Programmer's Active Learning: A Broader Perspective of Choicesfor
Real-World Classification Tasksthat Matter (Position Paper)

George Forman

HP Laboratories
HPL-2012-162R1

Keyword(s):
dual active learning; machine learning classification; interactive data mining; mixed-initiative
user-interfaces; programmer productivity aids

Abstract:

This position paper opens the discussion about a future kind of active learning where—rather than just
asking a domain expert to assign class labels to items—the system directs a proficient data mining
programmer to perform a much wider variety of tasks, e.g. writing code to produce more predictive
features for distinguishing confused classes, composing regular expressions to extract key-value features
from technical text, writing a classification rule for some tight cluster of cases found by the system, or
deciding whether the current classifier is satisficing, in view of its limited rate of improvement. Since data
mining programmers are already involved in most efforts to develop classifiers for important real-world
tasks, the benefits of channeling their talents to optimize their productivity are intriguing, as well as the
potential for reducing the time-to-market for deploying an accurate classifier.

External Posting Date: August 21, 2012 [Fulltext] Approved for External Publication

Internal Posting Date: August 21, 2012 [Fulltext]
Additional Publication Information: To be presented at ALRA 2012: Active Learning in Real-World Applications, ECML/PKDD 2012 Workshop.

© Copyright 2012 Hewlett-Packard Development Company, L.P.

Programmer’s Active Learning:
A Broader Perspective of Choices for
Real-World Classification Tasks that Matter

(Position Paper)

George Forman
HP Labs, Palo Alto, CA, USA

Abstract. This position paper opens the discussion about a future kind
of active learning where—rather than just asking a domain expert to as-
sign class labels to items—the system directs a proficient data mining
programmer to perform a much wider variety of tasks, e.g. writing code
to produce more predictive features for distinguishing confused classes,
composing regular expressions to extract key-value features from tech-
nical text, writing a classification rule for some tight cluster of cases
found by the system, or deciding whether the current classifier is sat-
isficing, in view of its limited rate of improvement. Since data mining
programmers are already involved in most efforts to develop classifiers
for important real-world tasks, the benefits of channeling their talents
to optimize their productivity are intriguing, as well as the potential for
reducing the time-to-market for deploying an accurate classifier.

Keywords: dual active learning, machine learning classification, inter-
active data mining, mixed-initiative user-interfaces, programmer produc-
tivity aids

1 Background

Active learning methods iteratively choose the next sample case(s) to be labeled
by the domain expert from a stream or pool of unlabeled cases. Published papers
often show a ~10x reduction in the labeling effort to achieve a given (often
mediocre) level of classification accuracy vs. random sampling.*

Recently there have been some works that deviate from only asking to label
unlabeled cases. Dual active learning gives the system the additional option to
ask the expert to label a particular feature as being indicative of one class, if
appropriate (e.g. [17,4,11,1]). For example, after many normal active learning
rounds, the system could ask the expert to confirm or deny an increasing belief
that the phrase ‘reverses aging’ should be associated with the sSPAM class. Ad-
ditionally, there has been some work that gives the active learning method the
option to ask for re-confirmation or re-labeling of a suspiciously labeled training
case (e.g. [16,19, 18]).

! For surveys on active learning and variants, see [13-15,9,10].

2 George Forman

These systems and others share the limited theme of asking a domain expert
to look at something and select a simple multiple-choice among the classes (pos-
sibly with an option to balk). Such user-interfaces are fairly easy to build and
require little skill to operate. Perhaps most importantly for the active learning
research community, they are trivial to simulate in the many active learning
studies and occasional active learning competitions [8,3]: the testing harness
simply reveals another hidden ground-truth label from the benchmark dataset.
But when you—as a technically skilled data miner—are faced with a novel, ‘real-
world’? classification task in which you really need to maximize the classification
accuracy, there are certainly many more options available, such as writing addi-
tional code for extracting more predictive features. Such options can be far more
effective than just incrementally labeling more cases for the training set.

2 Vision and Challenge

Although many actions may be available to the motivated data mining expert
programmer, the scope of their potential action space is dauntingly large, and it
is nigh impossible to optimize one’s choice of actions. In view of this difficulty
and opportunity, we propose a new, broad-ranging idea: advanced active learn-
ing systems to help guide the technically capable data miner to better optimize
their choice of actions for maximizing classifier efficacy while minimizing time
or effort. Such systems would be greatly valuable, leading to improved classifiers
in production, shorter times to deployment, and lower development costs (con-
sidering the substantial labor cost of highly trained data mining programmers
who are already spending their time to develop such classifiers). As a short name
suggestive of this concept, we shall use Programmer’s Active Learning (PAL)—
with the intention to include systems that target technically-skilled data miners,
even where general programming skills are not actually required.

Is this asking for the moon? Yes. But we have actually gone to the moon
and even Mars. So, let us consider together at this workshop on Active Learning
in Real-world Applications what might be possible. Here are three key issues to
seed the discussion: the space of actions available, the user interface, and the
action selection mechanism.

Potential action space: First of all, we need to consider with an open mind
what might be included in the space of potential actions available to the typical,
technically capable data miner when faced with a novel classification task. We

2 The catch-all term ‘real-world’ has been taken to mean many diverse things in differ-
ent papers. Here we use it to denote a task for which one truly desires to get the best
classification accuracy possible within some reasonable budget of effort or time—as
opposed to merely trying to beat some baseline methods on a benchmark using a
fixed model and simple feature representation, as is often the case. High levels of
motivation were apparent in the $1M Netflix competition. In these settings, concerns
about saving some CPU cycles drop away, and we consider many more options that
may be available to us, sometimes even including re-framing the problem definition.

Programmer’s Active Learning 3

Label a case selected by uncertainty, QBC, etc.

/ Confirm a set of cases for one class selected by certainty

Search for a group of for one class

Correct or confirm a ici label on a training

_ Add a new class or rearrange the hierarchy of classes

Mark an offered case as ir i and delete it from the pool

Unlabeled pool [R sets of ir licable or ical cases via clusters or queries

YP!

Load more cases, esp. for more examples of a rare class

Compose an ad hoc boolean query as a new feature

[_Transform or combine existing features by a function
-

|’
Feature space |/ Craft a regular expression to extract useful text features or key-value pairs

— — \ Adjust the text parser to include meaningful terms containing punctuation

_ Select a group of feature types and/or fields for (text) feature extraction

Potential Action Space for
Programmer's Active Learnin,

— - Model space

Label a feature a /a dual active learning

[Write a positive or negati lassification rule for a tight cluster of cases

N Apply di i ity reduction or a feature weighting transformation

Try a complex or hybrid classifier model

Cross-validate on the training set

Validate on a labeled hold-out test set

Label randomly sel d cases for the hold-out test set

Correct or confirm a suspicious label in the hold-out test set

Focus attention on a weak class or the distinction between confused classes

_ Merge a pair of confused classes

\ Change the objective function or weights of test cases

Accuracy goal met

Time or effort budget exhausted

Cost-benefit rate of improvement ii

Fig. 1. Potential space of actions that a technically-capable data miner might choose
from. Some of these could be monitored for cost-benefit improvements and even sug-
gested under guidance from a future Programmer’s Active Learning system.

have listed some ideas in Figure 1, considering a conventional classification task
which might be binary, multi-class, or hierarchical. We illustrate a few examples:

1. Given a simple but powerful search box, a domain expert can often concoct a
query that quickly identifies a group of cases that belong to one class. Even
if the query results require some manual pruning, labeling this way can
quickly grow the training set compared with labeling individual uncertain
cases in a traditional active learning cycle.[7] Likewise, a PAL system could
occasionally choose to employ certainty sampling for a particular small class
in order to more quickly increase its training examples.

2. Notwithstanding the caveats of cross-validation under active learning sam-
pling[2], by reviewing supposed errors from cross-validation, the user may be
able to correct mistakes in the given labels. Corrections both purify the train-
ing data to simplify the task of the learning algorithm, as well as improve
the apparent accuracy measured in the evaluation. A PAL system may focus
on a class with apparently poor precision and ask the user whether some of
the recalled ‘false positive’ cases are actually just mislabeled. Likewise for
‘false negatives.’

3. Once an adequate training set is established, it may help to focus the domain
expert on a weakly recognized class—showing either the labeled training ex-

George Forman

amples thus far or the matching and near-matching cases from the pool—or
else to focus their attention on a pair of classes that are often confused
in cross-validation—showing the recognized and confused cases separately.
With this focus on a subproblem, the domain expert may be able to come
up with insightful ideas for additional predictive features. In a numerical do-
main, the user might enter some spreadsheet-like formulas to transform or
combine existing features. In an image or video domain, a programmer-user
might write some image processing code to extract a variety of features. In
a text domain, the user may enter an ad hoc full-text query or a regular
expression to extract new features from particular fields of the cases, e.g.
in a domain of command-line inputs, it may be useful to provide a regular
expression \s--7(\w+) (=\S+) 7 for extracting key-value arguments. Some-
times regular expressions or simple rewrite-rules can be authored to better
normalize an input field treated as a nominal string value, such as to cor-
rect misspellings or fold needless variations in encoding. In technical text,
one can sometimes adjust the set of characters that are considered word
characters in order to capture additional meaningful terms; for example, on
a past project involving technical support documents, we permitted some
punctuation to be treated as word characters in order to expand the predic-
tive terms extracted, such as ‘MPE/XL’, ‘FDDI/9000’, and ‘HP /UX-11.1".[5]
The user may select different feature extractors for different combinations of
text fields, e.g. bag-of-words-and-phrases for title, abstract, and body individ-
ually as well as concatenated, but do something else for author, affiliation,
classification, and references. Or perhaps, seeing the confused cases and hav-
ing little hope that the system could ever distinguish them reliably, one might
just merge the classes, changing the objective for future PAL iterations.

. One could try various machine learning models. Although this model selec-
tion task might be automated where it is just a matter of selecting among
a closed list of models (e.g. C4.5, SVM, or Naive Bayes), sometimes on a
hunch we data miners will concoct a complicated meta-model of ensembles,
bagging, boosting, clustered features, feature selection, feature weighting,
and dimension transformation. This requires a level of creativity and insight
that only a skilled data miner can provide. However, a PAL system could
support us with automated lesion studies, showing us which parts of the
model matter most.

. It can sometimes be useful to see various clusters of the pool cases. Upon
seeing a pure cluster, a user might label its cases as training examples for
one class, or form an ongoing rule to assign future matching cases to that
class, hybridizing the model with rules. Or some clusters might be marked as
not applicable for production and removed from consideration in the pool.

. Given a labeled hold-out sample, the PAL system could periodically perform
out-of-pool testing to determine whether the current classifier is satisficing
for its intended use, especially if given an accuracy threshold. It may also
choose to spend some user time building up or vetting the labeled hold-out
sample.

Programmer’s Active Learning 5

Although we may ponder a wide space of actions, early PAL systems will
support just the more basic actions that they can easily handle. Some actions
could be available within the user-interface, even though they fall beyond the
scope of the PAL system to estimate their value, such as choosing to enable
the use of hidden features that would involve costs for measurements [12] or re-
working the subroutine that is used to feed the pool of unlabeled cases [6]. More
generally, at any time one may interactively re-define the problem substantially:
adding or deleting classes, or changing their target concepts.[7] Judging the
suitability of recommending such objective-changing actions would probably be
considered beyond the scope of any realistic PAL algorithm...at least in the near
term.

User-interface generality: Bespoke systems for active learning display a se-
lected case to the domain expert and solicit the correct class label via a multiple-
choice widget of some kind. Most of the additional actions proposed above can
be supported by simple user-interface widgets. For example, text input boxes can
accept full-text queries, regular expressions, or snippets of Perl or Python code
to be eval()’d as features or rules; the GUI may need to provide feedback on the
correctness and efficacy of the proposed snippets, which is easily done. Spread-
sheets and SQL clients offer more sophisticated GUIs for composing and checking
formulas and queries. In the most general case requiring arbitrary programming,
the active learning control component may need to operate in a separate pro-
cess from the user’s edit-compile-execute loop, which repeatedly launches new
processes with augmented code. One could imagine a plug-in for this within the
Eclipse programming IDE that leverages Java’s ability to dynamically load new
code within a running process, so that large datasets and context need not be
re-loaded. Thus, even incremental programming enhancements to the learning
system could be accommodated within a running PAL system.

Cost-benefit estimation: Next, we need to consider how an algorithm might
choose among the many potential actions. Just as multi-arm bandit algorithms
need to measure and predict the reward for each separate action, so too for
a PAL system. Despite the difficulties with cross-validation in real-world set-
tings [2], some form of automated evaluation is needed to estimate the classi-
fication accuracy benefit of different potential actions, possibly via automated
randomization studies or lesion studies on recent labels or features contributed
by the programmer-user [6]. Note that to make a choice we do not need to accu-
rately estimate the absolute expected benefit of each choice, but only to be often
correct about their relative expected benefits (or the argmax). In some cases,
there may be no way to predict the benefit that the user can provide by some
actions, e.g. scrutinizing a pair of confused classes to propose new distinguishing
features; but in some of these cases, at least an upper bound on the benefit can
be estimated to better support the user in making informed choices.

Unlike traditional multi-arm situations, the cost for each action varies sub-
stantially and is unknown; it is usually much faster to label some cases than to
develop a new regular expression feature. Thus, the PAL system will need to

6 George Forman

track the time spent (or some other measure of effort) for each action taken by
the programmer-user. Given approximate measurements of the costs and bene-
fits over many trials, a PAL system could help guide the data miner, say, away
from identifying additional stopwords or removing distracting text blocks, and
toward other actions that historically have shown the best return on investment.
Some of these learned parameters could carry across to future tasks: life-long
meta-learning.

3 Conclusion

Just as traditional active learning can make domain experts many times more
productive at labeling, the availability of a growing, labeled data set and a classi-
fication accuracy objective could be used in a semi-automated way to bring great
improvements in programmer productivity for data mining experts. Imagine a
future Eclipse plug-in environment that helps the programmer focus on the most
useful tasks and features to add, analogous to the Mylyn task-focusing plug-in.
There are many details to figure out and alternative avenues to explore, which
provides excellent opportunities for many Ph.D. theses. What is here envisioned
is quite broadening and ideally will lead to a variety of different research projects
bringing worthwhile contributions.

One practical concern for publishing research in this area is whether review-
ers, who are used to getting simulated active learning studies on several baseline
methods and datasets, will grow to accept submissions in this area, since it
is much more difficult to judge the true benefit of such a complex, interactive
system. User-experience studies suffer comparatively weak persuasiveness and
scientific reproducibility. Such work will need to clearly articulate the potential
high value of success in this area and demonstrate substantial benefits. Incremen-
tal gains can eventually lead to ‘real-world’ success—achievements that matter
to people faced with these tasks.

References

1. S. Arora and E. Nyberg. Assessing benefit from feature feedback in active learning
for text classification. In Proceedings of the 15th Conference on Computational
Natural Language Learning, CoNLL 11, pages 106114, 2011.

2. J. Attenberg and F. Provost. Inactive learning? Difficulties employing active learn-
ing in practice. SIGKDD Ezplor. Newsl., 12:36-41, March 2011.

3. L. Candillier. Nomao challenge. In ALRA: Active Learning in Real-world Appli-
cations, ECML-PKDD ’12 Workshop, 2012. http://us.nomao.com/labs/challenge.

4. G. Druck, B. Settles, and A. McCallum. Active learning by labeling features. In
Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing: Volume 1, EMNLP ’09, pages 81-90, 2009.

5. G. Forman. Computational Methods of Feature Selection, chapter Feature Selection
for Text Classification, pages 257-276. Chapman and Hall/CRC Press, 2007.

6. G. Forman, E. Kirshenbaum, and S. Rajaram. A novel traffic analysis for identify-
ing search fields in the long tail of web sites. In Proc. 19th Int’l World Wide Web
Conf., WWW’10, pages 361-370, 2010.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Programmer’s Active Learning 7

G. Forman, E. Kirshenbaum, and J. Suermondt. Pragmatic text mining: minimiz-
ing human effort to quantify many issues in call logs. In Proc. 12th ACM SIGKDD
conf. on Knowledge Discovery and Data mining, KDD’06, pages 852-861, 2006.

I. Guyon, G. Cawley, G. Dror, and V. Lemaire. Results of the active learning
challenge. Journal of Machine Learning Research, 16:19-45, 2011. AISTATS 2010
Workshop on Active Learning and Experimental Design.

R. Hu. Active learning for text classification. PhD thesis, Dublin Institute of
Technology, 2011.

A. Krishnakumar. Active learning literature survey, 2007.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.4937.

H. Raghavan, O. Madani, and R. Jones. Active learning with feedback on features
and instances. J. Mach. Learn. Res., 7:1655-1686, Dec. 2006.

M. Saar-Tsechansky, P. Melville, and F. Provost. Active feature-value acquisition.
Manage. Sci., 55:664-684, April 2009.

B. Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin—-Madison, 2009.

B. Settles. From theories to queries: Active learning in practice. Journal of Machine
Learning Research, 16:1-18, 2011. AISTATS 2010 Workshop on Active Learning
and Experimental Design.

B. Settles. Active Learning, volume 6 of Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan and Claypool, June 2012.

V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label? Improving data
quality and data mining using multiple, noisy labelers. In Proc. 14th ACM Int’l
Conf. on Knowledge Discovery and Data mining, KDD 08, pages 614—622, 2008.
V. Sindhwani, P. Melville, and R. D. Lawrence. Uncertainty sampling and trans-
ductive experimental design for active dual supervision. In Proc. 26th Int’l Conf.
on Machine Learning, ICML’09, pages 953-960, 2009.

L. Zhao, G. Sukthankar, and R. Sukthankar. Incremental relabeling for active
learning with noisy crowdsourced annotations. In Proceedings of the 3rd IEEE
International Conference on Social Computing, 2011.

Y. Zheng, S. Scott, and K. Deng. Active learning from multiple noisy labelers with
varied costs. In Proceedings of the 2010 IEEE International Conference on Data
Mining, ICDM ’10, pages 639-648, 2010.

