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Abstract
This paper examines the issue of scale in modeling texture for the purpose of

segmentation. We propose a scale descriptor for texture and an energy minimiza-
tion model to find the scale of a given texture at each location. For each pixel,
we use the intensity distribution in a local patch around that pixel to determine the
smallest size of the domain that can be used to generate neighboring patches. The
energy functional we propose to minimize is comprised of three terms: The first
is the dissimilarity measure using Wasserstein distance or Kullback-Leibler diver-
gence between neighboring patch distributions; the second maximizes the entropy
of the local patch, and the third penalizes larger size at equal fidelity. Our exper-
iments show the proposed scale model successfully captures the intrinsic scale of
texture at each location. We also apply our scale descriptor for improving texture
segmentation based on histogram matching [5].

1 Introduction
A “texture” is a region of the image that exhibits stationary – or cyclostationary –
statistics of some sort. If one were to compute the histogram in a region around each
pixel, there would be some function of this histogram that is either constant (in practice
slowly-varying) or periodic as we move the pixel within the texture. Because the local
statistics are pooled from a region around each pixel, a fundamental question in the
definition, design, or classification of texture is the area of this region, or “scale”.
Some statistics are only stationary when computed at a certain scale, but not at larger
and/or smaller scales. The “right” scale thus defines the texture, and plays an important
role, recognized early in the pioneering work of Julesz [11, 12], with many subsequent
attempts to define “elementary texture elements”.

Textures are important in the analysis of images, as they provide a mid-level rep-
resentation that is robust to the actual realization (pixel values) [10, 8, 18, 21], so
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that “segments” of the image that have a consistent texture can be used as “tokens”
[14, 16, 22]; this is also important in image modeling, compression and synthesis
[27, 9, 17]. An arsenal of different analytical tools have been brought to bear in
the analysis of textures, from statistical models to filtering methods, to geometric ap-
proaches. Zhu et al. [27] model texture as a Markov random field (MRF), or equiv-
alently the Gibbs distribution. Efros and Leung [9] observe that textures range in be-
tween regular (repeating) and stochastic (without explicit textels) and many synthesis
methods often fail in preserving the geometric structures. Their synthesis method is
based on a statistical non-parametric model that preserves spatial locality. Inspired by
Julesz, Zhu et al. and Wu et al. [25, 23] take a mathematical approach and identify a
texture by an equivalence class of statistical features. They later connect this idea with
MRF texture models by a minimax entropy scheme [26].

In this work, we address the issue of scale in textures head-on. As [24] point out, the
basic texture element, also referred to as “texton” in the MRF literature and considered
a fundamental token for pre-attentive visual perception [12], remains a vague concept
in need of a better formalization. We provide a characterization of scale that is not
restricted to simple statistics, but instead – in a generative framework – we see it as
the generator, or “seed,” of a texture using any generative model. Rather than texture
modeling and classification, therefore, we focus our attention entirely on determining
the size a texton in a given image.

In our work, the scale descriptor corresponds to the texton size or texture scale.
Many previous works define scale in relation to certain diffusion operators or filters.
Lindeberg [13] associates scale with the size of intensity gradient and uses the Gaus-
sian kernel to examine the local scale at each pixel. Brox and Weickert [3] and Strong
et al. [20] define scale based on the region size a pixel belongs to. They observe that
under the total variation regularization, the intensity change in a pixel is inversely pro-
portional to the region size. In [3], scale is defined as the time taken for a feature to
disappear under the TV flow and is applied to accomplish difficult texture segmenta-
tion. In [20], scale is the inverse of the intensity change under the TV denoising model
[19]. These definitions of scale do not give information on the size of a texton, so we
must take a different approach to define scale for textures. For regular (or repeated)
textures, scale is the size of the smallest image patch that generates a texture by re-
peating the patch side by side. Wolf et al. [22] use a patch matching criterion to find
texture edges and then incorporate it into a region based active contour model for tex-
ture segmentation. Their texture map is successful for segmentation but does not reveal
any signs of the correct texton size. For stochastic textures, the spatial relation may not
be found and thus may not be obtained by simply stitching textons together. Instead,
we take a non-parametric approach and use the entire distribution of the patch to find a
texton’s size.

For stationary textures, the intrinsic scale is the size of the smallest domain where
the distribution is close to that of any other domain of the same size within the texture.
Because in practice the statistics may not be strictly stationary, but slowly-varying in-
stead, in practice we look for the smallest local patch whose probability density func-
tion (pdf) is similar to the one computed on its neighboring local patches (which we
later call “neighboring patch” for short).

Note that the intrinsic scale is not uniform across the image, but it is instead specific
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to a given texture. This is in contrast to many schemes for texture segmentation where
local pdfs are compared, for instance using the Wasserstein distance [5], but they are
computed on a local domain the size of which is fixed throughout the image. If the
selected size is smaller than the texton, these schemes over segment the texture; if it
is too large, the segmentation may not be accurate because local patches cross over
texture boundaries. Not only is the texton size not constant across regions, it may
even vary within a texture region, albeit slowly. We believe that by automatically
finding the intrinsic scale, histogram-based segmentation will improve its performance.
Additionally, the scale can also be added into the data term to distinguish two textons
with the same pdf but different scales.

Another potential application of texton scale is inpainting. Texture synthesis by
Efros and Leung [9] synthesizes texture one pixel at a time by using the pixel’s local
patch and looking for similar patches. The size of the patch is defined by the user
and is crucial for the performance. The inpainting algorithm in [15] combines both a
curvature-based variational inpainting [6] and texture synthesis. The performance also
relies on the patch sizes, which are typically selected by the user. By providing the
correct scale, this process can be more efficient.

2 Texture Scale

2.1 Notations
Let I : Ω ⊂ R2 → [0, 1] be an observed gray-scale image. Define the local patchRx,r

around the pixel point x = (x1, x2) ∈ Ω with size r (“radius” in analogy to circles) by:

Rx,r = {z ∈ Ω | max
1,2
{|x1 − z1|, |x2 − z2|} < r} (1)

Define the neighboring patch of the local patch by:

Nx,r = Rx,3r\Rx,r. (2)

The local histogram hR(y) on R counts the number of pixels whose intensity is y, for
y ∈ [0, 1]:

hR(y) =
∫
R
δ(y − I(x))dx, (3)

where δ is Dirac’s Delta.
Probability density function (or normalized histogram) PR onR is the probability of a
pixel having value y, for y ∈ [0, 1]:

PR(y) =

∫
R δ(y − I(x))dx∫

R dx
. (4)

In this paper, a histogram is assumed to be normalized. The cumulative distribution
function FR describes the probability of a pixel having value less than y, for all y ∈
[0, 1]:

FR(y) =
∫ y

0

PR(t)dt. (5)
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The Wasserstein distance DW between two probability density functions P1 and P2 is:

DW (P1, P2) =
∫ 1

0

|F1(y)− F2(y)|dy, (6)

where F1 and F2 are the corresponding cumulative distribution functions.
The Kullback-Leibler divergence DKL from P1 to P2 is:

DKL(P1||P2) =
∫ 1

0

P1(y) log
P1(y)
P2(y)

dy. (7)

The entropy of P is:

H(P ) = −
∫ 1

0

P (y) logP (y)dy. (8)
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(a) texture (b) energy plot

Figure 1: Synthetic texture example: (a) Local patch at ‘X’ (inside red) and neighbor-
ing patch (between red and blue). (b) Energy vs. patch size. Red: histogram difference
using the Kullback-Leibler divergence. Green: histogram difference using the Wasser-
stein distance. Blue: entropy of the local patch histogram

2.2 Description of the scale model
Our proposed scale descriptor is derived by energy minimization of the following
model:

inf
r
D(PRx,r

, PNx,r
)− αH(PRx,r

) + βr(x), (9)

where α and β are positive design parameters. In the first term, D is an appropriate
measure of the dissimilarity between two probability distributions; for example, we
use both the Wasserstein distance Dw and the Kullback-Leibler divergence DKL in
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this paper. The first term of this energy function measures the difference between the
pdf on the local patch and the pdf on the neighboring patch. Minimizing the difference
finds a size whose local patch satisfies the histogram matching criterion. The second
term maximizes the entropy of PRx,r

, the complexity of the histogram on the local
patch. This term avoids selecting homogeneous patches as textons despite their small
difference in the pdf with their neighborhood and is necessary because r has to be min-
imized. The third term penalizes the size r to find the smallest one among all the ones
that satisfy the criterion. To understand the proposed model, we show a synthetic tex-
ture example and plot the first and second terms versus the patch size r, at the indicated
pixels. Fig.1 (a) shows a local patch (in red) around pixel ‘X’ and a neighboring patch
(in between the blue and red curves). In (b), we look at how the first and second terms
change with respect to r. The green and red curves are the first terms with Wasserstein
distance and Kullback-Leibler divergence, respectively. The blue curve is the entropy
of the histogram on the local patch, whose maxima (patch being most complex) appear
periodically when r is a multiple of the texton size. Minima (satisfy histogram match-
ing criterion) appear periodically at multiples of r. Therefore, the correct scale should
be the smallest among all arguments of the minimum. In this example, the texton size
is 1, or a 3 × 3 patch. The entropy term is redundant in this example but is necessary
in general when there are homogeneous areas within the texton.

Fig. 2 is an example consisting of two synthetic textures, on each of which, we
select two pixels (A, B and C, D), one closer to the texture edge than the other. From
the energy plots, we see that the entropy increases rapidly with patch size as soon as the
patch begins to overlap both texture regions. Therefore, measuring the complexity of
a local patch’s histogram alone is not sufficient to find the scale. The distance between
histograms on local patch and neighboring patch also increases rapidly as the local
patch begins to overlap both textures, indicating the correct texton size has already
been passed. This shows a good sign of using the histogram matching criterion.

The proposed model (9) finds the local scale of a texture. However, it does not
attempt to find the scale correctly at locations near texture edges, due to histogram
comparison being symmetric. Fig.3 (a) marks three locations, one at the left texture,
one near the texture edge, and one on the right texture. The histogram differences by
both Wasserstein distance in (c) and Kullback-Leibler divergence in (d) attain local
minima periodically because both local and neighboring patches are almost symmetric
about the texture edge when the patch size is large. Therefore, histogram comparison
must be modified in order to find the correct scale especially for the pixels in the vicin-
ity of the boundary of different textures. We propose the following modification of
model (9):

inf
r
D∗(PRx,r

, PNx,r
)− αH(PRx,r

) + βr(x) (10)

D∗(PRx,r
, PNx,r

) = min
i
D(PRx,r

, PNx,r,i
), (11)

whereNx,r,i is a sub-neighboring patch withinNx,r whose size is r. For computational
efficiency, 8 sub-neighboring patches are pre-defined as follows:
{R(x1+2r,x2+2r),r,R(x1,x2+2r),r,R(x1−2r,x2+2r),r,R(x1−2r,x2),r,

R(x1−2r,x2−2r),r,R(x1,x2−2r),r,R(x1+2r,x2−2r),r,R(x1+2r,x2),r}.
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Numerically, the proposed models are solved in the discrete setting. It is difficult
to derive the Euler-Lagrange equation of the energy functional in (9) and (10) because
histograms depend on the variable r. As also seen in the energy plots, the proposed
model has many local minima, thus the steepest descent method does not find a global
minimum.

3 Texture Segmentation
In this section, we utilize scale and propose an unsupervised texture segmentation
mode. Our model is adapted from the histogram based segmentation [5], a two-phase
nonparametric region-based active contour that uses local histograms as image features.
The model partitions the image domain into two regions so that the local histograms
within each region are similar to one another. In [5], the local histograms have a uni-
form patch size and we propose to use an adaptive scale. Moreover, we use scale as
an image feature in the segmentation model. We give an example to show scale plays
an important role. Fig.4 (a) is an image consisting of two textures with the same his-
togram but different scales. The segmentation result in (a) is by two-phase piecewise
constant active contour model [7], indicated by the intensities black and white. The
partition is within textons and do not distinguish textures, because two textures have
the same intensity mean. In (b), we show the partition using histogram based segmen-
tation model with global scale r = 1. The partition captures the inner texture but also
falsely includes partial outer texture, because the scale is too small for the outer re-
gion. In (c), the global scale r = 4 is large enough and two textures are considered
the same because they have the same histogram. To distinguish them, scale has to be
added as an image feature in the segmentation model. The proposed model uses scale
for characterizing histograms (as an image feature) and also as an image feature:

min
0≤u≤1,P1,P2,r1,r2

∫
Ω

|∇u| (12)

+
∫

Ω

[λ1Dw(P1, Px,r(x)) + λ2(r1 − r(x))2]u(x)dx

+λ
∫

Ω

[λ1Dw(P2, Px,r(x)) + λ2(r2 − r(x))2](1− u(x))dx,

where λ1 and λ2 are positive parameters. Minimizing this energy functional separates
the image domain into two so that the local histograms within each region are similar
to one another and the scale intensities are similar within each region. The first term
penalizes the total length of the object boundary. The second and third are fidelity
terms. They minimize the integral over all pixels inside their respective regions of
distance between a constant (optimal) histogram and the local histograms and distance
between a constant (optimal) value and the scale intensities. The partition is obtained
by the following thresholding: Ω = {u ≤ 0.5} ∪ {u > 0.5}.
The minimization can be approximated by a three-step scheme, using the methods in
[1] and [2]. First, fix u, r1, and r2 and minimize with respect to F1 and F2 and calculus
of variation gives:
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∫
u(x)

F1(y)− Fx,r(x)(y)
|F1(y)− Fx,r(x)(y)|

dx = 0

and ∫
[1− u(x)]

F2(y)− Fx,r(x)(y)
|F2(y)− Fx,r(x)(y)|

dx = 0,

respectively, for each 0 ≤ y ≤ L. Therefore,

F1(y) = weighted median of Fx,r(x)(y)
with weight u(x), (13)

and

F2(y) = weighted median of Fx,r(x)(y)
with weight (1− u(x)). (14)

Second, fix u, F1, and F2 and minimize with respect to r1 and r2 gives

r1 =
∫

Ω

r(x)u(x)dx/
∫

Ω

u(x)dx, (15)

and

r2 =
∫

Ω

r(x)(1− u(x))dx/
∫

Ω

u(x)dx. (16)

Third, fix F1 and F2 and minimize with respect to u. By using the methods in [1]
and [2], we may avoid a stiff minimization that involves the mean curvature flow of u.
Decouple (12) by adding a new variable v in a convex term:

min
u,0≤v≤1

∫
Ω

|∇u(x)|dx+
1
2θ

∫
Ω

(u(x)− v(x))2dx

+
∫

Ω

f(x)v(x)dx , (17)

where f(x) = λ1

∫ L

0
|F1(y)−Fx,r(x)(y)|−|F2(y)−Fx,r(x)(y)|dy+λ2[(r1−r(x))2−

(r2 − r(x))2].
Minimize the convex variational model (17) by solving the coupled problems, alter-
nately:

min
u

∫
Ω

|∇u(x)|+ 1
2θ

(u(x)− v(x))2dx (18)
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min
0≤v≤1

1
2θ

∫
Ω

(u(x)− v(x))2dx

+λ
∫

Ω

f(x)v(x)dx (19)

Equation (18) can be solved efficiently by the Chambolle’s method [4], based on the
dual formulation of the total variation norm:

u(x) = v(x)− θdivp(x) , (20)

where p = (p1, p2) solves ∇(θdivp − v) − |∇(θdivp − v)|p = 0 and is solved by a
fixed point method,

pn+1 =
pn + δt∇(divpn − v/θ)
1 + δt|(divpn − v/θ)|

. (21)

The solution of (19) is [2]:

v(x) = max{min{u(x)− θλf(x), 1}, 0} . (22)

The minimization scheme is to iterate (13), (14), (15), (16), (21), (20), and (22)
alternately, until convergence.

4 Experiments
We first show experimental results of the proposed scale model on several Brodatz tex-
tures. Fig.5(a) shows three arbitrarily chosen pixels on a Brodatz texture. In (b), the
curve of entropy versus patch size at each indicated pixel is almost increasing and does
not have a global maximum as patch size continues to increase. The histograms gain
complexity as the patch size increases and there is no clear sign of the correct scale
according to these curves, which emphasizes that entropy alone is not enough to find
the scale. On the contrary, in (d), we see the histogram difference (using the Wasser-
stein distance) versus patch size obtains a global minimum and the texton size can be
clearly identified at the first minimum from left, away from r = 0. In (c), the scale at
each indicated pixel by the proposed model with the Wasserstein distance is accurate.
In (f), the histogram difference versus patch size plot shows the Kullback-Leibler di-
vergence captures the characteristics to some extend but not as well as the Wasserstein
distance. The selected scale shown in (e) is roughly correct. The reason of the Wasser-
stein distance outperforming the Kullback-Leibler divergence in this experiment is that
the Wasserstein distance overcomes the deficiency of pointwise metrics, as addressed
in [5].

Fig.6 shows five Brodatz textures in column (a) and their scale maps by Tikhonov
flow [13] in column (b), by TV flow [3] in column (c), and by the proposed model
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in column (d). The scale maps for these textures are expected to be homogeneous and
only our model captures this characteristic. The parameters are α = 0.001 and β = 0.1
in (9) for all five textures. We show in column (a) the scales obtained by our model at
three arbitrarily selected locations are accurate and agree with human perception. In
the first row, the scale map by Tikhonov flow highlights the edge of circles because the
scale is associated with intensity gradients. The scale map by TV flow (d) highlights
the circle regions since the scale is proportional to the size of a homogeneous region.
Neither of the previous scale descriptors describe the size of the texture. We also apply
the proposed scale model to several natural images from the Berkeley Segmentation
Dataset as shown in the following.

Fig.7, 8, and 9 compare the histogram based segmentation model with global scales
[5] and the proposed model. Column (a) shows the given natural images. Columns (b),
(c), and (d) are the segmentation results by [5] with global scale r = 4, 16, and 32,
respectively. In (b) with r = 4, the segmentation selects within the cheetah patterns at
some locations because the global scale is too small for those locations. In (c) (with
r = 16) and in (d) (with r = 32), segmentation does not partition within the cheetah
patterns but does not fall on the boundary accurately. This is because the global scale
is too large, resulting many patches cross over both regions. The scale maps in (e)
describe correctly each object region by a homogeneous scale and each background
region by another homogeneous scale. The results in (f) by the proposed model that
utilizes scale improve the segmentation result significantly.

5 Discussion and Conclusion
In this work, we define a scale descriptor associated with texture. We propose a non-
parametric model that seeks the scale by matching histograms in a self-repeating man-
ner. The proposed energy functional consists of three terms. The first finds a size that
satisfies a histogram matching criterion that compares the local patch with the neigh-
boring patch. The second maximizes the complexity of a patch to avoid choosing the
wrong size when there are homogeneous regions within a texton. The third penalizes
the size because texton is the smallest element that generates a texture. We show that
these three terms are not redundant to one another. We also propose a modified model
suited for finding the scale near the texture edges. Our experimental results show that
the scale map of a texture by the proposed model is highly accurate. Furthermore,
we use scale as an image feature and also use it for characterizing local histograms.
Our experimental results on several natural images show an improvement in texture
segmentation over approaches that rely on a fixed scale.
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Figure 2: Image consisting of two synthetic textures. (a) Mark two locations A, B on
the left texture and two locations C, D on the right. (b) Entropy vs. size of local patch
at A and B. (c) Entropy vs. size of local patch at C and D. (d) Histogram difference vs.
size with Kullback-Leibler divergence at A and B. (e) Histogram difference vs. size
with Kullback-Leibler divergence at C and D. (f) Histogram difference vs. size with
Wasserstein distance at A and B. (g) Histogram difference vs. size with Wasserstein
distance at C and D
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(c) Wasserstein (d) KL divergence

Figure 3: Image consisting of two synthetic textures. (a) Mark three locations A on
the left texture, B near the texture edge and B on the right. (b) Entropy vs. size of
local patch at each location. (c) Histogram difference vs. size with Kullback-Leibler
divergence at each location. (d) Histogram difference vs. size with Kullback-Leibler
divergence at each location.

(a) texture (b) intensity

(c) scale 1 (d) scale 4

Figure 4: (a) Image consisting of two synthetic textures with the same histogram
but different scales. (b) Segmentation by using intensity [7]. (c) Histogram based
segmentation with scale r = 1. (d) Histogram based segmentation with scale r = 4.
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(a) Brodatz texture (b) Entropy
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(c) Local scales (d) Wasserstein
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(e) Local scales (f) KL divergence

Figure 5: Brodatz texture image. (a) Mark three locations A, B, and C. (b) Entropy
vs. size of local patch at A, B, and C. (c) Selected scales by proposed model using
Wasserstein distance at A, B, and C. (d) Histogram difference vs. size with Wasserstein
distance at A, B, and C. (e) Selected scales by proposed model using Kullback-Leibler
divergence at A, B, and C. (f) Histogram difference vs. size with Wasserstein distance
at A, B, and C. (g) Histogram difference vs. size with Kullback-Leibler divergence at
A, B, and C.
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(a) Brodatz textures (b) Tikhonov scale map (c) TV scale map (d) Proposed scale map

Figure 6: Comparison of scale maps with other methods on Brodatz texture images.
(a) Brodatz texture images with patches with texton scales obtained by our model at
arbitrarily selected pixels. (b) Scale map by Tikhonov flow. (c) Scale map by TV flow.
(d) Scale map by the proposed model with α = 0.001 and β = 0.1.
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Figure 7: (a) Original Image. (b) Scale map by the proposed model. (c) Segmentation
by proposed model. (d) Segmentation with global scale r = 4. (e) Segmentation with
global scale r = 16. (f) Segmentation with global scale r = 32.
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Figure 8: (a) Original Image. (b) Scale map by the proposed model. (c) Segmentation
by proposed model. (d) Segmentation with global scale r = 4. (e) Segmentation with
global scale r = 16. (f) Segmentation with global scale r = 32.
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Figure 9: (a) Original Image. (b) Scale map by the proposed model. (c) Segmentation
by proposed model. (d) Segmentation with global scale r = 4. (e) Segmentation with
global scale r = 16. (f) Segmentation with global scale r = 32.
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