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ABSTRACT 
This paper describes an approach that won honorable mention for 
the gene regulation prediction task of the 2002 KDD Cup 
competition [1].  Our methodology used extensive cross-
validation to direct the search for an appropriate problem 
representation and the selection of an ‘off-the-shelf’ induction 
algorithm.  A prominent trait of the dataset is the presence of 
three hierarchical attributes, for each of which we generated a 
novel predictive feature: the percentage of positives 
hierarchically aggregated at the node specified by the instance. 
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1. INTRODUCTION 
In contrast with most of the machine learning benchmark 
datasets, much of the challenge of this year’s KDD Cup 
prediction contest was in determining how best to represent the 
available data—as is often the case with company-internal 
prediction tasks we face in the Data Mining group at HP Labs. 

A companion paper in this issue [1] describes the competition, 
the available data, and the competitors’ results. Due to space 
limitations, we must assume the reader is familiar with the task. 
The purpose of this paper is to explain one of the approaches that 
achieved honorable mention. The take-away messages beyond 
the competition itself include the methodology employed and an 
approach for representing nominal attributes having a 
hierarchical relationship among the values. 

Section 2 describes the methodology and philosophy guiding the 
work. Section 3 presents our feature engineering.  Section 4 lists 
the final choices we made.  Section 5 summarizes. 

2. METHODOLOGY & PHILOSOPHY 
Since the contest score is the sum of the performance on the 
narrow and broad prediction tasks, we optimized for each 
independently. 

In order to facilitate an efficient search for the best prediction 
model, we leveraged a Perl software framework we had 
previously developed. It enables us to focus our effort on quickly 
prototyping a variety of feature engineering options. It provides 
an automated process to perform feature selection and induction 
performance testing using stratified cross-validation. Rather than 
measuring accuracy, we extended it to evaluate the same 
performance measure used to judge the contest: area under the 
ROC curve. Using this framework and four 600-800 MHz CPUs, 
we were able to quickly measure the performance for many 
configurations. Induction algorithms that we trialed included the 
WEKA open-source implementations of Naïve Bayes, linear 
kernel Support Vector Machines (SVM), and AdaBoosted 
decision stumps [5]. The feature selection methods trialed were 
Information Gain, Bi-Normal Separation [2] and variants. 
Because the framework provides for feature selection (within 
each cross-validation fold), we need not trouble ourselves with 

manually eliminating useless features, but only with designing 
features that may be predictive, as discussed in the next section. 

To consider the cross-product of the entire design space is not 
feasible, however, automated testing of portions of the space 
gives much more visibility of the search terrain to the person 
guiding the exploration. Cross-validation helps mitigate, but 
cannot eliminate, the possibility of overfitting the data.  
Likewise, although SVMs are popularly touted for their 
theoretical guarantees against overfitting [4], their wide margin 
only exists in a feature space that is arbitrarily malleable when 
reformulating the problem representation [6].  Nonetheless, we 
attempted to optimize average performance on stratified cross-
validation samples of the available training data. 

The guidance drawn from cross-validation testing is constrained 
somewhat by large variance. For example, in the narrow task 
with just 38 positive examples, a stratified 10-fold split yields 
just 3.8 positives on average in the testing fold, leading to wide 
variance in the performance estimation. To compensate, we 
perform a large number of randomized trials (e.g. 20-100 as in 
bootstrapping), rather than 10 as in traditional cross-validation.  

We simplified management of the voluminous and distributed 
performance data by appending all results to a single database 
table, columns capturing all parameters of the test conditions. 
We could easily determine leading configurations with our Perl 
tools or with interactive pivot charts in Excel. 

3. FEATURE ENGINEERING 
Next we discuss our feature engineering from the three 
hierarchical attributes, the interaction graph, the textual 
abstracts, and the gene names themselves. 

Hierarchical Attributes: Given a nominal attribute whose 
values can be hierarchically aggregated with a known tree, a 
natural representation is to generate a binary feature for each 
node in the tree—set to ‘1’ only on the path to the current value. 
(We treat the many missing values as a separate top-level node.) 
We generated 494 such features, and many were predictive, but 
we were dissatisfied with how dispersed the information is in the 
large hierarchies. Only a few nodes contained positives at all. 

To remedy this, we engineered additional hierarchy prevalence 
features for each hierarchical attribute. Optional step 1: We 
pruned away nodes for which there are no instances in the 
contest’s testing set, which we refer to as transductive pruning. 
It is in the spirit of transductive learning [4], which focuses the 
modeling task on the specific examples to be labeled and does 
not use information from the answer key. This eliminated 200+ 
nodes. Step 2: We generated two percentage-valued features: 
given the attribute value, we return the percentage prevalence of 
positives (vs positives & negatives) found in the lowest and 
highest node in the path of the pruned tree.  For example, a gene 
with function attribute=‘mRNA synthesis’ would have the value 
1/41 for the low attribute, and 2/80 for the high attribute, since 
there are just two positives out of 80 genes at or under the top-



 

level node ‘Transcription’. A value of 0% indicates that no 
positives ever had the current attribute value. Without this 
feature, it would be much harder (more data) for an induction 
algorithm to learn to ‘or’ together the 230 mutually exclusive 
‘function’ nodes that contain no positive examples. 

Interaction Graph: The undirected interaction graph lists 
associated genes. We generated a simple integer feature that 
indicates for a given instance, the number of genes it interacts 
with. This was a strong predictor for the broad task. 

A natural feature engineering approach for this sort of interaction 
information is to duplicate the feature set, copying the features 
for the gene(s) it interacts with. Since the motivation boils down 
to a hunch that the prediction of the association helps predict the 
instance (as in relational learning), and since in this contest the 
set of ultimate test instances is small and fixed, it seemed more 
straightforward to generate a single additional feature that 
modeled this assumption directly. So, we generated just two 
additional integer features indicating the number of narrow and 
broad positives the gene interacts with (determined only from 
those known positive in the current training split). This features 
proved less valuable, yet somewhat predictive. 

Textual Abstracts: For each gene, we concatenated all pertinent 
abstracts as determined by gene-abstracts.txt, and generated a 
binary feature for each unique (lowercased, alphanumeric) word. 
Having to load/process the 18 MB of abstracts increased the run 
time from 7 seconds to 50 seconds, and, unfortunately, tended to 
degrade prediction accuracy overall. 

Gene Names: We supposed that the naming of the genes, e.g. 
YMR228W, was generated by a non-random process that may 
have some bearing on the prediction tasks at hand. We generated 
a numeric feature for the number, and binary features for various 
sub-sequences of characters. As it turns out, for the narrow task, 
the second and third characters together are (negatively) 
predictive: ‘nl’ is among the strongest predictors (appearing in 0 
positives and 158 negatives), followed by ‘gr’ and ‘pl’.  These 
were not very strong predictors overall, so we do not believe they 
leaked information from the answer key illegitimately. 

4. FINAL CHOICES 
In the end, our best average predictor for the narrow task was 
Naïve Bayes on just twelve features, including the percent 
positives at the top and bottom of the three unpruned hierarchies, 
the three interaction features (made binary), and gene name 
substrings ‘nl’ and ‘n’. Its estimated performance when training 
on 90% of the available training data was 0.67 ROC area, and 
when trained on 100% of the data, 0.6731 on the contest test set. 

Our best average predictor for the broad task was Naïve Bayes on 
48 features, including the top and bottom hierarchical prevalence 
features for the three transductively pruned hierarchies, the three 
interaction features (but not made binary) plus binary indicators 
for several of the hierarchy nodes, e.g. localization=transport 
vesicles / golgi ER transport vesicles, function=classification not 
yet clear cut, function=cell rescue defense and virulence, and 
protein class=protein phosphatases / catalytic subunits / PP2C 
family.  The latter is a positive predictor with two positives and 
two negatives, but most features were negative predictors.  Its 
estimated performance on 90% of the training data was 0.59, and 
0.6295 in the contest.   

While we expect some variance, it is difficult to estimate how 
much, given that we can generate only highly correlated samples. 
By plotting the learning curve as we vary the percentage of 
training data, and extrapolating the performance for 100% of the 
training data, we estimated an additional ~+.007 ROC area for 
both tasks in the final contest. After seeing the low ROC scores, 
we wished to validate the competition following [3]. A 
randomized distribution analysis of all the contestants’ scores 
validated that they are significantly better than a random 
collection of simple classifiers. 

5. CONCLUSIONS & TAKE AWAYS 
No amount of clever induction or feature selection can make up 
for a lack of predictive features in the input.  Hence, feature 
engineering is a key step for difficult prediction tasks. We 
estimate via a cross-validation lesion study that creative feature 
engineering was responsible for adding +11% to the performance 
(+0.08 and +0.06 ROC area for narrow and broad tasks). 

Likewise, extensive use of automated cross-validation to guide 
the search for an effective model added immeasurable benefit 
over selecting a single model ‘blind,’ which is the only method 
that can safely be said to avoid overfitting.  Even structural risk 
minimization techniques such as SVM [4] cannot safeguard 
against ‘overfitting’ the features to the dataset [6]. Nonetheless, 
experience shows that feature engineering is generally a 
worthwhile risk, and cross-validation helps mitigate the risk.   

Perl again proved an excellent language for quick prototyping—
minimizing human programming effort rather than CPU time.  
Although C is often chosen for being faster, the overall running 
time was very acceptable at under a minute per data point on an 
800MHz HP Kayak XU running Linux—despite the 
inefficiencies on each run of re-parsing 19+ MB of input data, & 
launching a separate Java process running the WEKA machine 
learning algorithms, communicating via generating/parsing files. 
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