)

invent

The Asymptotic Capacity of Multi-Dimensional
Runlength-Limited Constraints and I ndependent
Setsin Hypergraphs

Erik Ordentlich, Ron M. Roth*
Information Theory Research Group
HP Laboratories Palo Alto
HPL-2002-348

December 17", 2002*

E-mail: eord@hpl.hp.com, ronny@cs.technion.ac.il

regular graphs, Let C(n,d) be the Shannon capacity of the n-dimensiona (d,T)-
Hamming graphs, runlength-limited (RLL) constraint. Denote by 1(n,q) the number of
linear hypergraphs, independent sets in the Hamming graph with vertices consisting of
multi-dimensional al n-tuples over an alphabet of size q and edges connecting pairs of
congtraints, vertices with Hamming distance 1. We show that lim,pT C(n,d) =
runlength: limited limaDT (d+1) " log | (n,d+1)=1/(d +1). Our method also leads to an
constraints improvement of a previous bound by Alon on the number of

independent sets in regular graphs and to a generalization of this
bound to a family of hypergraphs, of which the Hamming graphs
can be thought of as a special case.

* Internal Accession Date Only Approved for External Publication
1 Computer Science Department, Technion, Haifa, 32000, |srael
a Copyright Hewlett-Packard Company 2002



The Asymptotic Capacity of Multi-Dimensional
Runlength-Limited Constraints and Independent
Sets in Hypergraphs

ERIK ORDENTLICH RoNn M. RoTH*
Hewlett-Packard Laboratories Computer Science Department
1501 Page Mill Road Technion
Palo Alto, CA 94304, USA Haifa 32000, Israel
eord@hpl.hp.com ronny@cs.technion.ac.il

December 16, 2002

Abstract

Let C(n,d) be the Shannon capacity of the n-dimensional (d,occ)-runlength-limited
(RLL) constraint. Denote by I(n,q) the number of independent sets in the Hamming
graph with vertices consisting of all n-tuples over an alphabet of size ¢ and edges con-
necting pairs of vertices with Hamming distance 1. We show that lim, ,, C(n,d) =
lim,oo(d + 1)""log, I(n,d+ 1) = 1/(d + 1). Our method also leads to an improvement
of a previous bound by Alon on the number of independent sets in regular graphs and to a
generalization of this bound to a family of hypergraphs, of which the Hamming graphs can
be thought of as a special case.
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Introduction

For any n-tuple of positive integers m = (my, ma,...,m;,) let I' be an n-dimensional m; x mg X
... X my binary array whose entries are indexed by n-tuples of integers

jE{0,1,...,mi—1} x {0,1,...,mo—1} x ... x {0,1,...,mp—1}.

We say that I' satisfies the (d,oco)-runlength-limited (RLL) constraint if and only if for any
two indexes j and j’ that differ in only one component and differ by less than d + 1 in that
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component, either I'(j) = 0 or I'(j') = 0. That is, every one-dimensional sub-array of T" satisfies
the one-dimensional (d, o0)-RLL constraint. Let A(n,d, m) be the set of all such arrays. The
Shannon capacity of the n-dimensional (d, 00)-RLL constraint is defined by

(1)
. logy [A(n,d,m()

C(n,d) = 1 G (1)
i—00 H?:l m;
1
— inf 089 |"£}L(na da 1’1’1)| ’ (2)
m [To=1 ™
where m(®) = ( gi),mg), - ,mg )) is any sequence of n-tuples of integers satisfying min, m&i) —

oo. That the right-hand side of (1) is independent of how the limit is taken and coincides with (2)
follows from sub-additivity arguments; see [4], [6].

The following facts about C(n, d) are known:

1. C(1,d) = log, g, where ayq is the positive real root of the polynomial z4+! — 2¢ — 1 [11,
p. 65].

2. C(2,d) ~ (logy d)/d (namely, limg_,o, C(2,d) - (d/log, d) = 1) [6].
0.5878911617 < C(2,1) < 0.5878911619 [3], [9], [13].
0.5225 < C(3,1) < 0.5269 [9].

ATl o

C(n,d) > 1/(d + 1) for all n [4], [6]. This follows by further constraining the 1’s in I" to
have indexes j1, jo, ..., jn satisfying j1 +jo + ... + 7o = 0 (mod (d + 1)).

The last fact, together with the simple observation that C(n,d) is decreasing in n for fixed d
(implied by the infimum-based specification of C(n,d) in (2)), raises the possibility that C(n,d)
decreases with n all the way down to 1/(d 4+ 1). Our contribution to the emerging picture of
C(n,d) is to prove that this is the case.

Our approach to proving the aforementioned convergence is based on showing that the crude
sequence of upper bounds,

logsy |A(n,d, (d + 1)1)|
C(n,d) < —2 @r)r :

where 1 denotes the n-tuple consisting of all 1’s, also converges to 1/(d + 1), thereby closing
the gap.

2 Statement of results

We first recall some basic terms from graph theory. For an (undirected) graph G, let Vi
(respectively, E) denote the set of vertices (respectively, edges) of G, where Eg C {e C Vi :



le| = 2}. For a vertex v in Vi, denote by dg(v) the degree of v in G, i.e., dg(v) is the number
edges that are incident on v in G. A graph G is called s-regular if §g(v) = s for all v € V5. A
graph G is bipartite if Vi; can be partitioned into a ‘left’ set X and a ‘right’ set Y such that
leNnX| =|enY| =1 for all e € Eg. An independent set in G is a subset 7" C Vi such that
leNT| <1 for all e € Eg. The number of independent sets in G will be denoted by I(G).

Consider the family of graphs #(n,q) whose vertices are all indexes j € {0,1,...,¢g—1}"
and two vertices are connected by an edge if and only if they are at Hamming distance 1 apart.
The graphs #(n,q) are known in the literature as the Hamming graphs. It is not hard to see
that the set of locations of 1’s in any array in A(n,d, (d + 1)1) corresponds to an independent
set in the graph H(n,d + 1). The reverse is also true. Thus, |A(n,d, (d + 1)1)]| is equal to the
number of independent sets in H(n,q) for ¢ = d + 1. We shall henceforth use the shorthand
notation I(n,q) for the number of independent sets, I(#(n,q)), in H(n,q). Note that I(n,q) is
also the number of codes of length n and minimum Hamming distance > 2 over an alphabet
of size q.

The quantity I(n,q) has received some attention in the literature, particularly for the case
g = 2 (H(n,2) is more commonly known as the binary Hamming hypercube). The strongest
result for ¢ = 2 is due to Korshunov and Sapozhenko [7] (see also [10]), who show that

I(n,2) ~ 2622,

where e is the base of natural logarithms. It readily follows that 27" log, I(n,2) — 1/2, thus
proving our result for d = 1.

The case d = 1 also follows from more general bounds on the number of independent sets
in regular graphs with large degree, due to Alon [1], and on the number of independent sets in
regular bipartite graphs due to Kahn [5]. For example, [1] shows that the number of independent
sets in an s-regular graph G with r vertices satisfies

log, I(G) < l—i— 0(3_0'1). (3)
T 2
For #(n,2) it is easy to see that r = 2" and s = n, thereby implying the desired convergence
result for d = 1. The bound of [5] for bipartite graphs can also be applied since H(n,2) is a
bipartite graph with a left vertex set {j = (j1,72,.-.,4n) : 1 +J2 + ...+ Jn = 0 (mod 2)} and
a right vertex set {j : j1 +jo+ ...+ jn = 1 (mod 2)}. This results in a bound similar to (3)
except with a smaller error term of O(1/s).

Little seems to be known about I(n,q) for ¢ > 2. Numerical computations of I(n,q) for
g = 2, 3,4 and small n have been carried out [12]. We are not aware of any asymptotic analysis
of I(n,q) for ¢ > 2 beyond what we derive here. Specifically, we prove the following.

Theorem 2.1 The number of independent sets I(n,q) in the Hamming graph H(n,q) sat-
isfies
2
b&ﬂm®<1+OC%(m»,
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for all q.

Setting ¢ = d + 1 in the last theorem shows that the right-hand side of (1) does indeed
converge to 1/(d + 1) as n tends to infinity, thereby proving the following corollary.

Corollary 2.2

Our method also yields the following improvement over (3) for regular graphs.

Theorem 2.3 For an s-reqular graph G with v vertices,

log, I(G) _ 1 +O<log23>.
- S

r 2 )

Unfortunately, (4) is not tight for the widely conjectured worst-case graph consisting of a
disjoint union of complete bipartite graphs with degree s [1], [5]. Thus, there is still room for
improvement.

Both Theorems 2.1 and 2.3 will follow from Theorem 2.4 below, which provides an upper
bound on the number of independent sets in a certain family of hypergraphs (see [2]). For a
hypergraph G, let Vg and Eg, respectively, denote the set of vertices and set of hyperedges of
G, where Eg C {e C Vi : |e] > 2}. For a vertex v in Vg let Ng(v) denote the set of vertices
that are adjacent to v in GG, namely,

Ng(v) = {v' € Vi \ {v}: {v,v'} Ce for some e € E(;},

and let dg(v) = |Ng(v)| be the degree of v in G. Similarly to (ordinary) graphs, we say that
T C Vg is an independent set in G if [eNT| < 1 for all e € Eg, and we denote by I(G) the
number of independent sets in G.

A hypergraph G is t-uniform if each hyperedge contains ¢ vertices, and is called s-regular if
each vertex is contained in s hyperedges. If the intersection of any two hyperedges of G contains
at most one vertex then G is said to be linear.

Theorem 2.4 Let G be a t-uniform s-regular linear hypergraph with r vertices. The number
of independent sets I(G) in G satisfies

r log?(ts)
log, I(G) < n (1 +O<7>> .

S



The proof of Theorem 2.4 is given in Section 3. We note that a subset of the Hamming
graph H(n, q) is an independent set if and only if it is also an independent set in the g-uniform,
n-regular, linear hypergraph with the same vertex set as H(n, ¢) and with hyperedges being the
subsets of vertices of H(n,q) that agree in all but one component. Hence, Theorem 2.1 follows
from Theorem 2.4 by setting r = ¢, s = n, and t{ = q. Theorem 2.3 follows by setting ¢t = 2.
The implied constants in the O(-) terms can also be derived for each case by substituting the
appropriate values for r, s, and ¢ in our analysis in Section 3.

In Section 4 we present a generalization of Theorem 2.4 to uniform linear hypergraphs that
are not necessarily regular.

3 Independent sets in uniform, regular, linear hypergraphs

Given a hypergraph G and a subset Y C Vi, let Gy be the induced (i.e., maximally connected)
sub-hypergraph of G on the vertices Y, that is,

Voy =Y and Eg, = {eﬂY:eEE(;,|eﬂY| 22}.
Let S;(G) be the set of all induced sub-hypergraphs of G on 7 vertices, namely,
Si(G) ={Gy : Y CVg,|Y| =1i}.
Define f;(G) as
filG) = L I(H). (5)
Note that f1(G) =2, fjv,|(G) = I(G), fi(G) > fi-1(G) for 1 <i < [Vg], and
fi(@) < 2%, (6)

We also define fy(G) = 1 as standing for the empty independent set in an ‘empty’ sub-
hypergraph. Let S/ (G) denote the subset of sub-hypergraphs in S;(G) that achieve the maxi-
mum in (5). We then have the following simple lemma.

Lemma 3.1 Given a hypergraph G and an integer i in the range 1 < i < |Vg|, let A
be a nonnegative integer that satisfies A < dg(v) for some vertex v of some sub-hypergraph
H € Sf(G). Then

filG) < [ir1(G) + fi-a—1(G). (7)

Proof. For any sub-hypergraph H € S/ (G) and any vertex v € Vp, the number of inde-
pendent sets I(H) = f;(G) is equal to the sum of the number of independent sets that contain
v and the number of independent sets that do not contain v. The latter is

I(Hy,\(0}) < fi-1(G)
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and the former is
I(Hy,\(10}uNy (0)) < fivsm(w)-1(G)-

The lemma follows from the fact that f;(G) is non-decreasing in . U

The idea behind the proof of Theorem 2.4 is to start the recursion (7) with the bound
fio(G) < 2% for some 4y and then proceed by bounding the result of iterating the recursion (7)
up to i = |V|. The key to obtaining a good final bound is, for each i, to choose H and v
to make A in (7) as large as possible. The extent to which this can be done depends on the
structure of G.

Specializing to uniform, regular, linear hypergraphs, the following lemma provides a lower
bound on the largest possible choice for A, for each 1.

Lemma 3.2 Let G be a t-uniform, s-reqular, linear hypergraph with r vertices. Then for

every H € S§;(G) .
max 05 (v) > {s (t—z _ 1)} . (8)

veEH r

Proof. Fix a sub-hypergraph H € S;(G). We prove the lemma by counting ordered pairs
of adjacent vertices in Vp in two different ways. Let

pP= {(v,v') €Vy x Vi :v#v and {v,v'} C e for some e € Eg},

and for every e € Eg let B = [eNVy|. Then |P| =3 g, Be(Be—1); that is, for each hyperedge
in G we count the number of ordered pairs of elements of Vpy in that hyperedge and sum this
over all hyperedges. By the linearity of G each ordered pair is counted only once. Further,
> ecig Be = si since each vertex v € Vi contributes to the sum for precisely the s hyperedges
that contain it.

Since the function (8e)ecrg V> Yecny Be(Be — 1) is Schur convex [8] in the variables f3, its
minimum value subject to the constraint ) c g, Be = si is achieved when S, is constant-valued.*
And, since |Eg| = rs/t, the minimizing f, is si/(rs/t) = ti/r. Thus,

win 3 46, -1 = S5 (5-1)

© el r

= si(t—l—1>
r

< |P).

!We can obtain a tighter bound on max,ex dz (v) by not ignoring the fact that 8. is integer-valued. In this
case, the minimizing 3. takes on at most two values that differ by 1. The resulting bound, however, is more
complicated and only slightly improves our bounds on the asymptotic number of independent sets.



On the other hand, letting A = max,ecp 0 (v), we clearly have |P| < A|Vy| = Ai. Combining
the two bounds on |P| and dividing by ¢ gives (8). ]

We also need the following two elementary propositions.

Proposition 3.3 The equation ™" = 2™ + 1 has only one positive real solution oy,
which is decreasing in m. Further, o < m'™ for m > 3.

Proof. Write the equation as 2™ (x — 1) = 1. The left-hand side is non-positive for z in
the range 0 < z < 1 and monotonically increasing for > 1, implying that there is only one
solution oy, > 1. By definition o/ (ay, — 1) = 1 so that o+ (ay, — 1) > 1, implying, in turn,
that auny1 < ap,. Finally, for every m > 3 we have

" (z — 1)|jeppi/m =m0 (ml/m - 1) =m (e(logem)/m — 1) >m- loge m

=log,m > 1,
m

thus implying that a,, < m!/™. L]
Proposition 3.4 Let0=mg <m1 <...<myand0=1i_1 <ig <i1 <...<ip be integers
such that ij_y > mj for j =1,2,...,¢, and suppose that the integer sequence (f;);L, satisfies
fi < fici + fimmj—1, 1< <y,

where j = j(i) is the unique index such that (m; <) i;_1 < i <4;. Let the real sequence (gi)z:‘:[]
be defined recursively by go = fo and

9i = Om;gi—1, 1<i< ila
where j is such that ij—1 <4 < ij and au; is the positive real solution of gt = g™ 41,

Then f; < g; for all 0 <1 < p.

Proof. We prove by induction on ¢, where the induction base ¢+ = 0 is obvious. Turning
to the induction step, suppose that f; < g holds for all 0 < i’ < ¢ and let j be such that
Z.jfl <1 < ij. Then

fi < ficr+ fimmj—1
< Gi-1+ Gimm;—1 (9)
< (14 am;”)giz (10)
= o, gi-1 (11)
= Gi

where (9) follows from the induction hypothesis, (10) follows from the definition of g; and the
fact that ayy,; is decreasing in j (Proposition 3.3), and (11) follows from the definition of a,,.[]



Proof of Theorem 2.4. Let A(i) equal the right-hand side of (8). For j =0,1,...,¢, let
moy < my < ... < my be the nonnegative values taken on by A(7) as i increases from 0 to r;
clearly, mo = 0 and my = s(t — 1). Denote by ; the largest ¢ for which A(i) = m;. Thus,

ij = K%H) tJ (12)

and, in particular, i = |r/t] and iy = r. Since |[Ng(v)| < i — 1 for every vertex v in every
H € §;(G) and since |[Ng(v)| > m; for some v when i = i;_1+1, we have i;_; > m,;. Therefore,
by Lemma 3.1, the sequence (fi(G))::‘:0 with the integers m; and i; satisfy the assumptions of
Proposition 3.4. Hence,

logy fr(G) = longi((G)
¢

< lOgQ flo(G) + Z(Z] - ijfl) lOgQ Amy;
=1

< zo—i—z i — 1) logy o, (13)

where a,; is the positive real solution of ™+t = ™ + 1 and (13) follows from (6). Incorpo-
rating i; —i;_1 < (m; —mj_1)r/(ts) +1 (from (12)) and iy < r/t into (13) yields

4

r r
o8 £,(G) < T+ Y ((my =m0+ 1) log
j=1

< Ty Y <1+1>1o a (14)
-t = \ts 82 m

r r < log, m
< - (—+1)(2 —2 15
- t+<ts+><+m§:3 m ) (15)

r r log3(s(t — 1))
< - — 4124+ =" 16
- t+<t3+ )( + log, e (16)

- t<1+o(w)> (1)

where (14) follows since «,, is decreasing in m, (15) follows since ay < a1 < 2 and logy v, <
(1/m)logym for m > 3 (Proposition 3.3), and (16) follows from the fact that > ¢4 1/m <
log, my = log, s(t — 1). The bound r > my = s(t — 1) justifies (17). The proof is completed by
noting that I(G) = f,(G). U



4 Irregular hypergraphs
In this section, we generalize Theorem 2.4 to uniform linear hypergraphs that are not necessarily
regular.

Given a hypergraph G, let v1,vs,...,vy, be a labeling of the vertices of G satisfying
dg(v) <dg(ve) <...< 5G(U\Vg|)- Fori=1,2,...,|Vg| define

oq(i) = %Z&;(vj).
j=1

That is, oG (7) is the average degree among the ¢ vertices with smallest degrees in G.

Following is a version of Lemma, 3.2 for irregular hypergraphs.

Lemma 4.1 Let G be a t-uniform linear hypergraph with r vertices. Then for all H € S;(G)

max g7 (v) > [a(i) (t—i o) _ 1)} , (18)

veVy r 0’(7")
where o(i) = og(7).

Proof. Replace 3- cp, Be = si with 3 g, Be > i0(i) and |Eg| = rs/t with |Eg| = ro(r)/t
in the proof of Lemma 3.2. ]

For the case of s-regular hypergraphs o(i) = s, so Lemma 3.2 is a special case of Lemma 4.1.

Next we combine Lemma 4.1 with Lemma 3.1, to obtain the following irregular counterpart
of Theorem 2.4.

Theorem 4.2 Let G be a t-uniform linear hypergraph with r wvertices. The number of
independent sets I(G) in G satisfies

2
log, I(G) < ¢0+§-0<1°§%ZS)> (19)

: : 580 : (1 + O(logj#» (20)
< %;—0 <1+0<%>>, (21)

where s = og(r) is the average degree in G, iy is the largest i for which iog(i) < rs/t, sp =
o (i), and s1 = og(ip + 1).

IA
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Proof. We proceed as in the proof of Theorem 2.4, but this time we let A(7) equal the
right-hand side of (18). Also, let 0 = my < my < ... < my = s(t — 1) be the nonnegative values
taken on by A(i) as ¢ ranges from 0 to 7.

Denote by i; the largest ¢ for which A(i) = mj; in particular, for j = 0 we get that o
is indeed the largest i for which iog(i) < rs/t, and for j = £ we get iy = r. We note that
o(i) = og(i) is non-decreasing in i and hence so is o(i)(tio(¢)/(rs) — 1). Therefore, i; is the

largest integer ¢ satisfying
~ [t o(i)
22 1) < m.
o(1) (r . > < m;

or, equivalently, the largest integer 7 satisfying

i < (:ZZ) +1> = (22)

This characterization of 7; implies that

¢j><m+1>m—1. (23)

By (22) and (23) we have, for j > 1,

=1 S ? <(0?Z:))2 N (U(iff: 1))? Uéj) - U(ij‘ll + 1)> o
= ﬁ (mj —mj1) +1 .
< m (mj —mj_1) +1 (25)
- myomy )+l -

where (24) and (25) follow from the fact that o(i) is non-decreasing in ¢ and that 7o + 1 <
Z.jfl +1< ij.

Inequality (13) from the proof of Theorem 2.4 applies verbatim here, and incorporating the
bound (26) on i; —ij_; yields

log, fr(G) < g+ Z ( —mj_1) - 2 —l— >log2 QU

< i §O<log ;3)> (27)

where (27) follows from the same reasoning used to obtain (17): the only difference is that here
r>my = (t—1)s > (t —1)s?/s, which we need to assert that rs/(ts?) is bounded away from 0.
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Turning to (20), by the definition of iy we get that igsg = igo(ip) < rs/t, ie., ip <
(r/t)(s/s0). In addition, since (i) is non-decreasing in i we have sos; < s2. Combining
these two observations with (19) yields (20). Finally, the definition of iy also implies that

rs1 > (1o + 1)s1 > rs/t; so, s1 > s/t, which readily leads to (21). ]

In general, if more is known about the behavior of o¢(i) for 7 > ig, the O(:) term in (19)
can be improved. We obtained (19) by using the pessimistic bound of o¢(7) > o¢(ip + 1) for
i > i9. We do note, however, that (19) is tight to first order (the i¢ term) for a bipartite graph
G in which the degree of any left vertex is smaller than the degree of any right vertex. In such
a graph, there are necessarily more left vertices than right vertices and i( is easily seen to be
the number of left vertices, which in turn is smaller than log, I(G).
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