

Feature Engineering for a Gene
Regulation Prediction Task

George Forman
Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto
HPL-2002-318
November 11th , 2002*

machine
learning,
hierarchical
attributes,
bioinformatics,
KDD Cup
Competition

This paper describes an approach that won honorable mention for
the gene regulation prediction task of the 2002 KDD Cup
competition [1]. Our methodology used extensive cross-validation
to direct the search for an appropriate problem representation and
the selection of an ‘off-the-shelf’ induction algorithm. A prominent
trait of the dataset is the presence of three hierarchical attributes,
for each of which we generated a novel predictive feature: the
percentage of positives hierarchically aggregated at the node
specified by the instance.

* Internal Accession Date Only Approved for External Publication
Published in KDD Explorations, 4(2), 2003
 Copyright Hewlett-Packard Company 2003

Feature Engineering for a Gene Regulation Prediction Task
George Forman

HP Labs, Palo Alto, CA

ABSTRACT
This paper describes an approach that won honorable mention for
the gene regulation prediction task of the 2002 KDD Cup
competition [1]. Our methodology used extensive cross-
validation to direct the search for an appropriate problem
representation and the selection of an ‘off-the-shelf’ induction
algorithm. A prominent trait of the dataset is the presence of
three hierarchical attributes, for each of which we generated a
novel predictive feature: the percentage of positives
hierarchically aggregated at the node specified by the instance.
Keywords
machine learning, hierarchical attributes, bioinformatics.

1. INTRODUCTION
In contrast with most of the machine learning benchmark
datasets, much of the challenge of this year’s KDD Cup
prediction contest was in determining how best to represent the
available data—as is often the case with company-internal
prediction tasks we face in the Data Mining group at HP Labs.

A companion paper in this issue [1] describes the competition,
the available data, and the competitors’ results. Due to space
limitations, we must assume the reader is familiar with the task.
The purpose of this paper is to explain one of the approaches that
achieved honorable mention. The take-away messages beyond
the competition itself include the methodology employed and an
approach for representing nominal attributes having a
hierarchical relationship among the values.

Section 2 describes the methodology and philosophy guiding the
work. Section 3 presents our feature engineering. Section 4 lists
the final choices we made. Section 5 summarizes.

2. METHODOLOGY & PHILOSOPHY
Since the contest score is the sum of the performance on the
narrow and broad prediction tasks, we optimized for each
independently.

In order to facilitate an efficient search for the best prediction
model, we leveraged a Perl software framework we had
previously developed. It enables us to focus our effort on quickly
prototyping a variety of feature engineering options. It provides
an automated process to perform feature selection and induction
performance testing using stratified cross-validation. Rather than
measuring accuracy, we extended it to evaluate the same
performance measure used to judge the contest: area under the
ROC curve. Using this framework and four 600-800 MHz CPUs,
we were able to quickly measure the performance for many
configurations. Induction algorithms that we trialed included the
WEKA open-source implementations of Naïve Bayes, linear
kernel Support Vector Machines (SVM), and AdaBoosted
decision stumps [5]. The feature selection methods trialed were
Information Gain, Bi-Normal Separation [2] and variants.
Because the framework provides for feature selection (within
each cross-validation fold), we need not trouble ourselves with

manually eliminating useless features, but only with designing
features that may be predictive, as discussed in the next section.

To consider the cross-product of the entire design space is not
feasible, however, automated testing of portions of the space
gives much more visibility of the search terrain to the person
guiding the exploration. Cross-validation helps mitigate, but
cannot eliminate, the possibility of overfitting the data.
Likewise, although SVMs are popularly touted for their
theoretical guarantees against overfitting [4], their wide margin
only exists in a feature space that is arbitrarily malleable when
reformulating the problem representation [6]. Nonetheless, we
attempted to optimize average performance on stratified cross-
validation samples of the available training data.

The guidance drawn from cross-validation testing is constrained
somewhat by large variance. For example, in the narrow task
with just 38 positive examples, a stratified 10-fold split yields
just 3.8 positives on average in the testing fold, leading to wide
variance in the performance estimation. To compensate, we
perform a large number of randomized trials (e.g. 20-100 as in
bootstrapping), rather than 10 as in traditional cross-validation.

We simplified management of the voluminous and distributed
performance data by appending all results to a single database
table, columns capturing all parameters of the test conditions.
We could easily determine leading configurations with our Perl
tools or with interactive pivot charts in Excel.

3. FEATURE ENGINEERING
Next we discuss our feature engineering from the three
hierarchical attributes, the interaction graph, the textual
abstracts, and the gene names themselves.

Hierarchical Attributes: Given a nominal attribute whose
values can be hierarchically aggregated with a known tree, a
natural representation is to generate a binary feature for each
node in the tree—set to ‘1’ only on the path to the current value.
(We treat the many missing values as a separate top-level node.)
We generated 494 such features, and many were predictive, but
we were dissatisfied with how dispersed the information is in the
large hierarchies. Only a few nodes contained positives at all.

To remedy this, we engineered additional hierarchy prevalence
features for each hierarchical attribute. Optional step 1: We
pruned away nodes for which there are no instances in the
contest’s testing set, which we refer to as transductive pruning.
It is in the spirit of transductive learning [4], which focuses the
modeling task on the specific examples to be labeled and does
not use information from the answer key. This eliminated 200+
nodes. Step 2: We generated two percentage-valued features:
given the attribute value, we return the percentage prevalence of
positives (vs positives & negatives) found in the lowest and
highest node in the path of the pruned tree. For example, a gene
with function attribute=‘mRNA synthesis’ would have the value
1/41 for the low attribute, and 2/80 for the high attribute, since
there are just two positives out of 80 genes at or under the top-

level node ‘Transcription’. A value of 0% indicates that no
positives ever had the current attribute value. Without this
feature, it would be much harder (more data) for an induction
algorithm to learn to ‘or’ together the 230 mutually exclusive
‘function’ nodes that contain no positive examples.

Interaction Graph: The undirected interaction graph lists
associated genes. We generated a simple integer feature that
indicates for a given instance, the number of genes it interacts
with. This was a strong predictor for the broad task.

A natural feature engineering approach for this sort of interaction
information is to duplicate the feature set, copying the features
for the gene(s) it interacts with. Since the motivation boils down
to a hunch that the prediction of the association helps predict the
instance (as in relational learning), and since in this contest the
set of ultimate test instances is small and fixed, it seemed more
straightforward to generate a single additional feature that
modeled this assumption directly. So, we generated just two
additional integer features indicating the number of narrow and
broad positives the gene interacts with (determined only from
those known positive in the current training split). This features
proved less valuable, yet somewhat predictive.

Textual Abstracts: For each gene, we concatenated all pertinent
abstracts as determined by gene-abstracts.txt, and generated a
binary feature for each unique (lowercased, alphanumeric) word.
Having to load/process the 18 MB of abstracts increased the run
time from 7 seconds to 50 seconds, and, unfortunately, tended to
degrade prediction accuracy overall.

Gene Names: We supposed that the naming of the genes, e.g.
YMR228W, was generated by a non-random process that may
have some bearing on the prediction tasks at hand. We generated
a numeric feature for the number, and binary features for various
sub-sequences of characters. As it turns out, for the narrow task,
the second and third characters together are (negatively)
predictive: ‘nl’ is among the strongest predictors (appearing in 0
positives and 158 negatives), followed by ‘gr’ and ‘pl’. These
were not very strong predictors overall, so we do not believe they
leaked information from the answer key illegitimately.

4. FINAL CHOICES
In the end, our best average predictor for the narrow task was
Naïve Bayes on just twelve features, including the percent
positives at the top and bottom of the three unpruned hierarchies,
the three interaction features (made binary), and gene name
substrings ‘nl’ and ‘n’. Its estimated performance when training
on 90% of the available training data was 0.67 ROC area, and
when trained on 100% of the data, 0.6731 on the contest test set.

Our best average predictor for the broad task was Naïve Bayes on
48 features, including the top and bottom hierarchical prevalence
features for the three transductively pruned hierarchies, the three
interaction features (but not made binary) plus binary indicators
for several of the hierarchy nodes, e.g. localization=transport
vesicles / golgi ER transport vesicles, function=classification not
yet clear cut, function=cell rescue defense and virulence, and
protein class=protein phosphatases / catalytic subunits / PP2C
family. The latter is a positive predictor with two positives and
two negatives, but most features were negative predictors. Its
estimated performance on 90% of the training data was 0.59, and
0.6295 in the contest.

While we expect some variance, it is difficult to estimate how
much, given that we can generate only highly correlated samples.
By plotting the learning curve as we vary the percentage of
training data, and extrapolating the performance for 100% of the
training data, we estimated an additional ~+.007 ROC area for
both tasks in the final contest. After seeing the low ROC scores,
we wished to validate the competition following [3]. A
randomized distribution analysis of all the contestants’ scores
validated that they are significantly better than a random
collection of simple classifiers.

5. CONCLUSIONS & TAKE AWAYS
No amount of clever induction or feature selection can make up
for a lack of predictive features in the input. Hence, feature
engineering is a key step for difficult prediction tasks. We
estimate via a cross-validation lesion study that creative feature
engineering was responsible for adding +11% to the performance
(+0.08 and +0.06 ROC area for narrow and broad tasks).

Likewise, extensive use of automated cross-validation to guide
the search for an effective model added immeasurable benefit
over selecting a single model ‘blind,’ which is the only method
that can safely be said to avoid overfitting. Even structural risk
minimization techniques such as SVM [4] cannot safeguard
against ‘overfitting’ the features to the dataset [6]. Nonetheless,
experience shows that feature engineering is generally a
worthwhile risk, and cross-validation helps mitigate the risk.

Perl again proved an excellent language for quick prototyping—
minimizing human programming effort rather than CPU time.
Although C is often chosen for being faster, the overall running
time was very acceptable at under a minute per data point on an
800MHz HP Kayak XU running Linux—despite the
inefficiencies on each run of re-parsing 19+ MB of input data, &
launching a separate Java process running the WEKA machine
learning algorithms, communicating via generating/parsing files.

6. ACKNOWLEDGMENTS
We wish to thank Bin Zhang, Jaap Suermondt, and WEKA.

7. REFERENCES
[1] Craven, Mark. The 2002 KDD Cup Competition Results

for Gene Regulation Prediction. KDD Explorations, 2002.

[2] Forman, G. An Extensive Empirical Study of Feature
Selection Metrics for Text Classification. J. of Machine
Learning Research, forthcoming in 2002.

[3] Forman, G. A Method for Discovering the Insignificance of
One's Best Classifier and the Unlearnability of a
Classification Task. DMLL Workshop, ICML, 2002.

[4] Vapnik, V. The Nature of Statistical Learning Theory, 1995.

[5] Weka machine learning project, www.cs.waikato.ac.nz/ml

[6] Zhang, B. Is the Maximal Margin Hyperplane Special in a
Feature Space? Hewlett-Packard Labs Tech Report HPL-
2001-89, 2001.

About the author:
George Forman is a research scientist at HP Labs in the Data
Mining group. He received his CS Ph.D. from the University of
Washington. http://www.hpl.hp.com/personal/George_Forman

