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Abstract 

Prior work on in-page record formats has contrast-
ed the “N-ary storage model” (NSM) and the “partition 
attributes across” (PAX) format. The former is the tra-
ditional standard page layout whereas the latter “exhib-
its superior cache and memory bandwidth utilization” 
[ADH 01], e.g., in data warehouse queries with large 
scans. Unfortunately, space management within each 
page is more complex due to the mini-pages in the 
PAX layout. “Borrowing” space from one mini-page 
for another requires moving an entire mini-page. In 
contrast, the NSM format simply grows a slot array and 
the data space from opposite ends of the page until all 
space is occupied. 

The present paper explores a hybrid page layout 
(HPL) that aims to combine the advantages of NSM 
and PAX. Predicate evaluation in large scan queries 
have the same number of cache faults as PAX, and 
space management uses two data areas growing to-
wards each other. Moreover, the design defines a con-
tinuum between NSM and PAX in order to support 
both efficient scans and efficient insertions and up-
dates. 

This design is equally applicable to cache lines 
within RAM memory (the original design goal of 
PAX) and to small pages on flash storage within large 
disk pages. Our experimental evaluation is based on an 
implementation in the former environment. It demon-
strates that the HPL design scans almost as fast as the 
scan-optimized PAX layout and updates almost as fast 
as the update-optimized NSM layout, i.e., it is competi-
tive with both in their best use cases. 

1 Introduction 

The traditional page layout used in many database 
systems stores entire records contiguously. For varia-
ble-size records, a level of indirection (using an array 
with byte offsets within the page) is used. A record 
identifier includes a page identifier plus an index into 
this array. Each time a record is inserted into a page, 
the offset array grows towards the data area and the 
data area grows towards the offset array. The page is 
full when the two areas threaten to overlap. 

This organization is optimal for fetching all fields 
of a single row based on a record identifier, which is a 
typical access pattern in online transaction processing. 
In relational data warehousing, however, many queries 
cannot be answered by fetching the result using index-

es. Instead, many query execution plans require large 
scans, inspecting the same field in each record in order 
to find records satisfying the query predicate. For those 
query execution plans, the traditional in-page record 
organization is not optimal, due to the number of cache 
faults and associated execution stalls. 

For example, assume records of 100 bytes and a 
predicate focusing on a single 4-byte field within each 
record. Assume also a modern processor with multiple 
levels of caches and with cache lines of 64 bytes. In the 
traditional page layout, each record forces at least one 
fault in the CPU cache. Ideally, with cache lines 16 
times larger than the field in the query predicate, there 
should be only one cache fault per 16 records. 

This consideration has led to the design of the 
PAX storage layout. Both the NSM and the PAX stor-
age layouts attempt to put the same records into each 
page, and thus load the same set of record with each 
I/O, etc. Their difference is that NSM stores the infor-
mation in each page one record at a time whereas PAX 
stores the same information one field at a time, aligned 
to cache lines. A large scan can perform very efficient 
predicate evaluation with very few cache faults. 

The core design element in the PAX format is a 
mini-page per field. When a new record is inserted into 
the page, one value is inserted into each mini-page. 
Null values are indicated in a bit vector for fixed-size 
fields and, for variable-size fields, by a special value in 
the offset array pointing to the locations of variable-
size values. 

One disadvantage of the PAX format is the com-
plexity of free space management within each page for 
records with one or more variable-size fields. In most 
cases, the average length of a variable-size field is not 
predictable. Even if the average size is known for a 
table, it probably is not predictable for each page. 
Thus, in order to fit as many records into each page as 
the NSM format permits, in-page optimizations may be 
required after the page is filled when one or more of 
the mini-pages run out of space. The required optimiza-
tion decisions are a bit complex and may be revised 
repeatedly, implying expensive data movement. 

The first purpose of this paper is to describe a third 
page layout that combines the advantages of NSM and 
PAX. From NSM, this design preserves the simplicity 
of two variable-size allocation spaces growing towards 
each other. From PAX, it preserves the cache efficien-
cy during large scans. Multiple variants of this third 
page layout are introduced. For example, the first vari-
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ant is simple but fairly rigid with possibly substantial 
fragmentation in each page, whereas the last one is 
more flexible with less fragmentation in each page. 

The basic ideas of NSM and PAX apply not only 
to traditional pages but also to the organization of rec-
ords and their fields in flash storage. A recent study 
demonstrates the advantages of filling small pages (that 
are appropriate for flash storage and its fast access la-
tency) with values from the same field, and of filling 
large pages (that are appropriate for disks and their fast 
transfer bandwidth) with an appropriate collection of 
such small pages. These small and large pages are very 
similar to mini-pages and disk pages in the original 
PAX design. 

The second purpose of this paper is to report on a 
performance evaluation comparing the three alternative 
designs for database pages in RAM. We found that 
both cache line access and address calculations are 
crucial components of scan and update performance. 

The next section describes NSM and PAX in more 
detail. The following sections introduce the hybrid 
page layout. Both the rigid and the incremental variants 
of the hybrid page layout are described. After a section 
reporting an experimental performance evaluation fol-
lows a summary and a few conclusions from this effort. 

2 Prior work 

Our proposed in-page record format aims to com-
bine the advantages of NSM and PAX. These two for-
mats are described and illustrated very aptly and suc-
cinctly elsewhere [ADH 01]; rather than attempting to 
improve upon those descriptions, they are cited verba-
tim repeatedly here. 

2.1 N-ary storage model (NSM) 

The following diagram, taken from [ADH 01], il-
lustrates four records within a page, including page 
header and record headers (RH1-RH4). The figure also 
shows the offset array (“slots”) that enables variable-
size records and the required space management as 
well as the free space between data space and offset 
array growing towards each other during record inser-
tions. 

In order to enable efficient insertions and size-
changing updates, the page contains two allocation 
spaces. These allocation spaces, one for records and 
one for the offset array, grow towards each other from 
opposite ends of the page. The page is full when they 
meet. Compaction and reclamation of fragmented free 
space (after updates) delays that time as much as possi-
ble. 

 
Figure 1. The cache behavior of NSM (from 

[ADH 01]). 

A scan with a predicate on age incurs a lot of 
cache faults: “Assuming that the NSM page in Figure 1 
is already in main memory and that the cache block 
size is smaller than the record size, the scan operator 
will incur one cache miss per record. If age is a 4-byte 
integer, it is smaller than the typical cache block size 
(32-128 bytes). Therefore, along with the needed value, 
each cache miss will bring into the cache the other val-
ues stored next to age (shown on the right in Figure 1), 
wasting useful cache space to store unreferenced data, 
and incurring unnecessary accesses to main memory.” 
[ADH 01] 

2.2 Partition attributes across (PAX) 

The following paragraphs and diagrams are the 
original description of the PAX format [ADH 01], with 
the numbering of figures adjusted: 

“To store a relation with degree n (i.e., with n at-
tributes), PAX partitions each page into n minipages. It 
then stores values of the first attribute in the first 
minipage, values of the second attribute in the second 
minipage, and so on. The page header at the beginning 
of each page contains pointers to the beginning of each 
minipage. The record header information is distributed 
across the minipages. The structure of each minipage is 
determined as follows: 

 “Fixed-length attribute values are stored in F-
minipages. At the end of each F-minipage there is 
a presence bit vector with one entry per record that 
denotes null values for nullable attributes. 

 “Variable-length attribute values are stored in V-
minipages. V-minipages are slotted, with pointers 
to the end of each value. Null values are denoted 
by null pointers. 
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“Each newly allocated page contains a page header 
and as many minipages as the degree of the relation. 
The page header contains the number of attributes, the 
attribute sizes (for fixed length attributes), offsets to the 
beginning of the minipages, the current number of rec-
ords on the page and the total space available on the 
page. 

 
Figure 2. The cache behavior of PAX (from 

[ADH 01]). 

“Figure 2 depicts a PAX page that stores the same 
records as the NSM page in Figure 1 in a column-
major fashion. When using PAX, each record resides 
on the same page as it would reside using NSM, but all 
SSN values, name values, and age values are grouped 
together on minipages respectively. PAX increases the 
inter-record spatial locality (because it groups values of 
the same attribute that belong to different records) with 
minimal impact on the intra-record spatial locality.” 

Unfortunately, the details of the page layout are 
somewhat complex, as shown in Figure 3. The data 
structure requires multiple levels of indirection, e.g., 
for variable-size mini-pages in addition to variable-size 
field values. Modifications to the space management 
within a PAX page is also complex and might need to 
happen more often than in NSM pages. The main rea-
son is that NSM pages have only one pool of empty 
space ready for allocation, located between the two 
areas growing towards each other. 

PAX pages, on the other hand, have multiple pools 
of free space, one per mini-page. The fixed-size fields 
present little problem, but if the sizes of future values 
in the variable-size fields cannot be predicted accurate-
ly and reliably, the size of mini-pages must be adjusted 
repeatedly. The reorganization and movement effort is 
exaggerated if mini-pages for fixed-size fields and for 
variable-size fields are interleaved as shown in Figure 
3. 

In fact, Figure 3 does not show the full complexity 
of the design. Specifically, the variable-size field re-
quires either a presence bit (null bit) or an additional 

size field. Otherwise, setting a single variable-size field 
to null cannot be represented without substantial effort 
or information loss for neighboring fields. If a null bit 
is added, there is no need to overwrite the offset value 
and the size of the neighboring record can be calculated 
as the difference between two offsets. If a null value in 
a variable-size field is indicated by a special offset val-
ue, then a neighboring field (and thus all variable-size 
values) requires an additional size indicator. Alterna-
tively, an entire mini-page must be compacted immedi-
ately when a valid variable-size value is replaced by a 
null. After the compaction, a zero difference between 
offsets can represent a null value. 

 
Figure 3. An example PAX page (from [ADH 01]). 

It could be argued that a page in NSM format is af-
fected twice by a variable-size field value, because 
both the field value and the record as a whole require 
size information and indirection for space management 
(offsets). A page in PAX format seems to be affected 
only once and, in fact, requires no size information 
because it is implied in the difference between two 
neighboring offsets. This argument is not correct, how-
ever. First, a PAX page requires space management for 
variable-size mini-pages in addition to space manage-
ment for individual variable-size values. Second, dif-
ferences between offsets can indicate sizes only if the 
sequence of offsets equals the sequence of values and if 
size-changing updates always imply immediate com-
paction. Neither of these conditions is acceptable if 
data changes are likely or even frequent. Incidentally, 
some NSM designs avoid sizes for individual variable-
size fields within records using differences of offsets, 
e.g., IBM’s Starburst [HCL 90]. 

2.3 Discussion 

The principal strength of the PAX format, clearly 
demonstrated in the original research [ADH 01], is a 
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reduction of cache faults and execution stalls during 
large scans with predicate evaluation. Cache faults and 
execution stalls were not reported for single-record 
insertions, deletions, and full-record retrievals based on 
record identifiers. The cache faults during single-record 
operations may be expected to be linear with the num-
ber of attributes and mini-pages. Bulk loading performs 
similarly for NSM and PAX because it touches every 
cache line within a page in either format. 

The principal weakness of the PAX format, in our 
assessment, is the complexity of variable-size updates. 
A single size-changing update might require that the 
sizes and placements of several mini-pages change 
within the page. While physiological logging avoids 
the need to copy the page contents to the recovery log, 
it nonetheless is an expensive and complex operation 
with many cache faults. If the relative size of actual 
attribute values cannot be estimated reliably a priori, 
many invocations of this operation may be required 
over time. 

In contrast, the NSM format has a single pool of 
free space between the offset array and the data rec-
ords. If record deletions or record-shrinking updates 
create additional fragmentation, a very simple compac-
tion algorithm can be used. This compaction algorithm 
may sort all record offsets and process records in this 
order. A simple optimization avoids copying effort 
where relocation is not required. Alternatively, it may 
copy all records to a new page frame. The new page 
frame then replaces the old one in the buffer pool. 

For use with flash storage, both NSM and PAX re-
quire slight modifications. A large disk page contains 
the same set of records with either NSM or PAX. With 
NSM, entire records are assigned to individual small 
flash pages. With PAX, each small flash page contains 
values for one field only, with an appropriate number 
of small flash pages allocated for each field in the rec-
ord format. 

PAX pages are very efficient for large scans with 
predicates that require only a few fields from each rec-
ord. NSM pages are efficient in single-record opera-
tions, both retrieval and update. Moreover, the NSM 
in-page organization with a single pool of free space is 
particular flexible for records and field values with 
unpredictable sizes. As both scans and updates are im-
portant database operations, it is extremely desirable to 
employ a page layout that is efficient for both. 

3 A simplistic hybrid page layout 

The goal of the proposed hybrid page layout is to 
combine the advantages of the PAX format and of the 
NSM format, namely efficient predicate evaluation 
during large scans and efficient space management 
during insertions, deletions, and size-changing updates. 
Like PAX, the hybrid page layout fills entire aligned 
cache lines with values of a single field; obviously, 

these values belong to multiple records. Like NSM, the 
hybrid page layout employs only two variable-size 
allocation spaces and grows them towards each other 
starting from the opposite ends of the page. 

Three variants of the hybrid page layout are intro-
duced. The simplistic variant is meant merely to con-
vey and illustrate the principal idea. The rigid variant 
adds bits for null values and for ghost records. It also 
adds considerations for read-ahead of cache lines. Fi-
nally, the incremental variant of the hybrid page layout 
reduces fragmentation and enables the hybrid page 
layout for small pages. 

The example of [ADH 01] is used throughout, 
with each record including a 4-byte identifier, a 1-byte 
age field, and a variable-size name string requiring a 2-
byte in-page offset and a 2-byte size. 

3.1 Simple segments 

The simplest variant of the hybrid page layout as-
sumes that each field is at least one byte in size (no bit 
fields) and that all field sizes are multiple bytes. It ig-
nores null values and ghost records (also known as 
pseudo-deleted records). 

The essence of the new design is quite simple. An 
allocation space for fixed-size fields grows from one 
end of the page and an allocation space for variable-
size fields grows from the other end. Offsets for varia-
ble-size fields are considered fixed-size fields in their 
own right. Size information for variable-size fields is 
treated as another fixed-size field. Alternatively, pairs 
of offset and size can be treated as a single fixed-size 
field or the size information can be integrated into the 
string values. 

For fixed-size fields, the set of records is divided 
into segments. The number of records per segment is 
equal to the number of bytes per cache line. The num-
ber of cache lines per fixed-size field is equal to the 
number of bytes in each field value. 

In the running example from [ADH 01], the fixed-
size fields total 4+1+2+2=13 bytes. Thus, each seg-
ment contains 13 cache lines. The first 4 cache lines 
contain identifier values, the next one age values, the 
next two cache lines contain offsets, and the last two 
cache lines in each segment contain size information 
for the variable-size name field. 

Segments are numbered starting with 0. Assuming 
all records within a page are numbered starting with 0, 
an integer division determines the segment number, 
another simple calculation determines both the location 
of the appropriate segment, and a third calculation (di-
vision with remainder) finds any field’s byte offset 
within the segment. In the example, with cache lines of 
64 bytes, each segment contains field values of 64 rec-
ords and occupies 13 cache lines or 13×64=832 bytes. 
Record 145, for example, belongs to segment 
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145÷64=2 starting at byte offset 2×832=1,664 after the 
page header. Within the segment, the values of record 
145 are found in position 145%64=17. The 4-byte 
identifier value of this record, for example, is located at 
byte offset 1,664+17×4=1,732. 

For variable-size fields, the space management 
policy treats all values without regard to the record or 
the field to which the value belongs. Variations to this 
basic scheme will be considered below. 

Space management for the entire page has fixed-
size fields and variable-size fields grow towards each 
other. The space for fixed-size fields grows one seg-
ment at a time, i.e., by 13 cache lines at a time in the 
example. The incremental hybrid page layout will re-
duce this minimal unit of growth. 

3.2 Illustration 

Figure 4 illustrates the hybrid page layout and its 
cache behavior. The page header is omitted in order to 
focus on the essence of the page layout. The figure 
shows the same data as the PAX layout illustrated in 
Figure 3. For example, employee 0962 is named Jane 
and is 30 years old. The figure assumes 4 bytes per 
cache line and thus 4 values of each field per segment. 
In order to better illustrate segments, 1 record has been 
added compared to the prior figures. The offset values 
are shown as pointers and the length values are omitted 
for simplicity in the diagram. 

 
Figure 4. Hybrid page layout – simple variant. 

Most prominent in Figure 4 is the single pool of 
free space between the two allocation spaces for fixed-
size values and for variable-size values. This feature is 
very similar to traditional NSM pages and very differ-
ent from PAX pages. 

The second obvious aspect is that the variable-size 
fields are all allocated from the same pool of free 
space. This particular example uses only a single varia-
ble-size field; if it had multiple variable-size fields, 
values of different fields would be mixed freely. In the 
simplest variant of the hybrid page layout, cache lines 
are not considered in space allocation for variable-size 
fields. 

Each segment represents 4 records in this example 
diagram. Thus, 5 records require 2 segments. The 
pointers (offsets) for variable-size fields are represent-
ed just like user-defined fixed-size fields. Note that the 
5 values of each field (e.g., employee identifiers) are 
not contiguous, very different from the PAX design. In 
the proposed format, each cache line contains values 
from only one field (as in PAX) but the cache lines 
holding the same field are distributed over all segments 
within a page. 

3.3 Basic efficiency considerations 

The two cache lines shown on the right of Figure 4 
are equivalent to the behavior of PAX shown in Figure 
2. In a large scan with predicate evaluation touching 
only a single field of each record, e.g., age, the number 
of cache faults is minimized, and each line fetched 
from memory into the cache is full with values of the 
required field. Thus, the number of cache faults in a 
large scan of the new hybrid format should mirror that 
of the PAX format. 

At the same time, space management within a 
page is quite similar to that of the NSM format. Two 
allocation spaces grow towards each other. The differ-
ence to the traditional NSM format is that the unit of 
growth in the fixed-size area is not a single record but a 
segment. 

Thus, in the worst case with only a single record in 
the last segment, as shown in Figure 4, the space lost to 
fragmentation is almost equal to one segment. On aver-
age for all possible page and record sizes, about half a 
segment is lost to fragmentation. Some of the variants 
below reduce the fragmentation. 

3.4 Summary: simplistic hybrid page lay-
out 

The simplest hybrid page layout suffices to illus-
trate the principal technique in the proposed hybrid 
page layouts: Like PAX, it dedicates entire cache lines 
to individual fields. This technique enables large scans 
with few cache faults. Like NSM, it employs only two 
allocation spaces within each page and lets them grow 
towards each other. This technique promises that size-
changing updates can be captured as efficiently as in 
NSM. 

4 A rigid hybrid page layout 

The simplistic hybrid page layout is not proposed 
for implementation; various refinements are required in 
order to satisfy the requirements of a real system. The 
present section adds three of these refinements. Each of 
these adds required functionality but increases the 
segment size. The resulting segment sizes are not prac-
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tical for common page sizes. Therefore, the subsequent 
section introduces partial or incremental segments. 

4.1 Read-ahead of cache lines 

In many systems, multiple contiguous cache lines 
can be fetched from memory more efficiently as a sin-
gle block than in individual cache faults. In order to 
take advantage of this hardware optimization, the basis 
for cache line optimizations should focus on a block of 
cache lines, not a single cache line. 

Instead of a single cache line, a small number of 
cache lines might be employed in this calculation in 
order to exploit the read-ahead capability of modern 
caching hardware. For example, if the true size of a 
hardware cache line is 64 bytes and if the hardware 
favors blocks of 4 contiguous cache lines, the calcula-
tion might employ 256 bytes in place of the cache line 
size. 

In the example from [ADH 01] with 13 bytes in 
fixed-size fields per record, each segment size contains 
256 records and occupies 256×13=3,328 bytes. 

4.2 Poor man's normalized keys 

Strings can be stored in many forms. For efficient 
comparisons, normalized keys represent strings such 
that a simple binary comparison suffices, at least in the 
default collation sequence and locale (for international 
strings). For even more efficient search, ‘poor man's 
normalized keys’ turn the first few bytes (e.g., 2 or 4 
bytes) of a normalized key into a fixed-size field (e.g., 
an unsigned integer). 

In a B-tree or similar index using an NSM page 
layout, the offset array in each page may include the 
poor man's normalized keys such that many compari-
son may avoid cache faults for the main record as well 
as invocation of a comparison function. In PAX and 
other scan-optimized page layouts, a poor man's nor-
malized key is a fixed-size field permitting the full set 
of optimizations for space management and scan per-
formance. 

4.3 Ghost records 

Many databases employ bits and bitmaps as status 
indicators for entire records, e.g., “pseudo-deleted” or 
“ghost” records that are physically present but logically 
not valid. Many database systems use ghost records in 
order to simplify transaction rollback after deletion of a 
record and for other purposes. 

In order to optimize cache alignment of such bits, 
the segment definition can focus on bits instead of 
bytes. With a cache line of 64 bytes or 512 bits, for 
example, the segment size is 512 records rather than 64 
records. In this variant of the hybrid page layout, the 
first cache line in each segment is filled with 512 ghost 

bits. The following cache lines contain 512 field values 
of the 1st fixed-size field, then 512 values of the 2nd 
fixed-size field, etc. 

In the example of [ADH 01], 512 records with 13 
bytes plus a 512 ghost bits result in a segment size of 
512÷8+512×13=6,720 bytes. 

If the page layout is optimized for blocks of cache 
lines, e.g., blocks with 4 cache lines of 64 bytes, then 
each segment is even larger. For example, a block of 
4×64=256 bytes or 2,048 bits requires segments of 
2,048 records. In the example, each segment thus oc-
cupies 2,048÷8+2,048×13=26,880 bytes. Larger rec-
ords with more fixed-size fields lead to even larger 
segment sizes. Such segment sizes might be possible in 
very large disk pages (e.g., 1 MB) but are unrealistic 
for traditional disk page sizes (e.g., 8 KB) or page sizes 
optimized for flash storage (e.g., 2 KB). 

4.4 Bit fields for null values 

For those fields not covered by a “not null” integ-
rity constraint, databases typically have null bitmaps. 
In NSM implementations, there is one such bitmap per 
record, covering both fixed-size and variable-size 
fields. Alternatively, variable-size fields with no value 
can be expressed by equal field offsets, i.e., zero length 
(although SQL defines an empty string as different 
from a null value). PAX has a “presence bitmap” with-
in each mini-page, as shown in Figure 3. 

If presence bitmaps are required to indicate null 
values, they can be additional fixed-size fields. Alter-
natively, they could be integrated into the cache lines. 
The former uses a bitmap per record with a bit per 
field; the latter uses a bitmap per field with a bit per 
record. We only pursue the former alternative here. 

Null bitmaps may force large segments even in de-
signs that do not employ ghost records and ghost bits. 

4.5 Summary: rigid segments 

The rigid variant adds bits for null values and for 
ghost records. It also adds considerations for read-
ahead of cache lines as well as poor man's normalized 
keys for efficient search on string fields. Both bitmaps 
and blocks of cache lines increase segments to sizes 
beyond those of traditional page sizes. In other words, 
with this design, a single page could not even hold a 
single segment. The following design of incremental 
segments addresses this issue. 

5 An incremental hybrid page layout 

Simplistic segments fail to support Null values and 
efficient deletion of records using ghost bits; rigid 
segments with all optimizations are too large; and in-
cremental segments attempt to remedy both of those 
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shortcomings at the expense of some additional ad-
dresses calculations. 

In this design, each full segment has the same size 
as a rigid segment. However, partially full segments 
require substantially less space. Thus, incremental 
segments are suitable for traditional pages sizes (e.g., 
8 KB). For large page sizes (e.g., 1 MB), incremental 
segments leave much less unused space than rigid 
segments. 

5.1 Incremental segments 

If each cache line contains 64 bytes, if read-ahead 
of cache lines suggests blocks of 4 cache lines, and if 
bit-size fields and the number of bits per block deter-
mine the segment size, then each segment contains 2K 
records. Clearly this does not work with pages of 8 KB. 
Even for large pages, say 1 MB, 2K records per seg-
ment seem a lot. For example, if each record contains 
150 bytes of fixed-size fields, each segment requires 
300 KB. A lot of space would be wasted due to frag-
mentation within each page. 

While it make sense to allocate 2K bits at a time, it 
might not be as sensible to allocate 2K 8-byte values at 
a time. The incremental version of the hybrid page lay-
out therefore allocates space in units of equal size in-
dependent of the field size. If bits are allocated 2K at a 
time, fields of 1 byte are allocated 256 at a time, fields 
of 2 bytes are allocated 128 at a time, etc. Thus, each 
segment starts with 2K bits for each field, which sup-
ports some records with all fields. The number of rec-
ords is 2K divided by the size of the largest field in 
bits. This is followed by allocation units for the largest 
fields in order to increase the number of supported rec-
ords. The goal is to support the largest number of rec-
ords for any segment size. 

In other words, the smallest fixed-size field size 
determines the record count per segment. This field 
may be a bit-size field, e.g., the ghost bit. In this case, 
the record count per segment is equal to the bit count 
per cache line. The largest fixed-size field determines 
the precision with which the record count per page can 
be adjusted. Contiguous cache lines are allocated to the 
fields one at a time. The allocation algorithm loops 
over the fields (including, and starting with, the ghost 
bits and the null bits). 

This scheme wastes some space in fragmentation, 
but never more than a cache line per fixed-size field. 
On average, half a cache line per field is wasted. This 
matches the best case for PAX. The hybrid page layout 
achieve this fragmentation loss quite naturally as the 
two allocation spaces grow towards each other from 
opposite ends of the page; PAX, on the other hand, 
might require multiple reorganization operations unless 
the sizes of variable-size fields is known and consid-
ered a priori. 

5.2 Illustration 

In order to illustrate the full power of incremental 
segments, the following example relation adds Null 
values. 

 

 
Figure 5. Table with Null values. 

 
Figure 5 shows a slightly larger instance of the 

example table, including some Null values in non-key 
columns. It is a design choice to prepare the physical 
representation for Null values in key columns in case 
the logical integrity constraint is subsequently dropped. 
In the following, there is no allowance for Null values 
in the Identifier column. 

 

 
Figure 6. Data arrangement in incremental segments. 

 
Figure 6 shows an incremental segment for the ta-

ble in Figure 5. Each line in the box represents one 
cache line. For a concise illustration, the size of a cache 
line is assumed to be 8 bytes or 64 bits. The segment 
starts with a bitmap indicates valid records and ghost 
records, indicating 9 valid records followed by 55 
ghosts or missing records. Next are bitmaps for Null 
values. The column values form groups of 2, 4, or 8 
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values as required to fill a cache line. Column values 
are ordered as in the table definition and in Figure 5; a 
different sequence may simplify the implementation of 
address calculations. Variable-size string columns re-
quire 2 fixed-size fields, offset and size. Our imple-
mentation adds a third fixed-size field, a prefix of the 
normalized key called a poor man's normalized key 
elsewhere [GL 01]. Segments for fixed-size fields and 
the space for variable-size values grow towards each 
other until the page is full. 

The red numbers trailing the field names indicate 
how many records are completely covered by the cache 
lines up to that point. For example, 8 records require 12 
cache lines, 3 for bitmaps and 9 for field values. The 
smallest possible segment requires 7 cache lines and 
holds 2 records. A full segment of 64 records requires 
579 cache lines, 3 for bitmaps and 9×8×8=576 for field 
values. 

5.3 An example size calculation 

While the size of a full segment is the same for 
rigid segments and incremental segments, the interest-
ing case is a segment less than full, e.g., half full. A 
rigid segment still requires the same size, whereas an 
incremental segment can be much smaller and fit into 
any practical page size. 

It is fairly straightforward to map a record count to 
the size of an incremental segment. It requires identify-
ing all fields, including bit fields for ghost and Null 
information as well as pointers and sizes for variable-
size fields, determining for each the count of values per 
cache line and rounding those counts up, and then add-
ing up the number of required cache lines. 

For example, assume that the goal is to allocate 
(and later scan) 2K bits at a time. Bit-size attributes 
such as ghost and Null bits require one allocation for 
2K records or a fraction thereof. Byte-size attributes 
require one allocation for 256 records or a fraction 
thereof. Two-byte values such as offsets and sizes of 
variable-size fields require one allocation for 128 rec-
ords or a fraction thereof. Four-byte values such as 
many integers poor man's normalized keys require one 
allocation for 64 records or a fraction thereof. 

For the running example shown in earlier dia-
grams, Figure 6 shows specific values based on cache 
lines of 8 bytes. For cache lines of 2K bits or 256 
bytes, the increments must be 32 times larger, e.g., 64 
Identifier values and 128 offsets and sizes for variable-
size Name values. 

Mapping in the opposite direction is a bit more 
complex and may require an iterative process, i.e., re-
peatedly testing possible record counts and calculating 
whether or not those records will fit in the available 
space. If the record format includes variable-size val-
ues, such a calculation is typically moot, since incre-

mental segments and variable-size fields grow towards 
each other to fill the page similar to the NSM page 
layout. 

5.4 Summary: an incremental hybrid page 
layout 

In summary, incremental segments exploit very 
large segments where the space is available. For small 
pages or for the remainder in a large space, incremental 
segments support the maximal number of records. 
They waste no space for the largest fixed-size fields 
and, on average, a half cache line for the other fixed-
size fields. Thus, incremental segments avoid the limi-
tations of simplistic segments and the fragmentation 
problems of rigid segments. 

6 Performance evaluation 

The design goal of HPL is to combine the ad-
vantages of PAX for data warehouse query execution, 
in particular large scans, and of NSM for transaction 
processing, i.e., updates of individual rows and records. 
In order to evaluate HPL, we compared it with both 
NSM and PAX for queries and updates in TPC-B, -C, 
and -H. 

System configuration: The experimental evaluation 
was performed on two different machines, based on 
different CPU architectures and standing for different 
technological generations. Machine A is an Intel Xeon 
server with two quad-core Intel Xeon 5630 2.5 GHz 
processors (256 KB L1 cache, 1 MB L2 cache and 
12 MB L3 cache) and 48 GB RAM and newer genera-
tion QPI bus architecture. Machine B is a Sun Fire 
x4440 server, with 64 GB RAM and four quad-core 
AMD Opteron 8356 2.3 GHz processors (4× 512 KB 
L1 cache, and 2 MB L2 and L3 cache) and front-side-
bus architecture. Both processor types have a cache 
line size of 64 bytes. Both systems run Debian Linux. 

Benchmark implementation: For PAX and NSM, 
we used the available benchmark implementation in the 
respective Shore-MT kits. We implemented and vali-
dated ourselves the TPC-B, -C, -H kits for HPL. All 
experiments were performed on memory resident data-
bases (using RAM disk). We experimented with differ-
ent data sets and database sizes; detailed information 
on the benchmark instrumentation is provided in the 
respective section. 

6.1 Query execution: TPC-H 

We configured TPC-H with two different data set 
sizes, namely scale factors 0.5 and 1. Since the differ-
ences are negligible, results are reported only for SF 1.  

Within the TPC-H workload, we focused on que-
ries Q1, Q6, Q12 and Q14, because they represent dif-
ferent access patterns. Query Q1 scans a large table 
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with almost all record satisfying the predicate and 
forms intermediate results records for the next opera-
tion, an aggregation with a very small result. The scan 
in query Q6 disqualifies most records based on a single 
field, the ideal case for PAX. Queries Q12 and Q14 are 
also large queries but join efficiency, not scan efficien-
cy, determines their performance. Below we report the 
average sequential execution times of 50 test runs and 
the respective standard deviations. 

HPL, even with incremental segments, suffers 
some fragmentation, which can be minimized by pages 
sizes optimized for analytical query processing. Unfor-
tunately, Shore-MT limits the page size of 32 KB. In 
order to emulate the effect of larger pages and the re-
duced loss to fragmentation, we scaled the number of 
records per page in all page layouts to 204 records for 
the ‘line item’ table, 256 records for the ‘orders’ table, 
and 199 records for the ‘part’ table. 

 

Table 1. TPC-H performance results. 
Machine A/Intel – Scale Factor 1 

qu
er

y 

NSM PAX HPL 

Time 
[s] 

Stdv 
[s] 

Perf.∆ 
[%] 

Time 
[s] 

Stdv 
[s] 

Perf.∆ 
[%] 

Time 
[s] 

Stdv 
[s] 

Q1 0.58 0.02 8.4 0.49 0.01 -10.9 0.55 0.01 

Q6 0.46 0.01 6.9 0.41 0.01 -5.1 0.43 0.01 

Q12 3.59 0.12 6.6 3.40 0.09 0.8 3.36 0.11 

Q14 3.39 0.09 -6.6 3.38 0.11 -7.1 3.63 0.13 
         

Machine B/AMD – Scale Factor 1 

qu
er

y 

NSM PAX HPL 

Time 
[s] 

Stdv 
[s] 

Perf.∆ 
[%] 

Time 
[s] 

Stdv 
[s] 

Perf.∆ 
[%] 

Time 
[s] 

Stdv 
[s] 

Q1 1.16 0.01 -3.5 1.06 0.01 -11.5 1.20 0.01 

Q6 0.97 0.01 1.3 0.94 0.01 -1.6 0.96 0.01 

Q12 7.17 0.10 3.9 6.81 0.09 -1.3 6.90 0.09 

Q14 8.53 0.21 -8.3 8.24 0.13 -11.4 9.30 0.61 

 
Table 1 shows the measured query execution 

times. Values in the Δ columns indicates the difference 
of the prior techniques to HPL; a positive value means 
the HPL is faster than the prior technique. The results 
demonstrate that the performance of HPL falls between 
PAX and NSM under analytical loads. HPL is consist-
ently faster than an NSM except for Q14, and Q1 on 
machine B. HPL is consistently slower than PAX (by 
5-11%). Query Q1 and Q6 represent large scans, but of 
different types. In Q1, most records are selected and 
multi-field records are extracted for the next operation 
in the query execution plan. Assembly of records re-
quires repeated address calculations. Even with optimi-
zations and caching of prior addresses, these calcula-
tions incur many L1 cache misses. This is clearly the 

Achilles heel of HPL. In Q6, on the other hand, scans 
primarily one field, where the majority of HPL’s cache 
efficiency optimizations come to effect. Therefore, the 
performance difference between HPL and PAX is fair-
ly small – 5% on machine A and 1.6% on machine B. 

Q12 and Q14 stress the performance of different 
join algorithms and management of temporary inter-
mediate query results. HPL has good performance on 
Q12 due to the use of poor man’s normalized keys. 

In summary, field scan operations are marginally 
slower on HPL than on PAX and much faster than on 
NSM due to better cache efficiency. Record scan oper-
ations are slower on HPL compared to both PAX and 
NSM, because of the high record cost of record con-
struction due to scattered reads. 

6.2 Database updates: TPC-B  

To evaluate the update performance of HPL, in 
particular with NSM, we implemented and performed 
TPC-B and TPC-C experiments. TPC-B was instru-
mented with two different data set sizes, scale 1 and 
scale 10. For brevity, we only report results for 
scale 10. 

Table 2 summarizes the results. Clearly, in update-
intensive environments such as TPC-B, HPL achieves 
very good performance. The average transactions 
throughput is comparable to that of NSM on both ma-
chine A and machine B. The performance difference is 
within one standard deviation. 

 

Table 2. TPC-B performance results 
Machine A/Intel – Scale 10 

NSM [tps] NSM stdv [tps] Perf.∆ [%] HPL[tps] HPL stdv [tps]

18394 1% -2% 18033 2% 
     

Machine B/AMD – Scale 10 

NSM [tps] NSM stdv [tps] Perf.∆ [%] HPL [tps] HPL stdv [tps]

11580 1% 3% 11903 2% 

 

 
Figure 7. TPC-B transaction breakdown (machine A). 
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Figure 7 breaks down the performance of each 
statement in one of the TPC-B transaction, specifically 
the “account update” transaction. Tj stands for the jth 
statement within the transaction; r, i, and u stand for 
retrieval, insertion, and update. Figure 8 shows the 
same information for machine B. 

 

 
Figure 8. TPC-B transaction breakdown (machine B). 

 
The numbers substantiate several rules that flow 

from the HPL design hypotheses (Section 5): (i) up-
dates, especially single-field updates, are about 5% 
faster on HPL since they can be performed in place 
whereas Shore-MT always replaces entire records (due 
to its prefix truncation techniques); (ii) reads, especial-
ly those that construct a whole record, are faster on 
NSM, since HPL performs multiple address calcula-
tions and multiple scattered read operations; (iii) sin-
gle-field reads (e.g., T1) exhibit comparable perfor-
mance. 

In brief, field update operations, are 5% faster on 
HPL. HPL and NSM perform very similarly under 
write intensive loads. 

6.3 OLTP Database Load: TPC-C 

Finally, TPC-C experiments stress the insert, ran-
dom read, and delete operations of HPL as well as rec-
ord-to-record and index-to-index navigation, e.g., 
searching a secondary index and fetching additional 
columns from a primary index [HSY 01, LD 93]. TPC-
C is more read-intensive than TPC-B; the read opera-
tions are mostly random or record-to-record navigation. 
Record construction is common. In addition, the “de-
livery” transactions stresses delete mechanisms and the 
“new order” and “payment” transactions also test the 
insert functionality. 

Table 3 shows the transaction throughput for indi-
vidual transactions on HPL and NSM as well as the 
entire TPC-C transaction mix. Clearly, updating trans-
actions such as “new order” and “payment” are about  
11% slower on HPL than on NSM. This issue is ad-
dressed later in this section. 

 

Table 3. TPC-C performance results 
Machine A/Intel – Scale 10 Warehouses 

Tx. Name NSM [tps] Perf.∆ [%] HPL [tps] 
New Order 1649 -11% 1465 
Payment 11855 -11% 10523 

Order Status 9575 -9% 8674 
Delivery 13282 3% 13648 

Stock Level 518 1% 523 
Mix 2198 -5% 2097 

    
Machine B/AMD – Scale 10 Warehouses 

Tx. Name NSM [tps] Perf.∆ [%] HPL [tps] 
New Order 1149 -11% 1020 
Payment 7494 -11% 6654 

Order Status 6330 -11% 5605 
Delivery 9731 6% 10353 

Stock Level 340 3% 349 
Mix 1516 -6% 1421 

 
The “delivery” transaction performs equally well 

on both page formats. The delete operations on HPL 
perform about 15% better on than on NSM (Table 3, 
Figure 9, Figure 10). This is due to the ghost bit vector. 
Single field updates such as those measured by T4 ru 
or T5 ru are about 5% faster on HPL, which confirms 
the results in Section 6.2. 

 

 
Figure 9. TPC-C “delivery” transaction (machine A). 

 

 
Figure 10. TPC-C “delivery” transaction (machine B). 

 
In addition, we performed a detailed breakdown 

analysis of the “new order” and “payment” transactions 
(analogously to the TPC-B “account update” transac-



 Page 11  

tion) to investigate the performance effects of inserts, 
record construction and record-to-record navigation. 

For brevity, we only discuss the “new order” 
breakdown; the “payment” breakdown yields similar 
findings. 

 

 
Figure 11: TPC-C NewOrder Transaction (machine A). 

 

 
Figure 12. TPC-C NewOrder Transaction (machine B). 
 

Field reads combined with single field scan opera-
tions, e.g. T1 (Figure 11, Figure 12) perform well on 
HPL. Read operations on HPL yielding record con-
struction, e.g. T2, T3 or T5b are 5% to 10% slower 
than on NSM due to scattered reads. Since record con-
struction also results from index-to-record transitions 
such operations also perform 5% to 10% slower on 
HPL compared to NSM. Single field update operations 
like T4 are faster on HPL, whereas multi-field updates 
are faster on NSM, due the lack of offset calculation 
and scattered accesses. In the general case, inserts on 
HPL are equally fast (T5d) or slower (T7) than on 
NSM. 

In summary, read operations resorting to record 
construction are about 10% slower on HPL. Inserts on 
HPL are as fast as or slower than on NSM. Deletes are 
about 15% faster on HPL than on NSM. 

6.4 Summary: performance evaluation 

In summary, in our performance comparisons of 
HPL versus PAX and NSM using standard TPC 

benchmarks, we found that field scan operations are 
marginally slower on HPL than on PAX but much fast-
er than on NSM due to better cache efficiency and op-
timized scanners. Record scan operations are about 
11% slower on HPL compared to both PAX and NSM, 
due to the high cost for record construction due to scat-
tered reads. Field update operations are about 5% faster 
on HPL compared to NSM. HPL and NSM perform 
equally well under write intensive loads. Inserts on 
HPL are marginally slower than on NSM. Deletes are 
about 15% faster on HPL compared to NSM. 

In general, multi-field operations are slowest on 
HPL. HPL single-field operations exhibit performance 
that is equal to or marginally slower than that on NSM 
or PAX. 

7 Conclusions 

In summary, NSM is a strict record-at-a-time for-
mat, PAX is a strict field-at-a-time format, and the new 
hybrid page layout HPL is a combination aimed to cap-
ture the advantages of both. NSM is optimized for sim-
ple management of variable-size records and of free 
space, PAX is optimized for efficiency of large scans 
and their predicate evaluation, and HPL is optimized 
for both. 

As in NSM, each HPL page contains a fixed-size 
page header and two variable-size areas that grow to-
wards each other until the page is full. The difference 
to NSM is that the fixed-size area contains more than 
the record offsets. As in PAX, predicate evaluation 
against a single field incurs minimal cache faults in 
HPL because each cache line is filled entirely with a 
single field. The difference to PAX is that the cache 
lines holding a single field are not contiguous but are 
organized in repeating segments. 

All three formats apply to records within tradition-
al on-disk data pages and to small pages appropriate for 
flash storage within large pages appropriate for modern 
disk drives. NSM assigns entire records to small pages, 
PAX divides a large page into “mini-pages” each con-
sisting of one or more small pages and then assigns 
fields to these “mini-pages,” and the hybrid format 
assigns as many small pages to each field according to 
its size and then repeats this pattern. Thus, after a large 
page has been lifted from disk into flash storage, a 
large scan and its predicate evaluation require only a 
few of the small page in memory. 

If not only query performance but also update per-
formance, in particular insertion performance, are im-
portant, one might try to adopt an idea that seems very 
promising for column stores, namely a delta store in 
row format [SAB 05]. In other words, new insertions 
are retained in NSM format on the page and are not 
distributed over multiple cache lines as required in 
PAX and the hybrid format. Queries must inspect not 
only the full cache lines but also the records stored in 
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the traditional way. A page compaction or reorganiza-
tion will later optimize the page for large scan perfor-
mance. The reorganization might be triggered by a que-
ry, by the passage of time, etc. The hybrid page format 
may be more suitable to this technique than the PAX 
format because of the single block of free space be-
tween the two areas for fixed-size and variable-size 
fields. 

The performance measurements demonstrate that 
the new hybrid page layout fills the gap between NSM 
and PAX, recommending them to single-purpose sys-
tems whereas HPL is a compromise suitable to a wide 
variety of database systems and access patterns. 

In conclusion, the hybrid format represents a blend 
and an improvement of both prior formats. All three 
formats are similar in terms of capacity, e.g., they fit 
similar record counts in each page. They differ in the 
complexity of space management and in their cache 
efficiency. The advantages apply both to records within 
a page and to data organization optimized for both 
flash storage and disk, and may be applicable to addi-
tional levels in a complex memory hierarchy. 

Both PAX and the hybrid format could be general-
ized to fit multiple fields at-a-time, just as vertical par-
titioning is a generalization of a strict column-at-a-time 
storage format. In fact, it is often merely a matter of 
taste or convenience whether something is a single 
field or two separate fields. Consider, for example, 
telephone numbers: is the area code a separate field 
from the local number? Again, PAX and the hybrid 
format offer very similar facilities to model such 
choices as desired. 

Additional research and design work is required to 
integrate PAX and the hybrid format with the various 
forms of data compression, e.g., prefix and suffix trun-
cation [BU 77], duplicate value elimination [PP 03], 
run-length encoding (both for equal values such as “8, 
8, 8, …” and for successive values such as “1, 2, 3, 
…”), order-preserving Huffman and Lempel-Ziv com-
pression, etc., and to apply the resulting designs to 
multiple levels in a deep memory hierarchy including 
CPU caches, local and remote memory, NAND and 
NOR flash memory, “performance-optimized” “enter-

prise” disks and “capacity-optimized” “consumer” 
disks, mirrored and RAID storage, etc. Finally, we plan 
on investigating how formats, memory hierarchy, and 
query processing algorithm interact not only with re-
spect to performance but also with respect to the ro-
bustness of performance. 
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