

Keyword(s):

Abstract:



GeCCo: Finger Gesture-based Command and Control for Touch Interfaces

Sriganesh Madhvanath, Dinesh Mandalapu, Tarun Madan, Naznin Rao, Ramesh Kozhissery

HP Laboratories
HPL-2012-238

gesture recognition; touch gestures; mode-switching; adaptation

With touch-based interfaces becoming commonplace on personal computing devices ranging from phones
and slates to notebook and desktop PCs, a number of common tasks that were once performed using mouse
or keyboard input now need to be performed using fingers on the touch surface. Finger-drawn gestures
offer a viable alternative to desktop and keyboard shortcuts as shortcuts for common tasks such as
launching of applications and navigation of large media collections. In order to be truly effective, the
interface for definition, management and invocation of gestures should be highly intuitive, and optimized
for the device. In particular, the process of invoking gestures should be seamless and natural. Further, the
recognition of gestures needs to be robust for the specific user. In this paper, we describe GeCCo (Gesture
Command and Control), a system for personalized finger gesture shortcuts for touch-enabled desktops and
trackpad-enabled notebook PCs. One of the key issues addressed in the design of GeCCo is that of mode
switching in the context of notebook PCs. We describe a user study to decide between different interactions
for mode switching. The interactions are designed such that mode switch and gesture can be simultaneously
indicated. Since new gestures may be defined by the user at any time, statistical pattern classification
techniques which require large numbers of training samples for each gesture are not useful. Instead we use
nearest-neighbor classification with Dynamic Time Warping (DTW) distance, and a writer adaptation
scheme for improving accuracy to desired levels. We conclude the paper with experimental results and
some thoughts on next steps.

External Posting Date: December 6, 2012 [Fulltext] Approved for External Publication
Internal Posting Date: December 6, 2012 [Fulltext]

Copyright 2012 Hewlett-Packard Development Company, L.P.

GeCCo: Finger Gesture-based Command and Control

for Touch Interfaces

Keep this place blank at the time of first submission

Keep this place blank at the time of first submission

Abstract—With touch-based interfaces becoming

mainstream on personal computing devices ranging from

phones and slates to even notebook and desktop PCs, a number

of common tasks that were once performed using mouse or

keyboard input now need to be performed using fingers on the

touch surface. In this paper, we focus on the use of finger

gestures as shortcuts for tasks such as command and control of

applications, navigation of large collections. A keyboard

shortcut or desktop icon for an application may be substituted

with a finger gesture e.g. tracing a gesture ‘O’ launches MS

Outlook. Such gestures may be used even on a conventional

notebook PC using the trackpad. However in order to be truly

effective, the interface for definition, management and

invocation of gestures should be highly intuitive, and

customized to the available device hardware. In particular, it

should be possible for the user to define and modify gestures as

and when required, and the process of invoking gestures

should be seamless and natural. Further, the recognition of

gestures needs to be robust for the specific user. We describe

GeCCo (Gesture Command and Control), an application

prototype we have created for touch-enabled devices that

allows the user to define his or her own gesture shortcuts for

applications. One of the key issues addressed in the design of

GeCCo was that of mode switching in the context of notebook

PCs. We describe a user study conducted to decide between

different interactions for mode switching. The interactions

were designed such that mode switch and gesture can be

simultaneously indicated. Since new gestures may be defined

by the user at any time, we cannot use statistical pattern

classification techniques which require large numbers of

training samples for each gesture. Instead we use nearest-

neighbor classification with Dynamic Time Warping (DTW)

distance, and a writer adaptation scheme for improving

accuracy to desired levels. We conclude the paper with

experimental results and some thoughts on next steps.

Index Terms—gesture recognition, touch gestures, mode-

switching, adaptation

I. INTRODUCTION

Touch-based interfaces have come a long way in the last

decade. Historically, the most common interaction with

touch surfaces has been the pressing of soft buttons (e.g. at

the ATM). However with the advent of highly sensitive and

accurate capacitive touchscreen technology, devices such

Apple iPhone and Microsoft‟s Surface [4] have introduced a

large range of single and multi-touch gestures such as

flicking, dragging, scrolling, pinching and so on, and these

have made interaction with computing devices easier and

more pleasurable than before. Consequently touch-based

interfaces are becoming mainstream on a broad spectrum of

personal computing devices ranging from phones and slates

to notebooks and desktop PCs.

This shift has meant that a number of common tasks that

were once performed using mouse or keyboard input now

need to be performed using fingers on the touch surface, and

many usability issues are yet to be addressed. In order to

launch an application for instance, the user typically has to

scroll or navigate through many screens or levels of icons.

Such issues clearly detract from the fundamental value

proposition and overall experience of using such touch-

based interfaces, which are meant to improve ease of use

and provide simpler interfaces to technology.

In this paper, we focus on the use of finger gestures –

shapes drawn on the touch surface with a finger – where the

shape has a certain meaning. Clearly this enables the use of

a gesture to perform an "action" associated with a gesture,

and in its simplest form, is a “shortcut”. Navigation may

also be supported by having gestures for specific folders, or

by interpreting gestures as text characters and using the

recognized text prefix to help navigate lists. In principle, the

gesture shapes can be highly personalized, performed

naturally, rapidly and conveniently using a finger or stylus,

and allow random access - unlike explicit buttons, desktop

shortcuts or keyboard shortcuts, which require seeking or

scrolling to “find the shortcut”. Further, since the gesture

shapes and their mappings may be defined by the user and

modified at will, the expressiveness of such gestures is

potentially higher than what is possible with dedicated

buttons. With the proliferation of touchscreens and touch

sensors, such gestures can be used with a variety of devices

such as cameras, printers, notebooks, touch-enabled PCs,

point-of-sale terminals, phones and slates.

The idea of using gesture shapes for command and

control is not new. StrokeIt[1] and OptiMoz[2] are examples

of products or open-source projects that use pen or mouse

based gestures as shortcuts to system actions. In addition,

several web browsers support the use of simple gestures for

common browsing actions such as “back” and scrolling, via

plug-ins. Some of these systems only allow limited gesture

shapes, e.g. as sequences of up, down, left and right mouse

movements [3]. Some have predefined mappings for a large

number of applications and require the user to memorize

them.

In order for gestures to be truly effective, there are

several issues to be addressed: (i) The interface for

definition, management and invocation of gestures should

be highly intuitive, and customized to the available device

hardware. In particular, it should be possible for the user to

define and modify gestures as and when required, and the

process of invoking gestures should be seamless and natural

(ii) the recognition of gestures needs to be robust for the

specific user.

In this paper we describe GeCCo (Gesture Command and

Control), a system that we have built for finger gesture-

based command and control, that attempts to address these

issues. An overview of the functionality enabled by the

system is presented in Section II. Some of the design issues

such as gesture invocation and management are discussed in

Sections III and IV. The approach used for robust

recognition of finger gestures is outlined in Section V, and

the system architecture of GeCCo discussed in Section VI.

Conclusions and directions for future work are presented in

the final section.

II. GECCO OVERVIEW

GeCCo is a system for personalized finger gesture

shortcuts for touch-enabled desktops and trackpad-enabled

notebook PCs, implemented as a Windows application.

Users may define their own gesture shapes and map them to

actions. For instance, tracing a gesture „m‟ can launch a

media player (Figure 1). The actions may in general be any

system actions such as launching applications, going to

specific websites, or controlling the volume of the device

without the use of the keyboard/mouse. Navigation may also

be supported by having gestures for specific folders, or by

interpreting gestures as text characters and using the

recognized text prefix to help navigate lists. Gestures may

also be context-dependent, i.e., mean different things in

different contexts. In an example of navigation of a large

music collection, the gesture “t” is mapped to the character

“t” of the keyboard which enables the user to browse song

titles in Windows Media Center software without a

keyboard.

As mentioned in the introduction, the primary benefit of

GeCCo is that gesture shapes can be highly personalized,

performed naturally, rapidly and conveniently using a finger

or stylus, and allow direct access to actions as opposed to

scrolling through icons and desktop shortcuts. Further, the

expressiveness of such user-defined gestures could exceed

what is possible with dedicated buttons or keyboard

shortcuts.

Although designed primarily for touch-enabled desktops

and conventional notebooks, GeCCo could be used with a

variety of touchscreen-enabled devices such as cameras,

printers, point-of-sale terminals, mobile phones and slates.

A. Gesture management in GeCCo

GeCCo provides a management GUI with different tabs

associated with different management tasks, such as adding

new gestures, mapping gestures to commands, changing

gestures, deleting gestures and so forth (Figure 2). The GUI

can be accessed from a taskbar icon or floating bar (Figure

3). The interface is thus minimal and non-obtrusive.

The interface allows a new gesture to be defined by

drawing it twice. GeCCo immediately notifies the user if the

gesture is too “similar” to a gesture that is already defined.

B. Using Gestures

The user may draw a gesture anywhere on the screen or

trackpad, and at any scale. GeCCo interprets the gesture and

performs the corresponding action. When the gesture is not

recognized with sufficient confidence, a menu of available

gestures and mapped commands is presented to the user so

that the user may explicitly select the intended command. In

(a) (b)

(c) (d)

Fig. 1: (a) Enabling Gesture Mode by clicking the GeCCo button at top
right and drawing the Gesture (b) application (media player) launched

(c & d) drawing a character gesture to select a song to play

Fig. 2: GeCCo UI for Viewing/Editing Gestures

the rare event that a gesture is incorrectly recognized and

GeCCo carries out an unintended action, the user can invoke

a dialog to indicate the intended gesture. User feedback in

both cases is used to adapt the recognizer to the user‟s

writing style.

III. GESTURE INVOCATION

Since in general the primary pointing device (such as the

trackpad on a notebook, or the touchscreen on a PC or other

device) needs to be “overloaded” for gesturing, one of the

critical issues is the user effort to indicate gesturing (as

distinguished from pointing or normal mouse movements)

and to actually draw the gesture composed of one or more

strokes. Such mode switching is a well-studied problem

especially in the pen computing literature [9].

We have explored different schemes depending on the

device and its touch hardware for triggering gesture mode.

In the case of a touchscreen, GeCCo utilizes an onscreen

widget that the user taps to invoke the gesture mode (Fig 3).

At the end of the gesture (typically identified by a timeout),

GeCCo automatically switches back to mouse mode.

However, there are fewer studies on the use of gestures

within the context of devices such as conventional notebook

PCs. We therefore conducted a study to examine mode

switching from a conventional touch mode using trackpad of

a standard notebook PC to gesture mode and back. Many of

the brainstormed methods for mode switching, e.g. pressing

a dedicated key(s) to get into gesture mode and pressing it

again to get out of the gesture mode, required explicit effort

on part of the user, were not intuitive and posed usability

issues. Previous studies done around switching techniques in

pen/stylus based interfaces have also proven that actions

where the user must conventionally specify an intended

mode before performing a task, end up being barriers to the

usability of such systems [7, 8, 9]. In order to avoid explicit

mode switching, we have come up with two different

interactions, where in gesture indication and mode switching

happen simultaneously. The first one uses a hardware key-

trackpad combination and the second uses only the trackpad.

A. Interactions

The two methods of indicating a gesture were tested: (i)

use of “Ctrl” key [left Ctrl key was used for the study] and

single finger on the trackpad, and (ii) use of the index and

middle finger in combination on the trackpad.

B. Apparatus

The experiment was conducted using a Windows

notebook PC with a trackpad made by Synaptics. The

trackpad supported only mouse movements; multi-touch

gestures were not supported. It had a left, centre and right

click buttons on the bottom and a scroll sensor on the right

side. The scroll area was disabled during gesture mode to

make the entire trackpad space available for making the

gesture. The usable touch area on the trackpad including the

scroll area was 3.3”. The sessions were video recorded for

post analysis. The use of two fingers to gesture was

detected using the touch area reported by the Synaptics

driver.

C. Participants

We recruited 28 participants from within the office

environment for this study. Out of these, four participants

were used for pilots and the remaining 24 for the study. The

participants were notebook PC as well as desktop PC users

from different domains such as sales, accounting,

administration, design research, financial analysts and

operations. We had 19 males and 5 females between the

ages of 22 to 49 years. 12 participants said they always used

an external mouse with a notebook PC, while 7 said they

always used the trackpad. All participants received a gift

voucher at the end of the study.

D. Process

The study sessions were 30 to 45 mins in duration. Each

session included an introduction to the study, signing the

informed consent form, collecting information about

participant demographics and notebook PC usage,

demonstration of mode switching mechanisms followed by

practice of each, followed by the three actual tasks. At the

end of the session, each participant was asked which method

(s)he preferred and why.

Three tasks were designed for the study, each requiring

six occurrences of switching to gesture mode. This resulted

in 3 tasks x 6 mode switches per task x 24 participants = 432

instances of mode switching.

Gesture Action assigned

 Opens Firefox application with blank window

 Opens Notepad application with new file

 Opens Media Player with a play list displayed

Opens Yahoo messenger

Fig. 3: Floating toolbar on Touch-based PC. The buttons correspond

to Gesture Mode, Edit Gestures and Character Mode.

Table. 1. Gesture-to-action chart showing the gestures used in the study

and the corresponding actions that would take place on making the
gesture.

Four gestures were used for testing in the study. These

were kept simple and assigned simple actions as shown in

Table 1. Each gesture was a straight line (vertical or

horizontal) and the direction from which it began decided

the corresponding action.

E. Task design and execution

The aim of task design was to keep the tasks natural and

yet be able to identify any emerging pattern(s). Three types

of tasks were designed – typing centric, reading centric and

cursor-centric. The frequency of mode switching was

balanced across the three. For example, a typical cursor-

centric task would include: (i) One generic instance of

gesture mode not preceded by any other action, (ii) One

instance of gesture mode following a reading activity (iii)

One instance of gesture mode following a typing activity

(iv) Three instances of gesture mode following a cursor-

centric (browse/select) activity. This structure was followed

for the other two tasks as well. This allowed us to evaluate

whether the preceding activity had any impact on the choice

of mode switching mechanism.

A 3x3 Latin Square was used to counterbalance the

order of the tasks. Participants were given the freedom to

use any of the two methods (Ctrl+finger or two fingers) for

gesture mode switching during the tasks. During the study,

we noted the switching method used each time by the

participant. We also noted the input interaction at each step

of each task - whether the participant used the external

mouse, keyboard shortcut, trackpad or joystick to perform

an action.

At the end of each task, the participant was asked to

comment on the method (s)he preferred for gesture mode

switching. The stated preference was verified against the

one that was empirically observed during the task. This also

helped us understand the reasons for a participant preferring

a particular method.

F. Results and Discussion

Overall, no clear polarity was found in preference of one

mode switching method over the other (Figure 4a). It was

also found that preference for a particular switching method

did not depend on the type of activity preceding it (Figure

4b,4c,4d). However, in the case of cursor-centric activities,

there was clear dependence on the cursor-control mode (i.e.

mouse versus trackpad) in use preceding the mode switch

(Figure 4e, 4f).

Considering that the use of mouse is preferred for most

cursor centric tasks [10] [11], there are some important

implications for GeCCo-like systems arising from this

study. The proximity of the cursor-control device seems to

play an important role in the work environment of notebook

PC users. This is also apparent from the user comments

stating their reason for preference of a mode switching

method. Since mouse and trackpad are located at a distance

fron one another in a notebook PC environment, the effort to

move from mouse to trackpad to make a gesture might be a

significant one for mouse users of the notebook PC

population. This in turn may affect the usage of gestures by

such users.

IV. ROBUST RECOGNITION OF GESTURES

Numerous studies have shown that near-perfect

recognition is a prerequisite for user adoption of

recognition-based interfaces. High recognition accuracy is a

challenge in the GeCCo context since it is not reasonable to

collect a large number of gesture samples in advance for

training (especially when new gestures may be defined at

will), and hence statistical pattern recognition techniques

cannot be applied. On the other hand, GeCCo is meant to be

personalized and we can hope to learn the user‟s style over

time.

We have therefore used a prototype-based classification

technique (k-nearest neighbors based on Dynamic Time

Shifting from a cursor centric task to Gesture

mode

172, 48%

188, 52%
Ctrl + Finger

2 Fingers

Fig. 4: User preference between mode switching methods for (a) all tasks (b) reading-centric tasks (c) typing-centric tasks (d) cursor-centric

tasks (e) cursor-centric tasks when cursor control is using a mouse (f) cursor-centric tasks when cursor control is using the trackpad

Ctrl Finger Vs 2 Fingers usage in the complete set

of tasks

210, 49%

222, 51%

Ctrl + Finger

2 Fingers

Shifting from a reading activity to Gesture mode

59, 49%

61, 51%

Shifting from Typing task to Gesture mode

45; 47%

51; 53% Ctrl + Finger

2 Fingers

Shifting from Mouse to a Gesture mode

29, 88%

4, 12%

Mouse > Ctrl Finger

Mouse > 2 Fingers

Shifting from Trackpad use to Gesture mode

50, 39%

78, 61%

Trackpad > Ctrl Finger

Trackpad > 2 Fingers

All tasks

Warping distance), which computes the distance of the test

sample to stored prototypes. In order to improve the

accuracy of recognition and enable personalization, we use

an adaptation strategy based on user feedback that involves

adding prototypes and modifying existing prototypes based

on different conditions. In essence, misrecognized gesture

samples are added to the prototype set. In order to adapt the

existing prototypes to the user's style of writing, we modify

the existing prototype set using Learning Vector

Quantization (LVQ) [5]. These techniques are available

from the open source Lipi Toolkit [6], and are described

briefly below.

A. Preprocessing and Feature Extraction

Each gesture is first preprocessed to address variability in

sensor resolution and sampling rates. The sequence of (x,y)

digitizer coordinates between “pen-down” and “pen-up” are

typically uniformly sampled in time when they are produced

by the digitizer. They are resampled using interpolation and

represented as a sequence of points that are equidistant

along the trajectory. The gesture is also scaled such that the

maximum of its x and y-extents is equal to a predetermined

box size, while its original aspect ratio is preserved. Each

gesture is finally represented as a sequence of points, where

each point contains not only the size-normalized x and y

coordinates, but also additional features such as slope and

curvature at that point [15].

B. Template matching

Each gesture class is modeled by a small set of prototypes

or templates. The initial set is obtained from the samples

provided by the user while defining a new gesture.

Thereafter new samples are added or existing samples

modified based on the adaptation strategy. Given a new

gesture sample, its distance is computed from all of the

stored prototypes of all defined gestures, using Dynamic

Time Warping (DTW) distance. The distance computation

uses Dynamic Programming to compute the lowest-cost

alignment of the feature sequence computed from the test

sample with the feature sequence corresponding to a stored

prototype, and computing the normalized sum of the

Euclidean distances between matched feature points. The k

nearest prototypes to the test sample are then determined,

and the majority class among them is declared to be the

matched gesture class, with a certain confidence measure

that reflects the distribution of the majority class among the

k nearest neighbors.

C. Adaptation

GeCCo uses an adaptation strategy called Add + LVQ [5]

which we empirically determined to equal or outperform

other adaptation strategies, while limiting the number of

stored prototypes per gesture class to a predefined

maximum. This is an important consideration for real-time

performance given that template matching is linear in the

number of prototypes and quadratic in the length of the

feature sequences.

 When a test sample is misclassified by GeCCo and the

user provides feedback about the intended class, the sample

is added to the true class as an additional prototype.

However, when a sample is not recognized with high

confidence and the user provides feedback about the

intended class using the context menu, the sample is added

to the prototype set only if maximum prototype count for

that class has not been reached. Otherwise it is used to

modify its nearest sample among the existing prototypes

[16]. In addition, successfully recognized samples are also

used to modify the existing prototypes. Over a period of use,

the prototypes start to accurately reflect the gesture shapes

and style of the user.

D. Evaluation

We have performed an evaluation of recognition accuracy

and the impact of writer adaptation. In a simulation

involving 50 gesture classes extracted from a dataset of

handwritten Tamil characters [17] (where we pretend that

the characters are gestures) from 10 writers, we found that

writer-specific accuracy increased from an average of 86%

when only one sample of each gesture was available, to 94%

when an additional sample was added as a prototype, to

96% after three samples. This suggests that very high

accuracies can be achieved, considering that we can expect

far fewer than 50 gesture classes in practice, and there is the

possibility of rejecting ambiguous gestures both at the time

of gesture definition and gesture invocation.

V. SYSTEM ARCHITECTURE

The architecture and components of GeCCo are shown in

Figure 5. GeCCo runs as a background process and appears

as an icon in the system tray and/or a floating toolbar. When

in gesture mode, the system gets data from the touchscreen

or trackpad driver when the user enters a gesture. The

corresponding “digital ink” is passed to Gesture Shape

Recognition Engine (SRE) which recognizes the gesture

shape and returns the set of matching shape IDs with

confidence values. The SRE is built using Lipi Toolkit [6]

which implements the gesture recognition and adaptation

schemes described above.

The GeCCo controller calls the application or the

operating system to execute the command corresponding to

the best matched gesture. When the gesture is not

recognized with sufficient confidence, a menu of available

gestures and mapped commands is presented to the user so

that the user may explicitly select the intended command.

This feedback is used to adapt the recognizer to the user‟s

writing style.

VI. CONCLUSIONS AND NEXT STEPS

In this paper, we described GeCCo, a system for

personalized finger gesture-based shortcuts suitable for a

variety of devices with touch sensing capabilities. GeCCo

allows the user to define arbitrary gesture shapes and map

them any available command or action. While many such

systems have been created, we believe GeCCo is significant

among such systems in its ability to adapt to the way

gestures are written by the users. Another important focus of

our work has been the ease of gesture invocation, especially

with respect to mode switching in a notebook PC

environment. We described a study that compares two

different mechanisms for mode switching. Through the

study did not yield any significant differences in preference

of one method over the other, when taken in the context of

cursor-centric activities, an important factor that impacts the

preference is the proximity of the cursor-control device.

We believe there are a number of research questions to be

answered before a system such as GeCCo can become truly

mainstream. We would like to use the GeCCo prototype to

conduct broad user studies to answer key questions such as:

How many gestures can a user remember? What are the top

few tasks/functions? What kinds of gestures do users select

(simple vs. complex, single vs. multi-stroke)? Would users

want gestures to be customizable or have predefined shapes?

Would users like the frequently used commands for which

gestures may be useful, to be recommended by the system

based on observed usage? As touch screens proliferate, it

will be interesting to investigate the role of GeCCo-like

systems for touchscreen-enabled printers, point-of-sale

terminals, as well as slates and mobile phones, where

gesture-based shortcuts can reduce the burden of navigating

deeply nested menus of options. Finally, we are continuing

to explore alternative features and adaptation strategies to

improve the recognition of gestures.

ACKNOWLEDGMENT

Omitted for blind review

REFERENCES

[1] Strokeit – Mouse Gestures for Windows,
http://www.tcbmi.com/strokeit/

[2] Optimoz – Mouse Gestures for Mozilla Firefox,
http://optimoz.mozdev.org/

[3] All in One Gestures – Plug in for Mozilla Firefox,
https://addons.mozilla.org/en-US/firefox/addon/all-in-one-gestures/

[4] Microsoft Surface Computing - http://www.microsoft.com/surface/

[5] Adaptive Methods for On-Line Recognition of Isolated Handwritten
Characters, Ph.D. Thesis, Vuokko Vuori, Helsinki University of
Technology, 2002

[6] Lipi Toolkit – An Open Source Toolkit for Handwriting Recognition,
http://lipitk.sourceforge.net

[7] Saund, E. and Lank, E., “Stylus Input and Editing Without Prior
Selection of Mode”, Proceedings of UIST'03, pp. 213 - 216.

[8] A. Sellen, G. Kurtenbach, and W. Buxton, “The Role of Visual and
Kinesthetic Feedback in the Prevention of Mode Errors”, Proceedings
of Human-Computer Interaction, 1990, 667-673.

[9] Li, Y., Hinckley, K., Guan, Z. and Landay, J., “Experimental
Analysis of Mode Switching Techniques in Pen-based User
Interfaces”, CHI 2005, April 2–7, 2005, Portland, Oregon, USA.

[10] Atkinson, S.,Woods, V., Haslam R.A., Buckle, P., “Using non-
keyboard input devices: interviews with users in the workplace”

[11] Shanis, J., Hedge, A., “Comparison of 3 input technologies: Mouse,
Trackpad and Multitouch”

[12] Hinckley, K., P. Baudisch, G. Ramos, and F. Guimbretiere. Design
and Analysis of Delimiters for Selection-Action Pen Gesture Phrases
in Scriboli. Proceedings of CHI'05, pp. 451 - 460.

[13] Alvarado, C. and R. Davis. SketchREAD: a multi-domain sketch
recognition engine. Proceedings of UIST'04, pp. 23 - 32.

[14] Rubine, D. Specifying Gestures by Example. In Proceedings ACM
SIGGRAPH‟95 Conference on Computer Graphics. 1995. 329-337

[15] Stefan Jäger and Stefan Manke and Jürgen Reichert and Alex Waibel.
Online handwriting recognition: the NPen++ recognizer, International
Journal on Document Analysis and Recognition. 2001, Vol 3, pp. 169
- 180

[16] Vandana Roy, Sriganesh Madhvanath, Anand S, Ragunath R.
Sharma. A Framework for Adaptation of the Active-DTW Classifier
for Online Handwritten Character Recognition. ICDAR 2009, pp. 401
– 405

[17] Isolated Handwritten Tamil Character Dataset
http://www.hpl.hp.com/india/research/penhw-resources/tamil-iso-
char.html

Fig. 5: GeCCo: Architecture and Components

http://www.tcbmi.com/strokeit/
http://optimoz.mozdev.org/
https://addons.mozilla.org/en-US/firefox/addon/all-in-one-gestures/
http://www.microsoft.com/surface/
http://lipitk.sourceforge.net/
http://www.hpl.hp.com/india/research/penhw-resources/tamil-iso-char.html
http://www.hpl.hp.com/india/research/penhw-resources/tamil-iso-char.html

