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Abstract

A Prüfer domain is defined as an integral domain for which each nonzero finitely

generated ideal is invertible or, equivalently, projective. In general, if R is a domain, we

have the following equivalent statements:

(i) R is semihereditary (see §2.6 for the definition).

(ii) w.gl.dim(R) ≤ 1 (see §2.5 for the definition).

(iii) Rm is a chain domain for every m ∈ Max(R) (see SS1.2,, 1.3 for definitions).

(iv) R is a Gaussian domain (see §3.1 for the definition).

(v) R is a Prüfer domain.

The definition of each class of ring featured in (i)–(v) can be extended to commutative rings

which are not necessarily integral domains, i.e., which may have zero-divisors. However,

there are examples showing that no two of (i)–(v) are equivalent in this more general

setting. In fact we have strict implications

R is semihereditary⇒ w.gl.dim(R) ≤ 1⇒ Rm is a chain ring for every maximal ideal

M of R ⇒ R is a Gaussian ring ⇒ (v) R is a Prüfer ring.

We concentrate our studies on the weak global dimension of Gaussian rings. The

authors of [BaGl] proposed a conjecture that there were only three possibilities for the

weak global dimension of a Gaussian ring, namely 0, 1 or ∞. We follow the authors of

[DT] by referring to this as the Bazzoni–Glaz Conjecture. In [Gl2, Theorem 2.2], it is shown

that if the Gaussian ring R is a reduced ring (i.e., R is a ring for which the zero element
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is the only nilpotent element) then R has weak global dimension at most 1, verifying the

Conjecture in this case. The case of non-reduced Gaussian rings is given a great deal of

attention in the 2011 preprint [DT]. The authors of [DT] prove the Conjecture is true

using a number of concepts from homological algebra. We give details for some of these

results and refer to articles and books for others. The proof in [DT] is quite long, involving

several reduction steps to reach the final outcome.

In the Chapter 1 we introduce some well-established results from the ideal theory of

commutative rings. For the most part, we will skip the proofs of these results and give

references for them to the reader. This chapter is very important for the following chapters.

We then look at some homological algebra definitions, results and methods in Chapter 2.

In particular, this chapter will look at the weak global dimension of a ring R. The third

chapter concentrates on the ideal structure of Gaussian rings, especially local Gaussian

rings, detailing general properties of their internal structure. Finally, in Chapter 4, we

give a detailed proof of the Bazzoni–Glaz Conjecture. This final lengthy chapter considers

an all-inclusive number of cases of Gaussian rings and shows that the conjecture holds for

every case.
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Chapter 1

Ideal–Theoretic Preliminaries.

The aim of Chapter 1 is to give some definitions and state (often without proof) some

crucial well-established results from the ideal theory of commutative rings which we will

use later. When we omit a proof, at least one textbook reference will be given for it.

In what follows, R denotes a commutative, associative ring with nonzero identity 1

(unless otherwise specified).

1.1 Spec(R), Nil(R), and reduced rings.

Definition 1.1. The set of all prime ideals of a ring R is called the (prime) spectrum

of R and is denoted by Spec(R).

The set of all maximal ideals of R is called the maximal spectrum of R and is

denoted by Max(R).

A prime ideal P of R is called minimal if it does not properly contain any other

prime ideal of R.1 The set of all minimal prime ideals of R is called the minimal prime

spectrum of R and is denoted by Min(R).

1We use the notation P if the prime ideal is minimal and P for an unspecified prime ideal.
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CHAPTER 1. IDEAL–THEORETIC PRELIMINARIES. 2

Our first lemma is proved using a straightforward Zorn’s Lemma argument on the

partially ordered set (Spec(R),⊇). (See, for example, [LM, Lemma 2.15].)

Lemma 1.2. Every prime ideal of the ring R contains a minimal prime ideal.

Definition 1.3. An element a of a ring R is said to be nilpotent if there exists a natural

number n such that an = 0. Similarly, an ideal I of R is called nilpotent if there exists

n ∈ N such that In = 0 or, equivalently, there exists n ∈ N such that x1x2 · · ·xn = 0 for

every sequence x1, x2, . . . , xn of elements in I.

Definition 1.4. The set of all nilpotent elements of a ring R is called the nilradical of

R and we denote it by Nil(R).

The following is a well-known result from commutative ring theory, but we sketch its

proof.

Proposition 1.5. For any ring R we have Nil(R) = ∩P∈Spec(R)P , i.e., Nil(R) is the

intersection of all the prime ideals of R.

Proof. (Sketch.) Let a be a nonzero element of Nil(R) and suppose by way of contradiction

that there is a prime ideal P of R for which a /∈ P . Let n be the smallest positive integer

for which an = 0. Then, since n > 1, we have a · an−1 = an ∈ P so, since P is prime either

a ∈ P (a contradiction) or an−1 ∈ P . Now consider an−1 = a · an−2 ∈ P to get an−2 ∈ P

and continue in this way to finally get a ∈ P . Thus Nil(R) ⊆ ∩P∈Spec(R)P .

For the reverse inclusion, assume to the contrary that a ∈ ∩P∈Spec(R)P but a /∈ Nil(R).

Then S = {1, an : n ∈ N} is a multiplicatively closed subset of R. By a Zorn’s Lemma

argument, there is an ideal P of R maximal with respect to the property of being disjoint

from S. Then one can show that P is a prime ideal. Since a /∈ P , we have a contradiction.

Hence ∩P∈Spec(R)P ⊆ Nil(R), as required.

Combining Lemma 1.2 with Proposition 1.5 gives
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Corollary 1.6. For any ring R we have Nil(R) = ∩P∈Min(R)P.

Definition 1.7. A ring is called reduced if 0 is its only nilpotent element.

Note that any integral domain R is reduced. (If r ∈ R with r 6= 0 then r2 6= 0 and,

proceeding inductively, rn 6= 0 for any n ∈ N.)

Definition 1.8. An ideal I of the ring R is called nil if every element of I is nilpotent.

Notice that we can deduce from these definitions that every nilpotent ideal is nil.

However the converse is not always true. (Let p be a prime number. Consider R =∏
n≥2 Zpn with ideal I = ⊕n≥2Jn where Jn is the unique maximal ideal of Zpn .)

1.2 Local rings and localisation.

Definition 1.9. A ring R is called local if it has exactly one maximal ideal.2

We follow common practice by saying that (R,m) is a local ring when R has m as its unique

maximal ideal.

The following characterization of local rings is well-known. (See for example [AF, Bl].)

Lemma 1.10. The following statements are equivalent for a ring R.

(i) R is a local ring.

(ii) For any r ∈ R, either r is a unit or 1− r is a unit.

(iii) The set of non-units of R is closed under addition.

(iv) The set of non-units of R is an ideal of R.

The next two lemmas show how any local ring can be used to manufacture more local

rings. The proof of the first lemma is easy, so omitted.

2Some authors use quasi-local instead of local, reserving local ring to mean a Noetherian ring with exactly
one maximal ideal.
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Lemma 1.11. If I is a proper ideal of the local ring (R,m), then the factor ring R/I is

also local, with unique maximal ideal m/I.

Lemma 1.12. Let (R,m) be a local ring, x an indeterminate, and n ∈ N. Then R[x]/(xn),

the polynomial ring R[x] factored by its ideal generated by xn, is local, with {f(x) + (xn) :

f(x) ∈ R[x], f(0) ∈ m} as its unique maximal ideal.

Proof. Let f(x) + (xn) and g(x) + (xn) be elements of R[x]/(xn). Then we may write

f(x)+(xn) = a0 +a1x+ · · ·+an−1x
n−1 +(xn), g(x)+(xn) = b0 +b1x+ · · ·+bn−1x

n−1 +(xn)

where each ai, bi ∈ R. Then f(x) + (xn) is a unit in R[x]/(xn) with inverse g(x) + (xn) if

and only if

a0b0 + (a0b1 + a1b0)x+ · · ·+
∑

i≥0,j≥0,i+j=n−1

aibjx
n−1 + (xn) = 1 + (xn).

Comparing coefficients of each power of x on both sides of this equation gives

a0b0 = 1, a0b1 + a1b0 = 0 = a0b2 + a1b1 + a2b0 = · · · =
∑

i≥0,j≥0,i+j=n−1

aibj

and so a0 6∈ m with b0 = a−1
0 , b1 = −a−1

0 (a1b0) = −(a−1
0 )2a1, b2 = −a−1

0 (a1b1 + a2b0) =

−a−1
0 (−(a−1

0 )2a2
1 +a−1

0 a2) and, continuing in this way, each bi can be expressed using the aj

terms. This shows that a0 6∈ m is necessary and sufficient for f(x) + (xn) to be a unit and

so f(0) ∈ m characterizes non-units in R[x]/(xn). It is then clear that the sum of any two

non-units in R[x]/(xn) is also a non-unit and so R[x]/(xn) is local, by Lemma 1.10.

Definition 1.13. An element a ∈ R is said to be a proper zero-divisor if a 6= 0 and

ab = 0 for some nonzero element b in R. On the other hand, an element r ∈ R is called

regular if r 6= 0 and r is not a proper zero-divisor, i.e., given s ∈ R with sr = 0 then

s = 0.

Definition 1.14. A multiplicatively closed subset (m.c.s. for short) S of a ring R is a

subset of R which contains 1 but not 0 and is closed under multiplication of its elements.
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Examples 1.15. (1) It is easy to see that the set S of all regular elements in R is an m.c.s.

of R.

(2) Given any prime ideal P of R, the set S = R \ P is an m.c.s. since:

(i) 0R /∈ S since 0R ∈ P .

(ii) 1R ∈ S since 1R /∈ P because P 6= R.

(iii) If s, t ∈ S then s /∈ P and t /∈ P so st /∈ P since P is a prime ideal and therefore

st ∈ S.

Definition 1.16. Let S be a multiplicatively closed subset of the ring R. We define an

equivalence relation ∼ on R×S by setting (r1, s1) ∼ (r2, s2) if there exists t ∈ S such that

t(r1s2− r2s1) = 0. Denote the equivalence class of (r, s) by
r

s
and the set of all equivalence

classes of R × S with respect to ∼ by RS. One can make the set RS into a commutative

ring called the quotient ring of R with respect to S with identity
1

1
and zero

0

1
by

defining addition and multiplication as follows:

r1

s1

+
r2

s2

=
r1s2 + r2s1

s1s2

,
r1

s1

· r2

s2

=
r1r2

s1s2

for all
r1

s1

,
r2

s2

∈ RS. For detailed verification that RS is indeed a commutative ring, we

refer to [LM, Chapter III].

Examples 1.17. (1) Let P be a prime ideal of the commutative ring R and S = R \ P .

Then we can form the quotient ring of R with respect to S. In this case, the special

notation RP is used instead of RR\P and RP is called the localisation of R at P .

(2) Since any maximal ideal M of a commutative ring R is prime, we can form the mul-

tiplicatively closed subset S = R \M and then the quotient ring RM as a special case of

example (1).

(3) Let S be the multiplicatively closed subset of all regular elements of the ring R. Then

the ring RS is denoted by Q(R) and called the total quotient ring or total ring of

quotients of R. Thus
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Q(R) =
{r
s

: r, s ∈ R, s is regular
}
.

Note that if R is an integral domain, then Q(R) is simply the quotient field of R.

Lemma 1.18. Let P be a prime ideal of the ring R. Then the localisation RP of R at P

is a local ring with maximal ideal PRP .

Proof. Any element in RP is of the form
x

s
, where x ∈ R, and s ∈ R \ P . If

x

s
/∈ PRP

then x /∈ P and so x ∈ R \ P . Thus,
s

x
is defined in RP and it is straightforward to show

that it is the inverse of
x

s
. Now suppose that

y

t
∈ PRP . Then we have

y

t
=
z

u
for some

z ∈ R, u ∈ R \ P . If
z

u
is a unit, then there exists

w

v
with w ∈ R and v ∈ R \ P such

that
z

u
· w
v

= 1. Hence, there is an element q ∈ R \ P such that qzw = quv. However,

quv ∈ R \ P and qzw ∈ P , a contradiction. This shows that the set of units in RP is

RP \ PRP .

Now we show that the set of non-units is closed under addition. To this end take

p1

s1

,
p2

s2

∈ PRP . Then
p1

s1

+
p2

s2

=
p1s2 + p2s1

s1s2

∈ PRP since p1s2 + p2s1 ∈ P .

Notes.

(1) For any m.c.s. S of R, we can consider R as a subring of RS, identifying it with{r
1

: r ∈ R
}
⊆ RS.

(2) It can be easily shown that RS is an R-module with module multiplication given by

r
r1

s1

=
rr1

s1

for every r, r1 ∈ R and s1 ∈ S.

Definition 1.19. Let S be an m.c.s. of the commutative ring R. Then every R-module

M gives rise to an RS-module MS as follows. We define an equivalence relation on M × S

given by (m1, s1) ∼ (m2, s2) if there is an element t ∈ S such that ts1m2 = ts2m1. The

equivalence class represented by (m, s) is denoted by
m

s
and we set

MS =
{m
s

: m ∈M, s ∈ S
}
,
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called the extension or localisation of the R-module M at S. This becomes an RS

module with addition and module multiplication given by:

m1

s1

+
m2

s2

=
s1m1 + s1m2

s1s2

and
r1

s1

m1

s2

=
r1m1

s1s2

,

where m1,m2 ∈M , s1, s2 ∈ S, and r1 ∈ R.

In particular, if I is an ideal of R, then regarding I as an R-module, we get an ideal

IS of the quotient ring RS.

Notes.

(1) It should be noted that given any ideal A of the ring RS there exists an ideal I of R

such that A = IS. In other words, every ideal of RS is an extension of some ideal I of R.

In fact I =
{
r ∈ R :

r

1
∈ A

}
.

(2) If Q is an ideal of the ring R and P is a prime ideal of R then the notation RPQ is

used for the extension of Q instead of QP . In particular, this avoids the notation PP .

Definition 1.20. For any ideals I, J of the ring R, one can define I : J , the residual of

I by J , which is also an ideal of R, given by:

I : J = {r ∈ R : rJ ⊆ I}.

The results from Theorem 1.21 to Theorem 1.27 record some useful results for rings

of quotients. Details can be found in [LM, Chapter III].

Theorem 1.21. Let S be a multiplicatively closed subset of the ring R. If A,B are ideals

of R then:

(i) (A+B)S = AS +BS.

(ii) (AB)S = ASBS.

(iii) (A ∩B)S = AS ∩BS.

(iv) (A : B)S = AS : BS if B is finitely generated.
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Theorem 1.22. Let S be an m.c.s. of the ring R and I be an ideal of R. Then IS = RS

if and only if I ∩ S 6= ∅.

The next theorem gives useful information on the ideal PS when P ∈ Spec(R).

Theorem 1.23. Let S be an m.c.s. of the ring R and P be a prime ideal of R. Then the

ideal PS of RS is a prime ideal if P ∩ S = ∅; otherwise, PS = RS.

Proposition 1.24 (The Local-Global Principle). Let A,B be ideals of the ring R.

Then A = B if and only if AM = BM for every maximal ideal M of R, where AM and BM

are the extensions of A and B, respectively, at the maximal ideal M .

Regarding R as a subring of RS, we now define an operation which undoes the

extension of an ideal I of R.

Lemma 1.25. Let S be an m.c.s. of the ring R and J be an ideal of RS. Take Ĵ = J ∩R.

Then Ĵ is an ideal of R with ĴS = J . The ideal Ĵ is called the contraction of the ideal J .

The next two results shows that contractions get along well with prime ideals.

Theorem 1.26. Let S be an m.c.s. of the ring R and Q be a prime ideal of RS. Then the

contraction Q̂ of Q is a prime ideal of R.

Theorem 1.27. Let S be an m.c.s. of the ring R and P be the collection of all prime ideals

of R having empty intersection with S. Let PS be the collection of all prime ideals of the

ring RS. Then the mapping φ : P −→ PS, given by φ(P ) = PS for all P ∈ P, is both onto

and one-to-one. The inverse of φ is given by Q 7→ Q̂ for all Q ∈ PS.

Lemma 1.28. If P is a minimal prime ideal of the ring R then the ideal PRP is the only

prime ideal of the localisation RP.



CHAPTER 1. IDEAL–THEORETIC PRELIMINARIES. 9

Proof. Suppose Q is another prime ideal of RP. Then either (i) Q 6⊆ PRP or (ii) Q ( PRP.

If (i) holds, then there exists q ∈ Q \ P and s ∈ R \ P such that
q

s
∈ Q \ PRP. This

gives
s

q
∈ RP and so

1

1
=

s

q

q

s
∈ Q and so Q = RP, a contradiction. If (ii) holds, let

Q = {q ∈ R :
q

1
∈ Q}. It is straightforward to see that Q is a prime ideal of R contained

in P with QRP = Q. Since P is minimal, we have Q = P. This gives Q = PRP, again a

contradiction. Thus PRP is the only prime ideal of RP.

Definition 1.29. Let M be a module over the ring R and X be a nonempty subset of M .

Then the annihilator of X is defined to be

annR(X) = {r ∈ R : rx = 0 for all x ∈ X}.

When there is no risk of confusion, we simply write ann(X). It is straightforward to see

that, if X is an ideal of R, then ann(X) is also an ideal of R.

When X = {x}, a singleton subset of M , we simplify the annihilator notation to

annR(x) or ann(x). Each ann(x) is an ideal of R.

Lemma 1.30. Let M be a module over the ring R and a ∈ M . Then, for any m.c.s. of

R, in MS we have

annRS

(a
1

)
= (annR(a))S.

Proof. If x ∈ (annR(a))S then x =
b

s
, where b ∈ R with ba = 0 and s ∈ S and so

x
a

1
=
b

s
· a

1
=
ba

s
= 0, i.e., x ∈ annRS

(a
1

)
. Thus (annR(a))S ⊆ annRS

(a
1

)
.

Conversely, if y ∈ annRS

(a
1

)
, then y =

c

t
, where c ∈ R, t ∈ S, and

c

t
· a

1
=

0

1
. This

implies that cau = 0 for some u ∈ S. Thus y =
c

t
=
cu

tu
∈ (annR(a))S since cu ∈ annR(a)

and tu ∈ S and this proves the equality.

Lemma 1.31. Let R be a local ring and S be an m.c.s. of R. Then (Nil(R))S = Nil(RS).

Proof. To simplify the notation set A = (Nil(R))S and B = Nil(RS). If x ∈ A then x =
r

s

for some r ∈ R, s ∈ S and rn = 0 for some n ≥ 1. This gives xn =
rn

sn
=

0

sn
= 0. Hence
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x ∈ Nil(RS) = B and therefore A ⊆ B. Conversely, if y ∈ B we have y =
r

s
for some

r ∈ R, s ∈ S and yn = 0 for some n ∈ N. Then
rn

sn
=

0

1
and so trn = 0 for some t ∈ S.

Thus (tr)n = 0, giving tr ∈ Nil(R). Hence y =
tr

ts
∈ (Nil(R))S = A, as required.

The following result is immediate from Lemma 1.31.

Corollary 1.32. Let R be a reduced ring. Then the localisation RP is also reduced for any

prime ideal P of R.

Definition 1.33. Let S be an m.c.s. of the ring R and ψS : R → RS be the natural ring

homomorphism given by r 7→ r

1
for all r ∈ R. We define

OS = ker(ψS) = {r ∈ R : ru = 0 for some u ∈ S}.

In the special case of S = R \ P where P is a prime ideal of R, we denote OS by OP .

Lemma 1.34. Let S be an m.c.s. of the ring R. Then OS is an ideal of R and there is a

ring monomorphism φS : R/OS −→ RS.

Proof. To show that OS is an ideal of R, let r, s ∈ OS. Then there exists u, v ∈ S such

that ur = 0 = vs. Since S is an m.c.s. we get uv ∈ S. Moreover, since uv(r − s) = 0, we

get r − s ∈ OS and this shows that OS is closed under subtraction in R.

Now let r ∈ OS and t ∈ R. Then taking u ∈ S with ru = 0, we get u(tr) = 0.

Therefore tr ∈ OS. Hence OS is an ideal of R.

To show the existence of the ring monomorphism we define φS : R/OS −→ RS by

φS(r + OS) =
r

1
. Then φS is well-defined since if r + OS = s + OS then r − s ∈ OS and

so u(r − s) = 0 for some u ∈ S. Then ur = us and φS(r + OS) =
r

1
=
ur

u
=
us

u
=
s

1
=

φS(s+OS).

Furthermore, φS is an R-homomorphism since for r +OS, s+OS ∈ R/OS and t ∈ R

we have:

(i) φS[(r+OS) + (s+OS)] = φS(r+ s+OS) =
r + s

1
=
r

1
+
s

1
= φS(r+OS) +φS(s+OS).
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(ii) t · φS(r +OS) = t
r

1
=
tr

1
= φS(tr +OS).

Now suppose φS(r+OS) =
0

1
. Then

r

1
=

0

1
in RS. Thus there exists u ∈ S such that

ur = 0. This gives r ∈ OS and so r +OS = 0. Hence φS is an R-monomorphism.

The following lemma from [Gl1, Lemma 3.3.4] is an example of a result that is proved

using the localisation process although the result itself has no mention of the process.

Lemma 1.35. Let R be a reduced ring and P ∈ Spec(R). Then P ∈ Min(R) if and only

if ann(x) * P for all x ∈ P . In this case P = OP .

Proof. Suppose ann(x) * P for every x ∈ P . We want to show that P is a minimal prime

ideal of R. To this end, suppose there exists Q ∈ Spec(R) with Q ⊆ P . If Q 6= P , then

there exists x ∈ P \Q. Then ann(x) * P and so there exists r ∈ ann(x) such that r /∈ P .

It follows that rx = 0 ∈ Q. However this can not be the case since x /∈ Q and r /∈ Q

because Q ⊆ P and r /∈ P . This contradiction gives P = Q. Hence P ∈ Min(R).

Conversely, suppose P ∈ Min(R) and let x ∈ P . Notice that, by Lemma 1.28, the

ideal PRP is the only prime ideal in the localisation RP and so Nil(RP ) = PRP . Thus,

by Proposition 1.5, PRP is the set of nilpotent elements of RP . Since x ∈ P , we have

x

1
∈ PRP and so

(x
1

)n
=

0

1
for some n ∈ N. Then there exists u ∈ R \ P such that

uxn = 0. This gives (ux)n = 0 in R and so ux = 0 since R is reduced. Hence u ∈ ann(x)

and since u ∈ R \ P we obtain ann(x) * P .

To finish the proof, we show that in this case we have P = OP . Let x ∈ P . Then

ann(x) * P , so xu = 0 for some u /∈ P . This implies that x ∈ OP and so P ⊆ OP . If

conversely x ∈ OP , then xu = 0 for some u /∈ P . Thus, since P is prime, we must have

x ∈ P . Hence OP ⊆ P which gives the equality.
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1.3 Chain rings and arithmetical rings.

Definition 1.36. Let I and J be ideals of the ring R. If either I ⊆ J or J ⊆ I then I and

J are said to be comparable.

If I and J are comparable for all ideals I and J of R then R is called a chain ring

or valuation ring.

The proof of the next result is straightforward. (See for example [LM, Proposition

5.2].)

Proposition 1.37. Let R be a ring.

(a) The following statements are equivalent.

(i) R is a chain ring.

(ii) If I = Ra and J = Rb are any two principal ideals of R, then I and J are comparable.

(iii) Given any a, b ∈ R, there is an r ∈ R such that either a = rb or b = ra.

(b) If R is a chain ring then

(i) every finitely generated ideal of R is principal,

(ii) R is a local ring,

(iii) R has a unique minimal prime ideal, P say, and

(iv) Nil(R) = P.

The next definition is due to Fuchs [F].

Definition 1.38. A ring R is called arithmetical if

I ∩ (J +K) = (I ∩ J) + (I ∩K) for all ideals I, J and K of R.

Definition 1.39. Let I be an ideal of the ringR. If IM is a principal ideal in the localisation

RM for every maximal ideal M of R, then I is said to be locally principal.
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The next result is due to Jensen [J1, J2]. (See also [LM, Exercise 6.18].)

Proposition 1.40. The following statements are equivalent for a ring R.

(i) R is an arithmetical ring.

(ii) I + (J ∩K) = (I + J) ∩ (I +K) for all ideals I, J and K of R.

(iii) RM is a chain ring for every maximal ideal M of R.

(iv) RP is a chain ring for every P ∈ Spec(R).

(v) Every finitely generated ideal of R is locally principal.

1.4 Idempotent elements and idempotent ideals.

Definition 1.41. An element e of the ring R is said to be idempotent if e2 = e.

Similarly, an ideal I of R is idempotent if I2 = I, i.e., given any x ∈ I, there are

y1, . . . , yn, z1, . . . , zn ∈ I such that x = y1z1 + · · ·+ ynzn.

Notes. (1) If e is an idempotent of a ring R then 1 − e is also an idempotent since

(1− e)2 = 1 + e2 − 2e = 1 + e− 2e = 1− e. Moreover, (1− e)e = e− e2 = e− e = 0.

(2) In a local ring R, 0 and 1 are the only idempotent elements. To see this, note first that,

in any ring R, if e is both a unit and an idempotent then e = 1 since e = 1e = e−1ee =

e−1e = 1. Since our R is local, given any e ∈ R, by Lemma 1.10 either e or 1− e is a unit

so, if e is an idempotent, either e = 1 or 1− e = 1. Thus e = 1 or 0.

The following theorem is a special case of [KOTS, Theorem 2.17].

Theorem 1.42. Let I be a finitely generated ideal of the ring R. If I is an idempotent

ideal, then I = Re for some idempotent element e ∈ R.

Proof. We suppose that I is generated by a1, a2, . . . , an ∈ R and use induction on n.
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If n = 1 then I = Ra1, where a1 ∈ R. Then, since I is an idempotent, we have

I = I2 = Ra2
1. Thus a1 = ra2

1 for some r ∈ R. Then a1(1− ra1) = 0 and so I(1− ra1) =

Ra1(1 − ra1) = 0. In particular, ra1(1 − ra1) = 0 and so (ra1)2 = ra1, i.e., ra1 is an

idempotent element. Moreover I = Rra1 since Rra1 ⊆ I and I = Ra1 = Ra2
1 = R(ra1)2 ⊆

Rra1. This establishes the result for the case when n = 1.

Now suppose the result holds for all rings R and all idempotent ideals of R generated

by n− 1 elements, for some n ≥ 2. Let I = Ra1 +Ra2 + · · ·+Ran with I2 = I. Consider

the factor ideal I/Ra1 in the factor ring R/Ra1. Then I/Ra1 is generated by the n − 1

elements a2 +Ra1, a3 +Ra1, . . . , an +Ra1 and (I/Ra1)2 = I2/Ra1 = I/Ra1, i.e., I/Ra1 is

idempotent. By the induction hypothesis, I/Ra1 is generated by an idempotent element

in R/Ra1, say I/Ra1 = (R/Ra1)(e + Ra1), where (e + Ra1)2 = e + Ra1. Note that e ∈ I

and e2 − e ∈ Ra1. Moreover I = Ra1 +Re since:

(i) Ra1 +Re ⊆ I because a1, e ∈ I and

(ii) I ⊆ Ra1 +Re because if x ∈ I then x+Ra1 ∈ I/Ra1 = (R/Ra1)(e+Ra1). Hence

x + Ra1 = (r + Ra1)(e + Ra1) = re + Ra1 for some r ∈ R. Thus x − re ∈ Ra1 and so

x ∈ Ra1 +Re.

Now a1 ∈ I = I2 = (Ra1 +Re)2 = Ra2
1 +Ra1e+Re2, so a1(1− e) ∈ (Ra2

1 +Ra1e+

Re2)(1 − e) ⊆ Ra2
1(1 − e) + Ra1e(1 − e) + Re2(1 − e) ⊆ Ra2

1 + Ra1e, using e − e2 ∈ Ra1.

Again using e − e2 ∈ Ra1, we now get a1(1 − e)2 ∈ Ra2
1. Hence there exists t ∈ R such

that a1(1− e)2 = a2
1t and so

a1((1− e)2 − ta1) = 0 (∗).

However, I(1−e) = (Ra1+Re)(1−e) ⊆ Ra1(1−e) ⊆ Ra1 (since e−e2 ∈ Ra1). Thus, setting

f = 1−(1−e)[(1−e)2−a1t], we get I(1−f) = I(1−e)[(1−e)2−a1t] ⊆ Ra1((1−e)2−a1t)

since I(1 − e) ⊆ Ra1. Then by (∗) we get I(1 − f) = 0. Moreover, f is an element of I

since f = 1 − (1 − e)[(1 − e)2 − a1t] = 3e − 3e2 + e3 − (1 − e)a1t ∈ Ra1 + Re = I. Since
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I(1 − f) = 0, given any x ∈ I we have x(1 − f) = 0 and so x = xf . From this it follows

that I = Rf and, since f(1− f) = 0, f is an idempotent.

The next lemma appears as [FS, Chapter II, Lemma 1.3 (c)].

Lemma 1.43. Let R be a chain ring and let I be a proper ideal of R. Then either I is

nilpotent or P = ∩n∈NIn is a prime ideal.

Proof. Suppose I is not a nilpotent ideal. Let x, y ∈ R \ P . Then there exist m,n ∈ N

such that x /∈ Im and y /∈ In. In particular, Rx * Im and Ry * In. Since R is a chain

ring, we must then have Im ⊂ Rx and In ⊂ Ry. This gives Im+n ⊆ Rxy.

We aim to prove that xy /∈ P in order to show that P is prime. To this end we show

that Rxy 6= Im+n+1. Suppose to the contrary that Rxy ⊆ Im+n+1. Since Im+n ⊆ Rxy,

we get Im+n+1 ⊆ Im+n ⊆ Rxy ⊆ Im+n+1 and so Im+n+1 = Im+n = Rxy. Notice that

since Im+n+1 = Im+n we have Im+n = Im+n+1 = Im+n+2 = · · · = I2(m+n) = (Im+n)2

and so Im+n = Rxy is a finitely generated idempotent ideal. Then, by Theorem 1.42,

Im+n = Rxy = Re for some idempotent element in R. Because R is a chain ring, Note (2)

on page 13 shows that e is either 1 or 0. If e = 0 then Im+n = Rxy = 0, contradicting

the assumption that I is not nilpotent. If otherwise, e = 1 then Im+n = Rxy = R and

therefore I is not proper, another contradiction. Hence xy /∈ P as required.

The following result is stated on [FS, page 357].

Lemma 1.44. Let R be a chain ring. Then the ideal Nil(R) is either idempotent or

nilpotent.

Proof. Let N = Nil(R). By Lemma 1.43, either N is nilpotent or J = ∩n∈NNn is a prime

ideal. If N is neither idempotent nor nilpotent, then N 6= N2 and J is prime. Then N2 ( N

so, since J ⊆ N2 ( N , the prime ideal J is properly contained in the unique minimal prime

ideal N . This contradiction forces N to be either idempotent or nilpotent.



Chapter 2

Flat Modules and Weak Global

Dimension.

2.1 Flat modules.

We begin with a brief explanation of the tensor product which plays a major rule in defining

flat modules.

Definition 2.1. Let M and N be two modules over the ring R, and let A be an additive

abelian group.

A function b : M × N → A is called R-bilinear1 if for all m,m1,m2 ∈ M , all

n, n1, n2 ∈ N , and all r ∈ R, the following hold:

(i) b(m1 +m2, n) = b(m1, n) + b(m2, n).

(ii) b(m,n1 + n2) = b(m,n1) + b(m,n2).

(iii) b(mr, n) = b(m, rn).

A tensor product of M and N over R is a pair (V, t), where V is an additive abelian

group and t : M×N → V is an R-bilinear map, satisfying the following universal mapping

1An R-bilinear map is also called R-balanced by some authors.

16
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property:

For any R-bilinear map b : M×N → A that maps to an abelian group A, there exists

a unique abelian group homomorphism h : V → A such that ht = b, i.e., the following

diagram commutes

V

h

��

M ×N

t

66nnnnnnnnnnnnn

b
((PPPPPPPPPPPPPP

A

It can be shown that a tensor product for any pair of R-modules M and N always

exists and is unique up to isomorphism. Because of this uniqueness we denote it by M⊗N

or M ⊗R N , read as M tensor N . (See §2.3 [Bl] and §2.2 [Osb]).

Let t : M × N −→ M ⊗ N be the bilinear map associated with the tensor product.

Given (m,n) ∈M×N , we denote t((m,n)) by m⊗n. The elements m⊗n, (m ∈M,n ∈ N)

generate the group M ⊗ N (but in general, an element of M ⊗ N is a sum of elements

m⊗ n and need not be expressible as a single term m⊗ n). It follows from the definition

that we have the following properties:

(m1 +m2)⊗ n = (m1 ⊗ n) + (m2 ⊗ n),

m⊗ (n1 + n2) = (m⊗ n1) + (m⊗ n2),

mr ⊗ n = m⊗ rn,

in M ⊗N . The last of these properties enables the abelian group M ⊗N to become an R-

module with module multiplication given by r(m⊗n) = mr⊗n(= m⊗rn) for all r ∈ R,m ∈

M,n ∈ Nand extending this multiplication distibutively to sums m1 ⊗ n1 + · · ·mk ⊗ nk.

The uniqueness of the tensor product is useful in proving some important results as

the following examples show. Some of these results are given without proof noting that

proofs can be found in [Bl, Propositions 2.3.4, 2.3.6 and Problems 2.3.2, 2.3.6] and [Osb,
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Proposition 2.2].

Lemma 2.2. Let M , N be modules over the ring R, and I, J be ideals of R. Then the

following hold:

(i) M ⊗R N ' N ⊗RM .

(ii) M ⊗R (R/I) 'M/IM.

(iii) M ⊗R R 'M.

(iv) (R/I)⊗R (R/J) ' R/(I + J).

(v) If I and J are comaximal, i.e., I + J = R then (R/I)⊗R (R/J) ' 0.

(vi) If {Mλ : λ ∈ Λ} is a family of R-modules with M = ⊕λ∈ΛMλ then M ⊗ N =

⊕λ∈Λ(Mλ ⊗N).

Notice that (iii) and (iv) are special cases of (ii) and (v) is a special case of (iv).

Examples 2.3. (1) Let A and B be the Z-modules Z2 and Z3 respectively (the abelian

groups of order 2 and 3 respectively). Then A = Z/2Z, B = Z/3Z and so, by Lemma 2.2,

A⊗Z A = A, B ⊗Z B = B, and A⊗Z B = Z/(2Z + 3Z) = 0.

(2) Consider a generating element m ⊗ n of Q/Z ⊗Z Q/Z, where m, n are both nonzero.

Then we may write m =
a

b
+Z, n =

c

d
+Z, where a, b, c, d are nonzero integers. This gives

m⊗ n =
(a
b

+ Z
)
⊗
( c
d

+ Z
)

=

(
ad

bd
+ Z

)
⊗
( c
d

+ Z
)

=

(
a

bd

d

1
+ Z

)
⊗
( c
d

+ Z
)

=
( a
bd

+ Z
)
⊗
(
d

1

c

d
+ Z

)
=
( a
bd

+ Z
)
⊗
( c

1
+ Z

)
=
( a
bd

+ Z
)
⊗ 0 = 0.

Therefore Q/Z⊗Z Q/Z = 0.

(3) We show that Q ⊗ Q/Z is also 0. Let m ⊗ n be a generating element of Q ⊗Z Q/Z.

Then we may write m⊗ n = p⊗ (q + Z), where p, q ∈ Q, say p =
r

s
, q =

t

u
where r, s, t, u

are nonzero integers. This gives

m⊗n =
r

s
⊗
(
t

u
+ Z

)
=
ru

su
⊗
(
t

u
+ Z

)
=

r

su
⊗
(
tu

u
+ Z

)
=

r

su
⊗ (t+ Z) =

r

su
⊗ 0 = 0.

This shows that Q⊗Z Q/Z = 0.
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Given an R-homomorphism f : A −→ B, for any R-module M we have an R-

homomorphism f ⊗ 1M : A ⊗ M −→ B ⊗ M defined on the generators of A ⊗ M by

(f ⊗ 1M)(a ⊗ m) = f(a) ⊗ m, for all a ∈ A, m ∈ M . If g : B −→ C is another R-

homomorphism then, clearly, the composition (g ⊗ 1M)(f ⊗ 1M) is simply gf ⊗ 1M . We

may also define 1M ⊗ f : M ⊗ A −→M ⊗B similarly but, since M ⊗N ' N ⊗M for all

R-modules M,N , we may regard 1M ⊗ f as another way of writing f ⊗ 1M .

Definition 2.4. Given an R-module A and an index set I, we use A(I) to denote the

module ⊕i∈IAi where Ai = A for each i ∈ I.

It follows from Lemma 2.2 that if K is an ideal of R and I is an index set then

R/K ⊗R(I) ' (R/K ⊗R)(I) ' (R/K)(I).

This prepares us for the next lemma.

Lemma 2.5. Let I and K be index sets and f : R(I) −→ R(K) be an R-homomorphism.

Let a be an element of R, J be an ideal of R and let φI : Ra/Ja ⊗ R(I) −→ (Ra/Ja)(I),

φK : Ra/Ja⊗R(K) −→ (Ra/Ja)(K) be the natural isomorphisms. This induces the following

commutative diagram

Ra/Ja⊗R(I) 1⊗f //

φI
��

Ra/Ja⊗R(K)

φK
��

(Ra/Ja)(I) f̂ // (Ra/Ja)(K)

where 1 is the identity map on Ra/Ja and f̂ = φK(1⊗f)φ−1
I . If w = (wia+Ja)i∈I ∈ ker(f̂),

where wi ∈ R for each i ∈ I, then taking w = (wia)i∈I we have f(w) = f((wia)i∈I) ∈ Ja(K).

Proof. Since Ra/Ja is generated by a+ Ja, each element of Ra/Ja⊗R(I) can be written

as a+ Ja⊗ (ri)i∈I and similarly for elements of Ra/Ja⊗R(K).

Let {ei : i ∈ I} and {ek : k ∈ K} be the natural bases for R(I) and R(K) respectively.

Suppose that, for each i ∈ I, we have f(ei) =
∑

k∈K rikek. Then, given u = (ui)i∈I ∈ R(I),

we have f(u) = f(
∑

i∈I uiei) =
∑

i∈I
∑

k∈K uirikek = (
∑

i∈I uirik)k∈K .
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This gives

(1⊗ f)((a+ Ja)⊗ (ui)i∈I) = (a+ Ja)⊗ f((ui)i∈I) = (a+ Ja)⊗ (
∑

i∈I uirik)k∈K

and so, since φK((a+Ja)⊗(rk)k∈K) = (rka+Ja)k∈K , φ−1
I ((ria+Ja)i∈I) = (a+Ja)⊗(ri)i∈I ,

and f̂ = φK(1⊗ f)φ−1
I , we have

0 = f̂(w) = f̂((wia+ Ja)i∈I) = φK(1⊗ f)((a+ Ja)⊗ (wi)i∈I)

= φK((a+ Ja)⊗ (
∑

i∈I wirik)k∈K)

= (
∑

i∈Iwiarik + Ja)k∈K .

This gives
∑

i∈I wiarik ∈ Ja for each k ∈ K and so f(w) = (
∑

i∈I wiarik)k∈K ∈ Ja(K), as

required.

Definition 2.6. Let A,B and C be R-modules and let f : A → B and g : B → C be

R-homomorphisms. Then the sequence

A
f // B

g // C

is called exact (at B) if ker g = im f.

More generally, a sequence

A0
f0 // A1

f1 // A2
f2 // · · · fn−1 // An

fn // An+1

of R-modules and R-homomorphisms is called exact if it is exact at each Ai, i.e., if

Ai
fi // Ai+1

fi+1 // Ai+2

is exact for i = 0, . . . , n− 1, i.e., if ker fi+1 = im fi for i = 0, . . . , n− 1.

Definition 2.7. An exact sequence of the form

0 // A
f // B

g // C // 0

is called a short exact sequence, abbreviated to s.e.s.

It is straightforward to see that the sequence is an s.e.s. if and only if f is a monomor-

phism, g is an epimorphism and ker g = im f.
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It can be shown that the tensor product is right exact, i.e., tensoring any s.e.s.

0 // A
f // B

g // C // 0 by an R-module M gives the exact sequence

A⊗M f⊗1M // B ⊗M g⊗1M // C ⊗M // 0

(see [Bl, Proposition 3.3.4]). On the other hand, the tensor product need not be left exact,

i.e., if we tensor the s.e.s. 0 // A
f // B

g // C // 0 by an R-module M then

0 // A⊗M f⊗1M // B ⊗M g⊗1M // C ⊗M

is not necessarily exact.

Example 2.8. Consider the following s.e.s. of Z-modules

0 // Z i // Q π // Q/Z // 0 .

Tensoring this sequence with M = Q/Z and using Lemma 2.2 (iii) and Examples 2.3 (2)

and (3) gives the following sequence

0 // Q/Z
i⊗1Q/Z// 0

π⊗1Q/Z// 0 // 0

which is certainly not left exact.

We now make a very important definition.

Definition 2.9. A module M over the ring R is called a flat module if the tensor

product by M is exact, i.e., not only right exact but also left exact, i.e., tensoring any s.e.s.

0 // A
f // B

g // C // 0 by M gives the exact sequence

0 // A⊗M f⊗1M // B ⊗M g⊗1M // C ⊗M // 0 .

The next proposition characterises flat modules (see [Bl, Proposition 5.3.7]).

Proposition 2.10. The following statements are equivalent for an R-module M :

(i) M is a flat module.

(ii) The sequence 0 // A⊗M i⊗1M // R⊗M 'M is exact for any ideal A of R,

where i : A −→ R is the inclusion map.
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(ii)’ For every ideal A the homomorphism M ⊗A→MA, given by m⊗ x 7→ mx for

all m ∈M and x ∈ A is an isomorphism.

(iii) The sequence 0→M⊗A→M⊗R 'M is exact for any finitely generated ideal

A of R.

(iii)’ For every finitely generated ideal A, the homomorphism M ⊗ A → MA, given

by m⊗ x 7→ mx for all m ∈M and x ∈ A is an isomorphism.

The following proposition appears as [Bl, Proposition 5.3.9] and will be used in several

proofs later on.

Proposition 2.11. Let 0 // K
i // F

f //M // 0 be an s.e.s. of R-homomorphisms

where F is a flat module over the ring R. Then the following statements are equivalent.

(i) M is a flat R-module.

(ii) K ∩ FA = KA for any ideal A of R.

(iii) K ∩ FA = KA for any finitely generated ideal A of R.

The following important results about flat modules can be found in [Bl, Corollary

5.3.4], [Bl, Proposition 5.3.5], and [Bl, Corollary 5.3.6].

Lemma 2.12. The direct sum ⊕i∈IMi of a family of R-modules {Mi : i ∈ I} is flat if and

only if every Mi is flat.

Lemma 2.13. Let M be a module over the ring R.

(i) If M is free, then M is flat.

(ii) If M is projective, then M is flat.

The following well–known result is essential for later arguments. (See [LM, Theorem

3.3], [Osb, Proposition 5.15], and [R, Theorem 3.73].)

Proposition 2.14. Let S be an m.c.s. of the ring R. Then RS is a flat R-module under

the R-module multiplication given by a
r

s
=
ar

s
for all a, r ∈ R and all s ∈ S.
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Corollary 2.15. Let R be any commutative ring. Then

(i) R’s total ring of quotients Q(R) is a flat R-module and

(ii) the localisation RP of R at any P ∈ Spec(R) is a flat R-module.

The next lemma is a special case of [LM, Exercise 1.9 (c)] and of [R, Exercise 3.38].

Its proof is straightforward, given that (A⊗RB)⊗R C and A⊗R (B⊗R C) are isomorphic

as R-modules for any three R-modules A,B and C. Its corollary is [Osb, Exercise 5.8].

Lemma 2.16. If M and N are two flat modules over the ring R, then the R-module M⊗N

is also flat.

Corollary 2.17. If M is a flat module over the ring R and S is an m.c.s. of R then

MS = M ⊗RS is both a flat R-module and a flat RS-module since RS is flat.

The (right R-module version of the) following characterization appears as [Bl, Propo-

sition 5.3.10] and [AF, Lemma 19.19].

Proposition 2.18. An R-module M is flat if and only if, given r1a1 + · · · + rnan = 0,

where ri ∈ R and ai ∈ M , then, for some t ∈ N there exist an n × t matrix (rij), where

each rij ∈ R, and b1, . . . , bt ∈M such that

(1)
∑n

i=1 ririj = 0 for each j = 1, . . . , t, and

(2)
∑t

j=1 rijbj = ai for each i = 1, . . . , n.

We note that equations (1) and (2) of Proposition 2.18 can be written in matrix form

as

(1)

[ r1 · · · rn ]


r11 · · · r1t

...
. . .

...

rn1 · · · rnt

 = 0 (2)


a1

...

an

 =


r11 · · · r1t

...
. . .

...

rn1 · · · rnt



b1

...

bt


The next lemma, given as [Gl1, Lemma 4.2.1], first appeared as [E, Proposition 9].

It is also part (2) of [Lam, Theorem 4.38], with a different proof, involving Nakayama’s
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Lemma. Yet another proof, involving projective covers, is given in Hannah’s MSc thesis

[H], where it appears as Theorem 5.6.

Lemma 2.19. Let (R,m) be a local ring. Then every finitely generated flat R-module M

is free.

Proof. Since M is finitely generated, it has a minimal generating set, i.e., a set of generators

of the form A = {a1, . . . , ak}, where no proper subset of A generates I. We will show that

M is free by showing that A is a basis for M .

Suppose A is not a basis. Then A is not linearly independent and so we have equations

of the form

r1a1 + · · ·+ rlal = 0

where a1, . . . , al come from the minimal generating set of I and r1, . . . , rl are elements of

R not all zero.

We must show that such an equation does not exist. Reordering the ai if necessary

and omitting terms riai where ri = 0, we may assume that each r1, . . . , rl are all nonzero.

From these modified equations, choose one with l as small as possible, say l = n and then

we get

r1a1 + · · ·+ rnan = 0,

where r1, . . . , rn are nonzero elements of R, and a1, . . . , an are part of the minimal gener-

ating set {a1, . . . , an, an+1, . . . , ak}. By Proposition 2.18, there exist b1, . . . , bt ∈M and an

n× t matrix (rij) where each rij is in R such that

(1)
∑n

i=1 rijai = 0 for j = 1, . . . , t,

(2)
∑t

j=1 rijbj = ai for i = 1, . . . , n.

Since bj ∈M for each j = 1, . . . , t, there are sjg ∈ R such that

bj =
n∑
g=1

sjgag and so ai =
t∑

j=1

n∑
g=1

rijsjgag.
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In particular

(∗) an = q1a1 + q2a2 + · · ·+ qnan where qg =
t∑

j=1

rnjsjg for each g = 1, 2, . . . , n.

If qn ∈ m, then, since R is local, 1− qn is a unit by Lemma 1.10 and so from equation (∗)

we get an = (1 − qn)−1(q1a1 + q2a2 + · · · + qn−1an−1), contradicting the minimality of the

generating set A. Thus qn =
∑t

j=1 rnjsjn 6∈ m and so there is at least one index j for which

rnj and sjn are both units. If n > 1, for this index j equation (1) gives
∑n

i=1 rijai = 0 and

so an = (−r−1
nj )
∑n−1

i=1 rijai, contradicting the minimality of A again. Thus n = 1 and this

time equation (1) gives r1ja1 = 0 for all j and so, since r1j is a unit for some j, we get

a1 = 0, again a contradiction. Thus A is a basis for M and M is free.

2.2 Direct limits.

Definition 2.20. Let I be a set with a partial ordering ≤ with the property that if x, y ∈ I

then there exists z ∈ I such that x ≤ z and y ≤ z. We say that I is a directed set.

Definition 2.21. A direct system of modules (Mi, fij)I over a fixed ring R consists of:

(i) A family {Mi : i ∈ I} of R-modules, where the index set I is directed.

(ii) A family {fij : Mi −→ Mj; i, j ∈ I and i ≤ j} of R-homomorphisms such that,

for each i ∈ I, we have fii : Mi −→ Mi is the identity map and whenever i ≤ j ≤ k in I,

we have fjkfij = fik, i.e., the following diagram is commutative

Mi

fik !!BBBBBBBB

fij //Mj

fjk}}{{{{{{{

Mk

A direct system of homomorphisms (Mi, ui)I from a direct system of modules

(Mi, fij)I to an R-module L is defined to be a family {ui : Mi −→ L} of R-homomorphisms

such that the following diagram commutes for every i, j ∈ I with i ≤ j.



CHAPTER 2. FLAT MODULES AND WEAK GLOBAL DIMENSION. 26

Mi

ui
  @@@@@@@@

fij //Mj

uj
~~}}}}}}}

L

Definition 2.22. Let (Mi, fij)I be a direct system of modules over I. A direct system

of homomorphisms {fi : Mi −→ M} for some R-module M is said to be a direct limit

of (Mi, fij)I if, given any direct system of R-homomorphisms {ui : Mi −→ L} for some

R-module L, then there exists a unique R-homomorphism u : M −→ L such that the

following diagram commutes for any i, j ∈ I with i ≤ j

Mi

fij //

fi   BBBBBBBB

ui

��

Mj

fj}}|||||||

uj

��

M

u
��
L

In this case the R-module M is unique up to isomorphism and we say that the system

(M, fi)I is the direct limit of the direct system (Mi, fij)I and denote it by lim−→i∈I
(Mi, fij).

This is often abbreviated by saying that the direct limit of the system is M . Every direct

system of modules and homomorphisms (Mi, fij)I has a direct limit lim−→i∈I
(Mi, fij). (See

for example [Osb, Proposition 8.5].)

Examples 2.23. (1) Let A be an R-module and consider the set {Ai : i ∈ I} of all finitely

generated submodules of A. Define ≤ on the index set I by setting i ≤ j if and only if

Ai ⊆ Aj. Then I is a directed set and {Ai : i ∈ I} is a direct family of modules with

fij : Ai −→ Aj defined to be the inclusion map. Moreover, it is straightforward to show

that the direct system (A, φi)I is its direct limit, where φi : Ai −→ A is the inclusion map.

(2) Let {Ai : i ∈ I} be any family of R-modules and let ≤ be the trivial ordering on I,

i.e., for any i, j ∈ I, i ≤ j if and only if i = j. Then the maps fij are only defined when

i = j and in this case fij is the identity map on Ai. Thus we may form the direct system

(Ai, fij)I and it is straightforward to show that this has direct limit given by the direct
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system (⊕i∈IAi, φi)I , where φj : Aj −→ ⊕i∈IAi is the natural injection mapping.

Our next lemma can be described as saying that the direct limit commutes with the

tensor product. See [Osb, Corollary 8.8] for its proof.

Lemma 2.24. Let A be an R-module and let (Bi, fij)I be a direct system of R-modules.

Then ((A ⊗ Bi), gij)I is a direct system, where gij = 1A ⊗ fij : A ⊗ Bi −→ A ⊗ Bj and

lim−→i∈I
((A⊗Bi), gij) is isomorphic to A⊗ (lim−→i∈0I

Bi, fij).

We refer the reader to [Osb, Corollary 8.11] or [R, Theorem 3.47] for a proof of the

next result.

Theorem 2.25. If (Ai, fij)I is a direct system of flat R-modules, then the direct limit of

the system is also a flat R-module.

The next corollary is an immediate consequence of Theorem 2.25 and Example 2.23 (1).

Corollary 2.26. Let M be a module over the ring R. Then M is flat if each of its finitely

generated submodules is flat.

We will use the following lemma several times in the following chapters.

Lemma 2.27. Let A and B be two ideals of the ring R. Let F(B) = {Jλ : λ ∈ Λ} be the

set of finitely generated ideals of R contained in B. Then the index set Λ is a directed set

if we define ≤ on Λ by α ≤ β if Jα ⊆ Jβ, noting that for any α, β ∈ Λ, Jγ = Jα + Jβ gives

α ≤ γ and β ≤ γ. When α, β ∈ Λ with α ≤ β, we define fαβ : R/(A+ Jα) −→ R/(A+ Jβ)

to be the natural monomorphism given by r + A + Jα 7→ r + A + Jβ for all r ∈ R. Then

{F(B), fαβ}Λ is a direct family of modules with R/(A+B) = lim−→α∈Λ
(R/(A+ Jα), fαβ).

Proof. If α, β ∈ Λ with α ≤ β, we get the following commutative diagram

R/(A+ Jα)
fαβ //

fα ''PPPPPPPPPPPP
R/(A+ Jβ)

fβwwnnnnnnnnnnnn

R/(A+B)
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where fα : R/(A + Jα) −→ R/(A + B) is defined by r + A + Jα 7→ r + A + B. Also,

given an R-module M and a set of R-homomorphisms {gα : R/(A+ d) −→M} such that

gβfαβ = fα then we construct the following commutative diagram

R/(A+ Jα)
fαβ //

fα ''PPPPPPPPPPPP

gα

$$

R/(A+ Jβ)

fβwwnnnnnnnnnnnn

gβ

zz

R/(A+B)

g

��
M

where g : R/(A + B) −→ M is given by g(r + A + B) = gα(r + A + Jα) for every α ∈ Λ.

Observe that g is well-defined since if α, β ∈ Λ then there exists γ ∈ Λ such that Jα, Jβ ⊆ Jγ

and Jγ ∈ χ. Then gαfαγ = gγ and gγfβγ = gβ and so

gα(r + A+ Jα) = gγ(fαγ(r + A+ Jα))

= gγ(r + A+ Jγ)

= gγfβγ(r + A+ Jβ)

= gβ(r + A+ Jβ)

which implies that the definition of g does not depend on α ∈ Λ and so g is well-defined.

Moreover, g(fα(r + A+ Jα)) = g(r + A+B) = gα(r + A+ Jα) and therefore gfα = gα. If

h : R/(A+B) −→M is another R-homomorphism such that hfα = gα then h = g since

h(r + A+B) = fα(r + A+ Jα)

= gα(r + A+ Jα)

= g(r + A+B).

2.3 Flat ideals.

We will use the following lemma to prove a theorem due to Endo [E] which shows the

connection between flat ideals and chain domains.

Lemma 2.28. Let I be a nonzero ideal of the ring R. Then I is a free R-module if and
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only if I = Ra for some regular element of R.

Proof. If I = Ra where a is a regular element of R then it is straightforward to show that

I is free with basis {a}.

Conversely suppose that I is free, say with basis {rj : rj ∈ R, j ∈ Λ}. If there is

more than one index in Λ, choose j1, j2 ∈ Λ with j1 6= j2. Then rj1 , rj2 are regular elements

of R and so, since R is commutative, rirj = rjri is a nonzero element of Rrj1 ∩Rrj2 . This

contradicts the linear independence of the basis {rj : rj ∈ R, j ∈ Λ}. Thus the index set

Λ is a singleton and so I = Ra where {a} is a basis for I (and consequently a is a regular

element of R).

The following result appears as Theorem 10 in [E], where it is noted that the necessity

was proved earlier in [CE, VI, 2.9]

Theorem 2.29. Let (R,m) be a local ring. Then R is a chain domain if and only if every

ideal of R is flat.

Proof. Suppose R is a chain domain and I is an ideal of R. Then, by Example 2.23 (1),

I = lim−→ Jλ, where the Jλ’s are the finitely generated ideals contained in I. Since R is a

chain domain, each Jλ is principal, say Raλ, so is either 0 or free with {aλ} as a basis.

Hence, by Theorem 2.25, I = lim−→ Jλ is flat.

Conversely, suppose each ideal of R is flat. Let I be a nonzero finitely generated ideal

of R. Then, by Lemma 2.19, I is free and so, by Lemma 2.28, I is of the form Ra with

basis {a} where a is a regular element of R. In particular if b, c ∈ R and I = Rb + Rc

then Rb + Rc = Ra for some regular a. Then a = rb + sc, b = ua, and c = va for some

r, s, u, v ∈ R. This gives b = urb + usc and so (1 − ur)b = usc. If either u or r is in m,

then 1− ur is a unit and so we obtain b = usc. This implies that Rb ⊆ Rc. On the other

hand, if u, r /∈ m, then u and r are units and so c = va = vu−1b giving Rc ⊆ Rb. Hence

R is a chain ring. Also, if I = Rd for the nonzero element d ∈ R, then by Lemmas 2.19
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and 2.28, I is free with a basis {a} where a is regular. Since a = rd for some r ∈ R, we

have ann(d) = 0. Since d was an arbitrary nonzero element in R, it follows that R is a

domain.

2.4 von Neumann regular rings.

Definition 2.30. A ring R (not necessarily commutative) is called von Neumann reg-

ular or simply regular if given any a ∈ R, there exists x ∈ R such that axa = a (i.e., if

R is commutative then a = a2x, equivalently Ra = Ra2).

Examples 2.31. (1) Let X be any non-empty set and P(X) denote the set of all subsets

of X. Then P(X) becomes a ring by defining A+B = (A\B)∪ (B \A) and A ·B = A∩B

for any A,B ⊆ X. (The zero of this ring is the empty subset ∅ and X is the multiplicative

identity.) It is a von Neumann regular ring since, for any subset A of X, we have AXA =

A ∩X ∩ A = A.

(2) Clearly, every field F is regular (taking x = a−1 when a is a nonzero element of

F to get a = axa). However this is the only time that an integral domain is regular: if a

is a nonzero element of the integral domain R with a = axa for some x ∈ R, canceling a

from both sides of the equation gives 1 = xa showing that a is a unit with inverse x.

(3) Straightforward arguments show that if R is a regular ring then so is every factor

ring R/I of R and localization RS (where I is a proper ideal of R and S is an m.c.s. of R).

(4) Let {Ri : i ∈ I} be a family of rings with index set I and let R be their direct

product Πi∈IRi . Then it’s easy to see that R is regular if and only if each Ri is regular.

The second part of Example (3) has an important converse:

Lemma 2.32. The ring R is regular if RM is von Neumann regular for all M ∈ Max(R).
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Proof. Let a ∈ R,A = Ra and B = Ra2. Then our assumption on R gives AM = RM
a

1
=

RM
a2

1
= BM for each M ∈ max. Then, by Lemma 1.24, we get A = B, i.e. Ra = Ra2.

The proof of the next result can be found on [Bl, pages 163–164].

Proposition 2.33. (1) The ring R is regular if and only if every principal ideal of R is

generated by an idempotent.

(2) If R is a regular ring then any finitely generated ideal of R is principal.

Now we show how flatness can characterise regularity.

Proposition 2.34. The following statements are equivalent for a ring R.

(i) R is a regular ring.

(ii) Every R-module is flat.

(iii) Every cyclic R-module is flat.

Proof. (i) ⇒ (ii). Let R be a regular ring and A be a finitely generated ideal of R. Then,

by Proposition 2.33 (1), (2), we can set A = Re where e is an idempotent in R and then,

setting B = R(1− e) gives the direct sum R = A⊕B. Let i : A→ R be the inclusion map

and π : R→ B be the natural projection given by the direct sum. Then πi = 1A. Now let

M be any R-module. Then we have the following sequence

0 //M ⊗ A 1M⊗i //M ⊗R.

Since πi = 1A we get(1M ⊗ π)(1M ⊗ i) = 1M ⊗ 1A = 1M⊗IA, showing that 1M ⊗ i has a left

inverse and so is a monomorphism. Thus, by Proposition 2.10, M is flat.

(ii) ⇒ (iii) is immediate.

(iii) ⇒ (i). Given a ∈ R, we can form the s.e.s.

0 // Ra // R // R/Ra // 0.
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Since Ra and R/Ra are both cyclic, by hypothesis they are both flat. Thus, since R is flat,

Proposition 2.11 shows that Ra ∩Ra = RaRa, i.e., Ra = Ra2. Hence R is regular.

2.5 Weak global dimension and Torn.

In this section we begin with a quick introduction to weak dimension and the functor Tor.

The reader can find more details in Bland [Bl] and Osborne [Osb]. We first give some

preparatory definitions and lemmas.

Definition 2.35. Let M be a (left) R-module. A flat (respectively, projective) reso-

lution of M is an exact sequence

· · · dn+1 // An
dn // An−1

dn−1 // · · · d2 // A1
d1 // A0

d0 //M // 0

of R-modules and R-homomorphisms where each An is flat (respectively, projective). We

denote this resolution by 〈An, dn〉. If there is an n ≥ 0 for which An 6= 0 but At = 0 for all

t > n, then we say that the resolution has length n. In this case, we write the resolution

as

0 // An
dn // An−1

dn−1 // · · · d2 // A1
d1 // A0

d0 //M // 0.

We now show that every R-module has a flat resolution.

For any R-module M we can find a free R-module A0 together with an epimorphism

f0 : A0 → M . Since free modules are projective and projective modules are flat, we have

the following exact sequence where A0 is flat:

A0
f0 //M // 0.

Then we can extend this to an s.e.s. as follows:
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A0
f0 //M // 0

ker(f0)

i0

;;wwwwwwwww
(∗)

0

<<xxxxxxxxx

where i0 is inclusion. If ker(f0) = 0, then 0 // A0
f0 //M // 0 is a flat resolution of

M of length 0. If ker(f0) is nonzero but flat, then (∗) is a flat resolution of M of length 1.

If ker(f0) is not flat, we can repeat the s.e.s. construction using ker(f0) instead of M with

a flat R-module A1 and an epimorphism f1 : A1 → ker(f0), to give

0

""FFFFFFFFF

ker(f1)
i1

##GGGGGGGGG

A1

f1

##GGGGGGGGG
g1 = i0f1 // A0

g0 = f0//M // 0

ker(f0)

i0

;;wwwwwwwww

##HHHHHHHHH

0

;;vvvvvvvvv
0

where i1 is inclusion. Note that (i) we’ve renamed f0 as g0 and set g1 = i0f1, (ii) im(i1) =

ker(f1) = ker(g1) since i0 is a monomorphism (g1(x) = 0 gives i0f1(x) = 0 so f1(x) = 0)

and (iii) im(g1) = ker(f0) and so the sequence

0 // ker(f1)
i1 // A1

g1 // A0
g0 //M // 0 (∗∗)

is exact. If ker(f1) = 0, then 0 // A1
g1 // A0

g0 //M // 0 is a flat resolution of M

of length 1. If ker(f1) is nonzero but flat, then (∗∗) is a flat resolution of M of length 2.

If ker(f1) is not flat, repeat the s.e.s. construction using ker(f1), instead of M , with a flat

module A2, an epimorphism f2 : A2 → ker(f1), and i2 is inclusion, as follows.
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0

##HHHHHHHHH 0

ker(f1)
i1

##GGGGGGGGG

;;vvvvvvvvv

A2
g2=i1f2 //

;;wwwwwwwww
A1

f1

##GGGGGGGGG
g1=i0f1 // A0

f0 //M // 0

ker(f2)

i2

;;wwwwwwwww
ker(f0)

i0

;;wwwwwwwww

##HHHHHHHHH

0

<<xxxxxxxxx
0

;;vvvvvvvvv
0

Following the argument above, if ker(f2) is zero or flat we get a flat resolution of M of

length 2 or 3, respectively. We continue in this way, either getting a flat resolution of finite

length (when we reach a flat ker(fi)) at which case we stop, or, if none of the ker(fi) are

zero, we can keep doing this construction, in which case we get an infinite sequence where

ker(gn) is not flat for any n ≥ 0:

· · · // An
gn // An−1

gn−1 // An−2
gn−2 // · · · // A1

g1 // A0
g0 //M // 0 .

This last case does happen, as the following simple example shows.

Example 2.36. Let R be the chain ring Z4 = {0, 1, 2, 3}. Let I be the only proper nonzero

ideal of R, namely its principal ideal R2 = {0, 2}. Then I is not a flat R-module since

otherwise, by Lemma 2.19, it would be free. Now let A0 = R and g0 : A0 → I be the

epimorphism defined by g0(x) = 2x for all x ∈ R. Then ker(g0) = I which is not flat. Now

we may take A1 = R and g1 : A1 → A0 be g0 so that im(g1) = ker(g0) = I and ker(g1) = I.

Repeating this process we get the following infinite flat resolution of I:

· · · // R
gn // R

gn−1 // R
gn−2 // · · · // R

g1 // R
g0 // I // 0 .

Although we’ve used projective, indeed free, modules A0 above to start a flat reso-

lution of any module M , there are cases where the start can be made with a flat, but not

projective, module:
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Examples 2.37. (1) Trivially, if M is a flat module which is not projective, taking A0 = M

gives the flat resolution 0 // A0
1M //M // 0 .

(2) Less trivially, given any integral domain R which is not a field, then its quotient

field Q is a flat R-module which is not projective (see Example 2.8 for the case R = Z)

while Q/R is not a flat R-module (see Corollary 2.15 (i)). Then the following sequence, in

which i is inclusion and π is the natural epimorphism, gives a flat resolution of Q/R which

is not a projective resolution:

0 // R
i // Q

π // Q/R // 0 .

Definition 2.38. Let M be an R-module. The weak dimension of M , denoted by

w.dim(M), is the smallest integer n (if such exists) for which there is a flat resolution of

M of length n.

0 // An // An−1
// · · · // A1

// A0
//M // 0 .

If M does not have a finite flat resolution, we set w.dim(M) =∞.

Examples 2.39. (1) Trivially, w.dim(M) = 0 if and only if M is flat.

(2) Let M be the Z-module Q/Z . Since Z and Q are both flat Z-modules (see

Example 2.39 (2)), we get w.dim(M) ≤ 1. Furthermore M is not flat - see Example 2.3 (2).

Thus we get w.dim(M) = 1.

(3) As may be expected from Example 2.36, it can be shown that for the ideal

I = {0, 2} of the ring Z4 we have w.dim(I) =∞.

Definition 2.40. A sequence

a = 〈An, an〉 = · · · an+1 // An
an // An−1

an−1 // · · · a2 // A1
a1 // A0

of R-modules and R-homomorphisms is called a complex or zero sequence if anan+1 = 0,

i.e. im(an+1) ⊆ ker(an), for each n ≥ 1. The n th homology group of the complex is

defined to be the factor Hn = ker(an)/ im(an+1).
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The next proof follows arguments given on page 40 of Osborne [Osb].

Lemma 2.41. In the following diagram, the two rows b = 〈Bn, bn〉 and c = 〈Cn, cn〉

are complexes and f = {fn : n ≥ 1} is a set of R-homomorphisms making the diagram

commute, i.e., cnfn = fn−1bn for all n ≥ 1.

· · · bn+2 // Bn+1
bn+1 //

fn+1

��

Bn
bn //

fn
��

Bn−1
bn−1 //

fn−1

��

· · · b2 // B1
b1 //

f1
��

B0

f0
��

· · · cn+2 // Cn+1
cn+1 // Cn

cn // Cn−1
cn−1 // · · · c2 // C1

c1 // C0

For each n ≥ 1, let Hb
n and Hc

n respectively denote the n th homology groups of the two

complexes, i.e., Hb
n = ker(bn)/ im(bn+1) and Hc

n = ker(cn)/ im(cn+1). Then there is an

R-homomorphism f ∗n : Hb
n → Hc

n given by f ∗n(x + im(bn+1)) = fn(x) + im(cn+1) for each

x ∈ ker(bn).

Proof. First we show that f ∗n is well-defined. If x + im(bn+1) = y + im(bn+1) (where

x, y ∈ ker(bn)) then x − y ∈ im(bn+1), say x − y = bn+1(z), where z ∈ Bn+1. Then

fn(x− y) = fn(bn+1(z)) = cn+1(fn+1(z)) (the last equality from the commutativity). This

then gives fn(x)− fn(y) ∈ im(cn+1) and so f ∗n(x+ im(bn+1)) = fn(x) + im(cn+1) = fn(y) +

im(cn+1) = f ∗n(y + im(bn+1)), as required.

Next we show that the image of f ∗n is indeed in Hc
n, i.e., that fn(x) ∈ ker(cn) for

each x ∈ ker(bn) (from the definition of f ∗n). To see this, simply note that 0 = fn+1(0) =

fn+1(bn(x)) = cn(fn(x)). It’s straightforward to see that f ∗n is an R-homomorphism.

Definition 2.42. Let b = 〈Bn, bn〉, c = 〈Cn, cn〉 be complexes and f = {fn : Bn → Cn}n≥0

and g = {gn : Bn → Cn}n≥0 be two families of R-homomorphisms for which fn−1bn = cnfn

and gn−1bn = cngn for all n ≥ 1. Then we say that f and g are homotopic if there exists

a family of R-homomorphisms d = {dn : Bn → Cn+1}n≥0 such that

fn − gn = cn+1dn + dn−1bn for each n ≥ 0, taking d−1 = 0.

In this case, d is called a homotopy from f to g.
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Corollary 2.43. Let b, c, f , and g with homotopy d be as in the statement of Definition

2.42. Let Hb
n and Hc

n be the n th homology groups of the complexes b and c respectively. Let

f∗ = {f ∗n : n ∈ N} and g∗ = {g∗n : n ∈ N} be the set of homomorphisms f ∗n, g
∗
n : Hb

n → Hc
n

induced by f and g as determined in 2.41. Then f∗ = g∗ i.e. f ∗n = g∗n for all n ∈ N.

Proof. The following diagram, featured on the front cover of [Bl], may be helpful.

· · · bn+2 // Bn+1

fn+1

��

bn+1 //

gn+1

��

Bn

gn

��
fn
��

dn

ww

bn // Bn−1

dn−1

ww
fn−1

��
gn−1

��

bn−1 // · · ·

· · · cn+2

// Cn+1 cn+1

// Cn cn
// Cn−1 cn−1

// · · ·

For each n ≥ 0, by Lemma 2.41 there is an R-homomorphism f ∗n : Hb
n → Hc

n given

by f ∗n(x + im(bn+1)) = fn(x) + im(cn+1) for each x ∈ ker(bn). By assumption, fn − gn =

cn+1dn + dn−1bn and so, if x + im(bn+1) ∈ Hb
n, with x ∈ ker(bn), then f ∗n(x + im(bn+1)) =

(gn(x) + cn+1dn(x) + dn−1bn(x)) + im(cn+1) = gn(x) + im(cn+1) = g∗n(x + im(bn+1)), as

required.

The next result is [Osb, Proposition 3.1]. We prove it for the reader’s convenience.

Proposition 2.44. Let B and C be R-modules and f : B → C be an R-homomorphism.

Let b = 〈Bn, bn〉 and c = 〈Cn, cn〉 be projective resolutions of B and C respectively. Then

there is a family f = {fn : Bn → Cn}n≥0 of R-homomorphisms making the following

diagram commute

· · · bn+2 // Bn+1
bn+1 //

fn+1

��

Bn
bn //

fn
��

Bn−1
bn−1 //

fn−1

��

· · · b2 // B1
b1 //

f1
��

B0

f0
��

b0 // B //

f

��

0

· · · cn+2 // Cn+1
cn+1 // Cn

cn // Cn−1
cn−1 // · · · c2 // C1

c1 // C0
c0 // C // 0

i.e., fb0 = c0f0 and fn−1bn = cnfn for all n ≥ 1. Moreover, if there is another family

g = {gn : Bn → Cn} of R-homomorphisms with this commuting property then there is a

homotopy d from f to g.
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Proof. We define fn inductively, starting at n = 0. Since B0 is projective and c0 is an

epimorphism, there is a homomorphism f0 : B0 → C0 making the following diagram

commute, as required.

B0

b0
��

f0

��

B

f
��

C0
c0 // C // 0

Now suppose that for some n, the homomorphisms f0, . . . , fn have been constructed meet-

ing the commutativity requirements. If x ∈ im(bn+1) then bn(x) = 0 and so cnfn(x) =

fn−1(bn(x)) = 0. Thus fn(im(bn+1)) ⊆ ker(cn) = im(cn+1). This gives the following com-

mutative diagram where the row is exact and fn+1 is induced by the projectivity of Bn+1.

Bn+1

bn+1

��
fn+1

��

im(bn+1)

fn
��

Cn+1
cn+1// im(cn+1) // 0

as required.

Now assume there is another family g = {gn : Bn → Cn} of R-homomorphisms with

the commuting property, i.e., fb0 = c0g0 and gn−1bn = cngn for all n ≥ 1. Starting at

n = 0, note first that c0g0 = fb0 = c0f0 and so im(f0 − g0) ⊆ ker(c0) = im(c1). This gives

the following commutative diagram exact row and d0 induced by the projectivity of B0:

B0

f0−g0
��

d0

{{
C1

c1 // im(c1) // 0

as required, taking d−1 = 0.

Now assume recursively that we are given the required d0, d1, . . . , dn for some n ≥ 0.
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Then fn − gn = cn+1dn + dn−1bn and so

cn+1(fn+1 − gn+1 − dnbn+1) = cn+1fn+1 − cn+1gn+1 − cn+1dnbn+1

= fnbn+1 − gnbn+1 − cn+1dnbn+1 = (fn − gn − cn+1dn)bn+1

= dn−1bnbn+1 = 0.

This gives im(fn+1 − gn+1 − dnbn+1) ⊆ ker(cn+1) = im(cn+2) and so we get the following

commutative diagram with exact row and dn+1 induced by the projectivity of Bn+1:

Bn+1

fn+1−gn+1−dnbn+1

��

dn+1

yy
Cn+2

cn+2 // im(cn+2) // 0

as required.

We now define Tor.

Definition 2.45. Let X and M be R-modules and let

· · · an+1 // An
an // An−1

an−1 // · · · a2 // A1
a1 // A0

a0 //M // 0.

be a projective resolution of M . Although this resolution is an exact complex, tensoring

with X gives the following complex which will not be exact in general:

· · ·an+1⊗1X// AnX
an⊗1X// An−1 ⊗X

an−1⊗1X// · · · a2⊗1X// A1 ⊗X
a1⊗1X// A0 ⊗X

a0⊗1X // 0. (†)

Then we define TorR(M,X) to be the n th homology group of the complex (†), i.e.,

Torn(M,X) = ker(an ⊗ 1X)/ im(an+1 ⊗ 1X).

Of course, this definition uses a particular projective resolution of M . We now in-

dicate how the definition is, up to isomorphism, independent of the choice of projective

resolution of M .

Let f : M → N be an R-homomorphism and let

· · · en+1 // Bn
en // Bn−1

en−1 // · · · e2 // B1
e1 // B0

e0 // N // 0.

be a projective resolution of N . Then, by Proposition 2.44, there is a family of R-
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homomorphisms f = {fn : An → Bn}n≥0 making the following diagram commute

· · · an+2 // An+1
an+1 //

fn+1

��

An
bn //

fn
��

An−1
an−1 //

fn−1

��

· · · a2 // A1
a1 //

f1
��

A0

f0
��

a0 //M //

f

��

0

· · · bn+2 // Bn+1
bn+1 // Bn

bn // Bn−1
bn−1 // · · · b2 // B1

b1 // B0
b0 // N // 0.

Moreover, if there is another family g = {gn : An → Bn} of R-homomorphisms with this

commuting property then there is a homotopy d = {dn}n≥0 from f to g. Now apply −⊗X

to the diagram to get the following commutative diagram where both rows are complexes:

· · ·an+1⊗1X// An ⊗X
an⊗1X//

fn⊗1X
��

An−1 ⊗X
an−1⊗1X//

fn−1⊗1X
��

· · · a2⊗1X// A1 ⊗X
a1⊗1X//

f1⊗1X
��

A0 ⊗X
f0⊗1X

��

a0⊗1X//M ⊗X //

f⊗1X
��

0

· · ·bn+1⊗1X// Bn ⊗X
bn⊗1X// Bn−1 ⊗X

bn−1⊗1X// · · · b2⊗1X// B1 ⊗X
b1⊗1X // B0 ⊗X

b0⊗1X // N ⊗X // 0.

It is straightforward to show that d ⊗ X = {dn ⊗ 1X}n≥0 is a homotopy from f ⊗ X =

{fn ⊗ 1X}n≥0 to g ⊗X = {gn ⊗ 1X}n≥0. In particular, if f is the identity homomorphism

1M : M →M then, using Lemma 2.41 and Corollary 2.43, one can show that, for all n ≥ 0,

ker(an ⊗ 1X)/ im(an+1 ⊗ 1X) ' ker(bn ⊗ 1X)/ im(bn+1 ⊗ 1X), as desired.

We now record for future use some important properties of Torn. For the details see

[Osb, Proposition 3.16, Theorem 8.10] and [N, Chapter 8, Theorem 7].

Lemma 2.46. Let R be a ring and A, B be R-modules. Then the following hold:

(i) Torn(A,B) ' Torn(B,A).

(ii) Let (Mα, Fαβ)Λ be a direct system of R-modules. Then (Torn(A,Mα); f
(n)
αβ )Λ

is a direct system of R-modules, where the mappings f
(n)
αβ are given by Torn(A, fαβ) :

Torn(A,Mα) −→ Torn(A,Mβ). Then lim−→(Torn(A,Mα)) = Torn(A, lim−→(Mα)).

(iii) For any m.c.s. S of R, (TorRn (A,B))S ' TorRSn (AS, BS).

Definition 2.47. Suppose that the following sequence is a flat (or projective) resolution

of the R-module M

· · · δn+1 // Fn
δn // Fn−1

δn−1 // · · · δ2 // F1
δ1 // F0

δ0 //M // 0.
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Set K0 = M and Kn = ker(δn−1) for each n ∈ N. Then Kn is called the n th kernel of

the resolution.

Note that if Kn is flat (or projective), we get a new flat (or projective) resolution of

M , namely

0 // Kn
in // Fn−1

δn−1 // · · · δ2 // F1
δ1 // F0

δ0 //M // 0,

where in is the inclusion map.

This leads to the following important result, which appears with proof as Proposition

4.5 in Osborne [Osb]. See also [Bl, Proposition 12.2.4] and [R, Theorem 9.13].

Theorem 2.48 (Flat Dimension Theorem). Let M be an R-module. Then the following

statements are equivalent:

(i) w.dimR(M) ≤ n.

(ii) Torn+1(R/I,M) = 0 for all finitely generated (right) ideals.

(iii) Torn+1(X,M) = 0 for all R-modules X.

(iv) The n th kernel of any flat resolution of M is flat.

(v) There is a flat resolution of M with flat n th kernel.

(vi) There is a flat resolution 〈FK , δk〉 of M with Fk = 0 for all k > n.

We now record how a fixed module, the tensor product and a short exact sequence

give rise to a long exact sequence. This appears in [Osb] as Theorem 3.4.

Theorem 2.49 (Long exact sequence for Tor). Let

0 // A
f // B

g // C // 0

be a short exact sequence of R-modules and M also be an R-module. Then there is a long

exact sequence



CHAPTER 2. FLAT MODULES AND WEAK GLOBAL DIMENSION. 42

· · · gn+1 // Torn+1(C,M)
δn+1 // Torn(A,M)

fn // Torn(B,M)
gn // Torn(C,M)

[continued]
δn // Torn−1(A,M)

fn−1 // Torn−1(B,M)
gn−1 // Torn−1(C,M)

δn−1 //

· · · · · · · · · δ2 // Tor1(A,M)
f1 // Tor1(B,M)

g1 // Tor1(C,M)

[continued]
δ1 // A⊗M f⊗1M // B ⊗M g⊗1M // C ⊗M // 0.

Definition 2.50. Let R be any (commutative) ring. The weak global dimension of R,

denoted by w.gl.dim(R), is defined as follows:

w.gl.dim(R) = sup{w.dim(M) : M is an R-module}.

As a consequence of Theorem 2.48, we have the next lemma.

Lemma 2.51. Let R be a ring with w.gl.dim(R) ≤ 1. Then every ideal I of R is flat.

Proof. Since sup{w.dim(M) : M is an R-module} = w.gl.dim(R) ≤ 1, it follows that

w.dim(R/I) is at most 1. Thus, since R is flat, in the s.e.s.

0 // I i // R π // R/I // 0

the kernel of the natural epimorphism π (namely I) must be flat.

The next result appears as [Gl1, Theorem 1.3.13].

Theorem 2.52. Let R be a ring, M be an R-module and S be an m.c.s. of R. Then

w.dimRS(MS) ≤ w.dimR(M). In particular it follows that w.gl.dim(RS) ≤ w.gl.dim(R).

The following theorem states part (1) of [Gl1, Theorem 1.3.14] and is to be used in

showing several results later in the coming sections.

Theorem 2.53. Let M be a module over the ring R. Then

w.dimR(M) = sup{w.dimRm(Mm) : m ∈ Max(R)}.
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Consequently,

w.gl.dim(R) = sup{w.gl.dim(Rm) : m ∈ Max(R)}.

Our next proposition appears as [Bl, Problem 12.2.8].

Proposition 2.54. Let {Ai : i ∈ I} be any family of modules over the ring R. Then

w.dimR(⊕i∈IAi) = sup{w.dimRAi, i ∈ I}.

The next result shows how a particular subclass of cyclic modules determines the

weak global dimension of a ring. Osborne [Osb, Proposition 4.13] refers to it as the Weak

Dimension Theorem. See also [Bl, Proposition 12.2.6] and [R, Theorem 9.19].

Theorem 2.55. For any ring R we have

w.gl.dim(R) = sup{w.dimR(R/I) : I is a finitely generated ideal of R}.

This powerful result gives the converse to Lemma 2.51:

Corollary 2.56. If all the (finitely generated) ideals of the ring R are flat, then

w.gl.dim(R) ≤ 1.

Proof. Given any (finitely generated) ideal of R, the s.e.s.

0 // I
i // R

π // R/I // 0 ,

where i is the inclusion map and π the natural projection, is a flat resolution of R/I and

so w.dimR(R/I) ≤ 1. Now apply Theorem 2.55.

The following corollary is Lemma 3.2 of [DT].

Corollary 2.57. Let M , A and B be modules over the ring R. Suppose that w.dim(M) = n

and f : A→ B is a monomorphism, i.e., with π as the natural epimorphism,

0 // A
f // B π // B/f(A) // 0
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is a short exact sequence. Then the map fn : Torn(A,M)→ Torn(B,M) (given in the long

exact sequence for Tor induced by this s.e.s. and M) is also a monomorphism.

Proof. Since w.dim(M) = n, it follows from Theorem 2.48 that Torn+1(B/f(A),M) = 0

and so the result follows from the exactness of the portion

Torn+1(B/f(A),M)
δn+1 // Torn(A,M)

fn // Torn(B,M)

of the Tor long exact sequence.

We use the next two results in Chapter 4.

Lemma 2.58. Consider the s.e.s. of R-modules

0 // A
φ // F δ // B // 0 ,

where F is flat but B is not flat. Then w.dim(B) = w.dim(A) + 1.

Proof. To prove this result we use the following diagram

0

##HHHHHHHHH 0

ker(π1)
i1

##GGGGGGGGG

;;wwwwwwwwww

F2
δ2 //

;;wwwwwwwww
F1

π1

��????????
δ1 // F δ // B // 0

ker(π2)

i2

;;wwwwwwwww
A

i0

@@��������

��>>>>>>>>

0

<<xxxxxxxxx
0

??~~~~~~~~
0

which gives flat resolutions for A and B respectively

Fn
δn // Fn−1

δn−1 // . . . // F1
δ1 // F

δ // B // 0 ,

Fn
δn // Fn−1

δn−1 // . . . // F1
π1 // A // 0 .

This clearly shows that w.dim(B) = w.dim(A) + 1 since the flat resolution of B has one

step more than the free resolution of A.
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The next lemma is [BaGl, Lemma 6.2].

Lemma 2.59. If (R,m) is a local ring with m nonzero (so (R,m) is not a field) then

w.dimR(R/m) = w.dimR(m) + 1.

Proof. Consider the s.e.s.

0 // m
i // R π // R/m // 0 .

Then we either have R/m is flat or not flat. If it is not flat then by Lemma 2.58 we have

w.dimR(R/m) = w.dimR(m) + 1 as required. If otherwise R/m is flat, then by Proposi-

tion 2.11 (1⇒ 2) we obtain m ∩ RA = mA for every ideal A of R. In particular if we take

any nonzero element a ∈ m (possible since m 6= 0) then m ∩ Ra = mRa, in other words,

Ra = ma. In particular, a ∈ ma. Thus a = ma for some m ∈ m. Hence (1−m)a = 0, but

1−m is a unit and so a = 0, a contradiction.

Remark 2.60. For a local ring (R,m) and an R-module B, if mB = 0 then we can turn

B into a vector space over the field R/m, i.e., an (R/m)-module, defining the module

multiplication to be (r + m)b = rb + m for b ∈ B and r ∈ R. Thus B can be regarded as

the direct sum of copies of R/m.

This remark is easily shown and is important for the proof of the next result which

appears as [BaGl, Proposition 6.3].

Proposition 2.61. Suppose (R,m) is a local ring whose maximal ideal m is nonzero nilpo-

tent. Then w.dim(m) =∞.

Proof. Let n be the nilpotency index of m, i.e., n ≥ 2 and mn = 0, but mn−1 6= 0. We

show that for all 1 ≤ k ≤ n, w.dim(mn−k) = w.dim(m) + 1. Taking k = n − 1 then gives

w.dim(m) = w.dim(m) + 1 which implies that w.dim(m) =∞ as required.

We begin with k = 1. Then mmn−1 = 0 so, by Remark 2.60, mn−1 is a nonzero direct

sum of copies of R/m, say (R/m)(I), where I is an index set. Then we obtain



CHAPTER 2. FLAT MODULES AND WEAK GLOBAL DIMENSION. 46

w.dimR(mn−1) = w.dimR((R/m)(I))

= w.dimR(R/m) (by Proposition 2.54)

= w.dimR(m) + 1 (by Lemma 2.59),

establishing the first case. Now let h ∈ {1, . . . , n − 1} be the maximum integer k for

which w.dim(mn−k) = w.dim(m) + 1 for all k ≤ h. We complete the proof by showing that

h = n− 1. Suppose to the contrary that h 6= n− 1. We have the following s.e.s.

0 // mn−h i // mn−(h+1) π // m
n−(h+1)

mn−h
// 0 (∗)

where i is inclusion and π is the natural epimorphism. Letting A =
mn−(h+1)

mn−h gives mA = 0,

as before, A is a module over the field R/m and w.dim(A) = w.dim(m) + 1. By assumption

w.dim(mn−h) = w.dim(m) + 1. Tensoring (∗) by an arbitrary R-module X gives the long

exact sequence for Tor:

Torn+1(mn−h, X) // Torn+1(mn−(h+1), X) // Torn+1(A,X) //

Torn(mn−h, X) // Torn(mn−(h+1), X) // Torn(A,X) // · · ·

mn−h ⊗X // mn−(h+1) ⊗X // A⊗X // 0

If w.dim(m) = t < ∞, then w.dim(A) = w.dim(mn−h) = t + 1. This implies that

Tort+2(A,X) = 0 = Tort+2(mn−h, X). Thus, since we have the exact sequence

Tort+2(mn−h, X) // Tort+2(mn−(h+1), X) // Tort+2(A,X)

as a part of the long exact sequence for Tor, we then get Tort+2(mn−(h+1), X) = 0. Observe

that w.dim(mn−(h+1)) ≥ t+ 1 since otherwise we would have an exact sequence of the form

Tort+2(A,X) // Tort+1(mn−h, X) // Tort+1(mn−(h+1), X),

where Tort+2(A,X) = 0 as proved above and Tort+1(mn−(h+1), X) = 0 by assumption, and

so Tort+1(mn−h, X) = 0, for every R-module X. This shows that w.dim(mn−h) ≤ t, a
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contradiction. Thus w.dim(mn−(h+1)) = t + 1 which contradicts the definition of h. This

contradiction completes the proof that w.dim(m) =∞.

2.6 Semi-hereditary rings and Prüfer domains.

Definition 2.62. Let R be an integral domain with quotient field Q. A fractional ideal

of R is an R-submodule F of Q for which there exists a nonzero r ∈ R such that rF ⊆ R

Note that every ideal I of R in the usual sense is a fractional ideal since 1RI ⊆ R.

For any ideal I of R we define

I−1 = {q ∈ Q : qI ⊆ R}.

Note that I−1 is a fractional ideal of R. Also, clearly I−1I = {
∑n

i=1 qixi : qi ∈ I−1, xi ∈

I, n ∈ N} ⊆ R. If I−1I = R then I is called an invertible ideal.

The following information on invertible ideals can be found in [LM, Chapter VI, §1],

[R, page 125].

Proposition 2.63. Let R be an integral domain and I be a nonzero ideal of R.

(a) I is invertible if and only if it is projective as an R-module.

(b) If I is invertible then it is finitely generated.

(c) If I = Ra where a is a nonzero element of R, then I is invertible with

I−1 = {b/a ∈ Q : b ∈ R}.

Definition 2.64. A ring R is said to be semi-hereditary if each of its finitely generated

ideals is projective.

The next proposition is essentially due to Endo [E]. We follow the argument given

in [I] in the proof of part (iii).
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Proposition 2.65. (i) If R is a regular ring then R is semi-hereditary.

(ii) If R is a semi-hereditary ring, then w.gl.dim(R) ≤ 1.

(iii) If R is a semi-hereditary ring, then its total quotient ring, Q(R), is regular.

Proof. (i) If R is regular, then by Lemma 2.33 every finitely generated ideal I of R is

principal and generated by an idempotent, i.e., I = Re for some idempotent e ∈ R. Then,

since R = Re⊕R(1− e), I is projective, as required.

(ii) Let I be an ideal of R. Then, by Example 2.23 (1), I is the direct limit of the

directed system (Jλ, fλ,µ)λ∈Λ where each Jλ is a finitely generated ideal of R contained in

I and fλ,µ : Jλ → Jµ is the inclusion map when Jλ ⊆ Jµ. Since each Jλ is projective (and

so flat), I is also flat by Theorem 2.25. Since every ideal of R is flat, w.gl.dim(R) ≤ 1 by

Corollary 2.56.

(iii) Let a ∈ R. By assumption, Ra is a projective R-module and so, if in the following

diagram we start with 1Ra and g : R → Ra given by g(x) = ax for all x ∈ R, there is an

R-homomorphism f : Ra→ R which gives commutativity:

Ra

1Ra
��

f

~~
R

g // Ra // 0.

Then gf = 1Ra and so gf(a) = a, i.e., af(a) = a. Now let c = 1 − f(a) + a. This gives

ac = a − af(a) + a2 = a2. Now suppose that d ∈ R with cd = 0. Then a2d = acd = 0.

Moreover, since af(a) = a, we get ad = af(a)d = f(a2d) = 0. This gives d = 1d =

(c + f(a) − a)d = cd = 0. We’ve now shown that if cd = 0 for some d ∈ R then d = 0.

Thus c is a regular element of R. If b is any regular element of R we have b/c ∈ Q(R)

and a/b = ac/bc = a2/bc = a2b/b2c = (a/b)(b/c)(a/b). Since every element in Q(R) can

be written as a/b for some a ∈ R and some regular element b ∈ R, it follows that Q(R) is

regular.

In the forthcoming Example 2.75, we will use Proposition 2.65 (iii) to show that the
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converse to part (i) of the Proposition is not true in general.

Definition 2.66. A ring R is said to be PF if every principal ideal of R is flat.

The next theorem we establish is given as [Gl1, Theorem 4.2.2].

Theorem 2.67. Let R be a ring. Then the following statements are equivalent:

(1) R is a PF ring.

(2) For any prime ideal P , the localisation RP is an integral domain.

(3) For any maximal ideal M , the localisation RM is an integral domain.

(4) R is reduced and any maximal ideal M of R contains exactly one minimal prime ideal

P. In particular, P = OM and RP = Q(RM), the quotient field of RM .

Proof. (1) ⇒ (2). Let
a

s
,
b

t
∈ RP for some a, b ∈ R, s, t /∈ P . Suppose that

a

s
· b
t

= 0 but

a

s
6= 0. We need to show that

b

t
= 0, in order to show that RP is an integral domain.

Let I = RP
a

s
. Notice that 0 6= I = RP

a

s
= RP ⊗ Rr for some r 6= 0. Since RP is

flat and Rr is also flat by assumption, by Corollary 2.17, I is a flat RP -module. Then, by

Lemma 2.19, I is a free RP -module, say with basis {xλ : λ ∈ Λ}. For each λ ∈ Λ, we have

xλ =
rλ
sλ

a

s
for some rλ ∈ R and sλ ∈ R \ P . Then xλ

b

t
=
rλ
sλ

a

s
· b
t

= 0. This is impossible if

b

t
6= 0 since ann(xλ) = 0. Hence

b

t
= 0, as required.

(2) ⇒ (3). This is clear since every maximal ideal is prime.

(3) ⇒ (4). Let M ∈ Max(R) and P ∈ Min(R) with P ⊆ M . Then OM ⊆ P since

if r ∈ OM then ru = 0 for some u ∈ R \ P, giving ru = 0 ∈ P with u /∈ P, so

r ∈ P since P is prime. Now, since OM = ker(φM) where φM : R → RM is the natural

ring homomorphism, we have R/OM isomorphic to im(φM) which is a subring of RM .

Then, since RM is an integral domain by (3), it follows that R/OM is an integral domain

and therefore OM is a prime ideal. Consequently, OM is the unique minimal prime ideal

contained in M since it is contained in every minimal prime ideal contained in M . Thus,

we obtain Min(R) = {OM : M ∈ Max(R)}.
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By Corollary 1.6, Nil(R) = ∩{P : P ∈ Min(R)} so to show that R is reduced we

need to show ∩{OM : M ∈ Max(R)} = 0. If x ∈ ∩{OM : M ∈ Max(R)}, then for

any M ∈ Max(R) there exists uM ∈ R \ M such that uMx = 0. Thus ann(x) * M

for every maximal ideal M of R. This shows that ann(x) = R and so x = 0. Hence

∩{OM : M ∈ Max(R)} = 0 and so R is reduced.

For any P ∈ Min(R), there exists a maximal ideal M such that P ⊆ M and so

P = OP by Lemma 1.35. Notice that PRP = 0 since if
r

s
∈ PRP then we have s /∈ P and

r ∈ P = OP and so there exists u /∈ P such that ur = 0 and this gives
r

s
=
ur

us
=

0

us
= 0.

Since, by Lemma 1.28, PRP is the only prime (and so only maximal) ideal of RP and

PRP = 0 it follows that RP is a field.

We finally show that RP is (isomorphic to) the quotient fieldQ(RM) of the localisation

RM . The elements of RM are fractions of the form r/u, where r ∈ R and u ∈ R \M . So

the elements of Q(RM) are of the form
r/u

s/t
, where r, s ∈ R and u, t ∈ R \M and s 6= 0.

Then
r/u

s/t
=
rt/ut

su/ut
. We now show that su /∈ OM . If otherwise then there is a c /∈M such

that suc = 0. Then, in the integral domain, RM we have

(s/1) · (1/t) = s/t = suc/tuc = 0/tuc = 0

and so either s/1 = 0 or 1/t = 0, which is impossible since s 6= 0. Thus su /∈ OM .

Using this we define α : Q(RM) → RP by r/u

s/t
=
rt/ut

su/ut
� α // rt/su , rt/su ∈ RP =

ROM . To see that α is well defined, let
r1/u1

s1/t1
=

r2/u2

s2/t2
in Q(RM). Then r1s2/u1t2 =

r2s1/u2t1 in RM . Thus there exists q ∈ R\M such that q(r1s2u2t1) = q(u1t2r2s1). However,

this also gives r1t1/s1u1 = r2t2/s2u2 which implies that α

(
r1/u1

s1/t1

)
= α

(
r2/u2

s2/t2

)
. More-

over α is a ring isomorphism since, for all r1, r2 ∈ R, s1, s2 ∈ R \ {0}, t1, t2, u1, u2 ∈ R \M ,

(i) α

(
r1/u1

s1/t1
· r2/u2

s2/t2

)
= α

(
r1r2/u1u2

s1s2/t1t2

)
=
t1t2r1r2

s1s2u1u2

=
t1r1

s1u1

· t2r2

s2u2

= α

(
r1/u1

s1/t1

)
·α
(
r2/u2

s2/t2

)
,
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(ii) α

(
r1/u1

s1/t1
+
r2/u2

s2/t2

)
=α

(
r1s2/u1t2 + r2s1/u2t1

s1s2/t1t2

)
=

(
(r1s2u2t1 + r2s1u1t2)/u1t2u2t1

s1s2/t1t2

)
=

(t1t2)(r1s2u2t1 + r2s1u1t2)

(s1s2)(u1t2u2t1)
=
r1s2u2t1 + r2s1u1t2

s1s2u1u2

=
t1r1

s1u1

+
t2r2

s2u2

=α

(
r1/u1

s1/t1

)
+ α

(
r2/u2

s2/t2

)
,

(iii) α is a one-to-one mapping since, if r ∈ R, s ∈ R\{0}, t, u ∈ R\M with α

(
r/u

s/t

)
= 0,

then tr/su = 0 in RP = ROM and so there exists q ∈ R \ OM such that qtr = 0. Hence

r/u

s/t
=
qtr/qtu

s/t
=

0/qtu

su/tu
= 0, and

(iv) α is an onto mapping since if
a

b
∈ ROM (with a ∈ R and b ∈ R \ OM), then

a/1

b/1
∈

Q(RM) with α

(
a/1

b/1

)
=
a

b
.

(4) ⇒ (1). Let M ∈ Max(R). Note first that given r ∈ OM and
a

s
∈ RM where a, s ∈ R,

s /∈M , then, since there exists u /∈M such that ru = 0, we have r
a

s
=
r

1
· ua
us

=
rua

us
= 0.

Thus OMRM = 0. Now suppose that
a

s
,
b

t
∈ RM with

a

s
· b
t

=
0

1
, where a, b, s, t ∈ R;

s, t /∈ M . Then there exists u /∈ M such that uab = 0. This gives ab ∈ OM and so, since

OM is a prime ideal by (4), we have either a ∈ OM or b ∈ OM . Thus there exists v /∈ M

such that either av = 0 or bv = 0. Then either
a

s
=
av

sv
=

0

1
or

b

t
=
bv

tv
=

0

1
. This has

shown that RM is an integral domain.

Now let a ∈ R. Then we have the following s.e.s. of R-modules

0 // ann(a) i // R
f // Ra // 0 (∗),

where f(r) = ra for every r ∈ R and i is the inclusion map. Tensoring (∗) with the flat

R-module RM , i.e., localising (∗) at M , gives the the s.e.s. of RM -modules

0 // (ann(a))M
i⊗RM // RM

f⊗RM // (Ra)M // 0 .

However, (Ra)M =
{ra
s

: r ∈ R, s /∈M
}

=
{r
s
· a

1
: r ∈ R, s /∈M

}
= RM

a

1
. Moreover, by

Lemma 1.30, (annR(a))M = annRM

(a
1

)
and so we have the s.e.s.

0 // ann
(a

1

)
i⊗RM // RM

f⊗RM // RM
a

1
// 0 (∗∗).
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However, since RM is an integral domain, we have

ann
(a

1

)
=

{
b

s
:
b

s
· a

1
=

0

1
, b, s ∈ R, s /∈M

}
=


0 if (i)

a

1
6= 0,

RM if (ii)
a

1
= 0.

If (i) holds, then RM

(a
1

)
' RM as RM -modules and so RM

(a
1

)
is a flat RM -module. On

the other hand, if (ii) holds, then RM

(a
1

)
= 0, also a flat RM -module. Thus in either

case w.dimRM (RM

(a
1

)
) = 0, i.e., w.dimRM ((Ra)M) = 0 for every M ∈ Max(R). Then by

Theorem 2.53, w.dimR(Ra) = 0. Thus Ra is a flat R-module and so R is a PF ring.

The following result, due to Jensen [J2], pinpoints an exact relationship between

arithmetical rings and rings of weak global dimension at most 1.

Theorem 2.68. For any ring R, we have w.gl.dim(R) ≤ 1 if and only if R is reduced and

arithmetical.

Proof. If w.gl.dim(R) ≤ 1, R is a PF ring by Lemma 2.51 and so, by Theorem 2.67, R is

reduced. To show that R is arithmetical, by Proposition 1.40, it suffices to show that the

localization ring RM is a chain ring for any maximal ideal M of R. Since w.gl.dim(R) ≤ 1

we have w.gl.dim(RM) ≤ 1, by Theorem 2.53, and so, by Lemma 2.51, every ideal of RM

is flat. Then, by Theorem 2.29, RM is a chain ring as required.

Conversely assume that R is reduced and arithmetical. Then, for any maximal ideal

M of R, the localization RM is a reduced chain ring by Corollary 1.32 and Proposition

1.40. Let a, b be nonzero elements of RM . Since RM is a chain ring, by Proposition 1.37

we may suppose that a = bx for some x ∈ RM . Then abx = a2 6= 0 since RM is reduced,

and so ab 6= 0. This has shown that RM is an integral domain. Now let J be a nonzero

finitely generated ideal of RM . Since RM is a chain ring, J is principal (see Proposition

1.37), say J = RMc, where c is a nonzero element of the integral domain RM . Then J is

a free, so flat, RM -module (with basis {c}) and so, by Corollary 2.56, w.gl.dim(RM) ≤ 1.

Applying Theorem 2.53 finishes the proof.
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The reduced condition in Theorem 2.68 is not redundant. To see this, the easiest

counterexample is the chain ring R = Z4 = {0, 1, 2, 3}. Since 2
2

= 0, R is not reduced and

so w.gl.dim(R) > 1, by Theorem 2.68. (In fact w.gl.dim(R) =∞, by Example 2.36.)

We restrict the next two definitions to integral domains.

Definition 2.69. An ideal A of an integral domain R is called a cancellation ideal if,

whenever AB = AC where B,C are nonzero ideals of R then B = C.

For example, every invertible ideal A is a cancellation ideal since if B,C are ideals

such that AB = AC then A−1AB = A−1AC and so, since AA−1 = R, we get B = C.

Definition 2.70. Let R be an integral domain with quotient field Q. An element q ∈ Q is

said to be integral over R if there is a monic polynomial f(x) ∈ R[x] such that f(q) = 0,

i.e., there exist a0, a1, . . . , an−1 ∈ R such that

a0 + a1q + a2q
2 + · · ·+ an−1q

n−1 + qn = 0.

Note that any element r ∈ R is integral over R, since a0+a1r = 0 on taking a0 = −r, a1 = 1.

If the elements of R are the only elements of Q which are integral over R, then R is

said to be integrally closed.

Our next result is Proposition 3.9 of [BuS].

Proposition 2.71. Let R be an integral domain with the property that, for any nonzero

r ∈ R and nonzero finitely generated ideal I of R, if I(r) = I2, then I ⊆ (r). Then R is

integrally closed.

Proof. Let Q denote the quotient field of R and q be an element of Q which is integral over

R. Then q is a root of a monic polynomial over R, say of degree n + 1, where n ≥ 0. Let

F = (1, q, q2, . . . , qn) be the R-submodule of Q generated by {qi}ni=0. Then F 2 = F (where,

using the multiplication of Q, F 2 = {
∑t

j=1 yjzj : yj, zj ∈ F, t ∈ N}) since any w ∈ F can
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be written as 1Rw and, for each s, t ∈ N, we have qsqt ∈ F since qn is a linear combination

of 1, q, q2, . . . , qn−1. Let q = a/b where a, b ∈ R and b 6= 0. Then, setting d = bn, we can

write F = E(1/d) where E is the nonzero ideal of R given by E = (bn, bn−1, . . . , ban−1, an)

and (1/d) is the R-submodule of Q generated by 1/d. Then, since F = F 2, we get

E(1/d) = E2(1/d2) which, on multiplication by d2, gives E(d) = E2. Our hypothesis then

gives E ⊆ (d). In particular, abn−1 ∈ (d) = (bn) and so q = a/b = abn−1/bn ∈ R. Thus R

is integrally closed.

We now present a result of Butts and Smith [BuS].

Proposition 2.72. Let R be an integrally closed domain and a, b ∈ R with a 6= 0 such

that an−1b ∈ (an, bn) for some n ≥ 2. Then (a, b) is invertible.

Proof. We use induction on n. If n = 2 then ab ∈ (a2, b2) and so ab = xa2 + yb2 for some

x, y ∈ R. Multiplying by y/a2 we get (yb/a)2−(yb/a)+xy = 0, an equation in the quotient

field Q of R. Thus yb/a is integral over R and so, since R is integrally closed, we have

yb/a ∈ R, say yb/a = z. Then az = yb. Now note that

(a, b)(y, 1− z) = (ay, by, a(1− z), b(1− z))

= (ay, az, a(1− z), b(1− z)) (since by = az)

= (ay, az, a(1− z), xa) (since b(1− z) = b− yb2

a = b− (ab− xa2)
a = xa).

= (a).

Then, since the principal ideal (a) is invertible, it follows that (a, b) is also invertible (with

inverse (1/a)(y, 1− z)), thereby establishing the case of n = 2.

Now assume that the Proposition is true for some n − 1 where n ≥ 3. Further

assume that a, b ∈ R with an−1b ∈ (an, bn), say an−1b = xan + ybn where x, y ∈ R. Then,

multiplying by yn−1/an gives

yn−1b/a = yn−1x+ ynbn/an and so (yb/a)n + yn−2(yb/a)− yn−1x = 0.
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This shows that yb/a is integral over R and so, by assumption, is in R, say yb/a = z ∈ R.

Now note that an−1b = xan + azbn−1 and so cancelling the nonzero a gives

an−2b = xan−1 + zbn−1 ∈ (an−1, bn−1).

Using our induction hypothesis then shows that (a, b) is invertible, as required.

Definition 2.73. An integral domain R is called a Prüfer domain if each of its nonzero

finitely generated ideals is invertible.

The following information on Prüfer domains can be found in [LM, Theorem 6.6],

[R, Chapter 4], or Gilmer [Gi2]. The equivalence of (i) and (ii) is due to Krull [K]. The

equivalence of (ii) and (iii) is due to Prüfer [P]. Since ideals are invertible precisely when

they are projective (by Proposition 2.63 (a)), (iv) and (v) are equivalent to (ii) and (iii).

We give details of (vii) ⇒ (viii) ⇒ (ix) ⇒ (iii).

Proposition 2.74. Let R be an integral domain. The following statements are equivalent.

(i) R is an arithmetical domain.

(ii) R is a Prüfer domain.

(iii) For any nonzero a, b ∈ R, the 2-generated ideal (a, b) is invertible.

(iv) For any nonzero a, b ∈ R, the 2-generated ideal (a, b) is projective.

(v) R is a semi-hereditary domain.

(vi) w.gl.dim(R) ≤ 1.

(vii) Every finitely generated ideal of R is a cancellation ideal.

(viii) R is integrally closed and, for some n ∈ N, (a, b)n = (an, bn) for all a, b ∈ R.

(ix) R is integrally closed and, for some n ∈ N, an−1b ∈ (an, bn) for each a, b ∈ R.
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Proof. (vii) ⇒ (viii). If R satisfies (vii), then R is integrally closed by Proposition 2.71.

Moreover, since

(a, b)3 = (a3, a2b, ab2, b3) = (a, b)(a2, b2),

cancelling (a, b) gives (a, b)2 = (a2, b2) and so R satisfies (viii).

(viii) ⇒ (ix) is clear.

(ix) ⇒ (iii). Let a, b be nonzero elements of R. If R satisfies (ix), it follows from

Proposition 2.72 that the ideal (a, b) is invertible, as required.

We note that, with regard to conditions (viii) and (ix) of Theorem 2.74 and in reply

to a question of H. Butts, J. Ohm [Oh] has provided an example of an integral domain R

which is not integrally closed but (a, b)2 = (a2, b2) for all a, b ∈ R.

While an integral domain R is semi-hereditary if and only if it has weak global

dimension at most 1, this is not true in general for all commutative rings, as the following

example from [Cl1] shows.

Example 2.75. Let Q denote the field of rational numbers and let S denote the direct

product
∏∞

i=1 Si where, for each positive integer i, Si = Q [x] , the ring of polynomials in one

variable, x, over Q. Then each element of S may be regarded as a sequence (f1, f2, f3, . . .)

where fi ∈ Q [x] for i = 1, 2, 3, . . .. Let R denote the subring of S generated by the sequence

(x, 0, x, 0, . . .) and all sequences of the form (f1, f2, . . . , fn, q, q, q, . . .) where f1, f2, . . . , fn ∈

Q [x] and q ∈ Q. We shall show that w.gl.dim(R) = 1 but R is not semi-hereditary.

The general form of an element of R is

a = (f1, f2, f3, . . . , fn, q, q + g1(x), q, q + g2(x), q, q + g3(x), . . .)

where n is an odd integer, f1, f2, . . . , fn ∈ Q [x] , q ∈ Q, and, for each positive integer

i, gi(x) is an element of Q [x]x. Suppose such an element a is nilpotent. Then for some

positive integer s we have
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as = (f s1 , f
s
2 , . . . , f

s
n, q

s, (q + g1(x))s, qs, (q + g2(x))s, qs, . . .) = 0.

This implies that 0 = f s1 , f
s
2 , . . . , f

s
n, q

s and (q + gi(x))s = 0 for each positive integer i.

Thus, since f1, f2, . . . , fn, q, and q+ g1(x) are all elements of the integral domain Q [x], we

have a = 0. This shows that R is a reduced ring.

It is easily seen that any maximal ideal of R is generated by a sequence of the form

(1, 1, . . . , 1, f, 1, 1, . . .), where the unit element occupies every position except one which is

occupied by a non-constant irreducible polynomial f in Q [x]. Let M1 denote the maximal

ideal of R generated by (f, 1, 1, . . .), where f is a non-constant irreducible polynomial. Let

y, z be any two nonzero elements of the local ring RM1 . Then we may write y =
a

b
and

z =
c

d
where a, b, c, d are nonzero elements of R and b, d /∈ M1. We will show that either

y ∈ RM1z or z ∈ RM1y. To do this, we construct two sequences m = (m1,m2, . . .) ∈ R and

n = (n1, n2, . . .) ∈ R \M1 such that either y =
m

n
z or z =

m

n
y, i.e.,

c

d
=
ma

nb
or

a

b
=
mc

nd
.

Denote the elements occupying the first positions of a, b, c, d by a1, b1, c1, d1, respec-

tively. Then b1, d1 /∈ Q [x] f . If either a1 = 0 or c1 = 0, we define m1 = 0 and n1 = 1.

Assuming that a1 and c1 are both nonzero, let k1 denote the least common multiple of

the two elements a1d1 and b1c1.2 Then there exist elements m1, n1 of Q [x] such that

m1(a1d1) = k1 = n1(b1c1).

Next note that, since Q [x] is a unique factorization domain, m1 and n1 can not

both have f in their irreducible factorization, since otherwise the least common multiple

property of k1 is contradicted. Suppose n1 /∈ Q [x] f .

Now, for i = 2, 3, . . . let ai, bi, ci, di denote the i th. elements of the sequences a, b, c, d,

respectively, and let ki denote the least common multiple of aidi and bici in Q [x] if ai, bi

are both nonzero and otherwise we take ki to be zero. Then, as for i = 1, for i = 2, 3, . . .

there exist elements mi, ni of Q [x] such that mi(aidi) = ki = ni(bici).

2Since Q[x] is a principal ideal domain, given any two elements v, w ∈ Q[x], there is an element z ∈ Q[x]
such that Q[x]v ∩Q[x]w = Q[x]z. The element z is then a least common multiple of v and w and it is
unique up to unit multiples.
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Let n,m denote the sequences (n1, n2, . . .) and (m1,m2, . . .) respectively. Then it is

easily checked that n,m ∈ R,
m

n
∈ RM1 , and

m

n
· a
b

=
c

d
. On the other hand, if m1 /∈ Q [x] f

then the previous argument will give
n

m
∈ RM1 and

n

m
· c
d

=
a

b
. It follows that the ideals

of RM1 are linearly ordered. By similar arguments it may be proved that for any maximal

ideal M of R the ideals of the local ring RM are linearly ordered. Thus R is arithmetical

and so, since it is also reduced, we have w.gl.dim(R) ≤ 1 by Theorem 2.68.

We will now show that the total ring of quotients of R is not a von Neumann regular

ring. Let
a

b
be an element of Q, the total ring of quotients of R. Then b is not a zero-divisor

of R and so it is a sequence of nonzero elements. Moreover there exists an odd integer n such

that the n th elements an, bn of a, b respectively, are of the form an = q+f(x), bn = p+g(x)

where p, q ∈ Q and f(x), g(x) ∈ x · Q [x]. Now
(x, 0, x, 0, x, 0, . . .)

(1, 1, 1, . . .)
is an element of Q.

Moreover denoting this element by w, if w2a

b
= w then b·(x, 0, x, 0, . . .) = a(x2, 0, x2, 0, . . .).

Thus, on comparing the n th elements of these sequences, we have (q + f(x)) · x2 = (p +

g(x)) · x. This implies that p = 0 and so b is a zero-divisor.

This is in contradiction to the definition of b. Thus there exists no element
a

b
of Q

such that w2a

b
= w. Hence Q is not von Neumann regular. By Proposition 2.65 (iii), R is

not semi-hereditary.

Thus w.gl.dim(R) = 1 and R is not semi-hereditary, as required.



Chapter 3

The Ideal Structure of Gaussian

Rings.

3.1 General properties of Gaussian rings.

In this chapter, we continue dealing with a commutative ring R.

Definition 3.1. Let R[x] be the ring of polynomials of the ring R in the indeterminate x

and let f(x) ∈ R[x] with f(x) = a0 + a1x + a2x
2 + · · · + anx

n, where a0, a1, . . . , an ∈ R.

The content of f , denoted by c(f), is the ideal of R generated by the set of its coefficients

{a0, a1, . . . , an}. In this case, we usually write c(f) = (a0, a1, . . . , an).

In the next theorem we introduce some important properties of the content.

Theorem 3.2. Let f, g ∈ R[x], r ∈ R. Then

(1) c(f + g) ⊆ c(f) + c(g),

(2) c(fg) ⊆ c(f)c(g), and

(3) c(rf) = rc(f).

59
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Proof. (1) Suppose f(x) = a0 +a1x+a2x
2 + · · ·+amx

m, g(x) = b0 +b1x+b2x
2 + · · ·+bnx

n.

Then (f + g)(x) =
∑max(m,n)

i (ai + bi)x
i so c(f + g) is the ideal generated by ai + bi for

i = 0, 1, . . . ,max(m,n). Since ai ∈ c(f) and bi ∈ c(g) for each i, we have
∑
ri(ai + bi) =∑

riai +
∑
ribi (where ri ∈ R) so c(f + g) ⊆ c(f) + c(g) as required.

(2) Take f and g as above. Then fg = a0b0 + (a1b0 +a0b1)x+ · · ·+ (
∑

i+j=k aibj)x
k + · · ·+

ambnx
m+n. Thus c(fg) is generated by ck =

∑
i+j=k aibj for k = 0, 1, . . . ,m + n. Each ck

is in c(f)c(g) since ai ∈ c(f) and bj ∈ c(g). Hence it follows that c(fg) ⊆ c(f)c(g).

(3) Consider f as above and let r ∈ R. Then c(rf) = c(r(a0 +a1x+a2x
2 + · · ·+amx

m)) =

c(ra0 + ra1x + ra2x
2 + · · · + ramx

m) = (ra0, ra1, ra2, . . . , ram) = r(a0, a1, a2, . . . , am) =

rc(f).

Note. Clearly c(f) = c(xtf), for all t ∈ N.

The following theorem is known as the Dedekind-Mertens Lemma..1

Theorem 3.3. Let f, g be nonzero polynomials in R[x] with deg(g(x)) = n. Then

c(f)n+1c(g) = c(f)nc(fg).

Proof. By Theorem 3.2 (2), c(fg) ⊆ c(f)c(g) and this gives c(f)nc(fg) ⊆ c(f)nc(f)c(g) =

c(f)n+1c(g). This proves the reverse inclusion. However the other inclusion is not as easy

to prove. We use induction on m and n, where m = deg(f(x)).

First suppose that f is a monomial, i.e., f(x) = amx
m, where am is a nonzero element

of R. Then c(f) = Ram and so c(f)n+1c(g) = (Ram)n+1c(g) = (Ram)nRamc(g). Thus we

have c(f)n+1c(g) = (Ram)n+1c(g) = (Ram)nRamc(g) = (Ram)namc(g) = (Ram)nc(amg) by

Theorem 3.2 (3). Notice that (fg)(x) = amg(x)xm and from the note above we have

c(g(x)x) = c(g(x)) and so c(fg) = c(amg(x)x) = amc(g(x)xm) = amc(g(x)). Then

c(f)n+1c(g) = (Ram)nc(amg) = c(f)nc(fg), as required.

1According to Heinzer and Huneke [HeHu], Dedekind [De] proved a weaker version of this Lemma in
1892 for rings of algebraic integers, while in the same year Mertens [Me] proved the Lemma for rings of
characteristic 0 and n = deg(g)2. Then Prüfer [P] reproved the result in 1932 with n = deg(g). The first
mention of the name ”Dedekind–Mertens Lemma” appears to be made by Krull in [K2].
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Now suppose g is a monomial, i.e., g(x) = bnx
n with bn a nonzero element of R. Then

c(g) = Rbn and so c(f)n+1c(g) = c(f)n+1Rbn = c(f)nc(f)bn = c(f)nc(bnf) = c(f)nc(fg)

since (fg)(x) = (gf)(x) = bnf(x)xn.

In particular we have now proved the equality if either f or g is a constant polynomial,

i.e., either deg(f) = 0 or deg(g) = 0.

For our induction argument we now make the following two assumptions:

(A) For n fixed, c(f)n+1c(g) ⊆ c(f)nc(fg) for all f with deg(f) < m.

(B) For m fixed, c(f)n+1c(g) ⊆ c(f)nc(fg) for all g with deg(g) < n.

This double induction is described by the following diagram.

(0, 0) //

��

(0, n)

n is fixed; assume that (r, n) true for 0 ≤ r < m

��
(m, 0)

m is fixed; assume that (m, s) true for 0 ≤ s < n
// (m,n)

From earlier we may assume that f, g are not monomials. Now define :

f1 = f − amxm.

g1 = g − bnxn.

h = fg =
∑m+n

k=0 ckx
k, where ck =

∑
i+j=k aibj.

h1 = f1g =
∑m+n−1

k=0 c
(1)
k xk, where c

(1)
k =


ck if 0 ≤ k ≤ m− 1,

ck − bk−mam if m ≤ k ≤ m+ n− 1.

h2 = fg1 =
∑m+n−1

k=0 c
(2)
k xk, where c

(2)
k =


ck if 0 ≤ k ≤ n− 1,

ck − ak−nbn if n ≤ k ≤ m+ n− 1.

Then the content of h1 is the ideal generated by the set {c(1)
k : k = 0, . . . ,m+ n− 1}, i.e.,
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c(h1) =
∑m+n−1

k=0 Rc
(1)
k

=
∑m−1

k=0 Rck +
∑m+n−1

k=m R(ck − bk−mam)

⊆ Rc0 + · · ·+Rcm+n−1 +
∑m+n−1

k=m Rbk−mam

= Rc0 + · · ·+Rcm+n−1 + am(
∑m+n−1

k=m Rbk−m)

= Rc0 + · · ·+Rcm+n−1 + am(Rb0 + · · ·+Rbn−1)

= c(h) + amc(g1).

Similarly we can show that c(h2) = c(fg1) ⊆ c(h) + bnc(f1).

Notice that since a0, a1, . . . , am generate c(f) and b0, b1, . . . , bn generate c(g), the ideal

c(f)n+1c(g) is generated by elements of the form

α = at00 a
t1
1 . . . a

tm
m bj,

where ti ≥ 0 for 1 ≤ i ≤ m and
∑m

i=1 ti = n + 1. (To clarify this we give the following

example: suppose I = Ra1+Ra2 = {r1a1+r2a2 : r1, r2 ∈ R}. Then I2 = {
∑
xy : x, y ∈ I},

where x = r1a1 + r2a2 and y = s1a1 + s2a2 for some r1, r2, s1, and s2 elements of R. Hence

xy = (r1s1)a2
1 + (r1s2)a1a2 + (r2s1)a2a1 + (r2s2)a2

2.)

It is now sufficient to show that each of these elements is in c(f)nc(fg), in order to

show that f(c)n+1c(g) ⊆ c(f)nc(fg). Here, there are three different cases:

(1) First, suppose that tm 6= 0 and j = n. Then

α = at00 . . . a
tm−1
m ambn (note that tm − 1 is defined because tm 6= 0)

= at00 . . . a
tm−1
m cm+n∈ c(f)nc(fg), as required,

since at00 a
t1
1 . . . a

tm−1
m ∈ c(f)n and cm+n ∈ c(fg).

(We illustrate this with the following example: suppose n + 1 = 5, n = deg g = 4 and

deg f = 6. Then

α = a0a
2
5a

2
6b4 ∈ c(f)5

= (a0a
2
5a6)(a6b4) ∈ c(f)4c(fg).)

(2) Now suppose that tm 6= 0 and j < n. Then α = ᾱambj, where j < n and ᾱ =
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at00 . . . a
tm−1
m ∈ c(f)n, so, since bj ∈ c(g1), we get α ∈ c(f)namc(g1).

(3) Finally, suppose that tm = 0. Then α = at00 . . . a
tm−1

m−1 bj ∈ c(f1)n+1c(g) since at00 . . . a
tm−1

m−1 ∈

c(f1)n+1 because
∑m−1

i=1 ti = n+ 1.

Thus taking the three cases into account, we have

c(f)n+1c(g) ⊆ c(f)nc(fg) + c(f)namc(g1) + c(f1)n+1c(g) (∗).

But by assumption (A), since deg f1 < m we get c(f1)n+1c(g) ⊆ c(f1)nc(f1g). Moreover

c(fg1) = c(h1) ⊆ c(fg) + amc(g1) as shown above. So we obtain

c(f1)n+1c(g) ⊆ c(f1)nc(f1g) (by assumption (A))

⊆ c(f1)n[c(fg) + amc(g1)] (as proved above)

⊆ c(f1)nc(fg) + c(f1)namc(g1)

⊆ c(f)nc(fg) + c(f)namc(g1).

Then, since the third term on the right hand side of (∗) is contained in the sum of the first

and the second terms, (∗) becomes

c(f)n+1c(g) ⊆ c(f)nc(fg) + c(f)namc(g1) (∗∗).

Let deg(g1) = t. By assumption (B), since t < n, we have c(f)t+1c(g1) ⊆ c(f)tc(fg1).

Since t ≤ n− 1, we also have c(f)nc(g1) ⊆ c(f)n−1c(fg1). But we have proved earlier that

c(fg1) = c(h2) ⊆ c(fg) + bnc(f1) (†).

Thus

c(f)namc(g1) ⊆ c(f)n−1amc(fg1)

⊆ c(f)n−1amc(fg) + c(f)n−1ambnc(f1) (by (†))

⊆ c(f)nc(fg) + c(f)nc(fg) (since am ∈ c(f) and bn ∈ c(g))

= c(f)nc(fg).

This has shown that the last term of (∗∗) is contained in its predecessor and so we have the

inclusion c(f)n+1c(g) ⊆ c(f)nc(fg). Thus, by Theorem 3.2 (3), c(f)n+1c(g) = c(f)nc(fg)

for all f(x), g(x) ∈ R[x].
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Corollary 3.4. Let R be an integral domain and f ∈ R[x]. If c(f) is an invertible ideal

then c(f)c(g) = c(fg) for all g(x) ∈ R[x]. In particular, if c(f) is a nonzero principal ideal

then c(f)c(g) = c(fg) for all g(x) ∈ R[x].

Proof. Let J be the inverse of c(f). Given g(x) ∈ R[x] with deg g = n, we have c(f)n+1c(g) =

c(f)nc(fg) by Theorem 3.3. Then, since Jc(f) = R, we get Jnc(f)n+1c(g) = Jnc(f)nc(fg)

giving c(f)c(g) = c(f)c(g).

If c(f) is a nonzero principal ideal, say c(f) = Ra where a is a nonzero element of

R, then c(f) is invertible with inverse J = R(1/a). Thus the second statement of the

Corollary follows from the first.

Definition 3.5. A polynomial f(x) ∈ R[x] is said to be a Gaussian polynomial if

c(fg) = c(f)c(g) for every polynomial g(x) ∈ R[x]. If every polynomial of the ring R[x] is

Gaussian then we call R a Gaussian ring.

Examples 3.6. (1) It follows from Corollary 3.4 that any principal ideal domain (PID) is

a Gaussian ring and, from Lemma 1.37, any chain domain is also Gaussian.

(2) More generally, from Corollary 3.4 and Definition 2.73 we see that any Prüfer domain

is Gaussian. (We will see below, in Corollary 3.11, that, conversely, if R is a Gaussian

domain then R is a Prüfer domain.)

(3) Here we present an example of an integral domain which is not Gaussian. (Later,

Theorem 3.13 will be used to give examples of local rings which are not Gaussian.)

Let R be the subring of the complex number field C given by

R = Z + 2iZ = {a+ 2ib; a, b ∈ Z, i2 = −1}.

Let f = g = 2i + 2x ∈ R[x]. Then fg = −4 + 8ix + 4x2, so c(fg) = R4 + R8i +

R4 = R4 = {4a + 8bi : a, b ∈ Z}. On the other hand c(f) = c(g) = R2i + R2 and so

c(f)c(g) = R(−4) + R4i + R4 = R4 + R4i. It follows that 4i ∈ c(f)c(g) but 4i 6∈ c(fg).

Thus f is not Gaussian and so R is not a Gaussian ring.
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(4) This example shows that the Gaussian ring property does not transfer to polynomial

rings in general. Let R be the ring of integers Z, a Gaussian ring by (1) above. Let

S = R[y], the ring of polynomials in the indeterminate y over R. Let f, g ∈ S[x] be given by

f(x) = 2+yx, g(x) = y+2x. Then fg = 2y+4x+y2x+2yx2 = 2y+(4+y2)x+2yx2, so that

c(fg) = R2y+R(4+y2)+R2y = R2y+R(4+y2). On the other hand, c(f) = R2+Ry = c(g)

and so c(f)c(g) = (R2+Ry)2 = R4+R2y+Ry2. Since 4 ∈ c(f)c(g) but 4 6∈ c(fg), R = Z[x]

is not Gaussian.

We now show that the Gaussian ring property is stable under localization. Given an

m.c.s. S of R and any f(x) ∈ R[x], we may also regard f(x) as an element of RS[x]. We

use cR(f) to denote the content of f(x) in R and cRS(f) as the content of f(x) in RS.

Then it is straightforward to show that cRS(f) = (cR(f))S.

Lemma 3.7. Let S be an m.c.s. of the ring R. If R is a Gaussian ring then so is RS.

Proof. Let f(x) = p0 + p1x + · · · + pmx
m, g(x) = q0 + q1x + · · · + qnx

n be two polyno-

mials in RS[x]. For each i ∈ {0, 1, . . . ,m} and j ∈ {0, 1, . . . , n} we have pi = ai/si and

qj = bj/tj where ai, bj ∈ R and si, tj ∈ S. Setting d = s0s1 · · · sm and e = t0t1 · · · tn

gives d, e ∈ S and dpi, eqj ∈ R for each i, j and so df, eg are elements of R[x]. Since

R is Gaussian, cR(df)cR(eg) = cR(dfeg). Now cRS(f)cRS(g) = cRS(df/d)cRS(eg/e) =

1/de(cR(df))S(cRS(eg))S by Theorem 3.2 (3). By the remark above, this gives cRS(f)cRS(g) =

1/de(cR(df)cR(eg))S, and so, since R is Gaussian, cRS(f)cRS(g) = 1/de(cRS(dfeg)). Using

Theorem 3.2 again, since 1/de ∈ RS, we get cRS(f)cRS(g) = cRS(fg) in RS as required.

Next we show that the Gaussian property is inherited by factor rings.

Lemma 3.8. If I is an ideal of the Gaussian ring R, the factor ring R/I is also Gaussian.

Proof. Let f, g ∈ R/I[x], say f(x) = (r0 + I) + (r1 + I)x + · · · + (rm + I)xm and g(x) =

(s0 + I) + (s1 + I)x + · · · + (sn + I)xn where each ri and each sj are elements of R. Let
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f, g ∈ R[x] be defined as f(x) = r0 + r1 + x+ · · ·+ rmx
m and g(x) = s0 + s1x+ · · ·+ snx

n.

Then

c(f)c(g)

= (R/I(r0 + I) +R/I(r1 + I) + · · ·+R/I(rm + I)) · (R/I(s0 + I) +R/I(s1 + I) + · · ·

+R/I(sn + I))

= R/I(r0s0 + I) +R/I(r0s1 + I) + · · ·+R/I(r0sn + I) +R/I(r1s0 + I) + · · ·

+R/I(rmsn−1 + I) +R/I(rmsn + I)

= R/I((r0s0, r0s1, . . . , r0sn, r1s0, . . . , rmsn−1, rmsn) + I)

= R/I(c(f)c(g) + I)

= R/I(c(fg) + I) since, by assumption, R is Gaussian

= R/I(r0s0 + I) +R/I(r0s1 + r1s0 + I) + · · ·+R/I(rmsn−1 + rm−1sn + I)

+R/I(rmsn + I)

= c(fg)

as required.

The following useful result appears in Tsang’s dissertation [T].

Proposition 3.9. Let R be a commutative ring. The following statements are equivalent.

(i) R is a Gaussian ring.

(ii) RM is a Gaussian ring for every maximal ideal M of R.

(iii) RP is a Gaussian ring for every P ∈ Spec(R).

Proof. (i) ⇒ (iii). Assume that R is Gaussian. Then RP is Gaussian by taking S = R \P

in Lemma 3.7.

(iii) ⇒ (ii). Since every maximal ideal is prime, this is immediate.



CHAPTER 3. THE IDEAL STRUCTURE OF GAUSSIAN RINGS. 67

(ii) ⇒ (i). Suppose RM is Gaussian for every M ∈ Max(R). Let f, g ∈ R[x] with f(x) =

a0 + a1x + · · · + amx
m and g(x) = b0 + b1x + · · · + bnx

n. Then, for any M ∈ Max(R),

fM , gM ∈ RM [x], where fM(x) =
a0

1
+
a1

1
x+ · · ·+ am

1
xm and gM(x) =

b0

1
+
b1

1
x+ · · ·+ bn

1
xn

and so c(fM)c(gM) = c(fMgM) because RM is Gaussian. Next note that if I = c(f) =

(a0, . . . , am) = I then c(fM) =
(a0

1
, . . . ,

am
1

)
= IM and similarly if J = c(g) = (b0, . . . , bn)

then c(gM) =

(
b0

1
, . . . ,

bn
1

)
= JM . Thus, using Theorem 1.21 (ii), we get (c(f)c(g))M =

(c(f))M(c(g))M = c(fM)c(gM) = c(fMgM) = c((fg)M) = (c(fg))M . Since this holds for

any M ∈ Max(R), by Theorem 1.24, we obtain c(f)c(g) = c(fg). Thus R is Gaussian.

Our goal now is to show that an integral domain is Gaussian if and only if it is Prüfer.

Lemma 3.10. Let R be an integral domain and let f ∈ R[x]. If c(f) is a cancellation ideal

then f is Gaussian.

Proof. By the Dedekind–Mertens Lemma, if g ∈ R[x] with deg(g) = n, we have c(f)n+1c(g) =

c(f)nc(fg). Since c(f) is a cancellation ideal so is any power of c(f). In particular c(f)n

is a cancellation ideal and so c(f)n+1c(g) = c(f)nc(fg) gives c(f)c(g) = c(fg).

We now present the main result of this section. It first appeared in Tsang’s unpub-

lished 1965 PhD thesis [T] but was later proved independently by Gilmer, appearing in his

1967 publication [Gi1].

Theorem 3.11. An integral domain R is Prüfer if and only if R is Gaussian.

Proof. First suppose that R is a Prüfer domain. Then, as noted in Example 3.6 (2), R is

Gaussian.

Conversely, suppose R is Gaussian. We first show that R is integrally closed. Let

Q denote the quotient field of R and q ∈ Q be an integral element over R. We want to

show that q ∈ R. Since q is integral, there exists a monic polynomial f(x) ∈ R[x], say

f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn, such that f(q) = 0. Then there exists g(x) ∈ Q[x]
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such that fQ(x) = (x − q)g(x). Notice that this implies that g(x) is also monic because

the highest power of (x− q)g(x) comes from the term xxn−1, say 1 · bn−1, where bn−1 is the

coefficient of the variable with the highest power in g(x) and so, since f is monic, we get

1 = 1 · bn−1 = bn−1.

Since both f and g are monic, we have c(f) = R and c(g) = Q. Also, since R

is Gaussian so too is Q, by Lemma 3.7, and so we also have c(fQ) = c((x − q)g(x)) =

c(x− q)c(g(x)) = (R + Rq)c(g). Thus R = (R + Rq)c(g). Since g is monic, R ⊆ c(g) and

hence 1 ∈ c(g). So q = q1 ∈ (R +Rq)c(g) = R and therefore q ∈ R as required.

To finish the proof we need to show that if a, b ∈ R then (Ra+Rb)2 = Ra2 +Rb2. Let

f, g ∈ R[x] be defined by f(x) = a−bx, g(x) = a+bx. Then we get (fg)(x) = a2−b2x. Thus

c(f) = Ra+Rb = c(g), c(fg) = Ra2 +Rb2. Since R is Gaussian we have c(fg) = c(f)c(g)

and so (a, b)2 = (a2, b2). Then R is Prüfer by Proposition 2.74, (viii) ⇒ (ii).

3.2 Properties of local Gaussian rings.

The following lemma can be found in [Gl2, Lemma 2.1].

Lemma 3.12. Let R be a local Gaussian ring and let I be an ideal of R generated by the

elements a1, a2, . . . , an. Then I2 = (a2
i ) for some i ∈ {1, 2, . . . , n}.

Proof. Notice first that the case of n = 1 trivially holds. Suppose then that n = 2.

For simplicity, suppose I = (a, b). Let f(x), g(x) ∈ R[x] be defined as f(x) = ax + b,

g(x) = ax−b. Then c(f)c(g) = c(fg) and so (a, b)(a, b) = (a2, b2). Let h(x) = bx+a ∈ R[x].

Then c(f)c(h) = c(fh), so (a, b)2 = (ab, a2+b2). Hence (ab, a2+b2) = (a2, b2). In particular,

a2 ∈ (ab, a2 + b2) and so

a2 = rab+ s(a2 + b2) (∗)

for some r, s ∈ R. Then (1− s)a2 = rab+ sb2. Since R is local, by Lemma 1.10 either 1− s
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is a unit or s is a unit. If 1 − s is a unit we get a2 = vrab + vsb2, where v = (1 − s)−1.

So if we can show that ab ∈ (b2) it will follow that (a, b)2 = (b2) (since (a, b)2 = (a2, ab, b2)

and a2 ∈ (ab, b2)). Now let k(x) = (a− vrb)x− b ∈ R[x] so that c(k) = (a− vrb, b). Since

c(f)c(k) = c(fk) we get

(a, b)(a− vrb, b) = (a2 − avrb,−vrb2,−b2)

= (a2 − avrb,−b2) = (vrab+ vsb2 − avrb,−b2)

= (vsb2,−b2) = (b2)

So (a, b)(a− vrb, b) = (b2) but ab ∈ (a, b)(a− vrb, b) and so ab ∈ (b2) as required.

Suppose otherwise that 1 − s is not a unit. Then s is a unit and so equation (∗)

gives wa2 = wrab + (a2 + b2), where w = s−1. Hence, w(a2 − rab) − a2 = b2 and thus

b2 ∈ (a2, ab). Then (a, b)2 = (a2, ab, b2) will be equal to (a2) if we can show that ab ∈ (a2).

Let l(x) = (b− da)x− a, where d ∈ R. Then c(l) = (b− da, a). Let p(x) = bx− a so that

c(p) = (a, b) Then lp(x) = (b2−dab)x2− (−ab+da2 +ab)x+a2 = (b2−dab)x2−da2x+a2.

Since c(l)c(p) = c(lp) we then obtain (b−da, a)(a, b) = (b2−dab,−da2, a2) = (b2−dab, a2) =

(−a2 + w(a2 − rab) − dab, a2) since b2 = w(a2 − rab) − a2. Now choose d = −wr. This

gives (b − da, a)(a, b) = (−a2 + wa2 − wrab + wrab, a2) = (−a2 + wa2, a2) = (a2). So in

particular, ab ∈ (a2) and this shows that the result holds in the case of n = 2.

Now suppose that I = (a1, a2, . . . , an), n ≥ 3. From the argument above, given

ai, aj ∈ R, either aiaj ∈ (a2
i ) or aiaj ∈ (a2

j). Notice that I2 is generated by {aiaj : i, j ∈

{1, 2, . . . , n}}. Then we can reduce this to {a2
i : i ∈ {1, 2, . . . , n}} using the last notice.

Then,

I2 = Ra2
1 + · · ·+Ra2

n−1 +Ra2
n = (by the case of n = 2)


Ra2

1 + · · ·+Ra2
n−2 +Ra2

n−1,

or

Ra2
1 + · · ·+Ra2

n−2 +Ra2
n.

Proceeding in this way we get I2 = (a2
i ) for some i ∈ {1, 2, . . . , n}.
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The following can be found in [Luc] as Theorem 3.5. (The necessity appears in

Tsang’s thesis [T]. The sufficiency was first given by Lucas in [Luc] together with a shorter

proof of the necessity which we reproduce here.)

Theorem 3.13. If R is a local ring then R is Gaussian if and only if the following two

conditions hold:

(i) For any a, b ∈ R, (a, b)2 = (a2) or (a, b)2 = (b2).

(ii) If a, b ∈ R and b2 ∈ (a2) and ab = 0, then b2 = 0.

Proof. Suppose R is Gaussian and let f(x) = a+bx, g(x) = b+ax. Then fg(x) = ab+(a2+

b2)x+ abx2 and so (a, b)2 = (a2, ab, b2) = (ab, a2 + b2). In particular, a2 = rab+ s(a2 + b2)

for some r, s ∈ R. Since R is local, by Lemma 1.10, either s is a unit or 1 − s is a

unit. Supposing that s is a unit we obtain b2 ∈ (a2, ab). If otherwise, 1 − s is a unit,

then a2 ∈ (b2, ab). Assume, without loss of generality, that the first case holds. Then

(a, b)2 = (a2, ab) and so b2 = ta2 + uab for some t, u ∈ R. Let h(x) = (ua− b) + ax. This

gives gh(x) = uab− b2 + (ab + ua2 − ab)x + a2x2 = uab− b2 + ua2x + a2x2 and therefore

c(gh) = (uab − b2, ua2, a2) = (a2) since b2 − uab = ta2. Since R is Gaussian we obtain

c(gh) = (a2) = (ua2 − ab, a2, uab − b2, ab) = c(g)c(h). Hence ab ∈ (a2) and so b2 ∈ (a2).

This shows that (a, b)2 = (a2). Now, suppose furthermore that ab = 0. Observe that since

(a, b)2 = (a2), we have b2 = va2 for some v ∈ R. Let p(x) = bx− va, then pg(x) = abx2 +

(b2 − va2)x− vab and so c(pg) = (ab, b2 − va2,−vab) = (0). Using the Gaussian property

of R again implies that c(p)c(g) = (a, b)(b,−va) = (ab,−va2, b2,−vab) = (b2) = 0 = c(pg)

as required.

To show the converse, suppose that R is a local ring satisfying conditions (i) and

(ii). We first observe that if I = (a0, a1, . . . , an) and if we choose i, j ∈ {0, 1, . . . , n} with

i 6= j then by (i) (ai, bj)
2 = (ai)

2 or (ai, bj)
2 = (aj)

2. We can suppose that (ai, bj)
2 = (ai)

2.

Then aiaj ∈ (a2
i ). Therefore, I2 which is generated by sums of elements of the form

aiaj must be written as I2 = (a2
0, a

2
1, . . . , a

2
n) = (a2

i ). Suppose without loss of generality
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that I2 = (a2
0). We now show that I = (a0, b1, . . . , bn), where each bi ∈ (I ∩ ann(I)).

Since I2 = (a2
0), then for each i ≥ 1, we have a0ai = ria

2
0 for some ri ∈ R. Let bi =

ai − ria0 ∈ I. Clearly, (a0, b1, . . . bn) ⊆ I and it can be shown that I ⊆ (a0, b1, . . . bn) since

if c = s0a0 +s1a1 + · · ·+snan then c = ra0 +s1b1 + · · ·+snbn, where r = s0 +r1s1 + · · ·+snbn

and therefore I = (a0, b1, . . . , bn). Moreover, a0bi = a0ai − ria2
0 = a0ai − a0ai = 0. Note

that (a0, bi)
2 = (a2

0) or (b2
i ). However, b2

i = (ai − ria0)2 = a2
i − 2ria0ai − a2

0 ∈ I2 = (a2
0)

which implies that in either cases we have (a0, bi)
2 = (a2

0) and so (ii) gives that b2
i = 0. Now

consider (bi, bj)
2 = (b2

i ) or (b2
j) which is 0 in both cases. Hence bibj = 0 and since bia0 = 0

we get bi ∈ ann(I). Thus I = (a0, b1, . . . , bn), where each bi ∈ I ∩ ann(I) as wanted.

To show that R is Gaussian consider f(x) =
∑m

i=0 fix
i, g(x) =

∑n
j=0 gjx

j. Let I

be the ideal c(f) + c(g). Then I = (f0, . . . , fm, g0, . . . , gn) and by above we may rewrite

I = (fp, s0, . . . , ŝp, . . . , sm, v0, . . . , vn), where fi = rifp + si, gj = tjfp + vj with si, vj ∈

(I ∩ ann(I)) and ŝp means excluding sp from the generators. We also have fp = rpfp + sp,

where rp = 1 and sp = 0. Then for any i, j, figj = (rifp + si)(tjfp + vj) = ritjf
2
p . Then

c(f)c(g) is generated by the elements figj which are multiples of fp. Thus

c(f)c(g) = c(
∑m

i=0 rifpx
i)c(
∑n

j=0 tjfpx
j)

= f 2
p c(r)c(t), (where r =

∑m
i=0 rix

i and t =
∑n

j=0 tjx
j.)

= f 2
p c(t), (since c(r) = R because it contains rp = 1.)

= f 2
p (t0, . . . , tn)

= fp(g0 − v0, . . . , gn − vn)

= fp(g0, . . . , gn) (since vj ∈ ann(I).)

Note that c(fg) is generated by figj = f 2
p ritj. Taking i = p we obtain fpgj = f 2

p tj to be one

of the generators for c(fg) and every other generator will be in the form figj = ri(f
2
p tj) =

rifpgj, a multiple of the generator fpgj and so generates c(fg). Thus all the figj’s generate

c(fg), which implies the equality c(fg) = c(f)c(g).

The next theorem builds on the characterization of local Gaussian rings given in
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Theorem 3.13. It appears as [BaGl, Theorem 2.2]. The equivalence of statements (a),

(b) and (b’) appears in Tsang’s dissertation [T]. In the words of [BaGl], (c) is “just a

reformulation” of (b’), but we give the details.

Theorem 3.14. Let (R,m) be a local ring. Then the following statements are equivalent.

(a) R is Gaussian.

(b) For any finitely generated ideal I of R, the R-module I/(I ∩ ann(I)) is cyclic.

(b’) For any ideal I of R generated by two elements, the R-module I/(I∩ann(I)) is cyclic.

(c) For every a, b ∈ R, there is an element d ∈ ann((a, b)) such that either (a, b) = (a, d)

or (a, b) = (b, d). Moreover, one can choose d so that b ∈ d+ aR (or a ∈ d+ bR).

(d) For every a, b ∈ R, the following statements hold in R:

(i) (a, b)2 = (a2) or (a, b)2 = (b2)

(ii) If (a, b)2 = (a2) and ab = 0, then b2 = 0.

Proof. (a) ⇔ (d). This was shown in Theorem 3.13.

(d) ⇒ (b). Let I = (a0, a1, . . . , an) be an ideal of R. Then, following the same argument

of Theorem 3.13, we can rewrite I to be I = (a0, b1, . . . , bn), where each bi ∈ (I ∩ ann(I)).

Thus I/(I ∩ann(I)) is a finitely generated ideal with generators a0 + (I ∩ann(I)), b1 + (I ∩

ann(I)), · · ·+ bn + (I ∩ ann(I)). However bi + (I ∩ ann(I)) = 0 for each 1 ≤ i ≤ n. Hence

I/(I ∩ ann(I)) = Ra0 + (I ∩ ann(I)), i.e., a cyclic module.

(b) ⇒ (b’) is immediate since (b’) is a special case of (b).

(b’) ⇒ (c). Let a, b ∈ R and let I = (a, b). For brevity, let A = ann(I). By the Second

Isomorphism Theorem, I/(I ∩ A) ' (I + A)/A. Thus, by (b’), there is an element g ∈ I

such that g + A generates (I + A)/A. Then there exist r, s, u, v ∈ R such that

(i) g = ra+ sb,
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(ii) a+ A = u(g + A) and so a = ug + e for some e ∈ A,

(iii) b+ A = v(g + A) and so b = vg + f for some f ∈ A.

Substituting (ii) and (iii) into (i) gives

g = rug + re+ svg + sf and so (1− ru− sv)g = re+ sf.

Now, since R is local, either 1−ru−sv is a unit or ru+sv is a unit. If 1−ru−sv is a unit,

with inverse w say, then g = w(1− ru− sv)g = wre+wsf ∈ A which gives (I+A)/A = 0.

In this case, (c) holds trivially. Thus we now suppose that ru+ sv is a unit. Then, since R

is local, either ru or sv is a unit. Without loss of generality, we assume that ru is a unit.

Then u is also a unit and so, from (i), R(a + A) = Ru(g + A) = R(g + A). Using (ii), we

now get

R(b+ A) = Rv(g + A) ⊆ R(g + A) = R(a+ A)

and so b + A = ta + A for some t ∈ R. Thus b = d + ta for some d ∈ A. Then

Ra+Rb = Ra+R(ta+ d) = Ra+Rd, as required.

(c)⇒ (d). Let a, b ∈ R and let I = (a, b). Then, by (c), there is an element d ∈ (I∩ann(I))

such that either I = (a, d) or I = (b, d). Furthermore, we can choose d so that either

b = d + ra for some r ∈ R or, respectively, a = d + sb for some s ∈ R. Suppose, without

loss of generality that I = (a, d) and b = d + ra. Then I2 = (a, d)2 = (a2, 2ad, d2) = (a2),

since ad = d2 = 0. This has established (d)(i).

Next suppose that ab = 0 (and we have I2 = (a, d)2). Then, since we have b = d+ ra

for some r ∈ R, we have b2 = (d+ ra)b = db+ rab = 0 + 0 = 0, establishing (d)(ii).

Next we examine the relationship between arithmetical rings and Gaussian rings.

(We know from Theorem 3.11 that these two classes of rings coincide if we restrict the

rings to integral domains.)



CHAPTER 3. THE IDEAL STRUCTURE OF GAUSSIAN RINGS. 74

Theorem 3.15. Every arithmetical ring is Gaussian.

Proof. We first show that any chain ring R is Gaussian. Let a, b ∈ R. Since R is a

chain ring, it is local and we have either a ⊆ Rb or Rb ⊆ Ra. Choose Rb ⊆ Ra. Then

(a, b)2 = (a2) since b = ra for some r ∈ R and this gives ab = ra2 and b2 = r2a2. Moreover,

if ab = 0 then b2 = rab = 0. This shows that R satisfies statement (d) of Theorem 3.14

and so R is Gaussian.

Now suppose R is any arithmetical ring. Then, by Proposition 1.40, RM is a chain

ring for every M ∈ Max(R). Thus, by the previous paragraph, RM is Gaussian for every

M ∈ Max(R) and so R is Gaussian by Proposition 3.9.

The following is [T, Theorem 6.1].

Theorem 3.16. If (R,m) is a local Gaussian ring, then Spec(R) is linearly ordered under

inclusion.

Proof. Let P,Q ∈ Spec(R) and suppose by way of contradiction that P and Q are not

comparable. Then there exists a ∈ P \ Q and there is b ∈ Q \ P . By Theorem 3.14,

(a, b)2 = (a2) or (a, b)2 = (b2). Suppose without loss of generality that (a, b)2 = (a2), then

b2 ∈ (a2) ⊆ P . However P is prime and therefore b ∈ P , a contradiction and so P and Q

are comparable as required.

The following corollary is immediate from Theorem 3.16.

Corollary 3.17. If (R,m) is a local Gaussian ring then Nil(R) is the unique minimal

prime ideal of R.

The following theorem, appearing as [BaGl, Theorem 4.1], is crucial in proving some

important later results.
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Theorem 3.18. Let (R,m) be a local ring, define D = {x ∈ R : x2 = 0}, and consider the

following conditions :

(1) D is an ideal of R, D2 = 0, and the factor ring R/D is a chain ring.

(2) Given any a ∈ R, we have aD ⊆ a(Ra ∩D).

(3) Given any a ∈ R, ann(a) and D are comparable and D ⊆ Ra+ ann(a).

Then R is a Gaussian ring if and only if (1) and (2) hold or (1) and (3) hold.

Proof. We first show that (1) + (3) ⇒ (2). If ann(a) and D are comparable, then either

(i) D ⊆ ann(a) or (ii) ann(a) ⊆ D.

If (i) holds then for every d ∈ D we have ad = 0, i.e., aD = 0, and so (2) holds

trivially. Now suppose (ii) holds. By (3), for every d ∈ D we have d = ra + x for some

r, x ∈ R with ax = 0. Then, by (1), D is an ideal of R and so we have ra = d − x ∈ D

since d ∈ D and x ∈ ann(a) ⊆ D. This gives ad = a(ra + x) = ara. Setting y = ra gives

y ∈ Ra ∩D and ad = ay ∈ a(Ra ∩D), as required.

We now show that a Gaussian ring R satisfies conditions (1), (2) and (3).

Condition (1). Let x, y ∈ D. Since x2 = 0 = y2, we get (x2) = 0 = (y2). Hence,

(x, y)2 = 0 by Theorem 3.14(d). Thus (x + y)2 = 0 = (x − y)2 and (rx)2 = 0 for every

x, y ∈ D and for every r ∈ R. Therefore x− y ∈ D and rx ∈ D. Thus D is an ideal of R.

Moreover D2 = 0 since given any x, y ∈ D, we have xy ∈ (x, y)2 = 0 and so xy = 0.

To show that R/D is a chain ring we show that, for any a, b ∈ R, the principal

factor ideals (a + D), (b + D) are comparable in R/D. Given that R is Gaussian, by

Theorem 3.14(c), there exists an element d ∈ annR((a, b)) such that either (a, b) = (a, d) or

(a, b) = (b, d). Notice that the ideal (a+D, b+D) in R/D can be written as
(a) + (b) +D

D
=

(a, b) +D

D
. Without loss of generality, by above we can take (a, b) = (a, d) which gives

(a + D, b + D) =
(a, d) +D

D
. Since d ∈ ann((a, b)) = ann((a, d)) we have d2 = 0 and

so d ∈ D. Therefore
(a, d) +D

D
= {ra + sd + D : r, s ∈ R} = {ra + D : r ∈ R} =
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(a) +D

D
= (a + D). Since we have now proved that (a + D, b + D) = (a + D) this gives

(b+D) ⊆ (a+D). Thus R satisfies condition (1).

Condition (2).2 Let a ∈ R. If ad = 0 for every d ∈ D, then clearly aD ⊆ a(Ra ∩D).

Consequently, we may now suppose that ad 6= 0 for some d ∈ D. Since R satisfies condition

(1), we have D2 = 0 and so a /∈ D. By Theorem 3.14(c), there exists c in the annihilator of

(a, d) such that (a, d) = (a, c) or (a, d) = (c, d). In either case we get c ∈ (a, d). In particular

c2 = 0 = ac and therefore c ∈ D. Hence we obtain (c, d) ⊆ D. In fact, (a, d) 6= (c, d)

since (c, d) ⊆ D and a /∈ D and so we must have (a, d) = (a, c). Furthermore, by the last

part of Theorem 3.14 (c), we can choose c such that d = c + ar for some r ∈ R. Then

ad = ac + a2r = a2r since c ∈ ann((a, d)). Setting y = ar gives y ∈ Ra and y ∈ D since

y = ar = d− c ∈ D. Hence, ad = ay ∈ a(Ra ∩D). Thus aD ⊆ a(Ra ∩D) as required.

Condition (3). Let a ∈ R. If a2 = 0 then a ∈ ann(a) and a ∈ D and so aD ⊆ D2 = 0

since R satisfies condition (1). Hence D ⊆ ann(a) and so we also have D ⊆ Ra + ann(a).

Thus (3) holds in this case and so we may now assume that a2 6= 0.

Let c ∈ ann(a). Then, by Theorem 3.14 (d) (i), either (i) (a, c)2 = (c)2 or (ii) (a, c)2 =

(a)2. If (i) holds, by Theorem 3.14 (d) (ii) we get a2 = 0, since ac = 0, in contradiction to

our assumption. Thus (ii) holds and so, since ac = 0, using Theorem 3.14 (d) (ii) again we

get c2 = 0 and so c ∈ D. This has shown that ann(a) ⊆ D.

We now show that D ⊆ Ra + ann(a). Let d ∈ D. If ad = 0 then d ∈ ann(a). So

d ∈ Ra+ann(a) as required. If ad 6= 0, then, since R satisfies condition (2), ad ∈ a(Ra∩D),

i.e., there exists r ∈ R such that ad = ara and ra ∈ D. Then a(d − ra) = 0 and so

d − ra ∈ ann(a). Thus d = ra + x, where x ∈ ann(a) and so d ∈ Ra + ann(a), again as

required. This has shown that D ⊆ Ra+ ann(a). Thus condition (3) holds.

To show the converse and complete the proof, it is enough to show that a ring R

satisfying (1) and (2) is Gaussian (since (3)⇒ (2)). Moreover, by the equivalence of (a) and

2Since (3) ⇒ (2), this paragraph could be omitted.
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(c) in Theorem 3.14, it is enough to show that given a, b ∈ R, there exists c ∈ ann((a, b))

such that (a, b) = (a, c) or (a, b) = (b, c) and c can be chosen such that b ∈ c + Ra or

a ∈ c + Rb. By (1), the factor ring R/D is a chain ring and so either (a + D) ⊆ (b + D)

or (b + D) ⊆ (a + D). Suppose without loss of generality that (b + D) ⊆ (a + D). Then

b + D ∈ (a + D) and therefore there exists r ∈ R and d ∈ D such that b = ra + d. This

gives b ∈ (a, d) and so (a, b) ⊆ (a, d). Moreover d ∈ (a, b) and therefore (a, d) ⊆ (a, b).

Hence (a, b) = (a, d).

Now note that, by (2), ad ∈ a(Ra ∩ D), say ad = a(ay), where ay ∈ D. Then

a(d − ay) = 0 and (d − ay)2 = 0 since d − ay ∈ D and D2 = 0 from (1). Let c = d − ay.

Then c ∈ (a, d) and d ∈ (a, c). Thus (a, c) = (a, d) = (a, b). Moreover ac = a(d− ay) = 0

and cd = (d− ay)d ∈ D2 = 0. Therefore c ∈ ann((a, d)) = ann((a, b)). Finally, notice that

choosing c = d− ay implies that c = b− ra− ay. Thus b = c+ (r+ y)a and so b ∈ c+Ra,

finishing the proof.

We can now bring our material in §2.5 back into the picture with the following

corollary, first proved by Tsang in her unpublished 1965 doctoral dissertation [T] and then

independently in 1967 by Gilmer in [Gi1]. (See also [Gi2, page 347].)

Corollary 3.19. Let R be an integral domain.

(i) If R is local, R is a Gaussian ring if and only if R is a chain ring.

(ii) More generally, if R is not necessarily local, then R is a Gaussian ring if and only if

R is a Prüfer domain.

Proof. (i). Since R is an integral domain, the ideal D of Theorem 3.18 is zero. From this

it follows that R satisfies conditions (2) and (3) of the Theorem while condition (1) holds

exactly when R is a chain ring. Thus the Theorem in this case gives (i).

(ii). By Proposition 3.9, R is Gaussian if and only if RM is Gaussian for each

M ∈ Max(R). Since each RM is also an integral domain, it follows from (i) that R is
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Gaussian if and only if RM is a chain ring for each M ∈ Max(R). Then, by Proposition

1.40, R is Gaussian if and only if R is arithmetical and so, by Proposition 2.74, if and only

if R is a Prüfer domain.

We now prepare for an example, [BaGl, Example 4.2], which shows that condition (1)

of Theorem 3.18 by itself is not enough for a ring R to be Gaussian. We will use Lemmas

1.12 and 1.11.

Example 3.20. Let K be a field and X, Y be two commuting indeterminates. Let I

be the ideal generated by X3, Y 2, and X2Y . Take S to be the factor ring K[X, Y ]/I

and denote the images of X and Y in S by x and y respectively. Since K is local, the

ring R = K[X]/(X3) is local, by Lemma 1.12, and so, again by Lemma 1.12, the ring

T = K[X, Y ]/(X3, Y 2) = R[Y ]/(Y 2) is also local. Since S = T/(X2Y ), it then follows

from Lemma 1.11 that S is local.

We show that S satisfies condition (1) of Theorem 3.18.

The elements of S can be written as s = a0 + a1x + a2x
2 + by + cxy for some

a0, a1, a2, b, c ∈ K. Moreover, for s̄ = ā0 + ā1x + ā2x
2 + b̄y + c̄xy in S we have ss̄ =

a0ā0 + (a0ā1 + a1ā0)x+ (a0ā2 + a1ā1 + a2ā0)x2 + (a0b̄+ bā0)y + (a0c̄+ a1b̄+ bā1 + cā0)xy.

Hence

s2 = a2
0 +(a0a1 +a1a0)x+(a0a2 +a2

1 +a2a0)x2 +(a0b+ ba0)y+(a0c+a1b+ ba1 + ca0)xy = 0

if and only if

(i) a2
0 = 0, (ii) 2a0a1 = 0, (iii) 2a0a2 + a2

1 = 0, (iv) 2a0b = 0, (v) 2a0c+ 2a1b = 0

if and only if a0 = 0 (from (i)) and a1 = 0 (from (iii)). Then in S we have

D = {s ∈ S : s2 = 0} = {a2x
2 + by + cxy : a2, b, c ∈ K} = (X2, Y )/I.

In particular, D is an ideal of S. Moreover D2 = 0 since (a2x
2 + by+ cxy)(ā2x

2 + b̄y+ c̄xy)

has only powers of x higher than 2 or powers of y higher than 1, except for the term
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(a2b̄+ bā2
2)x2y which is 0 by our definition of I.

Now we look at the factor ring S/D = S/(x2, y). Denoting the element x+D in S/D

by x̄, we can write S/D = {a0 + a1x̄ : a0, a1 ∈ K} and then the product of two elements

in S/D is given by (a0 + a1x̄)(b0 + b1x̄) = a0b0 + (a0b1 + a1b0)x̄. It is now straightforward

to see that S/D has only one proper nonzero ideal, namely {a1x̄ : a1 ∈ K} (the principal

ideal generated by any element of the form ax̄ where a ∈ K and a 6= 0). In particular,

S/D is a chain ring.

Thus S satisfies condition (1) of Theorem 3.18.

However we now show that the local ring S is not Gaussian by showing that it fails

condition (d)(i) of Theorem 3.14. To fit the notation of condition (d)(i), take a = x, b = y.

Then (a, b) = (x, y) and so (a, b)2 = (x2, xy, y2) = (x2, xy) = {a2x
2 + cxy : a2, c ∈ K}. On

the other hand, (a2) = (x2) = {a2x
2 : a2 ∈ K} 6= (a, b)2 and (b2) = (y2) = 0 6= (a, b)2.

Thus (d)(i) fails and so S is not Gaussian.

In all of the following we let D = {x ∈ R : x2 = 0}.

We now introduce an important result, appearing as [BaGl, Lemma 4.3]. Given a ∈ R

and an ideal I of R, we use [I : a] to denote {r ∈ R : ra ∈ I}.

Lemma 3.21. Every local Gaussian ring (R,m) satisfies the following:

(1) If a ∈ m \D, then ann(a) ⊆ D.

(2) If the maximal ideal m is nil, then D ( [D : a] for any a ∈ m \D.

(3) If the maximal ideal m is nil and Dm = 0, then m4 = 0.

Proof. (1) Let b ∈ ann(a), i.e., ba = 0. Since a /∈ D, we have a2 6= 0. Then Theorem

3.14(d)(i) gives (a, b)2 = (a2) or (a, b)2 = (b2). If (a, b)2 = (b2) then, since ab = 0, Theorem

3.14(d)(ii) implies that a2 = 0, a contradiction. Thus (a, b)2 = (a2), and so, since ab = 0,

Theorem 3.14(d)(ii) gives b2 = 0. Thus b ∈ D and so ann(a) ⊆ D.
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(2) Let a ∈ m \ D. Since m is nil, we have ak = 0 for some k ∈ N with k ≥ 3 because

a /∈ D. Choose t to be the smallest power of a such that at ∈ D and at 6= 0. (Note that

such a power always exists since if a2n = 0 for some smallest even power, then an ∈ D

but an 6= 0 while if a2n+1 = 0 for some smallest odd power, a2(n+1) = aa2n+1 = 0 and so

an+1 ∈ D.) Note that t ≥ 2. Then at−1 ∈ [D : a] and at−1 /∈ D. However, D is contained

in [D : a] since, by Theorem 3.18(1), D is an ideal of R and so for every d ∈ D we have

ad ∈ D. Hence D ( [D : a] as required.

(3) Let a ∈ m \D. By hypothesis Da = 0, so D ⊆ ann(a). Furthermore, by (1), we also

have ann(a) ⊆ D and so ann(a) = D.

Since m is nil, an = 0 for some n ∈ N. As in the proof of (2), n ≥ 3 and take

t to be the minimum positive integer such that at ∈ D and at 6= 0. Then t ≥ 2 and

at−1 /∈ D. Then, by the previous paragraph, ann(at−1) = D. Also, atm ⊆ Dm = 0 and so

m ⊆ ann(at). Since at 6= 0 we also have ann(at) ⊆ m and so ann(at) = m. This gives

m = ann(at) = {r ∈ R : rat = 0} = {r ∈ R : ra ∈ ann(at−1)} = [ann(at−1) : a] = [D : a].

Thus, for every x ∈ m we have ax ∈ D for all a ∈ m \D and so am ⊆ D when a ∈ m \D.

Moreover if b ∈ D, then bm ⊆ D since D is an ideal of R by Theorem 3.18(1). Hence

cm ⊆ D for all c ∈ m. Then, given p, q, r, s ∈ m, we have pq, rs ∈ D and so by Theorem

3.18(1), pqrs = 0. It follows that m4 = 0 as wanted.

In [DT, §5], [BaGl, Theorem 6.4] is restated and proved with an extra condition in

the hypothesis. An example is also given in [DT] to show the extra condition can not be

dropped from the proof of Theorem 6.4 in BaGl. We will detail this example below. First

we introduce a lemma from [DT].

Lemma 3.22. Let the ring R be local Gaussian with nilradical Nil(R) 6= D. Then the

maximal ideal of the localisation RNil(R) is nonzero.

Proof. Corollary 3.17 shows that Nil(R) is a prime ideal and so we may form the localisation
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RNil(R). Let N = Nil(R)RNil(R). Then, since Nil(R) is the only minimal prime ideal of R,

it follows that N is the only prime ideal (and so the only maximal ideal) of RNil(R). We

wish to show that N 6= 0.

Suppose to the contrary that N = 0. Since Nil(R) 6= D, there exists an element

x ∈ Nil(R) \ D such that
x

1
=

0

1
in N and so there is y ∈ R \ Nil(R) such that xy = 0.

SinceR is local Gaussian, Theorem 3.14(d)(i) shows that (Rx+Ry)2 = Rx2 or (Rx+Ry)2 =

Ry2. Moreover since xy = 0, by Theorem 3.14(d)(ii), either Rx2 = 0 or Ry2 = 0. The

former gives x ∈ D, a contradiction. The latter gives y ∈ Nil(R) since y2 ∈ Ry2 = 0, a

contradiction since y ∈ R \ Nil(R). Hence N 6= 0 as required.

Now for the promised example. It is a local Gaussian ring (R,m) with nonzero

nilpotent Nil(R) but the maximal ideal of RNil(R) = 0. It appears as [DT, Example 5.3]

showing that the proof of [BaGl, Theorem 6.4] is incomplete.

Example 3.23. Set T = K[X, Y ]/(XY, Y 2) where K is a field and X, Y are two commut-

ing indeterminates. If we set I to be the ideal (XY, Y 2) of K[X, Y ], a typical element in

T is of the form

ā+ bȲ + c1X̄ + c2X̄
2 + · · ·+ cnX̄

n,

where ā = a + I, X̄ = X + I, Ȳ = Y + I, and a, b, c1, . . . , cn ∈ K. Note that ā = 0

if and only if a ∈ I, but I contains no constant apart from 0 and so a = 0. Let S =

{ā + bȲ + c1X̄ + · · · + cnX̄
n : a 6= 0}. It is not difficult to see that S is an m.c.s. of

T = K[X, Y ]/I. Set R = TS and write x for
X̄

1
and y for

Ȳ

1
in R. The elements of R are

of the form
t

s
, where t ∈ T , s ∈ S, i.e.,

ā1 + b1Ȳ + X̄f1(X̄)

ā2 + b2Ȳ + X̄f2(X̄)
for some polynomials f1, f2

and ā2 6= 0.

If ā1 6= 0 then t ∈ S and so
t

s
is a unit. Conversely, if

t

s
is a unit, say with inverse

v

w
, then there exists u ∈ S such that utv = usw. However usw ∈ S and this forces t to be

in S. It follows that the non-units of R have zero constant term in their numerator and
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so the sum of two non-units is again a non-unit. Thus R is local with maximal ideal m

consisting of elements of the form
bȲ + X̄f(X̄)

s
for some s ∈ S, b ∈ K, and polynomial

f ∈ K[X̄] and from this it is clear to see that m is generated in R by {x, y}.

Let c, d ∈ m, say c =
c0

s0

y+
c1

s1

x+ · · ·+ cm
sm
xm and d =

d0

t0
y+

d1

t1
x+ · · ·+ dn

tn
xn, where

m,n ∈ N, ci, dj ∈ K and si, tj ∈ S for 0 ≤ i ≤ m and 0 ≤ j ≤ n. If ci = 0 for each i ≥ 1

then c =
c0

s0

y and so since y2 = 0 = xy, we get c2 = 0 and (c, d)2 = (c2, cd, d2) = (d2) and

so conditions (i) and (ii) of Theorem 3.14 (d) are satisfied. Similarly, these conditions hold

if dj = 0 for each j ≥ 1 and c arbitrary. Therefore we may assume that there exist ci 6= 0

and dj 6= 0 for some i, j ≥ 1. Choose i, j such that these are the smallest indices giving

ci 6= 0, dj 6= 0 respectively. We can then rewrite c and d as

c = b1y + xi(ci + ci+1x+ · · ·+ cnx
n−i) = b1y + xiu1,

d = b2y + xj(dj + dj+1x+ · · ·+ dmx
m−j) = b2y + xju2,

where u1, u2 are units. Moreover (c, d)2 = (c2, d2, cd) with c2 = (b1y + xiu1)2 = x2iu2
1,

d2 = (b2y + xju2)2 = x2ju2
2 and cd = xi+ju1u2. Hence (c, d)2 = (x2iu2

1, x
2ju2

2, x
i+ju1u2) =

(x2i, x2j, xi+j) = (xt), where t = min(2i, 2j, i+j). We may assume without loss of generality

that i ≤ j. Then (c, d)2 = (xi)2 = (c2). This shows that condition (i) of Theorem 3.14 (d)

holds. If cd = 0 then xi+j = 0 and so d2 = x2ju2
2 = xi+jxj−iu2

2 = 0xi−ju2
2 = 0. Thus part

(ii) of Theorem 3.14 holds so R is a local Gaussian ring.

We now determine Nil(R). Let c = by+ xf(x) ∈ Nil(R), where xf(x) = c1x+ c2x
2 +

· · · + cnx
n. Then ct = 0 for some t ≥ 1. However, since y2 = 0 = xy, ct = btyt + xtf(x)t

and so ct = 0 if and only if by = 0 and f(x) = 0 or t ≥ 2 and f(x) = 0. This shows

that ct = 0 if and only if c ∈ (y). Thus Nil(R) = (y) and its nilpotency degree is 2

(in other words Nil(R) = D). Since R is local with maximal ideal m, Rm = R. Moreover

RNil(R) =
{r
s

: r ∈ R, s /∈ Nil(R)
}

has a unique prime ideal Nil(R)RNil(R) (see Lemma 1.28)

and Nil(R)RNil(R) is generated by
y

1
. However, since x /∈ Nil(R) we have

1

1
=

x

x
so

y

1
=
x

x

y

1
=

0

x
= 0. Thus Nil(R)RNil(R) = 0, i.e., RNil(R) is a field. This shows that the
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condition Nil(R) 6= D can not be removed from the hypothesis of Lemma 3.22 and likewise

for Theorem 4.16.

3.3 Local Gaussian rings (R,m) with Nil(R) = m.

The next lemma is from [BaGl, Lemma 4.4].

Lemma 3.24. Let (R,m) be a local Gaussian ring with m = Nil(R) (so that m is the only

prime ideal of R). If m is not nilpotent then m = m2 +D and m2 = m3.

Proof. By Theorem 3.18, the factor ring R/D is a chain ring. Now if (m/D)t = 0 for some

t ∈ N then, given m1,m2, . . . ,mt ∈ m and setting x = m1m2 · · ·mt, we have x + D =

(m1 +D)(m2 +D) · · · (mt+D) = 0 and so x ∈ D. This gives mt ⊆ D and so, since D2 = 0,

we then get m2t = 0, a contradiction to our assumption that m is not nilpotent. Thus the

maximal ideal m/D of R/D is also not nilpotent.

Then since m/D = Nil(R)/D = Nil(R/D), the nilradical of R/D, by Lemma 1.44

it follows that m/D is an idempotent ideal of R/D, i.e., (m/D)2 = m/D. Then, for

any m ∈ m we have m + D ∈ (m/D)2 and so, for finitely many mi,mj ∈ m, we get

m+D =
∑

(mi +D)(mj +D) = (
∑
mimj) +D. Thus m =

∑
mimj + d for some d ∈ D.

This gives

m = m2 +D. (∗)

Now, multiplying (∗) by m gives

m2 = m(m2 +D) = m3 + mD. (∗∗)

Moreover, multiplying (∗) by D gives mD = m2D +D2 = m2D since D2 = 0 by Theorem

3.18. This gives mD ⊆ m3 since D ⊆ m. Applying this to (∗∗) we get m2 = m3 as

required.

The next lemma is from [BaGl, Lemma 4.5].
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Lemma 3.25. Let (R,m) be a local Gaussian ring with m = Nil(R). If m is not nilpotent,

there exists an element d ∈ D such that D ( ann(d) ( m.

Proof. By Lemma 3.21(3), Dm 6= 0 and so there exists d1 ∈ D such that d1m 6= 0. However,

ann(d1) is a set of non-units and so a subset of m and so ann(d1) (M . Let a ∈ m\ann(d1).

Then 0 6= ad1 and we know that ad1 ∈ D since D is an ideal of R. Moreover, a /∈ D

since if otherwise, we have ad1 ∈ D2 = 0 and so ad1 = 0, a contradiction. Notice that

ann(ad1) = {r ∈ R : rad1 = 0} = {r ∈ R : ra ∈ ann(d1)} = [ann(d1) : a] ⊇ [D : a] since

D2 = 0 by Theorem 3.18. Since m is a nil ideal and a ∈ m\D, by Lemma 3.21(2), we have

D ( [D : a] and so D ( ann(ad1).

To finish the proof we show that ann(ad1) ( m. We know that ann(ad1) is an

ideal of non-units and so contained in the unique maximal ideal m. Thus it is enough

to show that ann(ad1) 6= m. Suppose, by way of contradiction, that ann(ad1) = m for

every a ∈ m, a /∈ ann(d1). Let R be the local ring R/ ann(d1), with unique maximal ideal

m/ ann(d1) = m, say. If ā = a+ ann(d1) ∈ R with a ∈ m, ā 6= 0 (i.e., a /∈ ann(d1)), we get

annR(ā) = {r̄ = r + ann(d1) ∈ R : (r + ann(d1))(a+ ann(d1)) = 0}

= {r̄ = r + ann(d1) ∈ R : r ∈ R, ra ∈ ann(d1)}

= {r̄ = r + ann(d1) ∈ R : r ∈ R, rad1 = 0}

= {r̄ = r + ann(d1) ∈ R : r ∈ R, r ∈ ann(ad1)}

= {r̄ = r + ann(d1) ∈ R : r ∈ m}

= m.

In particular, m2 = 0. Thus m2 ⊆ ann(d1) and so m2 +D ⊆ ann(d1) +D = ann(d1) (since

D ⊆ ann(d1) because d1 ∈ D and D2 = 0). Therefore m ⊆ ann(d1) since m2 + D = m

by Lemma 3.24, a contradiction since ann(d1) ( m as shown in the first part of the proof.

Hence there exists an element a ∈ m \ ann(d1) such that ann(ad1) ( m. Then, taking

d = ad1, the result is proved.
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Definition 3.26. In the ring R, an ideal I of R, with ann(I) = A, is said to satisfy the

double annihilator property if ann(A) = I, i.e., ann(ann(I)) = I.

The following two lemmas are from section 4 of [DT].

Lemma 3.27. Let (R,m) be a local chain ring with Nil(R) = m. Then any principal

ideal of (R,m) satisfies the double annihilator property. In other words, for any x ∈ R, if

(ann(x) =) ann(Rx) = I, then we have ann(I) = Rx.

Proof. It is always the case that Rx ⊆ ann(I) (= ann(ann(x))) since if a ∈ Rx then ab = 0

for any b ∈ I and so a ∈ ann(I). Now to show the opposite containment, suppose by way of

contradiction, that there is c ∈ ann(I) such that c /∈ Rx. Then Rc * Rx. However, since

R is a chain ring, we must now have Rx ⊂ Rc. Hence x = λc for some λ ∈ m. Because

x 6= 0 we have λ /∈ I since otherwise we get x = λc = 0. Therefore Rλ * I and so the

chain condition gives I ⊂ Rλ. We now show that I ⊆ (λk) for all k ∈ N using induction.

Note that the above shows that this holds for k = 1. Suppose inductively that I ⊆ (λk)

for some k ∈ N. Take y ∈ I and note that I ⊆ (λ) implies that there is an r ∈ m such

that y = rλ. (Notice that r ∈ m since otherwise r is a unit and so we get the contradiction

λ = r−1y ∈ I). Observe that r ∈ I since 0 = cy = crλ = rλc = rx. Using our induction

hypothesis, we obtain r = sλk for some s ∈ R. Thus y = rλ = sλk+1 ∈ (λk+1). Hence

I ⊆ (λk+1) and so I ⊆ (λk) for all k ∈ N. However, since λ ∈ m, by our hypothesis λ is

nilpotent and so λn = 0 for some n ∈ N. Hence I = 0, a contradiction, so ann(I) ⊆ Rx

which gives the equality desired.

Recall that the nilpotency degree of an element r ∈ R is the smallest n ∈ N such

that rn = 0. We denote this n by deg(r).

Lemma 3.28. Let (R,m) be a local Gaussian ring with the property that Nil(R) = m and

let a be an element of m. Suppose that m is not nilpotent, i.e., there is no n ∈ N such that

mn = 0. Then there is an element z ∈ m such that deg(z) > deg(a).



CHAPTER 3. THE IDEAL STRUCTURE OF GAUSSIAN RINGS. 86

Proof. Let deg(a) = k. Assume by way of contradiction that deg(z) ≤ k for every z ∈ m.

Let z1, z2, . . . , zk ∈ m and let I denote the ideal generated by these zi. By Theorem 3.14,

I/(I ∩ ann(I)) is a cyclic R-module and so there exists z ∈ I such that zi = riz + di,

where ri ∈ R and di ∈ I ∩ ann(I) ⊆ ann(zj) for every j ∈ {1, . . . , k}. Then we have the

product z1z2 . . . zk =
∏k

i=1(riz + di). Expanding this product gives terms involving z and

some di except for the term d1 . . . dk. Since diz = 0 and didj = 0 for all i and j we get

z1z2 . . . zk = 0. This shows that mk = 0 and so nilpotent, giving us our contradiction.

The next lemma appears as [DT, Lemma 6.3]. It will be used in proving coming

results.

Lemma 3.29. Let (R,m) be a local Gaussian ring. Let M be a module over R and let

x ∈M . Then I = {a ∈ m : aqx = 0 for some q ≥ 1} is a prime ideal of R.

Proof. Let J = {a ∈ m : ax = 0}. Then J = m ∩ ann(x) is a proper ideal of R and J ⊆ I.

We now show that I/J is the nilradical of R/J . Let a+ J be a nilpotent element of R/J .

Then aq + J = 0 for some q ≥ 1. Thus aq ∈ J (i.e., aqx = 0) and so a ∈ I. Therefore

a+ J ∈ I/J and so Nil(R/J) ⊆ I/J . Conversely, if a ∈ I then aqx = 0 for some q ≥ 1 and

so in R/J we have (a+J)q = aq +J = 0 since aqx = 0, i.e., aq ∈ J and so I/J = Nil(R/J).

Since R is local Gaussian, so is R/J by Lemmas 1.11 and 3.8 and so its nilradical I/J

is a prime ideal. Note that R/I ' R/J

I/J
, and I/J is prime so

R/J

I/J
is an integral domain

and therefore R/I is also an integral domain. Thus I is a prime ideal of R.



Chapter 4

The Bazzoni–Glaz Conjecture

This final chapter studies the following conjecture proposed in [BaGl].

The Bazzoni–Glaz Conjecture. If R is a Gaussian ring then w.gl.dim(R) = 0, 1, or ∞.

We detail the positive response to the Conjecture given first for reduced rings by

Glaz in [Gl2] and then for non-reduced rings partly by Bazzoni and Glaz in [BaGl] and,

particulary, by Donadze and Thomas in [DT].

4.1 Gaussian rings R with w.gl.dim(R) ≤ 1.

The result immediately below verifies the Bazzoni–Glaz Conjecture for Gaussian rings

which are either PF or, equivalently, reduced. It is due to Glaz, given as [Gl2, Theorem

2.2], and characterizes the rings R for which w.gl.dim(R) ≤ 1.

Theorem 4.1. Let R be a ring. Then the following statements are equivalent:

(1) w.gl.dim(R) ≤ 1.

(2) The ring R is Gaussian and PF.

(3) The ring R is Gaussian and reduced.

87
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Proof. (1) ⇒ (2). Since w.gl.dim(R) ≤ 1, every ideal I of R is flat by Lemma 2.51. In

particular R is a PF ring and so, by Theorem 2.67, the localisation RM is an integral

domain for every M ∈ Max(R). Furthermore, by Theorem 2.53, hypothesis (1) gives

w.gl.dim(RM) ≤ 1. Then, by Theorem 2.29, RM is a chain domain and so a Gaussian

domain by Corollary 3.19. Consequently, R is Gaussian by Proposition 3.9.

(2) ⇒ (3). This follows from Theorem 2.67.

(3) ⇒ (1). Since R is reduced, so is RP for any P ∈ Spec(R) by Corollary 1.32. Then, by

Lemma 1.18 and Proposition 3.9, RP is local, reduced and Gaussian. Now let a, b ∈ RP

with ab = 0. By Theorem 3.14(d)(i), (a, b)2 = (a2) or (a, b)2 = (b2), say the former holds.

Then by Theorem 3.14(d)(ii), we get b2 = 0 and so b = 0 since RP is reduced. Hence RP

is an integral domain. Since RP is also Gaussian, it is a chain domain by Corollary 3.19.

Then, by Theorem 2.29, every ideal of RP is flat. In particular w.dimRP (RP/I) ≤ 1 for

each ideal I of RP . Hence, by Theorem 2.55, w.gl.dim(RP ) ≤ 1 for all P ∈ Spec(R). Thus,

by Theorem 2.53, w.gl.dim(R) ≤ 1.

4.2 Gaussian rings R with w.gl.dim(R) ≥ 1.

The following result appears as [DT, Lemma 3.1].

Lemma 4.2. Let R be a local Gaussian ring, I be an ideal of R, and M be an R-module

such that w.dim(M) = n. If Torn(R/I,M) 6= 0, then there is an ideal J of R such that

Torn(R/J,M) 6= 0 and I +D ⊆ J .

Proof. We show that if x1, x2, . . . , xm ∈ D, then the natural projection map π : R/I −→

R/(I +Rx1 + · · ·+Rxm) gives the following inclusion:

Torn(R/I,M) ↪→ Torn(R/(I +Rx1 + · · ·+Rxm),M)

Set I = I0 and inductively define Ip = Ip−1 + Rxp, for 1 ≤ p ≤ m. Then we have the
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following s.e.s., (where i is the inclusion map and π is the natural projection):

0 // Ip/Ip−1
i // R/Ip−1

π // R/Ip // 0 (∗),

Now let f : R −→ IP/Ip−1 be given by f(r) = rxp+Ip−1. This is an R-homomorphism with

ker(f) = {r ∈ R : rxp ∈ Ip−1}. Then the First Isomorphism Theorem gives R/ ker(f) '

im(f) = Ip/Ip−1. Notice that ann(xp) = {r ∈ R : rxp = 0} ⊆ ker(f). Moreover,

since xp ∈ D then by Lemma 3.21 we obtain Ip−1 + D ⊆ Ip−1 + ann(xp) ⊆ ker(f). Now if

Torn(Ip/Ip−1,M) 6= 0for some 1 ≤ p ≤ m, then taking J = ker(f) we have Torn(R/J,M) '

Torn(Ip/Ip−1,M) 6= 0 and so, since I +D ⊆ Ip−1 +D ⊆ J , the result is proved in this case.

If otherwise, Torn(Ip/Ip−1,M) = 0 for all 1 ≤ p ≤ m, then tensoring (∗) by M gives

the following long exact sequence for Tor:

0 = Torn(Ip/Ip−1,M)→ Torn(R/Ip−1,M)→ Torn(R/Ip,M)→ · · ·

· · · −→ Tor1(R/Ip,M) −→ Ip/Ip−1 ⊗M −→ R/Ip−1 ⊗M −→ R/Ip ⊗M → 0.

This gives a monomorphism from Torn(R/Ip−1,M) to Torn(R/Ip,M). Thus we have the

following sequence of inclusions

Torn(R/I0,M) ↪→ Torn(R/I1,M) ↪→ · · · ↪→ Torn(R/Im,M) (∗∗),

where Im = I0+
∑m

j=1Rxj. Now let X be the collection of all finitely generated ideals J in R

such that J ⊆ D. For each Jp, Jq ∈ X with Jp ⊆ Jq, define πpq : R/(I+Jp) −→ R/(I+Jq) to

be the natural epimorphism. Taking A = I and B = D in Lemma 2.27, shows that {R/(I+

J) : J ∈ X} is a directed set with lim−→J∈X
(R/(I + J)) = R/(I + D). By Lemma 2.46 (ii),

we have lim−→J∈X
(Torn(R/(I+J),M)) = Torn(R/(I+D),M). Combining this with (∗∗) we

get the inclusion Torn(R/I,M) −→ Torn(R/(I +D)). Since Torn(R/I,M) 6= 0, we obtain

Torn(R/(I +D)) 6= 0 as required.

The next result is Lemma 3.3 of [DT].
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Lemma 4.3. Let (R,m) be a local Gaussian ring and M be an R-module. If w.dimR(M) =

n ≥ 1 then Torn(R/D,M) = 0.

Proof. Most of the following proof shows that, more generally, Torn(R/J,M) = 0 for any

ideal J of R such that D ⊆ J ⊆ m, provided an annihilator condition is satisfied. We will

need J = D only in the last paragraph and, in Lemma 4.8, we will take J to be m.

Thus let J be a proper ideal of R containing D and suppose (to the contrary) that

Torn(R/J,M) 6= 0. Let

· · · δn+2 // R(In+1) δn+1 // R(In) δn // R(In−1) δn−1 // · · · δ1 // R(I0) δ0 //M // 0 (∗)

be a free resolution of M , where the It are index sets for each t ≥ 0. Then, by assumption,

Torn(R/J,M) = ker(δn)/ im(δn+1) 6= 0, where the homomorphism δt is given by 1R/J ⊗ δt :

R/J ⊗ R(It) −→ R/J ⊗ R(It−1) obtained by tensoring the resolution above by R/J . Since

R/J⊗R(It) ' (R/J)(It), we will regard δt as a homomorphism from (R/J)(It) to (R/J)(It−1)

and, as such, its action is given by

δt((wi + J)i∈It) = (
∑

i∈Itwirij + J)j∈It−1

where for each i ∈ It, we have δt(ei) =
∑

j∈It−1
rijej and {ei : i ∈ It} and {ej : j ∈ It−1}

are the natural bases for R(It) and R(It−1) respectively (see the proof of Lemma 2.5).

Our assumption thus provides an element w = (wi + J)i∈In ∈ ker(δn which is not in

im(δn+1). By Lemma 2.5, if we set w = (wi)i∈In then δn(w) = (
∑

i∈In wirij)j∈In−1 ∈ J (In−1).

Let w1, . . . , wm ∈ J be the finitely many nonzero entries of δn(w). The proof now splits

into two cases.

Case 1. In this case we assume there is an a ∈ m \ D such that awj = 0 for each

j ∈ {1, . . . ,m}.
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Define f : R/J −→ Ra/Ja by f(r + J) = ra + Ja for all r ∈ R. Then f is well-

defined since if r, s ∈ R with r + J = s + J then r − s ∈ J so ra − sa ∈ Ja. Now, by

Lemma 3.21 (1), ann(a) ⊆ D. Thus, if f(r+J) = 0, i.e., ra ∈ aJ , say ra = xa where x ∈ J ,

then r − x ∈ ann(a) ⊆ D ⊆ J , giving r ∈ J . This has shown that f is a monomorphism.

It is easily seen to be onto and so it is an isomorphism. Now set φt to be the induced

isomorphism f (It) : (R/J)(It) −→ (Ra/Ja)(It) for each t ≥ 0. Then we have the following

diagram

· · · δn+1 // (R/J)(In) δn //

φn
��

(R/J)(In−1) δn−1 //

φn−1

��

· · · δ2 // (R/J)(I1) δ1 //

φ1
��

(R/J)(I0)

φ0
��

· · · δ
′
n+1 // (Ra/Ja)(In) δ′n // (Ra/Ja)(In−1) δ

′
n−1 // · · · δ

′
2 // (Ra/Ja)(I1) δ′1 // (Ra/Ja)(I0)

where the top row is the complex obtained by tensoring the free resolution (∗) by R/J

and the bottom is obtained by tensoring (∗) by Ra/Ja. In particular, from the proof of

Lemma 2.5, the homomorphisms δ′t are given by

δ′t((sia+ Ja)i∈It) = (
∑

i∈Itsirija+ Ja)j∈It−1 .

We show that the diagram is commutative. Thus, for t ≥ 1, we must show φt−1δt = δ′tφt.

To this end, let (si + J)i∈It ∈ (R/J)(It). Then, since δt(ei) =
∑

j∈It−1
rijej and {ei : i ∈ It}

and {ej : j ∈ It−1} are the natural bases for R(It) and R(It−1) respectively, we have

φt−1(δt((si + J)i∈It)) = φt−1((
∑

i∈It sirij + J)j∈It−1) = (f(
∑

i∈It sirij + J))j∈It−1

= (
∑

i∈It sirija+ Ja)j∈It−1 = δ′t((sia+Da)i∈It) = δ′t(φt((si + J)i∈It)),

as required.

Since w.dimR(M) = n ≥ 1 and f : R/J → Ra/Ja is a monomorphism, it follows
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from Lemma 2.57 that there is a monomorphism φ∗n : Torn(R/J,M) → Torn(Ra/Ja,M)

given by φ∗n((ri + J)i∈In + im(δn+1)) = φn((ri + J)i∈In) + im(δ′n+1). In particular, φ∗n(w +

im(δn+1)) 6= 0. However, φ∗n((wi + J)i∈In + im(δn+1)) = φn((wi + J)i∈In) + im(δ′n+1) =

(wia + Ja)i∈In + im(δ′n+1) = 0 (since wia = 0 for each i = 1, . . . ,m). This contradiction

shows that Torn(R/J,M) = 0 in this case.

Case 2. Here we assume that, in contrast to Case 1, given any a ∈ R \D we have

awj 6= 0 for some j ∈ {1, . . . ,m}.

We define g : R/D → R(m) by setting g(r + D) = r(w1, . . . , wm) for all r ∈ R.

It is easy to see that g is a homomorphism. Moreover, given any a ∈ R \ D, since

a(w1, . . . , wm) 6= 0, we see that g is a monomorphism. Then, by Lemma 2.57, the in-

duced map gn : Torn(R/D,M) → Torn(R(m),M) is also a monomorphism. However,

Torn(R(m),M) ' ⊕mλ=1 Torn(R,M) ' Mm 6= 0. Thus gn can not be a monomorphism.

This contradiction completes the proof.

Corollary 4.4. Let (R,m) be a local Gaussian ring and M be an R-module. If w.dimR(M) =

n ≥ 1 then Tork(R/D,M) = 0 for all k ≥ n.

Proof. Since w.dim(M) = n we have Tork(X,M) = 0 for all k > n and all R-modules X.

Lemma 4.3 gives Torn(R/D,M) = 0.

The following lemma appears as [DT, Lemma 3.4].

Lemma 4.5. Let (R,m) be a local Gaussian ring and let M be an R-module with w.dimR(M) =

n > 1. Then there is an element a ∈ m \D such that Torn(R/(D +Ra),M) 6= 0.

Before proving this lemma, we mention the following note.

Note. Observe that Theorem 2.48 implies that w.dim(M) = n if and only if Torn+1(R/I,M) =

0 for all ideals I of R and there exists an ideal X of R such that Torn(R/X,M) 6= 0.
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Proof. Since w.dim(M) = n there exists an ideal I of R such that Torn(R/I,M) 6= 0. By

Lemma 4.2, we may assume that D ⊆ I. Since D 6= I by Lemma 4.3, we obtain D ⊂ I.

Let J = {Jλ : Jλ is an ideal of R such that D ⊆ Jλ ⊆ I and Jλ/D is finitely generated}.

Then, given λ and µ such that Jλ ⊆ Jµ, we define fλµ : R/Jλ −→ R/Jµ by setting fλµ(r+

Jλ) = r+Jµ for all r ∈ R. This makes J into a direct system and lim−→J R/Jλ = R/I. Then

Torn(R/I,M) = Torn(lim−→J R/Jλ,M) = lim−→J (Torn(R/Jλ,M)) and so Torn(R/Jλ,M) 6= 0

for some ideal Jλ such that D ⊆ Jλ ⊆ I and Jλ/D is finitely generated, say Jλ/D is

generated by a1 +D, . . . , am +D. Then Jλ = Ra1 + · · ·+Ram +D. Note that, since R is

local Gaussian, R/D is a chain ring and therefore Ra1 + · · ·+Ram +D = Ra+D, where

a = ai for some i ∈ {1, 2, . . . ,m}. This gives 0 6= Torn(R/Jλ,M) = Torn(R/(Ra+D),M).

Observe that a /∈ D since otherwise Ra+D = D, contradicting Torn(R/D,M) = 0.

Also a ∈ m since otherwise a is a unit and so Ra = R which implies that Torn(R/(Ra +

D),M) = Torn(0,M) = 0, again a contradiction.

We now give Lemma 4.2 of [DT].

Lemma 4.6. Let (R,m) be a local Gaussian ring for which Nil(R) = m and let M

be a module over R. Let R′ and m′ denote R/D and m/D respectively. Suppose that

w.dimR(M) = n ≥ 1. Then R satisfies the following statements:

(i) There exists an element x ∈ m′ \ 0 such that Torn(R′/R′x,M) 6= 0.

(ii) For all z ∈ m′ \ 0, if J is an ideal of R′ such that z ∈ J and J 6= R′z then the

natural projection R′/R′z −→ R′/J induces the zero mapping from Torn(R′/R′z,M) to

Torn(R′/J,M).

(iii) For every nonzero element z in m′,Torn(R′/R′z,M) is non trivial.

Proof. Recall that R/D is a chain ring and so R′ is also Gaussian.

(i) If x ∈ m′/0, say x = a+D for some a ∈ m, then R′x = (R/D)(a+D) =
Ra+D

D

and so R′/R′x ' R/D

(Ra+D)/D
' R/(Ra + D). Then, by Lemma 4.5, there is an element
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a ∈ m\D such that Torn(R/(Ra+D),M) 6= 0. It follows from above that taking x = a+D

(x 6= 0 since a /∈ D) we obtain Torn(R′/R′x,M) 6= 0.

(ii) By Lemma 3.27, if we set I = ann(z) then ann(I) = R′z. This gives ann(I) ⊆ J

but ann(I) 6= J and so ann(I) ⊂ J . Since ann(I) =
⋂
{ann(x) : x ∈ I}, this shows

that there exists an element y ∈ J such that ann(y) ⊆ J but ann(y) 6= J . We have the

inclusions R′z ⊆ ann(y) ( J and so we have the natural epimorphism

R′/R′z
g // R′/ ann(y)

f // R′/J (∗).

Note that R′/ ann(y) ' R′y. Now taking φ : R′y −→ R′ to be the inclusion map, Corol-

lary 2.57 shows that φ induces a monomorphism φ∗ : Torn(R′y,M) −→ Torn(R′,M).

However by Lemma 4.3 Torn(R′,M) = Torn(R/D,M) = 0. Hence Torn(R′y,M) = 0.

Now the composition (∗) induces the composition

Torn(R′/R′z,M)
g // Torn(R′/ ann(y),M)

f // Torn(R′/J,M) .

Observe that for any composition of homomorphisms A
g // B

f // C , if g is the 0 map

then so too is fg. Thus, since Torn(R′/ ann(y),M) = 0, the induced homomorphsm

Torn(R′/R′z,M) −→ Torn(R′/J,M) is the 0 mapping.

(iii) By (i) there exists x ∈ m′ \ 0 such that Torn(R′/R′x,M) 6= 0. Let z ∈ m′ with

z 6= 0. Since R′ is a chain ring, either z ∈ R′x or x ∈ R′z.

Case 1. If R′x = R′z, we finish by taking J = R′z.

Case 2. Suppose z ∈ R′x and z is not a unit multiple of x, i.e., R′z ( R′x′. Then

z = ax for some a ∈ m′. Define α : R′/R′x −→ R′/R′z by α(r′ + R′x) = ar′ + R′z for

all r ∈ R. It is easily checked that α is a well-defined ring homomorphism. Notice that

since ax = z 6= 0, x /∈ ann(a). Thus, since R′ is a chain ring, we obtain ann(a) ⊂ R′x. If

α(r′ +R′x) = 0, we have ar′ +R′z = 0. Thus ar′ ∈ R′z and therefore ar′ = s′ax for some

s′ ∈ R′. This gives a(r′ − s′x) = 0, i.e., r′ − s′x ∈ ann(a) ⊂ R′x, and so r′ − s′x = t′x

for some t′ ∈ R′. Hence r′ = s′x + t′x ∈ R′x and so r′ + R′x = 0. This shows that α is a
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monomorphism. Now using Corollary 2.57, the monomorphism α induces a monomorphism

α∗ : Torn(R′/R′x,M) −→ Torn(R′/R′z,M). Because Torn(R′/R′x,M) 6= 0, it follows that

Torn(R′/R′z,M) 6= 0.

Case 3: Now suppose that x ∈ R′z and R′z 6= R′x. There exists b ∈ m′ such that x = bz.

Define σ : R′/R′z −→ R′/R′x by σ(r′ + R′z) = br′ + R′x. Similar to the first case we

show that σ is a monomorphism. Note first that bz = x 6= 0 and so z /∈ ann(b). Since

ideals in the chain ring R′ are linearly ordered under inclusion we get ann(b) ⊂ R′z. Thus

if σ(r′ + R′z) = 0 we obtain br′ + R′x = 0 and so br′ ∈ R′x. Say br′ = u′x = u′bz where

u′ ∈ R′. Then b(r′−u′z) = 0. In other words, r′−u′z ∈ ann(b) ⊂ R′z. Hence r′−u′z = v′z

for some element u′ in R′. Thus r′ = u′z + v′z ∈ R′z and so r′ +R′z = 0. This has shown

that σ is a monomorphism. Notice that R′x ⊂ R′b since x = bz ∈ R′b and R′x 6= R′b.

Form the s.e.s.

0 // R′/R′z
σ // R′/R′x

τ // R′/R′b // 0 ,

where τ is the natural epimorphism. By item (ii), the map τ induces the trivial map-

ping 0 : Torn(R′/R′x,M) −→ Torn(R′/R′b,M) and so the mapping Torn(R′/R′z,M) −→

Torn(R′/R′x,M) induced by σ is an epimorphism. Since we have Torn(R′/R′x,M) 6= 0 we

get Torn(R′/R′z,M) 6= 0 as required.

4.3 Local Gaussian rings (R,m) where all elements of

m are zero-divisors.

Suppose (R,m) is a local Gaussian ring such that every element of m is a zero-divisor, i.e.,

for every x ∈ m there exists a nonzero element rx ∈ R such that xrx = 0. Since R is

local, it follows that the elements of R are either units or zero-divisors It is well–known

(and straightforward to show) that such a ring R is (isomorphic to) its own total ring of
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quotients Q(R). The next lemma from [DT, Lemma 3.5] is a significant result for such a

local Gaussian ring.

Lemma 4.7. Let (R,m) be a local Gaussian ring in which every element of m is a zero-

divisor. Then, given nonzero elements λ1, λ2, . . . , λn in m, there exists 0 6= a ∈ m such

that a annihilates every λi, where i ∈ {1, 2, . . . , n}.

Proof. To prove this lemma, there are two different cases to be considered:

Case 1: Suppose λ1, λ2, . . . , λn ∈ D. Then we can take a to be any λi since D2 = 0 by

Theorem 3.18.

Case 2: For i ∈ {1, 2, . . . , n}, suppose not every λi is in D, i.e., there is an element

λj ∈ {λ1, λ2, . . . , λn} such that λj /∈ D, say λj = λ1. Then ann(λ1) ⊆ D by part (1)

of Lemma 3.21. Take I ⊆ m to be the ideal generated by λ1, λ2, . . . , λn. This gives

ann(I) ⊆ ann(λ1) ⊆ D. Let J = I ∩ ann(I). Then by Theorem 3.14, there exists λ ∈ R

such that I/J = R(λ + J). In particular, λi + J = riλ + J for some ri ∈ R, for all

i = 1, 2, . . . , n. Thus λi = riλ+ di, where di ∈ J . Also, di ∈ D since di ∈ J ⊆ ann(I) ⊆ D.

Note that λ1 /∈ D since if otherwise we obtain λ1 = r1λ + d1 ∈ D in contradiction to

our assumption that λ1 /∈ D. Moreover, because λ + J ∈ I/J , we get λ ∈ I and so

λ =
∑n

i=1 riλi ∈ m where each ri ∈ R. This implies that λ ∈ m \D. Because λ is a zero-

divisor, we can take a nonzero element d ∈ ann(λ) and by Lemma 3.21(1) we get d ∈ D.

Then, by multiplying the expression λi = riλ+ di by d, we get dλi = driλ+ ddi = 0 since

d ∈ ann(λ) and ddi ∈ D2 = 0 by Theorem 3.18. Therefore dλi = 0 for every i = 1, 2, . . . , n

as required.

If we choose (R,m) to be a local Gaussian ring which is its own total ring of quotients,

i.e., each element of m is a zero-divisor, the result of Lemma 4.3 holds for R/D replaced

by R/m as shown in the next lemma from [DT, Lemma 3.6]
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Lemma 4.8. Let (R,m) be a local Gaussian ring such that Q(R) = R and let M be an

R-module. Suppose that w.dim(M) = n ≥ 1. Then Torn(R/m,M) = 0.

Proof. By Lemma 4.7 there is a nonzero element a ∈ m such that aλi = 0 for any λi ∈ m

with i = 1, 2, . . . , n. Then, taking J = m, case 1 of the proof of Lemma 4.3 gives the

desired result.

The following result, appearing as [DT, Proposition 3.7] is crucial in showing some

important results in the sequel.

Proposition 4.9. Let (R,m) be a local Gaussian ring. If m 6= 0 and each of its elements

is a zero-divisor, then w.gl.dim(R) ≥ 3.

Proof. We shorten the proof in [DT] a little bit.

If m = D, since D2 = 0 by Theorem 3.18, m is nilpotent and so by Proposition 2.61

w.dim(m) =∞ and so w.gl.dim(R) =∞. Thus we now suppose that m 6= D. If x ∈ m \D,

then we have the following exact sequence

0 // ann(x) // R
xm // R π // R/Rx // 0 , (∗)

where xm is multiplication by x and π is the natural epimorphism. By way of contradiction,

assume that w.gl.dim(R) ≤ 2. Then w.dim(R/Rx) ≤ 2 and so, by Theorem 2.48, the

sequence (∗) shows that ann(x) must be flat. To reach a contradiction we show that

ann(x) is not flat. By Proposition 2.10 ((i) ⇒ (ii)’) if ann(x) is flat then the mapping

φ : ann(x) ⊗ I −→ ann(x)I is an isomorphism for every ideal I of R. Take I = Rx.

Then ann(x)I = 0 and therefore im(φ) = 0 and this implies that ann(x) ⊗ Rx = 0

since φ is a monomorphism. Thus, to get our contradiction, it is enough to show that

ann(x) ⊗ Rx 6= 0. Since Rx ' R/ ann(x), by Lemma 2.2 (ii), we obtain ann(x) ⊗ Rx '

ann(x) ⊗ R/ ann(x) ' ann(x)

(ann(x))2
. Note that, by Lemma 3.21 (1), we have ann(x) ⊆ D

because x ∈ m \D. This implies that (ann(x))2 ⊆ D2 = 0 and so
ann(x)

(ann(x))2
' ann(x). So
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we have ann(x)⊗Rx ' ann(x) and so ann(x)⊗Rx 6= 0 since ann(x) 6= 0 (this is because

of our assumption that x ∈ m and so a zero-divisor).

In some of the next results we concentrate on local Gaussian rings R which satisfies

the following property, appearing as [DT, Property 3.8].

Property 4.10. For every x ∈ D \ 0, the annihilator of x is not cyclic modulo D, i.e.,

there is no element a ∈ ann(x) such that ann(x)/D = R(a+D)/D, i.e., there is no element

a ∈ ann(x) such that ann(x) = Ra+D.

Before we state the following lemmas from [DT, Lemma 3.9 and Lemma 3.10] we

make an important remark regarding the chain ring R/D.

Remark 4.11. Consider the chain ring R/D and two principal ideals in R/D, say
Ra+D

D

and
Rb+D

D
. Since R/D is a chain ring

Ra+D

D
and

Rb+D

D
are comparable. From this

it follows that the ideals Ra+D and Rb+D are comparable in the ring R.

Lemma 4.12. Let (R,m) be a local Gaussian for which all the elements of m are zero-

divisors. If R satisfies Property 4.10 and m 6= D, then

(i) m = m2 +D,

(ii) if J ⊆ m is a finitely generated ideal of R, then J2 ⊆ Rx2 for some x ∈ m with

the property that x2 /∈ D, and

(iii) the ideal m2 is flat.

Proof. (i) Clearly m2 +D ⊆ m and so we only have to show that if a ∈ m then a ∈ m2 +D.

We may obviously assume that a ∈ m\D since the result holds trivially if a ∈ D. Then, by

part (1) of Lemma 3.21, ann(a) ⊆ D. Moreover, since a 6= 0 and by our hypothesis on m,

we obtain ann(a) 6= 0. Then there exists an x ∈ D \0 such that ax = 0. By Property 4.10,

ann(x) 6= Ra+D. However since ax = 0 and x ∈ D, we have (ra+ d)x = rax+ dx = 0 for

any r ∈ R and d ∈ D and so Ra+D ⊆ ann(x). Hence there is an element b ∈ ann(x) such
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that b /∈ Ra + D. Note that Theorem 3.18 tells us that R/D is a chain ring. Therefore

since Rb + D * Ra + D, by Remark 4.11, we must then have Ra + D ⊆ Rb + D. Hence

a = rb + d for some r ∈ R and d ∈ D. If r is a unit we get b = r−1(a − d) ∈ Ra + D,

contradicting b /∈ Ra + D. Thus r must be in m. Moreover, b ∈ m since b ∈ ann(x) ⊆ m

and so rb ∈ m2. Thus a = rb + d ∈ m2 + D. This gives m ⊆ m2 + D which proves the

equality desired.

(ii) We first show that if x2 ∈ D for all x ∈ m then m2 ⊆ D. Let z ∈ m2. Then for

some n ≥ 1 we have z =
∑n

i=1 xiyi, where xi, yi ∈ m for each i. Now, by Theorem 3.14 (d),

(Rxi + Ryi)
2 = Rx2

i or (Rxi + Ryi)
2 = Ry2

i . Thus xiyi = rx2
i or xiyi = sy2

i for some

r, s ∈ R. In either case we get xiyi ∈ D since x2
i , y

2
i ∈ D by assumption. Since D is an

ideal by Theorem 3.18, we get z =
∑n

i=1 xiyi ∈ D. Hence m2 ⊆ D as expected. Now, using

item (i), we obtain m = D in contradiction to our hypothesis. Thus there exists x ∈ m

such that x2 /∈ D.

By Lemma 3.12 , if J is a finitely generated ideal of R then J2 = Ry2 for some y ∈ J .

We are finished if y2 /∈ D. If otherwise y2 ∈ D then, from above, we may pick an element

x ∈ m such that x2 /∈ D. It follows from Theorem 3.14 (d) that (Rx + Ry)2 = Rx2 or

(Rx+ Ry)2 = Ry2. Since Ry2 ⊆ D but Rx2 * D we must have (Rx+ Ry)2 = Rx2 (since

otherwise x2 = ry2 ∈ D). Then y2 ∈ Rx2 and so J2 = Ry2 ⊆ Rx2 with x2 /∈ D as wanted.

(iii) By Proposition 2.10, to show that m2 is flat, it suffices to show that if I is any

proper ideal of R, the induced map f : I ⊗ m2 −→ m2 determined by x ⊗ y 7→ xy, where

x ∈ I and y ∈ m2, is a monomorphism. Let w ∈ ker(f). Then w =
∑n

i=1 zi ⊗ xiyi, where

zi ∈ I, xi, yi ∈ m. Let J be the ideal generated by x1, . . . , xn, y1, . . . , yn. By part (ii), there

exists x ∈ m with x2 /∈ D and J2 ⊆ Rx2 and so for all i = 1, . . . , n we have xiyi = rix
2

for some ri ∈ R. Then w =
∑n

i=1 zi ⊗ xiyi =
∑n

i=1 zi ⊗ rix2 =
∑n

i=1 ziri ⊗ x2 = z ⊗ x2,

where z =
∑n

i=1 ziri. We are finished if we can show that z ⊗ x2 = 0. If z = 0 we’re done,

so suppose that z 6= 0. Since 0 = f(z ⊗ x2) = zx2 we have z ∈ ann(x2) and so, since
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x2 ∈ m \D, z ∈ D by Lemma 3.21. This leads us to consider the following two cases:

Case 1. Suppose z ∈ ann(x), i.e., zx = 0. Then we also have x ∈ ann(z) and so,

since z ∈ D\0, Property 4.10 shows that ann(z) 6= Rx+D. Now because Rx+D ( ann(z),

there exists an element y such that y ∈ ann(z) but y /∈ Rx+D and so Ry+D * Rx+D.

Then, using Remark 4.11, we get Rx + D ( Ry + D. Hence x = cy + d1, for some c ∈ R,

d1 ∈ D. Now c ∈ m since if not then y = c−1(x− d1) ∈ Rx+D, a contradiction. Then

w = z ⊗ x2 = z ⊗ (cy + d1)2 = z ⊗ (c2y2 + 2cyd1 + d2
1) = z ⊗ c2y2 + z ⊗ 2cyd1 + z ⊗ d2

1.

However z ⊗ d2
1 = z ⊗ 0 = 0 since d1 ∈ D. Also, z ⊗ 2cyd1 = zy ⊗ 2cd1 = 0 since zy = 0.

Similarly, z ⊗ c2y2 = zy2 ⊗ c2 = 0 and therefore w = z ⊗ x2 = 0 as desired.

Case 2. Suppose zx 6= 0. Since z ∈ D and x2 ∈ m we have zx ∈ D \ 0 and

zx2 = 0 and so x ∈ ann(zx). We aim to show that w = z ⊗ x2 = 0 in this case also. Note

first that since zx ∈ D \ 0, by Property 4.10 we have ann(zx) 6= Rx + D. Now note that

Rx+D ⊆ ann(zx) and so there exists h ∈ ann(zx) but h /∈ Rx+D. Thus Rh+D * Rx+D

which implies that Rx + D ⊆ Rh + D using Remark 4.11. Then x = sh + d2 for some

s ∈ R, d2 ∈ D. Again, note that s ∈ m since if not then h = s−1(x − d2) ∈ Rx + D, a

contradiction. This gives

w = z ⊗ x2

= z ⊗ (sh+ d2)2

= z ⊗ (s2h2 + 2shd2 + d2
2)

= z ⊗ (s2h2 + 2shd2) (since d2
2 ∈ D2 = 0)

= z ⊗ s2h2 + z ⊗ 2shd2

= z ⊗ s2h2 + zd2 ⊗ 2sh

= z ⊗ s2h2 + 0⊗ 2sh (since zd2 ∈ D2 = 0)

= z ⊗ s2h2.

By (i), we can write s = b+ d, where b ∈ m2 and d ∈ D. Therefore
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w = z ⊗ sh2(b+ d) = z ⊗ sh2b+ z ⊗ sh2d

= zsh2 ⊗ b+ zd⊗ sh2

= zsh2 ⊗ b+ 0⊗ sh2 (since zd ∈ D2 = 0)

= z(sh)h⊗ b = z(x− d2)h⊗ b

= (zxh− zd2h)⊗ b

= 0⊗ b = 0 (because h ∈ ann(zx) and zd2 ∈ D2 = 0).

Thus the result holds in this case also.

The next lemma is [DT, Lemma 3.10].

Lemma 4.13. Let (R,m) be a local Gaussian ring in which every element of m is a zero-

divisor, i.e., R = Q(R). Suppose that R satisfies Property 4.10, m 6= D and w.gl.dim(R) <

∞. Then m is a flat R-module.

Proof. If m = m2 then, by Lemma 4.12 (i), m is flat as required. Now suppose that m 6= m2

and consider w.dim(R/m) = n <∞. IfR/m is flat, then, by Proposition 2.11, m∩RA = mA

for any ideal A of R. In particular, taking A = m gives m = m2, contradicting our assump-

tion. Thus R/m is not flat and so w.dim(R/m) > 0. We now show that w.dim(R/m) = 1.

By way of contradiction assume that w.dim(R/m) ≥ 2. Then there exists an R-module

M such that Torn(R/m,M) 6= 0. By Lemma 4.12 (iii) we have m2 is flat. Therefore,

Tork(m
2,M) = 0 for all k ≥ 1. Now tensor the s.e.s. 0 // m2 // R // R/m2 // 0

by M to get the following segment of the long exact sequence for Tor

Torn(R,M) // Torn(R/m2,M) // Torn−1(R/m2,M).

Observe that Torn(R,M) = 0 since R is free and Torn−1(m2,M) = 0 since m2 is flat. Hence

we get Torn(R/m2,M) = 0.

Now consider the s.e.s.

0 // m/m2 i // R/m2 π // R/m // 0 (∗),
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where i is the inclusion map and π(r + m2) = r + m for all r ∈ R. Tensor (∗) by M to get

a long exact sequence for Tor with the following exact segment

Torn+1(R/m,M) // Torn(m/m2,M) // Torn(R/m2,M).

Notice that Torn+1(R/m,M) = 0 since w.dim(R/m) = n and Torn(R/m2,M) = 0 by

above. This implies that Torn(m/m2,M) = 0. Moreover, because m/m2 is annihilated by

m, i.e., (m/m2)m = 0, by Remark 2.60 we may regard m/m2 as a module over the field

R/m and so can be written as (R/m)(I) for some index set I. Then (Torn(R/m,M))(I) '

Torn((R/m)(I),M) = Torn(m/m2,M) = 0. Hence Torn(R/m,M) = 0, a contradiction and

so w.dim(R/m) = 1. Then we have a flat resolution

F1
i // R

π0 // R/m // 0

and so by [Bl], ker(π0) = m is flat.

4.4 Local Gaussian rings R with non-nilpotent Nil(R).

We begin this section with Lemma 4.4 of [DT].

Lemma 4.14. Let (R,m) be a local Gaussian ring with Nil(R) = m and let M be an

R-module with w.dim(M) = n ≥ 1. Set R′ = R/D and m′ = m/D. If m is not nilpotent

then Torn(R′/am′,M) = 0 for every nonzero a ∈ m′.

Proof. Lemma 4.3 gives Torn(R/D,M) = 0. If am′ = 0 then R′/am′ = R′ = R/D and so

Torn(R′/am′,M) = Torn(R/D,M) = 0. Thus we now assume that am′ 6= 0. We first show

that m′ is not nilpotent. If otherwise then (m/D)t = (m′)t = 0 for some t ∈ N and so, given

m1,m2, . . . ,mt ∈ m, we have 0 = (m1 +D)(m2 +D) · · · (mt+D) = m1m2 · · ·mt+D. Then

m1m2 · · ·mt ∈ D. Thus, because D2 = 0 we have (m1m2 · · ·mt)(mt+1mt+2 · · ·m2t) = 0

for any m1, . . . ,m2t ∈ m. This gives m2t = 0 contradicting our assumption that m is not

nilpotent. Hence m′ is not nilpotent.
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Next we show that the ideal am′ of R′ is not finitely generated. Suppose to the

contrary that am′ is finitely generated. Then, since R′ = R/D is a chain ring, am′ is a

principal ideal of R′, say am′ = R′b, where b ∈ R′. Since b ∈ am′, we have b = ac for some

c ∈ m′ and so am′ = R′ac.

By Lemma 3.28, there exists z ∈ m′ such that deg(z) > deg(c). Since R′ is a chain

ring, R′c ⊂ R′z (since otherwise we would have z ∈ R′c and this gives deg(z) ≤ deg(c)).

Say c = uz, where u ∈ R′. Note that since deg(z) > deg(c), u is not a unit and so u ∈ m′.

Then 0 6= ac = auz shows that az 6= 0. Moreover, since R is local, 1 − ur is a unit for

every r ∈ R′. Then az − acr = az − auzr = az(1 − ur) 6= 0. This implies that az 6= acr

for any r ∈ R′ and therefore az /∈ R′ac. However, az ∈ am′ = R′ac, a contradiction. Thus

am′ is not finitely generated.

Now let X denote the direct system given by the nonzero finitely generated ideals I of

R′ contained in am′ and the associated inclusion maps. Then R′/am′ = lim−→I∈X
R′/I and so

Torn(R′/am′,M) = lim−→I∈X
(Torn(R′/I,M)). Given I ∈ X , since R′ is a chain ring, I = R′x

for some x ∈ am′. Thus R′x 6= am′ since am′ is not finitely generated. By Lemma 4.6 (ii),

with J = am′ and z = x we have π : R′/R′x −→ R′/am′ induces the zero mapping

Torn(R′/R′x,M) −→ Torn(R′/am′,M) = lim−→I∈X
(Torn(R′/I,M)). Notice that this will

give the following commutative diagram whenever φαβ : Iα −→ Iβ is a homomorphism in

our direct system X .

Torn(R′/Iα,M)

0 ))SSSSSSSSSSSSSS

φαβ // Torn(R′/Iβ,M)

0uukkkkkkkkkkkkkk

Torn(R′/am′,M)

Since Torn(R′/am′,M) = lim−→I∈X
(Torn(R′/I,M)) we also have the following commutative

diagram:
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Torn(R′/Iα,M)

φα ))SSSSSSSSSSSSSS

φαβ ,M // Torn(R′/Iβ,M)

φβuukkkkkkkkkkkkkk

Torn(R′/am′,M)

Then there exists a unique homomorphism φ : Torn(R′/am′,M) −→ Torn(R′/am′,M) such

that the following diagram commutes.

Torn(R′/Iα,M)
φαβ //

φα ))SSSSSSSSSSSSSS

0

&&

Torn(R′/Iβ,M)

φβuukkkkkkkkkkkkkk

0

xx

Torn(R′/am′,M)

φ

��
Torn(R′/am′,M)

Note that taking φ to be the zero or the identity map on Torn(R′/am′,M) keeps the

commutativity of the diagram and so we get 1Torn(R′/am′,M) = 0. Hence we obtain 0 =

Torn(R′/am′,M) = lim−→I∈X
(Torn(R′/I,M)).

The following theorem is the major result of section 4 in [DT].

Theorem 4.15. Let (R,m) be a local Gaussian ring with Nil(R) = m. If m is not nilpoent

then w.gl.dim(R) =∞.

Proof. Suppose to the contrary that w.gl.dim(R) = n < ∞. Then by Proposition 4.9

n ≥ 3. Let M be an R- module with w.dimR(M) = n. Now the proof splits into two cases.

Case 1: The ring R does not satisfy Property 4.10. Then there exists x ∈ D \ 0

such that ann(x) = Ra + D for some a ∈ m \ D. Then Rx ' R/ ann(x) = R/(Ra +

D). By Corollary 2.57, the inclusion Rx ↪→ R induces a monomorphism Torn(Rx,M) ↪→

Torn(R,M) and so we have a monomorphism Torn(R/(Ra+D),M) −→ Torn(R,M) = 0.

Thus Torn(R/(Ra+D),M) = 0. Now note that
R′

R′(a+D)
=

R/D

(Ra+D)/D
' R/(Ra+D)

and so Torn(R′/R′(a+D),M) = 0. However since a+D ∈ m′ \ 0, Lemma 4.6 (iii) gives a

contradiction.
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Case 2: The ring R satisfies Property 4.10. Choose a ∈ m \ D (noting that such

an element exists since otherwise we get m = D and so m2 = D2 = 0, contradicting our

non-nilpotency hyypothesis). Then we have the following s.e.s. where a+D, i is inclusion

and π is the projection map.

0 // R
′ā

m′ā
i // R

′

m′ā
π // R

′

R′ā
// 0

Tensoring this s.e.s. with M induces a long exact sequence for Tor with the segment

Torn(R′/m′ā,M) // Torn(R′/R′ā,M) // Torn−1(R′ā/m′ā,M) (∗).

However Torn(R′/m′ā,M) = 0 by Lemma 4.14. Now define f : R/m −→ R′ā/m′ā by

f(r + m) = r̄ā + m′ā (where x̄ = x + D for all x ∈ R). Then f is well-defined since

if r + m = s + m then r − s ∈ m so r̄ − s̄ ∈ m′ and therefore r̄ā − s̄ā ∈ m′ā. Hence

f(r + m) = r̄ā+ m′ā = s̄ā+ m′ā = f(s+ m). It is easily seen that f is a homomorphism.

Moreover, f is an isomorphism because:

(i) f is one-to-one since if f(r + m) = 0 then r̄ā + m′ā = 0. Thus r̄ā ∈ m′ā, say

r̄ā = m̄ā, where m ∈ m. Then (r̄ − m̄)ā = 0 and so (r − m)a ∈ D. If r /∈ m then r

is a unit, say with inverse t. Then t(r −m)a ∈ D and so (tr − tm)a ∈ D which implies

that (1 − tm)a ∈ D. Note that 1 − tm is a unit since tm ∈ m and this gives a ∈ D, a

contradiction. Thus r ∈ m as required.

(ii) f is clearly onto since if r̄ā+ m′ā, where r ∈ R, we have f(r + m) = r̄ā+ m′ā.

Hence R/m ' R′ā/m′ā and so Torn−1(R′ā/m′ā,M) ' Torn−1(R/m,M) which is 0

since tensoring the s.e.s.

0 // m // R // R/m // 0

with M gives a long exact sequence for Tor with the following segment

Torn−1(R,M) // Torn−1(R/m,M) // Torn−2(m,M).
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Since R is flat and, by Lemma 4.13 so is m, we obtain Torn−1(R,M) = 0 = Torn−2(m,M).

Hence Torn−1(R/m,M) = 0 and so the second term of (∗), Torn(R′/R′ā,M), is 0. Again,

part (iii) of Lemma 4.6 gives a contradiction, and so w.gl.dim(R) =∞.

4.5 Local Gaussian rings R with Nil(R)2 6= 0.

We begin this short section with Theorem 5.2 of [DT]. It is a modification of Theorem

6.4 of [BaGl] which did not have the nilpotency index condition. However [DT] spotted a

flaw in the proof of Theorem 6.4, giving an example to show the result is false without the

condition, leading to the following amendment.

Theorem 4.16. Let R be a Gaussian ring with a maximal ideal m such that the nilradical

Nil(Rm) of the localisation Rm has nilpotency index n at least 3. Then w.gl.dim(R) =∞.

Proof. Let m be as stated. Since Rm is local Gaussian, Nil(Rm) is its unique minimal

prime ideal. By Lemma 1.31, Nil(Rm) = (Nil(R))m. Since Nil(Rm) is prime so is Nil(R), by

Theorem 1.27. Localising R at Nil(R), the ring RNil(R) is local Gaussian and has a unique

prime (so maximal) ideal, namely RNil(R) Nil(R) (= Nil(RNil(R))), by Lemmas 3.7 and 1.28.

Now, given r/s ∈ RNil(R) Nil(R) where r ∈ Nil(R) and s ∈ R \ Nil(R), we have

r/1 ∈ Nil(Rm) and so rn/1 = 0 in Rm. Thus rnt = 0 for some t ∈ R \ m and so in RNil(R)

we have (r/s)n = rn/sn = rnt/snt = 0. This has shown that RNil(R) Nil(R) is also nilpotent

(of nilpotency index at most n).

Since the nilpotency index of Nil(Rm) is at least 3, there is an element a/u ∈ Nil(Rm)

with (a/u)2 6= 0, where a ∈ Nil(R) and u ∈ R \ m. Then a2 6= 0 and the element a/1 in

RNil(R) is in Nil(RNil(R)) since (a/1)n = (au/u)n = (a/u)n(u/1)n = 0. Moreover, if a/1 = 0

in RNil(R) then ab = 0 for some b ∈ R\Nil(R) and so, since R is local Gaussian, either a2 = 0

or b2 = 0 by Theorem 3.13, a contradiction. It follows that a/1 is a nonzero element in the
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maximal ideal RNil(R) Nil(R) of RNil(R). Then, by Proposition 2.61, w.gl.dim(RNil(R)) =∞.

Thus, since w.gl.dim(R) = sup{w.gl.dim(RP ) : P ∈ Spec(R)}, the result is proved.

The following is Theorem 5.4 of [DT].

Theorem 4.17. Let R be a local Gaussian ring with Nil(R) 6= 0, i.e., R is non-reduced,

and Nil(R) 6= D. Then w.gl.dim(R) =∞.

Proof. By Corollary 3.17, Nil(R) is the uniquet prime ideal ofR and so, since w.gl.dim(R) ≥

w.gl.dim(RS) for any m.c.s. S of R, it is sufficient to show that w.gl.dim(RNil(R)) =∞.

The maximal ideal of RNil(R) is the only prime ideal of RNil(R) and so is its nilradical.

Denote this ideal by N . By Lemma 3.22, N 6= 0. If N is nilpotent then, by Proposi-

tion 2.61, w.dimRNil(R)
(N) = ∞ and so w.gl.dim(RN ) = ∞ which proves the result in this

case. If otherwise N is not nilpotent then Theorem 4.15 shows that w.gl.dim(RNil(R)) =∞

as required.

4.6 Local Gaussian rings R with nonzero Nil(R) but

Nil(R)2 = 0.

We saw in Theorem 4.1 that the Bazzoni–Glaz conjecture holds if R is a reduced Gaussian

ring. Since w.gl.dim(R) = sup{w.gl.dim(RP ) : P ∈ Max(R)} by Theorem 2.53, if we can

show that if R is any Gaussian ring R which is not reduced then w.gl.dim(RM) = ∞

for some maximal ideal M then w.gl.dim(R) = ∞ and this will complete the proof of the

conjecture. Furthermore, Theorem 4.17 shows the conjecture to be true if R is non-reduced

local with Nil(R) 6= D.

Thus we assume henceforth that R is local Gaussian with Nil(R) 6= 0 but Nil(R)2 = 0.

Recall that Nil(R) is the unique minimal prime ideal in a local Gaussian ring R.

If we let S be the set of regular elements then, by Lemma 1.31, (Nil(R))S = Nil(RS).
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From this it follows that the total ring of quotients Q(R) also has nonzero Nil(Q(R)) but

(Nil(Q(R)))2 = 0. Furthermore, Q(R) is also local Gaussian and, since w.gl.dim(RS) ≤

w.gl.dim(R), we may assume that, in addition to the conditions imposed on R above, R is

its own total ring of quotients, i.e., the maximal ideal m consists of zero-divisors. Moreover,

by Proposition 2.61, if m is nilpotent then w.dim(m) =∞ and so we can ignore this case.

Thus, unless otherwise stated, we henceforth assume that (R,m) is a local

Gaussian ring, the elements of m are zero-divisors, m 6= D, and Nil(R) = D 6= 0.

Before proceeding with the theory, we give an example of a ring satisfying our as-

sumptions. It is a variation of an example in [Cl2] (see also [NY, page 123]).

Example 4.18. Let A be Z(2), the ring of integers localized at its prime ideal (2), i.e.,

A = {x/y : x, y ∈ Z, y odd}. Then A is a chain domain with ideals given by the strictly

descending chain

A ⊃ 2A ⊃ 4A ⊃ 8A ⊃ · · · ⊃ 2nA ⊃ · · · ⊃ 0.

Now let M be the A-module Q/A, where Q is the field of all rational numbers and the

module multiplication is given by x/y(p/q + A) = xp/yq + A for all x, y, p, q ∈ Z with y

odd and q 6= 0. The A-submodules of M form the strictly ascending chain:

0 ⊂ A(1/2)/A ⊂ A(1/4)/A ⊂ A(1/8)/A ⊂ · · · ⊂ A(1/2n)/A ⊂ · · · ⊂M

where A(1/2n) = {a2−n : a ∈ A}. Given n ∈ N, let B be the A-module Mn, the direct

sum of n copies of M . Now form the ring R as the set of upper triangular 2× 2 matrices


a b

0 a

 : a ∈ A, b ∈ B

 ,multiplication given by

a b

0 a


c d

0 c

 =

ac ad+ bc

0 ac


for all a, c ∈ A, b, d ∈ B. To save room, we write a typical matrix in R as an ordered pair



CHAPTER 4. THE BAZZONI–GLAZ CONJECTURE 109

(a, b) where a ∈ A, b ∈ B so that multiplication in R is given by (a, b)(c, d) = (ac, ad+ bc)

for all a, c ∈ A, b, d ∈ B. It is straightforward to show that Nil(R) = {(0, b) : b ∈ B} (the

set of strictly upper triangular matrices), Nil(R)2 = 0 and R is local with unique maximal

ideal m = {(a, b); a ∈ 2A, b ∈ B} 6= Nil(R). Moreover, every r = (a, b) ∈ m is a zero-divisor

since if a = 0 then r is nilpotent while if a 6= 0 then a = 2tx/y for some t ≥ 1 and odd

x, y ∈ Z and so taking d = (d1, . . . , dn) ∈ B with di = 2−t + A ∈ M for each i gives

(a, b)(0, d) = (0, ad) = (0, (2tx/y)(2−t + A) = (0, x/y + A) = 0.

Given a nonzero a ∈ A, we have a = 2su/v where s ≥ 0 and u, v are odd integers.

Let d = (d1, 0, 0, . . . , 0) ∈ B with d1 = 2−tx/y + A where t ≥ 0 and x, y are odd integers.

Then (0, d) = (0, (2−s−tyv/xu + A, 0, 0, . . . , 0))(a, b) for any b ∈ B and so (0, d) ∈ R(a, b).

An obvious extension of this argument shows that (0, d) ∈ R(a, b) for all d, b ∈ B and so

R(a, b) = {(λa, d) : λ ∈ A, d ∈ B} = R(a, 0).

Now we show that R is Gaussian using Theorem 3.13. Let p = (a, b), q = (c, d) ∈ R.

Then p2 = (a2, 2ab), q2 = (c2, 2cd). If a = 0 = c then p2 = q2 = pq = 0 so (p, q)2 = 0 = (p2)

as required. If a 6= 0 but c = 0 then the previous paragraph shows that q ∈ Rp and so

pq, q2 ∈ (p2) and then (p, q)2 = (p2). Similarly, if a = 0 but c 6= 0 then (p, q)2 = (q2). If

a and c are both nonzero, let a = 2su/v, c = 2tx/y where s, t ≥ 0 and u, v, x, y are odd

integers. Without loss of generality, s ≤ t. Then, since A22t ⊆ A2s+t ⊆ A22s in A, we get

(p, q)2 = (p2, pq, q2) = R(a2, 0) +R(ac, 0) +R(c2, 0) = R(2s, 0) = (p2).

This has verified that R satisfied condition (i) of Theorem 3.13.

For condition (ii), let p = (a, b), q = (c, d) be as before and suppose that (p, q)2 = (q)2

and pq = 0. We wish to show that p2 = 0. If a = 0 this is immediate. If a 6= 0, then,

since pq = 0, we must have c = 0 and so q2 = (0, d)2 = 0. Since p2 ∈ (q2) we get

0 = p2 = (a2, 2ab), a contradiction since a2 6= 0. Thus R satisfies condition (ii) of Theorem
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3.13 and so R is Gaussian.

If n = 1, i.e., B = M , then the ideals of R contained in Nil(R) are precisely the

A-submodules of M . Thus, from above, R is a chain ring with ideal lattice given by

0 ⊂ (0, A(2−1)/A) ⊂ · · · ⊂ (0, A(2−n)/A) ⊂ · · · ⊂ (0,M) ⊂ · · ·

· · · ⊂ (2nA,M) ⊂ · · · ⊂ (2A,M) ⊂ R.

On the other hand, if n ≥ 2 then R is not a chain ring. For example, if n = 2 then

B = M ⊕ M and if we take I1 = {(a, (b1, 0)) : a ∈ A, a = 0, (b1, 0) ∈ M ⊕ M} and

I2 = {(a, (0, b2)) : a ∈ A, a = 0, (0, b2) ∈M ⊕M}, then I1 and I2 are ideals of R which are

not comparable.

The following lemmas can be found in [DT, Lemma 6.1, Lemma 6.2 and Lemma 6.4]

Lemma 4.19. Suppose w.gl.dim(R) = n <∞. Then w.dimR(R/D) = n− 1.

Proof. Since w.gl.dim(R) = n, there is an R-module M with w.dimR(M) = n. By Lemma

4.5 and since m 6= D, there exists an element a ∈ m\D such that Torn(R/(Ra+D),M) 6= 0.

Define the map f : R/D −→ R/D by f(r +D) = ra+D. It can be easily checked that f

is a well-defined homomorphism. Now, consider the s.e.s.

0 // R/D
f // R/D π // R/(Ra+D) // 0 (∗),

where π(r + D) = r + (Ra + D). Tensoring (∗) with M gives the long exact sequence for

Tor with the following segment:

Torn(R/D,M) // Torn(R/(Ra+D),M) // Torn−1(R/D,M) .

If w.dimR(R/D,M) < n − 1, then Torn(R/D,M) = 0 = Torn−1(R/D,M) and so the

segment gives Torn(R/(Ra + D),M) = 0, contradicting the first part of the proof. Thus

we have w.dim(R/D) ≥ n− 1. Moreover, Torn(R/D,X) = 0 for any R-module X since:

(i) if w.dim(X) = n this follows from Lemma 4.3, while
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(ii) if w.dim(X) < n then Torn(Y,X) = 0 for any R-module Y .

This, together with the above, we get w.dimR(R/D) = n− 1 as desired.

Definition 4.20. Let M be an R-module and a ∈ R. Then a is called a zero-divisor on

M if am = 0 for some m ∈M , m 6= 0.

Lemma 4.21. Let a ∈ m \ D be a zero-divisor on Tori−1(R/D,R/D) for some i ≥ 1.

Then Tori−1(R/(Ra + D), R/D) 6= 0. Furthermore, if w.gl.dim(R) = n < ∞, then

Torn−1(R/(Ra+D), R/D) 6= 0 if and only if a is a zero-divisor on Torn−2(R/D,R/D).

Proof. We have an s.e.s.

0 // R/D
µa // R/D π // R/(Ra+D) // 0 ,

where µa is multiplication by a and π(r + D) = r + Ra + D for all r ∈ R. Tensoring this

with R/D gives a long exact sequence for Tor with the following segment for each i ≥ 1.

Tori(R/(Ra+D), R/D) // Tori−1(R/D,R/D)
µ∗a // Tori−1(R/D,R/D). (∗)

If Tori(R/(Ra+D), R/D) = 0, then the induced multiplication µ∗a will be a monomorphism.

Then for any nonzero x ∈ Tori−1(R/D,R/D) we would have µ∗a(x) 6= 0, i.e., ax 6= 0 and

so a is not a zero-divisor on Tori−1(R/D,R/D). This contradiction proves the first part of

the lemma.

To prove the second, we take i = n − 1. For the required converse we show that if

Torn−2(R/D,R/D) 6= 0 and a ∈ m \D then Torn−1(R/(Ra + D), R/D) 6= 0. By Lemma

4.19, w.dimR(R/D) = n − 1. Therefore, by Lemma 4.3, we have Torn−1(R/D,R/D) = 0.

Then the following exact segment

Torn−1(R/D,R/D) // Torn−1(R/(Ra+D), R/D)

f

��
Torn−2(R/D,R/D)

µ∗a // Torn−2(R/D,R/D)

implies that Torn−1(R/(Ra+D), R/D) ' ker(µ∗a). Hence if Torn−1(R/(Ra+D), R/D) 6= 0
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then ker(µ∗a) 6= 0 and so there is a nonzero element m ∈ Torn−2(R/D,R/D) such that

ma = 0. Thus a is a zero-divisor on Torn−2(R/D,R/D).

Lemma 4.22. Let w.gl.dim(R) = n. If n is some finite integer then there exists a prime

ideal P such that the following statements hold:

(i) DP 6= RPP and there exists a nonzero element w ∈ TorRPn−2(RP/DP , RP/DP ) such

that for every c ∈ RPP we have cqw = 0 for some q ∈ N.

(ii) For every c ∈ RPP \DP , TorRPn−1(RP/(RP c+DP ), RP/DP ) 6= 0.

(iii) Every element of RPP is a zero-divisor.

(iv) w.gl.dim(RP ) = n.

Proof. (i) By Lemma 4.19, w.gl.dim(R/D) = n − 1. Taking M = R/D and replacing n

by n − 1 in Lemma 4.5 gives an a ∈ m \ D with Torn−1(R/(Ra + D), R/D) 6= 0. By

Lemma 4.21 we see that a is a zero-divisor on Torn−2(R/D,R/D), i.e., there is a nonzero

w ∈ Torn−2(R/D,R/D) such that aw = 0. Let P = {b ∈ m : bqw = 0 for some q ≥ 1}.

Then by Lemma 3.29, P is a prime ideal of R. Note that a ∈ P and, since D (= Nil(R)) is a

prime ideal,
a

1
/∈ DP (since if

a

1
=
d

s
for some d ∈ D, s ∈ R\P we obtain ast = dt for some

t ∈ R \ P , in particular ast ∈ D but, in contradiction, a, s, t /∈ D). However
a

1
∈ RPP

and so DP 6= RPP . Now note that by Lemma 2.46, we have (TorRn−2(R/D,R/D))P =

TorRPn−2(RP/DP , RP/DP ). We claim that
w

1
∈ (TorRn−2(R/D,R/D))P is nonzero. If not,

then for some b ∈ R \ P we have bw = 0 in Torn−2(R/D,R/D) and so b ∈ P , a contra-

diction. Again by definition of P , if c ∈ RPP , say c =
p

t
, where p ∈ P and t /∈ R \ P ,

then we have pqw = 0 for some q ≥ 1. Hence cq
w

1
=

0

1
in (TorRn−2(R/D,R/D))P =

TorRPn−2(RP/DP , RP/DP ).

(ii) By item (i), if c ∈ RPP \DP then c is a zero-divisor on TorRPn−2(RP/DP , RP/DP ).

Thus by Lemma 4.21, TorRPn−1(RP/(RP c+DP ), RP/DP ) 6= 0.

(iii) Assume to the contrary that there is a regular element c ∈ RPP . Then c ∈



CHAPTER 4. THE BAZZONI–GLAZ CONJECTURE 113

RPP \ DP (since otherwise c2 = 0). By Proposition 3.9 and Theorem 3.18, DP ⊆ RP c +

ann(c) = RP c and so RP c = RP c + DP . By (ii) we get TorRPn−1(RP/RP c, RP/DP ) 6= 0.

Moreover, we have the s.e.s.

0 // RP
µc // RP

π // RP/RP c // 0,

where µc is multiplication by c and π is the natural projection, giving a free resolu-

tion for the RP -module RP/RP c. Thus w.dimRP (RP/RP c) ≤ 1 and so, in particular,

TorRPk (RP/RP c, RP/DP ) = 0 for all k ≥ 2. However, by Proposition 4.9, we have n ≥ 3

and, from (ii), TorRPn−1(RP/RP c, RP/DP ) 6= 0 and so we have a contradiction. Thus every

element of RPP is a zero-divisor.

(iv) It suffices to show that w.gl.dim(RP ) ≥ n since, by Theorem 2.52, w.gl.dim(RP ) ≤

n. By (ii) we have w.dimRP (RP/DP ) ≥ n− 1. However, if w.gl.dim(RP ) = n− 1, Lemma

4.19 implies that w.dimRP (RP/DP ) < n− 1, a contradiction. Thus w.gl.dim(RP ) = n.

4.7 The finishing touch.

If the Bazzoni–Glaz Conjecture is false then, relabeling the ring RP of Lemma 4.22 as

simply R, properties (i)–(iv) of the Lemma show that there exists a local Gaussian ring

(R,m) with w.gl.dim(R) = n <∞ with n > 1 satisfying the following condition.

(A) Nil(R) = D 6= m and Torn−1(R/(Ra+D), R/D) 6= 0 for every a ∈ m \D.

Note also that w.gl.dim(R) = n ≥ 3 by Proposition 4.9. Then, tensoring the s.e.s.

0 // D i // R π // R/D // 0 .

by R/D produces a long exact sequence for Tor with the following segment

Torn−2(R,R/D) // Torn−2(R/D,R/D) // Torn−3(D,R/D) // Torn−3(R,R/D),

where Torn−2(R,R/D) = 0 = Torn−3(R,R/D) since R is flat. Thus Torn−2(R/D,R/D) '
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Torn−3(D,R/D), so by Lemma 4.22 (i) we can also assume R meets the following condition.

(B) There exists a nonzero element w ∈ Torn−3(D,R/D) such that for every a ∈ m,

aqw = 0 for some q ≥ 1.

Our first result in this section is [DT, Lemma 6.5].

Lemma 4.23. Suppose w.gl.dim(R) = n <∞ and R satisfies condition (A). Then R also

satisfies the following:

(i) m is flat.

(ii) If I = m, D, or ann(c), where c is any element in m, then I = Im. Furthermore,

if x ∈ I, then there exists an element x′ ∈ I and a ∈ m such that x = ax′.

(iii) m/D is not finitely generated.

Proof. (i) By Lemma 4.13 it suffices to show that R has Property 4.10. Suppose to the

contrary that R does not admit Property 4.10. Then there exists d ∈ D with d 6= 0

and a ∈ m \ D such that ann(d) = Ra + D. This gives Rd ' R/ ann(d) = R/(Ra +

D). By Lemma 4.19, we have w.dim(R/D) = n − 1. Then, applying Corollary 2.57,

there is a monomorphism Torn−1(Rd,R/D) −→ Torn−1(R,R/D) = 0. Consequently

Torn−1(R/(Rd+D), R/D) = Tor(Rd,R/D) = 0 contradicting (A). Hence m is flat.

(ii) Using part (i), we have the following flat resolution of R/m:

0 // m // R // R/m // 0,

so w.dimR(R/m) = 1. We show that Tor1(R/I,R/m) = 0 for each nominated ideal I.

First, if I = m, we obtain Tor1(R/I,R/m) = 0 by taking M = R/I in Lemma 4.8.

Next, if I = D we have Tor1(R/I,R/m) = 0 using Lemma 4.3. Lastly, if I = ann(c),

then R/I ' Rc and so Tor1(R/I,R/m) ' Tor1(Rc,R/m). Moreover, by Corollary 2.57,

the inclusion map Rc −→ R induces a monomorphism Tor1(Rc,R/m) −→ Tor1(R,R/m).

However, Tor1(R,R/m) = 0 since R is flat and so 0 = Tor1(Rc,R/m) ' Tor1(R/I,R/m).
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Since Tor1(R/J,R/K) ' (J ∩K)/JK for any ideals J,K of R (see [Osb, Exercise 9,

page 72]), since Tor1(R/I,R/m) = 0 for each I we get (I ∩ m)/Im = 0. Thus I/Im = 0

and so I = Im. Then, for any x ∈ I we have x ∈ Im and so there exist x1, . . . , xs ∈ I

and a1, . . . , as ∈ m such that x = x1a1 + · · · + xsas. Let J be the ideal generated by

a1, . . . , as, x1, . . . , xs. By Theorem 3.14 (b), J/(J ∩ ann(J)) is cyclic, say J/(J ∩ ann(J)) =

R(a+ (J ∩ ann(J))) where a ∈ J ⊆ m. Then, for each i = 1, . . . , s, there is an ri ∈ R such

that ai+(J ∩ann(J)) = ria+(J ∩ann(J)). Thus ai−ria ∈ J ∩ann(J) and so ai = ria+λi

for some λi ∈ J ∩ ann(J). Then x = x1a1 + · · ·+xsas = x1(r1a+λ1) + · · ·+xs(rsa+λs) =

(x1r1+· · ·+xsas)a since xiλi = 0 for every i. Thus x = x′a, where x′ = x1r1+· · ·+xsas ∈ I,

as required.

(iii) Suppose to the contrary that m/D is finitely generated. Then there exist

m1, . . . ,mt ∈ m such that m/D = R(m1 + D) + · · · + R(mt + D). Since R/D is a chain

ring, the ideal R(m1 +D) + · · ·+R(mt +D) in R/D is principal and so we may suppose

that m/D = Ra/D, where a ∈ m/D. Hence m = Ra+D. Taking I = m in (ii) shows that

m = m2 and so Ra+D = (Ra+D)2 = Ra2 +Da+D2 = Ra2 +Da. Thus a = ra2 + d, for

some r ∈ R and d ∈ D. Hence (1− ra)a ∈ D and so, since 1− ra is a unit because a ∈ m,

we obtain a ∈ D. This contradiction shows that m/D is not finitely generated.

We now present [DT, Lemma 6.6].

Lemma 4.24. Suppose w.gl.dim(R) = n < ∞ and R satisfies conditions (A) and (B).

Then there is an element b̄ ∈ m \D such that

for all b ∈ m for which b̄ ∈ Rb + D, there is an element wb ∈ Torn−3(D,R/D) with

D ⊆ ann(wb), bwb 6= 0 but bqwb = 0 for some q ∈ N.

Proof. If n = 3, then Torn−3(D,R/D) = Tor0(D,R/D) = D ⊗ R/D = D/D2 = D since

D2 = 0. Then (B) gives a nonzero element w ∈ D such that, for any a ∈ m, aqw = 0 for

some q ≥ 1. Taking I = D in Lemma 4.23, we see that there exists b̄ ∈ m and w̄ ∈ D
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such that w = b̄w̄. Take any b ∈ m such that b̄ ∈ Rb + D, say b̄ = rb + d, where r ∈ R,

d ∈ D. Let wb = rw̄ ∈ D = Torn−3(D,R/D). Then D ⊆ ann(wb) since D2 = 0 and

bwb = brw̄ = brw̄ + 0 = brw̄ + dw̄ = (br + d)w̄ = b̄w̄ = w 6= 0. Moreover, by (B), there

exists q ∈ N such that bqw = 0 and so bq+1wb = bqbwb = bqw = 0. This shows that the

result holds for n = 3.

Now suppose n > 3. Consider a free resolution of R/D

· · · // R(Xn−3) δn−3 // R(Xn−4) δn−4 // · · · δ3 // R(X2) δ2 // R(X1) δ1 // R(X0) δ0 // R/D // 0

where the Xi are index sets. Let K denote ker(δn−4) and σ : K −→ RX(n−4) be the inclusion

map. Next let σ̄ : K ⊗D −→ D(Xn−4) (= R(Xn−4) ⊗D) be the homomorphism induced by

σ on tensoring the resolution by D. Then Torn−3(D,R/D) = ker σ̄.

Then, by (B), there is a nonzero element w ∈ ker(σ̄) such that, for any a ∈ m, aqw = 0

for some q ≥ 1. Let w = x1⊗d1 +x2⊗d2 + · · ·+xs⊗ds, where xi ∈ K, di ∈ D\0 for each i.

Taking I = D in Lemma 4.23 (ii), we get D = Dm and so, for each i = 1, . . . , s, there exist

ai ∈ m \D, d∗i ∈ D such that di = aid
∗
i . (Note that ai /∈ D since otherwise di = 0.) Since

R/D is a chain ring, the finitely generated ideal
Ra1 + · · ·+Ras +D

D
of R/D is principal

and so there exists a ∈ Ra1 + · · · + Ras such that ai ∈ Ra + D for every i = 1, . . . , s, say

ai = ria + d̄i for some ri ∈ R, d̄i ∈ D. Then di = aid
∗
i = riad

∗
i + d̄id

∗
i = riad

∗
i = ad′i,

where d′i = rid
∗
i ∈ D. Now let w′ = x1 ⊗ d′1 + · · · + xs ⊗ d′s. Clearly aw′ = w and so

aσ̄(w′) = σ̄(w) = 0.

Next note that, since σ̄(w′) is an element ofD(Xn−4), we may identify it with (λ1, . . . , λt)

where each λj is a nonzero element of D and {1, . . . , t} ⊆ Xn−4 represents the (finite) sup-

port of σ̄(w′) in D(Xn−4). Since aσ̄(w′) = 0, we have aλj = 0 for each j. Now, taking

I = ann(λj) in Lemma 4.23 (ii), we see that for each j there exists cj ∈ ann(λj) such

that a ∈ cjm. Because R/D is a chain ring, the ideals
Rcj +D

D
form a chain in R/D

and so for some c ∈ {c1, . . . , ct} we have Rc + D ⊆ Rcj + D for every j. Then for
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each j, c = rjcj + dj for some rj ∈ R and dj ∈ D. Thus cλj = rjcjλj + djλj = 0

since cj ∈ ann(λj) and djλj ∈ D2 = 0. Now, since a ∈ cm, we have a = cb̄ for some

b̄ ∈ m \ D (note that b̄ /∈ D since otherwise we get a ∈ D, a contradiction). Setting

w̄ = cw′, we get σ̄(w̄) = cσ̄(w′) = c(λ1, . . . , λt) since cj ∈ ann(λj) for all j and so

w̄ ∈ ker(σ̄). Also b̄w̄ = b̄cw′ = aw′ = w 6= 0 while, for any d ∈ D, we have since

dw̄ = dcw′ = cd
∑s

i=1(xi ⊗ di) = d
∑s

i=1(cxi ⊗ ddi) = 0 since ddi ∈ D2 = 0.

Now choose b ∈ m such that b̄ ∈ Rb + D. This gives b̄ = rb + d for some r ∈ R,

d ∈ D. Set wb = rw̄. Then, for any d∗ ∈ D, d ∗ wb = rd ∗ w = 0 so D ⊆ ann(wb).

Moreover bwb = brw̄ = brw̄ + 0 = brw̄ + dw̄ = (br + d)w̄ = b̄w̄ 6= 0. By condition (B), for

each a ∈ m, there exists q ≥ 1 such that bqw = 0. Then bq+1wb = bq+1rw̄ = bq+1rcw′ =

bqrbcw′ = bq(b̄ − d)cw′ = bq b̄cw′ − bqdcw′ = bqaw′ − bqdcw′ = bqw − bqc
∑s

i=1(xi ⊗ ddi) =

0− bqc
∑s

i=1(xi ⊗ 0) = 0, as desired.

Next we give [DT, Lemma 6.7] which gives further conditions a counterexample to

the Bazzoni–Glaz Conjecture must have.

Lemma 4.25. Let w.gl.dim(R) = n <∞. If R satisfies conditions (A) and (B) then there

is a P ∈ Spec(R) satisfying the following properties:

(i) DP 6= PRP and each element of PRP is a zero-divisor. Also, there is an element

d ∈ D such that d/1 ∈ DP is nonzero and, if c ∈ PRP , (d/1)cq = 0 for some q ∈ N.

(ii) if c ∈ PRP \DP , then TorRPn−1(RP/(RP c+DP ), RP/DP ) 6= 0.

(iii) w.gl.dimRP = n.

Proof. (i) Choose b ∈ m\D as given by Lemma 4.24. Next choose d ∈ ann( b ), d 6= 0, and

set P = {a ∈ m : aqd = 0 for some q ∈ N}. Then P ∈ Spec(R) by Lemma 3.29 and b ∈ P

since bd = 0. We next show that b/1 6∈ DP . To see this, suppose to the contrary that

(b/1)2 = 0/1. Then there is an s ∈ R \ P such that sb
2

= 0. Recall that in this section we
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are assuming that Nil(R) = D and so D is a prime ideal. This gives either s ∈ D or b ∈ D.

Since D ⊆ P , we can’t have s ∈ D. On the other hand, by its definition, b 6∈ D. Thus this

contradiction gives b/1 6∈ DP and so DP 6= PRP . Note also that, by the definition of P ,

given any c ∈ P , there is a positive integer q such that cqd = 0 and so cq(d/1) = 0.

(ii) By Lemma 4.21, applied to RP instead of R, it suffices to show that every c ∈ PRP

is a zero-divisor on TorRPn−2(RP/DP , RP/DP ). To this end, consider the following s.e.s. of

RP -modules with i as the inclusion map and π as the natural epimorphism

0 // DP
i // RP

π // RP/DP
// 0

Tensoring this sequence with RP/DP , we can then form the associated long Tor exact

sequence, a part of which is given by

0 = TorRPn−2(RP , RP/DP ) // TorRPn−2(RP/DP , RP/DP )

��

TorRPn−3(DP , RP/DP ) // TorRPn−3(RP , RP/DP ) = 0.

From this we see that TorRPn−2(RP/DP , RP/DP ) ' TorRPn−3(DP , RP/DP ) and so it suffices

to show that each c is a zero-divisor on TorRPn−3(DP , RP/DP ). Moreover, it is clear that we

need only consider elements c of the form b/1 where b ∈ P \D. Since R/D is a chain ring,

given such a b and with b as above, the ideals Rb + D and Rb + D are comparable. This

gives two cases to consider: either b ∈ Rb+D or b ∈ Rb+D.

Case 1: b ∈ Rb + D. In this case, Lemma 4.24 tells us there is an element wb in

Torn−3(D,R/D) such that D ⊆ ann(wb), bwb 6= 0 but bqwb = 0 for some q ∈ N. We now

show that wb/1 is a nonzero element of (Torn−3(D,R/D))P ' TorRPn−3(DP , RP/DP ). If not,

then there is an a ∈ R \ P such that awb = 0. Since b ∈ P and R/D is a chain ring, we

must have Rb+D ⊆ Ra+D and this gives b = ra+ e say, where r ∈ R and e ∈ D. Then
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bwb = rawb + ewb = 0, noting that D ⊆ ann(wb). This is in contradiction to the defining

properties of wb and so wb/1 is non-trivial in TorRPn−3(DP , RP/DP ) and, since bq(wb/1) = 0,

b is a zero-divisor on TorRPn−3(DP , RP/DP ), as required.

Case 2: b ∈ Rb + D. Here we have b = rb + f where r ∈ R and f ∈ D. As in case

1, with the roles of b and b reversed, there is a nonzero element w ∈ TorRPn−3(DP , RP/DP )

such that bw = 0. Then, since bw = rbw + fw = 0 + 0, it follows that b is a zero-divisor

on TorRPn−3(DP , RP/DP ), as required.

(iii). Since w.gl.dim(R) = sup{w.gl.dim(RP ) : P ∈ Spec(R)} for any commutative

ring R, it suffices to show that w.gl.dim(RP ) ≥ n. By (ii) we have w.dimRP (RP/DP ) ≥ n−1

and so, by Lemma 4.19, w.gl.dim(RP ) ≥ n, as claimed.

It follows from the properties of the ring RP of Lemma 4.25 that if the Bazzoni-Glaz

conjecture is false then there exists a local Gaussian ring (R,m) such that w.gl.dim(R) =

n < ∞, all the elements of m are zero-divisors, and the following two properties are

satisfied:

(A)(As earlier,) Nil(R) = D 6= m and Torn−1(R/(Ra + D), R/D) 6= 0 for every

a ∈ m \D.

(C) There is a nonzero element d ∈ D such that, for any c ∈ m, we have cqd = 0 for

some q ∈ N.

Lemma 4.26. Let w.gl.dim(R) = n <∞ and suppose that R has properties (A) and (C).

Then, for some a ∈ m \D, we have Torn−1(R/(am +D), R/D) = 0.

Proof. Choose an element d ∈ D as given in property (C). By Lemma 4.23 (ii), taking

I = D, there are elements d∗ ∈ D and c ∈ m such that d = cd∗. Note that c ∈ m \D since

d 6= 0. Using Lemma 4.23 (ii) again, this time taking I = m, there are elements a, b ∈ m

such that c = ab. Note that since c ∈ m \D, we must have a, b ∈ m \D also.
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Now let X denote the set of all ideals Iα of R such that Ra + Rb + D ⊆ Iα ⊆ m

and Iα/D is finitely generated. Then (R/(aIα + m);φα,β)}I∈X is a direct system with

aIα + m < aIβ + m if Iα ⊆ Iβ and, in this case φα,β : R/(aIα + m)→ R/(aIβ + m) is given

by φα,β(r + (aIα + m)) = r + (aIβ + m) for all r ∈ R. Then, taking Jα = aIα for each α

and A = D in Lemma 2.27, we get lim−→Iα∈X
R/(aI + D) = R/(am + D). Then, by Lemma

2.46 (ii), we get that Torn−1(R/(am+D), R/D) = lim−→Iα∈X
Torn−1(R/(aI+D), R/D). Thus,

to show that Torn−1(R/(am+D), R/D) = 0, by the uniqueness requirement of direct limits

(see Definition 2.22) it suffices to show that, given any Iα ∈ X, the induced direct limit

map

Torn−1(R/(aIα +D), R/D)→ lim−→Iα∈X
Torn−1(R/(aI +D), R/D)

is trivial. To simplify notation, we replace the index α by 1.

Since I1 is finitely generated modulo D and R/D is a chain ring, there is an element

b1 ∈ m \ D for which I1 = Rb1 + D. By Lemma 4.23, R/m is not finitely generated and

so there is an ideal I2 ∈ X with I1 ( I2. As with I1, there is an element b2 ∈ m \ D for

which I2 = Rb2 +D. Since I1 ( I2, there is an r ∈ R such that b1 = rb2 + d2, for some r ∈

R, d2 ∈ D. Note that r ∈ m since otherwise b2 ∈ Rb1 +D, giving I1 = I2, a contradiction.

Furthermore, r 6∈ D since otherwise b1 = rb2 + d2 ∈ D, again a contradiction. Also, by

Theorem 3.18 we have D ⊆ Rb2 + ann(b2), so d2 = sb2 + d1 for some s ∈ R, d1 ∈ ann(b2).

It follows that b1 = rb2 +d2 = xb2 +d1 where x = r+ s. Since b2 6∈ I1 we must have x ∈ m.

Next note that, from the definition of X, we have a ∈ Rb2 + D. Also, if t ∈ ann(b2)

then, since b2 ∈ m \D, we have t ∈ D by Lemma 3.21 and so tD = 0. From this it follows

that ann(b2) ⊆ ann(a). Hence ad2 = 0 and ab1 = axb2 + ad2 = axb2. In particular, this

gives ann(ab2) ⊆ ann(ab1). Now consider the following commutative diagram where the

rows are exact, i is the inclusion map, and µab2 , µx and µab1 are the multiplications by
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ab2, x and ab1 respectively.

0 // ann(ab2) //

i
��

R
µab2 //

1R
��

Rab2

µx

��

// 0

0 // ann(ab1) // R µab1
// Rab1

// 0

We claim that the inclusion i : ann(ab2)→ ann(ab1) is not onto. If otherwise, the first two

downward maps in our diagram would be isomorphisms. Then two simple diagram chases

show that µx is both one-to-one and onto, i.e., also an isomorphism. Now, by the definition

of X, we have b ∈ I2 and so b = qb2 + d3 for some q ∈ R and d3 ∈ D. Then, since D2 = 0,

d = cd∗ = abd∗ = a(qb2 + d3)d∗ = qd∗ab2 ∈ Rab2,

and so xid ∈ Rab2 for all i ≥ 0. By property (C) there is a positive integer k such that

xkd = 0 but xk−1d 6= 0. This gives µx(x
k−1d) = 0 and shows that µx is not an isomorphism,

justifying the claim.

Now note that, since D is prime and a, b1 ∈ m \D, we also have ab1 ∈ m \D and so,

by Lemma 3.21, ann(ab1) ⊆ D. The claim proved above then establishes an element λ ∈ D

such that λ ∈ ann(ab1) but λ 6∈ ann(ab2). From this we get Rab1+D ⊆ ann(λ) ( Rab2+D,

which in turn gives aI1 +D ⊆ ann(λ) ( aI2 +D. Then we have natural epimorphisms

R/(aI1 +D)→ R/ ann(λ)→ R/(aI2 +D). (†)

Note that R/ ann(λ) ' Rλ ( R and, by Lemma 4.19, w.dim(R/D) = n − 1. Then, by

Lemma 2.57, we have a monomorphism Torn−1(Rλ,R/D) → Torn−1(R,R/D) = 0 and so

Torn−1(R/ ann(λ), R/D) = 0. From this, the natural map Torn−1(R/(aI1 + D), R/D) →

Torn−1(R/(aI2 +D), R/D) is trivial since, from (†), it is the composition of the two trivial
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maps Torn−1(R/(aI1+D), R/D)→ Torn−1(R/(ann(λ), R/D) and Torn−1(R/ ann(λ), R/D)

→ Torn−1(R/(aI2+D), R/D). Consequently, the natural map Torn−1(R/(aI1+D), R/D)→

lim−→I∈X
Torn−1(R/(aI +D), R/D) is also trivial, completing the proof.

We now complete the proof of the Bazzoni-Glaz conjecture.

Theorem 4.27. Let (R,m) be a non-reduced local Gaussian ring. If Nil(R)2 = 0 then

w.gl.dim(R) =∞.

Proof. By way of contradiction, assume that w.gl.dim(R) = n <∞. Then, by Proposition

4.9, n ≥ 3. Moreover, by Lemma 4.22, we may assume that R satisfies properties (A) and

(C). By Lemma 4.26, there is an element a ∈ m\D such that Torn−1(R/(am+D), R/D) =

0. We have the following s.e.s.

0 // (aR +D)/(am +D)
f // R/(am +D)

g // R/(aR +D) // 0

where the monomorphism f is given by ar + d + (am + D) 7→ r + (am + D) and the

epimorphism g by r+ (am+D) 7→ r+ (aR+D) for all r ∈ R, d ∈ D. Tensoring with R/D

we get a long Tor exact sequence of which the following is a segment:

Torn−1(R/(am +D), R/D) // Torn−1(R/(aR +D), R/D)

��
Torn−2((aR +D)/(am +D), R/D).

Now define φ : (aR+D)/(am+D) −→ R/m by φ(ar+(am+D)) = r+m for all r ∈ R.

To see that φ is well-defined, suppose that r, s ∈ R with ar+(am+D) = as+(am+D). Then

there is an m ∈ m such that a(r−s−m) = ar−as−am ∈ D. Since D = Nil(R) is a prime

ideal, this gives either r−s−m ∈ D or a ∈ D. The latter contradicts the definition of a and

so r−s−m ∈ D. Then r−s ∈ m and so φ(ar+(am+D)) = r+m = s+m = φ(as+(am+D)),

as required. From here it is straightforward to show that φ is an isomorphism.
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Next, by Lemma 4.23 (i), m is flat and so w.dim(R/m) ≤ 1. Then, using Corollary 4.4

and recalling that n ≥ 3, the isomorphism above gives Torn−2((aR+D)/(am+D), R/D) =

0. Since, as noted earlier, we also have Torn−1(R/(am +D), R/D) = 0, the exact segment

gives Torn−1(R/(aR+D), R/D) = 0. This contradicts property (A) so we are finished.
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