
Grünwald-type approximations

and boundary conditions for

one-sided fractional derivative

operators

Harish Sankaranarayanan

a thesis submitted for the degree of

Doctor of Philosophy

at the University of Otago, Dunedin,

New Zealand.

October 31, 2014





Abstract

The focus of this thesis is two-fold. The first part investigates higher order

numerical schemes for one-dimensional fractional-in-space partial differen-

tial equations in L1(R). The approximations for the (space) fractional

derivative operators are constructed using a shifted Grünwald-Letnikov

fractional difference formula. Rigorous error and stability analysis of the

Grünwald-type numerical schemes for space-time discretisations of the as-

sociated Cauchy problem are carried out using (Fourier) multiplier the-

ory and semigroup theory. The use of a transference principle facilitates

the generalisation of the results from the L1-setting to any function space

where the translation (semi) group is strongly continuous. Furthermore,

the results extend to the case when the fractional derivative operator is

replaced by the fractional power of a (semi) group generator on an arbi-

trary Banach space. The second part is dedicated to the study of certain

fractional-in-space partial differential equations associated with (truncated)

Riemann-Liouville and first degree Caputo fractional derivative operators

on Ω := [(0, 1)]. The boundary conditions encoded in the domains of the

fractional derivative operators dictate the inclusion or exclusion of the end

points of Ω. Elaborate technical constructions and detailed error analy-

sis are carried out to show convergence of Grünwald-type approximations

to fractional derivative operators on X = C0(Ω) and L1[0, 1]. The well-

posedness of the associated Cauchy problem on X is established using the

approximation theory of semigroups. The culmination of the thesis is the

result which shows convergence in the Skorohod topology of the well under-

stood stochastic processes associated with Grünwald-type approximations

to the processes governed by the corresponding fractional-in-space partial

differential equations.

iii





Acknowledgements

I extend my deepest gratitude to my Mathematics Gurus (my supervisors),
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Introduction

The fundamentals of fractional calculus and their applications have been treated by

several authors, see for example [43, 46, 51, 82, 84, 86, 90, 95] and the references

therein. Even though fractional derivatives have existed as long as their integer order

counterparts only in recent decades have fractional derivative models become exciting

new tools in the study of practical problems in displines as diverse as physics [13, 19,

20, 26, 71, 72, 73, 80, 81, 96, 110], finance [69, 89, 93], biology [5, 6] and hydrology [3,

15, 16, 17, 97, 98, 99]. This observation, that fractional derivative models are becoming

increasingly popular among the wider scientific community, is the main motivation to

study numerical schemes for fractional partial differential equations.

From a purely mathematical perspective, fractional partial differential equations

can be thought of as generalizations of the corresponding classical partial differential

equations. On occasions however, fractional partial differential equations do arise natu-

rally as better theoretical models for practical problems in diverse scientific disciplines.

For instance, in geophysical sciences [99], the authors employ the Lévy-Gnedenko

generalised central limit theorem [41] and fractional conservation of mass arguments

[98, 107] to derive fractional-in-space as well as fractional-in-time advection-dispersion

equations. According to the authors, these fractional advection-dispersion equations

provide better models for the motion of an ensemble of particles on Earth’s surface as

measured by the concentration (or mass) in space and time.

In general, particle transport phenomena may involve random states of motion as

well as rest. Therefore, jump length and waiting time between motion of a particle

can be viewed as random variables [15, 98, 99]. It is well known that if the probability

density function that describes the jump length decays at least as fast as an exponential

distribution, then jump length distribution has finite mean and variance. Further,

assuming that the waiting time distribution has finite mean, the concentration (or

mass) in this case may be adequately described by the classical advection-dispersion

equation (Fokker Planck equation). The associated stochastic process, the so-called
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Brownian motion with drift, is governed by the classical advection-dispersion equation

whose fundamental solution is the Gaussian density [41]. The (normal) scaling of

dispersion (Fickian or Boltzmann scaling), described by the standard deviation, is

proportional to t
1
2 .

The term anomalous diffusion is given to diffusion phenomena that cannot be ad-

equately described by the classical advection-dispersion equations. One such scenario

is when jump length follows an infinite-variance distribution. In addition to infinite-

variance jump length distribution, assuming a finite-mean waiting time distribution,

the authors in [99] show that the associated stochastic process (Lévy motion) is Marko-

vian and is governed by fractional-in-space advection-dispersion equation whose fun-

damental solution is a Lévy α-stable density. The diffusion phenomena is referred to as

super-diffusion because of the faster than normal t
1
2 scaling, as the scaling of dispersion

in this case is proportional to t
1
α where 1 < α < 2 is the order of the fractional-in-space

derivative used in the model. Fractional-in-space advection-dispersion equations arise

as natural models when the velocity variations are heavy tailed. On the other hand, as-

suming infinite-mean waiting time distribution, the associated stochastic process (Lévy

motion subordinated to an inverse Lévy process) is shown to be non-Markovian and

is governed by a fractional-in-time advection-dispersion equation whose fundamental

solution is a subordinated Lévy α-stable density. The diffusion phenomena inherits

the name sub-diffusion in this case since the scaling of dispersion is proportional to t
γ
2

where 0 < γ < 1 is the order of the fractional-in-time derivative used in the model.

A comprehensive review of random walk and other theoretical models for anomalous

sub-diffusion and super-diffusion as well as evidence of the occurence of anomalous dy-

namics in various fields such as biology, geophysics, physics and finance can be found

in [80, 81].

The connection of fractional calculus with probability theory that we have briefly

outlined above is interesting in its own right. Evidently, this provides an insight into

the stochastic processes governed by fractional partial differential equations. More

importantly, this link also provides new tools from probability theory that can be used

in the search for numerical solutions for fractional partial differential equations. For

instance, Feller investigated the semigroups generated by a certain pseudo differential

operator and identified the underlying stochastic processes [40]. As it turns out, these

processes are governed by a certain diffusion equation obtained by replacing the second-

order space derivative by the pseudo differential operator in the classical diffusion

equation [44, 45, 94]. The fundamental solutions of this diffusion equation generate all
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the Lévy stable densities with index α ∈ (0, 2]. In [44, 45], this diffusion equation is

revisited using a random walk model that employs the Grünwald-Letnikov difference

scheme where the authors refer to the equation as Lévy-Feller diffusion equation and

the processes governed by them as Lévy-Feller processes. Theoretical and numerical

methods as well as connections with stochastic processes for various types of fractional

partial differential equations have been investigated by several authors, see for example

[3, 7, 9, 28, 70, 71, 72, 74, 79, 97] and the references therein. In [76], the authors provide

an in-depth treatment on the connection of fractional calculus to stochastic processes

from a probabilistic perspective.

Inevitably, two crucial issues have to be addressed in the study of fractional par-

tial differential equations. Firstly, the existence and uniqueness of solutions; that is,

whether the associated Cauchy problem is well-posed in the function space framework

chosen for study. Secondly, the consistency and stability of numerical schemes used to

solve the fractional partial differential equations. The latter is particularly important

since the inclusion of an external forcing function and/or the imposition of boundary

conditions, especially in practical applications, could make the task of finding analytical

solutions elusive [109].

The well-posedness of the Cauchy problem associated with certain fractional-in-

space partial differential equations on bounded domains in the L2-setting has been in-

vestigated by many authors. By constructing appropriate function spaces and demon-

strating equivalence to fractional Sobolev spaces, variational solutions to the steady

state fractional advection-dispersion equations on bounded domains Ω ⊂ Rn were in-

vestigated in [38, 39]. These authors employ the Lax-Milgram Lemma to show the

existence and uniqueness of solutions in L2(Ω). The authors in [34] study a very gen-

eral class of non-local diffusion problems on bounded domains of Rd using non-local

vector calculus and non-local, non-linear conservation laws developed in [33, 35]. Ac-

cording to the authors, certain fractional derivative models for anomalous diffusion

are special cases of their non-local diffusion model. In particular, the authors claim

that the fractional Laplacian and the symmetric version (with α = 2s) of the more

general (asymmetric) fractional derivative operator of [70] are special cases of their

non-local operator. Moreover, they show the well-posedness of steady-state volume-

constrained diffusion problems in L2(Ω), Ω ⊂ Rn. To our knowledge, the issue of

the well-posedness of the Cauchy problem associated with fractional-in-space partial

differential equations on bounded domains in function spaces other than L2(Ω) has not

been completely resolved.

3



Several works have addressed the need for numerical methods to solve different types

of fractional partial differential equations. For instance, higher order linear multi-step

methods to solve Abel-Volterra integral equations, of which fractional differential equa-

tions form a sub-class [31], were made popular by [63] in the 1980s using convolution

quadratures and fast fourier transforms [49]. Since then, linear multi-step methods

have been used by many authors, see for example [61, 64, 65, 66], to numerically solve

fractional integral equations and fractional partial differential equations. A review and

some applications of these methods can be found in [67]. Algorithms as well as the

difficulties encountered while implementing such numerical schemes were discussed in

[31, 32]. Matrix methods for approximating fractional integrals and derivatives have

been investigated in [87, 88]. In [109], a fractional weighted average finite difference

method along with von Neumann stability analysis of the numerical schemes was car-

ried out. An implicit numerical scheme for (time) fractional diffusion equation based

on finite difference approximations was developed in [59].

In [62], the authors investigate computationally efficient numerical methods for

fractional-in-space diffusion equation with insulated ends obtained by replacing the

second order space derivative in the classical diffusion equation by a Caputo fractional

derivative of order 1 < α < 2. They use an explicit finite difference method and the

method of lines to obtain numerical solutions. Stability and convergence of the explicit

finite difference numerical method along with its scaling restriction were discussed.

A similar method was also used in [100] combined with Grünwald-Letnikov difference

scheme for space discretisation to solve a fractional Fokker-Planck equation. In [75, 77,

78, 101, 102], the authors develop a fractional Crank-Nicolson scheme using a shifted

Grünwald formula to solve fractional-in-space partial differential equations. In very

recent works [103, 112], a third order numerical method using a weighted and shifted

Grünwald difference scheme for (space) fractional diffusion equations in one and two

dimensions was developed. The authors carry out the analysis of numerical stability

and convergence with respect to discrete L2-norm.

Space fractional derivative operators are non-local. Thus, they can be used to

characterise influences from a distance, for example super-diffusion phenomena [99].

In this thesis, we are particularly interested in fractional-in-space partial differential

equations which can be used to model such non-local behaviour in space. Our numerical

approximations for the (space) fractional derivative operators are also constructed using

a shifted Grünwald formula [44, 45, 77, 112] and so throughout this thesis we refer to

them as Grünwald-type approximations.
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In our study of fractional-in-space partial differential equations, we make an attempt

to address the following fundamental issues that we believe are lacking in the literature.

• Construction of (higher order) numerical approximations for fractional derivative

operators in L1(R) and in other function spaces.

• Stability and smoothing properties of (higher order) numerical approximations

that yield optimal convergence rate with minimal regularity of initial data for

space-time discretisations of the abstract Cauchy problem associated with frac-

tional derivative operators.

• Truncation of fractional derivative operators on a bounded interval Ω ⊂ R for

combinations of boundary conditions such as Dirichlet, Neumann etc. that yield

well-defined operators with desirable properties.

• The question of well-posedness of the abstract Cauchy problems associated with

fractional derivative operators whose domains encode various boundary condi-

tions in function spaces other than L2(Ω), in particular, L1(Ω) and C0(Ω).

• Construction of approximations for (truncated) fractional derivative operators

whose associated stochastic processes can be easily identified and understood.

• Convergence of the stochastic processes associated with the approximation op-

erators to the corresponding stochastic processes associated with the truncated

fractional derivative operators.

Thesis outline:

In the first part of this thesis, in Chapters 1 and 2, we explore convergence with er-

ror estimates for higher order Grünwald-type approximations of semigroups generated

first by a fractional derivative operator on L1(R) and then, using a transference princi-

ple, by fractional powers of group or semigroup generators on arbitrary Banach spaces.

The main motivation for the investigation of higher order schemes are the works of

Meerschaert, Scheffler and Tadjeran [75, 77, 78, 101, 102]. In these articles, the au-

thors explored consistency and stability of numerical schemes for fractional-in-space

partial differential equations using a Grünwald formula with non-negative integer shift

to approximate the fractional derivative operator. In particular, in [102], they showed

consistency if the order of the spatial derivative is less or equal to 2. They obtained

specific error term expansion for f ∈ C4+n(R), where n is the number of error terms, as
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well as proved stability of their fractional Crank-Nicolson scheme, using Gershgorin’s

Theorem to determine the spectrum of the Grünwald matrix. Richardson extrapolation

was then employed to obtain second order convergence in space.

This consistency result was extended for a Grünwald formula with any shift p ∈ R

in [4, Proposition 4.9] where the authors showed that for all

f ∈ Xα(R) := {f ∈ L1(R) : ∃ g ∈ L1(R) with ĝ(k) = (−ik)αf̂(k), k ∈ R},

the first order Grünwald scheme

Aαh,pf(x) =
1

Γ(−α)

1

hα

∞∑

m=0

Γ(m− α)

Γ(m+ 1)
f(x− (m− p)h) (1)

converges in L1(R) to the fractional derivative operator f (α) as h → 0+. Here ĝ(k) =∫∞

−∞
eikxg(x) dx denotes the Fourier transform of g ∈ L1(R) and for f ∈ Xα(R), f

(α) = g

iff (−ik)αf̂(k) = ĝ(k) for all k ∈ R. In Section 1.5 we improve this result further and

develop higher order Grünwald-type approximations Ãαh . In Corollary 1.6.3 we give a

consistency error estimate of the form

∥∥∥Ãαhf − f (α)
∥∥∥
L1(R)

≤ Chn‖f (α+n)‖L1(R) (2)

for an n-th order scheme.

Using a Carlson-type inequality for periodic multipliers developed in Section 1.3.2

(Theorem 1.3.4) we investigate the stability and smoothing of Grünwald-type approx-

imation schemes Ãαh . The main tool is Theorem 2.1.1 which gives a sufficient con-

dition for multipliers associated with difference schemes approximating the fractional

derivative operator to lead to stable schemes with desirable smoothing. In particu-

lar, we show in Proposition 2.1.2, that stability for a numerical scheme using (1) to

solve the Cauchy problem associated with fractional derivative operator f (α) where

2q − 1 < α < 2q + 1, q ∈ N can only be achieved for a unique shift p in the Grünwald

formula. That is, it is necessary that p = q for (−1)q+1Aαh,p to generate bounded semi-

groups on L1(R) where the bound is uniform in h. Furthermore, in Theorem 2.1.6, we

prove stability and smoothing of a second order scheme.

Developing the theory in L1 allows in Section 2.2 the transference of the theory to

fractional powers Aα of the generator −A of a strongly continuous (semi-)group G on

a Banach space (X, ‖ · ‖), noting that f(x− (m− p)h) in (1) will read as G((m− p)h)f

[4]. The abstract Grünwald approximations with the optimal shifts generate analytic

semigroups, uniformly in h, as shown in Theorem 2.2.1. This is the main property
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needed in Corollary 2.2.3 to show that the error between Sα(t)f = et(−1)q+1Aαf and a

fully discrete approximation un obtained via a Runge-Kutta method with stage order

s, order r ≥ s+ 1, and an N + 1 order Grünwald approximation is bounded by

‖Sα(t)f − un‖ ≤ C

(
n−r‖f‖+ hN+1

∣∣∣∣log
t

hα

∣∣∣∣ ‖AN+1f‖

)
, h > 0, t = nτ.

In error estimates, the smoothing of the numerical scheme is used in an essential way

to reduce the regularity requirements on the initial data. Further, this yields error

estimates of the numerical approximation schemes applied to Cauchy problem asso-

ciated with fractional derivative operators in spaces where the translation semigroup

is strongly continuous, such as Lp(R), 1 ≤ p < ∞, BUC(R), C0(R), etc. Using the

abstract setting we can also conclude that the consistency error estimate (2) holds in

those spaces, with the L1 norm replaced by the appropriate norm. Section 2.3 marks

the conclusion of the first part of this thesis with results of some numerical experi-

ments, including a third order scheme, that highlight the efficiency of the higher order

schemes as well as the sharpness of the error estimates depending on the smoothness

of the initial data. The results from the first part of this thesis have been accepted

for publication in Transactions of the American Mathematical Society and available

online [8].

Let us turn our attention to the second part of this thesis. The Fokker-Planck

equation of a Lévy stable process on R is a fractional-in-space partial differential equa-

tion. The (space) fractional derivative operator is non-local with infinite reach. In the

second part of this thesis, in Chapters 3 and 4, we investigate (truncated) Riemann-

Liouville and first degree Caputo fractional derivative operators of order 1 < α < 2 on a

bounded interval, Ω := [(0, 1)]. The interval Ω may or may not contain its end point(s)

depending on the boundary conditions encoded by the domain of the (truncated) frac-

tional derivative operator under consideration. We show convergence in the Skorohod

topology of easily identifiable finite state (sub)-Markov processes to a (sub)-Markov

process governed by the Fokker-Planck equation on Ω associated with the (truncated)

fractional derivative operators. Observe that the fractional derivative operators that

we consider below on function spaces defined on the interval Ω are one-sided. The ap-

proach employed in [34] applies only to the symmetric fractional derivative operators as

mentioned earlier and therefore do not extend to one-sided fractional derivative opera-

tors. However, the boundary conditions that we consider can be interpreted as special

cases of the volume constraints employed in [34] and related works (one-dimensional

mass constraints).
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The stage is set in Section 3.1 where we discuss the general theoretical framework.

Here we exploit the fact that the convergence, uniformly for t ∈ [0, t0], of Feller semi-

groups on C0(Ω) implies convergence of the corresponding processes in the Skorohod

topology. To do this, we turn a finite state (sub)-Markov processes into a Feller pro-

cess by creating parallel copies of the finite state processes whose transition matrices

interpolate continuously. The main idea behind the construction of these (continuous)

interpolation matrices is the division of the interval [0, 1] into n + 1 grids of equal

length h so that the (Feller) process can jump between grids only in multiples of h.

The transition operators on

X = C0(Ω) or L1[0, 1].

are constructed using these interpolation matrices. These transition operators are

then employed in Chapter 4 to construct the Grünwald-type approximations for the

fractional derivative operators on X. In Section 4.3, we show that the Grünwald

(transition) approximation operators are the generators of the backward or forward

semigroups associated with the extended finite state (sub)-Markov processes and thus

identify the processes associated with the Grünwald approximation operators.

The central objects of study, the one-sided fractional derivative operators, are in-

troduced in Section 3.3.2. The one-sided fractional derivative operators are denoted in

general by (A,BC) : D((A,BC)) ⊂ X → X whose domains D((A,BC)) encode a par-

ticular combination of boundary conditions denoted by BC. The boundary conditions

that we consider are Dirichlet, Neumann and Neumann*, where the latter appears nat-

urally in the adjoint formulation of the fractional derivative operators in L1[0, 1] with

a right Neumann boundary condition. We consider functions of the form

f = Iαg + apα + bpα−1 + cpα−2 + dp0, g ∈ X (3)

as candidates for the domain of the fractional derivative operators, where a, b, c, d ∈ R

are determined by the boundary conditions and pβ = xβ

Γ(β+1)
. The crucial point to note

here is the structure of the domains of the fractional derivative operators. That is, the

domains are defined as the range of the corresponding fractional integral operators Iα,

supplemented by a linear combination of some particular power functions with constant

weights that encode the regularity as well as the boundary conditions BC satisfied by

the functions in the domain.

In Sections 3.4 and 4.1, well-posedness of the associated one-dimensional fractional-

in-space partial differential equations is established using the approximation theory of
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semigroups [2, 37, 52, 85]. That is, we show that the fractional derivative operators

(A,BC) generate strongly continuous contraction semigroups on X. To do this, in

Section 3.4, we show that (A,BC) are densely defined, closed operators and that rg(λI−

A) are dense in X for some λ > 0. To make use of the Lumer-Phillips Theorem we

further require that the operators (A,BC) are dissipative which is established using

the convergence property of the Grünwald-type approximations, Proposition 4.3.2.

The Grünwald-type approximation operators Gh are constructed in Chapter 4 using

the general theory for numerical schemes developed in Sections 3.1 and 3.2. For the

numerical scheme, the boundary conditions BC are encoded into the generic n × n

shifted Grünwald matrix where h = 1
n+1

, n ∈ N given by

Gh
n×n =

1

hα




bl1 Gα0 0 · · · 0
... Gα1

. . . . . .
...

...
...

. . . . . . 0

bln−1 Gαn−2 · · · Gα1 Gα0

bn brn−1 · · · · · · br1



, (4)

using the boundary weights bli, b
r
i and bn. The n × n shifted Grünwald matrices Gh

n×n

play the role of the transition rate matrices of the underlying finite state sub-Markov

processes.

In Section 4.2, we first discuss the adjoint formulation of the abstract Cauchy

problem on X associated with the fractional derivative operators. In doing so, we list

the corresponding fractional derivative operators on X that are approximated by the

Grünwald transition operators constructed using these boundary weights. Following

that we conjecture the physical interpretation of the stochastic processes that would

give rise to these different boundary conditions BC and discuss our reasons behind

the choice of the boundary weights bli, b
r
i , and bn that appear in the generic Grünwald

matrix (4.1) in the L1[0, 1] case. In Section 4.4 we provide some examples of numerical

solutions to the Cauchy problem associated with the fractional derivative operators

(A,BC) on L1[0, 1] and the initial value u0 ∈ L1[0, 1].

In Section 4.3, we prove the key result, Proposition 4.3.2, that the Grünwald tran-

sition operators converge to the respective fractional derivative operators on X. That

is, for each f ∈ D(A,BC) we show that there exist sequences fh ∈ X such that fh → f

and Ghfh → Af in X for each of the fractional derivative operators (A,BC). This

as it turns out involves detailed error analysis employing elaborate constructions of

appoximations for the power functions pβ that appear in (3) above. This result is
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essential firstly to show that the fractional derivative operators (A,BC) are dissipa-

tive. Using Proposition 4.3.2, we also conclude that the semigroups generated by the

operators (A,BC) are the strong (and uniform for t in compact intervals) limit of the

semigroups generated by the Grünwald transition operators using the Trotter-Kato

Theorem. As a consequence, the underlying Feller processes associated with Grünwald

approximations converge in the Skorohod topology to the Feller processes governed

by the corresponding fractional-in-space partial differential equations. This identifies

the processes governed by the fractional-in-space partial differential equations with

boundary conditions BC as limits of processes whose boundary behaviour is perfectly

understood.
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Chapter 1

Grünwald-type approximations of

fractional derivative operators on

the real line

In this chapter we study Grünwald-type approximations for the fractional derivative

operators on R. We explore convergence and conduct a detailed error analysis using

Fourier multiplier theory. Following that, combining Grünwald formulae with different

shifts and step sizes, higher order Grünwald-type approximations are constructed for

the fractional derivative operators on R. We show convergence of the higher order

approximations to the fractional derivative operators with optimal convergence rate

under minimal regularity assumptions.

1.1 Fractional derivative operators on R

The error analysis of higher order Grünwald-type numerical approximations of frac-

tional derivative operators on R is carried out using multiplier theory. To facilitate

this, we define the fractional derivatives of L1(R)-functions in the Fourier or Laplace

space depending on the support of the function under consideration. To define the

fractional derivative operator of order α ∈ R+ using Fourier transform if f ∈ L1(R)

and Laplace transform if f ∈ L1(R
+), let us begin with the following two spaces.

Definition 1.1.1. Let α ∈ R+ and zα := |z|α eiα arg z be as in Remark B.3.4. Then, we

define the following two spaces:

1.

Xα(R) := {f ∈ L1(R) : ∃ g ∈ L1(R) with ĝ(k) = (−ik)αf̂(k), k ∈ R},
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where f̂(k) and ĝ(k) denote the Fourier transforms of f and g, respectively, given

by (B.3).

2.

Xα(R
+) := {f ∈ L1(R

+) : ∃ g ∈ L1(R
+) with ĝ(z) = (−z)αf̂(z), Re z ≤ 0},

where f̂(z) and ĝ(z) denote the Laplace transforms of f and g, respectively, given

by (B.6).

Here is the formal definition of the fractional derivative operator on R that we use

in this thesis.

Definition 1.1.2. For f ∈ Xα(R), if g ∈ L1(R) and

(−ik)αf̂(k) = ĝ(k), k ∈ R,

then we define

f (α) := g.

Along similar lines for f ∈ Xα(R
+), we define f (α) := g, if g ∈ L1(R

+) and (−z)αf̂(z) =

ĝ(z) for Re z ≤ 0.

To keep the notation simple, we denote the norms in both these spaces by ‖f‖α,

that is, we set

‖f‖α :=
∥∥f (α)

∥∥
L1(R)

, for f ∈ Xα(R) and

‖f‖α :=
∥∥f (α)

∥∥
L1(R+)

, for f ∈ Xα(R
+). (1.1)

To connect the above definition of fractional derivatives on R with the standard

definitions of fractional derivatives found in the literature, we list the definitions of the

Riemann-Liouville fractional integrals and derivatives.

Definition 1.1.3. Let α > 0 and f ∈ L1(R), then the so called (left-sided) Riemann-

Liouville fractional integral (if a = 0) or Liouville fractional integral (if a = −∞) of

order α, is defined by

aI
α
x f(x) :=

∫ x

a

(x− s)α−1

Γ(α)
f(s) ds, x > a

where the lower limit of the integral a ∈ R is fixed or a = −∞, while the upper limit

x ∈ R is variable, see [86, p. 65] and [95, p. 33 and 94].
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This definition of fractional integral is well-defined for any piecewise continous func-

tion f ∈ L1(a, b), however, for our purposes we take L1(R) as the domain of definition.

Definition 1.1.4. For α > 0, let n = ⌈α⌉ denote the least integer greater than α, then

the so called Riemann-Liouville fractional derivative, Dα : D(Dα) → L1(R) is defined

by

Dαf(x) := Dn
(
−∞I

n−α
x f(x)

)

with domain

D(Dα) :=
{
f ∈ L1(R) : −∞I

n−α
x f ∈ W n,1(R)

}
,

where Dn denotes the integer order derivative of order n on R with respect to vari-

able upper limit of the fractional integral and the Sobolev space W n,1(R) is given in

Definition B.1.1.

Remark 1.1.5. Let f ∈ D(Dα), then D̂αf(k) = (−ik)αf̂(k) [95, p. 137-139]. Thus,

f (α) = Dαf a.e.; that is, the function f (α) defined uniquely in Definition 1.1.2 is equal

to the Riemann-Liouville fractional derivative Dαf given by (1.1.4) almost everywhere

by the uniqueness of the Fourier transform of L1(R)-functions.

1.2 Grünwald-type approximations

In the Grünwald-Letnikov approach to fractional calculus, the fractional derivative of

arbitrary order α > 0 is defined as the limit of the corresponding fractional difference

quotient [86, 95],

aD
α
xf(x) = lim

h→0
nh=x−a

h−α

(
n∑

m=0

Gαmf(x−mh)

)
, (1.2)

where a and x are the lower and upper terminals, respectively and Gαm = (−1)m
(
α
m

)

are given by (A.1). Podlubny [86, p.63] demonstrates the equivalence of the Riemann-

Liouville and the Grünwald-Letnikov definitions of the fractional derivative under the

assumption that f is m+ 1-times differentiable where α < m+ 1. Thus, in numerical

schemes, it is natural to use the Grünwald-Letnikov formula (1.2) with a fixed step

size h to approximate the fractional derivative operator. Here is the formal definition

of the shifted Grünwald formula that we use to approximate the fractional derivative

operator on R, (also see [44], [77], [105]).
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Definition 1.2.1. Let f ∈ L1(R) and h > 0, then the p-shifted Grünwald formula is

given by

Aαh,pf(x) :=
1

hα

∞∑

m=0

Gαmf(x− (m− p)h), (1.3)

where the shift p ∈ R and the properties of the Grünwald coefficients, Gαm = (−1)m
(
α
m

)

can be found in Appendix A.

Observe the shift p used in the argument of the function f compared to (1.2) above.

Meerschaert et al. in [77] used this Grünwald formula, a modified version of (1.2),

with a non-negative integer shift p, to numerically approximate the Riemann-Liouville

fractional derivative. The authors also proved stability of their numerical scheme for

space-fractional advection dispersion equation with 1 < α < 2, using the Grünwald

formula for space discretisation with shift p = 1 and the implicit Euler method for

time discretisation. In the same article in Remark 2.5, and in [102] in Remark 3.2,

the authors mention that the Grünwald formula with no shift or any shift p yields

first order consistency of numerical schemes for fractional-in-space partial differential

equations. However, they attribute the best performance of the numerical schemes to

the optimal shift p obtained by minimising
∣∣p− α

2

∣∣. In [44], the authors refer to the

optimal shift as a ”clever” shift using which yields a consistent approximation for the

Riemann-Liouville fractional derivative for sufficiently smooth functions. We show in

Chapter 2, that more is true of these remarks, that in fact the numerical schemes using

the Grünwald formula with integer shift are stable if and only if the shift p is optimal.

Remark 1.2.2. We make a clarification of the convention that we adopt at this juncture.

When we apply the shifted Grünwald formula (1.3) to a function f ∈ L1(R
+), we always

assume implicitly that f is extended to L1(R) by setting f(x) = 0 for x < 0. To keep

matters simple, we will also refer to this extended function as f . In the case when the

shift p > 0 we regard Aαh,p as an operator on L1(R). However, in the case when p ≤ 0,

with this convention, one can verify that the support of Aαh,pf is contained in R+ and

hence Aαh,p can be regarded as an operator on L1(R
+). Indeed, for p ≤ 0 if x < 0, then

for all m ∈ N, x− (m−p)h ≤ x+ph ≤ x < 0 which, in view of our convention, implies

that f(x− (m− p)h) = 0 and hence Aαh,pf(x) = 0.

The following result of Tadjeran et al. [102], that the numerical schemes that employ

the shifted Grünwald formula yields second order consistency is our main motivation to

explore higher order schemes. Let the Sobolev space W 1,3+n(R) be given by Definition

B.1.1 and 1 < α < 2. Then, for f ∈ W 1,3+n(R), the authors showed that the error

term expansion for the numerical approximation of the Riemann-Liouville fractional
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derivative of order α by the (non-negative integer) shifted Grünwald formula is given

by

Aαh,pf(x)−Dαf(x) =
n−1∑

l=1

(
alD

α+lf(x)
)
hl +O(hn),

where the constants al are independent of f, h and x. In the same paper, the au-

thors proved stability of their fractional Crank-Nicolson scheme by determining the

spectrum of the Grünwald matrix associated with the shifted Grünwald formula using

Gershgorin’s Theorem. Moreover, their fractional Crank-Nicolson scheme was shown

to be consistent with a second order in time and first order in space local trunca-

tion errors. Furthermore, they obtained a second order local truncation error in space

employing the Richardson extrapolation method.

This result that the Grünwald approximation for the fractional derivative is con-

sistent was further refined by Baeumer et. al. in [4, Proposition 4.9] to all f ∈ Xα(R)

with any shift p ∈ R where Xα is given in Definition 1.1.1, that is, Aαh,pf → Dαf in

L1(R) as h → 0+. A proof for the unshifted case, p = 0 with α > 0 and f ∈ Xα(R
+)

can be found in [106, Theorem 13]. We generalise these results in Theorem 1.6.2 under

minimal regularity assumptions. That is, for f ∈ Xα+β(R) the convergence rate of

the first order Grünwald-type approximation for the fractional derivative operator in

L1(R) can be further fine-tuned to the order hβ, 0 < β ≤ 1 as h → 0+. If p ≤ 0,

then the same convergence rate holds in L1(R
+) for f ∈ Xα+β(R

+). Following that,

in Section 1.5, we construct higher-order Grünwald-type approximations for the frac-

tional derivative operator on R, by combining Grünwald formulae with different shifts

p and accuracy h such that the lower order error terms cancel out. We then conduct

a detailed error analysis using Fourier multipliers and conclude this chapter with the

main result, Corollary 1.6.3 on the consistency of the higher order schemes.

To begin with, we show that the shifted Grünwald formula given in Definition 1.2.1,

maps L1(R) into L1(R) and derive an explicit formula for its Fourier transform.

Lemma 1.2.3. Let f ∈ L1(R), α ∈ R+, p ∈ R, h > 0 be fixed, and the shifted

Grünwald formula Aαh,p be given by (1.3), then

Aαh,pf ∈ L1(R).

Moreover, its Fourier transform is given by

̂(Aαh,pf)(k) = ωα,p(−ikh)f̂ (α)(k),

where ωα,p(z) =
(

1−e−z

z

)α
ezp.
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Proof. Take note that the series
∑∞

m=0 G
α
m is absolutely convergent, see (A.10). Thus,

the iterated integral

∞∑

m=0

∫

R

|Gαmf(x− (m− p)h)| dx ≤
∞∑

m=0

|Gαm| ‖f‖L1(R)
<∞

and the use of Fubini’s theorem [92, p. 141], is justified. Hence,

∥∥Aαh,pf
∥∥
L1(R)

=

∫

R

∣∣∣∣∣
1

hα

∞∑

m=0

Gαmf(x− (m− p)h)

∣∣∣∣∣ dx

≤
1

hα

∞∑

m=0

|Gαm|

∫

R

|f(x− (m− p)h)| dx

≤
1

hα

∞∑

m=0

|Gαm| ‖f‖L1(R)
<∞.

Therefore, the Fourier transform of the shifted Grünwald formula exists and using

Fubini’s theorem once again, we have

̂(Aαh,pf)(k) = h−α
∞∑

m=0

Gαm

∫

R

eikxf(x− (m− p)h) dx

= h−α
∞∑

m=0

(−1)m
(
α

m

)
eik(m−p)hf̂(k)

The Fourier transform of the Grünwald formula can be written in the following product

form using the Binomial series (A.4),

̂(Aαh,pf)(k) = h−α
∞∑

m=0

(−1)m
(
α

m

)
eik(m−p)hf̂(k)

= h−αe−ikhp(1− eikh)αf̂(k)

= h−α(−ikh)α
(
1− eikh

−ikh

)α
e−ikhpf̂(k)

= ωα,p(−ikh)(−ik)
αf̂(k)

= ωα,p(−ikh)f̂ (α)(k), (1.4)

where we have used Definition 1.1.2 in the last line and introduce the special function

ωα,p(z) =
(

1−e−z

z

)α
ezp.

Remark 1.2.4. Let α ∈ R+ such that 2q − 1 < α < 2q + 1 where q ∈ N and let

ψ(z) = (−1)q+1h−αe−hpz(1− ehz)α. (1.5)
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Note that the second line of (1.4) above shows that for any f ∈ L1(R) the Grünwald

formula (1.3) can be expressed in the multiplier notation of Appendix C.3 as

Aαh,p = T(−1)q+1ψα,h,p

where the Grünwald multiplier is given by

ψα,h,p(k) := ψ(ik) = (−1)q+1h−αe−ikhp(1− eikh)α = (−1)q+1ωα,p(−ikh)(−ik)
α. (1.6)

This fact that the Grünwald formula can be viewed as a multiplier operator naturally

leads us in Section 1.3 to study inequalities that estimate multiplier norms.

Remark 1.2.5. The Grünwald multiplier in Remark 1.2.4 above, involves the function

ωα,p. In the error analysis of the Grünwald schemes, as we will see later, the function

ωα,p : C → C, where α ∈ R+ and p ∈ R, plays a very important role. Hence, for easy

reference we give it a special name, omega function,

ωα,p(z) :=

(
1− e−z

z

)α
ezp

and study this function in detail in Section 1.4.

1.3 Bound for multiplier norms

In this section we study Carlson-type inequalities that bound L1 (Fourier) multi-

plier norms. We refer to Appendix C.3 for the definition and results relating to L1-

multipliers. These inequalities are not only crucial in our error analysis, but also

important in their own right. Firstly, they prove to be particulary useful in scenarios

where only the multipliers are known explicitly while the corresponding measures even

when they exist may not be known. Secondly, these Carlson-type inequalities help

bound multiplier operator norms by solely exploiting the properties of the multipliers

and as a consequence help to show that, in fact, the multipliers under consideration

are L1-multipliers. Thirdly, these inequalities help estimate the L1-norms of functions,

defined as the inverse Fourier transforms of functions in Lr for 1 < r ≤ 2 through

the Lr-norms of the Fourier transform and its derivative. Lastly, as we will see in the

applications in Chapter 2, it turns out that it is essential to consider Lr-spaces for

r 6= 2.

In some situations the Carlson-type inequality, given in Proposition 1.3.1 below, is

not directly applicable. One such scenario is when the decay of the multiplier at infinity
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is insufficient for it to be in Lr but its derivative has more than necessary decay to be

in Lr. In this situation, we employ a partition of unity, and derive a similar result,

thereby enhancing the reach of the Carlson-type inequality. We do this in Section

1.3.1, where we study inequalities for multipliers which along with their generalised

first derivatives belong to Lr(R), for 1 < r ≤ 2. Another scenario where the Carlson-

type inequality cannot be applied is for periodic multipliers. In Section 1.3.2, we study

similar inequalities for periodic multipliers.

1.3.1 Carlson-type inequality

The first inequality that we consider is a special case of a more general Carlson-type

inequality, see [60, Theorem 5.10, p.107]. We give a simple proof here to keep our

discussions self-contained. The case r = 2 is usually referred to in the literature as

Carlson-Beurling Inequality, and can be found in [1, p.429] and [18, 24, 36].

LetW r,1(R), r ≥ 1, denote the Sobolev space of Lr(R)-functions given in Definition

B.1.1 and F(L1) denote the ring of Fourier transforms of L1-functions as in Remark

B.3.2. The following result yields a sharp bound for the L1-multiplier operator norm.

Proposition 1.3.1 (Carlson-type inequality). If ψ ∈ W r,1(R), 1 < r ≤ 2, then

there exists ξ ∈ L1 such that ξ̂ = ψ; that is, ψ ∈ F(L1). Moreover, there exists a

constant C(r) > 0, independent of ξ and ψ, such that

‖ξ‖L1
≤ C(r) ‖ψ‖

1
s
Lr

‖ψ′‖
1
r
Lr
,

where 1
r
+ 1

s
= 1.

Proof. Let ψ ∈ W r,1(R), 1 < r ≤ 2 and set ψ−(k) := ψ(−k), k ∈ R. Then, define

the function ξ := 1
2π
ψ̂− ∈ Ls(R), where

1
r
+ 1

s
= 1, see Remark B.2.2. First, note that

‖ξ‖L1
=
∥∥∥ 1
2π
ψ̂−

∥∥∥
L1

= 1
2π

∥∥∥ψ̂
∥∥∥
L1

and ψ̂′(x) = (−ix)ψ̂(x).

Moreover, recall the Hausdorff-Young-Titchmarsh inequality given by (B.1)

∥∥∥ψ̂
∥∥∥
Ls

≤ (2π)
1
s ‖ψ‖Lr , ψ ∈ Lr, 1 ≤ r ≤ 2,

1

r
+

1

s
= 1.

If ψ ≡ 0 there is nothing to prove. So let us assume that ψ 6≡ 0, then using Hölder’s

inequality in the second line, (B.1) in the third and setting v =
‖ψ′‖Lr

(r−1)1/r‖ψ‖Lr
we have

‖ξ‖L1
=

1

2π

∥∥∥ψ̂
∥∥∥
L1

=
1

2π

(∫

|x|≤v

∣∣∣ψ̂(x)
∣∣∣ dx+

∫

|x|>v

∣∣∣∣
1

x
(xψ̂(x))

∣∣∣∣ dx
)

≤
2

1
r

2π

(
v

1
r

∥∥∥ψ̂
∥∥∥
Ls

+ v
−1
s

∥∥∥(·)ψ̂(·)
∥∥∥
Ls

(r − 1)−1/r

)
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≤ 2
1
r (2π)

1
s
−1
(
v

1
r ‖ψ‖Lr + v

−1
s ‖ψ′‖Lr (r − 1)−1/r

)

=
2

π
1
r (r − 1)

1
r2

‖ψ‖
1
s
Lr

‖ψ′‖
1
r
Lr
.

Therfore, ξ ∈ L1 and so ξ̂ exists. Thus, ψ(k) = 1
2π

̂̂
ψ−(k) = ξ̂(k) for almost all k ∈ R

by the inversion formula for the Fourier transform. Since, ψ and ξ̂ are continuous, this

holds for all k ∈ R.

Remark 1.3.2. In fact, the preceding proof shows that ψ is an L1-multiplier and the

Carlson-type inquality can be rewritten in multiplier notation of Appendix C.3 as

‖Tψ‖B(L1) = ‖ξ‖L1
≤ C(r) ‖ψ‖

1
s
Lr

‖ψ′‖
1
r
Lr
,

where C(r) is independent of ψ.

In some cases, the multiplier has insufficient decay to be in Lr while its generalised

derivative might have more than necessary decay to be in Lr. In such scenarios, par-

tition of unity turns out to be an excellent tool to bound the multiplier norm, see

[21, 22, 50]. The following result is a version of Carlson-type inequality employing a

partition of unity.

Corollary 1.3.3. Let ψ : R → C and θj be such that
∑

j∈Z θj(x) = 1 for all x ∈ R. If

θjψ ∈ W r,1(R), 1 < r ≤ 2, for all j and
∑

j ‖θjψ‖
1
s
Lr
‖(θjψ)′‖

1
r
Lr
<∞, where 1

r
+ 1

s
= 1,

then ψ ∈ F(L1); that is, there exists ξ ∈ L1(R) and a constant C(r) independent of ξ

and ψ, such that ξ̂ = ψ and

‖ξ‖L1 ≤ C(r)
∑

j

‖θjψ‖
1
s
Lr
‖(θjψ)

′‖
1
r
Lr
.

Proof. By design, ψ(x) =
∑

j θj(x)ψ(x) for almost all x. Let ξj ∈ L1(R) be such that

ξ̂j = θjψ by Proposition 1.3.1. By assumption, the partial sums
∥∥∥∥∥

n∑

j=−n

ξj

∥∥∥∥∥
L1

≤
n∑

j=−n

‖ξj‖L1
≤ C(r)

∑

j

‖θjψ‖
1
s
Lr
‖(θjψ)

′‖
1
r
Lr
<∞.

Thus, the series
∑

j ξj converges to some ξ ∈ L1 and

‖ξ‖L1 ≤ C(r)
∑

j

‖θjψ‖
1
s
Lr
‖(θjψ)

′‖
1
r
Lr
.

Hence, the use of Fubini’s theorem is justified and

ξ̂ =
∑

j

ξ̂j = ψ.
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1.3.2 Carlson-type inequality for periodic multipliers

For periodic multipliers a Carlson-type inequality is not directly applicable as these

are not Fourier transforms of L1-functions. In [22] a suitable smooth cut-off function η

with compact support was used where η = 1 in a neighborhood of [−π, π], to estimate

the multiplier norm of a periodic multiplier ψ by the non-periodic one ηψ. For the

multiplier norm of ηψ the above Carlson-type inequality can be then used. However,

we prove a result similar to Proposition 1.3.1 for periodic multipliers which along with

their derivatives have local Lr bounds. This makes the introduction of a cut-off function

superfluous and hence simplifies the technicalities in later estimates.

Let W r,1
per[−π, π] below denote the Sobolev space of 2π-periodic functions as in Def-

inition B.1.1.

Theorem 1.3.4. Let ψ ∈ W r,1
per[−π, π], 1 < r ≤ 2, then ψ is an L1-multiplier and there

is C > 0, independent of ψ, such that

‖Tψ‖B(L1) ≤ |a0|+ C(r) ‖ψ‖
1
s

Lr[−π,π]
‖ψ′‖

1
r

Lr[−π,π]
,

where 1
r
+ 1

s
= 1 and a0 =

1
2π

∫ π
−π
ψ(x)dx, denotes the 0th Fourier coefficient of ψ.

Proof. Since ψ ∈ Lr[−π, π], it follows using Hölder’s inequality that ψ ∈ L1[−π, π] and

so we can define the kth Fourier coefficient of ψ,

ak =
1

2π

∫ π

−π

e−ikxψ(x)dx, k ∈ Z.

First, note that |a0| ≤
1
2π

∫ π
−π

|ψ(x)| dx < ∞ and using integration by parts and the

fact that ψ is absolutely continuous, we have that ikak are the Fourier coefficients of

ψ′ . Next, recall the Hausdorff-Young inequality for Fourier series, see [23, p. 177],

(
∞∑

k=−∞

|ak|
s

) 1
s

≤ (2π)−
1
r ‖ψ‖Lr[−π,π] , 1 < r ≤ 2,

1

r
+

1

s
= 1

and Bellman’s inequality, see [14] and [60, p. 25],

(
∞∑

k=1

bk

)αβ+α−β

≤ C(α, β)
∞∑

k=1

bαk

(
∞∑

k=1

kβbβk

)α−1

, α, β > 1, bk ≥ 0, k ∈ N.

On setting, α = β = s and bk = |ak|, we have

∞∑

k=1

|ak| ≤ C(r)

(
∞∑

k=1

|ak|
s

) 1
s2
(

∞∑

k=1

|(ikak)|
s

) 1
s(

s−1
s )

≤ C(r) ‖ψ‖
1
s

Lr[−π,π]
‖ψ′‖

1
r

Lr[−π,π]
.
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Moreover, the same inequality holds for
∑−1

k=−∞ |ak|. Thus,

∞∑

k=−∞

|ak| ≤ |a0|+ C(r) ‖ψ‖
1
s

Lr[−π,π]
‖ψ′‖

1
r

Lr[−π,π]
<∞. (1.7)

This implies that ψ is the point-wise limit of its Fourier series [23, p. 166], that is;

ψ(x) =
∞∑

m=−∞

ake
ikx, for all x ∈ R.

Furthermore, let µ :=
∑∞

k=−∞ akδk, where δk is the Dirac measure at k ∈ Z given

by (C.3.1). Then, the series converges in the total variation norm; that is, ‖µ‖TV =
∑∞

k=−∞ |ak| < ∞ and µ ∈ MB(R), see Appendix C.3. Moreover, the use of Fubini’s

theorem is justified and taking Fourier transforms term by term we have µ̂ = ψ. Hence,

ψ is an L1-multiplier and

‖Tψ‖B(L1) = ‖µ‖TV =
∞∑

k=−∞

|ak| = |a0|+ C(r) ‖ψ‖
1
s

Lr[−π,π]
‖ψ′‖

1
r

Lr[−π,π]
.

Remark 1.3.5. Firstly, note that the term |a0| cannot be removed from the above

estimate in general. To see this, consider ψ ≡ 1. Secondly, the fact that if ψ′ ∈

Lr[−π, π], r > 1, then the Fourier series of ψ is absolutely summable, was first proved

in [104]. A multivariate version of (1.7) with a different proof to the one above can be

found in [54].

1.4 Grünwald (periodic) multiplier operators

The Grünwald formula (1.3) can be viewed as a multiplier operator as mentioned in

Remark 1.2.4. The Grünwald multiplier is given by

ψα,h,p(k) = (−1)q+1ωα,p(−ikh)(−ik)
α.

In the error analysis of the consistency of the Grünwald schemes, for instance, in

Theorem 1.6.2 below, the function ωα,p : C → C, where α ∈ R+ and p ∈ R, plays

a very important role. In this section, as mentioned in Remark 1.2.5, we study this

omega function

ωα,p(z) :=

(
1− e−z

z

)α
ezp. (1.8)
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We also need the particular case of the omega function when α = 1 and p = 0, which

we simply denote by

ω(z) := ω1,0(z) =
1− e−z

z
. (1.9)

The unshifted version of the omega function ωα,0(z), appears in the works of several

authors, includingWestphal in [106] and [51, Chapter III], Butzer et. al. in [51, Chapter

I] and [90, p. 116], Samko et. al. in [95, Section 20] and Lanford and Robinson in [58].

To keep our discussion self-contained, we list and prove those properties of the omega

function with arbitrary shift p that are relevant for our purposes.

To this end, let us begin by showing that the omega function is analytic in some

neighbourhood of the origin. See Remark B.3.4 for the convention adopted in the

definition of the function zµ, where z ∈ C and fixed µ ∈ C. Let us rewrite the omega

function as

ωα,p(z) = (ω(z))αezp. (1.10)

As we take the negative real axis as the branch cut for the α-th power of ω(z) and

since ezp is analytic, the omega function, ωα,p(z) is analytic, except where ω(z) takes

values on the negative real axis and at the origin. Note that the principal branch here

is chosen such that

lim
z→0

ωα,p(z) = 1, (1.11)

since for z ∈ R,

lim
z→0

ω(z) = lim
z→0

(
1− e−z

z

)
= lim

z→0
e−z = 1

by L’Hôpital’s rule and limz→0 e
zp = 1. Thus, ωα,p(z) is analytic in some neighbourhood

of the origin as the singularity at z = 0 is removable, see [29, p. 103]. Hence, we can

write ωα,p(z) as a power series, that is, there exists R > 0, aαp,n ∈ R such that

ωα,p(z) =
∞∑

n=0

aαp,nz
n for all |z| < 2R. (1.12)

Remark 1.4.1. For convenience in calculations, if R > 1 we set R = 1 and thus, in

what follows 0 < R ≤ 1.

Before we study the properties of the omega function in detail, let us briefly look at

the properties of the simplest case with α = 1 and p = 0. Firstly, note the recurrence

relation satisfied by the omega functions,

ωα,p(z)ω(z) = ωα+1,p(z). (1.13)
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Differentiating (1.9) with respect to z we have

ω′(z) =
ze−z − (1− e−z)

z2
=
e−z − ω(z)

z
.

Since, ω(z) is analytic, we also have that ω′(z) is analytic in the same neighbourhood

of the origin given in (1.12). Using the exponential series, we have

ω(z) = 1−
z

2!
+
z2

3!
· · · and

ω′(z) = −
1

2
+

∞∑

m=1

(−1)m+1zm

(m+ 1)! +m!
. (1.14)

As a consequence, there exists a constant C > 0 such that for |z| < R, |ω(z)| ≤ C

and |ω′(z)| ≤ C. If Re(z) ≥ 0 and |z| ≥ R, note that |e−z| = e−Re(z) ≤ 1 and that for

convenience in calculations we assume that 0 < R ≤ 1, see comments following (1.12)

above. Hence, we have the following bounds,

|ω(z)| ≤





C, for |z| < R,
1+|e−z|

|z|
≤ 2

|z|
, for Re(z) ≥ 0 and |z| ≥ R,

(1.15)

and

|ω′(z)| ≤





C, for |z| < R,∣∣∣ e−zz
∣∣∣+
∣∣∣ω(z)z

∣∣∣ ≤ 1
|z|

+ 2
|z|2

≤ c
|z|
, for Re(z) ≥ 0 and |z| ≥ R.

(1.16)

The observations made so far on ω(z) yield the Taylor expansion and the bound for

the omega function, more importantly, the bound for its derivative on the imaginary

axis, all of which are used repeatedly in the error analysis.

Lemma 1.4.2. Let α > 0, p ∈ R and ωα,p be given by (1.8). Then, we have the

following:

1. The omega function has the following Taylor expansion,

ωα,p(z) = 1 + (p−
α

2
)z +

1

24
(3α2 + α + 12p2 − 12αp)z2 +O(z3)

where |z| < 2R.

2. There exists a constant C > 0 (chosen to be the maximum of the constants in the

three scenarios below) such that

|ωα,p(z)− 1| ≤





C|z| for |z| < R,

C for z ∈ iR,

C for Rez ≥ 0 & p ≤ 0,

(1.17)

where 2R is the radius of convergence as described in (1.12).
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3. Let either α ≥ 1 and k ∈ R or 0 < α < 1 and k ∈ [−π, π], then
∣∣∣∣
d

dk
(ωα,p(−ik))

∣∣∣∣ ≤ C. (1.18)

Proof. 1. Expanding ωα,p(z) given by (1.8), using the binomial series, exponential

series and (1.14), we obtain

ωα,p(z) =

(
1− e−z

z

)α
ezp

=

(
1−

z

2!
+
z2

3!
· · ·

)α(
1 + zp+

(zp)2

2!
· · ·

)

= 1 + (p−
α

2
)z +

1

24
(3α2 + α + 12p2 − 12αp)z2 +O(z3) (1.19)

where |z| < 2R.

2. The first inequality is clear from the fact that the power series expansion given

by (1.19) is absolutely convergent for |z| < 2R and so uniformly convergent for

|z| < R. Indeed,

|ωα,p(z)− 1| ≤
∣∣∣(p− α

2
)z
∣∣∣+O(|z|2) ≤ C |z| .

We only need to show that the second and third inequality hold for |z| ≥ R as

they hold for |z| < R as a consequence of the first inequality.

So, let |z| ≥ R and either z = ik for k ∈ R or Re(z) ≥ 0 & p ≤ 0 and note that

for z = ik, k ∈ R,
∣∣e−ikp

∣∣ = 1 and for Re(z) ≥ 0 & p ≤ 0, |ezp| = epRe(z) ≤ 1.

Moreover, since it is the Laplace transform of an L1(R
+)-function, see Lemma

1.4.6 below, note that ωα,p(−z) is continuous for Re(z) ≥ 0. Thus, taking the

modulus on both sides of (1.10) and using (1.15), we have

|ωα,p(z)| = |ω(z)|α |ezp| ≤

{
C, for |z| < R,

c
|z|α

≤ C, for |z| ≥ R.
(1.20)

The proof of the first statement is complete on using the triangle inequality for

|ωα,p(z)− 1|.

3. Differentiating (1.10) with respect to z, we have

ω′
α,p(z) = α (ω(z))α−1 ω′(z)ezp + p (ω(z))α ezp (1.21)

and note that
∣∣∣∣
d

dk
(ωα,p(−ik))

∣∣∣∣ =
∣∣(−i)ω′

α,p(−ik)
∣∣ =

∣∣ω′
α,p(−ik)

∣∣
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≤
(
α |ω(−ik)|α−1 |ω′(−ik)|+ |p| |ω(−ik)|α

) ∣∣e−ikp
∣∣ . (1.22)

First, let α ≥ 1, then using (1.15) and (1.16), since α− 1 ≥ 0 and
∣∣e−ikp

∣∣ = 1, we

have ∣∣∣∣
d

dk
(ωα,p(−ik))

∣∣∣∣ ≤
{

C, for |k| < R,
c

|k|α
≤ C, for |k| ≥ R.

(1.23)

Now, let 0 < α < 1 and |z| < R, since ω′
α,p(z) is analytic we have

∣∣ω′
α,p(z)

∣∣ =
∣∣∣(p− α

2
)
∣∣∣+O(|z|)

which implies that
∣∣ω′

α,p(−ik)
∣∣ ≤ C for |k| < R as the power series is absolutely

convergent. To complete the proof, let R ≤ |k| ≤ π, then it is clear that |ω(−ik)|α

is bounded in view of (1.15) and so the second term in (1.22) is bounded. Rewrite

the first term as

α |ω(−ik)|α−1 |ω′(−ik)| = α |ω(−ik)|α |ω′(−ik)|

∣∣∣∣
1

ω(−ik)

∣∣∣∣

and note that for R ≤ |k| ≤ π,

∣∣∣∣
1

ω(−ik)

∣∣∣∣ =
∣∣∣∣

−ik

1− eik

∣∣∣∣ ≤
π

2 sin(R/2)
.

This completes the proof of the second statement in view of (1.15) and (1.16).

We now study the most important property of the omega function, namely, that the

omega function is the Fourier transform of an L1-function and identify this function

explicitly. To this end, let us begin with the definition of power functions with support

in R+. We use φβ to denote the power function in this section, instead of pβ adopted

later in Definition 3.6, in order to emphasise the fact that we are working on R instead

of [0, 1].

Definition 1.4.3. For α > 0, we define the power function φα−1, with supp(φα−1) ⊂

R+, by

φα−1(x) := H(x)
xα−1

Γ(α)
, (1.24)

where the unit step function H is given by

H(x) =

{
1, if x > 0,

0, if x ≤ 0.
(1.25)
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We show that ωα,p(−ik) is the Fourier transform of the p-shifted fractional difference

quotient of the power function with h = 1, given by

Φα
p (x) :=

∞∑

m=0

Gαmφα−1(x− (m− p)), (1.26)

where φα−1 is given by (1.24) and Gαm by (A.1). Take note that supp(Φα
p ) ⊂ [−p,∞)∪R+

and that the sum on the right has only finite number of terms for a fixed x, since by

definition φα−1(x− (m− p)) = 0 for all m ≥ x+ p.

By Proposition B.3.5, we have the Fourier transform pair, φ̂α−1(k) = (−ik)−α.

Clearly, for α > 0, φα−1 /∈ L1(R) and so φ̂α−1(k) = (−ik)−α /∈ F(L1), where the ring of

Fourier transforms of L1-functions F(L1), is given in Remark B.3.2. Nevertheless, we

provide a proof similar to that of the proof of the Carlson-type inequality in Corollary

1.3.3 to show that for α > 0,

∑

j∈Z
j 6=0

θj(k)(−ik)
−α ∈ F(L1),

where θj for j ∈ Z are the functions in a partition of unity given in Definition 1.4.4

below.

According to the authors mentioned at the start of Section 1.4, the most difficult

property to prove is the fact that Φα
0 ∈ L1(R). Westphal in [106], uses a result on the

asymptotic behaviour of power functions from Ingham’s summability theory to show

that Φα
0 is integrable at infinity and in Lemma 2 of the same article, the author shows

that

ωα,0(z) =

(
1− e−z

z

)α
=

∫ ∞

0

e−ztΦα
0 (t) dt, Re z ≥ 0,

where Φα
0 ∈ L1(R

+) and
∫∞

0
Φα

0 (t) dt = 1. Take note that in Westphal’s definition of

the Laplace transform, e−zt is used as the kernel and therefore the region of convergence

is the right half plane. In [95], a smooth step function was used to split ωα,0 into a

sum of two functions, and using the fact that if f ∈ L1(R) and f
′ ∈ L2(R), then f is

the Fourier transform of an L1(R) function, the authors show that ωα,0 is the Fourier

transform of an L1 function. In [58], the authors prove this property using Fourier

transform techniques and distribution theory. To keep our discussion self-contained, in

Lemma 1.4.6, we prove a similar result using Carlson-type inequality given in Corollary

1.3.3; that is, we show that ωα,p(−ik) is the Fourier transform of Φα
p ∈ L1(R). In the

proof of Lemma 1.4.6 we require a particular partition of unity which we define below.
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Definition 1.4.4. Let R be as in (1.12). Then, we first define θ0 such that supp(θ0) ⊂

[−R,R],

θ0(k) =





1, for |k| < R/2,

2(R− |k|)/R, forR/2 ≤ |k| < R,

0 else.

Next, define

θ1(k) =





2(k −R/2)/R, for R/2 ≤ k < R,

1, for R ≤ k < 1,

2− k, for 1 ≤ k < 2,

0, else,

so that supp(θ1) ⊂ [R/2, 2]. For j ≥ 2, let

θj(k) =





(k − 2j−2)/2j−2 for 2j−2 < k < 2j−1,

(2j − k)/2j−1 for 2j−1 ≤ k < 2j,

0 else,

such that supp(θj) ⊂ [2j−2, 2j ]. For j < 0, define θj(k) = θ−j(−k).

The following result plays a crucial role in the proof of Lemma 1.4.6.

Proposition 1.4.5. Let α > 0 , then

∑

j∈Z
j 6=0

θj(k)(−ik)
−α ∈ F(L1),

where θj are given by Definition 1.4.4.

Proof. For convenience in calculations, for j 6= 0, let θj,α(k) = θj(k)(−ik)−α and write

θ(k) =
∑

j∈Z
j 6=0

θj(k)(−ik)
−α =

∑

j∈Z
j 6=0

θj,α(k),

where θj are given in Definition 1.4.4. First note that supp(θ±1,α) ⊂ [R
2
, 2], for j ≥ 2,

supp(θj,α) ⊂ [2j−2, 2j ] and for j ≤ −2, supp(θj,α) ⊂ [−2−j ,−2−j−2]. Thus, the length

of the support of θj,α for j 6= 0 is less than 2|j|. Moreover, for k ∈ [R
2
, 2], |k|−α ≤(

2
R

)−α
< C while for k ∈ [2j−2, 2j ] or k ∈ [−2−j,−2−j−2], |k|−α ≤ 2−α(|j|−2).

Hence, for each j 6= 0,

‖θj,α‖
1
2
L2

≤ C(2−2(|j|−2)α2|j|)1/4 = C2β2|j|(1−2α)/4 ≤ C2|j|(1−2α)/4.
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For |j| ≥ 2,
∣∣θ′j(k)

∣∣ ≤ 2−|j|+2, thus

|θ′j,α(k)| ≤ C
(
α |θj(k)| |k|

−α−1 +
∣∣θ′j(k)

∣∣ |k|−α
)

≤ C2(|j|−2)(−α−1) + C2−|j|+22(|j|−2)(−α)

≤ C23+2α2−(α+1)|j|

≤ C2−(α+1)|j|.

Moreover, for |j| = 1,
∣∣θ′±1(k)

∣∣ ≤ 2
R
and so |θ′1,α(k)| ≤ C. Hence, for each j 6= 0,

‖θ′j,α‖
1
2
L2

≤ C(2−2(α+1)|j|2|j|)1/4 = C2−|j|(2α+1)/4.

Putting these together, there exists C independent of j such that,

‖θj,α‖
1
2
L2
‖θ′j,α‖

1
2
L2

≤ C2|j|(1−2α)/42−|j|(2α+1)/4 ≤ C2−α|j|.

Thus, θj,α ∈ W 2,1(R), and using Proposition 1.3.1, there exists ξj,α ∈ L1(R) such that

θj,α = ξ̂j,α for each j 6= 0. Define

ξα =
∑

j∈Z
j 6=0

ξj,α,

then ξα ∈ L1(R), since

∑

j∈Z
j 6=0

‖θj,α‖
1
2
L2
‖θ′j,α‖

1
2
L2

≤ C
∑

j∈Z
j 6=0

2−α|j| <∞.

Thus, the use of Fubini’s theorem is justified and

ξ̂α =
∑

j∈Z
j 6=0

ξ̂j,α =
∑

j∈Z
j 6=0

θj,α.

Here is the lemma that lists the important properties of the omega function.

Lemma 1.4.6. Let α ∈ R+, p ∈ R and the functions ωα,p and Φα
p be given by (1.8)

and (1.26), respectively. Then the following hold:

1. Φ̂α
p (k) = ωα,p(−ik), for k ∈ R, where Φ̂α

p (k) denotes the Fourier transform of Φα
p .

Moreover, ωα,p ∈ F(L1), where F(L1) denotes the ring of Fourier transforms as

in Remark B.3.2, that is, Φα
p ∈ L1(R).
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2.
∫
R
Φα
p (x)dx = 1.

3. L
(
Φα
p

)
(z) = ωα,p(−z), for Re(z) ≤ 0 and p ≥ 0, where L

(
Φα
p

)
(z) denotes the

Laplace transform of Φα
p given by B.6.

Proof. 1. First note that φ̂α−1(k) = (−ik)−α by Proposition B.3.5. Consider the

series given by (1.26),

Φα
p (x) =

∞∑

m=0

Gαmφα−1(x− (m− p)).

Observe that there are only finite number of terms in the sum for a fixed x ∈ R,

since for x ≤ m − p, φα−1(x − (m − p)) = 0 and that supp(Φα
p ) ⊂ [−p,∞) ∪

R+. Note also that each term in the series corresponds to a regular tempered

distribution and the series
∑∞

m=0 G
α
m is absolutely convergent by (A.10), thus the

distribution Φ̃α
p ∈ S ′ where S ′ denotes the space of tempered distributions, see

Appendix B.3. Hence, using Theorem B.3.3 we take the Fourier transform of

(1.26) term by term and use the Binomial series (A.4) to obtain

Φ̂α
p (k) = F

(
∞∑

m=0

Gαmφα−1(x− (m− p))

)

=
∞∑

m=0

GαmF (φα−1(x− (m− p)))

=
∞∑

m=0

(−1)m
(
α

m

)
eik(m−p)(−ik)−α

=
(1− eik)αe−ikp

(−ik)α
= ωα,p(−ik).

We now show that the omega function is the Fourier transform of an L1(R)-

function, that is, ωα,p ∈ F(L1), where F(L1) is given in Remark B.3.2. Rewrite

the omega function using the partition of unity given in Definition 1.4.4,

ωα,p(−ik) =
∑

j∈Z

θj(k)ωα,p(−ik)

= θ0(k)ωα,p(−ik) +
(
1− eik

)α
e−ikp

∑

j∈Z
j 6=0

θj(k)(−ik)
−α. (1.27)

Then, the first term belongs to W 2,1(R), since

supp(θ0(k)ωα,p(−ik)) ⊂ [−R,R]
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and ωα,p is analytic there by (1.12). Thus, the first term, θ0(k)ωα,p(−ik) ∈ F(L1)

by Proposition 1.3.1.

Consider the second term and note that
∑

j∈Z
j 6=0

θj(k)(−ik)−α ∈ F(L1) by Propo-

sition 1.4.5, that is, there exists ξα ∈ L1(R) such that

∑

j∈Z
j 6=0

θj(k)(−ik)
−α = ξ̂α(k).

Moreover, using the Binomial series we have that

(1− eik)α =
∞∑

m=0

Gαme
ikm

where Gαm is given by (A.1). Since, the series
∑∞

m=0 G
α
m is absolutely convergent

by (A.10) and
∥∥∥∥∥

∞∑

m=0

Gαmξα(· − (m− p))

∥∥∥∥∥
L1

≤
∞∑

m=0

|Gαm| ‖ξα‖L1
<∞,

the function
∞∑

m=0

Gαmξα(x− (m− p)) ∈ L1(R).

Hence, the use of Fubini’s theorem is justified below, and the second term of 1.27

is the Fourier transform of an L1-function, since

(
1− eik

)α
e−ikp

∑

j∈Z
j 6=0

θj(k)(−ik)
−α =

∞∑

m=0

Gαme
ik(m−p)

∑

j∈Z
j 6=0

θj(k)(−ik)
−α

=
∞∑

m=0

GαmF (ξα(x− (m− p))) (k)

= F

(
∞∑

m=0

Gαmξα(x− (m− p))

)
(k).

2. Let {kn} ⊂ R be a decreasing sequence such that limn→∞ kn = 0 and set fn(x) =

eiknxΦα
p (x). Then, since Φα

p ∈ L1(R), fn ∈ L1(R) and fn → Φα
p . Moreover,

|fn| ≤
∣∣Φα

p

∣∣ for all n ∈ N. Thus,
∫

R

lim
n→∞

(
eiknxΦα

p (x)
)
dx = lim

n→∞

∫

R

eiknxΦα
p (x) dx

by Lebesgue’s dominated convergence theorem. That is, in view of (1.11) we

have shown that ∫

R

Φα
p (x) dx = lim

n→∞
ωα,p(−ikn) = 1.
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3. For Re(z) < 0 the iterated integral

∞∑

m=0

∫ ∞

0

∣∣eztGαmφα−1(t− (m− p))
∣∣ dt

=
∞∑

m=0

|Gαm|

∫ ∞

m−p

eRe(z)tφα−1(t− (m− p)) dt

=
∞∑

m=0

|Gαm| e
Re(z)(m−p)

∫ ∞

0

eRe(z)τφα−1(τ)) dτ

=
∞∑

m=0

|Gαm| e
Re(z)(m−p) 1

(−Re(z))α
,

is convergent in view of (A.10) where we have used (B.10) in the last line. Thus,

the use of Fubini’s theorem is justified and interchanging summation with inte-

gration, the Laplace transform for Re(z) < 0 is given by,

L
(
Φα
p

)
(z) =

∫ ∞

0

ezt
∞∑

m=0

Gαmφα−1(t− (m− p)) dt

=
∞∑

m=0

Gαm

∫ ∞

0

eztφα−1(t− (m− p)) dt

=
∞∑

m=0

(−1)m
(
α

m

)
e(m−p)z(−z)−α =

(1− ez)αe−zp

(−z)α
= ωα,p(−z),

where we have used (B.10), (B.7) and the Binomial series (A.4). The proof

is complete using the fact that the Laplace transform of an L1(R
+)-function is

continuous for Re(z) ≤ 0.

Remark 1.4.7. Note that for α ≥ 1 one does not need to use a partition of unity. For

α ≥ 1 we include here a simpler proof. Let α = 1, then ω1,p(−ik) =
(

1−eik

−ik

)
e−ikp and

using (B.7) in view of Proposition B.3.5,

ω1,p(−ik) =
e−ikp

−ik
−
eike−ikp

−ik
= F (H(x+ p)−H(x+ p− 1)) , (1.28)

where the unit step function H is given by (1.25). Clearly, H(x+ p)−H(x+ p− 1) ∈

L1(R). Let α > 1, then using the bounds given in the proof of Lemma 1.4.2, namely,

the bound in (1.20) for |ωα,p(−ik)| and the bound in (1.23) for
∣∣∣d(ωα,p(−ik))dk

∣∣∣, we have

that

‖ωα,p(−i·)‖
2
L2

≤

∫

|k|<R

C dk +

∫

|k|≥R

c

|k|2α
dk <∞
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and the same is true for its derivative,
∥∥∥∥
d (ωα,p(−i·))

dk
)

∥∥∥∥
2

L2

≤

∫

|k|<R

C dk +

∫

|k|≥R

c

|k|2α
dk <∞.

Hence, using Proposition 1.3.1 with r = 2, ωα,p ∈ W 2,1(R) and we have the required

result.

1.5 Construction of higher order Grünwald-type

approximations

In this section we construct higher order Grünwald-type approximations for the frac-

tional derivative operator. To start with, let us rewrite the Fourier transform of the

Grünwald formula given by (1.4) as the sum of the Fourier transforms of the fractional

derivative operator and the error term.

(̂Aαhf)(k) = (−ik)αωα,p(−ikh)f̂(k)

= (−ik)αf̂(k) + (−ik)α(ωα,p(−ikh)− 1)f̂(k)

= f̂ (α)(k) + (−ik)α(ωα,p(−ikh)− 1)f̂(k), (1.29)

where ωα,p(z) is given by (1.8). Thus, the Fourier transform of the error in the ap-

proximation of the fractional derivative operator by the Grünwald formula is given

by

ζ̂h,p(k) = (̂Aαhf)(k)− f̂ (α)(k)

= (−ik)α(ωα,p(−ikh)− 1)f̂(k)

= (ωα,p(−ikh)− 1)f̂ (α)(k). (1.30)

Remark 1.5.1. Recall the Taylor expansion of ωα,p given by (1.12), that is, there exists

R > 0, aαp,n ∈ R such that

ωα,p(z) =
∞∑

n=0

aαp,nz
n for all |z| < 2R.

Since aαp,0 = 1, ωα,p(z) − 1 =
∑∞

n=1 a
α
p,nz

n and so we refer to the shifted Grünwald

formula as first order Grünwald-type approximation which we justify in Theorem 1.6.2.

Further, recall Remark 1.2.4 where we expressed the Grünwald formula (1.3) in the

multiplier notation of Appendix C.3 as

Aαh,p = T(−1)q+1ψα,h,p
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where p, k ∈ R, α ∈ R+ such that 2q − 1 < α < 2q + 1 for q ∈ N, and

ψα,h,p(k) = (−1)q+1h−αe−ikhp(1− eikh)α.

To construct higher order approximations we combine Grünwald formulae with

different weights bj, shifts pj and accuracy cjh in such a way that the lower order error

terms cancel out. To this end, let us consider the linear combination of the error terms

ζ̂h in the Fourier space. Let N ≥ 0 and for 0 ≤ j ≤ N , let bj, pj ∈ R with

N∑

j=0

bj = 1 (1.31)

and cj > 0, then using (1.30) we have

N∑

j=0

bj ζ̂cjh,pj(k) =
N∑

j=0

bj(ωα,pj(−ikcjh)−1)f̂ (α)(k) =

(
N∑

j=0

bjωα,pj(−ikcjh)− 1

)
f̂ (α)(k).

To be precise, for each 1 ≤ n ≤ N we require that the Taylor coefficients aαpj ,n of

ωα,pj(z) satisfy
N∑

j=0

bja
α
pj ,n

= 0. (1.32)

Since, aαpj ,0 = 1 for each j, we have that
∑N

j=0 bja
α
pj ,0

=
∑N

j=0 bj = 1. Therefore, there

exist dαj such that
N∑

j=0

bjωα,pj(cjz)− 1 =
∞∑

j=N+1

dαj z
j

for |z| < 2R. With the above preparation, we are ready to define the higher order

Grünwald-type approximation for the fractional derivative operator.

Definition 1.5.2. Let α ∈ R+ such that 2q − 1 < α < 2q + 1 for q ∈ N and let

f ∈ Xα+N+β(R), where N ≥ 0, 0 < β ≤ 1. Moreover, for 0 ≤ j ≤ N , let bj, pj ∈ R

with
∑N

j=0 bj = 1 and cj > 0. Then, we define an N + 1 (higher) order Grünwald-type

approximation for the fractional derivative operator of order α by

Ãα
hf :=

N∑

j=0

bjA
α
cjh,pj

f = T(−1)q+1
∑N
j=0 bjψα,cjh,pj

f. (1.33)

The terminology used in this definition; that is, orderN+1, will be justified in Corollary

1.6.3.
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Let us rewrite the Fourier transform of the error term to facilitate the errror analysis

in the next section. The Fourier transform of the error term of the first order Grünwald

approximation given by (1.30) can be written as

ζ̂h(k) = (−ik)α(ωα,p(−ikh)− 1)f̂(k)

= hβ
(ωα,p(−ikh)− 1)

(−ikh)β
(−ik)α+β f̂(k)

= hβΨα
β,0,p(kh)f̂

(α+β)(k). (1.34)

where

Ψα
β,N,p(k) =

ωα,p(−ik)−
∑N

n=0 a
α
p,n(−ik)

n

(−ik)N+β
(1.35)

and ωα,p(z) is given by (1.8), aαj by (1.12) and 0 < β ≤ 1, N ∈ N.

Let us obtain the Fourier transform of the error term of the higher order Grünwald

approximation. Recall (1.31); that is,
∑N

j=0 bj = 1 and for 1 ≤ n ≤ N by (1.32), we

have that
∑N

j=0 bja
α
pj ,n

= 0. So, in the calculations below, we are justified in replacing
∑N

j=0 bj in the second line by

N∑

j=0

bj

N∑

n=0

aαpj ,n(−ikcjh)
n.

We repeat the same argument that led to (1.34) and obtain

ζ̂h(k) =
̂(

Ãα
hf − f (α)

)
(k) =

N∑

j=0

bj
(
ωα,pj(−ikcjh)− 1

)
(−ik)αf̂(k)

=
N∑

j=0

bj

(
ωα,pj(−ikcjh)−

N∑

n=0

aαpj ,n(−ikcjh)
n

)
(−ik)αf̂(k)

= hN+β

N∑

j=0

bjc
N+β
j

ωα,pj(−ikcjh)−
∑N

n=0 a
α
pj ,n

(−ikcjh)n

(−ikcjh)N+β
(−ik)α+N+β f̂(k)

= hN+β

N∑

j=0

bjc
N+β
j Ψα

β,N,pj
(kcjh) ̂f (α+N+β)(k), (1.36)

where aαpj ,n are the Taylor coefficients of ωα,pj and Ψα
β,N,pj

are given by (1.35).

1.6 Consistency of higher order Grünwald-type

approximations

In this section we show that the higher order Grünwald-type approximations converge

to fractional derivative operator in L1 := L1(R). But first, we need the following
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important technical lemma which shows that the function Ψα
β,N,p given by (1.35) is the

Fourier transform of an L1-function. This, as can be seen from the Fourier transforms of

the error terms given by (1.34) and (1.36), turns out to be crucial in obtaining a bound

for the L1-norm of the error term in the higher order Grünwald-type approximations

for the fractional derivative operator.

Lemma 1.6.1. Let

Ψα
β,N,p(k) =

ωα,p(−ik)−
∑N

n=0 a
α
p,n(−ik)

n

(−ik)N+β
,

where ωα,p(z) is given by (1.8), aαp,n by (1.12), N ∈ N0 and 0 < β ≤ 1. Then,

Ψα
β,N,p ∈ F(L1);

that is, Ψα
β,N,p is the Fourier transform of some ξαβ,N,p ∈ L1(R) with supp(ξαβ,N,p) ⊂

[−p,∞) ∪ R+.

Proof. First note that, since ωα,p(z) is analytic for |z| < 2R (see Section 1.4), and

lim
z→0

(
z

(
ωα,p(z)−

∑N
n=0 a

α
p,nz

n

zN+β

))
= lim

z→0

(
∞∑

n=N+1

aαp,nz
n+1−N−β

)
= 0,

the singularity at the origin is removable. Hence, Ψα
β,N,p(k) is analytic in [−2R, 2R].

Moreover, note that each term of Ψα
β,N,p(k) is the Fourier transform of a tempered

distribution satisfying the support condition in view of the proof of Part 1 of Lemma

1.4.6 and Proposition B.3.5. Thus, all that remains to show is that Ψα
β,N,p is the Fourier

transform of an L1 function. We divide the proof into four parts.

1. Let N, p = 0 and β < 1. This was proved in [106, Lemma 5] using results from

summability theory. Note that aα0,0 = 1 and consider,

Ψα
β,0,0(k) =

ωα,0(−ik)− 1

(−ik)β
.

Using the partition of unity given by Definition 1.4.4, we rewrite Ψα
β,0,0(k) as

Ψα
β,0,0(k) =

∑

j∈Z

θj(k)Ψ
α
β,0,0(k)

= θ0(k)Ψ
α
β,0,0(k) +

∑

j∈Z
j 6=0

θj(k)
ωα,0(−ik)− 1

(−ik)β

= θ0(k)Ψ
α
β,0,0(k)−

∑

j∈Z
j 6=0

θj(k)(−ik)
−β + ωα,0(−ik)

∑

j∈Z
j 6=0

θj(k)(−ik)
−β.
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Note that supp(θ0(k)Ψ
α
β,0,0(k)) ⊂ [−R,R] and Ψα

β,0,0(k) is analytic there. Thus,

the first term θ0(k)Ψ
α
β,0,0(k) ∈ W 2,1(R) and by Proposition 1.3.1, the Fourier

transform of an L1-function. By Proposition 1.4.5, the second term is the Fourier

transform of an L1-function. The third term is the product of Fourier trans-

forms of L1-functions in view of Lemma 1.4.6 and thus, the Fourier transform of

convolution of L1-functions, and hence the Fourier transform of an L1-function.

Therefore, Ψα
β,0,0 ∈ F(L1).

2. Let N = 0, p 6= 0 and β < 1. Note that aαp,0 = 1. Then, writing ωα,p(−ik) =

ωα,0(−ik)e−ikp we split Ψα
β,0,p(k) as follows,

Ψα
β,0,p(k) =

ωα,p(−ik)− 1

(−ik)β
=
ωα,0(−ik)e−ikp − 1

(−ik)β
= e−ikpΨβ,0,0(k) +

e−ikp − 1

(−ik)β
.

The first term is the Fourier transform of an L1-function as a consequence of the

first case in view of (B.7). To see that the second term is the Fourier transform

of an L1-function, let us rewrite using the partition of unity given in Definition

1.4.4,

e−ikp − 1

(−ik)β
= θ0(k)

e−ikp − 1

(−ik)β
+ e−ikp

∑

j∈Z
j 6=0

θj(k)(−ik)
−β −

∑

j∈Z
j 6=0

θj(k)(−ik)
−β.

Note that supp(θ0(k)
e−ikp−1
(−ik)β

) ⊂ [−R,R] and e−ikp−1
(−ik)β

is analytic there and so

θ0(k)
e−ikp−1
(−ik)β

∈ W 2,1(R), thus, by Proposition 1.3.1, the Fourier transform of an

L1-function. The other two terms are Fourier terms of L1-functions in view of

Proposition 1.4.5 and (B.7). Hence, Ψα
β,0,p ∈ F(L1).

3. Let α ≥ 1 and consider the remaining two possibilities, either N = 0 and β = 1

or N ≥ 1 and 0 < β ≤ 1. Note that Carlson-type inequality given in Proposition

1.3.1 cannot be applied directly since Ψα
β,N,p 6∈ L2(R) for β < 1/2. Therefore,

we use Corollary 1.3.3, choosing a particular partition of unity (θj)j∈Z given by

Definition 1.4.4. Rewriting,

Ψα
β,N,p(k) =

∑

j∈Z

θj(k)Ψ
α
β,N,p(k),

we show that Ψα
β,N,p ∈ F(L1).

First, for j = 0, as Ψα
β,N,p is analytic in (−2R, 2R) we have that θ0Ψ

α
β,N,p ∈

W 2,1(R). For j 6= 0, we split the remaining series into two terms,

∑

j∈Z
j 6=0

θj(k)Ψ
α
β,N,p =

∑

j∈Z
j 6=0

θj(k)
ωα,p(−ik)−

∑N−1
n=0 a

α
p,n(−ik)

n

(−ik)N+β
− aαp,N

∑

j∈Z
j 6=0

θj(k)(−ik)
−β
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Now, note that by Proposition 1.4.5 the second term is the Fourier transform of

an L1-function. Consider the first term and for convenience in calculations let us

write

Tj(k) = θj(k)
ωα,p(−ik)−

∑N−1
n=0 a

α
p,n(−ik)

n

(−ik)N+β
, j 6= 0.

Then, for j ≥ 2, supp(θj) ⊂ [2j−2, 2j ] and for j ≤ 2, supp(θj) ⊂ [−2j ,−2j−2] so

that the length of the support of θj is less that 2|j|. Also,
∣∣θ′j(k)

∣∣ ≤ 2−|j|+2 for

each j 6= 0, except when j = ±1 in which case
∣∣θ′±1(k)

∣∣ ≤ 2
R
. Moreover, in view

of Lemma 1.4.2, note that both ωα,p and ω
′
α,p are bounded and so the numerator

of Tj(k) and its derivative are bounded. Also, recall that either N = 0 and β = 1

or N ≥ 1, so in either case, the exponent in the denominator of the Tj(k) is at

least one. Hence, there exists C independent of j such that

|Tj(k)| ≤ |θj(k)|

[
|ωα,p(−ik)|

|k|N+β
+

N−1∑

n=0

∣∣aαp,n
∣∣

|k|N+β−n

]
≤

C

|k|
≤ C22−|j|

and

|T ′
j(k)| ≤

∣∣θ′j(k)
∣∣
[
|ωα,p(−ik)|

|k|N+β
+

N−1∑

n=0

∣∣aαp,n
∣∣

|k|N+β−n

]

+ |θj(k)|

[∣∣ω′
α,p(−ik)

∣∣
|k|N+β

+
(N + β) |ωα,p(−ik)|

|k|N+β+1

]

+ |θj(k)|
N−1∑

n=0

(N + β − n)
∣∣aαp,n

∣∣
|k|N+β−n+1

≤
C

|k|

(∣∣θ′j(k)
∣∣+ 1

)
≤ C22−|j|.

The length of the support of Tj is less than 2|j|. Therefore,

‖Tj‖
1
2
L2

≤ C(24−2|j|2|j|)1/4 ≤ C2−|j|/4

and the same holds for ‖T ′
j‖

1
2
L2
. Hence,

∑

j∈Z
j 6=0

‖Tj‖
1
2
L2
‖(Tj)

′‖
1
2
L2
<∞.

The proof of this case is complete on applying Corollary 1.3.3.
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4. Let 0 < α < 1 and consider the two possibilities once again, that is, either N = 0

and β = 1 or N ≥ 1 and 0 < β ≤ 1. The Carlson-type inequality employing

a partition of unity cannot be applied for this case, since for α < 1, ω′
α,p is not

bounded and if α ≤ 1/2, ω′
α,p is not even locally in L2. Instead, we use induction

on N . First, let N = 0, β = 1. Now, using (1.13) we have

ωα,p(−ik)Ψ
1
1,0,0(k) = ωα,p(−ik)

ω(−ik)− 1

−ik

=
ωα+1,p(−ik)− 1

−ik
−
ωα,p(−ik)− 1

−ik

= Ψα+1
1,0,p(k)−Ψα

1,0,p(k).

Hence, Ψα
1,0,p ∈ F(L1), since the convolution of L1-functions is an L1-function for

the left hand side of the equation above we have that ωα,pΨ
1
1,0,0 ∈ F(L1) and by

case 3 above we have that Ψα+1
1,0,p ∈ F(L1).

To complete the proof, note that we already established that the assertion holds

for N = 0 and β < 1 in case 1, so let us assume it holds for some N ; that

is, assume that Ψα
β,N,p is the Fourier transform of an L1 function satisfying the

support condition. Then, using the fact that the convolution of L1 functions is an

L1 function and the fact that we established the assertion for α = 1, we obtain

that the product Ψα
β,N,pΨ

1
1,0,0 is also the Fourier transform of an L1 function

satisfying the support condition as the support of the inverse of the second factor

of the product is contained in R+. Indeed, using Proposition B.3.5 we have

Ψ1
1,0,0(k) =

ω1,0(−ik)− 1

−ik
= (−ik)−2 − eik(−ik)−2 − (−ik)−1

= F (H(x)φ1(x)−H(x− 1)φ1(x− 1)−H(x)) .

Furthermore, using (1.13) we have

Ψα
β,N,p(k)Ψ

1
1,0,0(k) =

(
ωα,p(−ik)−

∑N
n=0 a

α
p,n(−ik)

n

(−ik)N+β

)(
ω(−ik)− 1

−ik

)

=
ωα+1,p(−ik)− ω(−ik)

∑N
n=0 a

α
p,n(−ik)

n

(−ik)N+1+β

−
ωα,p(−ik)−

∑N
n=0 a

α
p,n(−ik)

n

(−ik)N+1+β

=
ωα+1,p(−ik)−

∑N+1
n=0 a

α+1
p,n (−ik)n

(−ik)N+1+β

−
N∑

n=0

aαp,n
ω(−ik)−

∑N+1−n
m=0 a10,m(−ik)

m

(−ik)N+1−n+β
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−
ωα,p(−ik)−

∑N+1
n=0 dn(−ik)

n

(−ik)N+1+β

= Ψα+1
β,N+1,p(k)−

N∑

n=0

aαp,nΨ
1
β,N+1−n,0 − Ψ(k),

where ωα,p(z) and ω(z) are given by (1.8) and 1.9, respectively, aα+1
p,n are the Taylor

coefficients of ωα+1,p, a
1
0,m are the Taylor coefficients of ω and dn are such that

the equality holds. By case 3 above, the first two terms are Fourier transforms of

L1 functions. This implies that Ψ ∈ F(L1). Thus, Ψ at k = 0 has to be bounded

and therefore dj = aαp,n and Ψ = Ψα
β,N+1,p.

We are ready to prove the main result of this section. The following theorem and

its corollary, under the assumption that f ∈ L1(R) has fractional derivative of order

α + β or α + N + β, respectively, not only show that the Grünwald-type approxima-

tions converge to the fractional derivative operator in the L1-setting, but also give the

convergence rate in terms of the regularity parameter β.

Theorem 1.6.2. Let 0 ≤ β ≤ 1, Xα(R) and Xα(R
+) be given by Definition 1.1.1 and

‖f‖α be as in (1.1).

1. If f ∈ Xα+β(R), then there exists a constant C > 0 such that

∥∥Aαh,pf − f (α)
∥∥
L1(R)

≤ Chβ ‖f‖α+β

as h→ 0+.

2. If p ≤ 0 and f ∈ Xα+β(R
+), then there exists a constant C > 0 such that

∥∥Aαh,pf − f (α)
∥∥
L1(R+)

≤ Chβ ‖f‖α+β

as h→ 0+.

3. In particular when β = 0, that is, if f ∈ Xα, then

∥∥Aαh,pf − f (α)
∥∥
L1(R)

→ 0

as h→ 0+.
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Proof. 1. To prove the first statement, recall that we can rewrite the Fourier trans-

form of the error term, ζ̂h(k) as a constant multiple of the product of Fourier

transforms given by (1.34),

ζ̂h(k) = hβΨα
β,0,p(kh)f̂

(α+β)(k).

Now by assumption f (α+β) ∈ L1(R), see Definitions 1.1.1 and 1.1.2 for details.

By Lemma 1.6.1, Ψα
β,0,p(k) =

ωα,p(−ik)−1

(−ik)β
is the Fourier transform of an L1 function

ξαβ,0,p satisfying the support condition, supp(ξαβ,N,p) ⊂ [−p,∞)∪R+. This implies

that ζ̂h is the product of Fourier transforms of L1-functions and so the Fourier

transform of the convolution of L1-functions and therefore the Fourier transform

of an L1-function, ζh. In fact, this argument of product of Fourier transforms

holds true for all f ∈ L1(R) and thus Ψα
β,0,p(k) is an L1-multiplier. Hence, using

the notation of Appendix C.3 we have

ζh = hβTΨαβ,0,p(h·)f
(α+β).

Note that using (C.4) followed by (C.3) we have

‖TΨαβ,0,p(h·)‖B(L1(R)) = ‖TΨαβ,0,p(·)‖B(L1(R)) =
∥∥ξαβ,0,p

∥∥
L1(R)

.

Moreover, Lemma 1.6.1 implies that
∥∥ξαβ,0,p

∥∥
L1(R)

≤ C for some constant C and

hence we obtain the required norm estimate

‖ζh‖L1(R)
=
∥∥∥hβTΨαβ,0,p(h·)f

(α+β)
∥∥∥
L1(R)

≤ hβ‖TΨαβ,0,p(h·)‖B(L1(R))

∥∥f (α+β)
∥∥
L1(R)

= hβ
∥∥ξαβ,0,p

∥∥
L1(R)

∥∥f (α+β)
∥∥
L1(R)

≤ Chβ ‖f‖α+β .

2. The second statement is proved using the same calculations in view of Remark

1.2.2 where we clarified the convention for extending the functions from L1(R
+) to

L1(R) and justified that for p ≤ 0, the Grünwald formula Aαh,p can be considered

as an operator on L1(R
+). Thus, extending f ∈ L1(R

+) to the left by zero and

noting that if p ≤ 0, then supp(ζh) ⊂ R+ the result follows by using Lemma

1.6.1 once again as in this case supp(ξαβ,N,p) ⊂ R+. A proof of this result using

functional calculus techniques for the unshifted case, that is, when p = 0 and

f ∈ Xα+β(R
+) can be found in [106, Theorem 13].
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3. As mentioned earlier, the case β = 0 was proved in [4, Proposition 4.9] and is

included in the statement of the theorem here for the sake of completeness.

Corollary 1.6.3. Let 0 < β ≤ 1, N ∈ N and Ãαh be an N + 1 order Grünwald

approximation. Then there exists C > 0 such that f ∈ Xα+N+β(R) implies that

∥∥∥Ãαhf − f (α)
∥∥∥
L1(R)

≤ ChN+β‖f‖α+N+β.

as h→ 0+. If pj ≤ 0 for all 0 ≤ j ≤ N and f ∈ Xα+N+β(R+) then

∥∥∥Ãαhf − f (α)
∥∥∥
L1(R+)

≤ ChN+β‖f‖α+N+β.

Proof. In view of (1.36), the Fourier transform of the error term for the higher order

Grünwald-type approximation is given by

ζ̂h(k) = hN+β

N∑

j=0

bjc
N+β
j Ψα

β,N,pj
(kcjh) ̂f (α+N+β)(k).

By Lemma 1.6.1,

Ψ(k) =
N∑

j=0

bjc
N+β
j Ψα

β,N,pj
(kcj)

is the finite sum of Fourier transforms of L1 functions. Thus, in the multiplier notation

of Appendix C.3 we have that

ζh = hN+βTΨ(h·)f
(α+N+β)

Hence, as a consequence of the previous theorem and using the same arguments there

in, ζ̂h is the Fourier transform of an L1 function with

‖ζh‖L1(R) ≤ ChN+β‖f‖α+N+β.

The second statement follows along the same lines taking into account the support

condition satisfied by ζh.
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Chapter 2

Semigroups generated by

Grünwald-type approximations

In this chapter we investigate the stability and smoothing of numerical schemes for

fractional-in-space partial differential equations that employ Grünwald-type approxi-

mations for space discretisation. First, we discuss a general technical result which gives

a sufficient condition for multipliers associated with difference schemes approximating

fractional derivative operators to lead to stable schemes with desirable smoothing. Fol-

lowing that we study the first order Grünwald scheme and give an example of a second

order Grünwald scheme for fractional-in-space partial differential equations. In Section

2.2 we generalise the theory to fractional powers of generators of strongly continuous

(semi) groups in an abstract function space setting using the so-called transference

principle [4]. We conclude this chapter with results of some numerical experiments.

2.1 Semigroups generated by periodic multipliers

approximating fractional derivative operators

We begin this section with an important result that gives a sufficient condition for mul-

tipliers associated with the numerical scheme approximating the fractional derivative

to lead to stable scheme with desirable smoothing. In error estimates, the smoothing

of the numerical scheme will be used in an essential way to reduce the regularity re-

quirements on the initial data, and obtain optimal convergence rates when considering

space-time discretizations of abstract Cauchy problems with fractional derivatives or,

more generally, fractional powers of operators in Section 2.2. As mentioned in Section

1.3, observe below in Theorem 2.1.1 that the spaces Lr(R) where r 6= 2 are essential
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when dealing with α ≤ 1
2
.

Let AC[−π, π] denote the space of periodic functions that are absolutely continuous

andW r,1
per[−π, π] denote the Sobolev space of Lr[−π, π]-functions as in Definition B.1.1.

We refer to Definition C.1.1 for the definitions of the space of bounded linear operators

on L1, B(L1), and the operator norm ‖·‖B(L1)
.

Theorem 2.1.1. Let α ∈ R+ and ψ ∈ AC[−π, π] such that the following conditions

are satisfied:

(i) |ψ(k)| ≤ C |k|α for some C > 0,

(ii) |ψ′(k)| ≤ C ′ |k|α−1 for some C ′ > 0,

(iii) Re(ψ(k)) ≤ −c |k|α for some c > 0.

Then, ψ ∈ W r,1
per[−π, π] where r = 2 if α > 1

2
and r < 1

1−α
if α ≤ 1

2
. Moreover,

(a) ‖Tetψ‖B(L1)
≤ K for t ≥ 0,

(b)
∥∥Tψetψ

∥∥
B(L1)

≤ M
t
for t > 0,

where K and M depend on c, C and C ′ above.

Proof. Let r, s denote the Hölder conjugates where

1 < r ≤ 2 and
1

r
+

1

s
= 1. (2.1)

In what follows, if α ≤ 1
2
set r < 1

1−α
, otherwise, set r = 2, and keep in mind that

r(α− 1) > −1. As a consequence of the assumptions,

ψ ∈ W r,1
per[−π, π] and e

tψ ∈ W r,1
per[−π, π] for t ≥ 0. (2.2)

Thus, by Theorem 1.3.4, both ψ and etψ are L1-multipliers. Using the formal properties

of Fourier transforms one can verify that the operator associated with the periodic

multiplier etψ coincides with the semigroup generated by the operator Tψ; that is,

(Tetψ)t≥0 = (etTψ)t≥0 and by Theorem 1.3.4,

‖Tetψ‖B(L1)
≤ |a0|+ C

∥∥etψ
∥∥ 1
s

Lr

∥∥(etψ)′
∥∥ 1
r

Lr
. (2.3)

Firstly,

|a0| =

∣∣∣∣
1

2π

∫ π

−π

etψ(k)dk

∣∣∣∣ ≤
1

2π

∫ π

−π

etRe(ψ(k)) dk ≤
1

2π

∫ π

−π

e−ct|k|
α

dk ≤ 1,
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where we have used Assumption (iii). Next, using Assumption (iii) together with the

substitution τ = t
1
α |k|,

∥∥etψ
∥∥ 1
s

Lr[−π,π]
=

(∫ π

−π

∣∣etψ(k)
∣∣r dk

) 1
rs

≤ C

(∫ π

−π

ertRe(ψ(k)) dk

) 1
rs

≤C

(∫ π

−π

e−rct|k|
α

dk

) 1
rs

≤ C

(
1

t
1
α

∫

R

e−rc|τ |
α

dτ

) 1
rs

≤ Ct
−1
αrs . (2.4)

Making use of Assumptions (ii) and (iii), we have
∣∣∣∣
d

dk

(
etψ(k)

)∣∣∣∣
r

=

∣∣∣∣t
dψ(k)

dk
etψ(k)

∣∣∣∣
r

≤ C
(
tr |k|r(α−1)

)
e−rct|k|

α

,

Since r(α− 1) > −1, an application of (2.1) and the substitution τ = t
1
α |k|, yields

∥∥∥
(
etψ
)′∥∥∥

1
r

Lr[−π,π]
≤C

(
t
r−1
α

∫

R

τ r(α−1)e−rcτ
α

dτ

) 1
r2

≤ Ct
1
αrs . (2.5)

Thus, the proof of (a) is complete in view of (2.3), (2.4) and (2.5).

In view of (2.2), ψetψ ∈ W r,1
per[−π, π]. Thus, using Theorem 1.3.4,

∥∥Tψetψ
∥∥
B(L1)

≤ |a0|+ C
∥∥ψetψ

∥∥ 1
s

Lr[−π,π]

∥∥∥
(
ψetψ

)′∥∥∥
1
r

Lr[−π,π]
. (2.6)

Note that

|a0| ≤
1

2π

∫ π

−π

|ψ(k)| etRe(ψ(k)) dk ≤ C

∫ π

−π

|k|α e−ct|k|
α

dk ≤ C/t,

where we have used Assumptions (i) and (iii). The use of the substitution τ = t
1
α |k|

and the Assumptions (i) and (iii), yield

∥∥ψetψ
∥∥ 1
s

Lr[−π,π]
≤ C

(∫

R

|k|rαe−rct|k|
α

dk

) 1
rs

≤ Ct−
1
s
− 1
αrs . (2.7)

We also have by virtue of (2.5) and the three assumptions,
∣∣∣∣
d

dk
(ψetψ)(k)

∣∣∣∣
r

=

∣∣∣∣ψ(k)
d

dk

(
etψ(k)

)
+
dψ(k)

dk
etψ(k)

∣∣∣∣
r

≤ 2r−1 (tr |ψ(k)|r + 1)
∣∣(ψ(k))′

∣∣r ∣∣etψ(k)
∣∣r

≤ C(|k|r(α−1) + tr|k|r(2α−1))e−rct|k|
α

.

Thus, using (2.1) and the substitution τ = t
1
α |k|, and noting that

r(2α− 1) > r(α− 1) > −1,

∥∥∥∥
d

dk
(ψetψ)

∥∥∥∥
1
r

Lr[−π,π]

≤Ct−
1
r
+ 1
αrs

(∫

R

(|τ |r(α−1) + |τ |r(2α−1))e−rcτ
α

dτ

) 1
r2

≤Ct−
1
r
+ 1
αrs , (2.8)

and the proof of (b) is complete in view of (2.1), (2.6), (2.7) and (2.8).
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2.1.1 First-order Grünwald-type approximation

Let us consider the multiplier associated with the shifted Grünwald formula given in

Remarks 1.2.4 and 1.5.1,

ψα,h,p(k) = (−1)q+1h−αe−ikhp(1− eikh)α = (−1)q+1ωα,p(−ikh)(−ik)
α, (2.9)

where p, k ∈ R, h, α ∈ R+ such that 2q − 1 < α < 2q + 1, q ∈ N, and ωα,p(z) is given

by (1.8). Note that,

ψα,h,p(k) = h−αψα,1,p(kh). (2.10)

We first show that the range of the multiplier associated with the shifted Grünwald

formula is completely contained in a half-plane if and only if the (integer) shift is

optimal.

Proposition 2.1.2. Let ψα,h,p be given by (2.9) with shift p ∈ Z, k ∈ R, h, α ∈ R+

such that 2q − 1 < α < 2q + 1, q ∈ N. Then

(a) ψα,h,p satisfies Assumptions (i) and (ii) of Theorem 2.1.1 with C, C ′ independent

of h.

(b) Re(ψα,h,p) does not change sign if and only if
∣∣p− α

2

∣∣ < 1
2
if and only if ψα,h,p

satisfies the Assumption (iii) of Theorem 2.1.1 with c independent of h.

Proof. First, let us recall (1.17) and (1.18); that is, for k ∈ [−π, π],

|ωα,p(−ikh)| ≤ C and
∣∣ω′

α,p(−ikh)
∣∣ ≤ C.

Thus, in view of (2.9), for k ∈ [−π, π],

|ψα,h,p(k)| ≤ C |k|α (2.11)

and
∣∣∣∣
dψα,h,p(k)

dk

∣∣∣∣ = h−α
∣∣−αih(−ikh)α−1ωα,p(−ikh) + (−ikh)αω′

α,p(−ikh)
∣∣ ≤ C ′|k|α−1,

(2.12)

for some C,C ′ > 0 independent of h. This completes the proof of Statement (a).

For the proof of Statement (b), it is sufficient to consider h = 1 in view of (2.10)

and so let ψ := ψα,1,p. Moreover, since ψ is 2π-periodic and ψ(k) = ψ(−k), it is also

sufficient to consider k ∈ [0, π]. Rewrite ψ(k) as follows,

ψ(k) = (−1)q+1e−ipk
(
e
ik
2 (e

−ik
2 − e

ik
2 )
)α

= (−1)q+1ei(
α
2
−p)k

(
−2i sin

(
k

2

))α
.
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Using the fact that for x ≥ 0, (−ix)α = xαe−iα
π
2 , see Remark B.3.4, we obtain

ψ(k) = (−1)q+12α sinα
(
k

2

)
ei((

α
2
−p)k−απ

2 ); 0 ≤ k ≤ π.

Therefore,

Re (ψ(k)) =(−1)q+12α sinα
(
k

2

)
cos
(
(
α

2
− p)k −

απ

2

)

=(−1)q+1−p2α sinα
(
k

2

)
cos
(
(
α

2
− p)(k − π)

)
,

(2.13)

where we have used the fact that for p ∈ N, cos(θ) = (−1)p cos(θ ± pπ). Clearly, as

0 ≤ k ≤ π, in view of (2.13), Re (ψ(k)) changes sign if and only if
∣∣α
2
− p
∣∣ > 1

2
. Note

that by assumption α 6= 2q−1 for q ∈ N and so |α
2
−p| 6= 1

2
. Furthermore, Assumption

(iii) of Theorem 2.1.1 implies that there is no sign change.

To complete the proof, all that remains to be shown is that
∣∣p− α

2

∣∣ < 1
2
implies

that ψα,h,p satisfies Assumption (iii) of Theorem 2.1.1. To this end, first note the fact

that c is independent of h follows from (2.10). Further, note that if 2q − 1 < α <

2q + 1, then
∣∣p− α

2

∣∣ < 1
2
implies that p = q. For 0 ≤ x ≤ π, sin(x/2) ≥ x/π and

cos((α
2
− p)(x− π)) ≥ cos(−(α

2
− p)π). Thus,

Re (ψ(k)) =− 2α sinα
(
k

2

)
cos
(
(
α

2
− p)(k − π)

)

≤− 2α
(
k

π

)α
cos
(
(
α

2
− p)π

)
= −kα2α cos

(
(
α

2
− p)π

)
/πα.

(2.14)

This completes the proof of Statement (b).

Remark 2.1.3. Let us note in passing that
(
p− α

2

)
is the coefficient of z in the Taylor

expansion of the omega function given in Lemma 1.4.2.

Next, we show that with the optimal shift; that is, p = q, the operators Tψh

generate strongly continuous semigroups on L1(R), and in the case when p = 0; that

is, 0 < α < 1, on L1(R
+), that are bounded uniformly in h. Recall, in particular

for an L1-multiplier, that the range of ψh is always contained in the spectrum of the

associated operator Tψh , [1, Lemma 8.1.1]. This, in view of Proposition 2.1.2 and

Definition C.2.6, implies that, if the (integer) shift is not optimal, then the operator

Tψ cannot be sectorial. Hence, in view of Theorem C.2.8, the semigroups (Tetψ)t≥0

generated by Tψh will not be uniformly bounded. On the other hand, in those cases

when the shift is optimal, we in fact show that the semigroups (Tetψ)t≥0 generated by

Tψh are uniformly analytic in h; that is, there exists M > 0 such that the uniform
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estimate ‖Tψhetψh‖B(L1) ≤ Mt−1 holds for t, h > 0. As it turns out, this fact will

have significance when proving error estimates for Grünwald-type numerical schemes

for abstract Cauchy problems with fractional derivatives or, more generally, fractional

powers of operators in Section 2.2.

Theorem 2.1.4. Let α ∈ R+, 2p− 1 < α < 2p+1, p ∈ N, and consider the Grünwald

multiplier,

ψh(k) = (−1)p+1h−αe−ikhp
(
1− eikh

)α
.

Then the following hold:

(a) {Tetψh}t≥0 are strongly continuous semigroups on L1(R) that are bounded uni-

formly in h > 0 and t ≥ 0. In particular, if 1 < α < 2, then {Tetψh}t≥0 is a

positive contraction semigroup on L1(R) and for 0 < α < 1, on L1(R
+).

(b) The semigroups {Tetψh}t≥0 are uniformly analytic in h > 0; that is, there exists

M > 0 such that the uniform estimate ‖Tψhetψh‖B(L1) ≤Mt−1 holds for t, h > 0.

Proof. Proof of (a): To begin, note that ψh(k) = ψα,h,p(k) with q = p given by (2.9),

also consult Remark 1.2.4. We only have to show that ‖Tetψh‖B(L1)
≤ K, for all

t ≥ 0 and h > 0, for some K ≥ 1 and strong continuity follows by Theorem C.3.6.

Furthermore, it is enough to consider h = 1 in view of (C.4) and (2.10), so let ψ := ψ1.

Consider, either 0 < α < 1 or 1 < α < 2 so that the optimal shift p = 0 or 1,

respectively. Taking Remark 1.2.4 into account, we have

(Tψf)(x) = (−1)p+1(
∞∑

m=0

(−1)m
(
α

m

)
f(x− (m− p)))

= −

(
α

p

)
f(x) + (−1)p+1

∞∑

m=0,m 6=p

(−1)m
(
α

m

)
f(x− (m− p))

= (−

(
α

p

)
I f)(x) + (Tψ̃f)(x).

Since (−1)p+1(−1)m
(
α
m

)
≥ 0, for m 6= p, it follows that Tψ̃ is a positive operator on

L1(R) (or, L1(R+) for 0 < α < 1 by recalling Remark 1.2.2 and so is etTψ̃ = Tetψ̃ .

Therefore, noting the fact that
∑∞

m=0(−1)m
(
α
m

)
= 0,

Tetψ = etTψ = et(−(
α
p)I+Tψ̃) = e−(

α
p)tetTψ̃ ≥ 0,

and

‖Tetψ‖L1 ≤ e−(
α
p)tet‖Tψ̃‖L1 = e−(

α
p)te(−1)p+1

∑∞
m=0,m 6=p(−1)m(αm)t = 1.
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Let now α > 2, then by Proposition 2.1.2, ψh satisfies the hypothesis of Theorem 2.1.1

and the proof of (a) is complete.

Proof of (b): Let α > 0, then the statement follows from Theorem 2.1.1 in view of

Proposition 2.1.2 and Theorem C.2.8, since rg(T (t)) ⊂ D(Tψ) = L1(R) for all t > 0.

2.1.2 Examples of second order stable Grünwald-type approx-

imations

Let α ∈ R+, 2q − 1 < α < 2q + 1, and q ∈ N. Consider the mixture of multipliers

associated with Grünwald formulae yielding a second order approximation,

φh(k) := aψα,h,p1(k) + (1− a)ψα,2h,p2(k),

where ψα,h,p(k) = (−1)q+1h−αe−ipkh(1 − eikh)α, the multiplier associated with the p-

shifted Grünwald formula given by (2.9). Moreover, in view of Definition 1.5.2 we also

write

Ãα
h = (−1)q+1Tφh .

It is worth noting here that there are many combinations of α, a, p1, and p2 that

would yield a second order approximation; however, only some are stable. A simple

calculation, in view of (1.31) and (1.32), verifies the fact that if 0 < α < 1, then

a = 2, p1 = p2 = 0 give a second order approximation. Similarly, for 1 < α < 2,

a = 2− 2
α
, p1 = 1, p2 =

1
2
give a second order approximation. Therefore, we focus on

the stability of these second order schemes.

Proposition 2.1.5. Let φh(k) be as above, where a = 2, p1 = p2 = 0, if 0 < α < 1

and a = 2 − 2
α
, p1 = 1, p2 = 1

2
, if 1 < α < 2. Then φh satisfies the assumptions of

Theorem 2.1.1 with constants c, C and C ′ independent of h.

Proof. Assumptions (i) and (ii) of Theorem 2.1.1 are clearly satisfied in view of (2.11)

and (2.12) as they hold for any p ∈ R. Let us show that Assumption (iii) of Theorem

2.1.1 is satisfied as well.

Note that

φh(k) = h−αφ1(hk).

Thus, it is sufficient to consider the case h = 1, so let φ := φ1. That is,

φ(k) = φ1(k) = (−1)q+1
(
ae−ip1k(1− eik)α + (1− a)2−αe−i2p2k(1− ei2k)α

)
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and note that φ is 2π-periodic. By symmetry, we only need to consider the real part

for 0 ≤ k ≤ π, and so using (2.13) and the double angle formula we have

Re(φ(k)) = (−1)q+12α sinα
(
k

2

)(
a cosA+ (1− a) cosα

(
k

2

)
cosB

)
,

where A = (α
2
− p1)k −

απ
2

and B = (α− 2p2)k −
απ
2
.

We consider for 0 ≤ k ≤ π, the function

F (k) = (−1)q+1 (a cosA+ (1− a) cosB)

and show that F (k) ≤ F (π) < 0. Then, since a > 0 and p1 is the optimal shift, if

Re ((1− a)ψp2h (k)) < 0, by (2.14),

Re(φ(k)) ≤ −akα2α cos
(
(
α

2
− p)π

)
/πα.

If Re ((1− a)ψp2h (k)) > 0, we will have the estimate

Re(φ(k)) ≤ F (π)2α sinα
(
k

2

)
≤ kαF (π)2α/πα.

An easy check shows that F (π) < 0. It remains to show that F ′(k) > 0. Now, as

in both cases 2p1 = p2 and (1− a)(α− 2p2) = −a
(
α
2
− p1

)
,

F ′(k) =(−1)q+1
(
−a
(α
2
− p1

)
sin(A)− (1− a) (α− 2p2) sin(B)

)

=C(α) (sin(A)− sin(B)) = 2C(α) cos

(
A+ B

2

)
sin

(
A−B

2

)

where C(α) = −a(α
2
− p1),

A+B
2

= (3α
4
− p1)k − απ

2
, and A−B

2
= −αk

4
. Checking the

range of the arguments, the cosine factor is negative if α > 1 and positive if α < 1, the

sine factor is always negative, and hence F ′(k) > 0.

As a consequence, the bounds for the next result obtained from Theorem 2.1.1 are

independent of h, and thus we have the following result on the stability and smoothing

of the second order schemes.

Theorem 2.1.6. Let φh(k) and a be as in Proposition 2.1.5. If 0 < α < 1 and a = 2,

or if 1 < α < 2 and a = 2 − 2
α
, then {Tetφh}t≥0 are semigroups on L1(R

+) or L1(R),

respectively, that are uniformly bounded in h and t, strongly continuous, and uniformly

analytic in h.

Proof. The statement follows from Theorem 2.1.1 in view of Proposition 2.1.5 and

Theorem C.2.8.
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2.2 Application to fractional powers of operators

Let X be a Banach space and −A be the generator of a strongly continuous group

of bounded linear operators {G(t)}t∈R on X with ‖G(t)‖B(X) ≤ M for all t ∈ R for

some M ≥ 1. If µ is a bounded Borel measure on R and if we set ψ(z) := µ̂(z) =∫∞

−∞
ezs dµ(s), (z = ik), we may define the bounded linear operator

ψ(−A)x :=

∫

R

G(s)x dµ(s), x ∈ X. (2.15)

It is well known that the map ψ → ψ(−A) is an algebra homomorphism and is called the

Hille-Phillips functional calculus, see for example, [55]. That is, if ψ = µ̂ and φ = ν̂,

for some bounded Borel measures µ and ν, then (φ + ψ)(−A) = φ(−A) + ψ(−A),

(φ · ψ)(−A) = φ(−A)ψ(−A) and (cφ)(−A) = cφ(−A), c ∈ C. A simple transference

principle shows, see e.g. [4, Theorem 3.1], that,

‖ψ(−A)‖B(X) ≤M‖Tk 7→ψ(ik)‖B(L1(R)). (2.16)

Note that if suppµ ⊂ R+, then we may take −A to be the generator of a strongly

continuous semigroup and the properties of the Hille-Phillips functional calculus (2.15)

and the transference principle (2.16) still holds.

Let 2p − 1 < α < 2p + 1, α ∈ R+, p ∈ N and {µt}t≥0 be the family of Borel

measures on R such that µ̂t(z) = et(−1)p+1(−z)α , (z = ik). Then the operator family

given by

Sα(t)x :=

∫

R

G(s)x dµt(s), x ∈ X, t ≥ 0,

is a uniformly bounded (analytic) semigroup of bounded linear operators on X, see [4,

Theorems 4.1 and 4.6] for the group case. In case 0 < α < 1, we have suppµt ⊂ R+ and

hence −A is allowed to be a semigroup generator and G to be a strongly continuous

semigroup and the analyticity of Sα holds, see [11] and [108]. The fractional power Aα

of A is then defined to be the generator of Sα multiplied by (−1)p+1. We note that the

fractional power of A may be defined via an unbounded functional calculus for group

generators (or, semigroup generators), formally given by fα(−A), where fα(z) = (−z)α.

This coincides with the definition given here for groups and, in case 0 < α < 1, for

semigroups, see [4] and [11] for more details. Thus, for the additional case of −A being

a semigroup generator and α > 1, we just set Aα = fα(−A) as in [11].

The following theorem shows the rate of convergence for the Grünwald formula

approximating fractional powers of operators in this general setting. The extension to
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cases beyond the shift group is useful in several applications, for instance, applications

in hydrology that employ the flow group [4, 10]. For the sake of notational simplicity

we only give the first order version; the higher order version follows exactly along the

same lines and is discussed in Corollary 2.2.3.

Theorem 2.2.1. Let X be a Banach space and p ∈ N. Assume that −A is the generator

of a strongly continuous group, in case p = 0, semigroup, of uniformly bounded linear

operators {G(t)}t∈R on X. Define

Φp
α,hx = h−α

∞∑

m=0

GαmG((m− p)h)x = (−1)q+1ψα,h,p(−A)x, x ∈ X,

where Gαm = (−1)m
(
α
m

)
, ψα,h,p(z) is given by (1.5) and α ∈ R+ such that 2q − 1 < α <

2q + 1, q ∈ N.

Then, as h > 0, we have

‖Φp
α,hx− Aαx‖ ≤ Ch‖Aα+1x‖, x ∈ D(Aα+1). (2.17)

Furthermore, if p = q, then (−1)p+1Φp
α,h generate {Spα,h(t)}t≥0, strongly continuous

semigroups of linear operators on X that are uniformly bounded in h > 0 and t ≥ 0

and uniformly analytic in h > 0; that is, there is M > 0 such that ‖Spα,h(t)‖B(X) ≤ M

and ‖Φp
α,hS

p
α,h(t)‖B(X) ≤Mt−1 for all t, h > 0.

Proof. If ĝ is defined by ĝ(z) = ωα,p(−z)−1

−z
, Re z ≤ 0, then by Lemma 1.6.1 with N = 0

and β = 1 and (C.4) we have that

‖Tk 7→hĝ(ikh)‖B(L1(R)) ≤ Ch.

In case p = 0, we have that supp(g) ⊂ R+ and hence,

‖Tk 7→hĝ(ikh)‖B(L1(R+)) ≤ Ch.

Therefore, by the transference estimate (2.16),

‖hĝ(−hA)‖B(X) ≤ Ch

for some C > 0. Thus, if x ∈ D(Aα+1), then

‖hĝ(−hA)Aα+1x‖ ≤ Ch‖Aα+1x‖.

Using the unbounded functional calculus developed in [4] (in case p = 0 see [11]), we

have, for x ∈ D(Aα+1),

hĝ(−hA)Aα+1x =
[
hĝ(hz)(−z)α+1

∣∣
z=−A

]
x
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=

[(
h−α

∞∑

m=0

(−1)m
(
α

m

)
e(m−p)h(z) − (−z)α

)∣∣∣∣∣
z=−A

]
x

= Φp
α,hx− Aαx

and the proof of (2.17) is complete.

The strong continuity of Spα,h follow from Theorem 2.1.4 and [4, Theorem 4.1], where

the latter theorem establishes the transference of strong continuity, from L1(R) to a

general Banach space X (see, [11, Theorem 5.1] for the same result in the unilateral

case). Finally, the operator norm estimates follow from the L1-norm estimates in

Theorem 2.1.4 and the transference estimate (2.16), noting that by the functional

calculus of [4] and [11] it follows that (ψα,h,pe
tψα,h,p)(−A) = (−1)p+1Φp

α,hS
p
α,h(t) for

t > 0 where ψα,h,p is given by (1.5) and p = q.

The stability and consistency estimates of Theorem 2.2.1 allow us to obtain un-

conditionally convergent numerical schemes for the associated Cauchy problem in the

abstract setting together with error estimates. To demonstrate this, we use the opti-

mally shifted first order Grünwald scheme as “spatial” approximation together with a

first order scheme for time stepping, the Backward (Implicit) Euler scheme, to match

the spatial order. Let 2p− 1 < α < 2p+ 1, α ∈ R+, p ∈ N, X be a Banach space and

−A be the generator of a uniformly bounded strongly continuous group (semigroup if

p = 0) of operators on X and set Aα := (−1)p+1Aα. Consider the abstract Cauchy

problem

u̇(t) = Aαu(t); u(0) = x,

with solution operator {Sα(t)}t≥0, where, as we already mentioned, Sα is a uniformly

bounded analytic semigroup as shown in [4, Theorem 4.6] and in [108] for 0 < α < 1;

that is, when −A is a semigroup generator. For its numerical approximation set

un+1 − un
τ

= (−1)p+1Φp
α,hun+1; u0 = x, n = 0, 1, 2, ...;

that is, with Aα,h := (−1)p+1Φp
α,h,

un = (I − τAα,h)
−nx, n = 1, 2, ...

We have the following smooth data error estimate.

Theorem 2.2.2. Let 2p−1 < α < 2p+1, α ∈ R+, p ∈ N, n ∈ N, and 0 < ε ≤ 1. Let X

be a Banach space and −A be the generator of a uniformly bounded strongly continuous

group (semigroup if p = 0) of operators on X and set t = nτ . If x ∈ D(A1+ε), then

‖Sα(t)x− un‖ ≤ C(n−1‖x‖+ h
αt

ε
α

ε
‖A1+εx‖), n = 1, 2, ...; t > 0, (2.18)
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and, if x ∈ D(A), then

‖Sα(t)x− un‖ ≤ C(n−1‖x‖+ (1 + α)h

∣∣∣∣log
t

hα

∣∣∣∣ ‖Ax‖), n = 1, 2, ...; t > 0. (2.19)

Proof. To show (2.18), we split the error as

Sα(t)x− un = Sα(t)x− Spα,h(t)x+ Spα,h(t)x− un := e1 + e2.

It was shown in Theorem 2.2.1 that Spα,h are bounded analytic semigroups on X, uni-

formly in h. Therefore, ‖e2‖ ≤ Cn−1‖x‖, n ∈ N, as shown in [30], with C independent

of h and t. To bound e1 we use the fact that all operators appearing commute being

functions of A, to write

e1 = Sα(t)x− Spα,h(t)x =

∫ t

0

(Aα − Aα,h)Sα(r)S
p
α,h(t− r)x dr (2.20)

Note that the analyticity of the semigroup Sα implies that there is a constant M such

that for 0 ≤ ε ≤ 1, the estimate ‖A1−ε
α Sα(t)‖ ≤ Mtε−1 holds for all t > 0. Then, by

Theorem 2.2.1,

‖e1‖ ≤ Ch

∫ t

0

‖Aα+1Sα(r)S
p
α,h(t− r)x‖ dr

= Ch

∫ t

0

‖A
1− ε

α
α Sα(r)S

p
α,h(t− r)A1+εx‖ dr ≤ Ch

αt
ε
α

ε
‖A1+εx‖,

which completes the proof of (2.18).

To show (2.19), write e1 in (2.20) as

e1 =

∫ hα

0

(Aα − Aα,h)Sα(r)S
p
α,h(t− r)x dr +

∫ t

hα
(Aα − Aα,h)Sα(r)S

p
α,h(t− r)x dr

It is already known that Aα,hx→ Aαx as h→ 0+ for all x ∈ D(Aα), see [4, Proposition

4.9] and [106], and hence we have stability ‖Aα,hx−Aαx‖ ≤ C‖Aαx‖ for all x ∈ D(Aα).

Therefore,

‖e1‖ ≤C

∫ hα

0

‖A
1− 1

α
α Sα(r)Ax‖ dr + Ch

∣∣∣∣
∫ t

hα
‖AαSα(r)Ax‖ dr

∣∣∣∣

≤C(hα + h

∣∣∣∣log
t

hα

∣∣∣∣)‖Ax‖.

Note that the condition x ∈ D(A1+ε) in (2.18) might be hard to check for ǫ 6= 1,

depending on A and the Banach space X. However, one can always use ε = 1 as

D(A2) is usually quite explicit. We also obtain convergence and error estimates of

stable higher order schemes (such as the second order Grünwald formulae introduced

in Section 2.1.2).
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Corollary 2.2.3. Let α ∈ R+ with 2q − 1 < α < 2q + 1, q ∈ N and let

Ψα,h := (−1)q+1

N∑

j=0

bjΦ
pj
α,cjh

=
N∑

j=0

bjψα,cjh,pj(−A)

be an N + 1-order Grünwald approximation, where ψα,h,p(z) is given by (1.5) and

bj, cj, pj are as defined in (1.33). Assume the multiplier
∑N

j=0 bjψα,cjh,pj(k), where

ψα,h,p(k) is given by (1.6), satisfies (i)-(iii) of Theorem 1.6.2 with constants independent

of h. If one solves the Cauchy problem

u̇(t) = Ψα,hu(t); u(0) = x,

with a strongly A-stable Runge-Kutta method with stage order s and order r ≥ s + 1,

then, denoting the discrete solution by un at time level t = nτ ,

‖Sα(t)x− un‖ ≤ C

(
n−r‖x‖+ hN+1

∣∣∣∣log
t

hα

∣∣∣∣ ‖AN+1x‖

)
, h > 0, t = nτ,

for all x ∈ D(AN+1).

Proof. It is straight forward to see that Theorem 2.2.1 holds for Ψα,h; i.e.,

‖Ψα,hx− Aαx‖ ≤ ChN+1‖Aα+N+1x‖, x ∈ D(Aα+N+1),

‖etΨα,h‖B(X) ≤ M and ‖Ψα,he
tΨα,h‖B(X) ≤ M/t. Following the proof of Theorem 2.2.2

we obtain the “spatial” error estimate

‖Sα(t)x− etΨα,hx‖ ≤ ChN+1

∣∣∣∣log
t

hα

∣∣∣∣ ‖AN+1x‖. (2.21)

Since the analyticity of the semigroups etΨα,h is uniform in h (the constant M does not

depend on h), the statement follows from [68, Theorem 3.2] (see also [91]).

Remark 2.2.4. The error estimates (2.18) and (2.19) are almost optimal in terms of the

regularity of the data. We conjecture that one could remove the slight growth in t from

(2.18) or the logarithmic factor in (2.19) by considering the L1-case again and using

the theory of Fourier multipliers on Besov spaces. Then use the transference principle

to derive the abstract result. We do not pursue this issue here any further.

Remark 2.2.5. The convergence rate given in Corollary 2.2.3 can be extended using the

stability estimate

‖Sα(t)x− etΨα,hx‖ ≤ C‖x‖
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and (2.21) to certain real interpolation spaces as in [57, Corollary 4.4]. We note that

while the spaces D(As) endowed with the graph norm are, in general, not interpolation

spaces, they are embedded within appropriate interpolation spaces (see, for example,

[47, Corollary 6.6.3]) and therefore we obtain

‖Sα(t)x− un‖ ≤ C

(
n−r‖x‖+ hs

∣∣∣∣log
t

hα

∣∣∣∣
s

N+1

(‖Asx‖+ ‖x‖)

)
, h > 0, t = nτ,

for all x ∈ D(As), s ∈ [0, N + 1]. Also note that we indeed have convergence of un

to Sα(t)x for all x ∈ X as τ → 0 and h → 0 by Lax’s Equivalence Theorem as a

consequence of stability and consistency. The order of convergence, however, might be

very low depending on x.

Remark 2.2.6. In recent work [27], Chen and Deng studied fourth order accurate

schemes for certain fractional diffusion equations. Their approach is very different

to ours, which we briefly compare and contrast below. Firstly, the authors develop a

fourth order approximation different to our higher order Grünwald-type approximation

for the (space) fractional derivative using Lubich’s fractional linear multistep methods

[64]. The authors refer to it as a weighted and shifted Lubich difference (WSLD) oper-

ator as a shift similar to ours is employed, see Definitions 1.2.1 and 1.5.2. In Theorem

2.4, the authors obtain point error estimates for their fourth order approximation for

the fractional derivative under the assumption that the function along with the frac-

tional derivative of order α + 4 as well as their Fourier transforms belong to L1(R).

In comparison, the regularity assumptions that we require to obtain higher order ap-

proximations are very minimal; that is, we only require that the function along with

the fractional derivative of order α+4 belong to L1(R). Then, using Fourier multiplier

theory and powerful Carlson-type inequalities, we obtain error estimates (see Corollary

1.6.3) in the L1-setting which are sharp in view of the minimal regularity assumptions.

Moreover, these error estimates from the L1-setting can be used to obtain point es-

timates similar to the ones obtained by these authors, with less stringent regularity

assumptions compared to theirs, using the transference principle (see Corollary 2.2.3).

Lastly, the authors exploit the Toeplitz matrix structure of their scheme and employ

the Grenander-Szergö Theorem to demonstrate stability. On the other hand, we use

semigroup theory to show stability and smoothing of our numerical scheme. For future

work, it might be worth considering their approach for showing stability of the numer-

ical scheme, as we found our proof of stability for an explicit numerical example very

technical and tedious, even in the case of a third order scheme.
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2.3 Numerical results

In this section we give the results of two numerical experiments. The first is to explore

the effect of the regularity of the initial distribution on the rate of convergence as needed

for Corollary 2.2.3, the other is to see how well a second and third order scheme fare

in the numerical experiment done by Tadjeran et. al [102].

Example 2.3.1. We consider X = L1[0, 1] and A = (d/dx) with

D(A) = {f : f ′ ∈ L1, f(0) = 0}

and α = 0.8. We approximate the solution to the Cauchy problems

u′(t) = −Aαu(t); u(0) = fi, i = 1, 2, 3

at t = 1 with

f1(x) = x−0.3, f2(x) = x0.7, f3(x) = x1.7,

with first and second order Grünwald schemes (as in Proposition 2.1.5) as well as via

a convolution of fi with an α-stable density approximated using Zolotarev’s integral

representation [83], which gives the exact solution but both the convolution and the

density are computed numerically on a very fine grid. Note that −Aα denotes the

Riemann-Liouville fractional derivative on the interval [0, 1] which we study in detail

in Chapters 3 and 4. Further, note that f1 6∈ D(A), f2 ∈ D(A) but f2 6∈ D(A2) and

f3 ∈ D(A2). However, f1 ∈ D(Aβ1) for β1 < 0.7 and f2 ∈ D(Aβ2) for β2 < 1.7.

By Remark 2.2.5 we expect about 0.7-order convergence for both schemes in case of

u0 = f1, and first order convergence for the first order scheme for the other initial

conditions. We expect about 1.7-order convergence for the second order scheme in

case of u0 = f2 and second order convergence in case of u0 = f3. For the temporal

discretization we use MATLAB’s ode45, a fourth-order Runge-Kutta method with a

forced high degree of accuracy in order to investigate the pure spatial discretization

error. We see in Figure 2.1 that we obtain the expected convergence in all cases.
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Figure 2.1: L1-error for different initial conditions fi and a first (·) and second order

(∗) scheme. Note the less than first order convergence for a “bad” initial condition; i.e.

one that is not in the domain of A. Also note the less than second order convergence

for a second order scheme but first order convergence for the first order scheme for an

initial condition that is in the domain of A but not in the domain of A2.

Example 2.3.2. Even though our theoretical framework is not directly applicable, be-

cause the fractional differential operator appearing in (2.22) is defined on a finite do-

main with boundary conditions and has a multiplicative perturbation and hence it is

not a fractional power of an auxiliary operator, we apply the second and third order

approximations to the problem investigated by Tadjeran et al. [102], namely approxi-

mating the solution to

∂u(x, t)

∂t
=

Γ(2.2)

3!
x2.8

∂1.8u(x, t)

∂x1.8
− (1 + x)e−tx3; u(x, 0) = x3 (2.22)

on the interval [0, 1] with boundary conditions u(0, t) = 0, u(1, t) = e−t. The exact

solution is given by e−tx3, which can be verified directly.

A second order approximation of the fractional derivative is given by Proposition

2.1.5. In order to obtain a third order approximation we consider

φh(k) = aψ1
h + bψ

1
2
2h + cψ0

h

with the coefficients a, b and c such that φh is a third order approximation; i.e.

a =
7− 8α + 3α2

3(α− 1)
, b =

−7 + 3α

3(α− 1)
, c = 1− a− b.

A quick plot of φh(k) for k ∈ R strengthens the conjecture that the spectrum is in a

sector in the left half plane and hence we expect stability and smoothing. We use again
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a fourth order Runge-Kutta method to solve the systems to t = 1. Table 1 suggests

that we indeed have second and third order convergence with respect to the spatial

discretization parameter ∆x.

∆x Error 2nd Error rate Error 3rd Error rate

1/10 6.825× 10−5 - 9.180× 10−6 -

1/15 3.048× 10−5 2.24 ≈ (15/10)2 1.933× 10−6 4.75 > (15/10)3

1/20 1.708× 10−5 1.78 ≈ (20/15)2 7.825× 10−7 2.47 ≈ (20/15)3

1/25 1.088× 10−5 1.57 ≈ (25/20)2 3.922× 10−7 2 ≈ (25/20)3

Table 2.1: Maximum error behaviour for second and third order

Grünwald approximations.
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Chapter 3

Boundary conditions for

fractional-in-space partial

differential equations

The Fokker-Planck equation of a Lévy stable process on R is a fractional (in space) par-

tial differential equation. The (spatial) fractional derivative operator is non-local with

infinite reach. In Chapters 3 and 4 we investigate the truncated fractional derivative

operators on a bounded interval Ω with various boundary conditions. Moreover, we

identify the stochastic processes whose marginal densities are the solutions to the frac-

tional partial differential equations. That is, we show convergence of easily identifiable

(sub)-Markov processes (that are essentially finite state), to a (sub)-Markov process

governed by a Fokker-Planck equation on a bounded interval where the spatial oper-

ator is a truncated fractional derivative with appropriate boundary conditions. This

will be achieved using the Trotter-Kato theorem [37, p. 209], regarding convergence of

Feller semi-groups on C0(Ω) and strongly continuous positive contraction semigroups

on L1[0, 1], and hence showing process convergence [53, p. 331, Theorem 17.25].

3.1 Extension of a finite state Markov process to a

Feller process on [0, 1]

To set the stage, let the matrix Gn×n denote the generator of a finite state sub-Markov

process (Xn
t )t≥0 ∈ {1, . . . , n}. Then, for any function f : {1, . . . , n} 7→ R,

(
etGn×n (f(1), . . . , f(n))T

)
i
= E[f(Xn

t |X
n
0 = i)].
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Identifying f with a vector f via fi = f(i), (S(t))t≥0 with

S(t) : f 7→ etGn×nf

is a family of bounded operators on ℓn∞ = (Rn, ‖.‖∞) called the backward semigroup of

the process (Xn
t )t≥0. For f = ej, (S(t)f)i gives the probability that Xn

t = j given that

Xn
0 = i. This is in contrast to the forward semigroup (T (t))t≥0 with

T (t) : g 7→ gT etGn×n = etG
∗
n×ng

acting on g ∈ ℓn1 = (Rn, ‖.‖1), where T (t)g is the probability distribution of (Xn
t )t≥0

given that the initial probability distribution of Xn
0 is g. Here G∗

n×n is the adjoint of

Gn×n and gT the transpose of g. In particular, if g = ej, (T (t)g)i gives the probability

that Xn
t = i given that Xn

0 = j.

Remark 3.1.1 (Transition rate matrix). We refer to Gn×n and G∗
n×n as transition

rate matrices for the spaces ℓn∞ and ℓn1 , respectively. Their diagonal entries gi,i ≤ 0

denote the total rate at which particles leave state i and their entries gi,j ≥ 0, i 6= j

signify the rate at which particles move from state i to state j or from state j to

state i, respectively. The processes are referred to as sub-Markovian if the diagonal

entries dominate the row and column sums, respectively, and note that in this case the

particles exit the domain completely and so the mass is not preserved.

Recall that these concepts are extendable to general Markov processes taking values

in a locally compact separable metric space Ω with the backward semigroup (S(t))t≥0

acting on bounded functions and the forward semigroup (T (t))t≥0 acting on Borel

measures on Ω. Let C0(Ω) with sup-norm denote the closure of the space of continuous

functions with compact support in Ω. In particular, if (S(t))t≥0 is a positive, strongly

continuous contraction semigroup that leaves C0(Ω) invariant, then (Xt)t≥0 is called a

Feller process. On the other hand, for any positive, strongly continuous, contraction

semigroup (S(t))t≥0 on C0(Ω) (called Feller semigroups) there exists a process (Xt)t≥0

with (S(t))t≥0 as its backwards semigroup [53, Chapter 17]. Furthermore, a family of

Feller semigroups converge strongly, uniformly for t ∈ [0, t0], to a Feller semigroup if

and only if their respective Feller processes converge in the Skorokhod topology, see

[53, p. 331, Theorem 17.25].
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3.2 Construction of the transition operators

We begin with the bounded domain where all the action takes place. In what follows,

we use

Ω = [(0, 1)] (3.1)

to represent the interval [0, 1], which may or may not contain its endpoints, depending

on the left and right boundary conditions that we impose on the fractional derivative

operator. For a Dirichlet boundary condition (or absorbing boundary condition) we

remove the endpoint from that side, which implies that C0(Ω) will be the set of con-

tinuous functions that are zero at that endpoint. Note that if there are no absorbing

boundary conditions then C0(Ω) = C[0, 1] as the closed interval [0, 1] is compact.

In order to exploit the fact that convergence, uniformly for t ∈ [0, t0], of Feller semi-

groups on C0(Ω) implies convergence of the processes we turn a (n)-state (sub)-Markov

process (Xn
t )t≥0 ∈ {1, 2, . . . , n} to a Feller process (X̃n

t )t≥0 ∈ Ω by having parallel

copies of the finite state processes whose transition matrices interpolate continuously.

The main idea here is to divide the interval [0, 1] into n+ 1 grids of equal length h so

that the (Feller) process can jump between grids only in multiples of h. The transition

rates for the (Feller) process (X̃n
t )t≥0 in the interval [(i−1)h, ih] jumping up or down by

jh interpolate continuously between the transition rates of sub-Markov process (Xn
t )t≥0

being in state i − 1 going to state (i − 1 + j) and the transition rates of sub-Markov

process (Xn
t )t≥0 being in state i going to state (i+ j).

Let us make the necessary preparations in order to facilitate the definition of the

transition operator.

Remark 3.2.1. To be precise, let n ∈ N, h = 1
n+1

and divide the interval [0, 1] into n+1

intervals such that the first n intervals are half open (on the right) while the (n+ 1)th

(last) interval is closed. We can then uniquely determine each x ∈ [0, 1] by writing x
h

as the sum of its integer and fractional parts,

x

h
=
⌊x
h

⌋
+
{x
h

}
.

For convenience in calculations, we write ι(x)− 1 =
⌊
x
h

⌋
and λ(x) =

{
x
h

}
, so that

x

h
= (ι(x)− 1) + λ(x),

where the two grid co-ordinate functions are defined as follows.
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Definition 3.2.2. For each x ∈ [0, 1], the (step) function that returns the index of the

grid under consideration, ι : x→ {1, 2, . . . , n+ 1}, is given by

ι(x) =

{
i+ 1, if i ≤ x

h
< i+ 1 for i ∈ {0, 1, 2, . . . , n},

n+ 1, if x
h
= n+ 1.

The (sawtooth) function that returns the interpolant value, λ : x→ [0, 1] is given by

λ(x) =

{
x
h
− i, if i ≤ x

h
< i+ 1 for i ∈ {0, 1, 2, . . . , n},

1, if x
h
= n+ 1.

Note that the value λ(x) = 1 is taken only once at the right boundary x = (n+1)h = 1,

while every other value 0 ≤ λ(x) < 1 is taken n+ 1-times.

Let C ([0, 1] ; Rn+1) denote the space of vector-valued continuous functions v :

[0, 1] → Rn+1. The projection operator Pn+1 : C[0, 1] → C ([0, 1] ; Rn+1) is defined by

(Pn+1f)j (λ) = f((λ+ j − 1)h), f ∈ C[0, 1],

where λ ∈ [0, 1] and j ∈ {1, 2, . . . , n+1}. The embedding (gluing) operator is defined

on the range of the projection operator; that is, let

D(En+1) := rg(Pn+1) ⊂ C
(
[0, 1] ; Rn+1

)

and define En+1 : D(En+1) → C[0, 1] by (En+1v) (x) = vi(x)(λ(x)), where x ∈ [0, 1] and

domain

D(En+1) =
{
v ∈ C

(
[0, 1] ; Rn+1

)
: vj+1(0) = vj(1) for j = 1, . . . , n

}
.

Observe that En+1 is a bounded operator and D(En+1) is a closed subspace of

C ([0, 1];Rn+1), thus En+1 is closed. Moreover,

En+1 (Pn+1f) = f, f ∈ C[0, 1],

Pn+1 (En+1v) = v, v ∈ D(En+1). (3.2)

Let Gn×n denote a given n × n transition matrix on ln∞. Then, we construct the

corresponding (n+ 1)× (n+ 1) interpolation matrix,

Gn+1(λ) =




g1,1 Dl(λ)g1,2 · · · Dl(λ)g1,n 0

N l(λ)g2,1 N r(λ)g1,n
...

...

N l(λ)gi,1 (1− λ)gi−1,j−1 + λgi,j N r(λ)gi−1,n

...
...

N l(λ)gn,1 N r(λ)gn−1,n

0 Dr(λ)gn,1 · · · Dr(λ)gn,n−1 gn,n




, (3.3)
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where the parameter λ ∈ [0, 1], gi,j are the entries of Gn×n, and D
l, N l, Dr, N r are

continuous interpolating functions of the parameter λ such that Gn+1(λ) is also a rate

matrix for each λ ∈ [0, 1].

Remark 3.2.3. The interpolating functions are chosen in the following manner depend-

ing on the boundary conditions at hand. If the left boundary condition is Dirichlet,

then we set N l = 1 and take Dl to be a continuous function of the parameter λ that

interpolates from 0 to 1. If the left boundary condition is not Dirichlet, then we set

Dl = 1 and take N l to be a continuous function that interpolates from 0 to 1. Similarly,

if the right boundary condition is Dirichlet, then we set N r = 1 and take Dr to be a

continuous function that interpolates from 1 to 0. If the right boundary condition is

not Dirichlet, then we set Dr = 1 and N r to be a continuous function that intepolates

from 1 to 0.

Lastly, observe that the interior entries of Gn+1 are given by

[Gn+1(λ)]i,j = (1− λ)gi−1,j−1 + λgi,j for i, j ∈ {2, 3, · · · , n} .

Let us verify that Gn+1(Pn+1f) ∈ D(En+1); that is,

(Gn+1(Pn+1f))i+1 (0) = (Gn+1(Pn+1f))i (1), i = 1, . . . , n,

where for k = 1, . . . , n+ 1,

(Gn+1(Pn+1f))k (λ) =
n+1∑

j=1

[Gn+1(λ)]k,j (Pn+1f)j (λ).

Keep in mind that irrespective of the boundary conditions,

N l(0)f(0) = 0, N r(1)f(1) = 0, and N l(1), N r(0), Dl(1), Dr(0) = 1.

First,

(Gn+1(Pn+1f))1 (1) = g1,1f(h) +
n∑

j=2

Dl(1)g1,jf(jh) =
n∑

j=1

g1,jf(jh).

For k ∈ {2, · · · , n},

(Gn+1(Pn+1f))k (1) = N l(1)gk,1f(h) +
n∑

j=2

gk,jf(jh) +N r(1)gk−1,nf(1)

=
n∑

j=1

gk,jf(jh)
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and

(Gn+1(Pn+1f))k (0) = N l(0)gk,1f(0) +
n∑

j=2

gk−1,j−1f((j − 1)h) +N r(0)gk−1,nf(nh)

=
n∑

j=1

gk−1,jf(jh).

Lastly,

(Gn+1(Pn+1f))n+1 (0) =
n∑

j=2

Dr(0)gn,j−1f((j − 1)h) + gn,nf(nh)

=
n∑

j=1

gn,jf(jh).

Hence, Gn+1(Pn+1f) ∈ D(En+1).

With this preparation, we are in a position to define the transition operator.

Definition 3.2.4. The bounded transition operator G : C[0, 1] → C[0, 1] is given by

G : f 7→ (En+1Gn+1Pn+1) f,

where

(En+1 (Gn+1Pn+1f)) (x) = [Gn+1(λ(x))(Pn+1f)(λ(x))]ι(x) .

Remark 3.2.5. Let us make the following observations:

• The inclusion of interpolating functionsDl, Dr, N l and N r is necessary to ensure

that G is a bounded operator on C0(Ω). Firstly, they are necessary to ensure that

limx→xb Gf(x) = 0 for a Dirichlet boundary point xb ∈ [0, 1] \ Ω. Secondly, they

ensure the continuity of Gf at the grid points x = ih, 1 ≤ i ≤ n.

To see this, using Matrix 3.3, observe that

Gf(x)

=





g1,1f(λ(x)h) +
∑n−1

j=1 D
l(λ(x))g1,j+1f((λ(x) + j)h), if ι(x) = 1,

N l(λ(x))gι(x),1f(λ(x)h)

+
∑n−1

j=1

(
(1− λ(x))gι(x)−1,j + λ(x)gι(x),j+1

)
f((λ(x) + j)h)

+N r(λ(x))gι(x)−1,nf((λ(x) + n)h)), if 2 ≤ ι(x) ≤ n,

∑n−1
j=1 D

r(λ(x))gn,jf((λ(x) + j)h)

+gn,nf((λ(x) + n)h)), if ι(x) = n+ 1.
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For a left Dirichlet boundary point xlb, since

ι(x) = 1, lim
x↓xlb

λ(x) = 0, Dl(0) = 0 and lim
x↓xlb

f(x) → f(0) = 0

we have that

lim
x↓xlb

Gf(x) = 0.

Similarly, for a right Dirichlet boundary point xrb, since

ι(x) = n+ 1, lim
x↑xrb

λ(x) = 1, Dr(1) = 0 and lim
x↑xrb

f(x) → f((n+ 1)h) = f(1) = 0

we have that

lim
x↑xrb

Gf(x) = 0.

Next, consider the interior grid points x = ih, for i = 1, . . . n. Approaching

the grid point from the right, note that irrespective of the boundary conditions,

in view of Definition 3.2.2, for x ∈ [ih, (i + 1)h) we have limx↓ih λ(x) → 0 and

ι(x) = i+ 1. Moreover, N r(0) = 1 = Dr(0) and if the left boundary condition is

Dirichlet, then f(0) = 0, else N l(0) = 0. Thus,

lim
x↓ih

Gf(x) =
n∑

j=1

gi,jf(jh).

On the other hand, approaching from the left, note that for x ∈ [(i − 1)h, ih),

we have limx↑ih λ(ih) → 1 and ι(x) = i. Moreover, Dl(1) = 1 = N l(1) and if the

right boundary condition is Dirichlet, then f(1) = 0, else N r(1) = 0. Thus,

lim
x↑ih

Gf(x) =
n∑

j=1

gi,jf(jh).

Hence, Gf is continuous at each of the interior grid points, x = ih. Furthermore,

the action of the transition operator coincides with the action of the rate matrix,

that is,

Gf = Gn×nf ,

where Gn×n is the given transition matrix and f = (f(h), . . . , f(nh)).

• In view of (3.2) we have

S(t)f := etGf =
∞∑

j=0

tj

j!
(En+1Gn+1Pn+1)

j f = En+1e
tGn+1Pn+1f.
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As En+1 and Pn+1 are positive contractions, (S(t))t≥0 is a Feller semigroup if

(etGn+1)t≥0 is a positive contraction on C ([0, 1];Rn+1), which is the case if and only

if Gn+1(λ) generates a positive contraction semigroup on ℓn+1
∞ for each λ ∈ [0, 1];

that is, Gn+1(λ) is a rate matrix whose row sums are non-positive.

• Note that the approximation operator usually used in numerical analysis that is

obtained by linearly interpolating the vector G̃f is not the generator of a positive

semigroup and so does not admit a straight forward stochastic interpretation.

In applications, one is usually interested in observing the evolution of the forward

semigroup that acts on the space of bounded (complex) Borel measures, MB(Ω). It

is well known that L1[0, 1] is isometrically isomorphic to a closed subspace of MB(Ω).

The forward semigroup denoted by (T (t))t≥0 is the adjoint of (S(t))t≥0 and the action

of the generator G∗ of (T (t))t≥0 can be easily computed for g ∈ L1[0, 1]. To this end,

we first extend the definitions of En+1 and Pn+1 to L1[0, 1]-functions.

Let L1 ([0, 1];R
n+1) denote the space of vector-valued Bochner integrable functions

v : [0, 1] → Rn+1, see [1, p. 13 ]. For g ∈ L1[0, 1], define the projection operator

Pn+1 : L1[0, 1] → L1 ([0, 1];R
n+1) by

(Pn+1g)j (λ) = g((λ+ j − 1)h),

where λ ∈ [0, 1] and j ∈ {1, 2, . . . , n + 1}. Define the embedding (gluing) operator

En+1 : L1 ([0, 1];R
n+1) → L1[0, 1] by (En+1v) (x) = vi(x)(λ(x)). where x ∈ [0, 1]. Note

that

En+1 (Pn+1g) = g, g ∈ L1[0, 1],

Pn+1 (En+1v) = v, v ∈ L1

(
[0, 1];Rn+1

)
.

Let g ∈ L1[0, 1] and to simplify notation in the calculation below let P := Pn+1 and

λ := λ(x). In view of Remark 3.2.1, for (i−1)h ≤ x < ih we have x = (λ(x) + (i− 1))h.

Thus, using the substitution x = (λ+ (i− 1))h along with Definition 3.2.4 we have

∫ 1

0

(Gf)(x)g(x) dx =
n+1∑

i=1

∫ ih

(i−1)h

(Gn+1(λ(x))(Pf)(λ(x)))ι(x) (Pg)ι(x)(λ(x)) dx

=
n+1∑

i=1

∫ ih

(i−1)h

(
n+1∑

j=1

[Gn+1(λ(x))]i,j (Pf)j(λ(x))

)
(Pg)i(λ(x)) dx

=
n+1∑

i=1

∫ 1

0

(
n+1∑

j=1

[Gn+1(λ)]i,j (Pf)j(λ)

)
(Pg)i(λ)h dλ
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=
n+1∑

j=1

∫ 1

0

(Pf)j(λ)

(
n+1∑

i=1

[
GT
n+1(λ)

]
j,i
(Pg)i(λ)

)
h dλ

=
n+1∑

j=1

∫ jh

(j−1)h

(Pf)j(λ(x))

(
n+1∑

i=1

[
GT
n+1(λ(x))

]
j,i
(Pg)i(λ(x))

)
dx

=

∫ 1

0

f(x)(G∗g)(x) dx.

Therefore,

G∗g = En+1G
T
n+1Pn+1g

and thus, G∗ leaves L1[0, 1] invariant. Hence, we have shown the following proposition.

We refer to Appendix C for the definition of the part of an operator.

Proposition 3.2.6. The part of the adjoint transition operator G∗ in L1[0, 1], denoted

by G∗
∣∣∣
L1[0,1]

: L1[0, 1] → L1[0, 1], is given by

G∗
∣∣∣
L1[0,1]

: f 7→
(
En+1G

T
n+1Pn+1

)
f,

where (
En+1G

T
n+1Pn+1

)
f(x) =

[
GT
n+1(λ(x))(Pn+1f)(λ(x))

]
ι(x)

.

Proposition 3.2.7. Let Gn×n be an n× n rate matrix with non-negative off-diagonal

entries and non-positive row sums. For λ ∈ [0, 1], let the operator G be as in Definition

3.2.4 and assume that the interpolating functions Dl, Dr, N l and N r are such that

Gn+1(λ) is a rate matrix and G is a bounded operator on C0(Ω). Then G generates

a Feller semigroup on C0(Ω) and G∗
∣∣∣
L1[0,1]

generates a strongly continuous positive

contraction semigroup on L1[0, 1].

Proof. Let (S(t))t≥0 denote the semigroup generated by G and (T (t))t≥0 denote the

dual semigroup generated by G∗. Firstly, note that (S(t))t≥0 is a Feller semigroup on

C0(Ω) in view of Remark 3.2.5. Indeed, since G is a bounded operator, (S(t))t≥0 is

strongly continuous. The fact that Gn+1(λ) is a transition rate matrix with non-positive

row sums for each λ ∈ [0, 1] yields the fact (S(t))t≥0 is a contraction semigroup. Lastly,

positivity follows in view of the linear version of Kamke’s theorem, see [2, p. 124]:

that is, etG
∗
n+1 ≥ 0 if and only if g∗i,j ≥ 0 for i 6= j.) The same argument yields the

positivity of (T (t))t≥0. Since (S(t))t≥0 is a contraction semigroup and for all t ≥ 0,

‖T (t)‖ = ‖S(t)‖, we have that (T (t))t≥0 is a contraction semigroup on MB(Ω). Next,

note that L1[0, 1] is a closed subspace of MB(Ω). Hence, as G∗, and thus (T (t))t≥0

leaves L1[0, 1] invariant, the part of G∗ in L1[0, 1] is the generator of

(
T (t)

∣∣∣
L1[0,1]

)

t≥0

,

see [37, p. 43, 61].
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3.3 One-sided fractional derivative operators with

different combinations of boundary conditions

In this section we define the one-sided fractional derivative operator, denoted in general

by A, as a densely defined, closed, linear operator from its domain D(A) ⊂ X into

X. The domain D(A) encodes a particular combination of boundary conditions, the

interval Ω = [(0, 1)] is given by (3.1) and

X = C0(Ω) or L1[0, 1]. (3.4)

We use ‖·‖X to denote the X-norm where

‖f‖X :=

{
supx∈Ω |f(x)| , if X = C0(Ω)∫ 1

0
|f(x)| dx, if X = L1[0, 1]

(3.5)

We make the necessary preparations in Sections 3.4 and 4.1 and show that these frac-

tional derivative operators are generators of positive contraction semigroups using the

Lumer-Philips Theorem. We do this by approximating the fractional derivative oper-

ators by the (transition operators) generators of the backward or forward semigroups

associated with the extended finite state (sub)-Markov processes.

3.3.1 Fractional integral operators and fractional derivatives

In preparation for the definition of the one-sided fractional derivative operators in Sec-

tion 3.3.2, we first define the linear (Riemann-Liouville) fractional integral operators

and study some of their properties that we use often in our discussions. Following that

we give the explicit definition of fractional derivatives on X and discuss the motivation

behind the choice of functions in the domains of the fractional derivative operators

which encode various boundary conditions. We conclude this section with the proper-

ties of some special functions which play important roles in our study of the fractional

derivative operators on X.

Remark 3.3.1. In what follows, when working in C0(Ω), we use Dn to denote the

classical integer-order derivative operator. On the other hand, when working in L1[0, 1],

(Dn,W n,1[0, 1]) for n ∈ N denotes the generalised integer-order derivative operator as

in Definition B.1.1.

Let pβ denote the power function (monomial) given by

pβ(x) :=
xβ

Γ(β + 1)
, if − 1 < β < 0 for x ∈ (0, 1], or if β ≥ 0 for x ∈ [0, 1]. (3.6)
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Let p0 denote the constant one function and 0 denote the zero function on [0, 1]. We

use pβ to denote the power function on [0, 1], instead of φβ as given in Definition 1.4.3,

to emphasise the fact that we are working on the interval [0, 1] and not on R.

First note that, since ‖pβ‖L1[0,1]
= 1

Γ(β+2)
,

pβ ∈ L1[0, 1] and if β ≥ 0, pβ ∈ C[0, 1]. (3.7)

Moreover,

Dnpβ = pβ−n, for β > n− 1,

Dp0 = 0. (3.8)

Let γ > 0 and f ∈ L1[0, 1], then the fractional integral of order γ, see Definition

1.1.3, is given by

Iγf(x) =

∫ x

0

pγ−1(x− s)f(s)ds, x > 0. (3.9)

If α, β > 0 and f ∈ L1[0, 1], then the fractional integrals have the following semigroup

property, see [86, p. 67],

IαIβf = Iα+βf. (3.10)

For f ∈ AC[0, 1], note that the derivative of the fractional integral is related to the

fractional integral of the derivative by

D(Iγf) = Iγ(Df) + f(0)pγ−1. (3.11)

To see this, let us use the substitution u = x− s and write

Iγf(x) =

∫ x

0

f(x− s)pγ−1(s)ds.

Then,

D(Iγf)(x) = lim
h→0

[∫ x+h
0

f(x+ h− s)pγ−1(s)ds−
∫ x
0
f(x− s)pγ−1(s)ds

]

h

= lim
h→0

[∫ x

0

f(x− s+ h)− f(x− s)

h
pγ−1(s)ds

]

+ lim
h→0

[
1

h

∫ x+h

x

f(x− s+ h)pγ−1(s)ds

]

= Iγ(Df)(x) + f(0)pγ−1(x),

where we have used the Lebesgue local average in the second term.
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Remark 3.3.2. For γ > 0, if f ∈ L1[0, 1], then using (3.7) and Young’s inequality (B.2),

we have

‖Iγf‖L1[0,1]
≤ C ‖pγ−1‖L1[0,1]

‖f‖L1[0,1]
= C

1

Γ(γ + 1)
‖f‖L1[0,1]

<∞.

Thus, Iγ ∈ B(L1[0, 1]) for γ > 0 and hence, continuous on L1[0, 1]. Moreover, if

f ∈ C[0, 1], then using (3.7) and Young’s inequality (B.2) again

‖Iγf‖L∞[0,1] ≤ ‖pγ−1‖L1[0,1]
‖f‖L∞[0,1] <∞.

Moreover, since Iγf ∈ C[0, 1], we have that Iγ ∈ B(C[0, 1]) for γ > 0 and hence,

continuous on C[0, 1].

We end the discussion on fractional integral operators with the following crucial

proposition.

Proposition 3.3.3. Let f ∈ L1[0, 1]. Suppose that either 0 < α < 1 and f is bounded

on [0, ǫ) for some ǫ > 0, or α ≥ 1. Then

Iαf(0) := lim
x↓0

Iαf(x) = 0.

Proof. First, let 0 < α < 1 and f be bounded on [0, x], x < ǫ. Then,

|Iαf(x)| ≤

∫ x

0

|pα−1(x− s)| |f(s)| ds ≤ sup
s∈[0,x]

(|f(s)|)

∫ x

0

|pα−1(x− s)| ds

= sup
s∈[0,x]

(|f(s)|)
xα

Γ(α + 1)
→ 0, as x ↓ 0.

Next, let α = 1, then Iαf(0) = If(0) = 0 by the absolute continuity of the Lebesgue

integral, see [56, p. 300]. Lastly, let α > 1, then pα−1 is continuous, that is bounded

on [0, 1]. Thus,

|Iαf(x)| ≤

∫ x

0

|pα−1(x− s)| |f(s)| ds

≤ sup
s∈[0,x]

(pα−1(x− s)) ‖f‖L1[0,1]
≤
xα−1

Γ(α)
‖f‖L1[0,1]

→ 0, as x ↓ 0.

Let X be given by (3.4) and 1 < α < 2. Then, the first degree Caputo and the

Riemann-Liouville fractional derivatives of order α on X are given by

Dα
c f = DI2−αDf and Dαf = D2I2−αf, (3.12)
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respectively (see Definition 1.1.4). In what follows, if the context of the discussion

applies to both these fractional derivatives, we simply use A to denote them. Similarly,

fractional derivatives of order α− 1 are given by

Dα−1
c f = I2−αDf and Dα−1f = DI2−αf. (3.13)

Before we can introduce the respective domains of the fractional derivative operators

onX that encode various boundary conditions, we briefly discuss the motivation behind

the choice of the functions in the domains. To define the domains of the fractional

derivative operators on X (see Section 3.3.2), it is natural to employ the range of

the corresponding fractional anti-derivative (integral) operators. That is, view the

fractional derivative operators as the inverse of the corresponding fractional integral

operators. However, we will see that it is not as straightforward as that. For instance,

in the cases when the domains encode left and right Neumann boundary conditions,

non-zero steady state is possible, thus the fractional derivative operators in these cases

are not invertible.

It is easily verified that the fractional derivative A plays the role of left inverse of

the fractional integral Iα. Indeed, for f ∈ X and 1 < α < 2 in view of (3.10),

DαIαf = D2I2−αIαf = D2I2f = f,

Dα
c I

αf = DI2−αDIαf = DI2−αIα−1f = DIf = f. (3.14)

However, the fractional integral Iα is not the left inverse of A. In fact, let W n,1[0, 1]

denote the Sobolev space of L1[0, 1] functions given in Definition B.1.1, then we have

the following well known result, see for example [86, p. 70]. The next result is the

motivation for using the range of the fractional integral operator along with a certain

linear combination of power functions to define the domains of the fractional derivative

operators.

Proposition 3.3.4. Let 1 < α < 2. Then the following hold:

1. If I2−αf ∈ W 2,1[0, 1], then

IαDαf = f −Dα−1f(0)pα−1 − I2−αf(0)pα−2.

2. If Dα−1
c f ∈ W 1,1[0, 1], then

IαDα
c f = f −Dα−1

c f(0)pα−1 − f(0)p0.
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Proof. We make use of (3.10), (3.11) with pα(0) = 0, and (3.12) in what follows.

Firstly, I2−αf ∈ W 2,1[0, 1], thus I2−αf is continuously differentiable and DI2−αf is

absolutely continuous. Therefore, using the fact that if u ∈ X is absolutely continuous

then IDu = u− u(0)p0, we have

IαDαf = DIIαD2I2−αf = DIαID
(
DI2−αf

)

= DIα
(
DI2−αf −DI2−αf(0)p0

)
= D

(
Iα−1ID

(
I2−αf

)
−Dα−1f(0)pα

)

= D
(
Iα−1

(
I2−αf − I2−αf(0)p0

)
−Dα−1f(0)pα

)

= D
(
If −Dα−1f(0)pα − I2−αf(0)pα−1

)

= f −Dα−1f(0)pα−1 − I2−αf(0)pα−2.

Similarly, Dα−1
c f = I2−αDf is absolutely continuous and

IαDα
c f = DIαID

(
I2−αDf

)

= DIα
(
I2−αDf − I2−αDf(0)p0

)
= DI2Df − I2−αDf(0)pα−1

= IDf −Dα−1
c f(0)pα−1 = f − f(0)p0 −Dα−1

c f(0)pα−1,

where we used (3.8).

We require the following properties of the power functions in our discussion of the

respective domains of the fractional derivative operators. The fractional integral of pβ

of order ν > 0 is given by, see [86, p. 72]

Iνpβ = pβ+ν . (3.15)

Let ν > 0 and β > ν, then

Dνpβ = DnIn−νpβ = Dnpβ+n−ν = pβ−ν , (3.16)

where n = ⌈ν⌉. Note that, if β > 0, then in view of (3.11), Dα−1pβ = Dα−1
c pβ since

pβ(0) = 0 and thus Dαpβ = Dα
c pβ. Here is a summary of the fractional derivatives

of the special power functions that are used in the definitions of the domains of the

fractional derivative operators. In (3.17) below, when a result applies to both Dα
c and

Dα we just denote the fractional derivative by A. Using (3.12), (3.15) and (3.16), for

1 < α < 2 we have

Apα = p0,

Apα−1 = 0,

Dα
c p0 = 0,

Dαpα−2 = 0. (3.17)
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3.3.2 Fractional derivative operators on a bounded interval

encoding various boundary conditions

As discussed in Section 3.3.1, we define the domain of the fractional derivative op-

erators as the range of the fractional integral operator Iα, supplemented by a linear

combination of some particular power functions with constant weights that encode the

regularity as well as the boundary conditions satisfied by the functions in the domain.

Let X = C0(Ω) or L1[0, 1]. We consider functions of the form

f = Iαg + apα + bpα−1 + cpα−2 + dp0, g ∈ X (3.18)

as candidates for the domain of the fractional derivative operator, where a, b, c, d ∈ R

and pβ = xβ

Γ(β+1)
as given by (3.6).

Remark 3.3.5. Firstly, if c 6= 0 in (3.18), then f /∈ C0(Ω). Secondly, note that Dα
c pα−2

and Dαp0 are not defined in L1[0, 1]. Therefore, for f given by (3.18), we set c = 0

in the case of X = C0(Ω) and in the case of first degree Caputo fractional derivative

operators on L1[0, 1]. We also set d = 0 for f given by (3.18) in the case of Riemann-

Liouville fractional derivative operators. Similarly, various boundary conditions imply

relations to be satisfied by the constants a, b, c, d.

In preparation for the definition (Definition 3.3.8) of fractional derivative operators

on X, let us first define formally the boundary conditions that we investigate, namely,

Dirichlet, Neumann and Neumann* boundary conditions where the latter appears nat-

urally as the adjoint of the Neumann boundary condition for the Riemann-Liouville

fractional derivative operator whose discussion we take up in Section 4.2.

Definition 3.3.6. Let A denote either the first degree Caputo fractional derivative

operator Dα
c or the Riemann-Liouville fractional derivative operator Dα on X, where

the corresponding fractional derivatives are given explicitly by (3.12). Let us write A

in the form A = DF for brevity, where F is either Dα−1
c = I2−αDf or Dα−1 = DI2−α.

1. Dirichlet boundary conditions: A function f ∈ X satisfies the left Dirichlet

boundary condition for the operator A if and only if f is continuous as x ↓ 0

and f(0) = 0. Similarly, a function f ∈ X satisifies the right Dirichlet boundary

condition for the operator A if and only if f is continuous as x ↑ 1 and f(1) = 0.

2. Neumann boundary conditions: A function f ∈ X satisfies the left Neumann

boundary condition for the operator A if and only if Ff is continuous as x ↓
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0 and Ff(0) = 0. Similarly, a function f ∈ X satisfies the right Neumann

boundary condition for the operator A if and only if Ff is continuous as x ↑ 1

and Ff(1) = 0. In particular, the zero flux condition Ff(p) = 0 at the boundary

point p = 0 or 1, for the operator Dα
c is I2−αDf(p) = 0 and for the operator Dα

is DI2−αf(p) = 0.

3. Neumann* boundary condition: If X = C0(Ω), then a function f ∈ C0(Ω)

satisfies the right Neumann* boundary condition for the operator A if and only

if Df is continuous as x ↑ 1 and Df(1) = 0.

Remark 3.3.7. In general, we use the abbreviation BC to refer to some combination

of left Dirichlet or Neumann boundary condition with right Dirichlet, Neumann or

Neumann* boundary condition encoded by the domain of the fractional derivative op-

erator A. The boundary conditions encoded by the domains are an essential part of

the definition of the fractional derivative operators on X. To emphasise this we denote

the fractional derivative operators on X by the pair (A,BC) instead of the conven-

tional (A,D(A)). For instance, if the domain of the fractional derivative operator Dα
c

encodes a left Dirichlet and a right Neumann boundary condition, we write (Dα
c ,DN).

Also, when dealing with common properties of operators with a particular left or right

boundary condition combined with any of the other possible boundary conditions, for

example, a left Dirichlet boundary condition, we just write (A,D•). However, for con-

venience when the boundary conditions at hand are obvious from the context we will

just write A for the fractional derivative operator on X.

Definition 3.3.8. (A,BC) is called a fractional derivative operator on X, if the oper-

ator A ∈ {Dα
c , D

α} and the respective domains are given as follows:

1. The domain of the first degree Caputo fractional derivative operator is given by

D(Dα
c ,BC) = {f ∈ X : f = Iαg + apα + bpα−1 + dp0, g ∈ X}, (3.19)

where the constants a, b, d ∈ R satisfy the respective relations for BC listed in

Table 3.1.

2. The domain of the Riemann-Liouville fractional derivative operator is given by

D(Dα,BC) = {f ∈ X : f = Iαg + apα + bpα−1 + cpα−2, g ∈ X}, (3.20)

where the constants a, b, c ∈ R satisfy the respective relations for BC listed in

Table 3.1.
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X = C0(Ω),D(A,BC) = {Iαg + apα + bpα−1 + dp0 : g ∈ C0(Ω)}, (0, 1) ⊂ Ω

Boundary condition Constants in D(A,BC)

Left Dirichlet f(0) = 0, Ω ⊂ (0, 1] a = 0, d = 0

Left Neumann Dα−1
c f(0) = 0, [0, 1) ⊂ Ω b = 0

Right Dirichlet f(1) = 0, Ω ⊂ [0, 1) a = 0, b
Γ(α)

+ d = −Iαg(1)

Right Neumann Dα−1
c f(1) = 0, (0, 1] ⊂ Ω a+ b = −Ig(1)

Right Neumann* Df(1) = 0, (0, 1] ⊂ Ω a+(α−1)b
Γ(α)

= −Iα−1g(1)

X = L1[0, 1],D(A,BC) = {Iαg + apα + bpα−1 + cpα−2 + dp0 : g ∈ L1[0, 1]}

Boundary condition Constants in D(A,BC)

Left Dirichlet f(0) = 0 a = 0, c = 0, d = 0

Left Neumann Dα−1
c f(0) = 0 b = 0, c = 0

Left Neumann Dα−1f(0) = 0 b = 0, d = 0

Right Dirichlet f(1) = 0 a = 0, b+(α−1)c
Γ(α)

+ d = −Iαg(1)

Right Neumann Ff(1) = 0 a+ b = −Ig(1)

Table 3.1: Relations satisfied by the constants a, b, c, d for BC.

Remark 3.3.9 (Non-homogeneous fractional-in-space partial differential

equations with non-zero boundary conditions). To solve a non-homogeneous

fractional-in-space partial differential equation for any set of given time-dependent

boundary values it is sufficient to solve the corresponding homogeneous equation with

zero boundary conditions. To see this, consider the Cauchy problem associated with

the homogeneous fractional-in-space partial differential equation with zero boundary

conditions BC,

u′(t) = Au(t), t ≥ 0,

u(0) = u0, (3.21)

where A denotes the fractional derivative operator on X whose domains encode BC.

Let us assume (3.21) is well-posed and let (T (t))t≥0 denote the solution operator on X

(strongly continuous semigroup generated by A). Then, the mild solution to the Cauchy

problem associated with the non-homogeneous fractional-in-space partial differential

equation with zero boundary conditions [12],

u′(t) = Au(t) + f(t) for t ∈ [0, τ ], f ∈ L1([0, τ ], X)
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u(0) = u0,

is given by the variation of constants formula,

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds.

Next, consider the following non-homogeneous fractional-in-space partial differential

equations with non-zero boundary conditions,

∂

∂t
w(t, x) = Dαw(t, x) + f(t, x); w(0, x) = w0(x), (3.22)

where Dα denotes a fractional derivative operator on Ω and f ∈ L1([0, τ ], X). Let

g(t, x) be a function such that Dαg, ∂
∂t
g ∈ L1([0, τ ], X) and satisfies the non-zero

boundary conditions. Further, assume that u solves the non-homogeneous fractional-

in-space partial differential equation with zero boundary conditions,

∂

∂t
u(t, x) = Au(t, x) +Dαg(t, x)−

∂

∂t
g(t, x) + f(t, x); u(0, x) = w0(x)− g(0, x).

Then w = u+ g solves (3.22) and satisfies the non-zero boundary conditions.

In view of this, we only study well-posedness and numerical solutions for the ab-

stract Cauchy problem (3.21) associated with fractional derivative operators (A,BC)

on X whose domains encode combinations of (zero) boundary conditions.

Proposition 3.3.10. The domains of the fractional derivative operators (A,BC) given

in Definitions 3.3.8 are equivalent to the following:

1. The domain of the first degree Caputo fractional derivative operator,

D(Dα
c ,BC) = {f ∈ X : f = Iαg + apα + bpα−1 + dp0, g ∈ X

such that Dα
c f ∈ X and f satisfies BC} .

2. The domain of the Riemann-Liouville fractional derivative operator,

D(Dα,BC) = {f ∈ X : f = Iαg + apα + bpα−1 + cpα−2, g ∈ X

such that Dαf ∈ X and f satisfies BC} .

Proof. Let

f = Iαg + apα + bpα−1 + cpα−2 + dp0, g ∈ X,

then a simple calculation reveals that if the constants a, b, c, d satisfy the relations for

BC given in the Table 3.1 then Dα
c f ∈ X and Dαf ∈ X, respectively and f satisfies the
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respective boundary conditions of BC. Therefore, to demonstrate the equivalence of

the definitions of the respective domains, we show that if f satisfies a particular left or

right boundary condition and Af ∈ X, where A ∈ {Dα
c , D

α}, then the corresponding

relations summarised in Table 3.1 are satisfied by the constants a, b, c, d.

To this end, let

f = Iαg + apα + bpα−1 + cpα−2 + dp0, g ∈ X and Af ∈ X.

Further, let F be either Dα−1
c or Dα−1. Then, first observe that

Ff = Ig + ap1 + bp0. (3.23)

Indeed, in view of (3.10) and (3.15),

Dα−1
c f = I2−αD (Iαg + apα + bpα−1 + dp0)

= I2−αIα−1g + aI2−αpα−1 + bI2−αpα−2

= Ig + ap1 + bp0

and

Dα−1f = DI2−α (Iαg + apα + bpα−1 + cpα−2)

= DI2g + aDp2 + bDp1 + cDp0

= Ig + ap1 + bp0.

• Left Dirichlet boundary condition: Let f be continuous as x ↓ 0 and f(0) = 0,

then

0 = Iαg(0) + apα(0) + bpα−1(0) + cpα−2(0) + dp0(0).

Note that pα(0), pα−1(0) = 0 and Iαg(0) = 0 by Proposition 3.3.3. This implies

that c, d = 0. Moreover, in the case when X = C0(Ω), besides g(0) = 0 we also

require that the image Af ∈ C0(Ω); that is, Af(0) = 0. Thus, we have that

a = 0, since using (3.23),

0 = Af(0) = (DFf) (0) = (D (Ig + ap1 + bp0)) (0) = g(0) + a = a.

On the other hand, in the case when X = L1[0, 1], since apα = Iα(ap0), the

constant a turns out to be redundant as the term ap0 can be incorporated into

g ∈ L1[0, 1]. Therefore, we set a = 0.
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• Left Neumann boundary condition: Let Dα−1
c f(0) = 0 or Dα−1f(0) = 0, then in

view of Remark 3.3.5, c = 0 or d = 0, respectively. Moreover, using (3.23) we

have

0 = Ig(0) + ap1(0) + bp0(0) = b,

since p1(0) = 0 and Ig(0) = 0 in view of Proposition 3.3.3.

• Right Dirichlet boundary condition: Let f be continuous as x ↑ 1 and f(1) = 0,

then

0 = Iαg(1) + apα(1) + bpα−1(1) + cpα−2(1) + dp0(1).

Moreover, in the case when X = C0(Ω) we require that g, Af ∈ C0(Ω); that is,

g(1), Af(1) = 0. Therefore, a = 0, since using (3.23),

0 = Af(1) = (DFf) (1) = (D (Ig + ap1 + bp0)) (1) = g(1) + a = a.

On the other hand, in the case when X = L1[0, 1], since apα = Iα(ap0), the

constant a again turns out to be redundant as the term ap0 can be incorporated

into g ∈ L1[0, 1]. Therefore, we set a = 0. Hence,

b+ (α− 1)c

Γ(α)
+ d = −Iαg(1).

Further, note that if X = C0(Ω), since c = 0 in view of Remark 3.3.5, this reduces

to
b

Γ(α)
+ d = −Iαg(1).

• Right Neumann* boundary condition: Note that pα−2 6∈ C0(Ω) and we use this

boundary condition only for X = C0(Ω). Let Df be continuous as x ↑ 1 and

Df(1) = 0, then

D (Iαg + apα + bpα−1 + dp0) = Iα−1g + apα−1 + bpα−2.

Thus,

0 = Iα−1g(1) + apα−1(1) + bpα−2(1)

and
a+ (α− 1)b

Γ(α)
= −Iα−1g(1).

• Right Neumann boundary condition: Let Dα−1
c f(1) = 0 or Dα−1f(1) = 0; that

is, Ff(1) = 0, then using (3.23) we have

0 = Ig(1) + a+ b.
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This implies that if Ff(1) = 0, then

a+ b = −Ig(1).

3.4 Properties of the one-sided fractional derivative

operators on a bounded interval

We prepare for the important task of showing that the closures of the fractional deriva-

tive operators (A,BC) generate contraction semigroups. To do this, we need to show

the following

• (A,BC) are densely defined, dissipative operators.

• rg(λI − A) are dense in X for some λ > 0.

Then, as a consequence of the Lumer-Phillips Theorem (Theorem C.2.9) we can con-

clude that their closures generate contraction semigroups on X. In fact, we show

that the operators (A,BC) are closed. Hence, we actually conclude that the operators

(A,BC) themselves generate contraction semigroups.

In the remainder of this section, we establish that (A,BC) are densely defined,

closed operators, identify a core for each (A,BC) and show that rg(λI − A) are dense

in X. In Section 4.1, we take up the issue of dissipativity of the operators (A,BC).

We refer to Definition C.1.4 for the definition of invertible operators.

Proposition 3.4.1. Let the operators (A,BC) be such that their domains D(A,BC),

given by Definition 3.3.8, encode at least one Dirichlet boundary condition. Then the

operators (A,BC) are invertible.

Proof. Let the fractional derivative operator (A,BC) have either a left or right Dirichlet

boundary condition. For each such (A,BC), we show that there is a bounded operator

B on X such that BAf = f for all f ∈ D(A,BC), and Bg ∈ D(A,BC) and ABg = g

for all g ∈ X.

First, making use of Table 3.1, note that a = 0 in Definition 3.3.8. Next, as long as

one of the boundary conditions for the fractional derivative operator is Dirichlet, we

show that Bc and Br are the inverses of (Dα
c ,BC) and (Dα,BC), respectively, where

for g ∈ X

Bcg = Iαg + bpα−1 + dp0,
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Brg = Iαg + bpα−1 + cpα−2, (3.24)

and the relations satisfied by the constants b, c, d depending on g ∈ X and BC are

given in Table 3.1.

Clearly, since a = 0, Bcg ∈ D(Dα
c ,BC) and Brg ∈ D(Dα,BC), in view of Definition

3.3.8 and Table 3.1. Moreover, Iα is bounded on X in view of Remark 3.3.2 while the

constants b, c, d depend continuously on g. Thus, in view of (3.7), Bc is a bounded

operator on X and Br is a bounded operator on L1[0, 1]. Note that,

Dα
cBcg = Dα

c (I
αg + bpα−1 + dp0) = g,

DαBrg = Dα (Iαg + bpα−1 + cpα−2) = g. (3.25)

which follows directly on applying (3.14) and (3.17).

For f ∈ D(A), making use of Proposition 3.3.4 we have

BcD
α
c f = IαDα

c f + bpα−1 + dp0

= f +
(
b−Dα−1

c f(0)
)
pα−1 + (d− f(0)) p0

and

BrD
αf = IαDαf + bpα−1 + cpα−2

= f +
(
b−Dα−1f(0)

)
pα−1 +

(
c− I2−αf(0)

)
pα−2.

To complete the proof we show that BcD
α
c f = f and BrD

αf = f . In what follows, we

make use of Proposition 3.3.4 as required.

• Left Dirichlet boundary condition: In this case, since f is continuous as x ↓ 0

and f(0) = 0, we have I2−αf(0) = 0 by Proposition 3.3.3. Moreover, a, c, d = 0.

To complete the proof for the left Dirichlet boundary condition, we verify that

in each of the scenarios below that either b = Dα−1
c f(0) or b = Dα−1f(0), as

required.

1. Right Dirichlet boundary condition: Let f(1) = 0, then

b = −Γ(α)IαDα
c f(1)

= −Γ(α)
(
f(1)−Dα−1

c f(0)pα−1(1)− f(0)p0(1)
)
= Dα−1

c f(0)

or

b = −Γ(α)IαDαf(1)

= −Γ(α)
(
f(1)−Dα−1f(0)pα−1(1)− I2−αf(0)pα−2(1)

)
= Dα−1f(0).
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2. Right Neumann* boundary condition: Let Df(1) = 0, then

b = −Γ(α− 1)Iα−1Dα
c f(1)

= −Γ(α− 1)D (IαDα
c f) (1) = −Γ(α− 1)

(
Df(1)−Dα−1

c f(0)pα−2(1)
)

= Dα−1
c f(0).

3. Right Neumann boundary condition: Let Ff(1) = 0, then

b = −IDα
c f(1) = −ID

(
Dα−1
c f

)
(1)

= −Dα−1
c f(1) +Dα−1

c f(0)p0(1) = Dα−1
c f(0)

or

b = −IDαf(1)− ID
(
Dα−1f

)
(1)

= −Dα−1f(1) +Dα−1f(0)p0(1) = Dα−1f(0).

• Right Dirichlet boundary condition: In this case, f(1) = 0 and a = 0. Note

that we are only left to consider left Neumann boundary condition; that is,

Dα−1f(0) = 0 or Dα−1
c f(0) = 0. We have that b = 0 and either

d = −IαDα
c f(1) = −f(1) +Dα−1

c f(0)pα−1(1) + f(0)p0(1) = f(0)

or

c = −Γ(α− 1)IαDαf(1)

= −Γ(α− 1)
(
f(1)−Dα−1f(0)pα−1(1)− I2−αf(0)pα−2(1)

)

= I2−αf(0).

Thus, we have shown that BcD
α
c f = f and BrD

αf = f for f in the respective domains.

Hence, the operator (A,BC) are invertible if their domains encode at least one Dirichlet

boundary condition.

Remark 3.4.2. In the case of a left Neumann boundary condition combined with one

of the following right Neumann boundary conditions, the operators (A,BC) are not

invertible:

1. Right Neumann* boundary condition: In this case the constant d is undetermined.

2. Right Neumann boundary condition: The constant d is undetermined in the case

of (Dα
c ,BC) while the constant c is undetermined in the case of (Dα,BC).
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Remark 3.4.3. In what follows, we use the phrase polynomials belonging to X and write

P ∈ X where X = C0(Ω) or L1[0, 1] and P are N th degree polynomials of the form

P (x) =
N∑

m=0

kmpm(x), pm(x) =
xm

Γ(m+ 1)
, x ∈ [0, 1].

Note that here we implicitly assume that the constants km ∈ R are such that P ∈ X.

This is crucial especially when working in C0(Ω). For instance, for a left Dirichlet

boundary condition we require P ∈ C0(0, 1)]; that is, we require that P (0) = 0 and

so k0 = 0. On the other hand, for a left Neumann boundary condition, P ∈ C[0, 1)]

and thus the constant k0 need not be zero. For a right Dirichlet boundary condition

we require P ∈ C0[(0, 1), thus the constants km are such that P (1) = 0. However, this

need not be the case for a right Neumann boundary condition. Lastly, note that we

repeatedly make use of the well known fact that the polynomials belonging to X are

dense in X, Stone-Weierstrass theorem [42, see p. 141 Corollary 4.50].

We refer to Definition C.1.2 for the definition of a core (subspace dense in the graph

norm).

Theorem 3.4.4. The fractional derivative operators (A,BC) given by Definition 3.3.8

with 1 < α < 2 are densely defined, closed operators on X, where X = C0(Ω) or L1[0, 1]

given by (3.4). Moreover,

1. The subspace

C(Dα
c ,BC) = {fn : fn = IαPn + anpα + bnpα−1 + dnp0, n ∈ N} (3.26)

is a core of the operator (Dα
c ,BC), where Pn =

∑Nn
m=0 kmpm ∈ X and the con-

stants an, bn, dn ∈ R are given in Table 3.1.

2. The subspace

C(Dα,BC) = {fn : fn = IαPn + anpα + bnpα−1 + cnpα−2, n ∈ N} (3.27)

is a core of the operator (Dα,BC), where Pn =
∑Nn

m=0 kmpm ∈ X and the con-

stants an, bn, cn ∈ R are given in Table 3.1.

Proof. Proof of (A,BC) are densely defined:

Let (A,BC) be a fractional derivative operator on X = C0(Ω) or L1[0, 1]. Then,

given ǫ > 0 and φ ∈ X, we show that there exists f ∈ D(A,BC) such that

‖φ− f‖X < ǫ.
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To this end, let φ ∈ X and ǫ > 0. Without loss of generality, if X = L1[0, 1], we

set φ(0) = φ(1) = 0. Let

φ̃ = φ− (φ(1)− φ(0))Γ(α + 2)pα+1 − φ(0)p0,

and note that φ̃ ∈ C0(0, 1) or L1(0, 1). As C∞
c (0, 1) is dense in C0(0, 1) and L1(0, 1),

there exist θ ∈ C∞
c (0, 1) such that

∥∥∥φ̃− θ
∥∥∥
X
= ‖φ− (φ(1)− φ(0))Γ(α + 2)pα+1 − φ(0)p0 − θ‖X <

ǫ

2
. (3.28)

For such θ ∈ C∞
c (0, 1), let

gθ = I2−αD2θ + (φ(1)− φ(0))Γ(α + 2)p1

so that Iαgθ = θ + (φ(1)− φ(0))Γ(α + 2)pα+1. Next, for 0 < δ := δ(ǫ) < 1, define

gδ(x) =





0, for 0 ≤ x ≤ 1− δ,

C(δ)
(
δp1(x− 1 + δ)− (α + 2)p2(x− 1 + δ)

)
, for 1− δ < x ≤ 1.

(3.29)

Let us set g = gθ + gδ and construct the following function

f = θ + (φ(1)− φ(0))Γ(α + 2)pα+1 + Iαgδ + φ(0)p0 = Iαg + φ(0)p0.

Note that gδ satisfies all the left boundary conditions. Therefore, we need to show that

for each right boundary condition of BC there exists δ > 0 and C(δ) such that g ∈ X

and the constants a, b, c = 0, and d = φ(0) if X = C0(Ω) or d = 0 if X = L1[0, 1].

• Right Dirichlet boundary condition: For f to belong to D(A, •D) we need to find

C(δ) such that g ∈ X and Iαg(1) = −φ(0); that is,

0 = g(1) = gθ(1) + gδ(1).

Thus, we set gδ(1) = −gθ(1) and obtain

C(δ) =
−gθ(1)

(1− α+2
2
)
δ−2.

Note that Iαg(1) = φ(1)− φ(0) = −φ(0), since θ(1) = 0 and Iαgδ(1) = 0.

• Right Neumann boundary condition: For f to belong to D(A, •N) we need to find

C(δ) such that g ∈ X and Ig(1) = 0; that is,

0 = Ig(1) = Igθ(1) + Igδ(1).

Thus, we set Igδ(1) = −Igθ(1) and obtain

C(δ) =
−Igθ(1)

(1
2
− α+2

6
)
δ−3.
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• Right Neumann* boundary condition: For f to belong to D(A, •N∗) we need to

find C(δ) such that g ∈ X and Iα−1g(1) = 0; that is,

0 = Iα−1g(1) = Iα−1gθ(1) + Iα−1gδ(1).

Thus, we set Iα−1gδ(1) = −Iα−1gθ(1) and obtain

C(δ) =
−Iα−1gθ(1)

( 1
Γ(α+1)

− α+2
Γ(α+2)

)
δ−α−1.

To complete the proof, observe that for any BC, we have

|C(δ)| < Kδ−3.

Therefore,

‖Iαgδ‖L∞[0,1] = sup
x∈(1−δ,1]

|Iαgδ(x)| ≤ |C(δ)|
2δα+2

Γ(α + 2)
< C1δ

α−1

and

‖Iαgδ‖L1[0,1]
≤ |C(δ)|

2δα+3

Γ(α + 3)
< C2δ

α.

Thus, for φ ∈ X, taking δ <
(
ǫ
2C

) 1
α−1 where C = max {C1, C2} and in view of (3.28),

‖φ− f‖X ≤ ‖φ− θ − (φ(1)− φ(0))Γ(α + 2)pα+1 − φ(0)p0‖X + ‖Iαgδ‖X < ǫ.

Hence, (A,BC) are densely defined operators on X.

Proof of (A,BC) are closed:

First, note that by Proposition 3.4.1, if the domains encode at least one Dirichlet

boundary condition, then the operators (A,BC) are invertible and hence closed, see

Definition C.1.4. On the other hand, as mentioned in Remark 3.4.2, when we have a left

Neumann boundary condition combined with a right Neumann or Neumann* boundary

condition, (A,BC) are not invertible. For those cases, we show that if {fn} ⊂ D(A,BC)

such that fn → f and Afn → φ in X, then f ∈ D(A,BC) and Af = φ.

In what follows, NN represents a combination of left Neumann boundary condition

combined with a right Neumann or Neumann* boundary condition. Consider the

sequences {f cn} ∈ D(Dα
c ,NN) and {fn} ∈ D(Dα,NN) given by

f cn = Iαgn + anpα + bnpα−1 + dnp0, gn ∈ X

and

fn = Iαgn + anpα + bnpα−1 + cnpα−2, gn ∈ X,

86



respectively. Firstly, using Table 3.1, since we have a left Neumann boundary condition,

bn = 0. Thus,

f cn = Iαgn + anpα + dnp0,

where

an = −Ign(1) or an = −Γ(α)Iα−1gn(1)

for a right Neumann or a right Neumann* boundary condition, respectively. Also,

fn = Iαgn + anpα + cnpα−2,

where an = −Ign(1) for a right Neumann boundary condition. In either scenario,

Dα
c f

c
n, D

αfn = gn + anp0,

since Dα
c p0 = 0 and Dαpα−2 = 0 in view of (3.17).

Let f cn → f c, fn → f and Dα
c f

c
n, D

αfn = gn + anp0 → φ in X. Then, in view of

Remark 3.3.2, since Iα is continuous on X,

Iα (gn + anp0) = Iαgn + anpα → Iαφ.

Thus,

dnp0 = f cn − (Iαgn + anpα) → f c − Iαφ ∈ X

and

cnpα−2 = fn − (Iαgn + anpα) → f − Iαφ ∈ X.

Therefore, there exist d, c such that dn → d and cn → c. Hence,

f c = Iαφ+ dp0 and f = Iαφ+ cpα−2.

It remains to show that f c ∈ D(Dα
c ,NN) and f ∈ D(Dα,NN). To this end, using

Table 3.1, note first that f c and f satisfy the left Neumann boundary condition, since

b = 0. To see that the right boundary conditions are satisfied note that:

1. For a right Neumann boundary condition, since I is continuous on X, we have

Iφ(1) = lim
n→∞

(I (gn − Ign(1)p0) (1)) = lim
n→∞

(Ign(1)− Ign(1)p1(1)) = 0.

2. For a right Neumann* boundary condition, since Iα−1 is continuous on X, we

have

Iα−1φ(1) = lim
n→∞

(
Iα−1

(
gn − Γ(α)Iα−1gn(1)p0

)
(1)
)

= lim
n→∞

(
Iα−1gn(1)− Γ(α)Iα−1gn(1)pα−1(1)

)
= 0.
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Therefore, f c ∈ D(Dα
c ,NN) and f ∈ D(Dα,NN). Lastly, sinceDα

c p0 = 0 andDαpα−2 =

0 in view of (3.17), we have

Dα
c f

c = Dα
c (I

αφ+ dp0) = φ

and

Dαf = Dα(Iα + cpα−2) = φ

Hence, the fractional derivative operators (A,BC) are closed in X.

Proof of C(A,BC) is a core of (A,BC):

Let C(A,BC) be given by (3.26) and (3.27) for A = Dα
c and A = Dα, respectively.

To show that C(A,BC) is a core of (A,BC), we show that for any f ∈ D(A,BC), there

exists fn ⊂ C(A,BC) such that fn → f and Afn → Af .

To this end, let f ∈ D(A,BC) be given by

f = Iαg + apα + bpα−1 + cpα−2 + dp0, g ∈ X.

Then, consider

fn = IαPn + anpα + bnpα−1 + cnpα−2 + dnp0,

where Pn =
∑Nn

m=0 kmpm ∈ X and the constants an, bn, cn and dn are given in Table

3.1. Note that fn ∈ C(A,BC) and since the polynomials belonging to X are dense in

X, for each g ∈ X, there exist polynomials Pn ∈ X such that Pn → g in X.

Consider the following two cases:

1. At least one Dirichlet boundary condition: In these cases, using Table 3.1, observe

that an = 0 while bn, cn and dn are either zero or depend continuously on IνPn

for ν ∈ {α, 1, α− 1}.

2. No Dirichlet boundary condition: In these cases, bn = 0 since we have a left

Neumann boundary condition while an depends continuously on IνPn for ν ∈

{1, α− 1}.

• Right Neumann* boundary condition: In this case set dn = d.

• Right Neumann boundary condition: For A = Dα
c , set dn = d and for

A = Dα, set cn = c.

In view of Remark 3.3.2, Iν , ν > 0 is continuous on X, thus IνPn → Iνg in X for

ν ∈ {α, 1, α− 1}. Hence, fn → f in X. Moreover, using (3.14) and (3.17) we have

that

Afn = Pn + anp0 and Af = g + ap0.
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Thus, Afn → Af in X and hence, C(A,BC) is a core of (A,BC).

Let us turn to the task of showing that for each (A,BC), rg(λI −A) is dense in X

for some λ > 0 as part of the requirement of the Lumer-Phillips Theorem as mentioned

at the start of Section 3.4. Since it is sufficient to show denseness of rg(λI − A) for

some λ > 0, let λ = 1. We show that rg(I − A) is dense in X using the fact that the

polynomials belonging to X are dense in X. To be precise, we seek functions ϕ ∈ X

such that (I − A)ϕ = P =
∑n

m=0 kmpm ∈ X. In Theorem 3.4.5 we show that linear

combinations of a certain variant of the two parameter functions of Mittag-Leffler type

yield such candidates.

To this end, consider the two parameter function of Mittag-Leffler type, which we

denote by E∗
α,β for α > 0, defined by the series expansion,

E∗
α,β(x) :=

∞∑

n=0

pnα+β(x), if −1 < β < 0 for x ∈ (0, 1], or if β ≥ 0 for x ∈ [0, 1]. (3.30)

Note the connection with the standard two parameter Mittag-Leffler function Eα,β,

E∗
α,β(x) = xβEα,β+1(x

α), see [48] for details. We choose this slightly different form

of the two parameter Mittag-Leffler function in order to obtain the eigenfunctions as

given in (3.39) below, which we require in the proof of Theorem 3.4.5. Using (3.7), we

have
∥∥E∗

α,β

∥∥
L1[0,1]

≤
∞∑

n=0

‖pnα+β‖L1[0,1]
≤

∞∑

n=0

1

Γ(nα + β + 2)
<∞,

thus

E∗
α,β ∈ L1[0, 1] and if β ≥ 0, E∗

α,β ∈ C[0, 1]. (3.31)

Take note of the crucial recurrence relation

E∗
α,β = pβ + E∗

α,β+α, (3.32)

since

E∗
α,β(x) = pβ(x) +

∞∑

n=1

pnα+β(x) = pβ(x) +
∞∑

k=0

pkα+β+α(x) = pβ(x) + E∗
α,β+α(x).

Using (3.15) and the fact that Iγ is bounded on L1[0, 1], see Remark 3.3.2, the Riemann-

Liouville fractional integral of E∗
α,β ∈ L1[0, 1] of order ν > 0 is given by

Iν
(
E∗
α,β

)
= Iν

(
∞∑

n=0

pnα+β

)
=

∞∑

n=0

pnα+β+ν = E∗
α,β+ν . (3.33)
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Let k ∈ {1, 2}, then in view of (3.8), for β > k − 1,

DkE∗
α,β = Dk

∞∑

n=0

pnα+β =
∞∑

n=0

Dkpnα+β =
∞∑

n=0

pnα+β−k = E∗
α,β−k, (3.34)

where to interchange summation with differentiation we have used the fact that the

generalised integer-order derivative operator
(
Dk,W k,1[0, 1]

)
given in Definition B.1.1

is closed in L1[0, 1]. Moreover, since β > 0 the same result holds true for C[0, 1], taking

Dk to be the classical integer order derivative.

Let 1 < α < 2 and m ∈ N0. We now list the derivatives and fractional derivatives

of the two parameter Mittag-Leffler functions that we require in the proof of Theorem

3.4.5. The fractional derivatives of order α− 1 are given by

Dα−1E∗
α,α+m = DI2−αE∗

α,α+m = E∗
α,m+1,

Dα−1
c E∗

α,α+m = I2−αDE∗
α,α+m = I2−αE∗

α,α+m−1 = E∗
α,m+1, (3.35)

where we have used (3.33) and (3.34). Moreover, using (3.32) and (3.35), the fractional

derivatives of order α are given by

DαE∗
α,α+m = DDα−1E∗

α,α+m = E∗
α,m = pm + E∗

α,α+m,

Dα
cE

∗
α,α+m = DI2−αDE∗

α,α+m = E∗
α,m = pm + E∗

α,α+m, (3.36)

We make use of the derivatives and fractional derivatives of these three functions,

E∗
α,0, E

∗
α,α−1 and E∗

α,α−2 in the proof of the next theorem which are obtained using

(3.17) (3.32), (3.33) and (3.34).

• First derivatives:

DE∗
α,0 = D

(
p0 + E∗

α,α

)
= E∗

α,α−1,

DE∗
α,α−1 = E∗

α,α−2. (3.37)

• Fractional derivatives of order α− 1:

Dα−1
c E∗

α,0 = I2−αDE∗
α,0 = I2−αE∗

α,α−1 = E∗
α,1,

Dα−1
c E∗

α,α−1 = I2−αDE∗
α,α−1 = I2−αE∗

α,α−2 = E∗
α,0,

Dα−1E∗
α,α−1 = DI2−αE∗

α,α−1 = DE∗
α,1 = E∗

α,0,

Dα−1E∗
α,α−2 = Dα−1

(
pα−2 + E∗

α,2α−2

)
= DI2−αE∗

α,2α−2 = E∗
α,α−1. (3.38)
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ϕ = −
∑N

m=0 kmE
∗
α,α+m + rE∗

α,α−1 + sE∗
α,α−2 + tE∗

α,0

X (A,BC) r s t

X (A,DD)
∑N
m=0 kmE

∗
α,α+m(1)

E∗
α,α−1(1)

0 0

X (A,DN)
∑N
m=0 kmE

∗
α,m+1(1)

E∗
α,0(1)

0 0

C0(Ω) (Dα
c ,DN

∗)
∑N
m=0 kmE

∗
α,α+m−1(1)

E∗
α,α−2(1)

0 0

X (Dα
c ,ND) 0 0

∑N
m=0 kmE

∗
α,α+m(1)

E∗
α,0(1)

X (Dα
c ,NN) 0 0

∑N
m=0 kmE

∗
α,m+1(1)

E∗
α,α−1(1)

C0(Ω) (Dα
c ,NN

∗) 0 0
∑N
m=0 kmE

∗
α,α+m−1(1)

E∗
α,1(1)

L1[0, 1] (Dα,ND) 0
∑N
m=0 kmE

∗
α,α+m(1)

E∗
α,α−2(1)

0

L1[0, 1] (Dα,NN) 0
∑N
m=0 kmE

∗
α,m+1(1)

E∗
α,α−1(1)

0

Table 3.2: Constants r, s, t for ϕ given by (3.40).

• Fractional derivatives of order α:

Dα
c E

∗
α,0 = DDα−1

c E∗
α,0 = DE∗

α,1 = E∗
α,0,

Dα
c E

∗
α,α−1 = DDα−1

c E∗
α,α−1 = DE∗

α,0 = E∗
α,α−1,

DαE∗
α,α−1 = DDα−1E∗

α,α−1 = DE∗
α,0 = E∗

α,α−1,

DαE∗
α,α−2 = DDα−1E∗

α,α−2 = E∗
α,α−2. (3.39)

Theorem 3.4.5. Let (A,BC) denote the fractional derivative operators on X as in

Definition 3.3.8. Then, rg(I − A) are dense in X for each (A,BC).

Proof. To show that rg(I−A) is dense inX = C0(Ω) or L1[0, 1] for each of the fractional

derivative operators (A,BC), we show that the polynomials P =
∑N

m=0 kmpm ∈ X are

in rg(I − A).

To this end, let P =
∑N

m=0 kmpm ∈ X as in Remark 3.4.3. Next, define

ϕ = −
N∑

m=0

kmE
∗
α,α+m + rE∗

α,α−1 + sE∗
α,α−2 + tE∗

α,0, (3.40)

where the constants r, s, t are given in Table 3.2 for each fractional derivative operator

(A,BC).

We show that ϕ ∈ X, ϕ ∈ D(A,BC) and (I − A)ϕ = P . Firstly, note that if

X = C0(Ω), then s = 0 in (3.40). Recall that km ∈ R ensure that P ∈ X, then in

view of (3.31) and using the constants r, s, t given in Table 3.2, it follows that ϕ ∈ X.
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In view of Proposition 3.3.10, note that ϕ ∈ D(A,BC), if ϕ satisfies the respective

boundary conditions BC for the operator (A,BC).

For each (A,BC), using (3.35), (3.36), (3.37), (3.38) and (3.39), it is easily verified

that ϕ ∈ X satisfies the respective BC. For instance, consider (A,DD). Then, using

Table 3.2

ϕDD(x) = −
N∑

m=0

kmE
∗
α,α+m(x) +

∑N
m=0 kmE

∗
α,α+m(1)

E∗
α,α−1(1)

E∗
α,α−1(x).

Thus, ϕDD(0) = 0 and ϕDD(1) = 0. Moreover,

AϕDD(x) = −
N∑

m=0

kmAE
∗
α,α+m(x) +

∑N
m=0 kmE

∗
α,α+m(1)

E∗
α,α−1(1)

AE∗
α,α−1(x)

= −
N∑

m=0

km
(
pm(x) + E∗

α,α+m(x)
)
+

∑N
m=0 kmE

∗
α,α+m(1)

E∗
α,α−1(1)

E∗
α,α−1(x)

= −P (x) + ϕDD(x).

Since, P ∈ X, it also follows that AϕDD(0) = 0 and AϕDD(1) = 0. Hence, ϕDD ∈

D(A,DD). Similar arguments work for the other boundary conditions BC.

To complete the proof, using (3.36) and (3.39), observe that

(I − A)ϕ =
N∑

m=0

kmpm = P.

Hence, rg(I − A) is dense in X since the polynomials belonging to X are dense in

X.
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Chapter 4

Grünwald-type approximations for

fractional derivative operators on a

bounded interval

In this chapter Grunwald-type (transition) approximation operators are constructed

for the fractional derivative operators on X. The semigroups generated by the frac-

tional derivative operators are shown to be the strong (and uniform for t in compact

intervals) limit of the semigroups generated by the Grünwald transition operators. The

underlying stochastic processes associated with the Grünwald approximation operators

are identified. The highlight of the chapter is the result that shows the convergence

in the Skorohod topology of the well-understood stochastic processes associated with

the Grünwald (transition) approximation operators to the processes governed by the

corresponding fractional-in-space partial differential equations.

4.1 Grünwald-type approximations for fractional

derivative operators on C0(Ω) and L1[0, 1]

In what follows, let 1 < α < 2 and h = 1
n+1

for n ∈ N. For the numerical scheme,

the boundary conditions encoded by the domain of the fractional derivative operators
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X = C0(Ω), D(A,BC) = {Iαg + apα + bpα−1 + dp0 : g ∈ C0(Ω)}, (0, 1) ⊂ Ω

Boundary condition Boundary weights for Gh
n×n D(A,BC)

f(0) = 0

Ω ⊂ (0, 1]

bli = Gαi

bn = brn

Dl(λ) = αλ
αλ+1−λ

, N l = 1

a = 0, d = 0

Dα−1
c f(0) = 0

[0, 1) ⊂ Ω

bli = −Gα−1
i−1

bn = −
∑n−1

i=0 b
r
i

N l(λ) = λ, Dl = 1

b = 0

f(1) = 0

Ω ⊂ [0, 1)

bri = Gαi

Dr(λ) = α(1−λ)
α(1−λ)+λ

, N r = 1
a = 0, b

Γ(α)
+ d = −Iαg(1)

Dα−1
c f(1) = 0

(0, 1] ⊂ Ω

bri = −Gα−1
i−1

N r(λ) = 1− λ, Dr = 1
a+ b = −Ig(1)

Df(1) = 0

(0, 1] ⊂ Ω

br0 = 0, br1 = Gα0 + Gα1 ,

bri = Gαi

N r(λ) = 1− λ, Dr = 1

a+(α−1)b
Γ(α)

= −Iα−1g(1)

Table 4.1: Boundary conditions for C0(Ω).

(A,BC) are built into the generic n× n shifted Grünwald matrix

Gh
n×n =

1

hα




bl1 Gα0 0 · · · 0
... Gα1

. . . . . .
...

...
...

. . . . . . 0

bln−1 Gαn−2 · · · Gα1 Gα0

bn brn−1 · · · · · · br1



, (4.1)

using the boundary weights bli, b
r
i and bn which are listed in Tables 4.1 and 4.2 in terms

of the Grünwald coefficients, for C0(Ω) and L1[0, 1], respectively. The n × n shifted

Grünwald matrices Gh
n×n play the role of the transition rate matrices of the underlying

finite state sub-Markov processes. The Grünwald transtion operators are constructed

using the theory developed in Sections 3.1 and 3.2.

In Section 4.2, we first discuss the adjoint formulation of the abstract Cauchy

problem on X associated with the fractional derivative operators (A,BC). In doing so,

we list the corresponding fractional derivative operators on X that are approximated

by the Grünwald transition operators. Following that we describe the physical reasons

behind the choice of boundary weights bli, b
r
i , and bn that encode different boundary

conditions BC and appear in the generic Grünwald matrix given by (4.1) in the L1[0, 1]
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X = L1[0, 1], D(A,BC) = {Iαg + apα + bpα−1 + cpα−2 + dp0 : g ∈ L1[0, 1]}

Boundary condition Boundary weights for Gh
n×n D(A,BC)

f(0) = 0
bli = Gαi

Dl(λ) = αλ
αλ+1−λ

, N l = 1
a = 0, c = 0, d = 0

Dα−1
c f(0) = 0

bli = −Gα−1
i−1

N l(λ) = λ, Dl = 1
b = 0, c = 0

Dα−1f(0) = 0

bl0 = 0, bl1 = Gα0 + Gα1

bli = Gαi

N l(λ) = λ, Dl = 1

b = 0, d = 0

f(1) = 0

bri = Gαi

bn = bln

Dr(λ) = α(1−λ)
α(1−λ)+λ

, N r = 1

a = 0, b+(α−1)c
Γ(α)

+ d = −Iαg(1)

Ff(1) = 0

bri = −Gα−1
i−1

bn = −
∑n−1

i=0 b
l
i

N r(λ) = 1− λ, Dr = 1

a+ b = −Ig(1)

Table 4.2: Boundary conditions for L1[0, 1].

case used in the construction of the Grünwald transition operators.

In Section 4.3, we first deal with the second part of the requirement of Lumer-

Phillips Theorem as mentioned at the start of Section 3.4. That is, we show that the

fractional derivative operators (A,BC) on X given by Definition 3.3.8 are dissipative.

To do this, we prove a crucial result, Proposition 4.3.2, that the Grünwald transition

operators constructed in Section 4.2 approximate the respective fractional derivative

operators on X. Combining this with the fact that the Grünwald transition operators

(Gh,BC) are dissipative, we show that (A,BC) are dissipative. Then, in view of The-

orems 3.4.4 and 3.4.5, since (A,BC) are densely defined closed operators with dense

rg(λ−A) in X, the operators (A,BC) generate strongly continuous contraction semi-

groups as a consequence of the Lumer-Phillips Theorem (C.2.9). Moreover, employing

Proposition 4.3.2 we also show that the semigroups generated by the fractional deriva-

tive operators (A,BC) are the strong (and uniform for t in compact intervals) limit

of the semigroups generated by the Grünwald transition operators using Trotter-Kato

Theorem (C.2.10). As a consequence, the underlying Feller processes associated with

(Gh,BC) converge in the Skorohod topology to the Feller process associated with the

fractional derivative operators (A,BC) [53, p. 331, Theorem 17.25].
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4.2 Adjoint formulation and boundary weights

In Section 3.3 we showed that each of the (left) one-sided fractional derivative operators

(A,BC) are densely defined, closed linear operators and identified a core for each of

them. As it turns out, because of a symmetry argument which we discuss below, it is

sufficient to consider only the left-sided fractional derivative operators on both C0(Ω)

and L1[0, 1].

Let us begin with the left-sided fractional derivatives A+ ∈ {Dα,+
c , Dα,+} of order

1 < α < 2 given by (3.12),

Dα,+
c f = DI2−α,+Df and Dα,+f = D2I2−α,+f,

where

Iγ,+f(x) =

∫ x

0

pγ−1(x− s)f(s)ds, γ > 0.

We use + in the superscript to distinguish it from the right-sided fractional derivatives

which we define below. Let γ > 0 and f ∈ L1[0, 1], then the right-sided fractional

integral of order γ is given by, see [86, p. 89]

Iγ,−f(x) =

∫ 1

x

pγ−1(s− x)f(s)ds, x > 0.

Then, the right-sided Riemann-Liouville and the right-sided first degree Caputo frac-

tional derivatives of order α are given by

Dα,−
c f = (−D)I2−α,−(−D)f and Dα,−f = (−D)2I2−α,−f (4.2)

respectively. In what follows, if the context of the discussion applies to both these

fractional derivatives, we simply use A− to denote them. Along similar lines, we also

define

Dα−1,−
c f = I2−α,−(−D)f and Dα−1,−f = (−D)I2−α,−f

We require the following properties in the proof of the next result. Firstly, for

α, β > 0 and f ∈ L1[0, 1], the semigroup property,

Iα,±Iβ,±f = Iα+β,±f. (4.3)

Secondly, note that reversing the order of the double integral yields

∫ 1

0

Iβ,+f(x)g(x) dx =

∫ 1

0

(∫ x

0

pβ−1(x− s)f(s) ds
)
g(x) dx
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=

∫ 1

0

(∫ 1

s

pβ−1(x− s)g(x) dx
)
f(s)ds =

∫ 1

0

f(s)Iβ,−g(s) ds.

(4.4)

We refer to Appendix C for definitions of the adjoint operators and the part of

operators. It is well known that, L1[0, 1] is isometrically isomorphic to a closed subspace

of the space of bounded (complex) Borel measures, MB(Ω), namely, the subspace

consisting of those measure which possess a density. Therefore, in what follows, we can

explicitly identify the part of the adjoint of (A+,BC) in L1[0, 1].

Theorem 4.2.1. Let (A+,BC) be a left-sided fractional derivative operator on C0(Ω)

and (A−,BC) be the corresponding right-sided fractional derivative operator on L1[0, 1]

whose domain encodes the same combination of boundary conditions BC as given in

Table 4.3. Then, (A−,BC) ⊂ (A+,BC)∗|L1[0,1] and (A+,BC) ⊂ (A−,BC)∗|C0(Ω), where

(A+,BC)∗ denotes the adjoint of (A+,BC) on the space of bounded (complex) Borel

measures, MB(Ω) and (A−,BC)∗ denotes the adjoint of (A−,BC) on L∞[0, 1].

Proof. We show that for all φ ∈ D(A+,BC) and for all ψ ∈ D(A−,BC),

∫ 1

0

A+φ(x)ψ(x) dx =

∫ 1

0

φ(x)A−ψ(x) dx.

First, let BC ∈ {DD,DN,ND,NN} and consider the pairs of operators (Dα,+
c ,BC) on

C0(Ω) and (Dα,−
c ,BC) on L1[0, 1].

Let φ ∈ D(Dα,+
c ,BC) and ψ ∈ D(Dα,−

c ,BC). Then, using integration by parts, we

have
∫ 1

0

Dα,+
c φ(x)ψ(x) dx = Dα−1,+

c φ(1)ψ(1)−Dα−1,+
c φ(0)ψ(0)

+

∫ 1

0

Dα−1,+
c φ(x)(−D)ψ(x) dx. (4.5)

Similarly,

∫ 1

0

φ(x)Dα,−
c ψ(x) dx = φ(1)Dα−1,−

c ψ(1)− φ(0)Dα−1,−
c ψ(0)

+

∫ 1

0

Dφ(x)Dα−1,−
c ψ(x) dx. (4.6)

Using (4.4) we have

∫ 1

0

Dα−1,+
c φ(x)(−D)ψ(x) dx =

∫ 1

0

I2−α,+Dφ(x)(−D)ψ(x) dx
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=

∫ 1

0

Dφ(x)I2−α,−(−D)ψ(x) dx

=

∫ 1

0

Dφ(x)Dα−1,−
c ψ(x) dx.

Thus, the proof for the cases when BC ∈ {DD,DN,ND,NN} is complete on observing

that the first two terms of (4.5) and (4.6) vanish upon using the respective boundary

conditions from Tables 4.1 and 4.2.

Next, let us consider the pair (Dα,+
c ,DN∗) and (Dα,−,DN), and the pair (Dα,+

c ,NN∗)

and (Dα,−,NN). In what follows, for convenience let us use the notation f(x) :=

f(1− x). Note using Table 4.2 that ψ ∈ D(Dα,−, •N) is given by

ψ(x) = Iα,−g1(x) + a1pα(x) + cpα−2(x), g1 ∈ L1[0, 1],

since b1, d1 = 0. Next, using Table 4.1 note that φ ∈ D(Dα
c , •N

∗) is given by

φ(x) = Iα,+g0(x) + a0pα(x) + bpα−1(x) + dp0(x), g0 ∈ C0(Ω).

Observe that

Dα,+
c φ(x) = g0(x) + a0p0(x)

and

Dα,−ψ(x) = g1(x) + a1p0(x).

Then, using the facts

∫ 1

0

pβ(x)f(x) dx = Iβ+1,−f(0)

and ∫ 1

0

pβ(x)f(x) dx = Iβ+1,+f(1),

along with (4.3), we have

∫ 1

0

Dα,+
c φ(x)ψ(x) dx =

∫ 1

0

(
g0(x) + a0p0(x)

)
(
Iα,−g1(x) + a1pα(x) + cpα−2(x)

)
dx

=

∫ 1

0

g0(x)I
α,−g1(x) dx+ a1I

α+1,+g0(1) + cIα−1,+g0(1)

+ a0I
1,−Iα,−g1(0) + a0a1I

α+1,+p0(1) + a0cI
α−1,+p0(1)

=

∫ 1

0

g0(x)I
α,−g1(x) dx

+ a0I
α+1,−g1(0) + a1I

α+1,+g0(1) +
a0a1

Γ(α + 2)
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+ c
(
Iα−1,+g0(1) +

a0
Γ(α)

)
. (4.7)

Similarly,

∫ 1

0

φ(x)Dα,−
c ψ(x) dx

=

∫ 1

0

(
Iα,+g0(x) + a0pα(x) + bpα−1(x) + dp0(x)

)
(
g1(x) + a1p0(x)

)
dx

=

∫ 1

0

Iα,+g0(x)g1(x) dx+ a1I
1,+Iα,+g0(1) + a0I

α+1,−g1(0) + a0a1I
1,+pα(1)

+ bIα,−g1(0) + a1bI
1,+pα−1(1) + dI1,−g1(0) + a1dI

1,+p0(1)

=

∫ 1

0

Iα,+g0(x)g1(x) dx+ a0I
α+1,−g1(0) + a1I

α+1,+g0(1) +
a0a1

Γ(α + 2)

+ b
(
Iα,−g1(0) +

a1
Γ(α + 1)

)
+ d
(
I1,−g1(0) + a1

)
. (4.8)

Firstly, observe that in view of (4.4), the first two lines of (4.7) and (4.8) are the same.

To complete the proof, we now show that the other terms of (4.7) and (4.8) match as

well if and only if the respective boundary conditions are satisfied.

For the operator (Dα,+
c ,DN∗), note that a0, d = 0 and b = −Γ(α−1)Iα−1,+g0(1). For

the operator (Dα,−,DN), note that a1 = 0 and c = −Γ(α−1)Iα,−g1(0). Thus, the proof

for the pair (Dα,+
c ,DN∗) and (Dα,−,DN) is complete. For the operator (Dα,+

c ,NN∗),

note that b = 0 and a0 = −Γ(α)Iα−1,+g0(1). For the operator (Dα,−,NN), note that

a1 = −I1,−g1(0). Thus, the proof for the pair (Dα,+
c ,NN∗) and (Dα,−,NN) is complete.

This also completes the proof of the theorem.

Remark 4.2.2. In fact, we show in Corollary 4.3.5, that (A−,BC) = (A+,BC)∗|L1[0,1]

and (A+,BC) = (A−,BC)∗|C0(Ω). To do this, we require the dissipativity of the opera-

tors A+ and A− which is established using the convergence properties of the Grünwald

approximations. However, it turns out that we only need to consider left-sided deriva-

tives on both these spaces, which we justify below.

Let the (isomorphism) flip operator J : L1[0, 1] → L1[0, 1] be given by J f(x) :=

f(1− x) and note that J −1 = J . Then,

Dα,−
c f(x) = J −1Dα,+

c J f(x) and Dα,−f(x) = J −1Dα,+J f(x),

which follows on using the substitution τ = 1− s in (4.2). In view of this relation and

Corollary 4.3.5, we define the left-sided fractional derivative operators (A↔,BC) as the

flipped versions of the part of the adjoint of (A+,BC); that is, using the right-sided
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(A+,BC), C0(Ω) (A−,BC), L1[0, 1] (A↔,BC), L1[0, 1]

(Dα,+
c ,DN) (Dα,−

c ,DN) (Dα,+
c ,ND)

(Dα,+
c ,NN) (Dα,−

c ,NN) (Dα,+
c ,NN)

(Dα,+
c ,DD) (Dα,−,DD) = (Dα,−

c ,DD) (Dα,+
c ,DD)

(Dα,+
c ,ND) (Dα,−,ND) = (Dα,−

c ,ND) (Dα,+
c ,DN)

(Dα,+
c ,DN∗) (Dα,−,DN) (Dα,+,ND)

(Dα,+
c ,NN∗) (Dα,−,NN) (Dα,+,NN)

Table 4.3: Corresponding fractional derivative operators on C0(Ω)

and L1[0, 1].

fractional derivative operators (A−,BC), we set

(A↔,BC)f(x) = J (A−,BC)J −1f(x).

We use ↔ instead of + to emphasise the fact that upon reflection about x = 1
2
, the

right-sided fractional derivative operators correspond to left-sided fractional derivative

operators with the left and right boundary conditions of BC swapped. Since the semi-

groups generated by (A−,BC) and (A↔,BC) are similar semigroups [37, p. 59], it is

sufficient to only consider the corresponding left-sided fractional derivative operator

(A↔,BC) on L1[0, 1] as given in Table 4.3.

Consider the abstract Cauchy problem on C0(Ω) associated to the left-sided frac-

tional derivative operator (A+,BC) and the initial value u0,

u′(t) = A+u(t) for t ≥ 0,

u(0) = u0.

In view of Remark 4.2.2, we reformulate the abstract Cauchy problem in the adjoint

scenario on L1[0, 1] in terms of left-sided fractional derivative operators,

u′(t) = A↔u(t) for t ≥ 0,

u(0) = u0.

We use the semigroups generated by the transition operators (Gh,BC) (see Defini-

tion 3.2.4) to approximate the semigroups generated by fractional derivative operators

(A+,BC) on C0(Ω). The interpolation matrix Gh
n+1(λ) used in the construction of

(Gh,BC) is given by (4.9) below, where the parameter λ ∈ [0, 1], λ′ = 1 − λ and we

have used the fact that the consecutive off-diagonal entries of the transition matrix
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Gh
n×n given by 4.1 are equal except when the first column or the last row entry is

involved, that is, (Gh
n×n)i−1,j−1 = (Gh

n×n)i,j if j 6= 2 and i 6= n. Note that, if the left

boundary condition of BC is Dirichlet, then we set N l = 1 and take Dl(λ) = αλ
αλ+λ′

.

On the other hand, if the left boundary condition is Neumann, then we set Dl = 1 and

take N l(λ) = λ. Similarly, if the right boundary condition of BC is Dirichlet, then we

set N r = 1 and take Dr(λ) = αλ′

αλ′+λ
, else we set Dl = 1 and take N l(λ) = λ′.

Similarly, to approximate the semigroups generated by the fractional derivative op-

erators on L1[0, 1], as discussed in Section 3.2, we could have used the adjoint transition

operator Gh∗ given by Proposition 3.2.6 constructed using the interpolation matrix

Gh∗
n+1 = (Gh

n+1)
T . Further, recall that the domains of the fractional derivative opera-

tors given in Definition 3.3.8 involve the power functions pβ, β ∈ {α, α− 1, α− 2, 0}.

Therefore, in L1 calculations we need to approximate pβ(1 − x). However, in view

of Remark 4.2.2, using reflection about x = 1
2
, we obtain the flipped interpolation

matrices Gh,↔
n+1 associated with the transition operators (Gh,↔,BC) approximating the

left-sided flipped versions (A↔,BC) of the right-sided fractional derivative operators

(A−,BC). As a consequence, the calculations in the L1[0, 1] case (see Section 4.1) are

simpler.

Gh
n+1(λ) =

1

hα




bl1 Dl(λ)Gα0 0 · · · · · · · · · 0

N l(λ)bl2 λ′bl1 + λGα1 Gα0 0 · · · · · · 0

N l(λ)bl3 λ′bl2 + λGα2 Gα1 Gα0 0 · · · 0
...

...
...

...
. . . . . .

...

N l(λ)bli λ′bli−1 + λGαi−1 Gαi−2 · · · · · · · · · 0
...

...
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...

N l(λ)bn λ′bln−1 + λbrn−1 λ′Gαn−2 + λbrn−2 · · · · · · λ′Gα1 + λbr1 N r(λ)Gα0

0 Dr(λ)bn Dr(λ)brn−1 · · · · · · Dr(λ)br2 br1




(4.9)

For g ∈ L1[0, 1] recall Proposition 3.2.6,

(Gh∗g)(x) =
(
En+1

(
(Gh

n+1)
TPn+1g

))
(x) =

[
(Gh

n+1)
T (λ(x))(Pn+1g)(λ(x))

]
ι(x)

,

where for x ∈ [0, 1], λ and ι denote the fractional and integer parts of x
h
given by
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Definition 3.2.2. Therefore, for f ∈ L1[0, 1],

(
Gh,↔f

)
(x) =

(
Gh∗f

)
(1− x) =

((
Gh
n+1

)T
(λ(1− x))

(
Pn+1f

)
(λ(1− x))

)
ι(1−x)

=
n+1∑

j=1

[
Gh
n+1(λ(1− x))

]
j,ι(1−x)

(Pn+1f)j(λ(1− x))

=
n+1∑

j=1

[
Gh
n+1(1− λ(x))

]
j,n+2−i

(Pn+1f)n+2−j(λ(x))

=
n+1∑

j=1

[
Gh
n+1(1− λ(x))

]
n+2−j,n+2−i

(Pn+1f)j(λ(x))

=
n+1∑

j=1

[
Gh,↔
n+1(λ(x))

]
i,j
(Pn+1f)j(λ(x)),

where setting λ′ = 1 − λ, we have
[
Gh,↔
n+1(λ)

]
i,j

=
[
Gh
n+1(λ

′)
]
n+2−j,n+2−i

. Hence, the

transition operator Gh,↔ is given by

(Gh,↔f)(x) =
(
En+1

(
Gh,↔
n+1Pn+1f

))
(x) =

[
(Gh,↔

n+1(λ(x))(Pn+1f)(λ(x))
]
ι(x)

, (4.10)

where the operators Pn+1 and En+1 are as discussed in Section 3.2.

Remark 4.2.3. In (4.12), the flipped adjoint interpolation matrix Gh,↔
n+1(λ), is obtained

by transposing the entries of Gh
n+1(λ

′) about the (other) diagonal (the diagonal going

from bottom left to top right). The interpolating functions Dl, Dr, N l and N r and

the boundary weights bli, b
r
i , bn are given in Table 4.1 for Gh

n+1 and in Table 4.2 for

Gh,↔
n+1.

For the sake of consistency of notation, in Gh,↔
n+1(λ), note that we have replaced λ′

with λ in the arguments of Dl, Dr, N l and N r as well as relabelled the superscripts

of these interpolating functions and the boundary weights. This is justified, since the

interpolating function with index l is viewed as interpolating from zero to one and

acting on the left boundary while the interpolating function with index r is viewed

as interpolating from one to zero and acting on the right boundary. Moreover, in the

Grünwald transition rate matrix the boundary weights with indices l and r are used

to encode the left and right boundary conditions, respectively.

Therefore, for the L1-case we follow the same convention and use bli in the first

102



column and bri in the last row of

Gh,↔
n×n =

1

hα




bl1 Gα0 0 · · · 0
... Gα1

. . . . . .
...

...
...

. . . . . . 0

bln−1 Gαn−2 · · · Gα1 Gα0

bn brn−1 · · · · · · br1



. (4.11)

However, note that as a result of the reflection, x 7→ 1 − x, the boundary weights of

the Matrix Gh,↔
n×n now encode the mirrored boundary conditions of the corresponding

boundary conditions (BC) encoded by the boundary weights of Matrix Gh
n+1. Lastly,

compare matrices Gh
n+1 and Gh,↔

n+1 and observe that the interpolating functions D and

N have swapped roles.

Gh
n+1(λ

′) =

1

hα




bl1 Dl(λ′)Gα0 0 · · · · · · · · · 0

N l(λ′)bl2 λbl1 + λ′Gα1 Gα0 0 · · · · · · 0

N l(λ′)bl3 λbl2 + λ′Gα2 Gα1 Gα0 0 · · · 0
...

...
...

...
. . . . . .

...

N l(λ′)bli λbli−1 + λ′Gαi−1 Gαi−2 · · · · · · · · · 0
...

...
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...

N l(λ′)bn λbln−1 + λ′brn−1 λGαn−2 + λ′brn−2 · · · · · · λGα1 + λ′br1 N r(λ′)Gα0

0 Dr(λ′)bn Dr(λ′)brn−1 · · · · · · Dr(λ′)br2 br1




x→ 1− x m l ↔ r

Gh,↔
n+1(λ) =

1

hα




bl1 N l(λ)Gα0 0 · · · · · · · · · 0

Dl(λ)bl2 λ′bl1 + λGα1 Gα0 0 · · · · · · 0

Dl(λ)bl3 λ′bl2 + λGα2 Gα1 Gα0 0 · · · 0
...

...
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...

Dl(λ)bli λ′bli−1 + λGαi−1 Gαi−2 · · · · · · · · ·
...

...
...

...
...

. . . . . .
...

Dl(λ)bn λ′bln−1 + λbrn−1 λ′Gαn−2 + λbrn−2 · · · · · · λ′Gα1 + λbr1 Dr(λ)Gα0

0 N r(λ)bn N r(λ)brn−1 · · · · · · N r(λ)br2 br1




(4.12)
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Boundary weights for L1-case: Let gi,j denote the entries of the transition rate

matrix in the L1-case given by (4.11). Then, recall from Section 3.1, that the entries

gi,j, for i 6= j denote the rate at which particles jump from state j to i while for i = j

denote the total rate at which particles leave state j. Let us divide the interval [0, 1]

into n boxes (or grids) and visualise the state j as representing the jth box. For an

arbitrary entry gi,j , if i = j, then gj,j corresponds to the rate at which particles jump

out of the jth box. On the other hand, if i < j, then gi,j corresponds to the rate at

which particles jump backwards from jth box and if i > j, then gi,j corresponds to the

rate at which particles jump forwards from jth box. Further, note that particles only

jump one box backwards and the rest are forward jumps. Therefore, in the L1-case

we can physically interpret jth column as keeping track of the rates of the particles

jumping out of jth box into other boxes.

Consider the infinite Grünwald matrix

1

hα




. . . . . . . . . . . . . . . . . . . . . . . .

. . . Gα1 Gα0 0
. . . . . . . . . . . .

. . . Gα2 Gα1 Gα0 0
. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 0
. . .

. . . Gαn−1 Gαn−2
. . . . . . Gα1 Gα0

. . .
. . . Gαn Gαn−1

. . . . . . Gα2 Gα1
. . .

. . . . . . . . . . . . . . . . . . . . . . . .




, (4.13)

where the Grünwald coefficients Gαm = (−1)m
(
α
m

)
are given by (A.1). The left and right

boundary conditions are dealt with independently by truncating the infinite matrix

given by (4.13) to obtain the semi-infinite matrix

1

hα




bl1 Gα0 0 · · · · · · · · · · · · · · ·

bl2 Gα1 Gα0 0
. . . . . . . . . . . .

...
. . . . . . . . . . . . . . . . . . . . .

...
. . . . . . . . . . . . 0

. . . . . .

bln−1 Gαn−2
. . . . . . Gα1 Gα0

. . . . . .

bn Gαn−1
. . . . . . Gα2 Gα1

. . . . . .
...

. . . . . . . . . . . . . . . . . . . . .




(4.14)
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to deal with the left boundary and the semi-infinite matrix

1

hα




. . . . . . . . . . . . . . . . . . . . . . . .
...

. . . . . . . . . Gα1 Gα0 0
. . . . . .

...
. . . . . . . . . Gα2 Gα1 Gα0 0

. . .
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . . . . . . . . . . 0

. . . . . . . . . Gαn−1 Gαn−2
. . . . . . Gα1 Gα0

· · · · · · · · · bn brn−1 · · · · · · br2 br1




(4.15)

to deal with the right boundary.

Left boundary conditions: We use the first row and first column of the semi-

infinite matrix given by (4.14) to encode the left boundary conditions. Note that the

entries of the infinite Grünwald matrix in the columns above the first row entries of the

semi-infinite matrix correspond to the rates of the particles that jump backward past

the left boundary. Moreover, the entries of the infinite Grünwald matrix in the rows to

the left of the first column entries of the semi-infinite matrix correspond to the rates

of the particles that would jump forward past the left boundary; that is, the entries

in the ith row to the left of the first column entry corresponds to the rate of particles

that would jump into ith box.

• Dirichlet : In this case, we conjecture that we have an absorbing left boundary.

The entries above the first row in the infinite matrix would therefore correspond

to the rates of the particles that are lost by jumping backwards through the left

boundary. However, since we expect the particles to be lost or killed after passing

through the left boundary, no particles jump forward past the left boundary.

Therefore, we set the entries to the left of the first column in the semi-infinite

matrix (4.14) to zero and take bli = Gαi for i ≥ 0.

• Neumann (Riemann-Liouville): In this case, we conjecture that we have no flux

at the left boundary; that is, no particles jump backward or forward through the

left boundary. Therefore, the entries above the first row in the infinite matrix

which correspond to the rates of the particles that would have jumped backwards

past the left boundary are set to zero and so we take bl0 = 0. Moreover, as we

expect no particles to jump forward past the left boundary, we set the entries to

the left of the first column to zero and take bli = Gαi for i ≥ 2. Lastly, since we

expect no flux at the left boundary, this implies that the mass of all the particles
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should be conserved. To ensure this, we need each column sum to be zero. Since

all the column sums are zero except the first column, using (A.6), we take

bl1 = −
∞∑

k=2

Gαk = Gα0 + Gα1

to ensure the first column sum is zero.

• Neumann (Caputo): In this case, firstly, we conjecture that we have no flux at

the left boundary. Therefore, the entries above the first row in the infinite matrix

which correspond to the rates of the particles that would have jumped backwards

past the left boundary are set to zero; that is, we take bl0 = 0. Moreover, we

expect no particles to jump forward past the left boundary and so the entries

to the left of the first column are set to zero. Secondly, note that the steady

state solutions for the abstract Cauchy problem associated with the operator

(Dα
c ,BC) are constant functions, since Dα

c p0 = 0 in view of (3.17). Therefore,

for the corresponding Grünwald transition matrix we conjecture that each row

sum should be zero. Therefore, in view of (A.7), we take

bli = −
i−1∑

k=0

Gαk = −Gα−1
i−1 .

In addition, using (A.6) note that −
∑i−1

k=0 G
α
k = Gαi +

∑∞
k=i+1 G

α
k where the last

term corresponds to the sum of the entries in the row of the infinite matrix to the

left of the first column entry. Observe that the entries bli for i ∈ {2, · · · , n− 1}

are larger than each of the other row entries; that is, the rate of particles jumping

into ith box from first box is significantly larger than the rate of particles jumping

from the other boxes. This can be physically interpreted as the increased disper-

sion of the process at the left boundary as modelled by the first degree Caputo

fractional derivative operator.

Right boundary conditions: We use the last row and last column of the semi-

infinite matrix given by (4.15) to encode the right boundary condition. Note that

the entries of the infinite Grünwald matrix in the columns below the last row entries

correspond to the particles that jump forward past the right boundary. Moreover, the

entries of the infinite Grünwald matrix in the rows to the right of the last column entries

correspond to the rates of the particles that jump backward past the right boundary.
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• Dirichlet : In this case, we conjecture that we have an absorbing right boundary.

Therefore, the entries below the last row of the infinite matrix would correspond

to the rates of the particles that are lost by jumping forward past the right

boundary. However, since we expect that the particles are lost or killed after

passing through the right boundary, no particles jump backward past the right

boundary. Thus, we set the entries to the right of the last column to zero and

take bri = Gαi for i ≥ 0. Moreover, note that the entry bn is shared by both the

last row and first column of Gh
n×n, and so we retain bn = bln depending on the

left boundary condition.

• Neumann: We conjecture that we have no flux at the right boundary. Therefore,

the entries below the last row that would correspond to the rate of particles that

jump forward past the right boundary are set to zero. Similarly, the entries to

the right of the last column that correspond to the rate of particles that jump

backward past the right boundary are set to zero. Moreover, to conserve the mass

of all the particles, we need to ensure that all the column sums are zero. Thus,

we take bri = −
∑i−1

k=0 G
α
k = −Gα−1

i−1 in view of (A.7) and similarly, bn = −
∑n−1

i=0 b
l
i.

Thus, there are six possible combinations of boundary conditions BC that we en-

code in the Grünwald transition matrices in the L1-case. In view of Remark 4.2.3 these

correspond to the respective mirrored boundary conditions for the C0-case. In Section

4.3 we show that the Grünwald transition operators (Gh,BC), constructed using these

Grünwald transition matrices with the boundary weights as discussed above, approx-

imate the respective fractional derivative operators (A,BC) on X as summarised in

Table 4.3.

Remark 4.2.4. Note that irrespective of the left boundary condition of BC, A = Dα
c

in the C0-case. Indeed, for f ∈ X with f(0) = 0, using (3.11); that is, D(Iγf) =

Iγ(Df) + f(0)pγ−1 we have

Dαf = D2I2−αf = D
(
I2−αDf − f(0)p1−α

)
= Dα

c f. (4.16)

Next note that the boundary weights bri of the Grünwald transition matrices used

to approximate (Dα, •N) are the same as the boundary weights bli corresponding to

(Dα
c ,N•). Lastly, note that the left Neumann boundary weights of the Grünwald

transition matrices used in the approximation of the operators (Dα,N•) in L1[0, 1]

yield the right Neumann* boundary weights for the operators (Dα
c , •N

∗) in C0(Ω).
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4.3 Semigroups and processes associated with

Grünwald-type approximations and fractional

derivative operators on X

Let us begin by recalling the Grünwald transition operator (Gh,BC) on C0(Ω) given

by Definition 3.2.4 and constructed using the interpolation matrix Gh
n+1 given by (4.9)

along with Table 4.1; that is, for φ ∈ C0(Ω),

(Ghφ)(x) =
(
En+1

(
Gh
n+1Pn+1φ

))
(x) =

[
Gh
n+1(λ(x))(Pn+1φ)(λ(x))

]
ι(x)

. (4.17)

Similarly, the Grünwald transition operator (Gh,↔,BC) on L1[0, 1] is given by (4.10)

and constructed using the interpolation matrix Gh,↔
n+1 given by (4.12) along with Table

4.2; that is, for φ ∈ L1[0, 1],

(Gh,↔φ)(x) =
(
En+1

(
Gh,↔
n+1Pn+1φ

))
(x) =

[
(Gh,↔

n+1(λ(x))(Pn+1φ)(λ(x))
]
ι(x)

. (4.18)

In Proposition 4.3.2, we show the following:

• For each of the fractional derivative operators (A+,BC) on C0(Ω) given in Table

4.3 and each f ∈ C(A+,BC), there exists a sequence {fh} ⊂ C0(Ω) such that

fh → f and Ghfh → A+f .

• For each of the fractional derivative operators (A↔,BC) on L1[0, 1] given in Table

4.3 and each f ∈ C(A↔,BC), there exists a sequence {fh} ⊂ L1[0, 1] such that

fh → f and Gh,↔fh → A↔f .

This is not trivial, since in general,

Gh (apα + bpα−1 + cpα−2 + dp0) 6→ A+ (apα + bpα−1 + cpα−2 + dp0) .

For instance, A+pα−1 = 0 while Ghpα−1 6→ 0. In fact, showing that there exist such

functions fh ∈ X turns out to be a tedious task involving elaborate constructions.

Therefore, to keep the current discussion coherent, we delay the detailed proof of

Proposion 4.3.2 to Section 4.5.

But first, we have the following lemma which identifies the stochastic processes

associated with the Grünwald approximation operators.

Lemma 4.3.1. Let the fractional derivative operators (A+,BC) and (A↔,BC) be given

by Definition 3.3.8 along with a core C(A,BC) as in Theorem 3.4.4, also see Re-

mark 4.2.2. Further, let the corresponding Grünwald transition operators (Gh,BC)
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and (Gh,↔,BC) be given by (4.17) and (4.18), respectively. Then, Gh generate Feller

semigroups on C0(Ω) and G
h,↔ generate positive, strongly continuous contraction semi-

groups on L1[0, 1]. Furthermore, the operators Gh and Gh,↔ are dissipative.

Proof. Firstly, let us verify using the boundary weights given in Tables 4.1 and 4.2 that

the matrices

Gh
n×n =

1

hα




bl1 Gα0 0 · · · 0
... Gα1

. . . . . .
...

...
...

. . . . . . 0

bln−1 Gαn−2 · · · Gα1 Gα0

bn brn−1 · · · · · · br1



.

are indeed transition rate matrices by making use of the recursion formula (A.2), Gαn+1 =
n−α
n+1

Gαn , G
α
0 = 1, n ∈ N. Note that all the entries of Gh

n×n except for the diagonal entries

are non-negative, whereas the diagonal entries are all negative. Combining this fact

with the binomial identity
∑∞

n=0 G
α
n = 0 given by (A.5), we have that all row sums

of Gh
n×n in the case when X = C0(Ω) and all column sums of Gh

n×n in the case when

X = L1[0, 1] are non-positive. Thus, in view of Proposition 3.2.7, the operators Gh

and Gh,↔ are bounded. Moreover, Gh generate Feller semigroups on C0(Ω) and G
h,↔

generate positive, strongly continuous contraction semigroups on L1[0, 1]. Then, it also

follows that the operators Gh and Gh,↔ are dissipative.

We now state the crucial result of this section and give a brief sketch of the proof.

The detailed proof is given in Section 4.5.

Proposition 4.3.2. Let the fractional derivative operators (A+,BC) and (A↔,BC) be

given by Definition 3.3.8 along with a core as in Theorem 3.4.4, also see Remark 4.2.2.

Further, let the corresponding Grünwald transition operators (Gh,BC) and (Gh,↔,BC)

be given by (4.17) and (4.18), respectively. Then, we have the following

1. For each f ∈ C(A,BC) there exists sequence {fh} ⊂ C0(Ω) such that fh → f and

Ghfh → A+f in C0(Ω).

2. For each f ∈ C(A↔,BC) there exists sequence {fh} ⊂ L1[0, 1] such that fh → f

and Gh,↔fh → A↔f in L1[0, 1].

Proof. Let 1 < α < 2, n ∈ N and h = 1
n+1

. To simplify notation, let us write Gh

for both Gh and Gh,↔ as well as A for both A+ and A↔. Consider a typical element

f ∈ C(A,BC) given in Theorem 3.4.4 in its general form,

f = IαP + apα + bpα−1 + cpα−2 + dp0,
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where the constants a, b, c, d ∈ R are given in Tables 4.1 and 4.2 for each BC, and

polynomial P =
∑N

m=0 kmpm ∈ X as in Remark 3.4.3. We construct functions {fh} ⊂

X and show that fh → f and Ghfh → Af in X for each of the fractional derivative

operators (A,BC) on X given in Table 4.3. The functions fh have the following general

form

fh = IαP + ahϑ
α
h + bhϑ

α−1
h + chϑ

α−2
h + dϑ0

h + eh, P ∈ X,

where ah, bh, ch ∈ R.

Outline of construction of fh ∈ X: Firstly, the approximate power functions

are constructed such that the following hold (see Section 4.5.1, Definition 4.5.1 and

Lemma 4.5.3, and Section 4.5 for details):

1. The functions ϑαh , ϑ
α−1
h and ϑ0

h are constructed such that they converge in the

X-norm to pα, pα−1 and p0, respectively.

2. The function ϑα−2
h is constructed such that it converges to pα−2 in L1-norm,

3. Ghϑβh → Apβ in the respective X-norm.

Secondly, the functions eh are taken to be zero functions except in those cases when

BC has a right Neumann boundary condition where we require the function eh for

Ghfh → Af , constructed such that eh → 0 in the X-norm. Thirdly, the real sequences

ah, bh, ch are chosen such that they converge to a, b, c, respectively and fh ∈ X. We

specify ah, bh, ch in the detailed proof of Proposition 4.3.2 in Section 4.5.

Outline of proof of fh → f and Ghfh → Af in C0(Ω):

For each of the fractional derivative operators (A,BC) on C0(Ω) given in Table 4.3,

and for each f ∈ C(A,BC) we show that there exists a sequence {fh} ⊂ C0(Ω) such

that fh → f and Ghfh → Af in C0(Ω). To this end, given ǫ > 0 we show that there

exists δ > 0 such that for h < δ,

sup
x∈Ω

|fh(x)− f(x)| < ǫ (4.19)

and

sup
x∈Ω

∣∣Ghfh(x)− Af(x)
∣∣ < ǫ. (4.20)

The proof of (4.19) follows from the construction outlined above. To show (4.20), we

break the interval Ω into two parts, namely,

Ω1(h) := Ω ∩ [0, 1− 2h) and Ω2(h) := Ω ∩ [1− 2h, 1]. (4.21)
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For x ∈ Ω1(h) we show that

sup
x∈Ω1

∣∣Ghfh(x)− Af(x)
∣∣ = O(hκ), κ > 0.

As a consequence, there exists δ1 such that for h < δ1,

sup
x∈Ω1(h)

∣∣Ghfh(x)− Af(x)
∣∣ < ǫ

2
.

Similarly, for x ∈ Ω2 we show that

sup
x∈Ω2(h)

∣∣Ghfh(x)− Af(x)
∣∣ = O(hκ), κ > 0.

This implies that there exists δ2 such that for h < δ2,

sup
x∈Ω2(h)

∣∣Ghfh(x)− Af(x)
∣∣ < ǫ

2
.

Then, taking δ = min {δ1, δ2}, for h < δ we have Ω = Ω1(h)∪Ω2(h) as well as uniform

convergence on the interval Ω, (4.19) and (4.20).

Interval Ω1:

1. We consider the common properties of the Grünwald approximations of operators

with left Dirichlet boundary condition, (A,D•) on Ω1.

2. We consider the common properties of the Grünwald approximations of the op-

erators with left Neumann boundary condition, (A,N•) on Ω1.

Interval Ω2:

1. We first consider the common properties of the Grünwald approximations of the

operators with right Dirichlet boundary condition, (A, •D) on Ω2. Following

that, we collate and complete the proof of Statement 1 of Proposition 4.3.2 for

the operators (A,DD) and (A,ND) separately.

2. We first consider the common properties of the Grünwald approximations of the

operators with right Neumann* boundary condition, (A, •N∗) on Ω2. Following

that, we collate and complete the proof of Statement 1 of Proposition 4.3.2 for

the operators (A,DN∗) and (A,NN∗) separately.

3. We first consider the common properties of the Grünwald approximations of the

operators with right Neumann boundary condition, (A, •N) on Ω2. Following

that, we collate and complete the proof of Statement 1 of Proposition 4.3.2 for

the operators (A,DN) and (A,NN) separately.
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Outline of proof of fh → f and Ghfh → Af in L1[0, 1]:

For each of the fractional derivative operators (A,BC) on L1[0, 1] given in Table

4.3, and for each f ∈ C(A,BC) we show that there exists a sequence {fh} ⊂ L1[0, 1]

such that fh → f and Ghfh → Af in L1[0, 1]. To this end, given ǫ > 0 we show that

there exists δ > 0 such that for h < δ,

‖fh − f‖L1[0,1]
< ǫ and

∥∥Ghfh − Af
∥∥
L1[0,1]

< ǫ.

1. We first consider the common properties of the Grünwald approximations of

the operators with left Dirichlet boundary condition, (A,D•). Following that,

we collate and complete the proof of Statement 2 of Proposition 4.3.2 for the

operators (A,DD) and (A,ND) separately.

2. We prove Statement 2 of Proposition 4.3.2 for the operator (Dα
c ,ND).

3. We prove Statement 2 of Proposition 4.3.2 for the operator (Dα
c ,NN).

4. We first consider the common properties of the Grünwald approximations of the

operators with left Neumann boundary condition, (Dα,N•) on Ω2. Following

that, we collate and complete the proof of Statement 2 of Proposition 4.3.2 for

the operators (Dα,ND) and (Dα,NN) separately.

The following theorem and its corollaries are the most important results of the

second part of this thesis. The following theorem establishes that the Grünwald-type

approximations converge to the left-sided fractional derivative operators on X.

Theorem 4.3.3 (Trotter-Kato type approximation theorem). Let the fractional

derivative operators (A+,BC) and (A↔,BC) be given by Definition 3.3.8 along with

a core as in Theorem 3.4.4, also see Remark 4.2.2. Further, let the corresponding

Grünwald transition operators (Gh,BC) and (Gh,↔,BC) be given by (4.17) and (4.18),

respectively. Then, we have the following:

1. The operators (Gh,BC) and (A,BC) generate Feller semigroups on C0(Ω). The

operators (Gh,↔,BC) and (A↔,BC) generate positive, strongly continuous, con-

traction semigroups on L1[0, 1].

2. The semigroups generated by (Gh,BC) converge strongly (and uniformly for t ∈

[0, t0]) to the semigroup generated by (A,BC) on C0(Ω). The semigroups gener-

ated by (Gh,↔,BC) converge strongly (and uniformly for t ∈ [0, t0]) to the semi-

group generated by (A↔,BC) on L1[0, 1].
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Proof. To simplify notation, let us write Gh for both Gh and Gh,↔ as well as A for

both A+ and A↔. As a consequence of Proposition 4.3.2, for each f ∈ C(A,BC)

there exists sequence {fh} ⊂ C0(Ω) such that fh → f and Ghfh → Af in C0(Ω) and

{fh} ⊂ L1[0, 1] such that fh → f and Ghfh → Af in L1[0, 1]. In view of Lemma 4.3.1,

Gh are dissipative; that is,

‖(λ−Gh)fh‖ ≥ λ‖fh‖

for all fh ∈ X and all λ > 0. Thus, as h→ 0, in view of Proposition 4.3.2 we have

‖(λ− A)f‖ ≥ λ‖f‖

for all f ∈ C(A,BC) in the respective X-norms. As a consequence, this inequality

holds for all f ∈ D(A,BC), and hence (A,BC) are dissipative. Furthermore, in view

of Theorems 3.4.4 and 3.4.5, (A,BC) are densely defined closed operators with dense

rg(λ−A) in X. Hence, the operators (A,BC) generate strongly continuous contraction

semigroups as a consequence of the Lumer-Phillips Theorem (C.2.9). The proof of the

first statement is complete in view of Lemma 4.3.1. The second statement follows using

the Trotter-Kato theorem (C.2.10), in view of Proposition 4.3.2.

We require the following lemma to prove the crucial Corollary 4.3.5 which explicitly

identifies the part of the adjoint of the left-sided fractional derivative operator in L1[0, 1]

and the part of the adjoint of the right-sided fractional derivative operator in C0(Ω).

Lemma 4.3.4. Let the operators A,B be such that A ⊂ B, A is surjective and B is

injective, then A = B.

Proof. To see this, let x ∈ D(B). Then, since A is surjective and A = B|D(A) there

exists w ∈ D(A) such that Bx = y = Aw = Bw. Next, since B is injective, we have

that x = w. Thus, D(B) ⊂ D(A) and hence, B ⊂ A.

As a consequence of Theorem 4.3.3, (A↔,BC) generate strongly continuous con-

traction semigroups on L1[0, 1] and the semigroups generated by the corresponding

right-sided fractional derivative operators (A−,BC) (with mirrored boundary condi-

tions) are similar semigroups in view of Remark 4.2.2, we have that (A−,BC) also

generate strongly continuous contraction semigroups on L1[0, 1].

Corollary 4.3.5. Let (A+,BC) be a left-sided fractional derivative operator on C0(Ω)

and (A−,BC) be the corresponding right-sided fractional derivative operator on L1[0, 1]

whose domain encodes the same combination of boundary conditions BC as given in

Table 4.3. Then, (A−,BC) = (A+,BC)∗|L1[0,1] and (A+,BC) = (A−,BC)∗|C0(Ω).
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Proof. Firstly, in view of Theorem 4.2.1 we have that

I − (A−,BC) ⊂
(
I − (A+,BC)∗

)
|L1[0,1] and I − (A+,BC) ⊂

(
I − (A−,BC)∗

)
|C0(Ω),

where I is the identity operator on the respective spaces. Secondly, in view of Theo-

rem 4.3.3 and Remark 4.2.2, we have that (A+,BC) and (A−,BC) generate strongly

continuous semigroups on C0(Ω) and L1[0, 1], respectively. Therefore, in particu-

lar, 1 ∈ ρ((A+,BC)) and 1 ∈ ρ((A−,BC)). Thus, I − (A−,BC) is surjective and

I − (A+,BC)∗ is injective which implies that
(
I − (A+,BC)∗

)
|L1[0,1] is also injective.

Then, in view of Lemma 4.3.4, we have that I − (A−,BC) =
(
I − (A+,BC)∗

)
|L1[0,1].

Hence,

(A−,BC) = (A+,BC)∗|L1[0,1].

A similar argument holds for the pair, (A+,BC) and (A−,BC)∗|C0(Ω).

The following result is the culmination of the second part of this thesis. This result

identifies the stochastic processes, which are governed by fractional-in-space partial

differential equations that employ fractional derivative operators (A,BC) on X with

boundary conditions BC, as limits of processes whose boundary behaviour is perfectly

understood. Let us briefly summarise the preparations made so far in Chapters 3 and

4 that yield this result in order to highlight its significance.

We began with transition rates of a finite state sub-Markov processes that signify

the process jumping from state i to state j or from state j to state i for the spaces ℓn∞

and ℓn1 , respectively. The associated semigroups are the so-called backward semigroups

(etGn×n)t≥0 in the case of ℓn∞ and the forward semigroups (etG
∗
n×n)t≥0 in the case of ℓn1 ,

where the matrices Gn×n and G∗
n×n are adjoint of each other. We extended the back-

ward semigroups on ℓn∞ to L∞(Ω), restricted to its closed subspace C0(Ω). Similarly,

we extended the forward semigroups on ℓn1 to MB(Ω), restricted to its closed sub-

space L1[0, 1]. This general theory was then used in the construction Grünwald-type

approximations for the fractional derivative operators on X.

We studied the properties of the (left-sided) one-sided fractional derivative operators

(A+,BC) on X. In Corollary 4.3.5, the part in L1[0, 1] of the adjoint of the left-

sided fractional derivative operators on C0(Ω) was explicitly identified as the right

sided fractional derivative operator (A−,BC) where the domains of both the operators

encode the same boundary conditions BC. Moreover, in Remark 4.2.2, we justified that

it is sufficient to consider only the semigroups generated by the left-sided fractional

derivative operators on X, since the semigroups generated by the left-sided fractional
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derivative operators on L1[0, 1] and the right-sided fractional derivative operators on

L1[0, 1] are similar semigroups.

In Chapter 3, we showed that the left-sided fractional derivative operators (A,BC)

are densely defined closed operators on X and that rg(λI − A) are dense in X. To

conclude that the fractional derivative operators generate positive, strongly continuous

contraction semigroups using the Lumer-Philips Theorem we established dissipativity

of the left-sided fractional derivative operators on X using the Grünwald approxima-

tions. That is, in Proposition 4.3.2, we showed that the Grünwald approximations

(Gh,BC) converge to the respective fractional derivative operators (A,BC). As a fur-

ther consequence of Proposition 4.3.2, in Theorem 4.3.3, we established the convergence

of the semigroups generated by the Grünwald approximations to those generated by

the one-sided fractional derivative operators on X.

On the one hand, we showed that the Grünwald approximations generate posi-

tive, strongly continuous contraction semigroups on X, in particular, Feller semigroups

(Sh(t))t≥0 on C0(Ω). On the other hand, we also showed that the fractional derivative

operators generate positive, strongly continuous, contraction semigroups on X, in par-

ticular, Feller semigroups (S(t))t≥0 on C0(Ω). Therefore, there exist Feller processes

(Xh
t )t≥0 and (Xt)t≥0 with (Sh(t))t≥0 and (S(t))t≥0, respectively, as their backward semi-

groups [53, Chapter 17]. Furthermore, in view of Theorem 4.3.3 the family of Feller

semigroups (Sh(t))t≥0 generated by Grünwald approximations converge strongly, uni-

formly for t ∈ [0, t0], to the Feller semigroups (S(t))t≥0 generated by the fractional

derivative operators on X. As a consequence, we have the following important result.

Corollary 4.3.6. The stochastic processes (Xh
t )t≥0 associated with the Grünwald ap-

proximations (Gh,BC) converge in the Skorokhod topology to the processes (Xt)t≥0 as-

sociated with the fractional derivative operators (A,BC).

Proof. The proof is complete in view of Theorem 4.3.3, Remark 4.2.2, Corollary 4.3.5

and [53, p. 331, Theorem 17.25].

This corollary marks the conclusion of the second part of this thesis. However, as

mentioned at the start of Section 4.3, the detailed proof of Proposition 4.3.2 is provided

in Section 4.5 and we make the necessary preparations for the same in Section 4.5.1.

But first, we have the following section on the numerical solutions for the Cauchy

problem associated with the fractional derivative operators on L1[0, 1].

115



4.4 Examples of Grünwald schemes for

Cauchy problems on L1[0, 1]

In this section we provide some examples of numerical solutions to the Cauchy problem

associated with the fractional derivative operators (A,BC) on L1[0, 1] and the initial

value u0 ∈ L1[0, 1],

u′(t) = Au(t) for t ≥ 0, u(0) = u0, (4.22)

that employs the Grünwald scheme. For the space discretisation of the Grünwald

scheme, we use the Grünwald transition matrix,

Gh
n×n =

1

hα




bl1 Gα0 0 · · · 0
... Gα1

. . . . . .
...

...
...

. . . . . . 0

bln−1 Gαn−2 · · · Gα1 Gα0

bn brn−1 · · · · · · br1



, (4.23)

where the boundary weights are given in Table 4.4.

Boundary condition Boundary weights for Gh
n×n

f(0) = 0 bli = Gαi

Dα−1
c f(0) = 0 bli = −Gα−1

i−1

Dα−1f(0) = 0 bl0 = 0, bl1 = Gα0 + Gα1 , b
l
i = Gαi

f(1) = 0 bri = Gαi , bn = bln

Ff(1) = 0 bri = −Gα−1
i−1 , bn = −

∑n−1
i=0 b

l
i

Table 4.4: Boundary conditions and boundary weights for L1[0, 1].

To illustrate the efficiency of the Grünwald scheme in handling different boundary

conditions, we plot the numerical solutions to the Cauchy problem associated with the

fractional derivative operators on L1[0, 1] and the initial value

u0(x) =





25x− 7.5, for 0.3 < x ≤ 0.5,

−25x+ 7.5, for 0.5 < x < 0.7,

0, otherwise.

(4.24)

at various times below. For the numerical scheme, we take α = 1.5, the time step

∆t = 0.01 and the space grid size h = 0.001. The MATLAB codes used to obtain the

numerical solutions are given in Appendix D.
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Figure 4.1: Time evolution of the numerical solution to the Cauchy problem associated

with (D1.5
c ,DD) and initial value u0 given by (4.24).
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Figure 4.2: Time evolution of the numerical solution to the Cauchy problem associated

with (D1.5
c ,DN) and initial value u0 given by (4.24). Take note of the build up at the

right boundary.
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Figure 4.3: Time evolution of the numerical solution to the Cauchy problem associated

with (D1.5
c ,ND) and initial value u0 given by (4.24).
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Figure 4.4: Time evolution of the numerical solution to the Cauchy problem associated

with (D1.5
c ,NN) and initial value u0 given by (4.24).
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Figure 4.5: Time evolution of the numerical solution to the Cauchy problem associated

with (D1.5,ND) and initial value u0 given by (4.24).
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Figure 4.6: Time evolution of the numerical solution to the Cauchy problem associated

with (D1.5,NN) and initial value u0 given by (4.24).
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4.5 Detailed proof of Proposition 4.3.2

The proof is divided into two main cases X = C0(Ω) and X = L1[0, 1] where the

detailed proofs are given in Sections 4.5.2 and 4.5.3, respectively.

4.5.1 Construction of approximate power functions

In this section we make the necessary preparations for the proof of Proposition 4.3.2.

In what follows, let 1 < α < 2, n ∈ N and h = 1
n+1

. Moreover, for x ∈ [0, 1],

let ι(x) − 1 =
⌊
x
h

⌋
and λ(x) =

{
x
h

}
denote the integer and fractional parts on x

h
as

in Definition 3.2.2 and the Grünwald coefficients Gαm = (−1)m
(
α
m

)
be given by (A.1).

Furthermore, to simplify notation, we write λ := λ(x) and λ′ = 1− λ.

Definition 4.5.1. The approximate power functions for C0(Ω) are defined as follows:

1.

ϑαh(x) = hα





−λ′, if ι(x) = 1,(
λ′G−α−1

ι(x)−3 + λG−α−1
ι(x)−2

)
, if ι(x) 6= 1.

2.

ϑα−1
h (x) = hα−1

(
λ′G−α

ι(x)−2 + λG−α
ι(x)−1

)
.

3.

ϑ0
h(x) = p0(x).

The approximate power functions for L1[0, 1] are defined as follows:

1.

ϑαh(x) = hα

{
−λ′, if ι(x) = 1,

G−α−1
ι(x)−2, if ι(x) 6= 1.

2.

ϑα−1
h (x) = hα−1





1
α

(
λ′G−α

0 + λG−α
1

)
, if ι(x) = 1,(

λ′G−α
ι(x)−2 + λG−α

ι(x)−1

)
, if ι(x) 6= 1.

3.

ϑ0
h(x) =

{
λ, if ι(x) = 1,

p0(x), if ι(x) 6= 1.

4.

ϑα−2
h (x) = hα−2

(
(1− θ(λ))G−α+1

ι(x)−2 + θ(λ)G−α+1
ι(x)−1

)
,

where θ(λ) = λ
(α−1)λ′+λ

.
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Remark 4.5.2 (Canonical extension to [0, 1+ h]). In the proof of Proposition 4.3.2,

when dealing with the right Dirichlet and Neumann* boundary conditions, we require

the values of the function fh in the interval (1, 1+h]. Therefore, the domain of fh need

to be extended to the interval [0, 1 + h]. To do this, we also extend the definitions of

λ and ι given in Definition 3.2.2 to the interval [0, 1+ h], but consider x = 1 to belong

to the interval [1− h, 1], that is, λ(1) = 1 and ι(1) = n+ 1 and similarly, x = 1+ h to

belong to the extended interval (1, 1 + h], that is, λ(1 + h) = 1 and ι(1 + h) = n+ 2.

Let φ =
∑N

m=0 kmpα+m. Let us also assume that φ is canonically extended to the

interval [0, 1 + h] and x ∈ [1 − h, 1]. Then, the Taylor expansions around x = 1 are

given by

φ(x− h) = φ(1)− (2− λ)hφ′(1) +O(h2),

φ(x) = φ(1)− (1− λ)hφ′(1) +O(h2),

φ(x+ h) = φ(1) + λhφ′(1) +O(h2), (4.25)

where observe that λ := λ(x) = λ(x− h) = λ(x+ h) for x 6= 1.

We prove some of the properties of the interpolated functions that we use repeatedly.

Lemma 4.5.3. Let the approximate power functions be as in Definition 4.5.1. Then

ϑαh, ϑ
α−1
h and ϑ0

h converge to pα, pα−1 and p0, respectively in the X-norm. Moreover,

ϑα−2
h converges to pα−2 in L1[0, 1]-norm.

Proof. Firstly, observe that ϑ0
h → p0 in X-norm. In view of (A.9), on a fixed grid point

x = (k + 1)h, we have

ϑαh((k + 1)h) = hαG−α−1
k−1 =

(h(k − 1))α

Γ(α + 1)

[
1 +O(k−1)

]
= pα((k − 1)h) +O(h),

ϑα−1
h ((k + 1)h) = hα−1G−α

k =
(hk)α−1

Γ(α)

[
1 +O(k−1)

]
= pα−1(kh) +O(h)

and

ϑα−2
h ((k + 1)h) = hα−2G−α+1

k =
(hk)α−2

Γ(α− 1)

[
1 +O(k−1)

]
= pα−2(kh) +O(h).

Then it follows that, as h→ 0, ϑαh → pα, ϑ
α−1
h → pα−1 in X-norm and ϑα−2

h → pα−2 in

L1[0, 1]-norm.

Lemma 4.5.4. Let ϑβh for β ∈ {α, α− 1, α− 2} given in Definition 4.5.1 be canoni-

cally extended to the interval [0, 1 + h] and set λ := λ(x) = λ(x + h). Then we have

the following identities for x ∈ [1− h, 1],

ϑα−2
h (x)

ϑα−2
h (1)

− 1 = −(1− θ(λ))
α− 2

n− 2 + α
,
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ϑα−2
h (x+ h)

ϑα−2
h (1)

− 1 = θ(λ)
α− 2

n+ 1
,

ϑα−1
h (x)

ϑα−1
h (1)

− 1 = −λ′
α− 1

n− 1 + α
,

ϑα−1
h (x+ h)

ϑα−1
h (1)

− 1 = λ
α− 1

n+ 1
,

ϑαh(x)

ϑαh(1)
− 1 = −λ′

α

n− 1 + α
,

ϑαh(x+ h)

ϑαh(1)
− 1 = λ

α

n
. (4.26)

Moreover, for x ∈ [1− 2h, 1], we have

ϑα−1
h (x)− ϑα−1

h (x+ h) = ϑα−1
h (1)

(
−(α− 1)

k − 1 + α
+O(h2)

)

ϑαh(x)− ϑαh(x+ h) = ϑαh(1)

(
−α

k − 1 + α
+O(h2)

)
, (4.27)

where k = ι(x)− 1.

Proof. Let x ∈ [1− h, 1] and in the following calculations we make use of

ϑα−2
h (1) = hα−2G−α+1

n , ϑα−1
h (1) = hα−1G−α

n , ϑαh(1) = hαG−α−1
n−1 (4.28)

along with Definition (4.5.1) and (A.2) as required. Firstly, setting θ := θ(λ) we have

ϑα−2
h (x)

ϑα−2
h (1)

=
hα−2

(
(1− θ)G−α+1

n−1 + θG−α+1
n

)

hα−2G−α+1
n

= (1− θ)
n

n− 2 + α
+ θ

= 1− (1− θ)
α− 2

n− 2 + α

and

ϑα−2
h (x+ h)

ϑα−2
h (1)

=
hα−2

(
(1− θ)G−α+1

n + θG−α+1
n+1

)

hα−2G−α+1
n

= (1− θ) + θ
n+ α− 1

n+ 1

= 1 + θ
α− 2

n+ 1
.

Secondly,

ϑα−1
h (x)

ϑα−1
h (1)

=
hα−1

(
(1− λ)G−α

n−1 + λG−α
n

)

hα−1G−α
n
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= (1− λ)
n

n− 1 + α
+ λ

= 1− λ′
α− 1

n− 1 + α

and

ϑα−1
h (x+ h)

ϑα−1
h (1)

=
hα−1

(
(1− λ)G−α

n + λG−α
n+1

)

hα−1G−α
n

= (1− λ) + λ
n+ α

n+ 1

= 1 + λ
α− 1

n+ 1
.

Thirdly,

ϑαh(x)

ϑαh(1)
=
hα
(
(1− λ)G−α−1

n−2 + λG−α−1
n−1

)

hαG−α−1
n−1

= (1− λ)
n− 1

n− 1 + α
+ λ

= 1− λ′
α

n− 1 + α

and

ϑαh(x+ h)

ϑαh(1)
=
hα
(
(1− λ)G−α−1

n−1 + λG−α−1
n

)

hαG−α−1
n−1

= (1− λ) + λ
n+ α

n

= 1 + λ
α

n

Next, for x ∈ [1− h, 1] using the above identities

ϑα−1
h (x)− ϑα−1

h (x+ h) = ϑα−1
h (1)

(
−(α− 1)

n− 1 + α
+ (α− 1)λ

(
1

n− 1 + α
−

1

n+ 1

))

= ϑα−1
h (1)

(
−(α− 1)

n− 1 + α
+O(h2)

)

and

ϑαh(x)− ϑαh(x+ h) = ϑαh(1)

(
−α

n− 1 + α
+ αλ

(
1

n− 1 + α
−

1

n

))

= ϑαh(1)

(
−α

n− 1 + α
+O(h2)

)
.

Note that if x = 1− h, since λ = 0, O(h2) terms above are absent.
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Moreover, for x ∈ [1 − 2h, 1 − h), using (4.28) and Gβk =
(
1 + β+1

k−β

)
Gβk+1 given by

(A.2), note that

ϑαh(x) = hα
(
(1− λ)G−α−1

n−3 + λG−α−1
n−2

)

= hα
(
(1− λ)G−α−1

n−2

(
1−

α

n− 2 + α

)
+ λG−α−1

n−1

(
1−

α

n− 1 + α

))

= ϑαh(x+ h) + hα
(
−G−α−1

n−2

α(1− λ)

n− 2 + α
− G−α−1

n−1

αλ

n− 1 + α

)

= ϑαh(x+ h) + hαG−α−1
n−1

(
−

(
1−

α

n− 1 + α

)(
α− αλ

n− 2 + α

)
−

αλ

n− 1 + α

)

= ϑαh(x+ h) + ϑαh(1)

(
−α

n− 2 + α
+O(h2)

)

and

ϑα−1
h (x) = hα−1

(
(1− λ)G−α

n−2 + λG−α
n−1

)

= hα−1

(
(1− λ)G−α

n−1

(
1−

α− 1

n− 2 + α

)
+ λG−α

n

(
1−

α− 1

n− 1 + α

))

= ϑα−1
h (x+ h) + hα−1

(
−G−α

n−1

(α− 1)(1− λ)

n− 2 + α
− G−α

n

(α− 1)λ

n− 1 + α

)

= ϑα−1
h (x+ h)

+ hα−1G−α
n

(
−

(
1−

α− 1

n− 1 + α

)(
(α− 1)− (α− 1)λ)

n− 2 + α

)
−

(α− 1)λ

n− 1 + α

)

= ϑα−1
h (x+ h) + ϑα−1

h (1)

(
−(α− 1)

n− 2 + α
+O(h2)

)
.

Recall that for α > 0, f ∈ L1(R) or C0(R) and h > 0, the shifted Grünwald formula

(1.3) is given by

Aαh,pf(x) =
1

hα

∞∑

k=0

Gαk f(x− (k − p)h),

where the Grünwald coefficients, Gαm = (−1)m
(
α
m

)
are given by (A.1).

We make use of this Grünwald formula repeatedly in the proofs of Propositions 4.5.7

and 4.3.2. For easy reference we rewrite them using the notation employed therein.

Let x ∈ [0, 1 + h]; that is, x = (λ(x) + ι(x) − 1)h as in Definition 3.2.2. Then, for

1 < α < 2 with shift p = 1 and for 0 < α− 1 < 1 with shift p = 0, we have

Aαh,1f(x) =
1

hα

ι(x)∑

k=0

Gαk f((λ(x) + ι(x)− 1− (k − 1))h),
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Aα−1
h,0 f(x) =

1

hα−1

ι(x)−1∑

k=0

Gα−1
k f((λ(x) + ι(x)− 1− k)h) (4.29)

We state the following corollary of Theorem 2.2.1 which we use repeatedly in the proof

of Proposition 4.3.2.

Corollary 4.5.5 (Corollary of Theorem 2.2.1). Let 1 < α < 2, and let β > α in the

case of C0(Ω) and β ≥ α in the case of L1[0, 1]. Further, let

p̃β(x) =





0, if x < 0,

pβ(x), if 0 ≤ x ≤ 2,

θ(x), if x ≥ 2,

where θ ∈ C∞
0 (R) such that the extended function p̃β ∈ C0(R) or L1(R), respectively.

Then, given ǫ > 0 there exists δ > 0 such that for all h < δ,

∥∥Aαh,ppβ − pβ−α
∥∥
C0(Ω)

≤
∥∥Aαh,pp̃β −Dαp̃β

∥∥
C0(R)

< ǫ, β > α

and ∥∥Aαh,ppβ − pβ−α
∥∥
L1[0,1]

≤
∥∥Aαh,pp̃β −Dαp̃β

∥∥
L1(R)

< ǫ, β ≥ α.

Remark 4.5.6. Let P = Iα(P − P (0)p0), P =
∑N

m=0 kmpm ∈ C0(Ω). Note that,

since P(0) = 0, DαP = Dα
c P . Therefore, assuming that P is canonically extended to

[0, 1 + h], in view of Corollary 4.5.5 and Lemma 1.4.2, the error terms are given by

Aαh,pP(x) = Dα
c P(x) + h

(
p−

α

2

)
Dα+1
c P(x) +O(h2).

In view of Corollary 4.5.5 and Lemma 1.4.2, for Q = IαP , P =
∑N

m=0 kmpm ∈ L1[0, 1]

we have the error terms,

Aαh,pQ(x) = DαQ(x) + h
(
p−

α

2

)
Dα+1Q(x) +O(h2)

and the same holds with Dβ replaced by Dβ
c .

We conclude the preparation for the proof of Proposition 4.3.2 with the following

result which contains only those properties of the approximate power functions that

we require.

Proposition 4.5.7. Let ϑβh for β ∈ {α, α− 2}and in the case when X = C0(Ω), ϑ
α−1
h

be given by Definition 4.5.1 and canonically extended to the interval [0, 1 + h]. Let

ι(x)− 1 =
⌊
x
h

⌋
and λ := λ(x) =

{
x
h

}
denote the integer and fractional parts of x

h
as in

Definition 3.2.2. Then the following hold:
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1.

Aαh,1ϑ
α
h(x) = 1− λ′Gαι(x), ι(x) ≥ 2.

2.

Aα−1
h,0 ϑ

α
h(x) = h

(
ι(x)− 2 + θ(λ)− λ′Gα−1

ι(x)−1

)
, ι(x) ≥ 2.

3.

Aαh,1ϑ
α−1
h (x) = 0, ι(x) ≥ 2.

4.

Aα−1
h,0 ϑ

α−1
h (x) = 1, ι(x) ≥ 2.

5.

Aαh,1ϑ
α−2
h (x) = 0, ι(x) ≥ 3.

6.

Aα−1
h,0 ϑ

α−2
h (x) = 0, ι(x) ≥ 3.

Proof. In what follows we make use of
∑k

m=0 G
q
mG

Q
k−m = Gq+Qk given by (A.8) as re-

quired.

1. Let ι(x) ≥ 2, θ = λ or 1 and note using (4.29) that

Aαh,1ϑ
α
h(x) = h−α

ι(x)∑

k=0

Gαk ϑ
α
h

(
x− (k − 1)h

)
.

Then, since G−α−1
−1 = 0 by (A.3), we have

Aαh,1ϑ
α
h(x) =

ι(x)−1∑

k=0

Gαk

(
(1− θ)G−α−1

ι(x)−(k−1)−3 + θG−α−1
ι(x)−(k−1)−2

)
+ (λ− 1)Gαι(x)

= (1− θ)

ι(x)−2∑

k=0

Gαk G
−α−1
ι(x)−(k−1)−3 + θ

ι(x)−1∑

k=0

G−α−1
ι(x)−(k−1)−2 + (λ− 1)Gαι(x).

In view of (A.2) note that G−1
k = 1. Thus, the first term above reduces to

(1− θ)

ι(x)−2∑

k=0

Gαk G
−α−1
ι(x)−2−k = (1− θ)G−1

ι(x)−2 = (1− θ)

while the second term above reduces to

θ

ι(x)−1∑

k=0

Gαk G
−α−1
ι(x)−1−k = θG−1

ι(x)−1 = θ.

Hence,

Aαh,1ϑ
α
h(x) = 1− λ′Gαι(x).
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2. Let ι(x) ≥ 2 and θ = λ or 1, then using (4.29) we have

Aα−1
h,0 ϑ

α
h(x) = h−(α−1)

ι(x)−1∑

k=0

Gα−1
k ϑαh

(
x− kh

)
.

Note that G−2
k = k + 1 by (A.2) and G−α−1

−1 = 0 by (A.3). Thus,

Aα−1
h,1 ϑ

α
h(x) = h

ι(x)−2∑

k=0

Gα−1
k

(
(1− θ)G−α−1

ι(x)−k−3 + θG−α−1
ι(x)−k−2

)
+ h(λ− 1)Gα−1

ι(x)−1

= h(1− θ)

ι(x)−3∑

k=0

Gα−1
k G−α−1

ι(x)−3−k + hθ

ι(x)−2∑

k=0

Gα−1
k G−α−1

ι(x)−2−k + h(λ− 1)Gα−1
ι(x)−1

= h
(
(1− θ)G−2

ι(x)−3 + θG−2
ι(x)−2 + (λ− 1)Gα−1

ι(x)−1

)

= h
(
(1− θ)(ι(x)− 2) + θ(ι(x)− 1) + (λ− 1)Gα−1

ι(x)−1

)

= h
(
ι(x)− 2 + θ − λ′Gα−1

ι(x)−1

)
.

3. Let X = C0(Ω) and ι(x) ≥ 2, then in view of (4.29), using G−α
−1 = 0 we have

Aαh,1ϑ
α−1
h (x) = h−1

(
ι(x)∑

k=0

Gαk

(
(1− λ)G−α

ι(x)−(k−1)−2 + λG−α
ι(x)−(k−1))−1

))

= h−1
(
(1− λ)

ι(x)−1∑

k=0

Gαk G
−α
ι(x)−1−k + λ

ι(x)∑

k=0

Gαk G
−α
ι(x)−k

)

= h−1
(
(1− λ)G0

ι(x)−1 + λG0
ι(x)

)
= 0,

since ι(x) ≥ 2 and G0
k = 0, k ≥ 1 by (A.2).

4. Let X = C0(Ω) and ι(x) ≥ 2, then in view of (4.29), using G−α
−1 = 0 and G−1

k = 1

we have

Aα−1
h,0 ϑ

α−1
h (x) = h−(α−1)

ι(x)−1∑

k=0

Gα−1
k ϑα−1

h

(
x− kh

)

=

ι(x)−1∑

k=0

Gα−1
k

(
(1− λ)G−α

ι(x)−k−2 + λG−α
ι(x)−k−1

)

= (1− λ)

ι(x)−2∑

k=0

Gα−1
k G−α

ι(x)−2−k + λ

ι(x)−1∑

k=0

Gα−1
k G−α

ι(x)−1−k

= (1− λ)G−1
ι(x)−2 + λG−1

ι(x)−1 = 1.

127



5. Let X = L1[0, 1] and ι(x) ≥ 3, then in view of (4.29), using G−α+1
−1 = 0

Aαh,1ϑ
α−2
h (x) =

1

h2

(
ι(x)∑

k=0

Gαk

(
(1− θ)G−α+1

ι(x)−1−k + θG−α+1
ι(x)−k

))

=
1

h2

(
(1− θ)

ι(x)−1∑

k=0

Gαk G
−α+1
ι(x)−1−k + θ

ι(x)∑

k=0

Gαk G
−α+1
ι(x)−k

)

=
1

h2

(
(1− θ)G1

ι(x)−1 + θG1
ι(x)

)
= 0, (4.30)

since G1
k = 0 for k ≥ 2.

6. Let X = L1[0, 1] and ι(x) ≥ 3, then in view of (4.29), using G−α+1
−1 = 0

Aα−1
h,1 ϑ

α−2
h (x) =

1

h

(
ι(x)−1∑

k=0

Gα−1
k

(
(1− θ)G−α+1

ι(x)−2−k + θG−α+1
ι(x)−1−k

))

=
1

h

(
(1− θ)

ι(x)−2∑

k=0

Gα−1
k G−α+1

ι(x)−2−k + θ

ι(x)−1∑

k=0

Gα−1
k G−α+1

ι(x)−1−k

)

=
1

h

(
(1− θ)G0

ι(x)−2 + θG0
ι(x)−1

)
= 0, (4.31)

since G0
k = 0 for k ≥ 1.

4.5.2 Proof of Proposition 4.3.2 for the case X = C0(Ω)

Proof. To simplify notation, we write A := A+. For each of the fractional derivative

operators (A,BC) on C0(Ω) given in Table 4.5, and for each f ∈ C(A,BC) we show

that there exists a sequence {fh} ⊂ C0(Ω) such that fh → f and Ghfh → Af in C0(Ω).

To this end, given ǫ > 0 we show that there exists δ > 0 such that for h < δ,

sup
x∈Ω

|fh(x)− f(x)| < ǫ (4.32)

and

sup
x∈Ω

∣∣Ghfh(x)− Af(x)
∣∣ < ǫ. (4.33)

We show (4.32) when dealing each of the operators (A,BC) separately.

To show (4.33), we break the interval Ω into two parts, namely,

Ω1(h) := Ω ∩ [0, 1− 2h) and Ω2(h) := Ω ∩ [1− 2h, 1]. (4.34)
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(A+,BC), C0(Ω) (A−,BC), L1[0, 1] (A↔,BC), L1[0, 1]

(Dα,+
c ,DN) (Dα,−

c ,DN) (Dα,↔
c ,ND)

(Dα,+
c ,NN) (Dα,−

c ,NN) (Dα,↔
c ,NN)

(Dα,+
c ,DD) (Dα,−,DD) = (Dα,−

c ,DD) (Dα,↔
c ,DD)

(Dα,+
c ,ND) (Dα,−,ND) = (Dα,−

c ,ND) (Dα,↔
c ,DN)

(Dα,+
c ,DN∗) (Dα,−,DN) (Dα,↔,ND)

(Dα,+
c ,NN∗) (Dα,−,NN) (Dα,↔,NN)

Table 4.5: Corresponding fractional derivative operators on C0(Ω)

and L1[0, 1].

For x ∈ Ω1(h) we show that

sup
x∈Ω1

∣∣Ghfh(x)− Af(x)
∣∣ = O(hκ), κ > 0.

As a consequence, there exists δ1 such that for h < δ1,

sup
x∈Ω1(h)

∣∣Ghfh(x)− Af(x)
∣∣ < ǫ

2
. (4.35)

Similarly, for x ∈ Ω2 we show that

sup
x∈Ω2(h)

∣∣Ghfh(x)− Af(x)
∣∣ = O(hκ), κ > 0.

This implies that there exists δ2 such that for h < δ2,

sup
x∈Ω2(h)

∣∣Ghfh(x)− Af(x)
∣∣ < ǫ

2
. (4.36)

Then, taking δ = min {δ1, δ2}, for h < δ we have Ω = Ω1(h)∪Ω2(h) as well as uniform

convergence on the interval Ω, (4.32) and (4.33).

Remark 4.5.8. With this line of argument in mind, in what follows, for h < δ we loosely

use the phrases fh → f uniformly in Ω and Ghfh → Af uniformly on Ω1 or Ω2 to refer

to (4.35) or (4.36), respectively.

Take note that in the proof we repeatedly make use of the following:

1. f ∈ C(A,BC) as in Theorem 3.4.4,

f = IαP + apα + bpα−1 + dp0,

where the polynomial P =
∑N

m=0 kmpm ∈ C0(Ω), see Remark 3.4.3. For conve-

nience in calculations below, we rewrite f ∈ C(A,BC) as follows:

f = P + (P (0) + a)pα + bpα−1 + dp0, (4.37)
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where P = Iα(P − P (0)p0). Then, using (3.17),

Af = AP + (P (0) + a)p0 = P + ap0. (4.38)

2. The interpolation matrix Gh
n+1(λ) given by (4.9),

Gh
n+1(λ) =

1

hα




bl1 Dl(λ)Gα0 0 · · · · · · · · · 0

N l(λ)bl2 λ′bl1 + λGα1 Gα0 0 · · · · · · 0

N l(λ)bl3 λ′bl2 + λGα2 Gα1 Gα0 0 · · · 0
...

...
...

...
. . . . . .

...

N l(λ)bli λ′bli−1 + λGαi−1 Gαi−2 · · · · · · · · · 0
...

...
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...

N l(λ)bn λ′bln−1 + λbrn−1 λ′Gαn−2 + λbrn−2 · · · · · · λ′Gα1 + λbr1 N r(λ)Gα0

0 Dr(λ)bn Dr(λ)brn−1 · · · · · · Dr(λ)br2 br1




.

3. Table 4.6 for the boundary weights bli, b
r
i , bn, the constants a, b, c, d and the

interpolating functions Dl, Dr, N l, N r.

4. The Grünwald formula given by (4.29),

Aαh,1f(x) =
1

hα

ι(x)∑

k=0

Gαk f((λ(x) + ι(x)− 1− (k − 1))h)

where x = (λ(x) + ι(x)− 1)h as given by Definition (3.2.2) along with Corollary

4.5.5 and Remark 4.5.6.

5. The approximate power functions given by Definition 4.5.1 and as mentioned

in Remark 4.5.2, we canonically extend the domains of P , p0 and ϑβh for β ∈

{α, α− 1} to the interval [0, 1 + h] when required.

Remark 4.5.9. For easy reference, let us recall the outline of the proof of Proposition

4.3.2 for the C0(Ω) case as given in Section 4.3.

Outline of the structure of the proof:

• Interval Ω1:

1. We consider the common properties of the Grünwald approximations of

operators with left Dirichlet boundary condition, (A,D•) on Ω1.
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X = C0(Ω), D(A,BC) = {Iαg + apα + bpα−1 + dp0 : g ∈ C0(Ω)}, (0, 1) ⊂ Ω

Boundary condition Boundary weights for Gh
n×n D(A,BC)

f(0) = 0

Ω ⊂ (0, 1]

bli = Gαi

bn = brn

Dl(λ) = αλ
αλ+λ′

, N l = 1

a = 0, d = 0

Dα−1
c f(0) = 0

[0, 1) ⊂ Ω

bli = −Gα−1
i−1

bn = −
∑n−1

i=0 b
r
i

N l(λ) = λ, Dl = 1

b = 0

f(1) = 0

Ω ⊂ [0, 1)

bri = Gαi

Dr(λ) = αλ′

αλ′+λ
, N r = 1

a = 0, b
Γ(α)

+ d = −Iαg(1)

Dα−1
c f(1) = 0

(0, 1] ⊂ Ω

bri = −Gα−1
i−1

N r(λ) = λ′, Dr = 1
a+ b = −Ig(1)

Df(1) = 0

(0, 1] ⊂ Ω

br0 = 0, br1 = Gα0 + Gα1 ,

bri = Gαi

N r(λ) = λ′, Dr = 1

a+(α−1)b
Γ(α)

= −Iα−1g(1)

Table 4.6: Boundary conditions for C0(Ω).

2. We consider the common properties of the Grünwald approximations of the

operators with left Neumann boundary condition, (A,N•) on Ω1.

• Interval Ω2:

1. We first consider the common properties of the Grünwald approximations of

the operators with right Dirichlet boundary condition, (A, •D) on Ω2. Fol-

lowing that, we collate and complete the proof of Statement 1 of Proposition

4.3.2 for the operators (A,DD) and (A,ND) separately.

2. We first consider the common properties of the Grünwald approximations

of the operators with right Neumann* boundary condition, (A, •N∗) on Ω2.

Following that, we collate and complete the proof of Statement 1 of Propo-

sition 4.3.2 for the operators (A,DN∗) and (A,NN∗) separately.

3. We first consider the common properties of the Grünwald approximations of

the operators with right Neumann boundary condition, (A, •N) on Ω2. Fol-

lowing that, we collate and complete the proof of Statement 1 of Proposition

4.3.2 for the operators (A,DN) and (A,NN) separately.
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Interval Ω1:

Let φ ∈ C0(Ω) be an arbitrary element, then note using Definition 3.2.4 that

Ghφ(x) =
(
En+1

(
Gh
n+1Pn+1φ

))
(x) =

[
Gh
n+1(λ(x))(Pn+1φ)(λ(x))

]
ι(x)

.

For x ∈ Ω ∩ [0, h); that is, for x = λh with ι(x) = 1 this reduces to

Ghφ(x) =
1

hα

(
bl1φ(λh) +Dl(λ)Gα0 φ((λ+ 1)h)

)
, (4.39)

while for x ∈ [h, 1− 2h), that is, for x = (λ+ ι(x)− 1)h with ι(x) ∈ {2, 3, · · · , n− 1},

we have

Ghφ(x) =
1

hα

(
N l(λ)blι(x)φ(λh) +

(
λ′blι(x)−1 + λGαι(x)−1

)
φ((λ+ 1)h)

+

ι(x)−2∑

k=0

Gαk φ((λ+ ι(x)− 1− (k − 1))h)


 . (4.40)

As mentioned in Remark 4.5.9, we first consider the common properties of the

operators with a left Dirichlet boundary condition, (A,D•) on the interval Ω1. Fol-

lowing that we consider the common properties of the operators with a left Neumann

boundary condition, (A,N•) on the interval Ω1.

Common properties for operators (A,D•):

Note that a, d = 0 and P ∈ C0(Ω) implies that P (0) = 0, see Remark 3.4.3. Thus,

f ∈ C(A,D•) given by (4.37) reduces to

f = P + bpα−1, (4.41)

where P = IαP . We take

fh = P + bhϑ
α−1
h + eh. (4.42)

Note that for x ∈ Ω1, irrespective of the right boundary condition (see (4.106) and

(4.109) below), we always have that eh(x) = 0 and Gheh(x) = 0. Also, since P(0) = 0

and ϑα−1
h (0) = 0, we have

fh(0) = 0. (4.43)

Next, assuming bh → b, which we show when dealing with the operators (A,DD),

(A,DN∗) and (A,DN) (see (4.61), (4.86) and (4.113) below), we show that

Ghfh = Gh
(
P + bhϑ

α−1
h

)
→ AP = Af (4.44)
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uniformly on Ω1 for the operators (A,D•). Note that N l = 1, Dl(λ) = αλ
αλ+λ′

and

bli = Gαi . Hence, for an arbitrary φ ∈ X, using (4.39) for x ∈ Ω ∩ [0, h),

Ghφ(x) =
1

hα

(
Gα1 φ(λh) +

αλ

αλ+ λ′
Gα0 φ((λ+ 1)h)

)

=
1

hα

(
αλ

αλ+ λ′
φ((λ+ 1)h)− αφ(λh)

)
. (4.45)

Using (4.40) for x ∈ [h, 1− 2h),

Ghφ(x) =
1

hα

ι(x)∑

k=0

Gαk φ((λ+ ι(x)− 1− (k − 1))h) = Aαh,1φ(x). (4.46)

Let us deal with the first term, P of fh. Observe that P(x) = O(xα+1) as x ↓ 0,

since P (0) = 0. Moreover, since P (0) = 0, AP(x) = P (x) = O(x) as x ↓ 0. Hence,

setting φ = P in (4.45) we have that

sup
x∈Ω∩[0,h)

∣∣GhP(x)− AP(x)
∣∣ = O(h).

Next, setting φ = P in (4.46), in view of Corollary 4.5.5, note that

sup
x∈[h,1−2h)

∣∣GhP(x)− AP(x)
∣∣ = O(h).

Hence,

sup
x∈Ω1

∣∣GhP(x)− AP(x)
∣∣ = O(h).

To complete the proof of (4.44) we show that Ghϑα−1
h → Apα−1 = 0. Firstly, for

x ∈ Ω ∩ [0, h), setting φ = ϑα−1
h in (4.45) and using Gα−1 = 0,

Ghϑα−1
h (x) =

1

hα

( αλ

αλ+ λ′
ϑα−1
h ((λ+ 1)h)− αϑα−1

h (λh)
)

=
1

h

(
αλ

αλ+ λ′

(
λ′G−α

ι((λ+1)h)−2 + λG−α
ι((λ+1)h)−1

)

− α
(
λ′G−α

ι(λh)−2 + λG−α
ι(λh)−1

))

=
1

h

(
αλ

αλ+ λ′
(
λ′G−α

0 + λG−α
1

)
− α

(
λ′G−α

−1 + λG−α
0

))

=
1

h

(
αλ

αλ+ λ′
(λ′ + λα)− αλ

)
= 0.

Next, for x ∈ [h, 1− 2h) setting φ = ϑα−1
h in (4.46) and using Proposition 4.5.7,

Ghϑα−1
h (x) = Aαh,1ϑ

α−1
h (x) = 0.
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Hence,

Ghfh = Gh
(
P + bhϑ

α−1
h

)
→ AP = Af

uniformly in Ω1. This completes the proof of (4.44) for the operators (A,D•).

Common properties for operators (A,N•):

First, note that b = 0 and so f ∈ C(A,N•) given by (4.37) reduces to

f = P + (P (0) + a)pα + dp0, (4.47)

where P = Iα(P − P (0)p0), P ∈ C0(Ω). We take

fh = P + (P (0)kh + ah)ϑ
α
h + dp0 + eh. (4.48)

Note that for x ∈ Ω1, irrespective of the right boundary condition (see (4.106) and

(4.109) below), we always have that eh(x) = 0 and Gheh(x) = 0. Assuming (P (0)kh +

ah) → P (0) + a, which we show when dealing with the operators (A,DD), (A,DN∗)

and (A,DN) (see (4.70), (4.94) and (4.118) below), we show that

Ghfh = Gh (P + (P (0)kh + ah)ϑ
α
h + dp0) → AP + (P (0) + a)p0 = Af (4.49)

uniformly on Ω1 for the operators (A,N•).

Further, note that Dl = 1, N l(λ) = λ and bli = −Gα−1
i−1 . Using (4.39) for x ∈ [0, h),

Ghφ(x) =
1

hα
(
−Gα−1

0 φ(λh) + Gα0 φ((λ+ 1)h)
)

=
1

hα
(φ((λ+ 1)h)− φ(λh)) . (4.50)

Using (4.40) for x ∈ [h, 1− 2h),

Ghφ(x) =
1

hα

(
− λGα−1

ι(x)−1φ(λh) +
(
−λ′Gα−1

ι(x)−2 + λGαι(x)−1

)
φ((λ+ 1)h)

+

ι(x)−2∑

k=0

Gαk φ((λ+ ι(x)− 1− (k − 1))h)

)
(4.51)

Let us deal with the first term P of fh. Note that P(x) = Iα(P − P (0)p0)(x) =

O(xα+1) and AP(x) = P (x) − P (0)p0(x) = O(x) as x ↓ 0. Thus, using (4.50) with

φ = P for x ∈ [0, h) we have

∣∣GhP(x)− AP(x)
∣∣ = O(h).

Next, setting φ = P in (4.51), we have

GhP(x) =
1

hα

((
− λGα−1

ι(x)−1 − Gαι(x)

)
P(λh)
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− λ′
(
Gα−1
ι(x)−2 + Gαι(x)−1

)
P((λ+ 1)h)

+

ι(x)∑

k=0

GαkP((λ+ ι(x)− 1− (k − 1))h)

)

=
1

hα

((
− Gαι(x) − λGα−1

ι(x)−1

)
P(λh)

− λ′
(
Gα−1
ι(x)−2 + Gαι(x)−1

)
P((λ+ 1)h)

)
+ Aαh,1P(x). (4.52)

Firstly, supx∈[h,1−2h)

∣∣Aαh,1P − AP
∣∣ = O(h) in view of Corollary 4.5.5. Secondly,

since P(x) = O(xα+1) as x ↓ 0, the first two terms in (4.52),

1

hα

∣∣∣∣∣
(
− Gαι(x) − λGα−1

ι(x)−1

)
P(λh)− λ′

(
Gα−1
ι(x)−2 + Gαι(x)−1

)
P((λ+ 1)h)

)∣∣∣∣∣ = O(h)

Hence,

sup
x∈Ω1

∣∣GhP(x)− AP(x)
∣∣ = O(h).

To complete the proof of (4.49), we show that for x ∈ Ω1,

Ghp0(x) = 0 and Ghϑαh(x) = 1.

First, let φ = p0 in (4.50), then Ghp0(x) = 0 for x ∈ [0, h). Next in view of (A.7) we

have
∑ι(x)−2

k=0 Gαk = Gα−1
ι(x)−2 and Gα−1

ι(x)−1 = Gα−1
ι(x)−2+Gαι(x)−1. Thus, setting φ = p0 in (4.51)

for x ∈ [h, 1− 2h),

Ghp0(x) =
1

hα

(
− λGα−1

ι(x)−1 +
(
− λ′Gα−1

ι(x)−2 + λGαι(x)−1

)
+

ι(x)−2∑

k=0

Gαk

)

=
1

hα

(
− λGα−1

ι(x)−1 − λ′Gα−1
ι(x)−2 + λGαι(x)−1 + Gα−1

ι(x)−2

)

=
1

hα

(
− λGα−1

ι(x)−1 + λGα−1
ι(x)−2 + λGαι(x)−1

)
= 0.

For x ∈ [0, h), setting φ = ϑαh in (4.50),

Ghϑαh(x) = λ′G−α−1
ι((λ+1)h))−3 + λG−α−1

ι((λ+1)h))−2 − (λ− 1),

= (1− λ)G−α−1
−1 + λG−α−1

0 − (λ− 1) = 1,

since G−α−1
−1 = 0. Lastly, for x ∈ [h, 1 − 2h), using (4.51), G−α−1

−1 = 0 and Gα−1
ι(x)−1 =

Gα−1
ι(x)−2 + Gαι(x)−1, we have

Ghϑαh(x) =
1

hα

(
− λGα−1

ι(x)−1ϑ
α
h(λh) +

(
−λ′Gα−1

ι(x)−2 + λGαι(x)−1

)
ϑαh((λ+ 1)h)
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+

ι(x)−2∑

k=0

Gαk ϑ
α
h((λ+ ι(x)− 1− (k − 1))h)

)

= −λ(λ− 1)Gα−1
ι(x)−1 + λ(λ− 1)

(
Gα−1
ι(x)−2 + Gαι(x)−1

)

+ (1− λ)

ι(x)−2∑

k=0

Gαk G
−α−1
ι(x)−(k−1)−3 + λ

ι(x)−1∑

k=0

Gαk G
−α−1
ι(x)−(k−1)−2

= (1− λ)

ι(x)−2∑

k=0

Gαk G
−α−1
ι(x)−2−k + λ

ι(x)−1∑

k=0

G−α−1
ι(x)−1−k

= (1− λ)G−1
ι(x)−2 + λG−1

ι(x)−1 = 1,

since G−1
k = 1 in view of (A.2). Hence,

Ghfh = Gh (P + (P (0)kh + ah)ϑ
α
h + dp0) → AP + (P (0) + a)p0 = Af

uniformly in Ω1. This completes the proof of (4.49) for the operators (A,N•).

Interval Ω2:

Let φ ∈ C0(Ω) be any arbitrary element, then using Definition 3.2.4 note that

Ghφ(x) =
(
En+1

(
Gh
n+1Pn+1φ

))
(x) =

[
Gh
n+1(λ(x))(Pn+1φ)(λ(x))

]
ι(x)

.

For x ∈ [1− 2h, 1− h); that is, x = (λ+ n− 1)h with ι(x) = n we have

Ghφ(x) =
1

hα

(
N l(λ)bnφ(λh) +

(
λ′bln−1 + λbrn−1

)
φ((λ+ 1)h)

+
n−2∑

k=1

(λ′Gαk + λbrk)φ((λ+ n− 1− (k − 1))h)

+N r(λ)Gα0 φ((λ+ n)h)

)
(4.53)

and for x ∈ Ω ∩ [1− h, 1]; that is, x = (λ+ n)h with ι(x) = n+ 1 we have

Ghφ(x) =
1

hα

(
Dr(λ)bnφ((λ+ 1)h)

+
n−1∑

k=2

Dr(λ)brkφ((λ+ n− (k − 1))h) + br1φ((λ+ n)h)

)
. (4.54)

As mentioned in Remark 4.5.9, we now consider the common properties of the

operators with a right Dirichlet boundary condition, (A, •D). Following that we deal

with the operators (A,DD) and (A,ND) separately.
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Common properties for operators (A, •D):

Note that a = 0 and so f ∈ C(A, •D) given by (4.37), reduces to

f = P + P (0)pα + bpα−1 + dp0, (4.55)

where P = Iα(P−P (0)p0). Moreover, the relation b
Γ(α)

+d = −Iαg(1) for f ∈ C(A, •D)

reads
b

Γ(α)
+ d = −P(1)−

P (0)

Γ(α + 1)
, (4.56)

since Iαp0(1) = pα(1) =
1

Γ(α+1)
.

Note thatN r = 1 and bri = Gαi . Thus, for arbitrary φ ∈ C0(Ω) and x ∈ [1−2h, 1−h),

(4.53) becomes

Ghφ(x) =
1

hα

(
N l(λ)bnφ(λh) +

(
λ′bln−1 + λGαn−1

)
φ((λ+ 1)h)

+
n−2∑

k=1

Gαk φ((λ+ n− k)h) + Gα0 φ((λ+ n)h)

)

=
1

hα

(
N l(λ)bnφ(λh) +

(
λ′bln−1 + λGαn−1

)
φ((λ+ 1)h)

+
n−2∑

k=0

Gαk φ((λ+ n− 1− (k − 1))h)

)
. (4.57)

For x ∈ Ω ∩ [1− h, 1], (4.54) becomes

Ghφ(x) =
1

hα

(
Dr(λ)bnφ((λ+ 1)h) +

n−1∑

k=2

Dr(λ)Gαk φ((λ+ n− (k − 1))h)

+ Gα1 φ((λ+ n)h)

)
. (4.58)

Proof of Statement 1 of Proposition 4.3.2 for the operator (A,DD):

In this case, we further have d = 0 and P (0) = 0. Thus, f ∈ C(A,DD) given by

(4.55) reduces to

f = P + bpα−1, (4.59)

(compare f ∈ C(A,D•) given by (4.41)). We take

fh = P + bhϑ
α−1
h . (4.60)

where

bh =
b

ϑα−1
h (1)Γ(α)

. (4.61)
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First, note that for a right Dirichlet boundary condition we do not require the

function eh. Further, note that this choice is the same as the sequences fh constructed

for f ∈ C(A,D•) given by (4.42) with eh = 0. In view of (4.28) and (A.9), since

(n+ 1)h = 1,

bh =
b

ϑα−1
h (1)Γ(α)

=
b

hα−1G−α
n Γ(α)

=
b

hα−1nα−1 (1 +O(n−1))
= b+O(h). (4.62)

Note in view of (4.56) that,

fh(1) = P(1) + bhϑ
α−1
h (1) = P(1) +

b

Γ(α)
= 0. (4.63)

Proof of fh → f for (A,DD):

Observe that fh ∈ C0(Ω), since fh(0) = 0 = fh(1) in view of (4.43) and (4.63).

Next, note that as h → 0, bh → b in view of (4.62), ϑα−1
h → pα−1 in the sup-norm in

view of Lemma 4.5.3. Thus,

fh → f (4.64)

uniformly in Ω.

Proof of Ghfh → Af for (A,DD):

Observe that, in view of (4.44), it only remains to show that

Ghfh = Gh(P + bhϑ
α−1
h ) → AP = Af (4.65)

uniformly on Ω2.

Take note that N l = 1, Dr(λ) = αλ′

αλ′+λ
, bli = Gαi and bn = brn = Gαn . Therefore, for

x ∈ [1− 2h, 1− h), (4.57) becomes

Ghφ(x) =
1

hα

n∑

k=0

Gαk φ((λ+ (n− 1)− (k − 1))h) = Aαh,1φ(x). (4.66)

Notice the similarity with (A,D•) case above of (4.66) with (4.46) where ι(x) = n.

This implies that the argument of Ghfh → Af uniformly on [h, 1 − 2h) made above

for (A,D•) holds true for (A,DD) for the interval [1 − 2h, 1 − h). Therefore, we only

need to deal with the interval Ω ∩ [1− h, 1].

Setting φ = fh, (4.58) becomes

Ghfh(x) =
1

hα

(
Dr(λ)Gαnfh((λ+ 1)h) +

n−1∑

k=2

Dr(λ)Gαk fh((λ+ n− (k − 1))h)

+ Gα1 fh((λ+ n)h)

)
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=
1

hα

(
Dr(λ)

n+1∑

k=0

Gαk fh((λ+ n− (k − 1))h)−Dr(λ)Gαn+1fh(λh)

+
(
1−Dr(λ)

)
Gα1 fh((λ+ n)h)−Dr(λ)Gα0 fh((λ+ (n+ 1))h)

)
,

= −
1

hα
Dr(λ)Gαn+1fh(λh) +R(λ, h) +Dr(λ)Aαh,1fh(x), (4.67)

where

R(λ, h) =
1

hα

((
1−Dr(λ)

)
Gα1 fh((λ+ n)h)−Dr(λ)Gα0 fh((λ+ (n+ 1))h)

)
.

We consider the three terms of (4.67) one by one and show the following:

• Firstly, the first term of (4.67),

∣∣∣∣
1

hα
Dr(λ)Gαn+1fh(λh)

∣∣∣∣ = O(hα).

• Secondly, the second term of (4.67),

|R(λ, h)| = O(h2−α).

• Thirdly, ∣∣Dr(λ)Aαh,1fh(x)− Af(x)
∣∣ = O(h).

Note that the first term of (4.67),

∣∣∣∣
1

hα
Dr(λ)Gαn+1fh(λh)

∣∣∣∣ = O(hα)

since
∣∣Gαn+1

∣∣ = O(hα+1), |P(x)| = O(xα+1) as x ↓ 0 and
∣∣ϑα−1
h (λh)

∣∣ = O(hα−1). Next

we show that the second term of (4.67),

|R(λ, h)| = O(h2−α).

If λ = 1, then R(1, h) = 0, since fh((n + 1)h) = fh(1) = 0 in view of (4.63). Hence,

assuming λ ∈ [0, 1), we have

|R(λ, h)| =

∣∣∣∣
1

hα

((
1−Dr(λ)

)
Gα1 fh((λ+ n)h)−Dr(λ)Gα0 fh((λ+ n+ 1)h)

)∣∣∣∣

=

∣∣∣∣
1

hα

(−αλfh((λ+ n)h)− αλ′fh((λ+ n+ 1)h)

αλ′ + λ

)∣∣∣∣

=

∣∣∣∣
1

hα

(αλfh(x) + αλ′fh(x+ h)

αλ′ + λ

)∣∣∣∣ , (4.68)
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where x = (λ + n)h. Using the Taylor series for P given by (4.25) and (4.56) with

d, P (0) = 0, we have

fh(x) = P(x) + bhϑ
α−1
h (x)

= P(1)− (1− λ)hP ′(1) +O(h2) + bhϑ
α−1
h (x)

= −
b

Γ(α)
+ bhϑ

α−1
h (x)− (1− λ)hP ′(1) +O(h2)

= R1(λ, h)− λ′hP ′(1) +O(h2).

Using (4.26), (4.70) and (4.61),

R1(λ, h) = bhϑ
α−1
h (x)−

b

Γ(α)
=

b

Γ(α)

(
ϑα−1
h (x)

ϑα−1
h (1)

− 1

)
= −

bλ′(α− 1)

Γ(α)(n− 1 + α)
.

Similarly,

fh(x+ h) = P(x+ h) + bhϑ
α−1
h (x+ h)

= P(1) + λhP ′(1) +O(h2) + bhϑ
α−1
h (x+ h)

= −
b

Γ(α)
+ bhϑ

α−1
h (x+ h) + λhP ′(1) +O(h2)

= R2(λ, h) + λhP ′(1) +O(h2),

where

R2(λ, h) = bhϑ
α−1
h (x+ h)−

b

Γ(α)
=

b

Γ(α)

(
ϑα−1
h (x+ h)

ϑα−1
h (1)

− 1

)
=

bλ(α− 1)

Γ(α)(n+ 1)
.

Then, observe that

αλR1(λ, h) + αλ′R2(λ, h) =
α(α− 1)bλλ′

Γ(α)

( 1

n+ 1
−

1

n− 1 + α

)
= O(h2).

Thus,

|R(λ, h)| =
1

hα

∣∣∣∣
−αλλ′hP ′(1) + αλλ′hP ′(1) +O(h2)

αλ′ + λ

∣∣∣∣ = O(h2−α).

Lastly, consider the third term of (4.67), Dr(λ)Aαh,1fh(x). Using Proposition 4.5.7

note that Aαh,1ϑ
α−1
h (x) = 0, for x ∈ [1 − h, 1) and so Aαh,1fh = Aαh,1P . Next, for

f ∈ C(A,DD), Af = AP = P in view of (4.38) with a = 0. Moreover, P ∈ C0(Ω) and

so Af(1) = P (1) = 0 and Dr(1) = 0. Furthermore, Af and Dr are continuous as x ↑ 1

and λ ↑ 1, respectively. Therefore, for x ∈ [1− h, 1],

|Dr(λ)AP(x)− AP(x)| = O(h).
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In view of Corollary 4.5.5,

∣∣Aαh,1P(x)− AP(x)
∣∣ = O(h).

Therefore, ∣∣Dr(λ)Aαh,1P(x)− AP(x)
∣∣ = O(h)

for x ∈ [1− h, 1) since |Dr(λ)| ≤ 1. Thus,

∣∣Dr(λ)Aαh,1fh(x)− Af(x)
∣∣ = O(h).

Hence,

Ghfh = Gh(P + bhϑ
α−1
h ) → AP = Af

uniformly on Ω2; that is, the proof of (4.65) is complete. This also completes the proof

of Statement 1 of Proposition 4.3.2 for the operator (A,DD), in view of (4.44) and

(4.64).

Proof of Statement 1 of Proposition 4.3.2 for the operator (A,ND):

In this case, we further have b = 0. Thus, f ∈ C(A,ND) given by (4.55) reduces to

f = P + P (0)pα + dp0,

(compare f ∈ C(A,N•) given by (4.47)). We take

fh = P + P (0)khϑ
α
h + dp0, (4.69)

where

kh =
1

ϑαh(1)Γ(α + 1)
. (4.70)

First, note that for a right Dirichlet boundary condition we do not require the function

eh. Further, note that this choice is the same as the sequences fh constructed for

f ∈ C(A,N•) given by (4.48) with b = 0 and eh = 0.

In view of (4.28) and (A.9), since (n+ 1)h = 1,

kh =
1

ϑαh(1)Γ(α + 1)
=

1

hαG−α−1
n−1 Γ(α + 1)

=
1

hα(n− 1)α (1 +O((n− 1)−1))
= 1+O(h).

(4.71)

Proof of fh → f for (A,ND):

Observe that as h → 0, kh → 1 in view of (4.71) and ϑαh → pα in the sup-norm in

view of Lemma 4.5.3. Thus,

fh → f (4.72)
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uniformly in Ω.

Proof of Ghfh → Af for (A,ND):

Observe that, in view of (4.44), it only remains to show that

Ghfh = Gh(P + P (0)khϑ
α
h + dp0) → A (P + P (0)pα) = Af. (4.73)

uniformly on Ω2.

Take note that N l(λ) = λ, bli = −Gα−1
i−1 and bn = −

∑n−1
i=0 b

r
i = −

∑n−1
i=0 Gαi = −Gα−1

n−1 .

Therefore, for x ∈ [1− 2h, 1− h), (4.57) becomes

Ghφ(x) = −
1

hα

(
λGα−1

n−1φ(λh) +
(
− λ′Gα−1

n−2 + λGαn−1

)
φ((λ+ 1)h)

+
n−2∑

k=0

Gαk φ((λ+ n− 1− (k − 1))h)

)
(4.74)

Notice the similarity with (A,N•) case above of (4.74) with (4.51) with ι(x) = n. This

implies that the argument of Ghfh → Af uniformly on [h, 1 − 2h) made above for

(A,N•) holds true for (A,ND) for the interval [1− 2h, 1− h). Therefore, we only need

to deal with the interval Ω ∩ [1− h, 1].

Setting φ = fh and using Gα−1
n−1 + Gαn = Gα−1

n , (4.58) becomes

Ghfh(x) =
1

hα

(
−Dr(λ)Gα−1

n−1fh((λ+ 1)h) +Dr(λ)
n−1∑

k=2

Gαk fh((λ+ n− (k − 1))h)

+ Gα1 fh((λ+ n)h)

)
,

=
1

hα

(
−Dr(λ)Gαn+1fh(λh)−Dr(λ)Gα−1

n fh((λ+ 1)h)

+Dr(λ)
n+1∑

k=0

Gαk fh((λ+ n− (k − 1))h)

+
(
1−Dr(λ)

)
Gα1 fh((λ+ n)h)−Dr(λ)Gα0 fh((λ+ (n+ 1))h)

)
,

= R(λ, h) +Dr(λ)
(
Aαh,1fh(x)−

Gαn+1fh(λh) + Gα−1
n fh((λ+ 1)h)

hα

)
, (4.75)

where

R(λ, h) =
1

hα

((
1−Dr(λ)

)
Gα1 fh((λ+ n)h)−Dr(λ)Gα0 fh((λ+ (n+ 1))h)

)
.

We consider the terms of (4.75) one by one and show the following:
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• Firstly, the first term |R(λ, h)| = O(h2−α).

• Secondly,

∣∣∣Dr(λ)
(
Aαh,1fh(x)−

Gαn+1fh(λh) + Gα−1
n fh((λ+ 1)h)

hα

)
− Af(x)

∣∣∣ = O(h).

First, we show that the first term of (4.75), |R(λ, h)| = O(h2−α). That is,

∣∣∣∣
1

hα

((
1−Dr(λ)

)
Gα1 fh((λ+ n)h)−Dr(λ)Gα0 fh((λ+ (n+ 1))h)

)∣∣∣∣ = O(h2−α).

If λ = 1, then Dr(λ) = 0 and fh((n+1)h) = fh(1) = 0 in view of (4.63). Therefore,

R(1, h) = 0. Hence, assuming λ ∈ [0, 1) and using Dr(λ)− 1 = λ
αλ′+λ

, we have

|R(λ, h)| =

∣∣∣∣
1

hα

[(
1−Dr(λ)

)
Gα1 fh((λ+ n)h)−Dr(λ)Gα0 fh((λ+ n+ 1)h)

]∣∣∣∣

=

∣∣∣∣
1

hα

[(
Dr(λ)− 1

)
αfh((λ+ n)h)−Dr(λ)fh((λ+ n+ 1)h)

]∣∣∣∣

=

∣∣∣∣
1

hα

(
−αλfh(x)− αλ′fh(x+ h)

αλ′ + λ

)∣∣∣∣ , (4.76)

where x = (λ + n)h. Using the Taylor series for P given by (4.25), (4.56) with b = 0

and kh =
1

ϑαh(1)Γ(α+1)
, we have

fh(x) = P(x) + P (0)khϑ
α
h(x) + dp0(x)

= P(1)− (1− λ)hP ′(1) +O(h2) + P (0)khϑ
α
h(x) + d

=
P (0)

Γ(α + 1)

(
ϑαh(x)

ϑαh(1)
− 1

)
− (1− λ)hP ′(1) +O(h2)

= R1(λ, h)− λ′hP ′(1) +O(h2),

where

R1(λ, h) =
P (0)

Γ(α + 1)

(
ϑαh(x)

ϑαh(1)
− 1

)
.

Similarly,

fh(x+ h) = P(x+ h) + P (0)khϑ
α
h(x+ h) + dp0(x+ h)

= P(1) + λhP ′(1) +O(h2) + P (0)khϑ
α
h(x+ h) + d

=
P (0)

Γ(α + 1)

(
ϑαh(x+ h)

ϑαh(1)
− 1

)
+ λhP ′(1) +O(h2)

= R2(λ, h) + λhP ′(1) +O(h2),
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where

R2(λ, h) =
P (0)

Γ(α + 1)

(
ϑαh(x+ h)

ϑαh(1)
− 1

)
.

Then using (4.26) observe that

−αλR1(λ, h)− αλ′R2(λ, h) =
P (0)α2λλ′

Γ(α + 1)

(
1

n− 1 + α
−

1

n

)
= O(h2).

Thus, (4.76) yields

|R(λ, h)| =
1

hα

∣∣∣∣
αλλ′hP ′(1)− αλλ′hP ′(1) +O(h2)

αλ′ + λ

∣∣∣∣ = O(h2−α).

Next, we split the second term of (4.75) by setting gh = fh − dp0 = P + P (0)khϑ
α
h ,

Dr(λ)
(
Aαh,1fh(x)−

Gαn+1fh(λh) + Gα−1
n fh((λ+ 1)h)

hα

)

= −Dr(λ)
(Gαn+1gh(λh) + Gα−1

n gh((λ+ 1)h)

hα

)

+ dDr(λ)
(
Aαh,1p0(x)−

Gαn+1p0(λh) + Gα−1
n p0((λ+ 1)h)

hα

)

+Dr(λ)Aαh,1gh(x).

First note that gh(λh) = O(hα) and gh((λ + 1)h) = O(hα) since in view of Definition

4.5.1, ϑαh(x) = O(hα) for x ∈ [0, 2h] and P(x) = O(xα+1) as x ↓ 0. Therefore, since

|Gα−1
n | = O(hα),

∣∣Gαn+1

∣∣ = O(hα+1) and |Dr(λ)| ≤ 1,

∣∣∣∣Dr(λ)
(Gαn+1gh(λh) + Gα−1

n gh((λ+ 1)h)

hα

)∣∣∣∣ = O(hα). (4.77)

Next note that

dDr(λ)
(
Aαh,1p0(x)−

Gαn+1p0(λh) + Gα−1
n p0((λ+ 1)h)

hα

)
= 0, (4.78)

since Aαh,1p0(x) =
1
hα

∑n+1
k=0 G

α
k = 1

hα
Gα−1
n+1 and Gαn+1 + Gα−1

n = Gα−1
n+1 in view of (A.7).

Using Corollary 4.5.5

∣∣Aαh,1P(x)− AP(x)
∣∣ = O(h).

In view of Proposition 4.5.7, note that for x ∈ [1− h, 1],

Aαh,1ϑ
α
h(x) = 1− λ′Gαn+1 = 1 +O(hα+1)

since
∣∣Gαn+1

∣∣ = O(hα+1). Moreover, since kh → 1 in view of (4.70) and Apα(x) =

p0(x) = 1, we have

∣∣P (0)
(
khA

α
h,1ϑ

α
h(x)− Apα(x)

)∣∣ = O(hα+1).
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Thus,

∣∣Aαh,1gh(x)− Af(x)
∣∣

=
∣∣Aαh,1

(
P(x) + P (0)khϑ

α
h(x)

)
− A

(
P(x) + P (0)pα(x)

)∣∣ = O(h). (4.79)

For f ∈ C(A,ND), since P ∈ C0(Ω), note that Af(1) = P (1) = 0. Moreover,

Dr(λ) = αλ′

αλ′+λ
and Dr(1) = 0. Furthermore, Af and Dr are continuous as x ↑ 1 and

λ ↑ 1, respectively. Therefore, for x ∈ [1− h, 1]

|Dr(λ)Af(x)− Af(x)| = O(h).

Thus, for x ∈ [1− h, 1), in view of (4.77), (4.78) and (4.79),

∣∣∣Dr(λ)
(
Aαh,1fh(x)−

Gαn+1fh(λh) + Gα−1
n fh((λ+ 1)h)

hα

)
− Af(x)

∣∣∣ = O(h).

Hence,

Ghfh = Gh(P + P (0)khϑ
α
h + dp0) → A (P + P (0)pα) = Af

uniformly on Ω2; that is, the proof of (4.73) is complete. This also completes the proof

of Statement 1 of Proposition 4.3.2 for the operator (A,ND), in view of (4.49) and

(4.72).

As mentioned in Remark 4.5.9, we now consider the common properties of the

operators with a right Neumann* boundary condition, (A, •N∗). Following that we

deal with the operators (A,DN∗) and (A,NN∗) separately.

Common properties for operators (A, •N∗):

Note that f ∈ C(A, •N∗) is given by (4.37)

f = P + (P (0) + a)pα + bpα−1 + dp0, (4.80)

where P = Iα(P − P (0)p0). The relation a+(α−1)b
Γ(α)

= −Iα−1g(1), for f ∈ C(A, •N∗)

reads
a+ (α− 1)b

Γ(α)
= −Iα−1P (1) = −P ′(1)−

P (0)

Γ(α)
, (4.81)

since P ′ = Iα−1(P − P (0)p0) and I
α−1p0(1) = pα−1(1) =

1
Γ(α)

.

Note that br0 = 0, br1 = Gα0 + Gα1 , b
r
i = Gαi , D

r = 1 and N r(λ) = λ′. First, let

x ∈ [1− 2h, 1− h) and setting φ = fh in (4.53), we have

Ghfh(x) =
1

hα

(
N l(λ)bnfh(λh) +

(
λ′bln−1 + λGαn−1

)
fh((λ+ 1)h)
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+
n−2∑

k=2

(
λ′Gαk + λGαk

)
fh((λ+ n− k)h)

+
(
λ′Gα1 + λ(Gα0 + Gα1 )

)
fh((λ+ n− 1)h)

+ λ′Gα0 fh((λ+ n)h)

)

=
1

hα

(
N l(λ)bnfh(λh) +

(
λ′bln−1 + λGαn−1

)
fh((λ+ 1)h)

+
n−2∑

k=0

Gαk fh((λ+ n− 1− (k − 1))h)

+ λ
(
fh((λ+ n− 1)h)− fh((λ+ n)h)

))
. (4.82)

Next, let x ∈ [1− h, 1] then setting φ = fh in (4.54), we have

Ghfh(x) =
1

hα

(
bnfh((λ+ 1)h) +

n−1∑

k=2

Gαk fh((λ+ n− (k − 1))h)

+ (Gα0 + Gα1 )fh((λ+ n)h)

)

=
1

hα

(
(bn − Gαn )fh((λ+ 1)h) +

n∑

k=0

Gαk fh((λ+ n− (k − 1))h)

+ fh((λ+ n)h)− fh((λ+ n+ 1)h)

)
(4.83)

Proof of Statement 1 of Proposition 4.3.2 for the operator (A,DN∗):

In this case, we further have a, d = 0 and P (0) = 0. Thus, (4.80) reduces to

f = P + bpα−1. (4.84)

We take

fh = P + bhϑ
α−1
h , (4.85)

where

bh =
b(n− 1 + α)h

ϑα−1
h (1)Γ(α)

, (4.86)

First, note that for a right Neumann* boundary condition we do not require the func-

tion eh. Further, note that this choice is the same as the sequences fh constructed for

f ∈ C(A,D•) given by (4.42) with eh = 0. Next note that since (n+1)h = 1 and using
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(4.28) and (A.9),

bh =
b(n− 1 + α)h

ϑα−1
h (1)Γ(α)

=
b(n− 1 + α)h

hα−1nα−1 (1 +O(n−1))
= b+O(h). (4.87)

Proof of fh → f for (A,ND):

Observe that as h→ 0, bh → b in view of (4.87) and ϑα−1
h → pα−1 in the sup-norm

in view of Lemma 4.5.3. Thus,

fh → f (4.88)

uniformly in Ω.

Proof of Ghfh → Af for (A,ND):

Observe that, in view of (4.44), it only remains to show that We show that

Ghfh = Gh(P + bhϑ
α−1
h ) → AP = Af (4.89)

uniformly on Ω2.

Note that N l = 1, bli = Gαi and bn = brn = Gαn . Therefore, for x ∈ [1 − 2h, 1 − h),

(4.82) becomes

Ghfh(x) =
1

hα

(
n∑

k=0

Gαk fh((λ+ n− 1− (k − 1))h)

+ λ
(
fh((λ+ n− 1)h)− fh((λ+ n)h)

))

= Aαh,1fh(x) +
λ

hα

(
fh((λ+ n− 1)h)− fh((λ+ n)h)

)
, (4.90)

Similarly, for x ∈ [1− h, 1] (4.83) becomes

Ghfh(x) = Aαh,1fh(x)−
1

hα
Gαn+1fh(λh) +

1

hα

(
fh((λ+ n)h)− fh((λ+ n+ 1)h)

)
. (4.91)

Let us deal with the terms of (4.90) and (4.91) one by one. First, let us consider

their first terms. Then, in view of Corollary 4.5.5, for x ∈ [1− 2h, 1] we have that

∣∣Aαh,1P(x)− AP(x)
∣∣ = O(h).

Moreover, in view of Proposition 4.5.7, Aαh,1ϑ
α−1
h = 0 for x ∈ [1− 2h, 1]. Thus,

∣∣Aαh,1fh(x)− Af(x)
∣∣ = O(h).

To complete the proof we show the following:
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• The second term of (4.91),

∣∣∣∣−
1

hα
Gαn+1fh(λh)

∣∣∣∣ = O(hα).

• For x ∈ [1− 2h, 1]; that is, for x = (λ+ n− 1)h and (λ+ n)h

∣∣∣∣
1

hα

(
fh(x)− fh(x+ h)

)∣∣∣∣ = O(h2−α).

First, note that Gαn+1 = O(hα+1) and fh((λh) = O(hα−1), since ϑα−1
h (λh) = O(hα−1) in

view of Definition 4.5.1 and P(x) = O(xα+1) as x ↓ 0. Thus, the first term of (4.91)

∣∣∣∣−
1

hα
Gαn+1fh(λh)

∣∣∣∣ = O(hα).

For x ∈ [1− 2h, 1], using (4.27), we have

bh
(
ϑα−1
h (x)− ϑα−1

h (x+ h)
)
=

−(α− 1)bh

Γ(α)
+O(h2)

Moreover, using (4.25) and (4.81) with a, P (0) = 0,

P(x)− P(x+ h) = −hP ′(1) +O(h2) =
(α− 1)bh

Γ(α)
+O(h2).

Thus, ∣∣∣∣
1

hα
(fh(x)− fh(x+ h))

∣∣∣∣ = O(h2−α).

Hence,

Ghfh = Gh(P + P (0)khϑ
α
h + dp0) → A (P + P (0)pα) = Af

uniformly on Ω2; that is, the proof of (4.89) is complete. This also completes the proof

of Statement 1 of Proposition 4.3.2 for the operator (A,DN∗), in view of (4.44) and

(4.88).

Proof of Statement 1 of Proposition 4.3.2 for the operator (A,NN∗):

In this case, we further have that b = 0. Thus, (4.80) reduces to

f = P + (P (0) + a)pα + dp0. (4.92)

We take

fh = P + (P (0)kh + ah)ϑ
α
h + dp0, (4.93)
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where

kh =
(n− 1 + α)h

ϑαh(1)Γ(α + 1)
, and ah =

a(n− 1 + α)h

ϑαh(1)Γ(α + 1)
(4.94)

First, note that for a right Neumann* boundary condition we do not require the func-

tion eh. Further, note that this choice is the same as the sequences fh constructed for

f ∈ C(A,N•) given by (4.48) with eh = 0. Next note that as h→ 0,

(P (0)kh + ah) → (P (0) + a), (4.95)

since (n+ 1)h = 1 and using (4.28) and (A.9), we have

(n− 1 + α)h

ϑαh(1)Γ(α + 1)
=

(n− 1 + α)h

hα(n− 1)α (1 +O((n− 1)−1))
= 1 +O(h).

Proof of fh → f for (A,ND):

As h → 0, ϑαh → pα in the sup-norm in view of Lemma 4.5.3. Thus, in view of

(4.95),

fh → f (4.96)

uniformly in Ω.

Proof of Ghfh → Af for (A,ND):

Observe that, in view of (4.49), it only remains to show that

Ghfh = Gh (P + (P (0)kh + ah)ϑ
α
h + dp0) → AP + (P (0) + a)p0 = Af (4.97)

uniformly on Ω2.

Note that N l(λ) = λ, bli = −Gα−1
i−1 and since br0 = 0, in view of (A.7),

bn = −
n−1∑

i=0

bri = −(Gα0 + Gα1 )−
n−1∑

i=2

Gαi = −
n−1∑

i=0

Gαi = −Gα−1
n−1 .

Thus, using Gα−1
n−2 + Gαn−1 = Gα−1

n−1 , (4.82) becomes

Ghfh(x) =
1

hα

(
− λGα−1

n−1fh(λh) +
(
− λ′Gα−1

n−2 + λGαn−1

)
fh((λ+ 1)h)

+
n−2∑

k=0

Gαk fh((λ+ n− 1− (k − 1))h)

+ λ
(
fh((λ+ n− 1)h)− fh((λ+ n)h)

))

=
1

hα

(
−
(
λGα−1

n−1 + Gαn

)
fh(λh)− λ′

(
Gα−1
n−2 + Gαn−1

)
fh((λ+ 1)h)
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+
n∑

k=0

Gαk fh((λ+ n− 1− (k − 1))h)

+ λ
(
fh((λ+ n− 1)h)− fh((λ+ n)h)

))

= Aαh,1fh(x)−
1

hα

((
λGα−1

n−1 + Gαn

)
fh(λh) + λ′Gα−1

n−1fh((λ+ 1)h)

)

+ λ

(
fh((λ+ n− 1)h)− fh((λ+ n)h)

hα

)
. (4.98)

Next, note that bn − Gαn = −Gα−1
n in view of (A.7). Thus, (4.83) becomes

Ghfh(x) =
1

hα

(
− Gα−1

n fh((λ+ 1)h) +
n∑

k=0

Gαk fh((λ+ n− (k − 1))h)

+
(
fh((λ+ n)h)− fh((λ+ n+ 1)h)

))

=
1

hα

(
−
(
Gαn+1fh(λh) + Gα−1

n fh((λ+ 1)h)
)

+
n+1∑

k=0

Gαk fh((λ+ n− (k − 1))h)

+
(
fh((λ+ n)h)− fh((λ+ n+ 1)h)

))

= Aαh,1fh(x)−
1

hα

(
Gαn+1fh(λh) + Gα−1

n fh((λ+ 1)h)
)

+
fh((λ+ n)h)− fh((λ+ n+ 1)h)

hα
. (4.99)

We deal with the terms of (4.98) and (4.99) one be one and show the following:

• For x ∈ [1− 2h, 1− h),
∣∣∣∣∣A

α
h,1fh(x)−

1

hα

(
(λGα−1

n−1+Gαn )fh(λh)+λ
′Gα−1
n−1fh((λ+1)h)

)
−Af

∣∣∣∣∣ = O(h). (4.100)

• For x ∈ [1− h, 1],
∣∣∣∣∣A

α
h,1fh(x)−

1

hα

(
Gαn+1fh(λh) + Gα−1

n fh((λ+ 1)h)
)
− Af

∣∣∣∣∣ = O(h). (4.101)

• For x ∈ [1− 2h, 1]; that is, x = (λ+ n− 1)h and (λ+ n)h
∣∣∣∣
fh(x)− fh(x+ h)

hα

∣∣∣∣ = O(h2−α). (4.102)
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Let gh = fh − dp0 = P + (P (0)kh + ah)ϑ
α
h . For x ∈ [1− 2h, 1], using Corollary 4.5.5

∣∣Aαh,1P(x)− AP(x)
∣∣ = O(h).

In view of Proposition 4.5.7, Aαh,1ϑ
α
h(x) = 1−λ′Gαι(x), where ι(x) = n or n+1. Moreover,

since (P (0)kh + ah) → P (0) + a in view of (4.95), p0(x) = 1 and
∣∣∣Gαι(x)

∣∣∣ = O(hα+1), we

have ∣∣(P (0)kh + ah)A
α
h,1ϑ

α
h(x)− (P (0) + a)p0(x)

∣∣ = O(hα+1).

Thus,

∣∣Aαh,1gh(x)− Af(x)
∣∣

=

∣∣∣∣∣A
α
h,1

(
P(x) + (P (0)kh + ah)ϑ

α
h(x)

)
−
(
AP(x) + (P (0) + a)p0(x)

)
∣∣∣∣∣ = O(h).

(4.103)

Proof of (4.100): Observe that,

d

∣∣∣∣∣A
α
h,1p0(x)−

1

hα

((
λGα−1

n−1 + Gαn

)
p0(λh) + (1− λ)Gα−1

n−1p0((λ+ 1)h)

)∣∣∣∣∣

=
d

hα

∣∣∣∣∣
n∑

k=0

Gαk −

(
λGα−1

n−1 + Gαn + (1− λ)Gα−1
n−1

)∣∣∣∣∣

=
d

hα
∣∣Gα−1

n − (Gαn + Gα−1
n−1 )

∣∣ = 0.

Next, since gh(λh) = O(hα), gh((λ+1)h) = O(hα), |Gαn | = O(hα+1) and
∣∣Gα−1

n−1

∣∣ = O(hα)

we have that
∣∣∣∣∣
1

hα

((
λGα−1

n−1 + Gαn

)
gh(λh) + (1− λ)Gα−1

n−1gh((λ+ 1)h)

)∣∣∣∣∣ = O(hα).

Hence, in view of (4.103),
∣∣∣∣∣A

α
h,1fh(x)−

1

hα

((
λGα−1

n−1 + Gαn

)
fh(λh) + (1− λ)Gα−1

n−1fh((λ+ 1)h)

)
− Af(x)

∣∣∣∣∣

=

∣∣∣∣∣A
α
h,1gh(x)− Af(x)

∣∣∣∣∣+O(hα) = O(h).

Proof of (4.101):

Observe that,

d

∣∣∣∣∣A
α
h,1p0(x)−

1

hα

(
Gαn+1p0(λh) + Gα−1

n p0((λ+ 1)h)

)∣∣∣∣∣
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=
d

hα

∣∣∣∣∣
n+1∑

k=0

Gαk −

(
Gαn+1 + Gα−1

n

)∣∣∣∣∣ =
d

hα
∣∣Gα−1

n+1 − Gα−1
n+1

∣∣ = 0.

Next, since gh(λh) = O(hα),
∣∣Gαn+1

∣∣ = O(hα+1) and |Gα−1
n | = O(hα) we have that

∣∣∣∣∣
1

hα

(
Gαn+1gh(λh) + Gα−1

n gh((λ+ 1)h)

)∣∣∣∣∣ = O(hα).

Hence, in view of (4.103)

∣∣∣∣∣A
α
h,1fh(x)−

1

hα

(
Gαn+1fh(λh) + Gα−1

n fh((λ+ 1)h)

)
− Af(x)

∣∣∣∣∣

=

∣∣∣∣∣A
α
h,1gh(x)− Af(x)

∣∣∣∣∣+O(hα) = O(h).

Proof of (4.102): For x ∈ [1− 2h, 1], using (4.27), we have

(P (0)kh + ah) (ϑ
α
h(x)− ϑαh(x+ h)) =

−(P (0) + a)h

Γ(α)
+O(h2).

Moreover, using (4.25) and (4.81),

P(x)− P(x+ h) = −hP ′(1) +O(h2) =
(P (0) + a)h

Γ(α)
+O(h2).

Thus, ∣∣∣∣
fh(x)− fh(x+ h)

hα

∣∣∣∣ = O(h2−α).

Hence,

Ghfh = Gh (P + (P (0)kh + ah)ϑ
α
h + dp0) → AP + (P (0) + a)p0 = Af

uniformly on Ω2; that is, the proof of (4.97) is complete. This also completes the proof

of Statement 1 of Proposition 4.3.2 for the operator (A,NN∗), in view of (4.49) and

(4.96).

As mentioned in Remark 4.5.9, we now consider the common properties of the

operators with a right Neumann boundary condition, (A, •N). Following that we deal

with the operators (A,DN) and (A,NN) separately.

Common properties for operators (A, •N):

Note that f ∈ C(A, •N) is given by (4.37)

f = P + (P (0) + a)pα + bpα−1 + dp0, (4.104)
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where P = Iα(P − P (0)p0). The relation a+ b = −Ig(1), for f ∈ C(A, •N) reads

a+ b = −IP (1) = −Dα−1
c P(1)− P (0), (4.105)

since Dα−1
c P = I(P − P (0)p0) and Ip0(1) = p1(1) = 1.

When dealing with a right Neumann boundary condition it turns out that in order

for Ghfh to converge to Af we need the term eh in fh which is constructed as follows:

eh(x) =

{
0, if x ∈ Ω ∩ [0, 1− h),

−hαλ (AP(1) + (P (0) + a)) , if x ∈ [1− h, 1].
(4.106)

Then, eh ∈ C0(Ω) and as h→ 0, eh → 0.

Note that N r(λ) = λ′, Dr = 1 and bri = −Gα−1
i−1 .

Let φ ∈ C0(Ω) be an arbitrary element, then using (4.53) for x ∈ [1 − 2h, 1 − h),

we have

Ghφ(x) =
1

hα

(
N l(λ)bnφ(λh) +

(
λ′bln−1 − λGα−1

n−2

)
φ((λ+ 1)h)

+
n−2∑

k=1

(
λ′Gαk − λGα−1

k−1

)
φ((λ+ n− 1− (k − 1))h)

+ λ′Gα0 φ((λ+ n)h)

)

=
1

hα

((
N l(λ)bn − λ′Gαn + λGα−1

n−1

)
φ(λh)

+ λ′
(
bln−1 + Gαn−1

)
φ((λ+ 1)h)

+ λ′
n∑

k=0

Gαk φ((λ+ n− 1− (k − 1))h)

− λ

n−1∑

k=0

Gα−1
k φ((λ+ n− 1− k))h)

)

= λ′Aαh,1φ(x)−
λ

h
Aα−1
h,0 φ(x) +

1

hα

((
N l(λ)bn − λ′Gαn + λGα−1

n−1

)
φ(λh)

+ λ′
(
bln−1 + Gαn−1

)
φ((λ+ 1)h)

)
. (4.107)

Using (4.54) for x ∈ [1− h, 1], we have

Ghφ(x) =
1

hα

(
bnφ((λ+ 1)h)−

n−1∑

k=1

Gα−1
k−1φ((λ+ n− (k − 1))h)

)
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=
1

hα

(
Gα−1
n φ(λh) +

(
bn + Gα−1

n−1

)
φ((λ+ 1)h)−

n∑

k=0

Gα−1
k φ((λ+ n− k)h)

)

= −
1

h
Aα−1
h,0 φ(x) +

1

hα

(
Gα−1
n φ(λh) +

(
bn + Gα−1

n−1

)
φ((λ+ 1)h)

)
(4.108)

Moreover, it follows on using (4.9), (4.107) and (4.108) that

Gheh(x) =





0, if x ∈ Ω ∩ [0, 1− 2h),

−λλ′ (AP(1) + (P (0) + a)) , if x ∈ [1− 2h, 1− h),

λ (AP(1) + (P (0) + a)) , if x ∈ [1− h, 1].

(4.109)

Next take note of the error terms for the Grünwald-type approximation of the fractional

derivatives of P given in Remark 4.5.6. First, for x ∈ [1− 2h, 1− h),

Aα−1
h,0 P(x) = Aα−1

h,λ−2P(1) = Dα−1
c P(1) + h

(
(λ− 2)−

α− 1

2

)
AP(1) +O(h2),

Aαh,1P(x) = Aαh,λ−2P(1) = AP(1) +O(h). (4.110)

Next, for x ∈ [1− h, 1],

Aα−1
h,0 P(x) = Aα−1

h,λ−1P(1) = Dα−1
c P(1) + h

(
(λ− 1)−

α− 1

2

)
AP(1) +O(h2). (4.111)

Moreover, since
∣∣Aαh,1P(x)− AP(x)

∣∣ = O(h) in view of Corollary 4.5.5, we have that

AP(1) = AP(x) +O(h), x ∈ [1− 2h, 1]. (4.112)

Proof of Statement 1 of Proposition 4.3.2 for the operator (A,DN):

In this case, we further have a, d = 0 and P (0) = 0. Thus, f ∈ C(A,DN) given by

(4.104), reduces to

f = P + bpα−1.

We take

fh = P + bhϑ
α−1
h + eh

with

bh = b+ h
α− 1

2
AP(1). (4.113)

Note that this choice is the same as the sequences fh constructed for f ∈ C(A,D•)

given by (4.42).

Proof of fh → f for (A,DN):

As h → 0, bh → b, eh → 0 in the sup-norm and ϑα−1
h → pα−1 in the sup-norm in

view of Lemma 4.5.3. Thus,

fh → f (4.114)
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uniformly in Ω.

Proof of Ghfh → Af for (A,DN):

Observe that, in view of (4.44), it only remains to show that

Ghfh = Gh
(
P + bhϑ

α−1
h + eh

)
→ AP = Af (4.115)

uniformly on Ω2.

Note that N l = 1, bli = Gαi and bn = −Gα−1
n−1 . Therefore, for x ∈ [1 − 2h, 1 − h),

using Gαn + Gα−1
n−1 = Gα−1

n , (4.107) becomes

Ghφ(x) = λ′Aαh,1φ(x)−
λ

h
Aα−1
h,0 φ(x)−

λ′

hα
Gα−1
n φ(λh). (4.116)

For x ∈ [1− h, 1], (4.108) becomes

Ghφ(x) = −
1

h
Aα−1
h,0 φ(x) +

1

hα
Gα−1
n φ(λh). (4.117)

Let x ∈ [1−2h, 1−h), then using (4.109) with a = 0, P (0) = 0 and (4.116), observe

that

Ghfh(x) = Gh
(
(P(x) + bhϑ

α−1
h (x)

)
+Gheh(x)

= (1− λ)Aαh,1
(
P(x) + bhϑ

α−1
h (x)

)
−
λ

h
Aα−1
h,0

(
P(x) + bhϑ

α−1
h (x)

)

− (1− λ)λAP(1)−
1

hα
(1− λ)Gα−1

n

(
P(λh) + bhϑ

α−1
h (λh)

)
.

Since,
∣∣P(λh) + bhϑ

α−1
h (λh)

∣∣ = O(hα−1) and |Gα−1
n | = O(hα), the last term

∣∣∣∣∣
1

hα
(1− λ)Gα−1

n

(
P(λh) + bhϑ

α−1
h (λh)

)∣∣∣∣∣ = O(hα−1).

In view of Proposition 4.5.7

Aαh,1ϑ
α−1
h (x) = 0 and Aα−1

h,0 ϑ
α−1
h (x) = 1.

Thus, using (4.105), (4.110) and (4.112),
∣∣∣∣∣G

hfh(x)− AP(x)

∣∣∣∣∣

=

∣∣∣∣∣(1− λ) (AP(1) +O(h))

−
λ

h

(
Dα−1
c P(1) + h

(
(λ− 2)−

α− 1

2

)
AP(1) +O(h2) + bh

)
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− (1− λ)λAP(1)− (AP(1) +O(h))

∣∣∣∣∣+O(hα−1)

=

∣∣∣∣∣(1− λ)AP(1)

+
λb

h
− λ(λ− 2)AP(1) +

λ(α− 1)

2
AP(1)−

λb

h
−
λ(α− 1)

2
AP(1)

− (1− λ)λAP(1)− AP(1)

∣∣∣∣∣+O(hα−1) = O(hα−1).

Next, let x ∈ [1−h, 1], then using (4.109) with a = 0, P (0) = 0 and (4.117), observe

that

Ghfh(x) = Gh
(
P(x) + bhϑ

α−1
h (x)

)
+Gheh(x)

= −
1

h
Aα−1
h,0

(
P(x) + bhϑ

α−1
h (x)

)
+ λAP(1) +

1

hα
Gα−1
n

(
P(λh) + bhϑ

α−1
h (λh)

)
.

Since
∣∣P(λh) + bhϑ

α−1
h (λh)

∣∣ = O(hα−1) and |Gα−1
n | = O(hα), the last term

∣∣∣∣∣
1

hα
Gα−1
n

(
P(λh) + bhϑ

α−1
h (λh)

)∣∣∣∣∣ = O(hα−1).

In view of Proposition 4.5.7

Aα−1
h,0 ϑ

α−1
h (x) = 1.

Thus, in view of (4.105), (4.111) and (4.112),

∣∣∣∣∣G
hfh(x)− AP(x)

∣∣∣∣∣

=

∣∣∣∣∣−
1

h

(
Dα−1
c P(1) + h

(
(λ− 1)−

α− 1

2

)
AP(1) +O(h2) + bh

)

+ λAP(1)− (AP(1) +O(h))

∣∣∣∣∣+O(hα−1)

=

∣∣∣∣∣
b

h
−
(
(λ− 1)−

α− 1

2

)
AP(1)−

b

h
−
α− 1

2
AP(1)

+ λAP(1)− AP(1)

∣∣∣∣∣+O(hα−1) = O(hα−1).

Hence,

Ghfh = Gh (P + (P (0)kh + ah)ϑ
α
h + dp0) → AP + (P (0) + a)p0 = Af
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uniformly on Ω2; that is, the proof of (4.115) is complete. This also completes the

proof of Statement 1 of Proposition 4.3.2 for the operator (A,DN), in view of (4.44)

and (4.114).

Proof of Statement 1 of Proposition 4.3.2 for the operator (A,NN):

In this case, we further have b = 0. Thus, f ∈ C(A,NN) given by (4.104), reduces

to

f = P + (P (0) + a)pα + dp0.

We take

fh = P + (P (0)kh + ah)ϑ
α
h + dp0 + eh

where

kh = 1 + h and ah = a(1 + h) + h
α− 1

2
AP(1). (4.118)

Proof of fh → f for (A,NN):

Note that as h→ 0,

(P (0)kh + ah) = (P (0) + a)(1 + h) + h
α− 1

2
AP(1) → (P (0) + a).

Moreover, as h→ 0, eh → 0 in the sup-norm and ϑαh → pα in the sup-norm in view of

Lemma 4.5.3. Thus,

fh → f (4.119)

uniformly in Ω.

Proof of Ghfh → Af for (A,NN):

Observe that, in view of (4.44), it only remains to show that

Ghfh = Gh (P + (P (0)kh + ah)ϑ
α
h + dp0 + eh) → AP + (P (0) + a)p0 = Af (4.120)

uniformly on Ω2.

Note that N l(λ) = λ, bli = −Gα−1
i−1 and bn =

∑n−1
i=0 Gα−1

i−1 =
∑n−2

i=0 Gα−1
i . Therefore,

for x ∈ [1− 2h, 1− h), using Gα−1
n−2 + Gαn−1 = Gα−1

n−1 (4.107) becomes

Ghφ(x) = λ′Aαh,1φ(x)−
λ

h
Aα−1
h,0 φ(x)

+
1

hα

((
λ

n−1∑

i=0

Gα−1
i − λ′Gαn

)
φ(λh)

− λ′Gα−1
n−1φ((λ+ 1)h)

)
. (4.121)
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For x ∈ [1− h, 1], (4.108) becomes

Ghφ(x) = −
1

h
Aα−1
h,0 φ(x) +

1

hα

(
Gα−1
n φ(λh) +

n−1∑

i=0

Gα−1
i φ((λ+ 1)h)

)
. (4.122)

Let x ∈ [1− 2h, 1− h), then using (4.121) and (4.109), setting

gh = P + (P (0)kh + ah)ϑ
α
h

we have

Ghfh(x) = Gh (P(x) + (P (0)kh + ah)ϑ
α
h(x)) + dGhp0(x) +Gheh(x)

= λ′Aαh,1gh(x)−
λ

h
Aα−1
h,0 gh(x)− λλ′

(
AP(1) + (P (0) + a)

)

+ d

(
λ′
(
Aαh,1p0(x)−

1

hα
Gαnp0(λh)−

1

hα
Gα−1
n−1p0((λ+ 1)h)

)

−
λ

h

(
Aα−1
h,0 p0(x)−

1

hα−1

n−1∑

i=0

Gα−1
i p0(λh)

))

+
1

hα

((
λ
n−1∑

i=0

Gα−1
i − λ′Gαn

)
gh(λh)− λ′Gα−1

n−1gh((λ+ 1)h)

)
. (4.123)

Since |gh(λh)| = O(hα),
∣∣∑n−1

i=0 Gα−1
i

∣∣ = O(hα−1), |Gα−1
n | = O(hα) and |Gαn | = O(hα+1),

the last line of (4.123)

∣∣∣∣∣
1

hα

((
λ

n−1∑

i=0

Gα−1
i − λ′Gαn

)
gh(λh)− λ′Gα−1

n−1gh((λ+ 1)h)

)∣∣∣∣∣ = O(hα−1).

Next in view of (A.7) observe that the second line of (4.123)

d

(
λ′
(
Aαh,1p0(x)−

1

hα
Gαnp0(λh)−

1

hα
Gα−1
n−1p0((λ+ 1)h)

)

−
λ

h

(
Aα−1
h,0 p0(x)−

1

hα−1

n−1∑

i=0

Gα−1
i p0(λh)

))

=
d

hα

(
λ′
( n∑

i=0

Gαi − Gαn − Gα−1
n−1

)
− λ
( n−1∑

i=0

Gα−1
i −

n−1∑

i=0

Gα−1
i

))
= 0.

Consider the first line of (4.123) which we rewrite as

λ′Aαh,1gh(x)−
λ

h
Aα−1
h,0 gh(x)− λλ′

(
AP(1) + (P (0) + a)

)

= (1− λ)Aαh,1P(x)−
λ

h
Aα−1
h,0 P(x)− (1− λ)λ

(
AP(1) + (P (0) + a)

)
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+ (P (0)kh + ah)
(
(1− λ)Aαh,1ϑ

α
h(x)−

λ

h
Aα−1
h,0 ϑ

α
h(x)

)
. (4.124)

Using (4.105) and (4.110), the first line of (4.124) becomes

(1− λ)Aαh,1P(x)−
λ

h
Aα−1
h,0 P(x)− (1− λ)λ

(
AP(1) + (P (0) + a)

)

= (1− λ) (AP(1) +O(h))

−
λ

h

(
Dα−1
c P(1) + h

(
(λ− 2)−

α− 1

2

)
AP(1) +O(h2)

)

− (1− λ)λ
(
AP(1) + (P (0) + a)

)

= AP(1) + (P (0) + a)

+ (P (0) + a)

(
λ

h
− 1− λ+ λ2)

)
+ λ

α− 1

2
AP(1) +O(h)

In view of Proposition 4.5.7

Aαh,1ϑ
α
h(x) = 1 + (λ− 1)Gαn = 1 +O(hα+1)

Aα−1
h,0 ϑ

α
h(x) = h

(
n+ λ− 2 + (λ− 1)Gα−1

n−1

)
= 1 + (λ− 3)h+O(hα+1).

Thus, using (4.118), the second line of (4.124) becomes

(P (0)kh + ah)
(
(1− λ)Aαh,1ϑ

α
h(x)−

λ

h
Aα−1
h,0 ϑ

α
h(x)

)

=

(
(P (0) + a)(1 + h) + h

α− 1

2
AP(1)

)(
−
λ

h
+ 1 + 2λ− λ2 +O(hα+1)

)

= − (P (0) + a)

(
λ

h
− 1− λ+ λ2)

)
− λ

α− 1

2
AP(1) +O(h).

Putting the two terms together and using (4.112), the first line of (4.123) (rewritten

as (4.124)) becomes

(1− λ)Aαh,1P(x)−
λ

h
Aα−1
h,0 P(x)− (1− λ)λ

(
AP(1) + (P (0) + a)

= AP(1) + (P (0) + a) +O(h)

= AP(x) + (P (0) + a) +O(h)

and so

Ghfh(x) = AP(x) + (P (0) + a) +O(hα−1).

Hence, for x ∈ [1− 2h, 1− h)
∣∣∣∣∣G

hfh(x)− Af(x)

∣∣∣∣∣ =
∣∣∣∣∣G

hfh(x)− AP(x) + (P (0) + a)

∣∣∣∣∣ = O(hα−1).
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Proof of Ghfh → Af on [1− h, 1]: Using (4.122) and (4.109), on setting

gh = P + (P (0)kh + ah)ϑ
α
h

let us rewrite as

Ghfh(x) = Gh (P(x) + (P (0)kh + ah)ϑ
α
h(x)) + dGhp0(x) +Gheh(x)

= −
1

h
Aα−1
h,0 gh(x) + λ

(
AP(1) + (P (0) + a)

)

+ d

(
−

1

h
Aα−1
h,0 p0(x) (4.125)

+
1

hα

(
Gα−1
n p0(λh) +

n−1∑

i=0

Gα−1
i p0((λ+ 1)h)

))

+
1

hα

(
Gα−1
n gh(λh) +

n−1∑

i=0

Gα−1
i gh((λ+ 1)h)

)
(4.126)

Since |gh(λh)| = O(hα),
∣∣∑n−1

i=0 Gα−1
i

∣∣ = O(hα−1) and |Gα−1
n | = O(hα), the last term of

(4.125), ∣∣∣∣∣
1

hα

(
Gα−1
n gh(λh) +

n−1∑

i=0

Gα−1
i gh((λ+ 1)h)

)∣∣∣∣∣ = O(hα−1).

Next, the second term of (4.125)

d

(
−

1

h
Aα−1
h,0 p0(x) +

1

hα

(
Gα−1
n p0(λh) +

n−1∑

i=0

Gα−1
i p0((λ+ 1)h)

))

= d

(
−

1

hα

( n∑

i=0

Gα−1
i − Gα−1

n −
n−1∑

i=0

Gα−1
i

))
= 0.

In view of Proposition 4.5.7

Aα−1
h,0 ϑ

α
h(x) = h

(
n+ 1 + λ− 2 + (λ− 1)Gα−1

n−1

)
= 1 + (λ− 2)h+O(hα+1).

Consider the first term of (4.125), then using (4.105) and (4.111) we have

−
1

h
Aα−1
h,0 gh(x) + λ

(
AP(1) + (P (0) + a)

)

= −
1

h
Aα−1
h,0 P(x)− (P (0)kh + ah)

1

h
Aα−1
h,0 ϑ

α
h(x) + λ

(
AP(1) + (P (0) + a)

)

= −
1

h

(
Dα−1
c P(1) + h

(
(λ− 1)−

α− 1

2

)
AP(1) +O(h2)

)

− (P (0)kh + ah)
1

h
Aα−1
h,0 ϑ

α
h(x) + λ

(
AP(1) + (P (0) + a)

)

=
1

h
(P (0) + a)− (λ− 1)AP(1) +

α− 1

2
AP(1)
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−
1

h

(
(P (0) + a)(1 + h) + h

α− 1

2
AP(1)

)(
1 + (λ− 2)h+O(hα+1)

)

+ λAP(1) + λ(P (0) + a) +O(h)

=
1

h
(P (0) + a)− (λ− 1)AP(1) +

α− 1

2
AP(1)

−
1

h
(P (0) + a)− (P (0) + a)−

α− 1

2
AP(1)− (λ− 2)(P (0) + a)

+ λAP(1) + λ(P (0) + a) +O(h)

= AP(1) + (P (0) + a) +O(h).

Therefore, using (4.112), since AP(1) = AP(x) +O(h) we have

Ghfh(x) = AP(x) + (P (0) + a) +O(hα−1).

Thus, in view of (4.112) , for x ∈ [1− h, 1]
∣∣∣∣∣G

hfh(x)− Af(x)

∣∣∣∣∣ = O(hα−1).

Hence,

Ghfh = Gh (P + (P (0)kh + ah)ϑ
α
h + dp0) → AP + (P (0) + a)p0 = Af

uniformly on Ω2; that is, the proof of (4.97) is complete. This also completes the proof

of Statement 1 of Proposition 4.3.2 for the operator (A,NN∗), in view of (4.49) and

(4.96).

The proof of Statement 1 of Proposition 4.3.2 for all the fractional derivative oper-

ators on C0(Ω) given in Table 4.5 is complete.

4.5.3 Proof of Proposition 4.3.2 for the case X = L1[0, 1]

Proof. To simplify notation, we write Gh := Gh,↔ and A := A↔. For each of the

fractional derivative operators (A↔,BC) := (A,BC) on L1[0, 1] given in Table 4.7, and

for each f ∈ C(A,BC) we show that there exists a sequence {fh} ⊂ L1[0, 1] such that

fh → f and Ghfh → Af in L1[0, 1]. To this end, let f ∈ C(A,BC) as in Theorem 3.4.4,

f = Q+ apα + bpα−1 + cpα−2 + dp0, (4.127)

where Q = IαP for some polynomial P =
∑N

m=0 kmpm. Then, in view of (3.17),

Af = AQ+ ap0 = P + ap0. (4.128)

Keep in mind that we repeatedly make use of the following:
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(A+,BC), C0(Ω) (A−,BC), L1[0, 1] (A↔,BC), L1[0, 1]

(Dα,+
c ,DN) (Dα,−

c ,DN) (Dα,↔
c ,ND)

(Dα,+
c ,NN) (Dα,−

c ,NN) (Dα,↔
c ,NN)

(Dα,+
c ,DD) (Dα,−,DD) = (Dα,−

c ,DD) (Dα,↔
c ,DD)

(Dα,+
c ,ND) (Dα,−,ND) = (Dα,−

c ,ND) (Dα,↔
c ,DN)

(Dα,+
c ,DN∗) (Dα,−,DN) (Dα,↔,ND)

(Dα,+
c ,NN∗) (Dα,−,NN) (Dα,↔,NN)

Table 4.7: Corresponding fractional derivative operators on C0(Ω)

and L1[0, 1].

1. The Grünwald formula given by (4.29),

Aαh,1f(x) =
1

hα

ι(x)∑

k=0

Gαk f((λ(x) + ι(x)− 1− (k − 1))h)

where x = (λ(x) + ι(x)− 1)h as given by Definition (3.2.2).

2. The canonical extension of Q and for x ∈ [nh, 1], the Taylor expansions of Q

around x = 1 given by

Q(x− h) = Q(1)− (2− λ)hQ′(1) +O(h2),

Q(x) = Q(1)− (1− λ)hQ′(1) +O(h2),

Q(x+ h) = Q(1) + λhQ′(1) +O(h2), (4.129)

where λ := λ(x) = λ(x− h) = λ(x+ h).

3. The interpolation matrix given by (4.12),

Gh,↔
n+1(λ) =

1

hα




bl1 N l(λ)Gα0 0 · · · · · · · · · 0

Dl(λ)bl2 λ′bl1 + λGα1 Gα0 0 · · · · · · 0

Dl(λ)bl3 λ′bl2 + λGα2 Gα1 Gα0 0 · · · 0
...

...
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...

Dl(λ)bli λ′bli−1 + λGαi−1 Gαi−2 · · · · · · · · ·
...

...
...

...
...

. . . . . .
...

Dl(λ)bn λ′bln−1 + λbrn−1 λ′Gαn−2 + λbrn−2 · · · · · · λ′Gα1 + λbr1 Dr(λ)Gα0

0 N r(λ)bn N r(λ)brn−1 · · · · · · N r(λ)br2 br1



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X = L1[0, 1], D(A,BC) = {Iαg + apα + bpα−1 + cpα−2 + dp0 : g ∈ L1[0, 1]}

Boundary condition Boundary weights for Gh
n×n D(A,BC)

f(0) = 0
bli = Gαi

Dl(λ) = αλ
αλ+λ′

, N l = 1
a = 0, c = 0, d = 0

Dα−1
c f(0) = 0

bli = −Gα−1
i−1

N l(λ) = λ, Dl = 1
b = 0, c = 0

Dα−1f(0) = 0

bl0 = 0, bl1 = Gα0 + Gα1

bli = Gαi

N l(λ) = λ, Dl = 1

b = 0, d = 0

f(1) = 0

bri = Gαi

bn = bln

Dr(λ) = αλ′

αλ′+λ
, N r = 1

a = 0, b+(α−1)c
Γ(α)

+ d = −Iαg(1)

Ff(1) = 0

bri = −Gα−1
i−1

bn = −
∑n−1

i=0 b
l
i

N r(λ) = λ′, Dr = 1

a+ b = −Ig(1)

Table 4.8: Boundary conditions for L1[0, 1].

4. The approximate power functions ϑβh, β ∈ {α, α− 1, α− 2, 0} given by Definition

4.5.1 and their canonical extensions when required.

5. The error terms for the Grünwald-type approximation of the fractional derivative

given in Remark 4.5.6,

Aα−1
h,0 Q(x) = Aα−1

h,λ−2Q(1) = Dα−1Q(1) +O(h), x ∈ [(n− 1)h, nh)

Aα−1
h,0 Q(x) = Aα−1

h,λ−1Q(1)

= Dα−1Q(1) + h
(
(λ− 1)−

α− 1

2

)
DαQ(1) +O(h2), x ∈ [nh, 1],

DαQ(1) = Aαh,1Q(x) +O(h), x ∈ [(n− 1)h, 1] (4.130)

and the same hold with Dβ replaced by Dβ
c .

6. Table 4.8 for the boundary weights bli, b
r
i , bn, the constants a, b, c, d and the

interpolating functions Dl, Dr, N l, N r.
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Common properties for operators (A,D•):

We first consider the common properties of the operators with a left Dirichlet

boundary condition, (A,D•). Following that we consider the right boundary conditions

one by one and deal with the operators (A,DD) and (A,DN) separately.

In these cases, since a, c, d = 0, f ∈ C(A,D•) given by (4.127) reduces to

f = Q+ bpα−1. (4.131)

Moreover, Af given by (4.128) reduces to

Af = AQ. (4.132)

Next, we take

fh = Q+ bhϑ
α−1
h + eh, (4.133)

where the function eh = 0 except when the right boundary condition is Neumann. Next,

note that Dl(λ) = αλ
αλ+λ′

, N l = 1 and bli = Gαi . Next, observe that the approximate

power function ϑα−1
h in the L1[0, 1]-case is constructed such that the following three

identities hold as they are crucial for both cases, (A,DD) and (A,DN).

For x ∈ [0, h),

1

hα

(
Gα1 ϑ

α−1
h (λh) + Gα0 ϑ

α−1
h ((λ+ 1)h)

)

=
1

h

(
Gα1

(λ′G−α
0 + λG−α

1

α

)
+ Gα0

(
λ′G−α

0 + λG−α
1

)
)

= −
1

h

(
α
(λ′G−α

0 + λG−α
1

α

)
+
(
λ′G−α

0 + λG−α
1

)
)

= 0. (4.134)

For x ∈ [h, 1],

1

hα

(
Dl(λ)Gαι(x)ϑ

α−1
h (λh) +

ι(x)−1∑

k=0

Gαk ϑ
α−1
h ((λ+ ι(x)− 1− (k − 1))h)

)

=
1

h

(
Dl(λ)Gαι(x)

(λ′G−α
0 + λG−α

1

α

)
+

ι(x)−1∑

k=0

Gαk
(
λ′G−α

ι(x)−1+k + λG−α
ι(x)−k

)
)

=
1

h

(
λGαι(x) + λ′

ι(x)−1∑

k=0

Gαk G
−α
ι(x)−1+k + λ

ι(x)−1∑

k=0

Gαk G
−α
ι(x)−k

)

=
1

h

(
λ′

ι(x)−1∑

k=0

Gαk G
−α
ι(x)−1+k + λ

ι(x)∑

k=0

Gαk G
−α
ι(x)−k

)
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=
1

h

(
λ′G0

ι(x)−1 + λG0
ι(x)

)
= 0, (4.135)

where we have used (A.8) and the fact that G0
k = 0 for k ≥ 1.

For x ∈ [(n− 1)h, 1],

1

hα

(
Dl(λ)Gα−1

ι(x)−1ϑ
α−1
h (λh) +

ι(x)−2∑

k=0

Gα−1
k ϑα−1

h ((λ+ ι(x)− 1− k)h)

)

=
1

h

(
Dl(λ)Gα−1

ι(x)−1

(λ′G−α
0 + λG−α

1

α

)
+

ι(x)−2∑

k=0

Gα−1
k

(
λ′G−α

ι(x)−2+k + λG−α
ι(x)−1−k

)
)

=
1

h

(
λGα−1

ι(x)−1 + λ′
ι(x)−2∑

k=0

Gα−1
k G−α

ι(x)−2+k + λ

ι(x)−2∑

k=0

Gα−1
k G−α

ι(x)−1−k

)

=
1

h

(
λ′

ι(x)−2∑

k=0

Gα−1
k G−α

ι(x)−2+k + λ

ι(x)−1∑

k=0

Gα−1
k G−α

ι(x)−1−k

)

=
1

h

(
λ′G−1

ι(x)−1 + λG−1
ι(x)

)
=
λ′ + λ

h
=

1

h
, (4.136)

where we have used (A.8) and the fact that G−1
k = 1 for k ≥ 0.

Proof of Statement 2 of Proposition 4.3.2 for the operator (A,DD):

In this case, we further have that Dr(λ) = αλ′

αλ′+λ
, N r = 1, bri = Gαi and bn = Gαn .

Moreover, the relation b
Γ(α)

= −Iαg(1) for f ∈ C(A,DD) reads

b

Γ(α)
= −Q(1) (4.137)

We do not require the function eh and so we take fh = Q+ bhϑ
α−1
h , where

bh =
b

Γ(α)ϑα−1
h (1)

. (4.138)

This implies that fh → f in L1[0, 1], since
∥∥ϑα−1

h − pα−1

∥∥
L1[0,1]

→ 0 in view of Lemma

4.5.3. To show
∥∥Ghfh − Af

∥∥
L1[0,1]

→ 0, we show the following:

1.

Ghbhϑ
α−1
h (x) =





0, x ∈ [0, (n− 1)h),

− (Dr(λ)−1)Q(1)
hα

+O(h1−α), x ∈ [(n− 1)h, nh),
Q(1)
hα

+O(h1−α), x ∈ [nh, 1].

(4.139)

2.

GhQ(x)
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=





Aαh,1Q(x), x ∈ [0, h),

Aαh,1Q(x) +
(Dl(λ)−1)Gα

ι(x)
Q(λh)

hα
, x ∈ [h, (n− 1)h),

Aαh,1Q(x) + (Dr(λ)−1)Q(1)
hα

+ (Dl(λ)−1)GαnQ(λh)
hα

+O(h1−α), x ∈ [(n− 1)h, nh),

Aαh,1Q(x)− Q(1)
hα

−
Gαn+1Q(λh)

hα
+O(h1−α), x ∈ [nh, 1].

(4.140)

Then, using (4.132), (4.139) and (4.140) note that

∥∥Ghfh − Af
∥∥
L1[0,1]

=

∫ 1

0

∣∣GhQ(x) +Ghbhϑ
α−1
h (x)− AQ(x)

∣∣ dx

≤

∫ 1

0

∣∣Aαh,1Q(x)− AQ(x)
∣∣ dx+

n+1∑

i=2

∫ ih

(i−1)h

∣∣∣∣
Q(λh)Gαi

hα

∣∣∣∣ dx+O(h2−α)

≤
∥∥Aαh,1Q− AQ

∥∥
L1[0,1]

+O(h2−α),

since Q(λh) = O(hα) and

h

∞∑

i=0

|Gαi | → 0

in view of (A.10). Using Corollary 4.5.5, as h → 0,
∥∥Aαh,1Q− AQ

∥∥
L1[0,1]

→ 0, and

hence
∥∥Ghfh − Af

∥∥
L1[0,1]

→ 0 in the case of (A,DD).

Proof of (4.139): For x ∈ [0, h), in view of (4.134)

Ghbhϑ
α−1(x) = 0.

For x ∈ [h, (n− 1)h), in view of (4.135),

Ghbhϑ
α−1(x) =

bh
h

(
Dl(λ)Gαι(x)

(λ′G−α
0 + λG−α

1

)

α

)

+

ι(x)−1∑

k=0

Gαk
(
λ′G−α

ι(x)−1+k + λG−α
ι(x)−k

)
)

= 0.

Next, let x ∈ [(n− 1)h, nh), then using (4.135) with ι(x) = n and (4.26) we have

Ghbhϑ
α−1(x) =

bh
h

(
Dl(λ)Gαn

(λ′G−α
0 + λG−α

1

)

α

)
+

n−1∑

k=0

Gαk
(
λ′G−α

n−1+k + λG−α
n−k

)
)

+
bh(D

r(λ)− 1)ϑα−1
h ((λ+ n)h)

hα

=
b(Dr(λ)− 1)ϑα−1

h ((λ+ n)h)

hαΓ(α)ϑα−1
h (1)

=
b(Dr(λ)− 1)

hαΓ(α)

(
1−

λ′(α− 1)

n− 1 + α

)
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=
b(Dr(λ)− 1)

hαΓ(α)
+O(h1−α) = −

(Dr(λ)− 1)Q(1)

hα
+O(h1−α),

where we have also used (4.137) in the last line. Lastly, let x ∈ [nh, 1], then using

Gαn+1 = O(hα+1), ϑα−1
h (λh) = O(hα−1) for the first term below, followed by (4.135)

with ι(x) = n+ 1 and (4.26) we have

Ghbhϑ
α−1(x) =

−bh
hα

Dl(λ)Gαn+1ϑ
α−1
h (λh)

+
bh
h

(
Dl(λ)Gαn+1

(λ′G−α
0 + λG−α

1

)

α

)
+

n∑

k=0

Gαk
(
λ′G−α

n+k + λG−α
n+1−k

)
)

−
bhϑ

α−1
h ((λ+ n+ 1)h)

hα

= −
bϑα−1

h ((λ+ n+ 1)h)

hαΓ(α)ϑα−1
h (1)

+O(hα) = −
b

hαΓ(α)

(
1 +

λ(α− 1)

n+ 1

)
+O(hα)

= −
b

hαΓ(α)
+O(h1−α) =

Q(1)

hα
+O(h1−α),

where we have also used (4.137) in the last line.

Proof of (4.140): Observe that

GhQ(x) =

{
Aαh,1Q(x), x ∈ [0, h),

Aαh,1Q(x) +
(Dl(λ)−1)Gα

ι(x)
Q(λh)

hα
, x ∈ [h, (n− 1)h).

Therefore, let x ∈ [(n− 1)h, nh), then using the Taylor expansion (4.129) we have

GhQ(x) =
1

hα

(
(Dl(λ)− 1)GαnQ(λh) +

n∑

k=0

GαkQ
(
(λ+ n− 1− (k − 1))h

)

+ (Dr(λ)− 1)Q((λ+ n)h)

)

=
1

hα

(
(Dl(λ)− 1)GαnQ(λh) +

n∑

k=0

GαkQ
(
(λ+ n− 1− (k − 1))h

)

+ (Dr(λ)− 1)
(
Q(1) +O(h)

)
)

= Aαh,1Q(x) +
(Dr(λ)− 1)Q(1)

hα
+

(Dl(λ)− 1)GαnQ(λh)

hα
+O(h1−α).

Lastly, let x ∈ [nh, 1], then using the Taylor expansion (4.129) we have

GhQ(x) =
1

hα

(
− Gαn+1Q(λh) +

n+1∑

k=0

GαkQ
(
(λ+ n− (k − 1))h

)
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−Q((λ+ n+ 1)h)

)

=
−Gαn+1Q(λh)

hα
+ Aαh,1Q(x)−

Q(1) +O(h)

hα

= Aαh,1Q(x)−
Q(1)

hα
−

Gαn+1Q(λh)

hα
+O(h1−α).

Proof of Statement 2 of Proposition 4.3.2 for the operator (A,DN):

In this case, we further have that N r(λ) = λ′, Dr = 1, bri = −Gα−1
i−1 and bn =

−
∑n−1

i=0 Gαi = −Gα−1
n−1 . Moreover, the relation b = −Ig(1) for f ∈ C(A,DN) reads

b = −Dα−1
c Q(1). (4.141)

Let fh = Q + bϑα−1
h + eh. When dealing with a right Neumann boundary condition

it turns out that we require the term eh for Ghfh to converge which is constructed as

follows:

eh(x) =

{
0, if x ∈ [0, nh),

−λ
(
Q((λ+ n)h) + bϑα−1

h ((λ+ n)h)
)
, if x ∈ [nh, 1].

(4.142)

Then, it follows that as h → 0, ‖eh‖L1[0,1]
→ 0. This also implies that fh → f in

L1[0, 1], since in view of Lemma 4.5.3,
∥∥ϑα−1

h − pα−1

∥∥
L1[0,1]

→ 0.

Moreover, observe that

Gheh(x)

=





0, if x ∈ [0, (n− 1)h),

− λ
hα

(
Q((λ+ n)h) + bϑα−1

h ((λ+ n)h)
)
, if x ∈ [(n− 1)h, nh),

λ
hα

(
Q((λ+ n)h) + bϑα−1

h ((λ+ n)h)
)
, if x ∈ [nh, 1].

(4.143)

To show that
∥∥Ghfh − Af

∥∥
L1[0,1]

→ 0, we show the following:

1.

Ghbϑα−1
h (x)

=





0, x ∈ [0, (n− 1)h),

−λb
h
+ λb

hα
ϑα−1
h ((λ+ n)h) +O(hα−1), x ∈ [(n− 1)h, nh),

−λ′b
h
− λb

hα
ϑα−1
h ((λ+ n)h) +O(hα−1), x ∈ [nh, 1].

(4.144)

2.

GhQ(x)
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=





Aαh,1Q(x), x ∈ [0, h),

Aαh,1Q(x) +
(Dl(λ)−1)Gα

ι(x)
Q(λh)

hα
, x ∈ [h, (n− 1)h),

Aαh,1Q(x) +

(
(λ−Dl(λ))Gα−1

n−1−λ
′Gαn

)
Q(λh)

hα

+λb
h
+ λQ((λ+n)h))

hα
+ C, x ∈ [(n− 1)h, nh),

Aαh,1Q(x) + λ′Gα−1
n Q(λh)
hα

+λ′b
h
− λQ((λ+n)h)

hα
+ C, x ∈ [nh, 1].

(4.145)

Then, using (4.132), (4.143), (4.144) and (4.145) we have

∥∥Ghfh − Af
∥∥
L1[0,1]

=

∫ 1

0

∣∣GhQ(x) +Ghbhϑ
α−1
h (x) +Gheh(x)− AQ(x)

∣∣ dx

≤

∫ 1

0

∣∣Aαh,1Q(x)− AQ(x)
∣∣ dx+

n−1∑

i=2

∫ ih

(i−1)h

∣∣∣∣
Q(λh)Gαi

hα

∣∣∣∣ dx

+

∫ nh

(n−1)h

∣∣∣∣
Q(λh)Gα−1

n

hα

∣∣∣∣ dx+
∫ 1

nh

∣∣∣∣
Q(λh)Gα−1

n

hα

∣∣∣∣ dx

≤
∥∥Aαh,1Q− AQ

∥∥
L1[0,1]

+O(h),

since Q(λh) = O(hα) and
∑n+1

i=2 |Gαi | < ∞ in view of (A.10). Using Corollary 4.5.5,

as h → 0,
∥∥Aαh,1Q− AQ

∥∥
L1[0,1]

→ 0, and hence
∥∥Ghfh − Af

∥∥
L1[0,1]

→ 0 in the case of

(A,DN).

Proof of (4.144): For x ∈ [0, (n− 1)h), we showed in (4.134) and (4.135) that

Ghbhϑ
α−1(x) = 0.

Next, let x ∈ [(n − 1)h, nh), then rewriting −Gα−1
n−1 = −λGα−1

n−1 − λ′Gα−1
n + λ′Gαn , and

using (4.135) and (4.136) with ι(x) = n, we have

Ghbϑα−1(x) =
b

hα

(
−Dl(λ)Gα−1

n−1ϑ
α−1
h (λh)

+
n−1∑

k=1

(λ′Gαk − λGα−1
k−1 )ϑ

α−1
h ((λ+ n− 1− (k − 1))h)

+ Gα0 ϑ
α−1
h ((λ+ n)h))

)

=
b

hα

(
− λ′Dl(λ)Gα−1

n ϑα−1
h (λh)
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+ λ′
(
Dl(λ)Gαnϑ

α−1
h (λh) +

n−1∑

k=0

Gαk ϑ
α−1
h ((λ+ n− 1− (k − 1))h)

)

− λ
(
Dl(λ)Gα−1

n−1ϑ
α−1
h (λh) +

n−2∑

k=0

Gα−1
k ϑα−1

h ((λ+ n− 1− k)h)
)

+ λGα0 ϑ
α−1
h ((λ+ n)h))

)

= −
λb

h
+
λb

hα
ϑα−1
h ((λ+ n)h)−

b

hα
λ′Dl(λ)Gα−1

n ϑα−1
h (λh)

= −
λb

h
+
λb

hα
ϑα−1
h ((λ+ n)h) +O(hα−1),

since Gα−1
n = O(hα) and ϑα−1

h (λh) = O(hα−1). Lastly, let x ∈ [nh, 1], then using (4.136)

we have

Ghbϑα−1(x) =
b

hα

(
−N r(λ)

n−1∑

k=1

Gα−1
k ϑα−1

h ((λ+ n− k)h)

− Gα−1
0 ϑα−1

h ((λ+ n)h)

)

=
b

hα

(
λ′Dl(λ)Gα−1

n ϑα−1
h (λh)− λGα−1

0 ϑα−1
h ((λ+ n)h)

)

−
λ′b

hα

(
Dl(λ)Gα−1

n ϑα−1
h (λh) +

n−1∑

k=0

Gα−1
k ϑα−1

h ((λ+ n− k)h)

)

= −
λ′b

h
−
λb

hα
ϑα−1
h ((λ+ n)h) +

λ′b

hα
Dl(λ)Gα−1

n ϑα−1
h (λh)

= −
λ′b

h
−
λb

hα
ϑα−1
h ((λ+ n)h) +O(hα−1),

since Gα−1
n = O(hα) and ϑα−1

h (λh) = O(hα−1).

Proof of (4.145): Observe that

GhQ(x) =

{
Aαh,1Q(x), x ∈ [0, h),

Aαh,1Q(x) +
(Dl(λ)−1)Gα

ι(x)
Q(λh)

hα
, x ∈ [h, (n− 1)h).

Let x ∈ [(n− 1)h, nh), then using (4.130) we have

GhQ(x) =
1

hα

(
−Dl(λ)Gα−1

n−1Q(λh) +
n−1∑

k=1

(λ′Gαk − λGα−1
k−1 )Q((λ+ n− 1− (k − 1))h)

+ Gα0Q((λ+ n)h))

)

=
1

hα

((
−Dl(λ)Gα−1

n−1 − λ′Gαn + λGα−1
n−1

)
Q(λh)
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+ λ′
n∑

k=0

GαkQ((λ+ n− 1− (k − 1))h)

− λ
n−1∑

k=0

Gα−1
k−1 )Q((λ+ n− 1− k)h) + λGα0Q((λ+ n)h))

)

=

(
(λ−Dl(λ))Gα−1

n−1 − λ′Gαn

)
Q(λh)

hα
+
λQ((λ+ n)h))

hα

+ λ′Aαh,1Q(x)−
λ

h
Aα−1
h,0 Q(x)

=

(
(λ−Dl(λ))Gα−1

n−1 − λ′Gαn

)
Q(λh)

hα
+
λQ((λ+ n)h))

hα

+ Aαh,1Q(x) +
λb

h
+ C.

Lastly, let x ∈ [nh, 1], then using (4.130) we have

GhQ(x) =
1

hα

(
−N r(λ)

n−1∑

k=1

Gα−1
k Q((λ+ n− k)h)

− Gα−1
0 Q((λ+ n)h)

)

=
1

hα

(
λ′Gα−1

n Q(λh)− λGα−1
0 Q((λ+ n)h)

)

−
λ′

hα

(
n∑

k=0

Gα−1
k Q((λ+ n− k)h)

)

=
1

hα

(
λ′Gα−1

n Q(λh)− λQ((λ+ n)h)
)
−
λ′

h
Aα−1
h,0 Q(x)

=
1

hα

(
λ′Gα−1

n Q(λh)− λQ((λ+ n)h)
)
+
λ′b

h
+ Aαh,1Q(x) + C.

Proof of Statement 2 of Proposition 4.3.2 for the operator (Dα
c ,ND):

In this case, since a, b, c = 0, f ∈ C(Dα
c ,ND) given by (4.127) reduces to

f = Q+ dp0. (4.146)

Moreover, Af given by (4.128) reduces to

Dα
c f = Dα

cQ. (4.147)

Next, we take

fh = Q+ dϑ0
h. (4.148)

Then, fh → f in L1[0, 1], since in view of Lemma 4.5.3, ϑ0
h → p0 in L1[0, 1].
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Note that N l(λ) = λ, Dl = 1 = N r, Dr(λ) = αλ′

αλ′+λ
, bli = −Gα−1

i−1 , b
r
i = Gαi and

bn = −Gα−1
n−1 . Moreover, the relation d = −Iαg(1) for f ∈ C(Dα

c ,ND) reads

d = −Q(1). (4.149)

To show that
∥∥Ghfh −Dα

c f
∥∥
L1[0,1]

→ 0, we show the following:

1.

Ghdϑ0
h(x) =





0, x ∈ [0, (n− 1)h),

−Dr(λ)−1
hα

Q(1), x ∈ [(n− 1)h, nh),
1
hα
Q(1), x ∈ [nh, 1].

(4.150)

2.

GhQ(x)

=





Aαh,1Q(x)

+ 1
hα

(
− Gα−1

ι(x) Q(λh)− λ′Gα−1
ι(x)−1Q((λ+ 1)h)

)
, x ∈ [0, (n− 1)h),

Aαh,1Q(x) + 1
hα

(
− Gα−1

n Q(λh)− λ′Gα−1
n−1Q((λ+ 1)h)

)

+Dr(λ)−1
hα

Q(1) +O(h1−α), x ∈ [(n− 1)h, nh),

Aαh,1Q(x) + 1
hα

(
− Gαn+1Q(λh)− Gα−1

n Q((λ+ 1)h)
)

− 1
hα
Q(1) +O(h1−α), x ∈ [nh, 1].

(4.151)

Then, using (4.147), (4.150) and (4.151) we have

∥∥Ghfh −Dα
c f
∥∥
L1[0,1]

=

∫ 1

0

∣∣GhQ(x) +Ghdϑ0
h(x)−Dα

cQ(x)
∣∣ dx

≤

∫ 1

0

∣∣Aαh,1Q(x)−Dα
cQ(x)

∣∣ dx+
n+1∑

i=1

∫ ih

(i−1)h

∣∣∣∣
Q(λh)Gα−1

i +Q((λ+ 1)h)Gα−1
i−1

hα

∣∣∣∣ dx

+O(h2−α)

≤
∥∥Aαh,1Q−Dα

cQ
∥∥
L1[0,1]

+O(h2−α),

since Q(λh), Q((λ + 1)h) = O(hα) and
∑n+1

i=0

∣∣Gα−1
i

∣∣ < ∞ in view of (A.10). Using

Corollary 4.5.5, as h→ 0,
∥∥Aαh,1Q−Dα

cQ
∥∥
L1[0,1]

→ 0. Hence,

∥∥Ghfh −Dα
c f
∥∥
L1[0,1]

→ 0

in the case of (Dα
c ,ND).
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Proof of (4.150): Let x ∈ [0, h), then

Ghdϑ0
h(x) =

d

hα
(
− Gα−1

0 λ+ λGα0
)
= 0.

Let x ∈ [h, (n− 1)h), then using (A.7) and Gα−1
ι(x)−1 = Gα−1

ι(x)−2 + Gαι(x)−1 we have

Ghdϑ0
h(x) =

d

hα

(
− λGα−1

ι(x)−1 − λ′Gα−1
ι(x)−2 + λGαι(x)−1 +

ι(x)−2∑

k=0

Gαk

)

=
d

hα

(
− λGα−1

ι(x)−1 − Gα−1
ι(x)−2 + λGα−1

ι(x)−2 + λGαι(x)−1 + Gα−1
ι(x)−2

)
= 0.

Next, using (A.7) and Gα−1
n−1 = Gα−1

n−2 + Gαn−1, observe that for x ∈ [(n− 1)h, nh),

Ghdϑ0
h(x) =

d

hα

(
− λGα−1

n−1 − λ′Gα−1
n−2 + λGαn−1 +

n−2∑

k=1

Gαk +Dr(λ)Gα0

)

=
d

hα

(
− λGα−1

n−1 − Gα−1
n−2 + λGα−1

n−2 + λGαn−1 +
n−2∑

k=0

Gαk + (Dr(λ)− 1)
)

= −
Q(1)

hα
(
Dr(λ)− 1

)
.

and for x ∈ [nh, 1],

Ghdϑ0
h(x) =

d

hα

(
− Gα−1

n−1 +
n−1∑

k=1

Gαk

)
=

Q(1)

hα
.

Proof of (4.151): Let x ∈ [0, h), then

GhQ(x) =
−Gα−1

0 Q(λh) + λGα0Q((λ+ 1)h)

hα

=
−Gα−1

1 Q(λh)− λ′Gα−1
0 Q((λ+ 1)h)

hα
+ Aαh,1Q(x)

Let x ∈ [h, (n− 1)h), then using Gα−1
k = Gα−1

k−1 + Gαk−1

GhQ(x) =
1

hα

(
− Gα−1

ι(x)−1Q(λh) +
(
− λ′Gα−1

ι(x)−2 + λGαι(x)−1

)
Q((λ+ 1)h)

+

ι(x)−2∑

k=0

GαkQ((λ+ ι(x)− 1− (k − 1))h)

)

=
1

hα

(
− Gα−1

ι(x) Q(λh)− λ′Gα−1
ι(x)−1Q((λ+ 1)h)

+

ι(x)∑

k=0

GαkQ((λ+ ι(x)− 1− (k − 1))h)

)
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=
1

hα

(
− Gα−1

ι(x) Q(λh)− λ′Gα−1
ι(x)−1Q((λ+ 1)h)

)
+ Aαh,1Q(x).

Let x ∈ [(n− 1)h, nh), then using the Taylor expansion (4.129) we have

GhQ(x) =
1

hα

(
− Gα−1

n−1Q(λh) +
(
− λ′Gα−1

n−2 + λGαn−1

)
Q((λ+ 1)h)

+
n−2∑

k=1

GαkQ((λ+ n− 1− (k − 1))h) +Dr(λ)Gα0Q((λ+ n)h)

)

=
1

hα

(
− Gα−1

n Q(λh)− λ′Gα−1
n−1Q((λ+ 1)h) + (Dr(λ)− 1)Gα0Q((λ+ n)h)

+
n∑

k=0

GαkQ((λ+ n− 1− (k − 1))h)

)

=
1

hα

(
− Gα−1

ι(x) Q(λh)− λ′Gα−1
ι(x)−1Q((λ+ 1)h)

)

+ Aαh,1Q(x) +
(Dr(λ)− 1)Q((λ+ n)h)

hα

=
1

hα

(
− Gα−1

ι(x) Q(λh)− λ′Gα−1
ι(x)−1Q((λ+ 1)h)

)

+ Aαh,1Q(x) +
(Dr(λ)− 1)Q(1)

hα
+O(h1−α).

Let x ∈ [nh, 1], then using the Taylor expansion (4.129) we have

GhQ(x) =
1

hα

(
− Gα−1

n−1Q((λ+ 1)h) +
n−1∑

k=1

GαkQ((λ+ n− (k − 1))h)

)

=
1

hα

(
− Gαn+1Q(λh)− Gα−1

n Q((λ+ 1)h)− Gα0Q((λ+ n+ 1)h)

+
n+1∑

k=0

GαkQ((λ+ n− (k − 1))h)

)

=
1

hα

(
− Gαn+1Q(λh)− Gα−1

n Q((λ+ 1)h)

)
+ Aαh,1Q(x)

−
1

hα
Q(1) +O(h1−α).

Proof of Statement 2 of Proposition 4.3.2 for the operator (Dα
c ,NN):

In this case, since b, c = 0, f ∈ C(Dα
c ,NN) given by (4.127) reduces to

f = Q+ apα + dp0 (4.152)

and Af given by (4.128) reads

Dα
c f = Dα

cQ+ ap0. (4.153)
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Note that N l(λ) = λ, Dl = 1 = Dr, N r(λ) = 1 − λ, bli = −Gα−1
i−1 = bri and bn =

−
∑n−1

i=0 b
l
i =

∑n−2
i=0 Gα−1

i . Moreover, the relation a = −Ig(1) for f ∈ C(Dα
c ,NN) reads

a = −Dα−1
c Q(1). (4.154)

Next, we take

fh = Q+ aϑαh + dϑ0
h + eh. (4.155)

When dealing with a right Neumann boundary condition we require the term eh con-

struced as follows:

eh(x) =

{
0, if x ∈ [0, nh),

−λ
(
Q((λ+ n)h) + aϑαh((λ+ n)h) + d

)
, if x ∈ [nh, 1].

(4.156)

Then, as h → 0, ‖eh‖L1[0,1]
→ 0. This also implies that fh → f in L1[0, 1], since in

view of Lemma 4.5.3, ϑαh → pα and ϑ0
h → p0 in L1[0, 1].

Further, observe that

Gheh(x) =





0, if x ∈ [0, (n− 1)h),

− λ
hα

(
Q((λ+ n)h) + aϑαh((λ+ n)h) + d

)
, if x ∈ [(n− 1)h, nh),

λ
hα

(
Q((λ+ n)h) + aϑαh((λ+ n)h) + d

)
, if x ∈ [nh, 1].

(4.157)

To show that
∥∥Ghfh −Dα

c f
∥∥
L1[0,1]

→ 0, we show the following:

1.

Ghdϑ0
h(x) =





0, x ∈ [0, (n− 1)h),
dλ
hα
, x ∈ [(n− 1)h, nh),

− dλ
hα
, x ∈ [nh, 1].

(4.158)

2.

Ghaϑαh(x)

=





a, x ∈ [0, (n− 1)h),

a+ λ
h
Dα−1
c Q(1) + λa

hα
ϑαh((λ+ n)h) +O(1), x ∈ [(n− 1)h, nh),

a+ λ′

h
Dα−1
c Q(1)− λa

hα
ϑαh((λ+ n)h) +O(1), x ∈ [nh, 1].

(4.159)

3.

GhQ(x)
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=





Aαh,1Q(x)

+ 1
hα

(
− Gα−1

ι(x) Q(λh)− λ′Gα−1
ι(x)−1Q((λ+ 1)h)

)
, x ∈ [0, (n− 1)h),

Aαh,1Q(x)− λ
h
Dα−1
c Q(1) + λ

hα
Q((λ+ n)h) +O(1)

+ 1
hα

((∑n−2
i=0 Gα−1

i − λ′Gαn + λGα−1
n−1

)
Q(λh)

−λ′Gα−1
n−1Q((λ+ 1)h)

)
, x ∈ [(n− 1)h, nh),

Aαh,1Q(x)− λ′

h
Dα−1
c Q(1)− λ

hα
Q((λ+ n)h) +O(1)

+ 1
hα

(
λ′Gα−1

n Q(λh) + λ′
∑n−1

i=0 Gα−1
i Q((λ+ 1)h)

)
, x ∈ [nh, 1].

(4.160)

Then, using (4.153), (4.158), (4.159) and (4.160) we have

∥∥Ghfh −Dα
c f
∥∥
L1[0,1]

=

∫ 1

0

∣∣GhQ(x) +Ghaϑαh(x) +Ghdϑ0
h(x)−

(
Dα
cQ(x) + ap0(x)

)∣∣ dx

≤

∫ 1

0

∣∣Aαh,1Q(x)−Dα
cQ(x)

∣∣ dx

+
n−1∑

i=1

∫ ih

(i−1)h

∣∣∣∣
Q(λh)Gα−1

i +Q((λ+ 1)h)Gα−1
i−1

hα

∣∣∣∣ dx+O(h)

≤
∥∥Aαh,1Q−Dα

cQ
∥∥
L1[0,1]

+O(h),

since Q(λh), Q((λ + 1)h) = O(hα) and
∑n+1

i=0

∣∣Gα−1
i

∣∣ < ∞ in view of (A.10). Using

Corollary 4.5.5, as h→ 0,
∥∥Aαh,1Q−Dα

cQ
∥∥
L1[0,1]

→ 0. Hence,

∥∥Ghfh −Dα
c f
∥∥
L1[0,1]

→ 0

in the case of (Dα
c ,NN).

Proof of (4.158): Let x ∈ [0, h), then

Ghdϑ0
h(x) =

d

hα
(
− Gα−1

0 λ+ λGα0
)
= 0.

Let x ∈ [h, (n− 1)h), then using (A.7) and Gα−1
ι(x)−1 = Gα−1

ι(x)−2 + Gαι(x)−1 we have

Ghdϑ0
h(x) =

d

hα

(
− λGα−1

ι(x)−1 − λ′Gα−1
ι(x)−2 + λGαι(x)−1 +

ι(x)−2∑

k=0

Gαk

)

=
d

hα

(
− λGα−1

ι(x)−1 − Gα−1
ι(x)−2 + λGα−1

ι(x)−2 + λGαι(x)−1 + Gα−1
ι(x)−2

)
= 0.
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Next, using (A.7) observe that for x ∈ [(n− 1)h, nh),

Ghdϑ0
h(x) =

d

hα

(
λ
n−2∑

i=0

Gα−1
i − λ′Gα−1

n−2 − λGα−1
n−2 + λ′

n−2∑

k=1

Gαk − λ
n−3∑

k=0

Gα−1
k + Gα0

)

=
d

hα

(
− λ′Gα−1

n−2 + λ′Gα−1
n−2 + (1− λ′)Gα0

)
=
dλ

hα

and for x ∈ [nh, 1],

Ghdϑ0
h(x) =

d

hα

(
λ′

n−2∑

i=0

Gα−1
i − λ′

n−2∑

k=1

Gα−1
k − Gα−1

0

)
= −

dλ

hα
.

Proof of (4.159) : Let x ∈ [0, h), then

Ghaϑαh(x) = a
(
− Gα−1

0 λ′ + λGα0
)
= a.

Let x ∈ [h, (n− 1)h), then using (A.7), (A.8) and Gα−1
ι(x)−1 = Gα−1

ι(x)−2 + Gαι(x)−1 we have

Ghaϑαh(x) = a
(
λ′Gα−1

ι(x)−1 + (−λ′Gα−1
ι(x)−2 + λGαι(x)−1)G

−α−1
0 +

ι(x)−2∑

k=0

Gαk G
−α−1
ι(x)−1−k

)

= a
(
λ′Gαι(x)−1 − λ′Gαι(x)−1 +

ι(x)−1∑

k=0

Gαk G
−α−1
ι(x)−1−k

)

= aG−1
ι(x)−1 = a,

since G−1
ι(x)−1 = 1. Next, for x ∈ [(n− 1)h, nh), using (A.7), (A.8) and Gα−1

n−1 = Gα−1
n−2 +

Gαn−1 observe that

Ghaϑαh(x) = a
(
− λ′

n−2∑

i=0

Gα−1
i + (−λ′Gα−1

n−2 − λGα−1
n−2 )G

−α−1
0

+ λ′
n−2∑

k=1

Gαk G
−α−1
n−1−k − λ

n−3∑

k=0

Gα−1
k G−α−1

n−2−k + Gα0 G
−α−1
n−1

)

= a
(
− λ′

n−2∑

i=0

Gα−1
i − λ′(Gα−1

n−2 + Gαn−1)

+ λ′
n−1∑

k=0

Gαk G
−α−1
n−1−k − λ

n−2∑

k=0

Gα−1
k G−α−1

n−2−k + λGα0 G
−α−1
n−1

)

= a
(
− λ′

n−1∑

i=0

Gα−1
i + λ′G−1

n−1 − λG−2
n−2

)
+
λa

hα
ϑαh((λ+ n)h)

= a
(
− λ′

n−1∑

i=0

Gα−1
i + λ′ − λ(n− 1)

)
+
λa

hα
ϑαh((λ+ n)h)
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= a−
λa

h
+
λa

hα
ϑαh((λ+ n)h) +O(1)

= a+
λ

h
Dα−1
c Q(1) +

λa

hα
ϑαh((λ+ n)h) +O(1),

since a = −Dα−1
c Q(1), G−1

n−1 = 1, G−2
n−2 = n− 1 and

∑n−1
i=0 Gα−1

i <∞ in view of (A.10).

Lastly, for x ∈ [nh, 1], using (A.7), (A.8) and Gα−1
n−1 = Gα−1

n−2 + Gαn−1 observe that

Ghaϑαh(x) = a
(
λ′

n−2∑

i=0

Gα−1
i G−α−1

0 − λ′
n−2∑

k=1

Gα−1
k G−α−1

n−1−k − Gα−1
0 G−α−1

n

)

= a
(
λ′

n−1∑

i=0

Gα−1
i G−α−1

0 − λ′
n−1∑

k=0

Gα−1
k G−α−1

n−1−k − λGα−1
0 G−α−1

n

)

= aλ′
n−1∑

i=0

Gα−1
i − λ′aG−2

n−1 −
λa

hα
ϑαh((λ+ n)h)

= a−
λ′a

h
−
λa

hα
ϑαh((λ+ n)h) +O(1)

= a+
λ′

h
Dα−1
c Q(1)−

λa

hα
ϑαh((λ+ n)h) +O(1),

since a = −Dα−1
c Q(1), G−2

n−1 = n and
∑n−1

i=0 Gα−1
i <∞ in view of (A.10).

Proof of (4.160): Let x ∈ [0, h), then

GhQ(x) =
−Gα−1

0 Q(λh) + λGα0Q((λ+ 1)h)

hα

=
−Gα−1

1 Q(λh)− λ′Gα−1
0 Q((λ+ 1)h)

hα
+ Aαh,1Q(x)

Let x ∈ [h, (n− 1)h), then using Gα−1
k = Gα−1

k−1 + Gαk−1

GhQ(x) =
1

hα

(
− Gα−1

ι(x)−1Q(λh) +
(
− λ′Gα−1

ι(x)−2 + λGαι(x)−1

)
Q((λ+ 1)h)

+

ι(x)−2∑

k=0

GαkQ((λ+ ι(x)− 1− (k − 1))h)

)

=
1

hα

(
− Gα−1

ι(x) Q(λh)− λ′Gα−1
ι(x)−1Q((λ+ 1)h)

+

ι(x)∑

k=0

GαkQ((λ+ ι(x)− 1− (k − 1))h)

)

=
1

hα

(
− Gα−1

ι(x) Q(λh)− λ′Gα−1
ι(x)−1Q((λ+ 1)h)

)
+ Aαh,1Q(x).
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Next, let x ∈ [(n− 1)h, nh), then using Gα−1
k = Gα−1

k−1 + Gαk−1 and the Taylor expansion

(4.129) we have

GhQ(x) =
1

hα

(
n−2∑

i=0

Gα−1
i Q(λh) +

(
− λ′Gα−1

n−2 − λGα−1
n−2

)
Q((λ+ 1)h)

+ λ′
n−2∑

k=1

GαkQ((λ+ n− 1− (k − 1))h)

− λ

n−3∑

k=0

Gα−1
k Q((λ+ n− 1− k)h)

+ Gα0Q((λ+ n)h)

)

=
1

hα

(( n−2∑

i=0

Gα−1
i − λ′Gαn + λGα−1

n−1

)
Q(λh)− λ′Gα−1

n−1Q((λ+ 1)h)

+ λ′
n∑

k=0

GαkQ((λ+ n− 1− (k − 1))h)

− λ

n−1∑

k=0

Gα−1
k Q((λ+ n− 1− k)h)

+ λGα0Q((λ+ n)h)

)

=
1

hα

(( n−2∑

i=0

Gα−1
i − λ′Gαn + λGα−1

n−1

)
Q(λh)− λ′Gα−1

n−1Q((λ+ 1)h)

)

+ λ′Aαh,1Q(x)−
λ

h
Aα−1
h,0 Q(x) +

λ

hα
Q((λ+ n)h)

=
1

hα

(( n−2∑

i=0

Gα−1
i − λ′Gαn + λGα−1

n−1

)
Q(λh)− λ′Gα−1

n−1Q((λ+ 1)h)

)

+ Aαh,1Q(x)−
λ

h
Dα−1
c Q(1) +

λ

hα
Q((λ+ n)h) +O(1).

Lastly, let x ∈ [nh, 1], then using the Taylor expansion (4.129) we have

GhQ(x) =
1

hα

(
λ′

n−2∑

i=0

Gα−1
i Q((λ+ 1)h)− λ′

n−2∑

k=1

Gα−1
k Q((λ+ n− k)h)

− Gα−1
0 Q((λ+ n)h)

)

=
1

hα

(
λ′Gα−1

n Q(λh) + λ′
n−1∑

i=0

Gα−1
i Q((λ+ 1)h)
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− λ′
n∑

k=0

Gα−1
k Q((λ+ n− k)h)− λGα−1

0 Q((λ+ n)h)

)

=
1

hα

(
λ′Gα−1

n Q(λh) + λ′
n−1∑

i=0

Gα−1
i Q((λ+ 1)h)

)

−
λ′

h
Aα−1
h,0 Q(x)−

λ

hα
Q((λ+ n)h)

=
1

hα

(
λ′Gα−1

n Q(λh) + λ′
n−1∑

i=0

Gα−1
i Q((λ+ 1)h)

)

−
λ′

h

(
Dα−1
c Q(1) + h

(
(λ− 1)−

α− 1

2

)
AαQ(1) +O(h2)

)

−
λ

hα
Q((λ+ n)h)

=
1

hα

(
λ′Gα−1

n Q(λh) + λ′
n−1∑

i=0

Gα−1
i Q((λ+ 1)h)

)

+ Aαh,1Q(x)−
λ′

h
Dα−1
c Q(1)−

λ

hα
Q((λ+ n)h) +O(1).

Common properties for operators (Dα,N•):

We first consider the common properties of the operators (Dα,N•) and following

that consider the right boundary conditions one by one and deal with the operators

(Dα,ND) and (Dα,NN) separately.

In these cases, since b, d = 0, f ∈ C(Dα,N•) given by (4.127) reduces to

f = Q+ apα + cpα−2. (4.161)

Moreover, Af given by (4.128) reduces to

Dαf = DαQ+ ap0. (4.162)

Next, we take

fh = Q+ ahϑ
α
h + chϑ

α−2
h + eh. (4.163)

Note that N l(λ) = λ, Dl = 1 = N r, bl1 = Gα0 + Gα1 and for i ≥ 2, bli = Gαi .

Next recall ϑα−2
h (x) = hα−2

(
(1 − θ)G−α+1

ι(x)−2 + θG−α+1
ι(x)−1

)
given in Definition 4.5.1

where θ := θ(λ) = λ
(α−1)λ′+λ

and observe that the approximate power function ϑα−2
h is

constructed such that the following hold:

Let x ∈ [0, h), then

Ghϑα−2
h (x) =

1

h2

(
(Gα0 + Gα1 )θG

−α+1
0 + λGα0

(
(1− θ)G−α+1

0 + θG−α+1
1

)
)
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=
1

h2

(
(1− α)θ + λ− λθ + (α− 1)λθ

)

=
1

h2

(
− θ
(
(α− 1)λ′ + λ

)
+ λ

)
= 0. (4.164)

Let x ∈ [h, 2h), then

Ghϑα−2
h (x) =

1

h2

(
Gα2 θG

−α+1
0 +

(
λ′(Gα0 + Gα1 ) + λGα1

)(
(1− θ)G−α+1

0 + θG−α+1
1

)

+ Gα0
(
(1− θ)G−α+1

1 + θG−α+1
2

)
)

=
1

h2

(
α(α− 1)

2
θ + (λ′ − α)

(
(1− θ) + (α− 1)θ

)

+ (1− θ)(α− 1) +
α(α− 1)

2
θ

)

=
1

h2

(
α(α− 1)θ + λ′(1− θ)− α(1− θ)

+ λ′(α− 1)θ − α(α− 1)θ + (1− θ)(α− 1)

)

=
1

h2

(
θ
(
(α− 1)λ′ + λ

)
− λ

)
= 0. (4.165)

Proof of Statement 2 of Proposition 4.3.2 for the operator (Dα,ND):

In this case, we further have that a = 0 and so f ∈ C(Dα,ND) given by (4.161)

reduces to

f = Q+ cpα−2. (4.166)

Moreover, Af given by (4.162) reduces to

Dαf = DαQ. (4.167)

Note that N r = 1, Dr(λ) = αλ′

αλ′+λ
, bri = Gαi and bn = Gαn . Moreover, the relation

c = −Γ(α− 1)Iαg(1) for f ∈ C(Dα,ND) reads

c = −Γ(α− 1)Q(1). (4.168)

Next, setting ah = 0 and eh = 0 in (4.163) we have

fh = Q+ chϑ
α−2
h . (4.169)
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We also set

ch =
c

ϑα−2
h (1)Γ(α− 1)

. (4.170)

Then, fh → f in L1[0, 1], since in view of Lemma 4.5.3, ϑα−2
h → pα−2 in L1[0, 1].

To show that
∥∥Ghfh −Dαf

∥∥
L1[0,1]

→ 0, we show the following:

1.

Ghchϑ
α−2
h (x) =





0, x ∈ [0, (n− 1)h),

−Dr(λ)−1
hα

Q(1) +O(h1−α), x ∈ [(n− 1)h, nh),
1
hα
Q(1) +O(h1−α), x ∈ [nh, 1].

(4.171)

2.

GhQ(x)

=





Aαh,1Q(x) +O(1), x ∈ [0, 2h),

Aαh,1Q(x), x ∈ [2h, (n− 1)h)

Aαh,1Q(x) + Dr(λ)−1
hα

Q(1) +O(h1−α), x ∈ [(n− 1)h, nh),

Aαh,1Q(x)− 1
hα
Q(1) +O(h1−α), x ∈ [nh, 1].

(4.172)

Then, using (4.167), (4.171) and (4.172) we have

∥∥Ghfh −Dαf
∥∥
L1[0,1]

=

∫ 1

0

∣∣GhQ(x) +Ghchϑ
α−2
h (x)−DαQ(x)

∣∣ dx

≤

∫ 1

0

∣∣Aαh,1Q(x)−DαQ(x)
∣∣ dx+O(h2−α)

=
∥∥Aαh,1Q−DαQ

∥∥
L1[0,1]

+O(h2−α).

Using Corollary 4.5.5, as h→ 0,
∥∥Aαh,1Q−DαQ

∥∥
L1[0,1]

→ 0. Hence,

∥∥Ghfh −Dαf
∥∥
L1[0,1]

→ 0

in the case of (Dα,ND).

Proof of (4.171): For x ∈ [0, 2h) it is clear that Ghchϑ
α−2
h (x) = 0 in view of (4.164)

and (4.165). Next, for x ∈ [2h, (n − 1)h), then Ghϑα−2
h (x) = Aαh,1ϑ

α−1
h (x) = 0 in view

of let x ∈ [(n− 1)h, nh), then using with ι(x) = n, (4.170) and (4.26) we have

Ghchϑ
α−2
h (x) =

ch
h2

(
GαnθG

−α+1
0 +

n−1∑

k=1

Gαk

(
(1− θ)G−α+1

n−1−k + θG−α+1
n−k

))
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+
ch
hα
Dr(λ)Gα0 ϑ

α−2
h ((λ+ n)h)

=
ch
h2

(
GαnθG

−α+1
0 +

n−1∑

k=0

Gαk

(
(1− θ)G−α+1

n−1−k + θG−α+1
n−k

))

+
ch
hα
(
Dr(λ)− 1

)
Gα0 ϑ

α−2
h ((λ+ n)h)

=
ch
hα
(
Dr(λ)− 1

)
ϑα−2
h ((λ+ n)h)

= −
(Dr(λ)− 1)Q(1)

hα

(ϑα−2
h ((λ+ n)h)

ϑα−2
h (1)

)

= −
Dr(λ)− 1

hα
Q(1) +O(h1−α).

Lastly, let x ∈ [nh, 1], then using with ι(x) = n + 1 in the second line, (4.170) and

(4.26) we have

Ghchϑ
α−2
h (x) =

ch
h2

(
n∑

k=1

Gαk

(
(1− θ)G−α+1

n−k + θG−α+1
n+1−k

))

= −
ch
hα

Gαn+1ϑ
α−2
h (λh)

+
ch
h2

(
Gαn+1θG

−α+1
0 +

n∑

k=0

Gαk

(
(1− θ)G−α+1

n−1−k + θG−α+1
n−k

))

−
ch
hα

Gα0 ϑ
α−2
h ((λ+ n+ 1)h)

= −
ch
hα

Gα0 ϑ
α−2
h ((λ+ n+ 1)h) +O(hα−1)

=
1

hα
Q(1)

ϑα−2
h ((λ+ n+ 1)h)

ϑα−2
h (1)

+O(hα−1)

=
Q(1)

hα
+O(h1−α),

where we have also used the fact that
∣∣Gαn+1

∣∣ = O(hα+1) and
∣∣ϑα−2
h (λh)

∣∣ = O(hα−2) to

simplify the first term in the second line.

Proof of (4.172): Let x ∈ [0, h), then

GhQ(x) =
1

hα

(
(Gα0 + Gα1 )Q(λh) + λGα0Q((λ+ 1)h)

)

=
1

hα

(
Gα1Q(λh) + Gα0Q((λ+ 1)h)

)

+
1

hα

(
Gα0Q(λh) + (λ− 1)Gα0Q((λ+ 1)h)

)

= Aαh,1Q(x) +O(1),
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since Q(λh), Q((λ+ 1)h) = O(hα). Let x ∈ [h, 2h), then

GhQ(x) =
1

hα

(
Gα2Q(λh) +

(
λ′(Gα0 + Gα1 ) + λGα1

)
Q((λ+ 1)h)

+ Gα0Q((λ+ 2)h)

)

= Aαh,1Q(x) +
1

hα
(
λ′(Gα0 + Gα1 ) + (λ− 1)Gα1

)
Q((λ+ 1)h)

= Aαh,1Q(x) +O(1),

since Q((λ+1)h) = O(hα). For x ∈ [2h, (n−1)h), it is clear that GhQ(x) = Aαh,1Q(x).

Let x ∈ [(n− 1)h, nh), then using the Taylor expansion (4.129) we have

GhQ(x) =
1

hα

(
GαnQ(λh) +

n−1∑

k=1

GαkQ((λ+ n− 1− (k − 1))h)

+Dr(λ)Gα0Q((λ+ n)h)

)

= Aαh,1Q(x) +
Dr(λ)− 1

hα
Q((λ+ n)h)

= Aαh,1Q(x) +
Dr(λ)− 1

hα
Q(1) +O(h1−α)

Lastly, let x ∈ [nh, 1], then using the Taylor expansion (4.129) we have

GhQ(x) =
1

hα

(
n∑

k=1

GαkQ((λ+ n− (k − 1)h)

)

= −
1

hα
Gαn+1Q(λh) + Aαh,1Q(x)−

1

hα
Q((λ+ n+ 1)h)

= Aαh,1Q(x)−
1

hα
Q((λ+ n+ 1)h) +O(hα+1)

= Aαh,1Q(x)−
1

hα
Q(1) +O(h1−α)

since
∣∣Gαn+1

∣∣ = O(hα+1) and |Q(λh)| = O(hα).

Proof of Statement 2 of Proposition 4.3.2 for the operator (Dα,NN):

In this case, f ∈ C(Dα,NN) is given by (4.161),

f = Q+ apα + cpα−2. (4.173)

Moreover, Af is given by (4.162),

Dαf = DαQ+ ap0. (4.174)
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Note that N r = λ′, Dr = 1, bri = −Gα−1
i−1 and bn = −

∑n−1
i=0 Gαi = −Gα−1

n−1 . Moreover,

the relation a = −Ig(1) for f ∈ C(Dα,NN) reads

a = −Dα−1Q(1). (4.175)

Next, setting ah = a and ch = c in (4.163) we have

fh = Q+ aϑαh(x) + cϑα−2
h + eh, (4.176)

where since we are dealing with a right Neumann boundary condition we construct

eh(x)

=

{
0, if x ∈ [0, nh),

−λ
(
Q((λ+ n)h) + aϑαh((λ+ n)h) + cϑα−2

h ((λ+ n)h)
)
, if x ∈ [nh, 1].

(4.177)

Then, as h → 0, ‖eh‖L1[0,1]
→ 0. This also implies that fh → f in L1[0, 1], since in

view of Lemma 4.5.3, ϑαh → pα and ϑα−2
h → pα−2 in L1[0, 1].

Further, observe that

Gheh(x) =





0, if x ∈ [0, (n− 1)h),

− λ
hα

(
Q((λ+ n)h) + aϑαh((λ+ n)h)

+cϑα−2
h ((λ+ n)h)

)
, if x ∈ [(n− 1)h, nh),

λ
hα

(
Q((λ+ n)h) + aϑαh((λ+ n)h)

+cϑα−2
h ((λ+ n)h)

)
, if x ∈ [nh, 1].

(4.178)

To show that
∥∥Ghfh −Dαf

∥∥
L1[0,1]

→ 0, we show the following:

1.

Ghcϑα−2
h (x) =





0, x ∈ [0, (n− 1)h),
λc
hα
ϑα−2
h ((λ+ n)h)) +O(hα−2), x ∈ [(n− 1)h, nh),

− λc
hα
ϑα−2
h ((λ+ n)h) +O(hα−2), x ∈ [nh, 1].

(4.179)

2.

Ghaϑαh(x) =





a+ aλ′(α− 2), x ∈ [0, h),

a+ aλ′(1− Gα2 ), x ∈ [h, 2h),

a− aλ′Gαι(x), x ∈ [2h, (n− 1)h),

a+ λ
h
Dα−1Q(1)

+ λa
hα
ϑαh((λ+ n)h)) +O(1), x ∈ [(n− 1)h, nh),

a+ λ′

h
Dα−1Q(1)

− λa
hα
ϑαh((λ+ n)h) +O(1), x ∈ [nh, 1].

(4.180)
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3.

GhQ(x)

=





Aαh,1Q(x) +O(1), x ∈ [0, 2h)

Aαh,1Q(x), x ∈ [2h, (n− 1)h)

Aαh,1Q(x)− λ
h
Dα−1Q(1) + λ

hα
Q((λ+ n)h)) +O(1), x ∈ [(n− 1)h, nh),

Aαh,1Q(x)− λ′

h
Dα−1Q(1)− λ

hα
Q((λ+ n)h) +O(1), x ∈ [nh, 1].

(4.181)

Then, using (4.174), (4.179) and (4.181) we have

∥∥Ghfh −Dαf
∥∥
L1[0,1]

=

∫ 1

0

∣∣GhQ(x) +Ghaϑαh(x) +Ghcϑα−2
h (x) +Gheh(x)− (DαQ(x) + ap0(x))

∣∣ dx

≤

∫ 1

0

∣∣Aαh,1Q(x)−DαQ(x)
∣∣ dx+

n−1∑

i=3

∫ ih

(i−1)h

∣∣aλ′Gαi+1

∣∣ dx+O(hα−1)

=
∥∥Aαh,1Q−DαQ

∥∥
L1[0,1]

+O(hα−1),

since
∑n−1

i=3 Gαi+1 <∞ in view of (A.10). Using Corollary 4.5.5, as h→ 0,

∥∥Aαh,1Q−DαQ
∥∥
L1[0,1]

→ 0.

Hence, ∥∥Ghfh −Dαf
∥∥
L1[0,1]

→ 0

in the case of (Dα,NN).

Proof of (4.179): For x ∈ [0, 2h) it is clear that Ghcϑα−2
h (x) = 0 in view of (4.164)

and (4.165). Next, for x ∈ [2h, (n − 1)h), in view of Proposition 4.5.7, Ghcϑα−2
h (x) =

cAαh,1ϑ
α−2
h (x) = 0. Therefore, let x ∈ [(n− 1)h, nh), then in view of Proposition 4.5.7

Ghcϑα−2
h (x) =

c

hα

(
− Gα−1

n−1ϑ
α−2
h (λh)

+
n−1∑

k=1

(
λ′Gαk − λGα−1

k−1

)
ϑα−2
h ((λ+ n− 1− (k − 1))h)

+ Gα0 ϑ
α−2
h ((λ+ n)h)

)

=
c

hα

(
(
− Gα−1

n−1 + λGα−1
n−1 − λ′Gαn

)
ϑα−2
h (λh)
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+ λ′
n∑

k=0

Gαk ϑ
α−2
h ((λ+ n− 1− (k − 1))h)

− λ
n−1∑

k=0

Gα−1
k ϑα−2

h ((λ+ n− 1− k)h)

+ λGα0 ϑ
α−2
h ((λ+ n)h)

)

= −
c

hα
Gα−1
n ϑα−2

h (λh) + λ′cAαh,1ϑ
α−2
h (x)

−
λc

h
Aα−1
h,0 ϑ

α−2
h (x) +

λc

hα
ϑα−2
h ((λ+ n)h))

=
λc

hα
ϑα−2
h ((λ+ n)h)) +O(hα−2),

since
∣∣ϑα−2
h (λh)

∣∣ = O(hα−2) and
∣∣Gα−1

n−1

∣∣ = O(hα). Lastly, let x ∈ [nh, 1], then in view

of Proposition 4.5.7

Ghcϑα−2
h (x) =

c

hα

(
− λ′

n−1∑

k=1

Gα−1
k ϑα−2

h ((λ+ n− k)h)− Gα−1
0 ϑα−2

h ((λ+ n)h)

)

=
λ′c

hα
Gα−1
n ϑα−2

h (λh)−
λ′c

hα

n∑

k=0

Gα−1
k ϑα−2

h ((λ+ n− k)h)

−
λc

hα
Gα−1
0 ϑα−2

h ((λ+ n)h)

=
λ′c

hα
Gα−1
n ϑα−2

h (λh)−
λ′c

h
Aα−1
h,0 ϑ

α−2
h (x)−

λc

hα
ϑα−2
h ((λ+ n)h)

= −
λc

hα
ϑα−2
h ((λ+ n)h) +O(hα−2),

since |Gα−1
n | = O(hα) and

∣∣ϑα−2
h (λh)

∣∣ = O(hα−2).

Proof of (4.180): Let x ∈ [0, h), then

Ghaϑαh(x) =
a

hα

(
(Gα0 + Gα1 )ϑ

α
h(λh) + λGα0 ϑ

α
h((λ+ 1)h)

)

= a
(
(1− α)(λ− 1) + λ

)

= a+ aλ′(α− 2).

Let x ∈ [h, 2h), then

Ghaϑαh(x) =
a

hα

(
Gα2 ϑ

α
h(λh) +

(
λ′(Gα0 + Gα1 ) + λGα1

)
ϑαh((λ+ 1)h)

+ Gα0 ϑ
α
h((λ+ 2)h)

)
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= a+ aλ′(1− Gα2 ).

For x ∈ [2h, (n− 1)h), in view of Proposition 4.5.7,

Ghaϑαh(x) = aAαh,1ϑ
α
h(x) = a− aλ′Gαι(x).

Therefore, let x ∈ [(n− 1)h, nh), then in view of Proposition 4.5.7

Ghaϑαh(x) =
a

hα

(
− Gα−1

n−1ϑ
α
h(λh)

+
n−1∑

k=1

(
λ′Gαk − λGα−1

k−1

)
ϑαh((λ+ n− 1− (k − 1))h)

+ Gα0 ϑ
α
h((λ+ n)h)

)

=
a

hα

(
(
− Gα−1

n−1 + λGα−1
n−1 − λ′Gαn

)
ϑαh(λh)

+ λ′
n∑

k=0

Gαk ϑ
α
h((λ+ n− 1− (k − 1))h)

− λ

n−1∑

k=0

Gα−1
k ϑαh((λ+ n− 1− k)h)

+ λGα0 ϑ
α
h((λ+ n)h)

)

= λ′aGα−1
n + λ′aAαh,1ϑ

α
h(x)−

λa

h
Aα−1
h,0 ϑ

α
h(x) +

λa

hα
ϑαh((λ+ n)h))

= λ′aGα−1
n + λ′a(1− λ′Gαn )

−
λa

h

(
h(n− 1− λ′Gα−1

n−1 )
)
+
λa

hα
ϑαh((λ+ n)h))

= λ′aGα−1
n + a− λa− (λ′)2aGαn

−
λa

h

(
1 + h(−2− λ′Gα−1

n−1 )
)
+
λa

hα
ϑαh((λ+ n)h))

= a+
λ

h
Dα−1Q(1) +

λa

hα
ϑαh((λ+ n)h)) +O(1),

where we replaced a = −Dα−1Q(1) in view of (4.175).

Lastly, let x ∈ [nh, 1], then in view of Proposition 4.5.7

Ghaϑαh(x) =
a

hα

(
− λ′

n−1∑

k=1

Gα−1
k ϑαh((λ+ n− k)h)− Gα−1

0 ϑαh((λ+ n)h)

)

=
λ′a

hα
Gα−1
n ϑαh(λh)−

λ′a

hα

n∑

k=0

Gα−1
k ϑαh((λ+ n− k)h)
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−
λa

hα
Gα−1
0 ϑαh((λ+ n)h)

=
λ′a

hα
Gα−1
n ϑαh(λh)−

λ′a

h
Aα−1
h,0 ϑ

α
h(x)−

λa

hα
ϑαh((λ+ n)h)

=
λ′a

hα
Gα−1
n ϑαh(λh)−

λ′a

h

(
h(n− λ′Gα−1

n )
)
−
λa

hα
ϑαh((λ+ n)h)

=
λ′a

hα
Gα−1
n ϑαh(λh)−

λ′a

h

(
1− h− hλ′Gα−1

n )
)
−
λa

hα
ϑαh((λ+ n)h)

= a+
λ′

h
Dα−1Q(1)−

λa

hα
ϑαh((λ+ n)h) +O(1),

where we replaced a = −Dα−1Q(1) in view of (4.175).

Proof of (4.181): Let x ∈ [0, h), then

GhQ(x) =
1

hα

(
(Gα0 + Gα1 )Q(λh) + λGα0Q((λ+ 1)h)

)

=
1

hα

(
Gα1Q(λh) + Gα0Q((λ+ 1)h)

)

+
1

hα

(
Gα0Q(λh) + (λ− 1)Gα0Q((λ+ 1)h)

)

= Aαh,1Q(x) +O(1),

since Q(λh), Q((λ+ 1)h) = O(hα). Let x ∈ [h, 2h), then

GhQ(x) =
1

hα

(
Gα2Q(λh) +

(
λ′(Gα0 + Gα1 ) + λGα1

)
Q((λ+ 1)h) + Gα0Q((λ+ 2)h)

)

= Aαh,1Q(x) +
1

hα
(
λ′Gα0

)
Q((λ+ 1)h)

= Aαh,1Q(x) +O(1),

since Q((λ+1)h) = O(hα). For x ∈ [2h, (n−1)h), it is clear that GhQ(x) = Aαh,1Q(x).

Next, let x ∈ [(n− 1)h, nh), then using (4.130) we have

GhQ(x) =
1

hα

(
− Gα−1

n−1Q(λh) +
n−1∑

k=1

(
λ′Gαk − λGα−1

k−1

)
Q((λ+ n− 1− (k − 1))h)

+ Gα0Q((λ+ n)h)

)

=
1

hα

(
(
− Gα−1

n−1 + λGα−1
n−1 − λ′Gαn

)
Q(λh)

+ λ′
n∑

k=0

GαkQ((λ+ n− 1− (k − 1))h)
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− λ
n−1∑

k=0

Gα−1
k Q((λ+ n− 1− k)h)

+ λGα0Q((λ+ n)h)

)

= −
1

hα
Gα−1
n Q(λh) + λ′Aαh,1Q(x)−

λ

h
Aα−1
h,0 Q(x) +

λ

hα
Q((λ+ n)h))

= λ′Aαh,1Q(x)−
λ

h
Aα−1
h,0 Q(x) +

λ

hα
Q((λ+ n)h)) +O(hα)

= Aαh,1Q(x)−
λ

h
Dα−1Q(1) +

λ

hα
Q((λ+ n)h)) +O(1),

since |Q(λh)| = O(hα) and
∣∣Gα−1

n−1

∣∣ = O(hα). Lastly, let x ∈ [nh, 1], then using (4.130)

we have

GhQ(x) =
1

hα

(
− λ′

n−1∑

k=1

Gα−1
k Q((λ+ n− k)h)− Gα−1

0 Q((λ+ n)h)

)

=
λ′

hα
Gα−1
n Q(λh)−

λ′

hα

n∑

k=0

Gα−1
k Q((λ+ n− k)h)−

λ

hα
Gα−1
0 Q((λ+ n)h)

= −
λ′

h
Aα−1
h,0 Q(x)−

λ

hα
Q((λ+ n)h) +O(hα)

= −
λ′

h

(
Dα−1Q(1) + h

(
(λ− 1)−

α− 1

2

)
DαQ(1) +O(h2)

)

−
λ

hα
Q((λ+ n)h) +O(hα)

= Aαh,1Q(x)−
λ′

h
Dα−1Q(1)−

λ

hα
Q((λ+ n)h) +O(1),

since |Gα−1
n | = O(hα) and |Q(λh)| = O(hα).

The proof of Statement 2 of Proposition 4.3.2 for all the fractional derivative oper-

ators on L1[0, 1] given in Table 4.7 is complete.

This also completes the proof of Proposition 4.3.2.
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Appendix A

Properties of Grünwald coefficients

TheGrünwald coefficients, which we denote by Gαm, play a significant role in our study of

numerical approximations of fractional derivative operators. We list here their relevant

properties, see [84, p. 16–21].

The Grünwald coefficients expressed as a quotient of Gamma functions are related

to the binomial coefficients by

Gαm =
Γ(m− α)

Γ(−α)Γ(m+ 1)
= (−1)m

(
α

m

)
=

(
m− α− 1

m

)
, (A.1)

where α ∈ R and m ∈ N0. Note the recurrence relation

Gαn+1 =
n− α

n+ 1
Gαn , G

α
0 = 1, n ∈ N (A.2)

and that

Gαm = 0, if m ≤ −1, m ∈ Z. (A.3)

Setting x = 1 in the Binomial series,

(1− x)α =
∞∑

m=0

Gαmx
m, (A.4)

we have
∞∑

m=0

Gαm = 0. (A.5)

As a consequence, we have the following relation between the partial and tail sums of

the Grünwald coefficients,
k∑

m=0

Gαm = −
∞∑

m=k+1

Gαm. (A.6)
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The partial sum of the Grünwald coefficients is also given by

k∑

m=0

Gαm = Gα−1
k . (A.7)

The following summation formula for the product of binomial coefficients is well known

which we rewrite in terms of Grünwald coefficients,

k∑

m=0

GqmG
Q
k−m = (−1)k

k∑

m=0

(
q

m

)(
Q

k −m

)
= (−1)k

(
q +Q

k

)
= Gq+Qk . (A.8)

The quotient of Gamma functions has the asymptotic behaviour,

Γ(m− α)

Γ(m+ 1)
= m−1−α

[
1 +

α(α + 1)

2m
+O(m−2)

]
, m→ ∞,

where m ∈ N and α ∈ R. As a consequence, for α 6∈ N0, we have the asymptotics

Gαm =
m−1−α

Γ(−α)

[
1 +O(m−1)

]
(A.9)

and the absolute convergence of the series for α > −1,

∞∑

m=0

|Gαm| <∞. (A.10)
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Appendix B

Reminder on function spaces,

distributions and transforms

B.1 Function spaces

We say that a property holds locally on R if it holds for any finite interval. We collate

the definitions of the various function spaces that we work with.

Definition B.1.1 (Function spaces).

1. Let Ω ⊂ R, then Lr(Ω) for 1 ≤ r ≤ ∞, denotes the space of complex-valued

Lebesgue measurable functions on Ω that satisfy ‖f‖Lr(Ω) <∞, where the Lr(Ω)-

norm is given by

‖f‖Lr(Ω) =





(∫
Ω
|f(x)|p dx

) 1
p if 1 ≤ p <∞,

‖f‖∞ = ess sup
x∈Ω

|f(x)| if p = ∞.

It is well known that Lr(Ω) with the usual pointwise addition and scalar multipli-

cation can be made into a Banach space by identifying functions that are equal

almost everywhere.

2. AC[a, b] denotes the space of absolutely continuous functions on [a, b]; that is,

for u ∈ AC[a, b], there exists v ∈ L1[a, b] such that u(x) = u(a) +
∫ x
a
v(t)dt for

x ∈ [a, b].

3. Let Dn denote the operator theoretic nth power of the generalised derivative

operator D, where D : AC[0, 1] ⊂ L1[0, 1] → L1[0, 1] is given by Df(x) = f ′(x)

for almost all x ∈ [0, 1].
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4. W r,1(R) for r ≥ 1, denotes the Sobolev space of Lr(R)-functions with generalised

first derivative in Lr(R); that is, f ∈ W r,1(R) if f ∈ Lr(R), f is locally absolutely

continuous, and Df ∈ Lr(R).

5. W r,1
per[−π, π] for r ≥ 1, denotes the Sobolev space of 2π-periodic functions g on R

where both g and its generalized derivative Dg belong to Lr[−π, π].

6. Let W 1,n[0, 1] for n ∈ N, denote the Sobolev space of functions such that the

function along with its generalised derivatives up to order n belong to L1[0, 1],

W 1,n[0, 1] =
{
u ∈ L1[0, 1] : D

ku ∈ L1[0, 1], k = 1, 2, ...n
}
.

In particular, for n = 1, W 1,1[0, 1] = AC[0, 1] while for n = 2, u is continuously

differentiable and Du ∈ AC[0, 1] so that D2u ∈ L1[0, 1].

We list some of the well known inequalities.

1. The well known Hausdorff-Young-Titchmarsh inequality [23, p.211] is given by

‖û‖Ls ≤ (2π)
1
s ‖u‖Lr , u ∈ Lr, 1 ≤ r ≤ 2,

1

r
+

1

s
= 1. (B.1)

2. Let p, r, s ≥ 1 be such that 1
r
+ 1

s
= 1

p
+ 1. Let f ∈ Lr(R), g ∈ Ls(R). Then, the

Young’s inequality for the convolution f ∗ g is given by

‖f ∗ g‖Lp(R) ≤ C ‖f‖Lr(R) ‖g‖Ls(R) . (B.2)

B.2 Fourier and Laplace Transforms

Definition B.2.1 (Fourier transform). If f ∈ L1(R), then we define the Fourier

transform f̂ of f by

f̂(k) =

∫

R

eikxf(x) dx, k ∈ R. (B.3)

Moreover, if f̂ ∈ L1(R), then the inverse Fourier transform is given by

f̌(x) =
1

2π

∫

R

e−ikxf̂(k) dk, x ∈ R. (B.4)

Remark B.2.2. It is well known that the Fourier transform of f ∈ L1(R) is bounded

and belongs to C0(R). For 1 ≤ r ≤ 2, to define the Fourier transform of f ∈ Lr(R)

(and similarly, the inverse Fourier transform of f̂ ∈ Lr(R)) where Lr(R) is given by

Definition B.1.1, it is first defined for f ∈ Lr(R) ∩ L1(R) as in Definition B.3 above.
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Then, using the fact that Lr(R)∩L1(R) is dense in Lr(R), the definition above is then

extended to the whole of Lr(R) using (B.1). Thus, the Fourier transform of f ∈ Lr(R)

is a function f̂ ∈ Ls(R), where
1
r
+ 1

s
= 1.

For f ∈ W n,r(R) where 1 ≤ r ≤ 2, the Fourier transform of the integer order

derivative is well known and is given by [23, page 195]

D̂nf(k) = (−ik)nf̂(k). (B.5)

We also make note of the following theorem on the uniqueness of Fourier transforms,

see [92, p. 187].

Theorem B.2.3. If f ∈ L1(R) and f̂(k) = 0 for all k ∈ R, then f(x) = 0 almost

everywhere.

For functions that are defined only on the half-line R+, the Laplace transform is

defined as follows.

Definition B.2.4. Let f ∈ L1(R
+) then we define the Laplace transform by

f̂(z) =

∫

R+

eztf(t) dt, Re(z) ≤ 0. (B.6)

Moreover, it is well known that the Laplace transform of L1(R
+)-function is analytic

for Re(z) < 0 and continuous for Re(z) ≤ 0.

Remark B.2.5. Note that when there is no confusion, we use the same notation f̂ and

f̌ to denote both the Fourier and Laplace transforms and their inverses, respectively.

However, if and when the need arises, we use F(f) and L(f) for Fourier and Laplace

transforms, respectively.

Lastly, both the Fourier and Laplace transforms have the following translation

property,

F(f(x− a))(k) = eiakF(f(x))(k), a ∈ R

L(f(x− a))(z) = eazL(f(x))(z), a ∈ R+. (B.7)
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B.3 Distributions

The contents of this section are adapted from [25, 111].

Let S denote the space of Schwartz functions of rapid descent on R. Let S ′ denote

the space of tempered distributions (continuous, linear functionals on S). If f is a

locally integrable function, then the so-called regular distribution f̃ ∈ S ′ is given by

< f̃, θ >=

∫

R

f(t)θ(t) dt, θ ∈ S. (B.8)

We now define the distributional Fourier and inverse Fourier transforms.

Definition B.3.1. If f̃ ∈ S ′, then we define the Fourier transform ˆ̃f ∈ S ′ by

〈
ˆ̃f, θ
〉
=
〈
f̃ , θ̂
〉
,

where θ ∈ S and θ̂ is given by (B.3). In a similar fashion, for g̃ ∈ S ′, the inverse Fourier

transform ˇ̃g ∈ S ′ is defined by 〈
ˇ̃g, ψ
〉
=
〈
g̃, ψ̌

〉
,

where ψ ∈ S and ψ̌ is given by (B.4).

Remark B.3.2. The regular distributions corresponding to the ordinary Fourier and

inverse Fourier transforms are uniquely determined. We denote the ring of (distribu-

tional) Fourier transforms of L1-functions by F(L1). In general, f̃ ∈ F(L1) if there

exists g ∈ L1(R) such that f̃ = ˆ̃g, where g̃ denotes the regular distribution correspond-

ing to the function g.

For f̃n, f̃ ∈ S ′, we say that f̃nconverges in S ′ to f̃ if
〈
f̃n, θ

〉
→
〈
f̃ , θ
〉
for all θ ∈ S.

Theorem B.3.3. Let the distributional Fourier and inverse Fourier transforms be as

in Definition B.3.1. Then we have the following:

1. The Fourier transform and its inverse are continuous linear mappings of S ′ onto

itself.

2. If the series
∑∞

n=1 f̃n converges in S ′ to f̃ , then

ˆ̃f = F

(
∞∑

n=1

f̃n

)
=

∞∑

n=1

F
(
f̃n

)
∈ S ′,

that is, the distributional Fourier transformation can be applied to a series term

by term.
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Remark B.3.4. To define the function zα where z ∈ C and α ∈ R is fixed, follow-

ing the standard practice in complex analysis [29], we take the negative real axis as

the branch cut and define zα := eα log z = |z|α eiα arg z where −π < arg(z) < π and

log z denotes the principal branch of the logarithm, defined on the open connected set

C/ {z ∈ R : z ≤ 0}.

The Gamma function has the following well-known integral representation,

Γ(α) =

∫ ∞

0

tα−1e−t dt, Re(α) > 0. (B.9)

This integral representation of the gamma function has the following general version,

see [95, p. 137], ∫ ∞

0

φα−1(t)e
−zt dt = z−α, z 6= 0, (B.10)

where φα−1 is given by (1.24), Re(α) > 0, if Re(z) > 0 and 0 < Re(α) < 1, if Re(z) = 0.

We conclude with a result similar to B.10 for Fourier transforms, that we require

in Section 1.4. We use (−ik)−α for α > 0 to denote both the function and the corre-

sponding regular distribution in S ′.

Proposition B.3.5. Let φα−1 be given by (1.24), then the distributional Fourier trans-

form of φα−1 is a regular tempered distribution,

φ̂α−1(k) = (−ik)−α, α ∈ R+,

Proof. We give a brief sketch of the proof. Let α , ǫ ∈ R+ and consider f̃ǫ, the regular

distribution associated with the function fǫ(x) = e−ǫxφα−1(x). Then, for each ǫ >

0, fǫ ∈ L1(R), f̃ǫ ∈ S ′ and f̃ǫ converges to φ̃α−1 in S ′ as ǫ → 0. Moreover, the

distributional Fourier transform ˆ̃fǫ ∈ S ′ is given by the regular distribution, see [25, p.

139]

ˆ̃fǫ(k) = (ǫ− ik)−α =
e−iα tan−1( k

ǫ
)

(k2 + ǫ2)
α
2

.

As ǫ→ 0, ˆ̃fǫ converges to (−ik)−α in S ′.
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Appendix C

Reminder on operator theory,

semigroups and multipliers

The contents of this appendix are adapted from the treatises, [1, 4, 37, 47]. In what

follows, let (X, ‖·‖X) denote a Banach space.

C.1 Operator theory

Let (A,D(A)) denote a linear operator A : D(A) ⊂ X → X with domain D(A).

Definition C.1.1. Let B(X) denote the space of all bounded linear operators A :

X → X with operator norm given by

‖A‖B(X) := sup {‖Af‖X : ‖f‖X = 1} , A ∈ B(X).

Definition C.1.2 (Graph norm and core). The graph norm of (A,D(A)) is given

by

‖f‖A := ‖f‖X + ‖Af‖X , f ∈ D(A).

A subspace C(A) of D(A) is called a core for A if it is dense in D(A) in the graph norm.

Definition C.1.3 (Closed operator). Let {fn}n∈N ⊂ D(A) be an arbitrary sequence

such that ‖fn − f‖X → 0 and ‖Afn − g‖X → 0. Then, (A,D(A)) is said to be closed,

if f ∈ D(A) and Af = g.

Definition C.1.4 (Invertible operator). An operator A on X is said to be invertible

if there exists B ∈ B(X) such that BAf = f for all f ∈ D(A), and Bg ∈ D(A) and

ABg = g for all g ∈ X. Moreover, A is invertible if and only if A is closed, the range

rg(A) = X and the kernel Ker(A) = {0}, see [1, p. 462].
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Definition C.1.5. For a closed linear operator (A,D(A)), its resolvent set is given by

ρ(A) := {λ ∈ C : λI − A is invertible}

and its spectrum by σ(A) := C/ρ(A). The operator R(λ,A) := (λI − A)−1 ∈ B(X) is

called the resolvent operator, where I denotes the identity operator on X.

Definition C.1.6 (Dissipative operator). A linear operator (A,D(A)) is called

dissipative if

‖(λI − A)f‖X ≥ λ ‖f‖X ,

for all λ > 0 and f ∈ D(A).

If an operator A has a dense domain in X, we refer to A as a densely defined

operator and we define its adjoint operator on the dual space X∗ as follows.

Definition C.1.7 (Adjoint operator). For a densely defined operator (A,D(A)) on

X, the adjoint operator (A∗,D(A∗)) on X∗ is defined by

D(A∗) := {x∗ ∈ X∗ : ∃ y∗ ∈ X∗ such that 〈Ax, x∗〉 = 〈x, y∗〉 ∀x ∈ D(A)} ,

A∗x∗ = y∗ for x∗ ∈ D(A∗).

Let Y be a Banach space that is continuously embedded in X denoted by Y →֒ X.

Definition C.1.8 (Part of an operator). The part of A in Y is the operator A|Y

defined by

A|Y y := Ay

D(A|Y ) := {y ∈ D(A) ∩ Y : Ay ∈ Y }

Definition C.1.9 (Positive operator). Let f : X → R where X = C0(Ω) or L1(Ω)

as given in Definition B.1.1 and Ω is a locally compact topological space. Then f is

called a positive function on C0(Ω) (L1(Ω)) denoted by f ≥ 0, if f(x) ≥ 0 for all

(almost all) x ∈ Ω. A linear operator T : X → X is called a positive operator, if

Tf ≥ 0 whenever f ≥ 0.

C.2 Semigroups

Definition C.2.1 (Semigroup). A family (T (t))t≥0 of bounded linear operators on

X, is called a (one-parameter) semigroup (on X), if

T (t+ s) = T (t)T (s), for all t, s ≥ 0, (C.1)
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T (0) = I,

where I denotes the identity operator on X. Moreover, if (C.1) is satisfied for all

t, s ∈ R, then (T (t))t∈R is called a (one-parameter) group on X.

Definition C.2.2 (Strongly continuous semigroup). A semigroup is called a

strongly continuous semigroup or C0-semigroup, if the functions t 7→ T (t)f are continu-

ous from [0,∞) into X for all f ∈ X. Moreover, a group is called a strongly continuous

group or C0-group, if the functions t 7→ T (t)f are continuous from R into X for all

f ∈ X.

Definition C.2.3 (Bounded semigroup). A strongly continuous semigroup (group)

is called bounded, if for some M ≥ 1, ‖T (t)‖B(X) ≤M for all t ≥ 0 (t ∈ R). A strongly

continuous semigroup (group) is called contractive, if ‖T (t)‖B(X) ≤ 1 for all t ≥ 0

(t ∈ R).

Definition C.2.4 (Generator of a semigroup). The generator A : D(A) ⊂ X → X

of a strongly continuous semigroup (T (t))t≥0 on X is the operator

Af := lim
h↓0

T (h)f − f

h
,

defined for every f ∈ D(A) where

D(A) :=

{
f ∈ X : lim

h↓0

T (h)f − f

h
exists

}

Definition C.2.5 (Positive semigroup). A semigroup (T (t))t≥0 on X is called pos-

itive if T (t) ≥ 0 for all t ≥ 0.

Moreover, if the semigroup has generator A then the semigroup is positive if and

only if R(λ,A) ≥ 0 for sufficiently large real λ.

Let the sector Σδ be defined by

Σδ := {λ ∈ C : |arg λ| < δ} / {0} .

Definition C.2.6 (Sectorial operator). A closed linear operator A with dense do-

main D(A) in X is called sectorial (of angle θ), if there exists 0 < θ ≤ π
2
such that the

following are satisfied:

• The sector Σπ
2
+θ is contained in the resolvent set ρ(A) given by Definition C.1.5.
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• For each ǫ ∈ (0, θ) there exists a constant Mǫ ≥ 1 such that

‖R(λ,A)‖B(X) ≤
Mǫ

|λ|
, for all λ ∈ Σπ

2
+θ−ǫ/ {0} ,

where the resolvent operator R(λ,A) is given by Definition C.1.5.

Definition C.2.7 (Analytic semigroup). A family (T (z))z∈Σδ∪{0} of bounded linear

operators is called an analytic semigroup (of angle δ ∈ (0, π
2
]) if

1. T (0) = I and T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ.

2. The map z 7→ T (z) is analytic in Σδ.

3. limz→0 T (z)f = f for all f ∈ X, z ∈ Σδ′ and 0 < δ′ < δ.

Moreover, if ‖T (z)‖B(X) is bounded in the sector Σδ′ for each 0 < δ′ < δ, then

(T (z))z∈Σδ∪{0} is called a bounded analytic semigroup.

We state the following well-known important theorems without proof. For proofs

we refer the reader to, for example [37].

Theorem C.2.8. Let A be an operator on X with domain D(A). Then the following

statements are equivalent:

1. A is sectorial.

2. A generates a bounded analytic semigroup (T (z))z∈Σδ∪{0} on X.

3. A generates a bounded strongly continuous semigroup (T (t))t≥0 on X such that

rg(T (t)) ⊂ D(A) for all t > 0, and

M := sup
t>0

‖tAT (t)‖B(X) <∞.

Theorem C.2.9 (Lumer-Phillips theorem). For a densely defined, dissipative op-

erator (A,D(A)) on X the following statements are equivalent:

1. The closure A of A generates a contraction semigroup.

2. rg(λ− A) is dense in X for some (hence all) λ > 0.
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Theorem C.2.10 (Trotter-Kato approximation theorem). Let (Tn(t))t≥0, n ∈

N and (T (t))t≥0 be strongly continuous semigroups on X with generators An and A,

respectively. Further, assume that they satisfy the estimate

‖T (t)‖B(L1)
, ‖Tn(t)‖B(L1)

≤Meωt, for all t ≥ 0, n ∈ N,

for some constants M ≥ 1, ω ∈ R. Let C(A) be a core for A and consider the following

statements:

(a) C(A) ⊂ D(An) for all n ∈ N and Anx→ Ax for all x ∈ C(A).

(b) For each x ∈ C(A), there exists xn ∈ D(An) such that

xn → x and Anxn → Ax.

(c) R(λ,An)x→ R(λ,A)x for all x ∈ X and some, hence all λ > ω.

(d) Tn(t)x→ T (t)x for all x ∈ X, uniformly for t ∈ [0, t0].

Then we have the following implications

(a) ⇒ (b) ⇔ (c) ⇔ (d),

while (b) 6⇒ (a).

Definition C.2.11. The initial value problem

u′(t) = Au(t) for t ≥ 0,

u(0) = x, (C.2)

is called the abstract Cauchy problem associated to (A,D(A)) and the initial value x.

Definition C.2.12. Let u : R+ → X. Then

• u is called a classical solution of (C.2) if u is continuously differentiable with

respect to X, u(t) ∈ D(A) for all t ≥ 0, and (C.2) holds.

• u is called a mild solution of (C.2), if u is continuous,
∫ t
0
u(s) ds ∈ D(A) for all

t ≥ 0 and

u(t) = A

∫ t

0

u(s) ds+ x.

Theorem C.2.13. If (A,D(A)) is the generator of the strongly continuous semigroup

(T (t))t≥0, then:
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• For every x ∈ D(A), the function

u : t 7→ u(t) := T (t)x

is the unique classical solution of (C.2).

• For every x ∈ X, the function

u : t 7→ u(t) := T (t)x

is the unique mild solution of (C.2).

Definition C.2.14. The abstract Cauchy problem (C.2) is called well-posed if the

following hold:

1. For every x ∈ D(A), there exists a unique classical solution u(·, x) for (C.2).

2. D(A) is dense in X.

3. For every sequence {xn}n∈N ⊂ D(A) such that limn→∞ xn = 0, one has

lim
n→∞

u(t, xn) = 0

uniformly in compact intervals [0, t0].

Theorem C.2.15. For a closed operator A : D(A) ⊂ X → X, the associated abstract

Cauchy problem (C.2) is well-posed if and only if A generates a strongly continuous

semigroup on X.

C.3 Multipliers

In what follows, let B(R) denote the Borel σ-algebra and MB(R) the set of all bounded

(complex) Borel measures on R.

Definition C.3.1. The Dirac measure concentrated at k ∈ R is denoted by δk where

for E ∈ B(R),

δk(E) =
∑

x∈E

f(x)

and

f(x) =

{
1, if x = k,

0, otherwise.
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A collection of sets {Em}, is called a partition of E ∈ B(R), if E = ∪∞
m=1Em and

for i 6= j, Ei ∩ Ej = ∅.

Definition C.3.2. The total variation of a (complex) Borel measure µ on R is a

bounded, positive measure denoted by |µ| : R → [0,∞), where the set function |µ| is

defined on B(R) by

|µ| (E) = sup
∞∑

m=1

|µ(Em)| ,

the supremum being taken over all partitions {Em} of E. On setting the total variation

norm to be

‖µ‖TV = |µ| (R),

and defining addition and scalar multiplication in the usual manner, (MB(R), ‖·‖TV)

is a normed vector space, see [92, Chapter 6].

We state the following well-known result without proof, see [92, Theorem 6.13].

Theorem C.3.3. Let µ be a complex Borel measure on R with density ρ ∈ L1(R); that

is, µ(dx) = ρ(x)dx. Then,

‖µ‖TV = ‖ρ‖L1
.

Definition C.3.4. Let ψ be a complex-valued measurable function, ψ : R → C. Then

ψ is called a L1-(Fourier) multiplier, if for each f ∈ L1(R), there exists φ ∈ L1(R)

such that ψf̂ = φ̂ where f̂ and φ̂ are the Fourier transforms of f and φ, respectively

as defined by (B.3).

Definition C.3.5. If ψ is an L1-multiplier, then we define the operator associated

with ψ, Tψ : L1(R) → L1(R), by Tψf := φ where φ = F−1 (ψF(f)).

We list here the properties that we use often.

• Tψ is an everywhere defined closed operator, thus by the closed graph theorem,

Tψ ∈ B(L1(R)), where B(L1(R)) is given by Definition C.1.1.

• For an L1-multiplier, the range of the function ψ is contained in the spectrum

σ(Tψ) of the operator associated with the multiplier ψ, see Definition C.1.5 for

the definition of spectrum.

• A necessary and sufficient condition for ψ to be an L1-multiplier is that ψ is the

Fourier-Stieltjes transform of a bounded (complex) Borel measure; that is,

ψ(k) = µ̂(k) =

∫ ∞

−∞

eikx µ(dx)

for some µ ∈ MB(R). Furthermore, ‖Tψ‖B(L1)
= ‖µ‖TV.
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• If the measure µ has a density distribution ρ; that is, µ(dx) = ρ(x)dx then

‖Tψ‖B(L1)
= ‖ρ‖L1

=
∥∥ψ̌
∥∥
L1
. (C.3)

• Finally, we have the invariance of the operator norm under translation and scal-

ing. Let ψ be an L1-multiplier, a ∈ R and h > 0. Define ψa(k) := ψ(k + a) and

ψh(k) := ψ(hk). Then, ψa and ψh are multipliers and

‖Tψ‖B(L1)
= ‖Tψh‖B(L1)

= ‖Tψa‖B(L1)
. (C.4)

We conclude this appendix with the following result, see [1, Proposition 8.1.3].

Theorem C.3.6. Let ψ be an L1-multiplier, then the following statements are equiv-

alent:

1. etψ is an L1-multiplier and there exist constants M,ω ≥ 0 such that

‖Tetψ‖B(L1)
≤Meωt, t ≥ 0.

2. Tψ generates a strongly continuous semigroup on L1(R)); that is, (etTψ)t≥0 =

(Tetψ)t≥0 is a strongly continuous semigroup on L1(R).
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Appendix D

MATLAB codes for Grünwald

schemes

%%% Timeevolutionplots

%% This script plots the numerical solution to Equation (4.22) in

% Section 4.4 at different time points,

% by Harish Sankaranarayanan Oct 2014 as part of the PHD Thesis

%% Define Variables

alpha=1.5;

n=1000; % # of x grid points

t=[.04,.1,.2,.5];

% snapshots plotted at 0 and given times (has to be at least size 2)

BC=1:6; % make a plot for each BC

% (D^alpha_c,DD) set A=1

% (D^alpha_c,DN) set A=2

% (D^alpha_c,ND) set A=3

% (D^alpha_c,NN) set A=4

% (D^alpha,ND) set A=5

% (D^alpha,NN) set A=6

%% initial value function

u0fun=@(x) (x>0.3&x<=0.5).*(x-0.3)*25+(x>0.5&x<0.7).*(0.7-x)*25;
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%% initialise solution

h=1/(n+1);

x=(h:h:1-h)’;

u0=u0fun(x);

%% loop for different figures according to different BC

for A=BC,

figure(A)

GMatrix=GrunwaldMatrixBC(A,alpha,n);

options=odeset(’Jacobian’,GMatrix);

% Use MATLAB ODE solver

[~,sol]=ode15s(@(~,x) GMatrix*x,[0,t],u0,options);

plot(x,sol);

xlim([0,1]);ylim([0,5])

legend(’t=0’,’t=0.04’,’t=0.1’,’t=0.2’,’t=0.5’)

end

function M = GrunwaldMatrixBC(A,alpha,n)

% This function computes the entries of the n x n Grunwald

% matrix given by Equation (4.23)

% for the fractional derivative operators

% on L_1 [0,1] given in Table 4.4 .

% alpha = 1.5

% n denotes the size of the matrix

% (D^alpha_c,DD) set A=1

% (D^alpha_c,DN) set A=2

% (D^alpha_c,ND) set A=3

% (D^alpha_c,NN) set A=4

% (D^alpha,ND) set A=5

% (D^alpha,NN) set A=6

%% build lower triangular n by n Grunwald matrix

M=zeros(n);

shift=1;
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w=1;

% construct Grunwald coefficients given by Equation (A.1)

for k=1:n+shift;

M=M+diag(w*ones(n-abs(k-1-shift),1),1-k+shift);

w=w*(k-alpha-1)/k;

end

%% sum(A,2) adds the row entries while sum(A) adds the column entries

% M is the Transition matrix for L1 with default A=1 for DalphacDD

%% Boundary weights

switch A

case 2, %DalphacDN

M(end,:)=-sum(M(1:end-1,:)); % boundary weights b^r_i

M(end,1)=M(end,1)-M(1,2); % overwrite b_n

case 3, %DalphacND

M(:,1)= -sum((M(:,2:end)),2); % boundary weights b^l_i

M(end,1)= M(end,1)-M(end-1,end);% overwrite b_n

case 4, %DalphacNN

M(:,1)= -sum((M(:,2:end)),2); % boundary weights b^l_i

M(end,:)=-sum(M(1:end-1,:)); % boundary weights b^r_i

case 5, %DalphaND

M(1,1)=M(1,1)+M(1,2); % change only b_l_1

case 6, %DalphaNN

M(1,1)=M(1,1)+M(1,2); % change only b_l_1

M(end,:)=-sum(M(1:end-1,:)); % boundary weights b^r_i and b_n

end

%% scale Matrix with h^(-alpha)

M=(n+1)^alpha* M;
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Letters A 239 (1998), no. 1, 13–16.

[27] M. Chen and W. Deng, Fourth Order Accurate Scheme for the Space Fractional

Diffusion Equations, SIAM Journal on Numerical Analysis 52 (2014), no. 3,

1418–1438.

[28] Z. Q. Chen, M. M. Meerschaert, and E. Nane, Space–time fractional diffusion

on bounded domains, Journal of Mathematical Analysis and Applications 393

(2012), no. 2, 479–488.

[29] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, 1973.

[30] M. Crouzeix, S. Larsson, S. Piskarev, and V. Thomée, The stability of rational

approximations of analytic semigroups, BIT Numerical Mathematics 33 (1993),

no. 1, 74–84.

[31] K. Diethelm, J. M. Ford, N. J. Ford, and M. Weilbeer, Pitfalls in fast numer-

ical solvers for fractional differential equations, Journal of Computational and

Applied Mathematics 186 (2006), no. 2, 482–503.

[32] K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, Algorithms for the frac-

tional calculus: a selection of numerical methods, Computer Methods in Applied

Mechanics and Engineering 194 (2005), no. 6, 743–773.

213



[33] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, Analysis and approximation

of nonlocal diffusion problems with volume constraints, SIAM Review 54 (2012),

no. 4, 667–696.

[34] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, A nonlocal vector calculus,

nonlocal volume-constrained problems, and nonlocal balance laws, Mathematical

Models and Methods in Applied Sciences 23 (2013), no. 03, 493–540.

[35] Q. Du, J. R. Kamm, R. B. Lehoucq, and M. L. Parks, A new approach for a

nonlocal, nonlinear conservation law, SIAM Journal on Applied Mathematics 72

(2012), no. 1, 464–487.

[36] R. E. Edwards, On functions which are Fourier transforms, Proceedings of the

American Mathematical Society 5 (1954), 71–78.

[37] K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equa-

tions, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York,

2000.

[38] V. J Ervin and J. P. Roop, Variational formulation for the stationary fractional

advection dispersion equation, Numerical Methods for Partial Differential Equa-

tions 22 (2006), no. 3, 558–576.

[39] V. J. Ervin and J. P. Roop, Variational solution of fractional advection dispersion

equations on bounded domains in Rd, Numerical Methods for Partial Differential

Equations 23 (2007), no. 2, 256–281.

[40] W. Feller, On a generalization of Marcel Riesz potentials and the semi-groups

generated by them, Meddelanden Lunds Universitets Matematiska Seminarium

(Comm. Sém. Mathém. Université de Lund) (1952), 73–81.
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[45] , Of Lévy-Feller Diffusion by Random Walk, Journal for Analysis and its

Applications 18 (1999), no. 2, 1–16.

[46] , Fractional Calculus: Integral and Differential Equations of Fractional

order, CISM Lecture Notes, FRACALMO pre-print, Springer Verlag, Wien and

New York 378 (2000), 223–276.

[47] M. Haase, The functional calculus for sectorial operators, Birkhäuser Verlag,
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