

Keyword(s):

Abstract:



A hybrid page layout integrating PAX and NSM

Goetz Graefe, Ilia Petrov, Todor Ivanov, Veselin Marinov

HP Laboratories
HPL-2012-240

database; storage manager; PAX; NSM; Hybrid Page Layout (HPL); page layout

Prior work on in-page record formats has contrasted the "N-ary storage model" (NSM) and the "partition
attributes across" (PAX) format. The former is the traditional standard page layout whereas the latter
"exhibits superior cache and memory bandwidth utilization" [ADH 01], e.g., in data warehouse queries
with large scans. Unfortunately, space management within each page is more complex due to the
mini-pages in the PAX layout. "Borrowing" space from one mini-page for another requires moving an
entire mini-page. In contrast, the NSM format simply grows a slot array and the data space from opposite
ends of the page until all space is occupied. The present paper explores a hybrid page layout (HPL) that
aims to combine the advantages of NSM and PAX. Predicate evaluation in large scan queries have the
same number of cache faults as PAX, and space management uses two data areas growing towards each
other. Moreover, the design defines a continuum between NSM and PAX in order to support both efficient
scans and efficient insertions and updates. This design is equally applicable to cache lines within RAM
memory (the original design goal of PAX) and to small pages on flash storage within large disk pages. Our
experimental evaluation is based on an implementation in the former environment. It demonstrates that the
HPL design scans almost as fast as the scan-optimized PAX layout and updates almost as fast as the
update-optimized NSM layout, i.e., it is competitive with both in their best use cases.

External Posting Date: December 6, 2012 [Fulltext] Approved for External Publication
Internal Posting Date: December 6, 2012 [Fulltext]

Copyright 2012 Hewlett-Packard Development Company, L.P.

 Page 1

A hybrid page layout integrating PAX and NSM
Goetz Graefe – Ilia Petrov, Todor Ivanov, Veselin Marinov

Hewlett-Packard Laboratories – Technical University Darmstadt

Abstract

Prior work on in-page record formats has contrast-
ed the “N-ary storage model” (NSM) and the “partition
attributes across” (PAX) format. The former is the tra-
ditional standard page layout whereas the latter “exhib-
its superior cache and memory bandwidth utilization”
[ADH 01], e.g., in data warehouse queries with large
scans. Unfortunately, space management within each
page is more complex due to the mini-pages in the
PAX layout. “Borrowing” space from one mini-page
for another requires moving an entire mini-page. In
contrast, the NSM format simply grows a slot array and
the data space from opposite ends of the page until all
space is occupied.

The present paper explores a hybrid page layout
(HPL) that aims to combine the advantages of NSM
and PAX. Predicate evaluation in large scan queries
have the same number of cache faults as PAX, and
space management uses two data areas growing to-
wards each other. Moreover, the design defines a con-
tinuum between NSM and PAX in order to support
both efficient scans and efficient insertions and up-
dates.

This design is equally applicable to cache lines
within RAM memory (the original design goal of
PAX) and to small pages on flash storage within large
disk pages. Our experimental evaluation is based on an
implementation in the former environment. It demon-
strates that the HPL design scans almost as fast as the
scan-optimized PAX layout and updates almost as fast
as the update-optimized NSM layout, i.e., it is competi-
tive with both in their best use cases.

1 Introduction

The traditional page layout used in many database
systems stores entire records contiguously. For varia-
ble-size records, a level of indirection (using an array
with byte offsets within the page) is used. A record
identifier includes a page identifier plus an index into
this array. Each time a record is inserted into a page,
the offset array grows towards the data area and the
data area grows towards the offset array. The page is
full when the two areas threaten to overlap.

This organization is optimal for fetching all fields
of a single row based on a record identifier, which is a
typical access pattern in online transaction processing.
In relational data warehousing, however, many queries
cannot be answered by fetching the result using index-

es. Instead, many query execution plans require large
scans, inspecting the same field in each record in order
to find records satisfying the query predicate. For those
query execution plans, the traditional in-page record
organization is not optimal, due to the number of cache
faults and associated execution stalls.

For example, assume records of 100 bytes and a
predicate focusing on a single 4-byte field within each
record. Assume also a modern processor with multiple
levels of caches and with cache lines of 64 bytes. In the
traditional page layout, each record forces at least one
fault in the CPU cache. Ideally, with cache lines 16
times larger than the field in the query predicate, there
should be only one cache fault per 16 records.

This consideration has led to the design of the
PAX storage layout. Both the NSM and the PAX stor-
age layouts attempt to put the same records into each
page, and thus load the same set of record with each
I/O, etc. Their difference is that NSM stores the infor-
mation in each page one record at a time whereas PAX
stores the same information one field at a time, aligned
to cache lines. A large scan can perform very efficient
predicate evaluation with very few cache faults.

The core design element in the PAX format is a
mini-page per field. When a new record is inserted into
the page, one value is inserted into each mini-page.
Null values are indicated in a bit vector for fixed-size
fields and, for variable-size fields, by a special value in
the offset array pointing to the locations of variable-
size values.

One disadvantage of the PAX format is the com-
plexity of free space management within each page for
records with one or more variable-size fields. In most
cases, the average length of a variable-size field is not
predictable. Even if the average size is known for a
table, it probably is not predictable for each page.
Thus, in order to fit as many records into each page as
the NSM format permits, in-page optimizations may be
required after the page is filled when one or more of
the mini-pages run out of space. The required optimiza-
tion decisions are a bit complex and may be revised
repeatedly, implying expensive data movement.

The first purpose of this paper is to describe a third
page layout that combines the advantages of NSM and
PAX. From NSM, this design preserves the simplicity
of two variable-size allocation spaces growing towards
each other. From PAX, it preserves the cache efficien-
cy during large scans. Multiple variants of this third
page layout are introduced. For example, the first vari-

 Page 2

ant is simple but fairly rigid with possibly substantial
fragmentation in each page, whereas the last one is
more flexible with less fragmentation in each page.

The basic ideas of NSM and PAX apply not only
to traditional pages but also to the organization of rec-
ords and their fields in flash storage. A recent study
demonstrates the advantages of filling small pages (that
are appropriate for flash storage and its fast access la-
tency) with values from the same field, and of filling
large pages (that are appropriate for disks and their fast
transfer bandwidth) with an appropriate collection of
such small pages. These small and large pages are very
similar to mini-pages and disk pages in the original
PAX design.

The second purpose of this paper is to report on a
performance evaluation comparing the three alternative
designs for database pages in RAM. We found that
both cache line access and address calculations are
crucial components of scan and update performance.

The next section describes NSM and PAX in more
detail. The following sections introduce the hybrid
page layout. Both the rigid and the incremental variants
of the hybrid page layout are described. After a section
reporting an experimental performance evaluation fol-
lows a summary and a few conclusions from this effort.

2 Prior work

Our proposed in-page record format aims to com-
bine the advantages of NSM and PAX. These two for-
mats are described and illustrated very aptly and suc-
cinctly elsewhere [ADH 01]; rather than attempting to
improve upon those descriptions, they are cited verba-
tim repeatedly here.

2.1 N-ary storage model (NSM)

The following diagram, taken from [ADH 01], il-
lustrates four records within a page, including page
header and record headers (RH1-RH4). The figure also
shows the offset array (“slots”) that enables variable-
size records and the required space management as
well as the free space between data space and offset
array growing towards each other during record inser-
tions.

In order to enable efficient insertions and size-
changing updates, the page contains two allocation
spaces. These allocation spaces, one for records and
one for the offset array, grow towards each other from
opposite ends of the page. The page is full when they
meet. Compaction and reclamation of fragmented free
space (after updates) delays that time as much as possi-
ble.

Figure 1. The cache behavior of NSM (from

[ADH 01]).

A scan with a predicate on age incurs a lot of
cache faults: “Assuming that the NSM page in Figure 1
is already in main memory and that the cache block
size is smaller than the record size, the scan operator
will incur one cache miss per record. If age is a 4-byte
integer, it is smaller than the typical cache block size
(32-128 bytes). Therefore, along with the needed value,
each cache miss will bring into the cache the other val-
ues stored next to age (shown on the right in Figure 1),
wasting useful cache space to store unreferenced data,
and incurring unnecessary accesses to main memory.”
[ADH 01]

2.2 Partition attributes across (PAX)

The following paragraphs and diagrams are the
original description of the PAX format [ADH 01], with
the numbering of figures adjusted:

“To store a relation with degree n (i.e., with n at-
tributes), PAX partitions each page into n minipages. It
then stores values of the first attribute in the first
minipage, values of the second attribute in the second
minipage, and so on. The page header at the beginning
of each page contains pointers to the beginning of each
minipage. The record header information is distributed
across the minipages. The structure of each minipage is
determined as follows:

 “Fixed-length attribute values are stored in F-
minipages. At the end of each F-minipage there is
a presence bit vector with one entry per record that
denotes null values for nullable attributes.

 “Variable-length attribute values are stored in V-
minipages. V-minipages are slotted, with pointers
to the end of each value. Null values are denoted
by null pointers.

 Page 3

“Each newly allocated page contains a page header
and as many minipages as the degree of the relation.
The page header contains the number of attributes, the
attribute sizes (for fixed length attributes), offsets to the
beginning of the minipages, the current number of rec-
ords on the page and the total space available on the
page.

Figure 2. The cache behavior of PAX (from

[ADH 01]).

“Figure 2 depicts a PAX page that stores the same
records as the NSM page in Figure 1 in a column-
major fashion. When using PAX, each record resides
on the same page as it would reside using NSM, but all
SSN values, name values, and age values are grouped
together on minipages respectively. PAX increases the
inter-record spatial locality (because it groups values of
the same attribute that belong to different records) with
minimal impact on the intra-record spatial locality.”

Unfortunately, the details of the page layout are
somewhat complex, as shown in Figure 3. The data
structure requires multiple levels of indirection, e.g.,
for variable-size mini-pages in addition to variable-size
field values. Modifications to the space management
within a PAX page is also complex and might need to
happen more often than in NSM pages. The main rea-
son is that NSM pages have only one pool of empty
space ready for allocation, located between the two
areas growing towards each other.

PAX pages, on the other hand, have multiple pools
of free space, one per mini-page. The fixed-size fields
present little problem, but if the sizes of future values
in the variable-size fields cannot be predicted accurate-
ly and reliably, the size of mini-pages must be adjusted
repeatedly. The reorganization and movement effort is
exaggerated if mini-pages for fixed-size fields and for
variable-size fields are interleaved as shown in Figure
3.

In fact, Figure 3 does not show the full complexity
of the design. Specifically, the variable-size field re-
quires either a presence bit (null bit) or an additional

size field. Otherwise, setting a single variable-size field
to null cannot be represented without substantial effort
or information loss for neighboring fields. If a null bit
is added, there is no need to overwrite the offset value
and the size of the neighboring record can be calculated
as the difference between two offsets. If a null value in
a variable-size field is indicated by a special offset val-
ue, then a neighboring field (and thus all variable-size
values) requires an additional size indicator. Alterna-
tively, an entire mini-page must be compacted immedi-
ately when a valid variable-size value is replaced by a
null. After the compaction, a zero difference between
offsets can represent a null value.

Figure 3. An example PAX page (from [ADH 01]).

It could be argued that a page in NSM format is af-
fected twice by a variable-size field value, because
both the field value and the record as a whole require
size information and indirection for space management
(offsets). A page in PAX format seems to be affected
only once and, in fact, requires no size information
because it is implied in the difference between two
neighboring offsets. This argument is not correct, how-
ever. First, a PAX page requires space management for
variable-size mini-pages in addition to space manage-
ment for individual variable-size values. Second, dif-
ferences between offsets can indicate sizes only if the
sequence of offsets equals the sequence of values and if
size-changing updates always imply immediate com-
paction. Neither of these conditions is acceptable if
data changes are likely or even frequent. Incidentally,
some NSM designs avoid sizes for individual variable-
size fields within records using differences of offsets,
e.g., IBM’s Starburst [HCL 90].

2.3 Discussion

The principal strength of the PAX format, clearly
demonstrated in the original research [ADH 01], is a

 Page 4

reduction of cache faults and execution stalls during
large scans with predicate evaluation. Cache faults and
execution stalls were not reported for single-record
insertions, deletions, and full-record retrievals based on
record identifiers. The cache faults during single-record
operations may be expected to be linear with the num-
ber of attributes and mini-pages. Bulk loading performs
similarly for NSM and PAX because it touches every
cache line within a page in either format.

The principal weakness of the PAX format, in our
assessment, is the complexity of variable-size updates.
A single size-changing update might require that the
sizes and placements of several mini-pages change
within the page. While physiological logging avoids
the need to copy the page contents to the recovery log,
it nonetheless is an expensive and complex operation
with many cache faults. If the relative size of actual
attribute values cannot be estimated reliably a priori,
many invocations of this operation may be required
over time.

In contrast, the NSM format has a single pool of
free space between the offset array and the data rec-
ords. If record deletions or record-shrinking updates
create additional fragmentation, a very simple compac-
tion algorithm can be used. This compaction algorithm
may sort all record offsets and process records in this
order. A simple optimization avoids copying effort
where relocation is not required. Alternatively, it may
copy all records to a new page frame. The new page
frame then replaces the old one in the buffer pool.

For use with flash storage, both NSM and PAX re-
quire slight modifications. A large disk page contains
the same set of records with either NSM or PAX. With
NSM, entire records are assigned to individual small
flash pages. With PAX, each small flash page contains
values for one field only, with an appropriate number
of small flash pages allocated for each field in the rec-
ord format.

PAX pages are very efficient for large scans with
predicates that require only a few fields from each rec-
ord. NSM pages are efficient in single-record opera-
tions, both retrieval and update. Moreover, the NSM
in-page organization with a single pool of free space is
particular flexible for records and field values with
unpredictable sizes. As both scans and updates are im-
portant database operations, it is extremely desirable to
employ a page layout that is efficient for both.

3 A simplistic hybrid page layout

The goal of the proposed hybrid page layout is to
combine the advantages of the PAX format and of the
NSM format, namely efficient predicate evaluation
during large scans and efficient space management
during insertions, deletions, and size-changing updates.
Like PAX, the hybrid page layout fills entire aligned
cache lines with values of a single field; obviously,

these values belong to multiple records. Like NSM, the
hybrid page layout employs only two variable-size
allocation spaces and grows them towards each other
starting from the opposite ends of the page.

Three variants of the hybrid page layout are intro-
duced. The simplistic variant is meant merely to con-
vey and illustrate the principal idea. The rigid variant
adds bits for null values and for ghost records. It also
adds considerations for read-ahead of cache lines. Fi-
nally, the incremental variant of the hybrid page layout
reduces fragmentation and enables the hybrid page
layout for small pages.

The example of [ADH 01] is used throughout,
with each record including a 4-byte identifier, a 1-byte
age field, and a variable-size name string requiring a 2-
byte in-page offset and a 2-byte size.

3.1 Simple segments

The simplest variant of the hybrid page layout as-
sumes that each field is at least one byte in size (no bit
fields) and that all field sizes are multiple bytes. It ig-
nores null values and ghost records (also known as
pseudo-deleted records).

The essence of the new design is quite simple. An
allocation space for fixed-size fields grows from one
end of the page and an allocation space for variable-
size fields grows from the other end. Offsets for varia-
ble-size fields are considered fixed-size fields in their
own right. Size information for variable-size fields is
treated as another fixed-size field. Alternatively, pairs
of offset and size can be treated as a single fixed-size
field or the size information can be integrated into the
string values.

For fixed-size fields, the set of records is divided
into segments. The number of records per segment is
equal to the number of bytes per cache line. The num-
ber of cache lines per fixed-size field is equal to the
number of bytes in each field value.

In the running example from [ADH 01], the fixed-
size fields total 4+1+2+2=13 bytes. Thus, each seg-
ment contains 13 cache lines. The first 4 cache lines
contain identifier values, the next one age values, the
next two cache lines contain offsets, and the last two
cache lines in each segment contain size information
for the variable-size name field.

Segments are numbered starting with 0. Assuming
all records within a page are numbered starting with 0,
an integer division determines the segment number,
another simple calculation determines both the location
of the appropriate segment, and a third calculation (di-
vision with remainder) finds any field’s byte offset
within the segment. In the example, with cache lines of
64 bytes, each segment contains field values of 64 rec-
ords and occupies 13 cache lines or 13×64=832 bytes.
Record 145, for example, belongs to segment

 Page 5

145÷64=2 starting at byte offset 2×832=1,664 after the
page header. Within the segment, the values of record
145 are found in position 145%64=17. The 4-byte
identifier value of this record, for example, is located at
byte offset 1,664+17×4=1,732.

For variable-size fields, the space management
policy treats all values without regard to the record or
the field to which the value belongs. Variations to this
basic scheme will be considered below.

Space management for the entire page has fixed-
size fields and variable-size fields grow towards each
other. The space for fixed-size fields grows one seg-
ment at a time, i.e., by 13 cache lines at a time in the
example. The incremental hybrid page layout will re-
duce this minimal unit of growth.

3.2 Illustration

Figure 4 illustrates the hybrid page layout and its
cache behavior. The page header is omitted in order to
focus on the essence of the page layout. The figure
shows the same data as the PAX layout illustrated in
Figure 3. For example, employee 0962 is named Jane
and is 30 years old. The figure assumes 4 bytes per
cache line and thus 4 values of each field per segment.
In order to better illustrate segments, 1 record has been
added compared to the prior figures. The offset values
are shown as pointers and the length values are omitted
for simplicity in the diagram.

Figure 4. Hybrid page layout – simple variant.

Most prominent in Figure 4 is the single pool of
free space between the two allocation spaces for fixed-
size values and for variable-size values. This feature is
very similar to traditional NSM pages and very differ-
ent from PAX pages.

The second obvious aspect is that the variable-size
fields are all allocated from the same pool of free
space. This particular example uses only a single varia-
ble-size field; if it had multiple variable-size fields,
values of different fields would be mixed freely. In the
simplest variant of the hybrid page layout, cache lines
are not considered in space allocation for variable-size
fields.

Each segment represents 4 records in this example
diagram. Thus, 5 records require 2 segments. The
pointers (offsets) for variable-size fields are represent-
ed just like user-defined fixed-size fields. Note that the
5 values of each field (e.g., employee identifiers) are
not contiguous, very different from the PAX design. In
the proposed format, each cache line contains values
from only one field (as in PAX) but the cache lines
holding the same field are distributed over all segments
within a page.

3.3 Basic efficiency considerations

The two cache lines shown on the right of Figure 4
are equivalent to the behavior of PAX shown in Figure
2. In a large scan with predicate evaluation touching
only a single field of each record, e.g., age, the number
of cache faults is minimized, and each line fetched
from memory into the cache is full with values of the
required field. Thus, the number of cache faults in a
large scan of the new hybrid format should mirror that
of the PAX format.

At the same time, space management within a
page is quite similar to that of the NSM format. Two
allocation spaces grow towards each other. The differ-
ence to the traditional NSM format is that the unit of
growth in the fixed-size area is not a single record but a
segment.

Thus, in the worst case with only a single record in
the last segment, as shown in Figure 4, the space lost to
fragmentation is almost equal to one segment. On aver-
age for all possible page and record sizes, about half a
segment is lost to fragmentation. Some of the variants
below reduce the fragmentation.

3.4 Summary: simplistic hybrid page lay-
out

The simplest hybrid page layout suffices to illus-
trate the principal technique in the proposed hybrid
page layouts: Like PAX, it dedicates entire cache lines
to individual fields. This technique enables large scans
with few cache faults. Like NSM, it employs only two
allocation spaces within each page and lets them grow
towards each other. This technique promises that size-
changing updates can be captured as efficiently as in
NSM.

4 A rigid hybrid page layout

The simplistic hybrid page layout is not proposed
for implementation; various refinements are required in
order to satisfy the requirements of a real system. The
present section adds three of these refinements. Each of
these adds required functionality but increases the
segment size. The resulting segment sizes are not prac-

 Page 6

tical for common page sizes. Therefore, the subsequent
section introduces partial or incremental segments.

4.1 Read-ahead of cache lines

In many systems, multiple contiguous cache lines
can be fetched from memory more efficiently as a sin-
gle block than in individual cache faults. In order to
take advantage of this hardware optimization, the basis
for cache line optimizations should focus on a block of
cache lines, not a single cache line.

Instead of a single cache line, a small number of
cache lines might be employed in this calculation in
order to exploit the read-ahead capability of modern
caching hardware. For example, if the true size of a
hardware cache line is 64 bytes and if the hardware
favors blocks of 4 contiguous cache lines, the calcula-
tion might employ 256 bytes in place of the cache line
size.

In the example from [ADH 01] with 13 bytes in
fixed-size fields per record, each segment size contains
256 records and occupies 256×13=3,328 bytes.

4.2 Poor man's normalized keys

Strings can be stored in many forms. For efficient
comparisons, normalized keys represent strings such
that a simple binary comparison suffices, at least in the
default collation sequence and locale (for international
strings). For even more efficient search, ‘poor man's
normalized keys’ turn the first few bytes (e.g., 2 or 4
bytes) of a normalized key into a fixed-size field (e.g.,
an unsigned integer).

In a B-tree or similar index using an NSM page
layout, the offset array in each page may include the
poor man's normalized keys such that many compari-
son may avoid cache faults for the main record as well
as invocation of a comparison function. In PAX and
other scan-optimized page layouts, a poor man's nor-
malized key is a fixed-size field permitting the full set
of optimizations for space management and scan per-
formance.

4.3 Ghost records

Many databases employ bits and bitmaps as status
indicators for entire records, e.g., “pseudo-deleted” or
“ghost” records that are physically present but logically
not valid. Many database systems use ghost records in
order to simplify transaction rollback after deletion of a
record and for other purposes.

In order to optimize cache alignment of such bits,
the segment definition can focus on bits instead of
bytes. With a cache line of 64 bytes or 512 bits, for
example, the segment size is 512 records rather than 64
records. In this variant of the hybrid page layout, the
first cache line in each segment is filled with 512 ghost

bits. The following cache lines contain 512 field values
of the 1st fixed-size field, then 512 values of the 2nd
fixed-size field, etc.

In the example of [ADH 01], 512 records with 13
bytes plus a 512 ghost bits result in a segment size of
512÷8+512×13=6,720 bytes.

If the page layout is optimized for blocks of cache
lines, e.g., blocks with 4 cache lines of 64 bytes, then
each segment is even larger. For example, a block of
4×64=256 bytes or 2,048 bits requires segments of
2,048 records. In the example, each segment thus oc-
cupies 2,048÷8+2,048×13=26,880 bytes. Larger rec-
ords with more fixed-size fields lead to even larger
segment sizes. Such segment sizes might be possible in
very large disk pages (e.g., 1 MB) but are unrealistic
for traditional disk page sizes (e.g., 8 KB) or page sizes
optimized for flash storage (e.g., 2 KB).

4.4 Bit fields for null values

For those fields not covered by a “not null” integ-
rity constraint, databases typically have null bitmaps.
In NSM implementations, there is one such bitmap per
record, covering both fixed-size and variable-size
fields. Alternatively, variable-size fields with no value
can be expressed by equal field offsets, i.e., zero length
(although SQL defines an empty string as different
from a null value). PAX has a “presence bitmap” with-
in each mini-page, as shown in Figure 3.

If presence bitmaps are required to indicate null
values, they can be additional fixed-size fields. Alter-
natively, they could be integrated into the cache lines.
The former uses a bitmap per record with a bit per
field; the latter uses a bitmap per field with a bit per
record. We only pursue the former alternative here.

Null bitmaps may force large segments even in de-
signs that do not employ ghost records and ghost bits.

4.5 Summary: rigid segments

The rigid variant adds bits for null values and for
ghost records. It also adds considerations for read-
ahead of cache lines as well as poor man's normalized
keys for efficient search on string fields. Both bitmaps
and blocks of cache lines increase segments to sizes
beyond those of traditional page sizes. In other words,
with this design, a single page could not even hold a
single segment. The following design of incremental
segments addresses this issue.

5 An incremental hybrid page layout

Simplistic segments fail to support Null values and
efficient deletion of records using ghost bits; rigid
segments with all optimizations are too large; and in-
cremental segments attempt to remedy both of those

 Page 7

shortcomings at the expense of some additional ad-
dresses calculations.

In this design, each full segment has the same size
as a rigid segment. However, partially full segments
require substantially less space. Thus, incremental
segments are suitable for traditional pages sizes (e.g.,
8 KB). For large page sizes (e.g., 1 MB), incremental
segments leave much less unused space than rigid
segments.

5.1 Incremental segments

If each cache line contains 64 bytes, if read-ahead
of cache lines suggests blocks of 4 cache lines, and if
bit-size fields and the number of bits per block deter-
mine the segment size, then each segment contains 2K
records. Clearly this does not work with pages of 8 KB.
Even for large pages, say 1 MB, 2K records per seg-
ment seem a lot. For example, if each record contains
150 bytes of fixed-size fields, each segment requires
300 KB. A lot of space would be wasted due to frag-
mentation within each page.

While it make sense to allocate 2K bits at a time, it
might not be as sensible to allocate 2K 8-byte values at
a time. The incremental version of the hybrid page lay-
out therefore allocates space in units of equal size in-
dependent of the field size. If bits are allocated 2K at a
time, fields of 1 byte are allocated 256 at a time, fields
of 2 bytes are allocated 128 at a time, etc. Thus, each
segment starts with 2K bits for each field, which sup-
ports some records with all fields. The number of rec-
ords is 2K divided by the size of the largest field in
bits. This is followed by allocation units for the largest
fields in order to increase the number of supported rec-
ords. The goal is to support the largest number of rec-
ords for any segment size.

In other words, the smallest fixed-size field size
determines the record count per segment. This field
may be a bit-size field, e.g., the ghost bit. In this case,
the record count per segment is equal to the bit count
per cache line. The largest fixed-size field determines
the precision with which the record count per page can
be adjusted. Contiguous cache lines are allocated to the
fields one at a time. The allocation algorithm loops
over the fields (including, and starting with, the ghost
bits and the null bits).

This scheme wastes some space in fragmentation,
but never more than a cache line per fixed-size field.
On average, half a cache line per field is wasted. This
matches the best case for PAX. The hybrid page layout
achieve this fragmentation loss quite naturally as the
two allocation spaces grow towards each other from
opposite ends of the page; PAX, on the other hand,
might require multiple reorganization operations unless
the sizes of variable-size fields is known and consid-
ered a priori.

5.2 Illustration

In order to illustrate the full power of incremental
segments, the following example relation adds Null
values.

Figure 5. Table with Null values.

Figure 5 shows a slightly larger instance of the

example table, including some Null values in non-key
columns. It is a design choice to prepare the physical
representation for Null values in key columns in case
the logical integrity constraint is subsequently dropped.
In the following, there is no allowance for Null values
in the Identifier column.

Figure 6. Data arrangement in incremental segments.

Figure 6 shows an incremental segment for the ta-

ble in Figure 5. Each line in the box represents one
cache line. For a concise illustration, the size of a cache
line is assumed to be 8 bytes or 64 bits. The segment
starts with a bitmap indicates valid records and ghost
records, indicating 9 valid records followed by 55
ghosts or missing records. Next are bitmaps for Null
values. The column values form groups of 2, 4, or 8

 Page 8

values as required to fill a cache line. Column values
are ordered as in the table definition and in Figure 5; a
different sequence may simplify the implementation of
address calculations. Variable-size string columns re-
quire 2 fixed-size fields, offset and size. Our imple-
mentation adds a third fixed-size field, a prefix of the
normalized key called a poor man's normalized key
elsewhere [GL 01]. Segments for fixed-size fields and
the space for variable-size values grow towards each
other until the page is full.

The red numbers trailing the field names indicate
how many records are completely covered by the cache
lines up to that point. For example, 8 records require 12
cache lines, 3 for bitmaps and 9 for field values. The
smallest possible segment requires 7 cache lines and
holds 2 records. A full segment of 64 records requires
579 cache lines, 3 for bitmaps and 9×8×8=576 for field
values.

5.3 An example size calculation

While the size of a full segment is the same for
rigid segments and incremental segments, the interest-
ing case is a segment less than full, e.g., half full. A
rigid segment still requires the same size, whereas an
incremental segment can be much smaller and fit into
any practical page size.

It is fairly straightforward to map a record count to
the size of an incremental segment. It requires identify-
ing all fields, including bit fields for ghost and Null
information as well as pointers and sizes for variable-
size fields, determining for each the count of values per
cache line and rounding those counts up, and then add-
ing up the number of required cache lines.

For example, assume that the goal is to allocate
(and later scan) 2K bits at a time. Bit-size attributes
such as ghost and Null bits require one allocation for
2K records or a fraction thereof. Byte-size attributes
require one allocation for 256 records or a fraction
thereof. Two-byte values such as offsets and sizes of
variable-size fields require one allocation for 128 rec-
ords or a fraction thereof. Four-byte values such as
many integers poor man's normalized keys require one
allocation for 64 records or a fraction thereof.

For the running example shown in earlier dia-
grams, Figure 6 shows specific values based on cache
lines of 8 bytes. For cache lines of 2K bits or 256
bytes, the increments must be 32 times larger, e.g., 64
Identifier values and 128 offsets and sizes for variable-
size Name values.

Mapping in the opposite direction is a bit more
complex and may require an iterative process, i.e., re-
peatedly testing possible record counts and calculating
whether or not those records will fit in the available
space. If the record format includes variable-size val-
ues, such a calculation is typically moot, since incre-

mental segments and variable-size fields grow towards
each other to fill the page similar to the NSM page
layout.

5.4 Summary: an incremental hybrid page
layout

In summary, incremental segments exploit very
large segments where the space is available. For small
pages or for the remainder in a large space, incremental
segments support the maximal number of records.
They waste no space for the largest fixed-size fields
and, on average, a half cache line for the other fixed-
size fields. Thus, incremental segments avoid the limi-
tations of simplistic segments and the fragmentation
problems of rigid segments.

6 Performance evaluation

The design goal of HPL is to combine the ad-
vantages of PAX for data warehouse query execution,
in particular large scans, and of NSM for transaction
processing, i.e., updates of individual rows and records.
In order to evaluate HPL, we compared it with both
NSM and PAX for queries and updates in TPC-B, -C,
and -H.

System configuration: The experimental evaluation
was performed on two different machines, based on
different CPU architectures and standing for different
technological generations. Machine A is an Intel Xeon
server with two quad-core Intel Xeon 5630 2.5 GHz
processors (256 KB L1 cache, 1 MB L2 cache and
12 MB L3 cache) and 48 GB RAM and newer genera-
tion QPI bus architecture. Machine B is a Sun Fire
x4440 server, with 64 GB RAM and four quad-core
AMD Opteron 8356 2.3 GHz processors (4× 512 KB
L1 cache, and 2 MB L2 and L3 cache) and front-side-
bus architecture. Both processor types have a cache
line size of 64 bytes. Both systems run Debian Linux.

Benchmark implementation: For PAX and NSM,
we used the available benchmark implementation in the
respective Shore-MT kits. We implemented and vali-
dated ourselves the TPC-B, -C, -H kits for HPL. All
experiments were performed on memory resident data-
bases (using RAM disk). We experimented with differ-
ent data sets and database sizes; detailed information
on the benchmark instrumentation is provided in the
respective section.

6.1 Query execution: TPC-H

We configured TPC-H with two different data set
sizes, namely scale factors 0.5 and 1. Since the differ-
ences are negligible, results are reported only for SF 1.

Within the TPC-H workload, we focused on que-
ries Q1, Q6, Q12 and Q14, because they represent dif-
ferent access patterns. Query Q1 scans a large table

 Page 9

with almost all record satisfying the predicate and
forms intermediate results records for the next opera-
tion, an aggregation with a very small result. The scan
in query Q6 disqualifies most records based on a single
field, the ideal case for PAX. Queries Q12 and Q14 are
also large queries but join efficiency, not scan efficien-
cy, determines their performance. Below we report the
average sequential execution times of 50 test runs and
the respective standard deviations.

HPL, even with incremental segments, suffers
some fragmentation, which can be minimized by pages
sizes optimized for analytical query processing. Unfor-
tunately, Shore-MT limits the page size of 32 KB. In
order to emulate the effect of larger pages and the re-
duced loss to fragmentation, we scaled the number of
records per page in all page layouts to 204 records for
the ‘line item’ table, 256 records for the ‘orders’ table,
and 199 records for the ‘part’ table.

Table 1. TPC-H performance results.
Machine A/Intel – Scale Factor 1

qu
er

y

NSM PAX HPL

Time
[s]

Stdv
[s]

Perf.∆
[%]

Time
[s]

Stdv
[s]

Perf.∆
[%]

Time
[s]

Stdv
[s]

Q1 0.58 0.02 8.4 0.49 0.01 -10.9 0.55 0.01

Q6 0.46 0.01 6.9 0.41 0.01 -5.1 0.43 0.01

Q12 3.59 0.12 6.6 3.40 0.09 0.8 3.36 0.11

Q14 3.39 0.09 -6.6 3.38 0.11 -7.1 3.63 0.13

Machine B/AMD – Scale Factor 1

qu
er

y

NSM PAX HPL

Time
[s]

Stdv
[s]

Perf.∆
[%]

Time
[s]

Stdv
[s]

Perf.∆
[%]

Time
[s]

Stdv
[s]

Q1 1.16 0.01 -3.5 1.06 0.01 -11.5 1.20 0.01

Q6 0.97 0.01 1.3 0.94 0.01 -1.6 0.96 0.01

Q12 7.17 0.10 3.9 6.81 0.09 -1.3 6.90 0.09

Q14 8.53 0.21 -8.3 8.24 0.13 -11.4 9.30 0.61

Table 1 shows the measured query execution

times. Values in the Δ columns indicates the difference
of the prior techniques to HPL; a positive value means
the HPL is faster than the prior technique. The results
demonstrate that the performance of HPL falls between
PAX and NSM under analytical loads. HPL is consist-
ently faster than an NSM except for Q14, and Q1 on
machine B. HPL is consistently slower than PAX (by
5-11%). Query Q1 and Q6 represent large scans, but of
different types. In Q1, most records are selected and
multi-field records are extracted for the next operation
in the query execution plan. Assembly of records re-
quires repeated address calculations. Even with optimi-
zations and caching of prior addresses, these calcula-
tions incur many L1 cache misses. This is clearly the

Achilles heel of HPL. In Q6, on the other hand, scans
primarily one field, where the majority of HPL’s cache
efficiency optimizations come to effect. Therefore, the
performance difference between HPL and PAX is fair-
ly small – 5% on machine A and 1.6% on machine B.

Q12 and Q14 stress the performance of different
join algorithms and management of temporary inter-
mediate query results. HPL has good performance on
Q12 due to the use of poor man’s normalized keys.

In summary, field scan operations are marginally
slower on HPL than on PAX and much faster than on
NSM due to better cache efficiency. Record scan oper-
ations are slower on HPL compared to both PAX and
NSM, because of the high record cost of record con-
struction due to scattered reads.

6.2 Database updates: TPC-B

To evaluate the update performance of HPL, in
particular with NSM, we implemented and performed
TPC-B and TPC-C experiments. TPC-B was instru-
mented with two different data set sizes, scale 1 and
scale 10. For brevity, we only report results for
scale 10.

Table 2 summarizes the results. Clearly, in update-
intensive environments such as TPC-B, HPL achieves
very good performance. The average transactions
throughput is comparable to that of NSM on both ma-
chine A and machine B. The performance difference is
within one standard deviation.

Table 2. TPC-B performance results
Machine A/Intel – Scale 10

NSM [tps] NSM stdv [tps] Perf.∆ [%] HPL[tps] HPL stdv [tps]

18394 1% -2% 18033 2%

Machine B/AMD – Scale 10

NSM [tps] NSM stdv [tps] Perf.∆ [%] HPL [tps] HPL stdv [tps]

11580 1% 3% 11903 2%

Figure 7. TPC-B transaction breakdown (machine A).

 Page 10

Figure 7 breaks down the performance of each
statement in one of the TPC-B transaction, specifically
the “account update” transaction. Tj stands for the jth
statement within the transaction; r, i, and u stand for
retrieval, insertion, and update. Figure 8 shows the
same information for machine B.

Figure 8. TPC-B transaction breakdown (machine B).

The numbers substantiate several rules that flow

from the HPL design hypotheses (Section 5): (i) up-
dates, especially single-field updates, are about 5%
faster on HPL since they can be performed in place
whereas Shore-MT always replaces entire records (due
to its prefix truncation techniques); (ii) reads, especial-
ly those that construct a whole record, are faster on
NSM, since HPL performs multiple address calcula-
tions and multiple scattered read operations; (iii) sin-
gle-field reads (e.g., T1) exhibit comparable perfor-
mance.

In brief, field update operations, are 5% faster on
HPL. HPL and NSM perform very similarly under
write intensive loads.

6.3 OLTP Database Load: TPC-C

Finally, TPC-C experiments stress the insert, ran-
dom read, and delete operations of HPL as well as rec-
ord-to-record and index-to-index navigation, e.g.,
searching a secondary index and fetching additional
columns from a primary index [HSY 01, LD 93]. TPC-
C is more read-intensive than TPC-B; the read opera-
tions are mostly random or record-to-record navigation.
Record construction is common. In addition, the “de-
livery” transactions stresses delete mechanisms and the
“new order” and “payment” transactions also test the
insert functionality.

Table 3 shows the transaction throughput for indi-
vidual transactions on HPL and NSM as well as the
entire TPC-C transaction mix. Clearly, updating trans-
actions such as “new order” and “payment” are about
11% slower on HPL than on NSM. This issue is ad-
dressed later in this section.

Table 3. TPC-C performance results
Machine A/Intel – Scale 10 Warehouses

Tx. Name NSM [tps] Perf.∆ [%] HPL [tps]
New Order 1649 -11% 1465
Payment 11855 -11% 10523

Order Status 9575 -9% 8674
Delivery 13282 3% 13648

Stock Level 518 1% 523
Mix 2198 -5% 2097

Machine B/AMD – Scale 10 Warehouses

Tx. Name NSM [tps] Perf.∆ [%] HPL [tps]
New Order 1149 -11% 1020
Payment 7494 -11% 6654

Order Status 6330 -11% 5605
Delivery 9731 6% 10353

Stock Level 340 3% 349
Mix 1516 -6% 1421

The “delivery” transaction performs equally well

on both page formats. The delete operations on HPL
perform about 15% better on than on NSM (Table 3,
Figure 9, Figure 10). This is due to the ghost bit vector.
Single field updates such as those measured by T4 ru
or T5 ru are about 5% faster on HPL, which confirms
the results in Section 6.2.

Figure 9. TPC-C “delivery” transaction (machine A).

Figure 10. TPC-C “delivery” transaction (machine B).

In addition, we performed a detailed breakdown

analysis of the “new order” and “payment” transactions
(analogously to the TPC-B “account update” transac-

 Page 11

tion) to investigate the performance effects of inserts,
record construction and record-to-record navigation.

For brevity, we only discuss the “new order”
breakdown; the “payment” breakdown yields similar
findings.

Figure 11: TPC-C NewOrder Transaction (machine A).

Figure 12. TPC-C NewOrder Transaction (machine B).

Field reads combined with single field scan opera-
tions, e.g. T1 (Figure 11, Figure 12) perform well on
HPL. Read operations on HPL yielding record con-
struction, e.g. T2, T3 or T5b are 5% to 10% slower
than on NSM due to scattered reads. Since record con-
struction also results from index-to-record transitions
such operations also perform 5% to 10% slower on
HPL compared to NSM. Single field update operations
like T4 are faster on HPL, whereas multi-field updates
are faster on NSM, due the lack of offset calculation
and scattered accesses. In the general case, inserts on
HPL are equally fast (T5d) or slower (T7) than on
NSM.

In summary, read operations resorting to record
construction are about 10% slower on HPL. Inserts on
HPL are as fast as or slower than on NSM. Deletes are
about 15% faster on HPL than on NSM.

6.4 Summary: performance evaluation

In summary, in our performance comparisons of
HPL versus PAX and NSM using standard TPC

benchmarks, we found that field scan operations are
marginally slower on HPL than on PAX but much fast-
er than on NSM due to better cache efficiency and op-
timized scanners. Record scan operations are about
11% slower on HPL compared to both PAX and NSM,
due to the high cost for record construction due to scat-
tered reads. Field update operations are about 5% faster
on HPL compared to NSM. HPL and NSM perform
equally well under write intensive loads. Inserts on
HPL are marginally slower than on NSM. Deletes are
about 15% faster on HPL compared to NSM.

In general, multi-field operations are slowest on
HPL. HPL single-field operations exhibit performance
that is equal to or marginally slower than that on NSM
or PAX.

7 Conclusions

In summary, NSM is a strict record-at-a-time for-
mat, PAX is a strict field-at-a-time format, and the new
hybrid page layout HPL is a combination aimed to cap-
ture the advantages of both. NSM is optimized for sim-
ple management of variable-size records and of free
space, PAX is optimized for efficiency of large scans
and their predicate evaluation, and HPL is optimized
for both.

As in NSM, each HPL page contains a fixed-size
page header and two variable-size areas that grow to-
wards each other until the page is full. The difference
to NSM is that the fixed-size area contains more than
the record offsets. As in PAX, predicate evaluation
against a single field incurs minimal cache faults in
HPL because each cache line is filled entirely with a
single field. The difference to PAX is that the cache
lines holding a single field are not contiguous but are
organized in repeating segments.

All three formats apply to records within tradition-
al on-disk data pages and to small pages appropriate for
flash storage within large pages appropriate for modern
disk drives. NSM assigns entire records to small pages,
PAX divides a large page into “mini-pages” each con-
sisting of one or more small pages and then assigns
fields to these “mini-pages,” and the hybrid format
assigns as many small pages to each field according to
its size and then repeats this pattern. Thus, after a large
page has been lifted from disk into flash storage, a
large scan and its predicate evaluation require only a
few of the small page in memory.

If not only query performance but also update per-
formance, in particular insertion performance, are im-
portant, one might try to adopt an idea that seems very
promising for column stores, namely a delta store in
row format [SAB 05]. In other words, new insertions
are retained in NSM format on the page and are not
distributed over multiple cache lines as required in
PAX and the hybrid format. Queries must inspect not
only the full cache lines but also the records stored in

 Page 12

the traditional way. A page compaction or reorganiza-
tion will later optimize the page for large scan perfor-
mance. The reorganization might be triggered by a que-
ry, by the passage of time, etc. The hybrid page format
may be more suitable to this technique than the PAX
format because of the single block of free space be-
tween the two areas for fixed-size and variable-size
fields.

The performance measurements demonstrate that
the new hybrid page layout fills the gap between NSM
and PAX, recommending them to single-purpose sys-
tems whereas HPL is a compromise suitable to a wide
variety of database systems and access patterns.

In conclusion, the hybrid format represents a blend
and an improvement of both prior formats. All three
formats are similar in terms of capacity, e.g., they fit
similar record counts in each page. They differ in the
complexity of space management and in their cache
efficiency. The advantages apply both to records within
a page and to data organization optimized for both
flash storage and disk, and may be applicable to addi-
tional levels in a complex memory hierarchy.

Both PAX and the hybrid format could be general-
ized to fit multiple fields at-a-time, just as vertical par-
titioning is a generalization of a strict column-at-a-time
storage format. In fact, it is often merely a matter of
taste or convenience whether something is a single
field or two separate fields. Consider, for example,
telephone numbers: is the area code a separate field
from the local number? Again, PAX and the hybrid
format offer very similar facilities to model such
choices as desired.

Additional research and design work is required to
integrate PAX and the hybrid format with the various
forms of data compression, e.g., prefix and suffix trun-
cation [BU 77], duplicate value elimination [PP 03],
run-length encoding (both for equal values such as “8,
8, 8, …” and for successive values such as “1, 2, 3,
…”), order-preserving Huffman and Lempel-Ziv com-
pression, etc., and to apply the resulting designs to
multiple levels in a deep memory hierarchy including
CPU caches, local and remote memory, NAND and
NOR flash memory, “performance-optimized” “enter-

prise” disks and “capacity-optimized” “consumer”
disks, mirrored and RAID storage, etc. Finally, we plan
on investigating how formats, memory hierarchy, and
query processing algorithm interact not only with re-
spect to performance but also with respect to the ro-
bustness of performance.

Acknowledgements

Anastassia Ailamaki’s and Harumi Kuno’s com-
ments on an early draft of this paper as well as their
encouragement are highly appreciated. We thank Alex
Buchmann for support and computing resources at TU
Darmstadt.

References

[ADH 01] Anastassia Ailamaki, David J. DeWitt, Mark
D. Hill, Marios Skounakis: Weaving relations for
cache performance. VLDB 2001: 169-180.

[GL 01] Goetz Graefe, Per-Åke Larson: B-tree indexes
and CPU caches. ICDE 2001: 349-358.

[HCL 90] Laura M. Haas, Walter Chang, Guy M.
Lohman, John McPherson, Paul F. Wilms, George
Lapis, Bruce G. Lindsay, Hamid Pirahesh, Michael
J. Carey, Eugene J. Shekita: Starburst mid-flight:
as the dust clears. IEEE TKDE 2(1): 143-160
(1990).

[HSY 01] Windsor W. Hsu, Alan Jay Smith, Honesty
C. Young: I/O reference behavior of production
database workloads and the TPC benchmarks – an
analysis at the logical level. ACM TODS 26(1):
96-143 (2001).

[LD 93] Scott T. Leutenegger, Daniel M. Dias: A mod-
eling study of the TPC-C benchmark. ACM
SIGMOD 1993: 22-31.

[PP 03] Meikel Pöss, Dmitry Potapov: Data compres-
sion in Oracle. VLDB 2003: 937-947.

[SAB 05] Michael Stonebraker, Daniel J. Abadi, Adam
Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Samuel
Madden, Elizabeth J. O'Neil, Patrick E. O'Neil,
Alex Rasin, Nga Tran, Stanley B. Zdonik: C-store:
a column-oriented DBMS. VLDB 2005: 553-564.

