Killing the Chaos Monkey ... and Putting It ToWork
Marc Stiegler

HP Laboratories
HPL-2012-213

Abstract:

The Chaos Monkey test harness, which randomly kills nodes in a cluster, achieved notoriety after the
Amazon cloud crashed on April 21, 2011 [8]. Many Amazon services experienced debilitating failures.
But Netflix, having tested each software release with the Monkey before deployment, continued to
operate effectively with mild degradation. Here we look at how the algorithms in the Clusterken
framework — Ken protocol checkpointing, promise pipelining, domain redirection -- work together to
render the Monkey obsolete. We then see how Clusterken can employ a tamed version of the Monkey to
protect availability, and even facilitate load balancing.

External Posting Date: October 6, 2012 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2012 [Fulltext]

© Copyright 2012 Hewlett-Packard Development Company, L.P.



Killing the Chaos Monkey ... and Putting It To Work

Marc Stiegler
HP Labs

Abstract

The Chaos Monkey test harness, which randomly kills
nodes in a cluster, achieved notoriety after the Amazon
cloud crashed on April 21, 2011 [8]. Many Amazon
services experienced debilitating failures. But Netflix,
having tested each software release with the Monkey be-
fore deployment, continued to operate effectively with
mild degradation. Here we look at how the algorithms
in the Clusterken framework — Ken protocol checkpoint-
ing, promise pipelining, domain redirection — work to-
gether to render the Monkey obsolete. We then see how
Clusterken can employ a tamed version of the Monkey
to protect availability, and even facilitate load balancing.

1 Introduction

Distributed software applications, including both cluster-
oriented applications and applications that span multiple
administrative domains, bring a host of new threats to
application reliability. A sample of simple problem sce-
narios that arise when node 1 sends a message to node 2
include:

1. If node 2 crashes before the message is processed,
the message may be lost.

2. Ifnode 1 crashes before the acknowledgement is re-
ceived, the restarted node 1 may resend the mes-
sage, causing node 2 to process the message twice.

3. If node 2 must ask node 1 for additional informa-
tion before answering node 1’s message, either both
nodes may deadlock (if node 1 has blocked, wait-
ing for node 2’s answer) or node 1 may experience
a data race and corrupt the data (if node 1 spawns
another thread for the incoming message).

Such problems are nominally the easy ones to solve in
a distributed system. Yet hundreds of services, includ-
ing ones with significant programming resources such as

Reddit and FourSquare, went dark during the Amazon
cloud failure. Clearly, though these problems may be
solved on paper, they have not been solved in practice.

2 Testing as a Solution

A testing facility such as the Chaos Monkey [4], which
randomly kills nodes in a cluster, is a good first step. It
imposes discipline, forcing the developers to deal with
the risks early rather than late. But manually tuning each
individual application component to survive the Monkey
is tedious, error-prone (the Monkey may not catch all
the risks), and expensive — sufficiently expensive that the
temptation to forgo the testing, particularly in the face
of a hard deadline, is often overpowering. Can we not
build a solution to the Monkey into the programming in-
frastructure itself? If we could, then applications would
be reliable by construction in the face of these failures.
Every version of the application from the first prototype
would be robust. An infrastructure solution would render
the Monkey obsolete.

3 Exactly Once Message Processing as a
Solution: Ken Protocol

A large piece of the problem can be solved using the
Ken protocol, which guarantees exactly once message
processing. The basic Ken algorithm has the following
highlights [9]:

1. Before sending a message, the system checkpoints
the node state and the new message together. The
new message includes a unique id.

2. The message, including the unique id, is sent re-
peatedly until an acknowledgement (possibly con-
taining a reply) is returned.



3. The recipient, upon receiving a message, checks the
id. If this is a new message, the message is pro-
cessed. Upon computing the answer, the system
checkpoints the node state and the answer. Only
after checkpointing is the message acknowledged
(and the answer returned).

4. If the recipient receives a duplicate of the message
(based on the unique id), it immediately returns the
previously-computed answer.

All current implementations of Ken combine the pro-
tocol with transparent checkpointing and event driven,
turn-based execution. A turn begins when a message
is taken from the incoming event queue; the turn ends
when the message has been processed to completion. All
messages generated during the turn are recorded imme-
diately, but are not released for transmission until after
the turn has finished and the checkpoint for the turn has
been taken.

Ken checkpoints are uncoordinated; no checkpoint
is useless; each checkpoint advances the recovery
line [6]. Recovering a node merely requires re-launching
the checkpoint. When combined with programmer-
transparent checkpointing, Ken meets some of the re-
quirements that have been identified for future peta-scale
systems [7].

At the application level, this algorithm guarantees that
no crash-restart failure or sequence of crash-restart fail-
ures can prevent the application from proceeding from
valid state to valid state. Programmers may write appli-
cations as if node failures and network partitions could
not occur.

Consider the following example, a Java method built
on a Ken-protocol framework, taken from a cluster-
based, scalable publication/subscription system:

public Object receive(String event) {
lastEvent = event;
topic.addEvent (event, sender);
return ok;

The topic object to which this receive method forwards
the incoming event is on a remote node. Without Ken,
receiver and topic would be susceptible to all the risks
from network partitions and node crashes outlined ear-
lier. The error handling code to ensure correct behavior
of this three line method could easily be an order of mag-
nitude greater than the code to do the specified job. But
with Ken, the method becomes as simple as if it were
part of a sequential program with the topic co-located
with the receiver.

Ken-based reliability composes by default: if two in-
dependent systems are built using Ken, the meta system

resulting from combining those two systems inherently
has the same reliability properties [15]. This offers favor-
able adoption dynamics: given a few Ken-based systems,
developers of systems that might want to integrate with
those systems have an incentive to use Ken as well. This
contrasts with global checkpointing, for example: two
subsystems that use global checkpointing within them-
selves may still lack global reliability when brought into
contact with one another.

The Ken protocol without any auxilliary features di-
rectly eliminates the risk from the first two example fail-
ure scenarios described earlier: messages cannot be lost
or duplicated.

The simplest implementation of this algorithm is
CKen, a distributed computing framework for C pro-
grammers. CKen has been tested with a simple Chaos
Monkey, and it does indeed proceed to create valid out-
put regardless of crashes.

CKen itself has been integrated with Mace to create
MaceKen, a system that generates distributed applica-
tions using a domain specific language. Microbench-
marking indicates that Ken checkpoints can run as fast
as ACID transactions in conventional databases.

To deal with the third example failure described ear-
lier, CKen shares no state across threads (each appli-
cation component resides in its own process), and uses
send-and-forget messaging to avoid deadlock: to get a
reply back, a component includes its own process as an
argument in the message it sends.

4 Usable NonBlocking
Promise Pipelining

Messaging:

While programming with a send-and-forget messaging
paradigm is possible, it can be difficult. A process can
include itself in a message as the argument specifying
where to send a result, but by the time the result comes
in as a new message, the context for processing the re-
sult has been lost. Maintaining the context manually
can yield code that is tedious to write, hard to read, and
difficult to maintain. Early actors languages used this
approach; none survive today. The most direct descen-
dant of those languages to achieve success is Erlang,
which has been used to build very reliable software sys-
tems [3]. However, one key to its success is the addition
of a block-and-wait-for-answer mechanism, reintroduc-
ing the threat of deadlock. Indeed, books that teach Er-
lang often introduce block-for-answer immediately after
introducing the safer send-and-forget semantics, and use
it heavily in later examples [2]. In doing so, they ac-
knowledge that send-and-forget is so cumbersome, it is
better to risk introducing deadlock bugs in deployed sys-
tems during maintenance than to require programmers to



consistently use this approach.

The Waterken Java framework [13, 5] for develop-
ing distributed applications not only implements the Ken
protocol, it also implements promise pipelining [12, 10]
for messaging. Briefly, when a message is sent, a
promise for the eventual answer is immediately created
on the sending side. Callbacks can be attached to the
promise that will fire when the message recipient fulfills
the promise. The protocol is nonblocking, hence avoids
the risk of deadlock. And since the callback can be con-
structed as a closure (in Java, an inner class) that captures
the state of the computation at the time of transmission of
the message, it inherently has the context needed to uti-
lize the reply when the reply eventually arrives. Promise
callbacks can often be read and understood with little
more difficulty than inline wait-for-answer code while
still being safe.

5 Surviving Permanent Hardware Fail-
ures: the Redirectory

A Ken system cannot survive corruption of the stable
store containing its checkpoints. Other mechanisms,
such as hardware with RAID arrays, or software with
replication and other more sophisticated algorithms, may
be used to protect the checkpoints. But these mecha-
nisms will run behind the scenes; the application pro-
grammer does not need to write special code to interface
to them.

Other permanent hardware failures must be tolerated
by the framework itself to fully survive the Chaos Mon-
key. If the hardware of one node fails, the checkpoints
need to be launched on another node, possibly using a
different IP address or even a different domain name.
Hence Waterken supports a redirectory. When a Wa-
terken server launches, it registers itself and its loca-
tion with the redirectory (or redirectories, to avoid a cen-
tral point of failure). The redirectory manipulates DNS
to enable other servers to find the re-launched server
whereever it may reside.

6 Surviving Failures Automatically: the
Chaos Monkey

This combination of Ken protocol, promise pipelining,
and redirecting still does not quite tolerate the full power
of the Chaos Monkey. If a node goes down, the restarts of
the checkpoints from that node must be automatic. Nu-
merous algorithms exist for determining when a check-
point should be relaunched: watching for unresponsive
nodes, or inserting spies to achieve perfect failure detec-
tion [1] are samples. A simple alternative strategy with
none of these features, that instead exploits the reliability

features of Waterken, is now being investigated for Clus-
terken [14]. Clusterken is a layered framework built on
top of Waterken for writing cluster-oriented applications.
Clusterken has been used to demonstrate the advantages
of relieving the programmer of the burden of program-
ming error handling code for node and network failures.
In comparing a Clusterken implementation of a publica-
tion/subscription system spec, to an implementation us-
ing Hadoop, the Clusterken version required only 1/4th
as much code. Even more interesting from a depend-
ability perspective, the Hadoop version would sometimes
duplicate events when Hadoop restarted tasks; no such
corruption was possible in the Clusterken version.

We are pursuing a Chaos-Monkey-derived strategy in
Clusterken for automatic recovery that survives perma-
nent hardware failure. Rather than attempting to detect
a crashed node or a nonresponsive server, in Clusterken
a tamed Chaos Monkey will, at regular intervals, move a
server’s checkpoint and relaunch the checkpoint on a dif-
ferent node. The original server, if it is still running, will
crash when it tries to update its checkpoint and discovers
that the checkpoint has ceased to exist (though the stable
store may replicate checkpoint data for reliability, only
a single server can run a checkpoint at a single time).
Since the old server does not release its answer before
it crashes, the sender of the last message will not get an
answer; rather, it will detect the loss of its comm session,
re-find the server’s new instantiation on the new node via
the redirectory, and then resend the message.

This algorithm requires neither leases nor synchro-
nized clocks. It does not even require contacting the
server: the server crashes upon discovery that its check-
point is gone. Types of confusion such as exchanging
messages with the wrong server are not possible: the
checkpoints are associated with public/private key pairs,
which are used to ensure one is connected to the correct
server while establishing the comm session.

We currently estimate the time to move the check-
point, relaunch, redirect, and reconstruct a comm session
to be about 3 seconds. If one relaunched all the check-
points over every ten minute period of computation, this
would mean about 0.5% of the servers in a cluster would
be out of action at any given moment. A further enhance-
ment to the Monkey, to relaunch the checkpoint on an
under-utilized node rather than a node selected at ran-
dom, would extend its usefulness to load-balancing.

7 Surviving Programmers

Incorporating a tame Monkey would also continue to
serve the original Chaos Monkey purpose of enforcing
discipline. A programmer can breach the reliability of a
Clusterken system by affecting the outside world via out-
of-band channels. For example, if the application pro-



grammer appends directly to a java.io.File object, rather
than using the Clusterken checkpointing system or the
integrated Clusterken FarFile API for storing data, the
append operation could create a duplicate entry. The
continuing presence of a Monkey could detect such vio-
lations. Alternatively, the application development team
could enforce this discipline by employing the Joe-E ver-
ifier [11] in conjunction with Clusterken. Joe-E was de-
veloped to enforce object-capability security discipline.
All violations of the assumptions underpinning Clus-
terken reliability also violate object-capability security,
since they require the use of channels that were not ex-
plicitly authorized. Hence any application that passes the
verifier is guaranteed to follow the rules for reliability.
Waterken and Clusterken were designed to cleanly sup-
port Joe-E verification. Indeed, Waterken itself is Joe-E
verified.

8 Conclusion

When the tame Monkey implementing round-robin kill-
move-relaunch is incorporated in Clusterken, the Chaos
Monkey will be dead. However, it will have been re-
born as a mechanism to protect availability. Long live
the Chaos Monkey.

While building the Chaos Monkey, Netflix also wrote
the maxim, “The best way to avoid failure is to fail con-
stantly”. Using a modified Chaos Monkey to continu-
ally crash servers by periodically moving each check-
point’s execution from one node to another takes this
philosophy to a new level of intensity. When coupled
with Ken protocol, promise pipelining, and redirectory
services, it may enable the creation of highly reliable
cluster-oriented programs that cost no more to build or
maintain than the applications of questionable reliability
found ubiquitously on the web today.

9 Acknowledgments

We would like to thank Alan Karp for his insights during
a review of this paper.

10 Availability

CKen and MaceKen are being open-sourced under the
BSD license. Further information on CKen can be found
at

http://ai.eecs.umich.edu/"tpkelly/Ken/

Further information on MaceKen can be found at

http://www.macesystems.org/maceken/

Waterken is open-sourced under the MIT-X license. It
is available at

http://waterken.org

Clusterken is being open-sourced under the LGPL li-
cense. Direct programmable access to a tiny Clusterken
cluster can be acquired at

http://www.skyhunter.com/pubshare

References

[1] AGUILERA, M. K., AND WALFISH, M. No time for asynchrony.
In Usenix Workshop on Hot Topics in Operating Systems (2009).

[2] ARMSTRONG, J. Programming Erlang. Pragmatic Programmers,
2007. ISBN-10:1-9343560-0-X.

[3] ARMSTRONG, J. What’s all this fuss about erlang? Pragmatic
Bookshelf (2007).

[4] CiaNcuTTI, J. 5 lessons we’ve learned using aws.
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-
using-aws.html.

[5] CLOSE, T. Waterken server. http://waterken.sourceforge.net/.

[6] ELNOZAHY, E. M., ALvVIsI, L., MIN WANG, Y., AND JOHN-
SON, D. B. A survey of rollback-recovery protocols in message-
passing systems. ACM Computing Surveys (September 2002).

[7]1 ELNOzAHY, E. N., AND PLANK, J. S. Checkpointing for
peta-scale systems: A look into the future of practical rollback-
recovery. IEEE Transactions on Dependable and Secure Com-
puting (June 2004).

[8] GILBERTSON, S. Lessons from a cloud failure: It’s not amazon,
it’s you. http://www.webmonkey.com/2011/04/lessons-from-a-
cloud-failure-its-not-amazon-its-you/.

[9] KELLY, T., KARP, A. H., STIEGLER, M., CLOSE, T., AND
CHO, H. K. Output-valid rollback-recovery. Tech. Rep. 155,
HP Labs, 2010.

[10] Liskov, B., AND SHRIRA, L. Promises: Linguistic support for
efficient asynchronous procedure calls in distributed systems. In
PLDI (1988).

[11] METTLER, A., WAGNER, D., AND CLOSE, T. Joe-e: A security-
oriented subset of java. In Network and Distributed System Secu-
rity Symposium (2010).

[12] MILLER, M. S. Robust Composition: Towards A Unified Ap-
proach to Access Control and Concurrency Control. PhD thesis,
Johns Hopkins, 2006.

[13] STIEGLER, M. A reliable and secure application spanning mul-
tiple administrative domains. Tech. Rep. 21, HP Labs, 2010.

[14] STIEGLER, M., L1, J., KAMBATLA, K., AND KARP, A. Clus-
terken: A reliable object-based messaging framework to support
data center processing. In Open Cirrus Summit (2011). Tech
report version at http://www.hpl.hp.com/techreports/2011/HPL-
2011-44.html.

[15] Yoo, S., KILLIAN, C., KELLY, T., CHO, H. K., AND PLITE,
S. Composable reliability for asynchronous systems. In USENIX
Annual Technology Conference (2012).



