)
{

// calculate alpha

dblAlpha = (100 * Math.sqrt(dblSigmaSum / 0.0000001))
/ dblPrice_0;

¥

// calculate efficiency
dblEfficiency = (dblSurplus / dblMaxSurplus) * 100;
if (blnOutput)

{

//psOUT .println("ZIP_SIM: DEAL " + intTradeNo + " alpha " +
// dblAlpha + " efficiency " + dblEfficiency);

¥

else

// if no deal set alpha parameter to a max. value
dblAlpha = 100.0;

// STATS_UPDATE: update trading statistics

public void STATS_update(int intTimeStep, UDC_Network UDCnet,
int intNoBuyers, int intNoSellers, boolean blnTrade,

boolean blnOutput)

{

// init profit dispersal

dblPD = 0.0;
Hashtable UDC = UDCnet.getNetwork();

203

for (int intServer = 1; intServer <= UDC.size(); intServer++)

UDC_Server server = (UDC_Server) UDC.get("S" + intServer);

// retrieve server buyer and seller agents

ZIP_Agent agtSERVbuyer = server.agtSERVbuyer;

ZIP_Agent agtSERVseller = server.agtSERVseller;

// calculate difference between actual gain and theoretical gain
dblDiff = ((agtSERVbuyer.dblAGNTactualgain) -

(agtSERVbuyer.dblAGNTtheorgain));

// square this difference

dblPD += (dblDiff * dblDiff);

// calculate difference between actual gain and theoretical gain
dblDiff = ((agtSERVseller.dblAGNTactualgain) -

(agtSERVseller.dblAGNTtheorgain));

// square this difference

dblPD += (dblDiff * dblDiff);

3

// calculate profit dispersal

dblProfitDisp = Math.sqrt((1 / ((double) (intNoBuyers +
intNoSellers))) * dblPD);

if (blnOutput)

{
//psOUT.println("MBC_SIM: Profit Dispersal = " + dblProfitDisp);
¥

// update ’day’ stats if a trade occured
if (blnTrade == true)
{

DayData[intTimeStep-1].data_day_update(intTradeNo, dblPriceSum,
dblAlpha, dblProfitDisp, dblEfficiency, dblPriceDiffSum,
intNoTrades);

// TRADE_OUTPUT: output trade statistics
public void TRADE_output(int intTimeSteps, int[] intMaxTrades,
PrintStream psTRA, int intGen)

DecimalFormat df = new DecimalFormat("0.00");
if (((intGen % 50) == 0) || (intGen ==

{

// TRADE DATA OUTPUT: PRICE

psTRA.println(" PRICE (n=0 output only)");

for (int intTS = 0; intTS < intTimeSteps; intTS++)

{

double dblDGX = (1.0 / ((double) intMaxTrades[intTS]));
double dblGX = (intTS + 1);

double dblSum = DayData[intTS].dblSTAT_quant.dblSum;

for (int intTrade = 0; intTrade < dblSum; intTrade++)

{
if (TradeData[intTS][intTrade] .dblTDATdeal_price >= 0.0)

{
psTRA.println(df.format(dblGX) + " "
+ TradeData[intTS][intTrade] .db1TDATdeal_price);

}
dblGX += dblDGX;
}

¥

// TRADE DATA OUTPUT: ACTUAL EQUILIBRIUM PRICE

psTRA.println(" ACTUAL EQUILIBRIUM PRICE (n=0 output only)");
for (int intTS = 0; intTS < intTimeSteps; intTS++)

{

double dblDGX = (1.0 / ((double) intMaxTrades[intTS]));
double dblGX = (intTS + 1);

double dblSum = DayData[intTS].dblSTAT_quant.dblSum;

for (int intTrade = 0; intTrade < dblSum; intTrade++)

{
if (TradeData[intTS][intTrade].intTDATactual_eq_quant
!= NULL_EQ)

204

{
if (TradeData[intTS][intTrade] .dblTDATactual_eq_price
>0.0)

psTRA.println(df.format(dblGX) + " " +

df . format (
TradeData[intTS] [intTrade] .dblTDATactual_eq_price));

}
}
dblGX += dblDGX;
}

¥

// (VIS) TRADE DATA OUTPUT: THEORETICAL EQUILIBRIUM PRICE
psTRA.println(" THEORETICAL EQUILIBRIUM PRICE "

+ "(n=0 output only)");

for (int intTS = 0; intTS < intTimeSteps; intTS++)

{

double dblDGX = (1.0 / ((double) intMaxTrades[intTS]));
double dblGX = (intTS + 1);

double dblSum = DayData[intTS].dblSTAT_quant.dblSum;

for (int intTrade = 0; intTrade < dblSum; intTrade++)

if (TradeData[intTS][intTrade].intTDATtheor_eq_quant
!= NULL_EQ)

{
if (TradeData[intTS][intTrade] .dblTDATtheor_eq_price
>0.0)

psTRA.println(df.format(dblGX) + " " +

df .format(
TradeData[intTS] [intTrade] .db1TDATtheor_eq_price));
¥

¥

dblGX += dblDGX;

¥

¥

¥

¥
i Eimtmittetetetetetete

// DAY_OUTPUT: output day statistics (mean, +/- s.d.)
public void DAY_output(int intTimeSteps, PrintStream psDAY,
boolean[] blnTrade, int intGen)

{
ZIP_Data_Day ddVIS = new ZIP_Data_Day();

// PRICE
for (int intTS = 0; intTS < intTimeSteps; intTS++)

{
if (blnTrade[intTS] == true)

{

TMPdblSum[intTS] = DayDatal[intTS].dblSTAT_price.dblSum;
TMPdblSumSq[intTS] = DayDatal[intTS].dblSTAT_price.dblSumSq;
TMPintN[intTS] = DayDatal[intTS].dblSTAT _price.intN;

}

¥
ddVIS.data_day_stats("PRICE", TMPdblSum, TMPdblSumSq, TMPintN,
intTimeSteps, psDAY, blnTrade, intGen);

// SMITH’S ALPHA
for (int intTS = 0; intTS < intTimeSteps; intTS++)

{

TMPdblSum[intTS] = DayData[intTS].dblSTAT_alpha.dblSum;
TMPdb1SumSq[intTS] = DayData[intTS].dblSTAT_alpha.dblSumSq;
TMPintN[intTS] = DayDatal[intTS].dblSTAT _alpha.intN;

¥

ddVIS.data_day_stats("ALPHA", TMPdblSum, TMPdblSumSq, TMPintN,
intTimeSteps, psDAY, blnTrade, intGen);

/] == m oo
// (GA) CALCULATE FITNESS USING AVERAGE ALPHA PARAMETER
dblTrialFitness = ddVIS.data_day_alpha_fitness(intTimeSteps,
TMPdblSum, TMPintN, intNoTrades);

/] = e

// EFFICIENCY
for (int intTS = 0; intTS < intTimeSteps; intTS++)

{

TMPdblSum[intTS] = DayData[intTS].dblSTAT _effic.dblSum;
TMPdblSumSq[intTS] = DayData[intTS].dblSTAT_effic.dblSumSq;
TMPintN[intTS] = DayData[intTS].dblSTAT_effic.intN;

¥

ddVIS.data_day_stats("EFFICIENCY", TMPdblSum, TMPdblSumSq,
TMPintN, intTimeSteps, psDAY, blnTrade, intGen);

// QUANTITY

for (int intTS = 0; intTS < intTimeSteps; intTS++)

{

TMPdblSum[intTS] = DayData[intTS].dblSTAT_quant.dblSum;
TMPdblSumSq[intTS] = DayData[intTS].dblSTAT_quant.dblSumSq;
TMPintN[intTS] = DayDatal[intTS].dblSTAT_quant.intN;

¥
ddVIS.data_day_stats("QUANTITY", TMPdblSum, TMPdblSumSq,
TMPintN, intTimeSteps, psDAY, blnTrade, intGen);

// PROFIT DISPERSAL
for (int intTS = 0; intTS < intTimeSteps; intTS++)

{

TMPdblSum[intTS] = DayData[intTS].dblSTAT_pdisp.dblSum;
TMPdblSumSq[intTS] = DayDatal[intTS].dblSTAT_pdisp.dblSumSq;
TMPintN[intTS] = DayDatal[intTS].dblSTAT_pdisp.intN;

¥
ddVIS.data_day_stats("PROFIT DISPERSAL", TMPdblSum, TMPdblSumSq,
TMPintN, intTimeSteps, psDAY, blnTrade, intGen);

// VOLATILITY
for (int intTS = 0; intTS < intTimeSteps; intTS++)

{

TMPdblSum[intTS] = DayDatal[intTS].dblSTAT_volty.dblSum;
TMPdblSumSq[intTS] = DayDatal[intTS].dblSTAT_volty.dblSumSq;
TMPintN[intTS] = DayDatal[intTS].dblSTAT_volty.intN;

¥

ddVIS.data_day_stats("VOLATILITY", TMPdblSum, TMPdblSumSq, TMPintN,
intTimeSteps, psDAY, blnTrade, intGen);

206

C.2.4 UDC_Network.java

Description: A Hashtable containing UDC_Server objects constituting the UDC
network.

// Class: UDC_Network.java
import java.util.Hashtable;
public class UDC_Network extends Hashtable

// return the UDC_Network
public Hashtable getNetwork()

return this;

// add UDC_Server to Hashtable, using server ID as key
public void put(UDC_Server server)

put(server.strSERVid, server);

207

C.2.5 UDC_Server.java

Description: An object constituting a server or node on the UDC network.

// Class: UDC_Server.java

import java.io.PrintStream;

import java.lang.Thread;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Random;

import java.util.Vector;

public class UDC_Server extends Thread implements ZIP_Constants

/
// SERVER OBJECTS / PARAMETERS

id
public String strSERVid;
// total resource units
public int intSERVtotal_ru;

// available resource units
public int intSERVavail_ru;

// the state of this server
public int intSERVstate;

// UDC_Task objects currently running (cannot be more than
// intSERVtotal_ru tasks)

public Vector vctSERVtasks;

// UDC_Server objects connected to

public Vector vctSERVservers;

// sells server resource units

public ZIP_Agent agtSERVseller;

// purchases other server resource units

public ZIP_Agent agtSERVbuyer;

// UDC_Tasks currently waiting in the local market

public Vector vctSERVmarket;

/] == e
// SERVER MBC PARAMETERS

// probability of a randomly configured new task appearing in the

// servers’ local task market
private static double dblSERVtask_prob = 0.1;

// number of timesteps waiting for all willing flags after which the
// auction is terminated

private static int intSERVhalt_auction = 15;

e e e
// SERVER MBC OBJECTS / MISC PARAMETERS

// SERVER STATES

private static int FREE = 0;

private static int PENDING_ACCEPTANCE
private static int WAITING_ACCEPTANCE
private static int WAITING_AUCTION = 3;

// a market task from this server put up for auction

public UDC_Task marketTask;

// a local server running task requested for auction

public UDC_Task localTask;

// a local server market task requested for auction

public UDC_Task bidTask;

// local server that has requested an auction

public UDC_Server SERVbid_server;

// the local server market task agent bid price

public double dblSERVbid_price;

// flag indicating if this server has returned whether willing to
// partake in auction or whether has returned an offer price

public boolean blnSERVret_willing;

// flag indicating if the server is willing to partake in requested

// auction
public boolean blnSERVwilling;

// flag indicating if the server is eligable to shift a currently
// running task in order to partake in a locally requested auction
public boolean blnEnableShifting;

// flag indicating if the server is eligable to shift one task

208

public boolean blnEnableOneShift;

// offer price of this server in response to local auction request
public double dblSERVofferprice;

// indicates if locally requested auction to be a bid or offer deal
public boolean blnDealType;

// used for storing surplus value

private double dblSurplus;

// counters record number of timesteps server is waiting for task put
// up from local market (1) or for a task currently running, to

// offload (2)

public int intNoStepsWaitingl;

public int intNoStepsWaiting2;

// used for randomly selecting a single server to task shift

public int intSERVidi;

// indicates whether server is waiting for local server responses for
// an auction based on local market task or currently running task
public boolean blnWillingWaitType;

// used to temporarily halt an auction if not all local server

// responses recieved or need to carry out n or more local server

// task shifts

public boolean blnStopAuction;

// count indicating the number of tasks processed

public int intSERVjprsd;

// count indicating the number of tasks allocated

public int intSERValloc;

// close deal by selecting local server randomly or that offering the
// best deal

private boolean blnCompetitive = false;

// indicates if an auction occured at this server, at this timestep
public boolean blnAuctionOccured;

// indicates if a trade occured at this server, at this timestep
public boolean blnTradeOccured;

// current auction status (preset to no deal)

private int intAuctionStatus = NO_DEAL;

// probability of auction being bid or offer based

public double dblQS;

/] === e
// SERVER INITIALISATION CONSTRUCTOR

public UDC_Server(String TMPstrSERVid, int TMPintSERVtotal_ru)

// initialise server data structures
strSERVid = TMPstrSERVid;
intSERVtotal_ru = TMPintSERVtotal_ru;
intSERVavail_ru = TMPintSERVtotal_ru;
vctSERVtasks = new Vector();
vctSERVservers = new Vector();
agtSERVseller = new ZIP_Agent();
agtSERVbuyer = new ZIP_Agent();
vctSERVmarket = new Vector();

// initialise server to ’free’ state
intSERVstate = FREE;

bidTask = new UDC_Task("null", 0, O, 0.0);
marketTask = new UDC_Task("null", O, O, 0.0);
blnSERVret_willing = false;
blnSERVwilling = false;
blnWillingWaitType = false;
intNoStepsWaitingl 0;
intNoStepsWaiting2 0;
blnStopAuction = false;

intSERVidl = 0;

blnAuctionOccured = false;
blnTradeOccured = false;
dblSERVofferprice = 0.0;

intSERVjprsd = 0;

dblQS = 0.5;

//blnEnableShifting = true;

// UPDATE SERVER STATE
public int updateServer(int intTimeStep, int intTASKid,

209

boolean blnOutput, ZIP_Stats stats, Random random, PrintStream psOUT,
PrintStream psSDO, double dblAGNT_lr_L, double dblAGNT_lr_H,

double dblAGNT_mm_L, double dblAGNT_mm_H, double dblAGNT_pf_L,

double dblAGNT_pf_H, double dblAGNT_tr_R, double dblAGNT_tr_A,

double dblPrice_0, double dblMaxSurplus, UDC_Network UDCnet,
ZIP_SD_Vis SDVIS, int intVISno_timesteps)

// number of buyers

int intNoBuyers;

// number of sellers

int intNoSellers;

// equilibrium quantity

int intEqQuantity = 0;

// (used in calling ZIP_SD_Vis.SDVIS_sup_dem method)
int intDummy = 0;

// equilibrium price

double dblEqPrice = 0.0;

// current actual maximum surplus

double dblCurrMaxSurp = 0.0;

// used in NYSE rules

double dblBestOffer = 0.0;

// used in NYSE rules

double dblBestBid = 0.0;

// price of bid / offer

double dblPrice = 0.0;

// used in calling ZIP_SD_Vis.SDVIS_sup_dem method
double dblDummyl = 0.0;

// used in calling ZIP_SD_Vis.SDVIS_sup_dem method
double dblDummy2 = 0.0;

blnTradeOccured = false;

// DO THINGS WHICH HAPPEN REGARDLESS AT EACH TIMESTEP:
// decrement by one the intTASKduration value all of the UDC_Tasks
// (if any) currently running on the UDC_Server
decTaskDurations(blnQOutput);

// with random probability, create a new task in the local market
//if (random.nextDouble() < dblSERVtask_prob)

//{
if ((strSERVid.equals("S45")) || (strSERVid.equals("S55")))

{

//for (int i = 0; i < 10; i++)

//{

// task identification

String strTASKid = "T" + intTASKid;

// randomly determine a task duration (range [3,10])

int intTASKduration = 500;

// (random.nextInt(25)) + 3 OR 250

// randomly determine a task resource requirement (range [1,6]1)
int intTASKload = 1;

// or (random.nextInt(56)) + 1 OR 1

// randomly determine funds to spend on resources

// (range[0.75,3.25] - to represent demand curve values)

double dblTASKfunds = (random.nextDouble() * 2.5) + 0.75;

// OR (random.nextDouble() * 2.5) + 0.75; FOR range[0.75,3.25]
// instantiate the UDC_Task object

UDC_Task newTask = new UDC_Task(strTASKid, intTASKduration,
intTASKload, dblTASKfunds);

if (blnOutput)

{

psOUT.println("MBC_SIM: new TASK " + strTASKid +
" entered local market on SERVER " + strSERVid);
psOUT.println();

}

dblAGNT_lr_L;
dblAGNT_lr_H;
db1AGNT_mm_L;
db1AGNT_mm_H;
dblAGNT_pf_L;
dblAGNT_pf_H;

newTask.taskBuyer.dblAGNT _1lr_L
newTask.taskBuyer.dblAGNT _lr_H
newTask.taskBuyer.dblAGNT _mm_L
newTask.taskBuyer.dblAGNT _mm_H
newTask.taskBuyer.dblAGNT _pf_L
newTask.taskBuyer.dblAGNT _pf_H

210

newTask.taskBuyer.dblAGNT_tr_R dblAGNT_tr_R;
newTask.taskBuyer.dblAGNT _tr_A dblAGNT_tr_A;
newTask.taskBuyer.AGNT_init_buyer((1000 + intTASKid),
random, blnQutput);

// SET TASK BUYER AGENT QUANTITY AND SET ACTIVE
newTask.taskBuyer.dblAGNTactualgain = 0.0;

// SET TASK BUYER AGENT LIMIT PRICE

// the buyer agent will not pay more than what the agent has
// in funds (defines the priority of the task)
newTask.taskBuyer.dblAGNTlimit = dblTASKfunds;
newTask.taskBuyer.AGNT_calcPrice();

// add the task to the local market

addTaskToMarket(newTask);

intTASKid++;

[/}

}

/

if ((intTimeStep % 60) == 0)
{

//intSERVstate = FREE;

}

if (intSERVstate == FREE)

// IF ANY TASKS WAITING IN LOCAL SERVER MARKET (ELSE REMAIN IN A
// FREE STATE)

if (vctSERVmarket.size() > 0)

{

// grab a task from the local market

Enumeration enumTasks = vctSERVmarket.elements();

marketTask = (UDC_Task) enumTasks.nextElement();

// get the bid price price for the task buyer agent

double dblBidPrice = marketTask.getPrice(marketTask.taskBuyer,
marketTask.strTASKid, blnOutput);

if (blnOutput)

{

psOUT.println();

psOUT.println("SERVER " + strSERVid + ": TASK "

+ marketTask.strTASKid + " in local market to be put up "
+ "for auction, task buyer agent price: " + dblBidPrice);
psOUT.println();

}

int intNoAbleNeighbours = 0;

// randomly determine whether this auction will be closed via
// a bid or an offer

double dblDealType = random.nextDouble();

if (dblDealType > dblQS)

{

// auction to be closed via a BID
blnDealType = true;

else

// auction to be closed via an OFFER
blnDealType = false;

Enumeration enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)
enumServers .nextElement () ;

// IF NEIGHBOURING SERVER IN FREE STATE
if (neighServer.intSERVstate == FREE)

{

// SET THE BID TASK AND BID PRICE ON NEIGHBOURING SERVER
neighServer.bidTask = marketTask;
neighServer.SERVbid_server = this;
neighServer.dblSERVbid_price = dblBidPrice;

211

if (dblDealType > dblQS)

// auction to be closed via a BID
neighServer.blnDealType = true;

else
{

// auction to be closed via an OFFER
neighServer.blnDealType = false;

}

// change state of neighbouring server
neighServer.intSERVstate = PENDING_ACCEPTANCE;
intNoAbleNeighbours++;

}

// IF NO NEIGHBOURING SERVERS ABLE TO PARTAKE REMAIN IN A FREE
// STATE

if (intNoAbleNeighbours == 0)

{

intSERVstate = FREE;
blnSERVwilling = false;
blnSERVret_willing = true;

if (blnOutput)

{

psOUT.println("SERVER " + strSERVid +

": No neighbours in a free state to participate " +
" in auction for TASK: " + marketTask.strTASKid +
", Task left in local market");

}

¥
// ELSE THERE COULD BE WILLING SERVERS
else

// PUT SERVER INTO STATE WAITING FOR WILLING FLAGS
intSERVstate = WAITING_ACCEPTANCE;
blnSERVret_willing = false;

blnWillingWaitType = true;

/
// WAITING FOR NEIGHBOURING SERVERS WILLING FLAGS
else if (intSERVstate == WAITING_ACCEPTANCE)

// IF FOR A BID PUT OUT FOR TASK CURRENTLY IN *LOCAL SERVER MARKET*
if (blnWillingWaitType == true)

boolean blnAllRecieved = true;
Enumeration enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server) enumServers.nextElement();
// if neighbouring server recieved the bid for market task from

// this server
if (marketTask.strTASKid.equals(neighServer.bidTask.strTASKid))

{
if (neighServer.blnSERVret_willing == false)

// server hasn’t returned willing flag so yet to recieve all
// willing flags

blnAllRecieved = false;

}

}

// initialise willing list structure and indices count

String[] strWillinglList = new String[MAX_AGENTS];

int intNoWilling = 0;

int intNoFails = 0;

[/ === o oo
// IF NOT YET RECIEVED ALL NEIGHBOURING SERVERS WILLING FLAGS

%f (blnAllRecieved == false)

212

// remain in same state
intSERVstate = WAITING_ACCEPTANCE;

// increment number of timesteps waiting for willing flags
intNoStepsWaitingl++;

// if the number of timesteps waiting now above limit

if (intNoStepsWaitingl > intSERVhalt_auction)

{
if (blnOutput)

{

psOUT.println("SERVER: " + strSERVid +

" has been waiting for all willing flags for more than
+ intSERVhalt_auction + " timesteps (at timestep "

+ intTimeStep + ")");

// OPTION: add in three lines below and neigh. server line

// below to have this server return as not willing in

// original auction if waited more than n timesteps
intSERVstate = FREE;

blnSERVwilling = false;

blnSERVret_willing = true;

// set all neighbouring servers involved in auction in a free
// state

enumServers = vctSERVservers.elements();

while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)

enumServers .nextElement () ;

// if neighbouring server recieved the bid for local task
// from this server

if (marketTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

{
neighServer.intSERVstate = FREE;
}

}
}
I
// ELSE HAVE RECIEVED ALL NEIGHBOURING SERVERS WILLING FLAGS

// GO AHEAD WITH AUCTION
ilse

// reset stop auction flag
if (blnStopAuction == true)

i
blnStopAuction = false;

// reset number of timesteps waiting count
intNoStepsWaitingl = 0;

// reset auction status flag to NO_DEAL
intAuctionStatus = NO_DEAL;

// do the deal based on a BID

if (blnDealType == true)

// get willing servers
enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server)

enumServers .nextElement () ;

// if neighbouring server recieved the bid for market
// task from this server

if (marketTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

// if waiting for the auction (i.e. is willing)
if (neighServer.intSERVstate == WAITING_AUCTION)

// (check again whether it has enough available capacity)
if (neighServer.intSERVavail_ru >=

213

neighServer.bidTask.intTASKload)

{

// ADD SERVER ID TO THE WILLING LIST
strWillinglist[intNoWilling] = neighServer.strSERVid;
intNoWilling++;

1

1

1

// now check whether THIS server is willing
// if server has enough available capacity
if (intSERVavail_ru >= marketTask.intTASKload)

{

blnSERVwilling = isWilling(marketTask.taskBuyer.dblAGNTprice,
blnQutput);

if (blnSERVwilling == true)

{

// ADD SERVER ID TO THE WILLING LIST
strWillingList[intNoWilling] = strSERVid;
intNoWilling++;

}

}

T
// do the deal based on an OFFER
else

// determine which servers to add to the willing list based
// on those giving offer prices that are accepted by the task
// buyer agent

enumServers = vctSERVservers.elements();

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;

// if neighbouring server recieved the bid for market task
// from this server

if (marketTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

// if waiting for the auction (i.e. is willing)
//if (neighServer.intSERVstate == WAITING_AUCTION)

//4
// (check again whether it has enough available capacity)

if (neighServer.intSERVavail_ru >=
neighServer.bidTask.intTASKload)

{
// ADD SERVER ID TO THE WILLING BASED ON OFFER PRICE
// get the server seller offer price

double dblOfferPrice = neighServer.dblSERVofferprice;
if (dblOfferPrice != 0.0)
{

// get whether this server’s buyer agent is willing
// to deal

boolean blnBuyWilling = isBuyWilling(dblOfferPrice,
blnQutput);

if (blnBuyWilling == true)

{

strWillinglist[intNoWilling] =
neighServer.strSERVid;
intNoWilling++;

}

}

}
/13
}

// now check whether THIS servers offer price is ’good enough’
// if server has enough available capacity

if (intSERVavail_ru >= marketTask.intTASKload)

{

214

// get the server seller offer price

double dblOfferPrice = dblSERVofferprice;

// get whether this server’s buyer agent is willing to deal
boolean blnBuyWilling = isBuyWilling(dblOfferPrice,
blnQutput);

if (blnBuyWilling == true)

{

strWillingList[intNoWilling] = strSERVid;
intNoWilling++;

// GET NUMBER OF BUYER AND SELLER AGENTS

/ number of buyer agents equal to the one on the new task
intNoBuyers = 1;

// number of sellers equal to the number of willing servers
intNoSellers = intNoWilling;

// FIND THE THEORETICAL EQUILIBRIUM PRICE

SDVIS.SDVIS_sup_dem(intNoSellers, intNoBuyers, UDCnet, dblEgPrice,
intEqQuantity, dblCurrMaxSurp, EQ_THEORY, 0.0, blnQOutput, psSDO);
dblEqPrice = SDVIS.dblEgPrice;

intEqQuantity = SDVIS.intIQuant;

dblCurrMaxSurp = SDVIS.dblSurplus;

// (use to update day and trade statistics in place of initialisation
// theoretical equilibrium price)

double TdblEqPrice = SDVIS.dblEgPrice;

int TintEqQuantity = SDVIS.intIQuant;

double TdblCurrMaxSurp = SDVIS.dblSurplus;

// FIND THE ACTUAL EQUILIBRIUM PRICE

SDVIS.SDVIS_sup_dem(intNoSellers, intNoBuyers, UDCnet, dblEgPrice,
intEqQuantity, dblCurrMaxSurp, EQ_ACTUAL, 0.0, blnQOutput, psSDO);
dblEqPrice = SDVIS.dblEgPrice;

intEqQuantity = SDVIS.intIQuant;

dblCurrMaxSurp = SDVIS.dblSurplus;

e
// XFIG: ...print a figure of the actual supply and demand curves...
SDVIS.SDVIS_sup_dem(intNoSellers, intNoBuyers, UDCnet, dblEgPrice,
intEqQuantity, dblCurrMaxSurp, EQ_THEORY, 0.0, blnQOutput, psSDO);
dblDummyl = SDVIS.dblEqPrice;

intDummy = SDVIS.intIQuant;

dblDummy2 = SDVIS.dblSurplus;

e
int intCount = 0;

// IF ANY WILLING SERVERS THEN ENTER INTO A DEAL

if (intNoWilling > 0)

{
intAuctionStatus = DEAL;
else

// NO SERVERS WILLING SO ENABLE A TASK SHIFT
if (blnEnableOneShift == false)

// get the integer id of this server

intSERVidl = Integer.parseInt(strSERVid.substring(1));
boolean blnTemp = false;

// randomly select a server to try and offload a job

// (while *not* this server)

while (intSERVidl == Integer.parselnt(
strSERVid.substring(1)))

// while equal to a neighbouring server not involved in
// this auction
while(blnTemp == false)

{
// RANDOMLY SELECT ONE SERVER TO TRY AND OFFLOAD A JOB
// (but have to select server that part of *thisx

215

// auction only)

random.setSeed((int) (Math.random() * 100));
intSERVidl = (int) (random.nextDouble() *
vctSERVservers.size());

// get the integer id of the of the randomly selected
// server

intSERVidl += Integer.parseInt(

strSERVid.substring(1)) - 5;

// if neighbouring server recieved the bid for market
// task from this server

enumServers = vctSERVservers.elements();

while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)
enumServers .nextElement () ;

if (intSERVidl == Integer.parseInt(
neighServer.strSERVid.substring(1)))

{
if (marketTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

// randomly selected server is equal to server

// involved in this auction
blnTemp = true;

1
}

intCount++;
if (intCount > 3)

blnTemp = true;

}

}

¥

// ENUMERATE THROUGH TO THIS RANDOMLY SELECTED SERVER
enumServers = vctSERVservers.elements();

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;
if (neighServer.strSERVid.equals("S" + intSERVidl))

{

// ENABLE SHIFTING IN THIS SINGLE RANDOMLY SELECTED

// SERVER

neighServer.blnEnableShifting = true;

// IMPORTANT: (just removing this line removes all task
// shifting)

neighServer.intSERVstate = PENDING_ACCEPTANCE;

}

}

// turn on boolean flag to enable task shifting
blnEnableOneShift = true;

// (TEMPORARILY) HALT THIS AUCTION TO ALLOW FOR THE TASK SHIFT
blnStopAuction = true;

// IF AUCTION STILL GOING AHEAD, carry on
if (blnStopAuction == false)

blnAuctionOccured = true;

ZIP_Agent CHOSEN_agtSERVseller = new ZIP_Agent();
// if there is at least one willing server

if (intAuctionStatus == DEAL)

int intTemp = (int) (random.nextDouble() * intNoWilling);
String CHOSEN_strSERVid = strWillingList[intTemp];

// RANDOMLY SELECT A WILLING SERVER SELLER FOR THIS TASK
if (blnCompetitive == false)
{

216

// if the randomly selected seller agent is on the LOCAL

// SERVER
if (CHOSEN_strSERVid.equals(strSERVid))

{
CHOSEN_agtSERVseller = agtSERVseller;

// else the randomly selected seller agent is on a

// NEIGHBOURING SERVER
else

enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;

if (CHOSEN_strSERVid.equals(neighServer.strSERVid))

{
CHOSEN_agtSERVseller = neighServer.agtSERVseller;

1
1
1

¥

// or out of the willing servers SELECT THE ONE THAT IS GIVES
// THE BEST REWARD for the required resource units

else

double dblLargeReward = 0.0;

// loop through all servers in willing list

for (int intWillServ = 0; intWillServ < intNoWilling;
intWillServ++)

// retrieve server id from willing list
String TMPstrSERVid = strWillingList[intWillServ];
// if the randomly selected seller agent is on the LOCAL

// SERVER
if (TMPstrSERVid.equals(strSERVid))

éHDSEN_agtSERVseller = agtSERVseller;

double dblReward = reward(CHOSEN_agtSERVseller,
dblPrice);

// select server giving the best reward

if (dblReward > dblLargeReward)

i

dblLargeReward = dblReward;
CHOSEN_strSERVid = strSERVid;
CHOSEN_agtSERVseller = agtSERVseller;

}

// else the randomly selected seller agent is on a

// NEIGHBOURING SERVER
else

enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)

enumServers .nextElement () ;

if (TMPstrSERVid.equals(neighServer.strSERVid))

éHUSEN_agtSERVseller = neighServer.agtSERVseller;
double dblReward = reward(CHOSEN_agtSERVseller,
dblPrice);

// select server giving the best reward

if (dblReward > dblLargeReward)

gblLargeReward = dblReward;
CHOSEN_strSERVid = neighServer.strSERVid;
CHOSEN_agtSERVseller =
neighServer.agtSERVseller;

}

}

217

¥
¥
¥
¥
if (blnOutput)
{

// if deal based on the task buyers BID

if (blnDealType == true)

{

System.out.println("BUYER FOR TASK " + marketTask.strTASKid +
" BUYS FROM SELLER on server " + CHOSEN_strSERVid +

" (reward = " + reward(CHOSEN_agtSERVseller,
marketTask.taskBuyer.dblAGNTprice) + ")");

}
// else if deal based on the server sellers OFFER
else

System.out.println("SELLER FOR SERVER " + CHOSEN_strSERVid +
" SELLS TO BUYER on TASK " + marketTask.strTASKid +

" (reward = " + reward(CHOSEN_agtSERVseller,
marketTask.taskBuyer.dblAGNTprice) + ")");
¥

}

intSERValloc++;

// UPDATE TRADE STATISTICS

stats.TRADE_update_the_eq(intTimeStep, TdblEqPrice, TintEqQuantity);
stats.TRADE_updade_act_eq(intTimeStep, dblEqPrice, intEqQuantity);
// call methods to record trade price and deal type
stats.TRADE_deal_type_price(intTimeStep,
marketTask.taskBuyer.dblAGNTprice, BID);

/] e
// UPDATE TRADING STRATEGIES

// now a trade has taken place, update the trading strategy of the
// task buyer agent, the server buyer agents, and the server seller
// agents (whether they participated in the auction or not)
marketTask.taskBuyer.AGNT_shout_update_buyer(marketTask.strTASKid,
blnDealType, intAuctionStatus, marketTask.taskBuyer.dblAGNTprice,
random, blnOutput);

// update trading strategies: local server

agtSERVbuyer .AGNT_shout_update_buyer(strSERVid, blnDealType,
intAuctionStatus, marketTask.taskBuyer.dblAGNTprice, random,
blnOutput);

agtSERVseller.AGNT_shout_update_seller(strSERVid, blnDealType,
intAuctionStatus, marketTask.taskBuyer.dblAGNTprice, random,
intTimeStep, blnOutput);

// update trading strategies: neighbouring servers

enumServers = vctSERVservers.elements();

// enumerate through all neighbouring servers

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server) enumServers.nextElement();
neighServer.agtSERVbuyer.AGNT_shout_update_buyer(
neighServer.strSERVid, blnDealType, intAuctionStatus,
marketTask.taskBuyer.dblAGNTprice, random, blnQutput);
neighServer.agtSERVseller.AGNT_shout_update_seller(
neighServer.strSERVid, blnDealType, intAuctionStatus,
marketTask.taskBuyer.dblAGNTprice, random, intTimeStep,
blnQutput);

2 —
// UPDATE BANK ACCOUNTS AND ADD THE TASK TO THE SERVER

// of the task buyer agent and the server seller agent

bank(marketTask.taskBuyer, marketTask.taskBuyer.dblAGNTprice,
blnOutput);

removeTaskFromMarket (marketTask);

// if the randomly selected seller agent was on the LOCAL SERVER

if (CHOSEN_strSERVid.equals(strSERVid))

{

218

bank(agtSERVseller, marketTask.taskBuyer.dblAGNTprice,
blnOutput);
addUDC_Task(marketTask);

// else the randomly selected seller agent was a NEIGHBOURING SERVER
else

enumServers = vctSERVservers.elements();
// iterate through the neighbouring servers
while (enumServers.hasMoreElements())

// get the neighbouring server object
UDC_Server neighServer = (UDC_Server) enumServers.nextElement();
if (CHOSEN_strSERVid.equals(neighServer.strSERVid))

{

neighServer.bank(neighServer.agtSERVseller,
marketTask.taskBuyer.dblAGNTprice, blnOutput);
neighServer.addUDC_Task(marketTask);

// record what the server paid for the task
marketTask.dblTASKworth = marketTask.taskBuyer.dblAGNTprice;

blnTradeOccured = true;

/

// IF NO DEAL (TASK REMAINS IN LOCAL SERVER MARKET)
else

{

// increment number of fails count (if not already set at max fails)
if (intNoFails < MAX_FAILS)

intNoFails++;
¥
if (blnOutput)

{

psOUT.printlin(

"No servers willing to sell resources (fails = " + intNoFails +
II)II);

psOUT.println();

}

// record fact there was no deal

stats.TRADE_no_deal(intTimeStep);
.
// UPDATE TRADING STRATEGIES

// now a trade has taken place, update the trading strategy of the
// task buyer agent, the server buyer agents, and the server seller
// agents

marketTask.taskBuyer.AGNT_shout_update_buyer (
marketTask.strTASKid, blnDealType, intAuctionStatus,
marketTask.taskBuyer.dblAGNTprice, random, blnQOutput);

// LOCAL SERVER

agtSERVbuyer.AGNT_shout_update_buyer(strSERVid, blnDealType,
intAuctionStatus, marketTask.taskBuyer.dblAGNTprice, random,
blnOutput);

agtSERVseller.AGNT_shout_update_seller(strSERVid, blnDealType,
intAuctionStatus, marketTask.taskBuyer.dblAGNTprice, random,
intTimeStep, blnOutput);

// NEIGHBOURING SERVERS

enumServers = vctSERVservers.elements();

// iterate through the neighbouring servers

while (enumServers.hasMoreElements())

// get the neighbouring server object

UDC_Server neighServer = (UDC_Server)

enumServers .nextElement () ;

neighServer.agtSERVbuyer .AGNT_shout_update_buyer(
neighServer.strSERVid, blnDealType, intAuctionStatus,

219

marketTask.taskBuyer.dblAGNTprice, random, blnQutput);
neighServer.agtSERVseller.AGNT_shout_update_seller(
neighServer.strSERVid, blnDealType, intAuctionStatus,
marketTask.taskBuyer.dblAGNTprice, random, intTimeStep,
blnQutput);

¥

¥

/

// AUCTION COMPLETED: RETURN ALL SERVERS INVOLVED IN AUCTION TQ A
// FREE STATE

intSERVstate = FREE;

enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;

// if neighbouring server recieved the bid for market
// task from this server

if (marketTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

{
// RETURN SERVER INVOLVED IN AUCTION TO A FREE STATE
neighServer.intSERVstate = FREE;

if (neighServer.strSERVid.equals("S" + intSERVidl))
{

// reset enable shifting flags back to false
neighServer.blnEnableShifting = false;
blnEnableOneShift = false;

}

}

}
if (intAuctionStatus == DEAL)

stats.STATS_calculate(intTimeStep, intAuctionStatus,
marketTask.taskBuyer.dblAGNTprice, TdblEgPrice,
dblSurplus, TdblCurrMaxSurp, blnOutput);

}

}

}

/

// IF FOR A BID PUT OUT FOR TASK CURRENTLY RUNNING (in order that this
// server can partake in auction for a task put up *by anotherx

// neighbouring server)

else if (blnWillingWaitType == false)

{

Enumeration enumServers = vctSERVservers.elements();

boolean blnAllRecieved = true;

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server) enumServers.nextElement();
// if neighbouring server recieved the bid for local task from

// this server
if (localTask.strTASKid.equals(neighServer.bidTask.strTASKid))

{
if (neighServer.blnSERVret_willing == false)

// server hasn’t returned willing flag so yet to recieve all
// willing flags

blnAllRecieved = false;

3

}

¥

// initialise willing list structure and indices count
String[] strWillingList = new String[MAX_AGENTS];

int intNoWilling = 0;

int intNoFails = 0;

2
// IF NOT YET RECIEVED ALL NEIGHBOURING SERVERS WILLING FLAGS
%f (blnAllRecieved == false)

220

// remain in same state
intSERVstate = WAITING_ACCEPTANCE;

// increment number of timesteps waiting for willing flags
intNoStepsWaiting2++;

// if the number of timesteps waiting now above limit

if (intNoStepsWaiting2 > intSERVhalt_auction)

{

psOUT.println("SERVER: " + strSERVid +

" has been waiting for all willing flags for more than "

+ intSERVhalt_auction + " timesteps (at timestep "

+ intTimeStep + ")");

// OPTION: add in three lines below and neigh. server line

// below to have this server return as not willing in original
// auction if waited more than n timesteps

intSERVstate = FREE;

blnSERVwilling = false;

blnSERVret_willing = true;

// set all neighbouring servers involved in auction in a free
// state

enumServers = vctSERVservers.elements();

while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)

enumServers .nextElement () ;

// if neighbouring server recieved the bid for local
// task from this server

if (localTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

{
neighServer.intSERVstate = FREE;

[T]

e
// ELSE HAVE RECIEVED ALL NEIGHBOURING SERVERS WILLING FLAGS

// (go ahead with auction)

else

// reset number of timesteps waiting count
intNoStepsWaiting2 = 0;

// reset auction status flag to NO_DEAL
int intAuctionStatus = NO_DEAL;

// do the deal based on a BID

enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;

// if neighbouring server recieved the bid for market task
// from this server

if (localTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

{

// if waiting for the auction (i.e. is willing)
if (neighServer.intSERVstate == WAITING_AUCTION)

// (check again whether it has enough available
// capacity)

if (neighServer.intSERVavail_ru >=
neighServer.bidTask.intTASKload)

{

// ADD SERVER ID TO THE WILLING LIST
strWillinglist[intNoWilling] = neighServer.strSERVid;
intNoWilling++;

}

}

}

// (Nb. this server not willing because it is the server trying to

221

// offload task)
/

// GET NUMBER OF BUYER AND SELLER AGENTS

/ number of buyer agents equal to the one on the new task
intNoBuyers = 1;

// number of sellers equal to the number of willing servers
intNoSellers = intNoWilling;

// FIND THE THEORETICAL EQUILIBRIUM PRICE

SDVIS.SDVIS_sup_dem(intNoSellers, intNoBuyers, UDCnet, dblEgPrice,
intEqQuantity, dblCurrMaxSurp, EQ_THEORY, 0.0, blnQOutput, psSDO);
dblEqPrice = SDVIS.dblEqPrice;

intEqQuantity = SDVIS.intIQuant;

dblCurrMaxSurp = SDVIS.dblSurplus;

// (use to update day and trade statistics in place of initialisation
// theoretical equilibrium price)

double TdblEqPrice = SDVIS.dblEqPrice;

int TintEqQuantity = SDVIS.intIQuant;

double TdblCurrMaxSurp = SDVIS.dblSurplus;

// FIND THE ACTUAL EQUILIBRIUM PRICE

SDVIS.SDVIS_sup_dem(intNoSellers, intNoBuyers, UDCnet, dblEgPrice,
intEqQuantity, dblCurrMaxSurp, EQ_ACTUAL, 0.0, blnQOutput, psSDO);
dblEqPrice = SDVIS.dblEqPrice;

intEqQuantity = SDVIS.intIQuant;

dblCurrMaxSurp = SDVIS.dblSurplus;

[= s
// XFIG: ...print a figure of the actual supply and demand curves...
SDVIS.SDVIS_sup_dem(intNoSellers, intNoBuyers, UDCnet, dblEgPrice,
intEqQuantity, dblCurrMaxSurp, EQ_THEORY, 0.0, blnQOutput, psSDO);
dblDummyl = SDVIS.dblEqPrice;

intDummy = SDVIS.intIQuant;

dblDummy2 = SDVIS.dblSurplus;

/] === oo
// IF ANY WILLING SERVERS THEN ENTER INTO A DEAL

if (intNoWilling > 0)

{
intAuctionStatus = DEAL;
else

// NO SERVERS WILLING SO ENABLE ANOTHER TASK SHIFT

// count number of neighbours involved in the auction
int intNeighbourCount = 0;

enumServers = vctSERVservers.elements();

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;

if (localTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

intNeighbourCount++;

}

T

// RANDOMLY SELECT ONE SERVER TO TRY AND OFFLOAD A JOB
int TMPintSERVid = (int) (random.nextDouble() *
intNeighbourCount);

intNeighbourCount = 0;

enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;

if (localTask.strTASKid.equals(
neighServer.bidTask.strTASKid))

intNeighbourCount++;
if (TMPintSERVid == intNeighbourCount)
{

222

// ENABLE SHIFTING IN THIS SINGLE RANDOMLY SELECTED

// SERVER
neighServer.blnEnableShifting = true;

// (just removing this line removes all task shifting)
neighServer.intSERVstate = PENDING_ACCEPTANCE;

}

}

¥

// turn on boolean flag to enable task shifting
blnEnable(neShift = true;

// (TEMPORARILY) HALT THIS AUCTION TO ALLOW FOR THE TASK SHIFT
blnStopAuction = true;

// IF AUCTION STILL GOING AHEAD, carry on
if (blnStopAuction == false)

blnAuctionOccured = true;

ZIP_Agent CHOSEN_agtSERVseller = new ZIP_Agent();
// if there is at least one willing server

if (intAuctionStatus == DEAL)

{

// RANDOMLY SELECT A WILLING SERVER SELLER FOR THIS TASK
int intTemp = (int) (random.nextDouble() * intNoWilling);
String CHOSEN_strSERVid = strWillingList[intTemp];

if (blnCompetitive == false)

{

enumServers = vctSERVservers.elements();

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;
if (CHOSEN_strSERVid.equals(neighServer.strSERVid))

{
CHOSEN_agtSERVseller = neighServer.agtSERVseller;

1
}

}

// or out of the willing servers SELECT THE ONE THAT IS GIVES
// THE BEST REWARD for the required resource units

else

double dblLargeReward = 0.0;

// loop through all servers in willing list

for (int intWillServ = 0; intWillServ < intNoWilling;
intWillServ++)

// retrieve server id from willing list
String TMPstrSERVid = strWillingList[intWillServ];
enumServers = vctSERVservers.elements();
while (enumServers.hasMoreElements())

{

UDC_Server neighServer = (UDC_Server)
enumServers.nextElement () ;

if (TMPstrSERVid.equals(neighServer.strSERVid))

éHDSEN_agtSERVseller = neighServer.agtSERVseller;
double dblReward = reward(CHOSEN_agtSERVseller,
dblPrice);

// select server giving the best reward

if (dblReward > dblLargeReward)

{

dblLargeReward = dblReward;

CHOSEN_strSERVid = neighServer.strSERVid;
CHOSEN_agtSERVseller = neighServer.agtSERVseller;

LT L T

223

if (blnOutput)
{
psOUT.println("BUYER on server " + strSERVid +

" FOR TASK " + localTask.strTASKid +
" BUYS FROM SELLER on server " + CHOSEN_strSERVid +

" (reward = " + reward(agtSERVseller,
agtSERVbuyer .dblAGNTprice) + ")");
}

intSERValloc++;

// UPDATE TRADE STATISTICS

stats.TRADE_update_the_eq(intTimeStep, TdblEgPrice,

TintEqQuantity);

stats.TRADE_updade_act_eq(intTimeStep, dblEgPrice,

intEqQuantity);

// call methods to record trade price and deal type
stats.TRADE_deal_type_price(intTimeStep,

agtSERVbuyer.dblAGNTprice, BID);

2
// UPDATE TRADING STRATEGIES

// now a trade has taken place, update the trading strategy of the task
// buyer agent, the server buyer agents, and the server seller agents
// (whether they participated in the auction or not)
localTask.taskBuyer.AGNT_shout_update_buyer(localTask.strTASKid, true,
intAuctionStatus, agtSERVbuyer.dblAGNTprice, random, blnOutput);

// update trading strategies: local server
agtSERVbuyer.AGNT_shout_update_buyer(strSERVid, true,
intAuctionStatus, agtSERVbuyer.dblAGNTprice, random, blnOutput);
agtSERVseller.AGNT_shout_update_seller(strSERVid, true,
intAuctionStatus, agtSERVbuyer.dblAGNTprice, random, intTimeStep,
blnOutput);

// update trading strategies: neighbouring servers

enumServers = vctSERVservers.elements();

// enumerate through all neighbouring servers

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server) enumServers.nextElement();
neighServer.agtSERVbuyer.AGNT_shout_update_buyer(
neighServer.strSERVid, true, intAuctionStatus,

agtSERVbuyer .dblAGNTprice, random, blnQutput);
neighServer.agtSERVseller.AGNT_shout_update_seller(
neighServer.strSERVid, true, intAuctionStatus,
agtSERVbuyer.dblAGNTprice, random, intTimeStep, blnOutput);

¥

2 ——
// UPDATE BANK ACCOUNTS AND ADD THE TASK TO THE SERVER

// of the server buyer agent and the server seller agent

bank(agtSERVbuyer, agtSERVbuyer.dblAGNTprice, blnOutput);

// remove task from this server

removeUDC_Task(localTask);

enumServers = vctSERVservers.elements();

// iterate through the neighbouring servers

while (enumServers.hasMoreElements())

// get the neighbouring server object
UDC_Server neighServer = (UDC_Server) enumServers.nextElement();
if (CHOSEN_strSERVid.equals(neighServer.strSERVid))

{

neighServer.bank(neighServer.agtSERVseller,
agtSERVbuyer.dblAGNTprice, blnOutput);

// add task to neighbouring server
neighServer.addUDC_Task(localTask);

// record what the server paid for the task
localTask.dblTASKworth = agtSERVbuyer.dblAGNTprice;
blnTradeOccured = true;

224

// IF NO DEAL (TASK REMAINS IN LOCAL SERVER MARKET)
else
{

// increment number of fails count (if not already set at max fails)
if (intNoFails < MAX_FAILS)

intNoFails++;

}

if (blnOutput)

psOUT.println("No servers willing to sell resources (fails = "

+ intNoFails + ")");

psOUT.println();

}

// record fact there was no deal

stats.TRADE_no_deal(intTimeStep);
2 ——
// UPDATE TRADING STRATEGIES

// now a trade not taken place, update the trading strategy of the
// task buyer agent, the server buyer agents, and the server seller
// agents

localTask.taskBuyer.AGNT_shout_update_buyer(localTask.strTASKid,
true, intAuctionStatus, agtSERVbuyer.dblAGNTprice, random,
blnOutput);

// LOCAL SERVER

agtSERVbuyer.AGNT_shout_update_buyer(strSERVid, true,
intAuctionStatus, agtSERVbuyer.dblAGNTprice, random,

blnQutput);

agtSERVseller.AGNT_shout_update_seller(strSERVid, true,
intAuctionStatus, agtSERVbuyer.dblAGNTprice, random,

intTimeStep, blnQutput);

// NEIGHBOURING SERVERS

enumServers = vctSERVservers.elements();

// iterate through the neighbouring servers

while (enumServers.hasMoreElements())

// get the neighbouring server object

UDC_Server neighServer = (UDC_Server) enumServers.nextElement();
neighServer.agtSERVbuyer .AGNT_shout_update_buyer(
neighServer.strSERVid, true, intAuctionStatus,
agtSERVbuyer.dblAGNTprice, random, blnOutput);
neighServer.agtSERVseller.AGNT_shout_update_seller(
neighServer.strSERVid, true, intAuctionStatus,
agtSERVbuyer.dblAGNTprice, random, intTimeStep, blnOutput);

¥

}

//

// AUCTION COMPLETED: RETURN ALL SERVERS INVOLVED IN AUCTION TO A FREE
// STATE

enumServers = vctSERVservers.elements();

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server) enumServers.nextElement();

// if neighbouring server recieved the bid for local task from this
// server

if (localTask.strTASKid.equals(

neighServer.bidTask.strTASKid))

{

// RETURN SERVER INVOLVED IN AUCTION TO A FREE
// STATE

neighServer.intSERVstate = FREE;

if (neighServer.blnEnableShifting == true)

// reset enable shifting flags back to false
neighServer.blnEnableShifting = false;
blnEnableOneShift = false;

}

225

SERVbid_server.blnStopAuction = false;
¥

if (intAuctionStatus == DEAL)
{

stats.STATS_calculate(intTimeStep, intAuctionStatus,
agtSERVbuyer .dblAGNTprice, TdblEqPrice, dblSurplus,
TdblCurrMaxSurp, blnOutput);

}
// this server goes back into a PENDING_ACCEPTANCE state
// in order to service the bid originally made to this

// server by another of its neighbours
intSERVstate = PENDING_ACCEPTANCE;

else if (intSERVstate == PENDING_ACCEPTANCE)
{

// A NEIGHBOURING SERVER HAS PUT OUT A BID REQUEST --
// RETURN WHETHER THIS SERVER IS WILLING OR NOT

// IF SERVER HAS ENOUGH AVAILABLE CAPACITY

if (intSERVavail_ru >= bidTask.intTASKload)

// auction to be requested for participation to be closed via a
// BID
if (blnDealType == true)

// get whether this server’s seller agent is willing to deal
blnSERVwilling = isWilling(dblSERVbid_price, blnOutput);
// set true flag to indicate server *has* returned whether
// it is willing or not

blnSERVret_willing = true;

if (blnSERVwilling == true)

// if server willing then set to wait for auction for bid
// task

intSERVstate = WAITING_AUCTION;

// (not an ’offer’ auction so set offer price to 0.0)
dblSERVofferprice = 0.0;

else

// if not willing return to a free state

intSERVstate = FREE;

blnSERVwilling = false;

3

3

// auction to be requested for participation to be closed via an

// OFFER
else

// set true flag to indicate server *has* returned whether it
// is willing or not

blnSERVret_willing = true;

// get the offer price from the server seller agent
agtSERVseller.AGNT_calcPrice();

dblSERVofferprice = agtSERVseller.dblAGNTprice;

// if server willing then set to wait for auction for bid task
intSERVstate = WAITING_AUCTION;

}

/
// IF SERVER HAS ENOUGH *POTENTIAL* CAPACITY (and running one task)

else if ((intSERVtotal_ru >= bidTask.intTASKload)
&& (vctSERVtasks.size() == 1))

// IF TASK SHIFTING TURNED ON
if (blnEnableShifting == true)

226

{

Enumeration taskEnum = vctSERVtasks.elements();
localTask = (UDC_Task) taskEnum.nextElement();
if (blnOutput)

{

psOUT.println();

psOUT.println("MBC_SIM: SERVER " + strSERVid +
" needs to offload (less profitable) TASK "

+ localTask.strTASKid + .
" in order to partake in auction for market TASK "

+ bidTask.strTASKid);

psOUT.println("MBC_SIM: New auction initiated");
psOUT.println();

}

// set limit price for buyer agent on local server
// (equal to whatever price the local server originally got for
// the job)

agtSERVbuyer.dblAGNTlimit = localTask.dblTASKworth;
// calculate the price of the server buyer agent
agtSERVbuyer.AGNT_calcPrice();

// get the bid price for the server buyer agent
double dblBidPrice =

getPrice(agtSERVbuyer, strSERVid, blnOutput);

// enumerate through all neighbouring servers
Enumeration enumServers vctSERVservers.elements();
int intNoAbleNeighbours 0;

while (enumServers.hasMoreElements())

UDC_Server neighServer = (UDC_Server) enumServers.nextElement();

// IF NEIGHBOURING SERVER IN A FREE STATE
if (neighServer.intSERVstate == FREE)

ieighServer.bidTask = localTask;
neighServer.SERVbid_server = this;
neighServer.dblSERVbid_price = dblBidPrice;
neighServer.intSERVstate = PENDING_ACCEPTANCE;
//neighServer.blnEnableShifting = true;
intNoAbleNeighbours++;

}

}
// IF NO NEIGHBOURING SERVERS ABLE TO PARTAKE
if (intNoAbleNeighbours ==

{

// REMAIN IN A FREE STATE
intSERVstate = FREE;
blnSERVwilling = false;
blnSERVret_willing = true;

¥
// ELSE THERE COULD BE WILLING SERVERS
else

// PUT SERVER INTO STATE WAITING FOR WILLING FLAGS
intSERVstate = WAITING_ACCEPTANCE;
blnSERVret_willing = false;

blnWillingWaitType false;

¥

3

//
// TASK SHIFTING TURNED OFF
else

intSERVstate = FREE
blnSERVwilling = fa
blnSERVret_willing
¥

¥

//
// TASK LOAD HIGHER THAN SERVER CAPACITY
else

{
intSERVstate = FREE;

5
1lse;
= true;

227

blnSERVwilling = false;
blnSERVret_willing = true;

else if (intSERVstate == WAITING_AUCTION)
// (REMAIN IN THIS STATE UNTIL BID SERVER COMPLETES AUCTION)
}

// OUTPUT CURRENT SERVER STATE
int intSERVid = Integer.parseIlnt(strSERVid.substring(1));

if (blnOutput)
{
if (intSERVstate == 0)

psOUT.println("SERVER " + strSERVid +

" in FREE STATE (Timestep = " + intTimeStep + ")");
//System.out.println("SERVER " + strSERVid +
//" in FREE STATE (Timestep = " + intTimeStep + ")");

¥
else if (intSERVstate == 1)

{

psOUT.println("SERVER " + strSERVid +

" in PENDING_ACCEPTANCE STATE (Timestep = " + intTimeStep
+ ll)ll);

//System.out.println("SERVER " + strSERVid + " in
//PENDING_ACCEPTANCE STATE (Timestep = " + intTimeStep
[1+ ")

¥
else if (intSERVstate == 2)
psOUT.println("SERVER " + strSERVid +

" in WAITING_ACCEPTANCE STATE (Timestep = " + intTimeStep
+ ll)ll);

//System.out.println("SERVER " + strSERVid +

//" in WAITING_ACCEPTANCE STATE (Timestep = " +

//intTimeStep + ")");
}
else if (intSERVstate == 3)

psOUT.println("SERVER " + strSERVid +

" in WAITING_AUCTION STATE (Timestep = " + intTimeStep
+ ")");

//System.out.println("SERVER " + strSERVid + " in
//WAITING_AUCTION STATE (Timestep = " + intTimeStep
[7+ ")

1

}
return intTASKid;

/
// ADDUDC_TASK: add and run a task on the server
public void addUDC_Task(UDC_Task taskl)

{

int TMPintSERVavail_ru = intSERVavail_ru;

// remove the necessary number of server resource units
intSERVavail_ru -= taskl.intTASKload;

%f (intSERVavail_ru < 0.0)

// error: not enough room on the server for the task
//ps0OUT .println(

//FAIL: attempting to run a task on a server without "
// + "enough capacity");

System.out.println(

"FAIL: attempting to run a task on a server without "
+ "enough capacity");

System.exit(0);

}

else

228

// set the server currently responsible for this task
taskl.strTASKserv_id = strSERVid;

//psOUT.println();

//psOUT.println("UDC_SERVER: Task " + taskl.strTASKid +

//" (LOAD: " + taskl.intTASKload + ", DURATION: " +
//taskl.intTASKduration + ") loaded onto Server " + strSERVid
//+ " (TOT/CAP: " + intSERVtotal_ru + ", OLD/CAP: " +
//TMPintSERVavail_ru + ", NEW/CAP: " + intSERVavail_ru + ")");
//psOUT.println();

vctSERVtasks.addElement(taskl);

public void removeUDC_Task(UDC_Task taskl)

// add back the necessary number of server resource units
intSERVavail_ru += taskl.intTASKload;

// removes the first occurance of the specified element in the
// Vector if the Vector does not contain the element, it is

// unchanged

vctSERVtasks.remove(taskl);

public void addUDC_Server(UDC_Server serverl)

vctSERVservers.addElement (serverl);

public void addUDC_Servers(UDC_Server serverl, UDC_Server server2,
UDC_Server server3, UDC_Server server4, UDC_Server server5b,
UDC_Server server6, UDC_Server server7, UDC_Server servers8,
EDC_Server server9, UDC_Server serverl0)
vctSERVservers.addElement (serverl
vctSERVservers.addElement (server2
vctSERVservers.addElement (server3
vctSERVservers.addElement (serverd
vctSERVservers.addElement (serverb
vctSERVservers.addElement (server6
vctSERVservers.addElement (server7
vctSERVservers.addElement (server8
vctSERVservers.addElement (server9
vctSERVservers.addElement (serverl0

(AN A AN

N e e e we v e we e

3

public void addUDC_Servers(UDC_Network UDCnet, String strSERVidi,
String strSERVid2, String strSERVid3, String strSERVid4,

String strSERVid5, String strSERVid6, String strSERVid7,

String strSERVid8, String strSERVid9, String strSERVid10)

{

Hashtable UDC = UDCnet.getNetwork();

// retrieve every server object in turn

for (int intServer = 1; intServer <= UDC.size(); intServer++)

// retrieve network server object
UDC_Server server = (UDC_Server) UDC.get("S" + intServer);
if ((server.strSERVid.equals(strSERVidl)) ||

(server.strSERVid.equals(strSERVid2
(server.strSERVid.equals(strSERVid3
(server.strSERVid.equals(strSERVid4
(server.strSERVid.equals(strSERVid5
(server.strSERVid.equals(strSERVid6
(server.strSERVid.equals(strSERVid7
(server.strSERVid.equals(strSERVid8
(
(
{
v

(SRS RN
(SRS RN

server.strSERVid.equals(strSERVid9
server.strSERVid.equals(strSERVid10))

|
|
|
|
|
|
|
|
)
ctSERVservers.addElement(server);

229

T]

[==

public void addUDC_Servers(Vector servers)
for (int intServer = 0; intServer < servers.size(); intServer++)

vctSERVservers.addElement (servers.elementAt(intServer));

// decrement by one the duration of any tasks currently running
public void decTaskDurations(boolean blnOutput)

// if there are any UDC_Task objects currently running
if (vctSERVtasks.size() > 0)

// enumerate through the tasks vector
Enumeration enum = vctSERVtasks.elements();
while(enum.hasMoreElements())

UDC_Task task = (UDC_Task) enum.nextElement();
task.intTASKduration -= 1;
if (blnOutput)

{

//psOUT .println("UDC_SERVER: SERVER " + strSERVid +
//": TASK " + task.strTASKid + " has " +
//task.intTASKduration + " seconds left to run");

// if the intTASK duration of the task equals 0
if (task.intTASKduration == 0)

// add back the necessary number of RUs to the server

// (add to intAvailRUs)
intSERVavail_ru += task.intTASKload;

if (blnOutput)

{

//psOUT.println("UDC_SERVER: SERVER " + strSERVid
//+ ": TASK " + task.strTASKid

//+ " has completed and been removed");
//psOUT.println();

}

// remove the UDC_Task from the UDC_Server

vctSERVtasks.remove(task);
intSERVjprsd++;

public void addTaskToMarket(UDC_Task taskl)

{
vctSERVmarket .addElement (taskl);

public void removeTaskFromMarket(UDC_Task taskl)

vctSERVmarket .remove(taskl);

// return whether this server’s seller agent is able to deal
public boolean isWilling(double dblPrice, boolean blnOutput)

// use intelligence to determine whether willing to trade at
// this price or not

agtSERVseller .AGNT_willing_trade(dblPrice);

// if agent willing

if (agtSERVseller.blnAGNTwilling == true)

{

230

// get monetary reward for the deal
double dblReward = reward(agtSERVseller, dblPrice);

if (blnOutput)
{
if (agtSERVseller.blnAGNTtype == BUY)

{
//ps0OUT.println("BUYER on server " + strSERVid +

//" willing (reserve) price = " + dblPrice

//+ " (reward = " + dblReward + ")");

}

?lse

//psOUT.println("SELLER on server " + strSERVid +
// " willing (reserve) price = " + dblPrice

//+ " (reward = " + dblReward + ")");

1

1

}
//psOUT.println();
return agtSERVseller.blnAGNTwilling;

// return whether this server’s seller agent is able to deal
public boolean isBuyWilling(double dblPrice, boolean blnQutput)
{

// use intelligence to determine whether willing to trade at this
// price or not

agtSERVbuyer.AGNT_willing_trade(dblPrice);

// if agent willing

if (agtSERVbuyer.blnAGNTwilling == true)

// get monetary reward for the deal
double dblReward = reward(agtSERVbuyer, dblPrice);

if (blnOutput)

{

if (agtSERVseller.blnAGNTtype == BUY)

{

//psOUT .println("BUYER on server " + strSERVid +
//" willing (reserve) price = " + dblPrice +

//" (reward = " + dblReward + ")");

}

else

//psOUT.println("SELLER on server " + strSERVid +
//" willing (reserve) price = " + dblPrice

//+ " (reward = " + dblReward + ")");

¥

//psOUT .println();
¥

}
return agtSERVbuyer.blnAGNTwilling;

// given a bid or offer price, returns the monetary reward for a deal
public double reward(ZIP_Agent agent, double dblAGNTprice)

{

double dblReward = 0.0;

// if a SELLER agent

if (agent.blnAGNTtype == SELL)

// reward
dblReward

= offer price - agent limit price

= (dblAGNTprice - agent.dblAGNTlimit);
}

// if a BUYER agent

if (agent.blnAGNTtype == BUY)

// reward = agent limit price - bid price
dblReward = (agent.dblAGNTlimit - dblAGNTprice);
¥

231

// ensure any negative rewards set at 0.0
if (dblReward < 0.0)

dblReward = 0.0;

return dblReward;

// get a (bid or offer) price for an agent
public double getPrice(ZIP_Agent agent, String strID,
boolean blnOutput)

gouble dblPrice;

// bounds on random prices
double dblRandomMin = 0.01;
double dblRandomMax = 4.0;
dblPrice = agent.dblAGNTprice;
// output bid or offer price
if (blnOutput)

// get monetary reward for the deal
double dblReward = reward(agent, dblPrice);
if (agent.blnAGNTtype == BUY)

{
//psOUT.println("ZIP_SIM: BUYER on server " + strID +

//" BIDS AT " + dblPrice + " (reward = " + dblReward
//+ ™))");

¥

else

//psOUT.println("ZIP_SIM: SELLER on server " + strID
//+ " OFFERS AT " + dblPrice + " (reward = " + dblReward
[+ ")

}

return dblPrice;

// adjust bank balances of buyer or seller agent involved in a deal
public void bank(ZIP_Agent agent, double dblPrice, boolean blnQutput)

gouble dblReward;

// BUYER

if (agent.blnAGNTtype == BUY)

{

// get monetary reward for the deal

dblReward = reward(agent, dblPrice);

// add monetary reward for the deal to the agents’ bank account
agent .dblAGNTmoney += dblReward;

agent.dblAGNTactualgain += dblReward;

dblSurplus += dblReward;

if (blnOutput)

{
//psOUT .println("ZIP_SIM.SIM_bank: BUYER limit = "

//+ agent.dblAGNTlimit + ", reward = " + dblReward +
//", money = " + agent.dblAGNTmoney +

//", (surplus = " + dblSurplus + ")");

}

// SELLER

if (agent.blnAGNTtype == SELL)

// get monetary reward for the deal

dblReward = reward(agent, dblPrice);

// add monetary reward for the deal to the agents’ bank account
agent .dblAGNTmoney += dblReward;

agent.dblAGNTactualgain += dblReward;

dblSurplus += dblReward;

232

if (blnOutput)

{

//psOUT .println();

//psOUT .println("ZIP_SIM.SIM_bank: SELLER limit = "
//+ agent.dblAGNTlimit + ", reward = " + dblReward +
//", money = " + agent.dblAGNTmoney +

//", (surplus = " + dblSurplus + ")");

233

C.2.6 UDC_Task.java

Description: An object representing a computational task to be run on the
UDC network. A ZIP agent representing the UDC_Task (on behalf of the
tasks’ owners) will use the task funds to allocate it resources for execution.

// Class: UDC_Task.java

import java.io.PrintStream;

public class UDC_Task implements ZIP_Constants
{

// id

public String strTASKid;

// duration
public int intTASKduration;

// resource requirement

public int intTASKload;

// funds to spend on resources (used by ZIP_Agents)

public double dblTASKfunds;

// funds per resource unit requirement per duration timestep
public double dblTASKpay;

// id of server currently responsible for this task

public String strTASKserv_id;

// ZIP_Agent used to purchase resources on a given server
public ZIP_Agent taskBuyer;

// what a given server paid for the task

public double dblTASKworth;

/] = e e
public UDC_Task(String TMPstrTASKid, int TMPintTASKduration,
int TMPintTASKload, double TMPdblTASKfunds)

{

strTASKid = TMPstrTASKid;

intTASKduration = TMPintTASKduration;

intTASKload = TMPintTASKload;

dblTASKfunds = TMPdb1lTASKfunds;

dblTASKpay = (dblTASKfunds / intTASKduration) / intTASKload;
strTASKserv_id = "";

dblTASKworth = 0.0;

taskBuyer = new ZIP_Agent();

// get a (bid or offer) price for an agent
public double getPrice(ZIP_Agent agent, String strID,
boolean blnOutput)

gouble dblPrice;

// bounds on random prices
double dblRandomMin = 0.01;
double dblRandomMax = 4.0;
dblPrice = agent.dblAGNTprice;
// output bid or offer price
if (blnOutput)

// get monetary reward for the deal
double dblReward = reward(agent, dblPrice);
if (agent.blnAGNTtype == BUY)

{

//psOUT .println("ZIP_SIM: BUYER on task " + strID +
//" BIDS AT " + dblPrice + " (reward = "

//+ dblReward + ")");

}

return dblPrice;

// given a bid or offer price, returns the monetary reward for a deal
public double reward(ZIP_Agent agent, double dblAGNTprice)
{

234

double dblReward = 0.0;
// if a SELLER agent
if (agent.blnAGNTtype == SELL)

// reward
dblReward

= offer price - agent limit price

= (dblAGNTprice - agent.dblAGNTlimit);
}

// if a BUYER agent

if (agent.blnAGNTtype == BUY)

// reward
dblReward
¥

agent limit price - bid price
(agent.dblAGNTlimit - dblAGNTprice);

// ensure any negative rewards set at 0.0
if (dblReward < 0.0)

{
dblReward = 0.0;

return dblReward;

235

C.2.7 UDC_Vis.java

Description: Provides a visualisation of the load on each server; the number of
tasks in each servers’ local market; and the quote price of each servers buyer
and seller ZIP agents, at each timestep of the simulation. As such this class is
not directly involved in the operation of the system.

// Class: UDC_Vis.java

import java.awt.Color;

import java.awt.Graphics;

import javax.swing.JFrame;

public class UDC_Vis extends JFrame

// visualisation parameters

private int intMaxXCells;

private int intMaxYCells;

private int intGridXScale;

private int intGridYScale;

private int intGridXOffset 28;

private int intGridYOffset 92;

private int intGridHeight = 400;

private int intGridWidth = 400;

private double[]1[] dblCellValues;

private String strField;

private int intTotalJobsPrsd;

private double dblTaskAllocPerc;

/] === oo
public UDC_Vis(int TMPintMaxXCells, int TMPintMaxYCells,
String TMPstrField, double[][] TMPdblCellValues,

int TMPintTotalJobsPrsd, double TMPdblTaskAllocPerc)

{

intMaxXCells = TMPintMaxXCells;

intMaxYCells = TMPintMaxYCells;

strField = TMPstrField;

intTotalJobsPrsd = TMPintTotalJobsPrsd;

dblTaskAllocPerc = TMPdblTaskAllocPerc;

dblCellValues = new double[intMaxXCells] [intMaxYCells];

// calculate each servers’ used capacity at each timestep
for (int intXCell = 0; intXCell < intMaxXCells; intXCell++

~

{
for (int intYCell = 0; intYCell < intMaxYCells; intYCell++

~

{

if (strField.equals("LOAD"))

{

dblCellValues[intXCell] [intYCell] =
TMPdblCellValues[intXCell] [intYCelll; // * 0.5;
if (dblCellValues[intXCell] [intYCell]l > 1.0)
{

dblCellValues [intXCell] [intYCell] = 1.0;

}

if (dblCellValues[intXCell] [intYCell]l < 0.0)

dblCellValues[intXCell] [intYCell] = 0.0;
}

}

else if (strField.equals("WAITING TASKS"))
{

dblCellValues[intXCell] [intYCell] =
TMPdblCellValues[intXCell] [intYCell] / 10;

if (dblCellValues[intXCell] [intYCell]l > 1.0)
{

dblCellValues[intXCell] [intYCell] = 1.0;

}

}

else if (strField.equals("OFFER PRICE") ||

strField.equals("BID PRICE"))
{

236

dblCellValues[intXCell] [intYCell] =
TMPdblCellValues[intXCell] [intYCell] * 0.40;
if (dblCellValues[intXCell] [intYCell]l > 1.0)

{
dblCellValues [intXCell] [intYCell] = 1.0;
}

¥
else if (strField.equals("JOBS PRSD") ||
strField.equals("TASKS ALLOCATED"))

{

dblCellValues[intXCell] [intYCell] =
TMPdblCellValues[intXCell] [intYCell] / 5;

if (dblCellValues[intXCell] [intYCell]l > 1.0)

{
dblCellValues[intXCell] [intYCell] = 1.0;
}

}
else if (strField.equals("PERCENTAGE ALLOCATED"))

{

dblCellValues[intXCell] [intYCell] =
TMPdblCellValues[intXCell] [intYCell] / 25;

if (dblCellValues[intXCell] [intYCell]l > 1.0)

{
dblCellValues[intXCell] [intYCell] = 1.0;
}

else

System.out.println(

"FAIL: incorrect UDC visualisation field given");
System.exit(0);

3

3

}

setSize(550, 550);
setTitle("MBC_Sim");
setResizable(false);

// VIS_SCALE_GRID: scale ’grid’ according to number of servers (x axis)
// and number of timesteps (y axis)
public void VIS_scale_grid()

{

intGridXScale ((intGridWidth - 2) / (intMaxXCells + 1));
intGridYScale = ((intGridHeight - 2) / (intMaxYCells + 1));
// sets cells as squares rather than rectangles

//if (intGridXScale > intGridYScale)

/

// intGridXScale = intGridYScale;
//%

//else

/74

// intGridYScale = intGridXScale;
§/}

/
// PAINT: draws cell grid
public void paint(Graphics g)

{
g.drawString("SERVER " + strField + " VISUALISATION", 30, 48);
if (strField.equals("JOBS PRSD"))

{
g.drawString("TOTAL NO. OF TASKS PROCESSED BY ALL SERVERS: "
+ intTotalJobsPrsd, 30, 67);

}
else if (strField.equals("TASKS ALLOCATED"))

{

g.drawString("TOTAL NO. OF TASKS ALLOCATED BY ALL SERVERS: "
+ intTotalJobsPrsd, 30, 67);

}

else

237

.drawString("Servers: " + intMaxXCells +
(X-AXIS); PERCENTAGE OF TASKS ALLOCATED: "
dblTaskAllocPerc + "%", 30, 67);
.drawString("Timesteps: " + intMaxYCells +
(Y-AXIS)", 30, 86);

209

0Q +

VIS_scale_grid();
// draw grid
for (int intXCell = 0; intXCell < intMaxXCells; intXCell++)

{
for (int intYCell = 0; intYCell < intMaxYCells; intYCell++)
{

if (strField.equals("OFFER PRICE") ||
strField.equals("LOAD") ||
strField.equals("JOBS PRSD") ||
strField.equals("BID PRICE") ||
strField.equals("TASKS ALLOCATED") ||
strField.equals("PERCENTAGE ALLOCATED"))

int intLH = (int)

(dblCellValues[intXCell] [intYCell] * 255);
int intHL = (int) (255 -

(dblCellValues[intXCell] [intYCell] * 255));
if (intLH > 255)

intLH = 255;

}

if (intHL > 255)

intHL = 255;

}

if (intLH < 0)

{

intLH = 0;

}

if (intHL < 0)

intHL = 0;

}

if (dblCellValues[intXCell] [intYCell]l < 0.5)
{

g.setColor(new Color((intLH * 2), 255, 0));

else

g.setColor(new Color(255, (intHL * 2), 0));
3
}

else

int intShade = (int) (255 -
(dblCellValues[intXCell] [intYCell] * 255));
g.setColor(new Color(255, intShade, intShade));

if (intShade > 255)
{

intShade = 255;

}

}

g.fillRect((intXCell * intGridXScale) + intGridXOffset
+ intGridXScale + 1, (intYCell * intGridYScale) +
intGridY0ffset + intGridYScale + 1, intGridXScale,
intGridYScale);

238

Bibliography

[1]

Friedrich, R., Utility Computing on a Planetary Scale,
mpulse Magazine, Cooltown Publications, January 2002,

http://www.cooltown.com/mpulse/0102-thinker.asp.

Waldspurger, C. A., Hogg, T., Huberman, B. A., Kephart, J. O. and Stor-

netta, S., Spawn: A Distributed Computational Economy, IEEE Transactions on
Software Engineering, Vol. 18, No. 2, pp. 103 - 117, 1992.

Cliff, D., Minimal-Intelligence Agents for Bargaining Behaviors in Market-Based En-
vironments, Tech. Rep. HP-1997-91, Hewlett Packard Laboratories, Bristol,
UK, 1997.

Das, R., Hanson, J. E., Kephart, J. O. and Tesauro, G., Agent-Human Interac-
tions in the Continuous Double Auction, Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), Seattle, August 2001, 2001.

Andrzejak, A., Graupner, S., Kotov, V. and Trinks, H., Self-Organizing Con-
trol in Planetary-Scale Computing, IEEE International Symposium on Cluster
Computing and the Grid (CCGrid), 2nd Workshop on Agent-based Cluster
and Grid Computing (ACGC), 2002.

Andrzejak, A., Graupner, S., Kotov, V. and Trinks, H., Control Architecture
for Service Grids in a Federation of Utility Data Centres, Hewlett Packard Labo-
ratories, Palo Alto, USA (forthcoming), 2002.

D.Begg, S.Fischer and Dornbusch, R.., Economics (fourth edition), McGraw-
Hill, London, 1994.

Clearwater, S., Market-Based Control: A Paradigm for Distributed Re-
source Allocation, World Scientific, Singapore, 1996.

239

[9]

[13]

[14]

[18]

Cliff, D. and Bruten, J., Simple Bargaining Agents for Decentralized Market-Based
Control, Tech. Rep. HP-98-17, Hewlett Packard Laboratories, Bristol, UK,
1998.

Wolski, R., Plank, J. and Bryan, T., Analyzing Market-based Resource Alloca-
tion Strategies for the Computational Grid, Tech. Rep. CS-00-453, University of
Tennessee, Knoxville, USA, 2000.

Smale, S., Convergent process of price adjustment and global newton methods, Con-

tributions to Economic Analysis, 105: pp. 191-205, 1977.

M. A. Gibney, N. R. J., Vriend, N. J. and Griffiths, J. M., Market-Based Call
Routing in Telecommunications Networks using Adaptive Pricing and Real Bidding, 3rd

International Workshop on Multi-Agent Systems and Telecommunications
(TATA-99), pp. 50-65, 1999.

Smith, R., The Contract Net Protocol: High Level Communication and Control in a
Distributed Problem Solver, IEEE Transactions on Computers, 29:12, pp. 1104
- 1113, 1980.

Gode, D. and Sunder, S., Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality, Journal of Political
Economy, 101(1): pp. 119-137, 1993.

Smith, V. L., An experimental study of competitive market behavior, Journal of
Political Economy, 70: pp. 111-137, 1962.

Cliff, D., Evolutionary Optimization of Parameter Sets for Adaptive Software-Agent
Traders in Continuous Double Auction Markets, Tech. Rep. HP-2001-99, Hewlett
Packard Laboratories, Bristol, UK, 2001.

Montfort, G. V., Economic Agents for Controlling Complex Systems, Master’s the-
sis, Delft University of Technology Faculty of Technical Mathematics and
Informatics, Unpublished, September 1997.

Cliff, D., Evolution of Market Mechanism Through a Continuous Space of Auction-
Types, Tech. Rep. HP-2001-326, Hewlett Packard Laboratories, Bristol, UK,
2001.

240

[19]

Cliff, D., Evolution of Market Mechanism Through a Continuous Space of Auction-

Types II: Two-sided auction mechanisms evolve in response to market shocks, Tech.

Rep. HP-2002-128, Hewlett Packard Laboratories, Bristol, UK, 2002.

Hogg, T. and Huberman, B., Dynamics of Large Autonomous Computational Sys-
tems, Tech. Rep. HP-2002-77, Hewlett Packard Laboratories, Palo Alto,
USA, 2002.

Hillis, D., Co-Evolving Parasites Improve Simulated Evolution as an Optimization

Procedure, Physica D, 42: pp. 228-234, 1990.

Santos, C., Zhu, X. and Crowder, H., A Mathematical Optimization Approach for
Resource Allocation in Large Scale Data Centers, Tech. Rep. HP-2002-64, Hewlett
Packard Laboratories, Palo Alto, USA, 2002.

241

