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Abstract

The focus of this thesis is two-fold. The first part investigates higher order
numerical schemes for one-dimensional fractional-in-space partial differen-
tial equations in L;(R). The approximations for the (space) fractional
derivative operators are constructed using a shifted Griinwald-Letnikov
fractional difference formula. Rigorous error and stability analysis of the
Grinwald-type numerical schemes for space-time discretisations of the as-
sociated Cauchy problem are carried out using (Fourier) multiplier the-
ory and semigroup theory. The use of a transference principle facilitates
the generalisation of the results from the Li-setting to any function space
where the translation (semi) group is strongly continuous. Furthermore,
the results extend to the case when the fractional derivative operator is
replaced by the fractional power of a (semi) group generator on an arbi-
trary Banach space. The second part is dedicated to the study of certain
fractional-in-space partial differential equations associated with (truncated)
Riemann-Liouville and first degree Caputo fractional derivative operators
on Q := [(0,1)]. The boundary conditions encoded in the domains of the
fractional derivative operators dictate the inclusion or exclusion of the end
points of ). Elaborate technical constructions and detailed error analy-
sis are carried out to show convergence of Grinwald-type approximations
to fractional derivative operators on X = Cy(Q2) and L,[0,1]. The well-
posedness of the associated Cauchy problem on X is established using the
approximation theory of semigroups. The culmination of the thesis is the
result which shows convergence in the Skorohod topology of the well under-
stood stochastic processes associated with Griinwald-type approximations
to the processes governed by the corresponding fractional-in-space partial

differential equations.
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Introduction

The fundamentals of fractional calculus and their applications have been treated by
several authors, see for example [43, 46, 51, 82, 84, 86, 90, 95| and the references
therein. Even though fractional derivatives have existed as long as their integer order
counterparts only in recent decades have fractional derivative models become exciting
new tools in the study of practical problems in displines as diverse as physics [13, 19,
20, 26, 71, 72, 73, 80, 81, 96, 110], finance [69, 89, 93], biology [5, 6] and hydrology [3,
15,16, 17,97, 98, 99]. This observation, that fractional derivative models are becoming
increasingly popular among the wider scientific community, is the main motivation to
study numerical schemes for fractional partial differential equations.

From a purely mathematical perspective, fractional partial differential equations
can be thought of as generalizations of the corresponding classical partial differential
equations. On occasions however, fractional partial differential equations do arise natu-
rally as better theoretical models for practical problems in diverse scientific disciplines.
For instance, in geophysical sciences [99], the authors employ the Lévy-Gnedenko
generalised central limit theorem [41] and fractional conservation of mass arguments
[98, 107] to derive fractional-in-space as well as fractional-in-time advection-dispersion
equations. According to the authors, these fractional advection-dispersion equations
provide better models for the motion of an ensemble of particles on Earth’s surface as
measured by the concentration (or mass) in space and time.

In general, particle transport phenomena may involve random states of motion as
well as rest. Therefore, jump length and waiting time between motion of a particle
can be viewed as random variables [15, 98, 99]. It is well known that if the probability
density function that describes the jump length decays at least as fast as an exponential
distribution, then jump length distribution has finite mean and variance. Further,
assuming that the waiting time distribution has finite mean, the concentration (or
mass) in this case may be adequately described by the classical advection-dispersion

equation (Fokker Planck equation). The associated stochastic process, the so-called



Brownian motion with drift, is governed by the classical advection-dispersion equation
whose fundamental solution is the Gaussian density [41]. The (normal) scaling of
dispersion (Fickian or Boltzmann scaling), described by the standard deviation, is
proportional to t2,

The term anomalous diffusion is given to diffusion phenomena that cannot be ad-
equately described by the classical advection-dispersion equations. One such scenario
is when jump length follows an infinite-variance distribution. In addition to infinite-
variance jump length distribution, assuming a finite-mean waiting time distribution,
the authors in [99] show that the associated stochastic process (Lévy motion) is Marko-
vian and is governed by fractional-in-space advection-dispersion equation whose fun-
damental solution is a Lévy a-stable density. The diffusion phenomena is referred to as
super-diffusion because of the faster than normal t2 scaling, as the scaling of dispersion
in this case is proportional to t« where 1 < a < 2 is the order of the fractional-in-space
derivative used in the model. Fractional-in-space advection-dispersion equations arise
as natural models when the velocity variations are heavy tailed. On the other hand, as-
suming infinite-mean waiting time distribution, the associated stochastic process (Lévy
motion subordinated to an inverse Lévy process) is shown to be non-Markovian and
is governed by a fractional-in-time advection-dispersion equation whose fundamental
solution is a subordinated Lévy a-stable density. The diffusion phenomena inherits
the name sub-diffusion in this case since the scaling of dispersion is proportional to t2
where 0 < v < 1 is the order of the fractional-in-time derivative used in the model.
A comprehensive review of random walk and other theoretical models for anomalous
sub-diffusion and super-diffusion as well as evidence of the occurence of anomalous dy-
namics in various fields such as biology, geophysics, physics and finance can be found
in [80, 81].

The connection of fractional calculus with probability theory that we have briefly
outlined above is interesting in its own right. Evidently, this provides an insight into
the stochastic processes governed by fractional partial differential equations. More
importantly, this link also provides new tools from probability theory that can be used
in the search for numerical solutions for fractional partial differential equations. For
instance, Feller investigated the semigroups generated by a certain pseudo differential
operator and identified the underlying stochastic processes [40]. As it turns out, these
processes are governed by a certain diffusion equation obtained by replacing the second-
order space derivative by the pseudo differential operator in the classical diffusion

equation [44, 45, 94]. The fundamental solutions of this diffusion equation generate all



the Lévy stable densities with index a € (0,2]. In [44, 45], this diffusion equation is
revisited using a random walk model that employs the Griinwald-Letnikov difference
scheme where the authors refer to the equation as Lévy-Feller diffusion equation and
the processes governed by them as Lévy-Feller processes. Theoretical and numerical
methods as well as connections with stochastic processes for various types of fractional
partial differential equations have been investigated by several authors, see for example
13,7,9,28,70, 71,72, 74,79, 97] and the references therein. In [76], the authors provide
an in-depth treatment on the connection of fractional calculus to stochastic processes
from a probabilistic perspective.

Inevitably, two crucial issues have to be addressed in the study of fractional par-
tial differential equations. Firstly, the existence and uniqueness of solutions; that is,
whether the associated Cauchy problem is well-posed in the function space framework
chosen for study. Secondly, the consistency and stability of numerical schemes used to
solve the fractional partial differential equations. The latter is particularly important
since the inclusion of an external forcing function and/or the imposition of boundary
conditions, especially in practical applications, could make the task of finding analytical
solutions elusive [109].

The well-posedness of the Cauchy problem associated with certain fractional-in-
space partial differential equations on bounded domains in the Ls-setting has been in-
vestigated by many authors. By constructing appropriate function spaces and demon-
strating equivalence to fractional Sobolev spaces, variational solutions to the steady
state fractional advection-dispersion equations on bounded domains 2 C R" were in-
vestigated in [38, 39]. These authors employ the Lax-Milgram Lemma to show the
existence and uniqueness of solutions in Ly(£2). The authors in [34] study a very gen-
eral class of non-local diffusion problems on bounded domains of R? using non-local
vector calculus and non-local, non-linear conservation laws developed in [33, 35]. Ac-
cording to the authors, certain fractional derivative models for anomalous diffusion
are special cases of their non-local diffusion model. In particular, the authors claim
that the fractional Laplacian and the symmetric version (with o = 2s) of the more
general (asymmetric) fractional derivative operator of [70] are special cases of their
non-local operator. Moreover, they show the well-posedness of steady-state volume-
constrained diffusion problems in Ly(2), 2 C R". To our knowledge, the issue of
the well-posedness of the Cauchy problem associated with fractional-in-space partial
differential equations on bounded domains in function spaces other than Ly(€2) has not

been completely resolved.



Several works have addressed the need for numerical methods to solve different types
of fractional partial differential equations. For instance, higher order linear multi-step
methods to solve Abel-Volterra integral equations, of which fractional differential equa-
tions form a sub-class [31], were made popular by [63] in the 1980s using convolution
quadratures and fast fourier transforms [49]. Since then, linear multi-step methods
have been used by many authors, see for example [61, 64, 65, 66|, to numerically solve
fractional integral equations and fractional partial differential equations. A review and
some applications of these methods can be found in [67]. Algorithms as well as the
difficulties encountered while implementing such numerical schemes were discussed in
[31, 32]. Matrix methods for approximating fractional integrals and derivatives have
been investigated in [87, 88]. In [109], a fractional weighted average finite difference
method along with von Neumann stability analysis of the numerical schemes was car-
ried out. An implicit numerical scheme for (time) fractional diffusion equation based
on finite difference approximations was developed in [59].

In [62], the authors investigate computationally efficient numerical methods for
fractional-in-space diffusion equation with insulated ends obtained by replacing the
second order space derivative in the classical diffusion equation by a Caputo fractional
derivative of order 1 < a < 2. They use an explicit finite difference method and the
method of lines to obtain numerical solutions. Stability and convergence of the explicit
finite difference numerical method along with its scaling restriction were discussed.
A similar method was also used in [100] combined with Griinwald-Letnikov difference
scheme for space discretisation to solve a fractional Fokker-Planck equation. In [75, 77,
78, 101, 102], the authors develop a fractional Crank-Nicolson scheme using a shifted
Griinwald formula to solve fractional-in-space partial differential equations. In very
recent works [103, 112], a third order numerical method using a weighted and shifted
Griinwald difference scheme for (space) fractional diffusion equations in one and two
dimensions was developed. The authors carry out the analysis of numerical stability
and convergence with respect to discrete Ly-norm.

Space fractional derivative operators are non-local. Thus, they can be used to
characterise influences from a distance, for example super-diffusion phenomena [99].
In this thesis, we are particularly interested in fractional-in-space partial differential
equations which can be used to model such non-local behaviour in space. Our numerical
approximations for the (space) fractional derivative operators are also constructed using
a shifted Grinwald formula [44, 45, 77, 112] and so throughout this thesis we refer to

them as Grinwald-type approzimations.



In our study of fractional-in-space partial differential equations, we make an attempt

to address the following fundamental issues that we believe are lacking in the literature.

e Construction of (higher order) numerical approximations for fractional derivative

operators in Lj(R) and in other function spaces.

e Stability and smoothing properties of (higher order) numerical approximations
that yield optimal convergence rate with minimal regularity of initial data for
space-time discretisations of the abstract Cauchy problem associated with frac-

tional derivative operators.

e Truncation of fractional derivative operators on a bounded interval 2 C R for
combinations of boundary conditions such as Dirichlet, Neumann etc. that yield

well-defined operators with desirable properties.

e The question of well-posedness of the abstract Cauchy problems associated with
fractional derivative operators whose domains encode various boundary condi-

tions in function spaces other than Ly(€2), in particular, L;(£2) and Cy(€2).

e Construction of approximations for (truncated) fractional derivative operators

whose associated stochastic processes can be easily identified and understood.

e Convergence of the stochastic processes associated with the approximation op-
erators to the corresponding stochastic processes associated with the truncated

fractional derivative operators.

Thesis outline:

In the first part of this thesis, in Chapters 1 and 2, we explore convergence with er-
ror estimates for higher order Griinwald-type approximations of semigroups generated
first by a fractional derivative operator on Li(R) and then, using a transference princi-
ple, by fractional powers of group or semigroup generators on arbitrary Banach spaces.
The main motivation for the investigation of higher order schemes are the works of
Meerschaert, Scheffler and Tadjeran [75, 77, 78, 101, 102]. In these articles, the au-
thors explored consistency and stability of numerical schemes for fractional-in-space
partial differential equations using a Griinwald formula with non-negative integer shift
to approximate the fractional derivative operator. In particular, in [102], they showed
consistency if the order of the spatial derivative is less or equal to 2. They obtained

specific error term expansion for f € C*™(R), where n is the number of error terms, as



well as proved stability of their fractional Crank-Nicolson scheme, using Gershgorin’s
Theorem to determine the spectrum of the Griinwald matrix. Richardson extrapolation
was then employed to obtain second order convergence in space.

This consistency result was extended for a Griinwald formula with any shift p € R

in [4, Proposition 4.9] where the authors showed that for all
/€ Xa(R) = {f € La(R) : 3 g € L(R) with (k) = (~ik)° f(k), k € R},

the first order Griinwald scheme

A3,00) = e o T = m = o)) m

converges in L;i(R) to the fractional derivative operator f(®) as h — 0+. Here g(k) =

oo

[ €™ g(x) dz denotes the Fourier transform of g € L;(R) and for f € X, (R), f(®) =g

iff (—ik)*f(k) = g(k) for all k € R. In Section 1.5 we improve this result further and
develop higher order Griinwald-type approximations fl'f;. In Corollary 1.6.3 we give a
consistency error estimate of the form

< Ch"™ (a+n) 2
s T @)

|Agr— g

for an n-th order scheme.

Using a Carlson-type inequality for periodic multipliers developed in Section 1.3.2
(Theorem 1.3.4) we investigate the stability and smoothing of Griinwald-type approx-
imation schemes flg. The main tool is Theorem 2.1.1 which gives a sufficient con-
dition for multipliers associated with difference schemes approximating the fractional
derivative operator to lead to stable schemes with desirable smoothing. In particu-
lar, we show in Proposition 2.1.2, that stability for a numerical scheme using (1) to
solve the Cauchy problem associated with fractional derivative operator f(® where
2 — 1 < a<2¢+1,q € N can only be achieved for a unique shift p in the Grinwald
formula. That is, it is necessary that p = ¢ for (—1)‘1“14% to generate bounded semi-
groups on Li(R) where the bound is uniform in h. Furthermore, in Theorem 2.1.6, we
prove stability and smoothing of a second order scheme.

Developing the theory in L; allows in Section 2.2 the transference of the theory to
fractional powers A® of the generator —A of a strongly continuous (semi-)group G on
a Banach space (X, || - ||), noting that f(z — (m —p)h) in (1) will read as G((m —p)h) f
[4]. The abstract Griilnwald approximations with the optimal shifts generate analytic

semigroups, uniformly in A, as shown in Theorem 2.2.1. This is the main property



needed in Corollary 2.2.3 to show that the error between S, (t)f = e/"D""' 4" f and a
fully discrete approximation u, obtained via a Runge-Kutta method with stage order

s, order r > s+ 1, and an N + 1 order Griinwald approximation is bounded by

126 = wall < C (071 4+ 105

t
logﬁ ||AN+1f||>, h >0, t=nr.

In error estimates, the smoothing of the numerical scheme is used in an essential way
to reduce the regularity requirements on the initial data. Further, this yields error
estimates of the numerical approximation schemes applied to Cauchy problem asso-
ciated with fractional derivative operators in spaces where the translation semigroup
is strongly continuous, such as L,(R), 1 < p < oo, BUC(R), Cy(R), etc. Using the
abstract setting we can also conclude that the consistency error estimate (2) holds in
those spaces, with the L; norm replaced by the appropriate norm. Section 2.3 marks
the conclusion of the first part of this thesis with results of some numerical experi-
ments, including a third order scheme, that highlight the efficiency of the higher order
schemes as well as the sharpness of the error estimates depending on the smoothness
of the initial data. The results from the first part of this thesis have been accepted
for publication in Transactions of the American Mathematical Society and available
online [8].

Let us turn our attention to the second part of this thesis. The Fokker-Planck
equation of a Lévy stable process on R is a fractional-in-space partial differential equa-
tion. The (space) fractional derivative operator is non-local with infinite reach. In the
second part of this thesis, in Chapters 3 and 4, we investigate (truncated) Riemann-
Liouville and first degree Caputo fractional derivative operators of order 1 < av < 2 on a
bounded interval, € := [(0,1)]. The interval 2 may or may not contain its end point(s)
depending on the boundary conditions encoded by the domain of the (truncated) frac-
tional derivative operator under consideration. We show convergence in the Skorohod
topology of easily identifiable finite state (sub)-Markov processes to a (sub)-Markov
process governed by the Fokker-Planck equation on ) associated with the (truncated)
fractional derivative operators. Observe that the fractional derivative operators that
we consider below on function spaces defined on the interval (2 are one-sided. The ap-
proach employed in [34] applies only to the symmetric fractional derivative operators as
mentioned earlier and therefore do not extend to one-sided fractional derivative opera-
tors. However, the boundary conditions that we consider can be interpreted as special
cases of the volume constraints employed in [34] and related works (one-dimensional

mass constraints).



The stage is set in Section 3.1 where we discuss the general theoretical framework.
Here we exploit the fact that the convergence, uniformly for ¢ € [0, ¢,], of Feller semi-
groups on Cy(2) implies convergence of the corresponding processes in the Skorohod
topology. To do this, we turn a finite state (sub)-Markov processes into a Feller pro-
cess by creating parallel copies of the finite state processes whose transition matrices
interpolate continuously. The main idea behind the construction of these (continuous)
interpolation matrices is the division of the interval [0, 1] into n + 1 grids of equal
length h so that the (Feller) process can jump between grids only in multiples of h.

The transition operators on
X = C(](Q) or L1[07 1]

are constructed using these interpolation matrices. These transition operators are
then employed in Chapter 4 to construct the Griinwald-type approximations for the
fractional derivative operators on X. In Section 4.3, we show that the Griinwald
(transition) approximation operators are the generators of the backward or forward
semigroups associated with the extended finite state (sub)-Markov processes and thus
identify the processes associated with the Griinwald approximation operators.

The central objects of study, the one-sided fractional derivative operators, are in-
troduced in Section 3.3.2. The one-sided fractional derivative operators are denoted in
general by (A4,BC) : D((A,BC)) € X — X whose domains D((A, BC)) encode a par-
ticular combination of boundary conditions denoted by BC. The boundary conditions
that we consider are Dirichlet, Neumann and Neumann®, where the latter appears nat-
urally in the adjoint formulation of the fractional derivative operators in L;[0, 1] with

a right Neumann boundary condition. We consider functions of the form
f=1% 4 apo + bpa—1 + o2+ dpo, g € X (3)

as candidates for the domain of the fractional derivative operators, where a,b,c,d € R
are determined by the boundary conditions and pg = F(g—il). The crucial point to note
here is the structure of the domains of the fractional derivative operators. That is, the
domains are defined as the range of the corresponding fractional integral operators I,
supplemented by a linear combination of some particular power functions with constant
weights that encode the regularity as well as the boundary conditions BC satisfied by
the functions in the domain.

In Sections 3.4 and 4.1, well-posedness of the associated one-dimensional fractional-

in-space partial differential equations is established using the approximation theory of



semigroups [2, 37, 52, 85]. That is, we show that the fractional derivative operators
(A,BC) generate strongly continuous contraction semigroups on X. To do this, in
Section 3.4, we show that (A, BC) are densely defined, closed operators and that rg(Al —
A) are dense in X for some A > 0. To make use of the Lumer-Phillips Theorem we
further require that the operators (A, BC) are dissipative which is established using
the convergence property of the Griinwald-type approximations, Proposition 4.3.2.
The Griinwald-type approximation operators G" are constructed in Chapter 4 using
the general theory for numerical schemes developed in Sections 3.1 and 3.2. For the
numerical scheme, the boundary conditions BC are encoded into the generic n x n

1

shifted Griinwald matrix where h = n € N given by

n+l’
oGy 0 - 0
Ge o .o
h 1 . .1
ann:ﬁ : : 0 ) (4)
by Gno 0 GY Gf

using the boundary weights b., b7 and b,. The n x n shifted Griinwald matrices G".,
play the role of the transition rate matrices of the underlying finite state sub-Markov
processes.

In Section 4.2, we first discuss the adjoint formulation of the abstract Cauchy
problem on X associated with the fractional derivative operators. In doing so, we list
the corresponding fractional derivative operators on X that are approximated by the
Griinwald transition operators constructed using these boundary weights. Following
that we conjecture the physical interpretation of the stochastic processes that would
give rise to these different boundary conditions BC and discuss our reasons behind
the choice of the boundary weights b., b7, and b, that appear in the generic Griinwald
matrix (4.1) in the L;]0, 1] case. In Section 4.4 we provide some examples of numerical
solutions to the Cauchy problem associated with the fractional derivative operators
(A,BC) on L;[0,1] and the initial value uy € L0, 1].

In Section 4.3, we prove the key result, Proposition 4.3.2, that the Griinwald tran-
sition operators converge to the respective fractional derivative operators on X. That
is, for each f € D(A, BC) we show that there exist sequences fj, € X such that f, — f
and G"f, — Af in X for each of the fractional derivative operators (A, BC). This
as it turns out involves detailed error analysis employing elaborate constructions of

appoximations for the power functions ps that appear in (3) above. This result is



essential firstly to show that the fractional derivative operators (A, BC) are dissipa-
tive. Using Proposition 4.3.2, we also conclude that the semigroups generated by the
operators (A, BC) are the strong (and uniform for ¢ in compact intervals) limit of the
semigroups generated by the Griinwald transition operators using the Trotter-Kato
Theorem. As a consequence, the underlying Feller processes associated with Griinwald
approximations converge in the Skorohod topology to the Feller processes governed
by the corresponding fractional-in-space partial differential equations. This identifies
the processes governed by the fractional-in-space partial differential equations with
boundary conditions BC as limits of processes whose boundary behaviour is perfectly

understood.
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Chapter 1

Grunwald-type approximations of
fractional derivative operators on

the real line

In this chapter we study Griinwald-type approximations for the fractional derivative
operators on R. We explore convergence and conduct a detailed error analysis using
Fourier multiplier theory. Following that, combining Griinwald formulae with different
shifts and step sizes, higher order Grinwald-type approximations are constructed for
the fractional derivative operators on R. We show convergence of the higher order
approximations to the fractional derivative operators with optimal convergence rate

under minimal regularity assumptions.

1.1 Fractional derivative operators on R

The error analysis of higher order Griinwald-type numerical approximations of frac-
tional derivative operators on R is carried out using multiplier theory. To facilitate
this, we define the fractional derivatives of L;(R)-functions in the Fourier or Laplace
space depending on the support of the function under consideration. To define the
fractional derivative operator of order v € R using Fourier transform if f € L;(R)

and Laplace transform if f € L;(R™), let us begin with the following two spaces.

Definition 1.1.1. Let @ € R" and 2% := |2|” €’ be as in Remark B.3.4. Then, we

define the following two spaces:

1.
Xo(R) :={f € Li(R) : T g € Li(R) with §(k) = (—ik)*f(k), k € R},

11



where f(k) and §(k) denote the Fourier transforms of f and g, respectively, given
by (B.3).

Xo(RY) = {f € Li(R") : T g € Ly(R") with §(z) = (—2)*f(2), Rez <0},

where f(z) and §(z) denote the Laplace transforms of f and g, respectively, given
by (B.6).

Here is the formal definition of the fractional derivative operator on R that we use

in this thesis.

Definition 1.1.2. For f € X,(R), if g € L1 (R) and
(=ik)*f(k) = §(k), k € R,
then we define
[ =g
Along similar lines for f € X, (R*1), we define f(® := g, if g € L1(RT) and (—2)*f(z) =

§(z) for Rez <0.

To keep the notation simple, we denote the norms in both these spaces by | f]|,.

that is, we set

11l = [[F N, gy » for f € Xa(R) and
£l == 1 £, sy - for | € Xa(®Y). (1.1)
To connect the above definition of fractional derivatives on R with the standard

definitions of fractional derivatives found in the literature, we list the definitions of the

Riemann-Liouville fractional integrals and derivatives.

Definition 1.1.3. Let a > 0 and f € Ly(R), then the so called (left-sided) Riemann-
Liouville fractional integral (if a = 0) or Liouville fractional integral (if a = —o0) of

order «, is defined by

JSf () = /x %f(s) ds, x> a

where the lower limit of the integral a € R is fixed or a = —o0, while the upper limit
x € R is variable, see [86, p. 65] and [95, p. 33 and 94].

12



This definition of fractional integral is well-defined for any piecewise continous func-

tion f € Li(a,b), however, for our purposes we take L;(R) as the domain of definition.

Definition 1.1.4. For o > 0, let n = [«] denote the least integer greater than «, then
the so called Riemann-Liowville fractional derivative, D : D(D®) — L1(R) is defined
by

DA f(@) = D" (Loul2 " ()

with domain

D(D*):={f € Li(R): I} *f e W"(R)},

where D™ denotes the integer order derivative of order n on R with respect to vari-
able upper limit of the fractional integral and the Sobolev space W™!(R) is given in
Definition B.1.1.

~

Remark 1.1.5. Let f € D(D®), then Dof(k) = (—ik)*f(k) [95, p. 137-139]. Thus,
f@ = Df a.e.; that is, the function f(® defined uniquely in Definition 1.1.2 is equal
to the Riemann-Liouville fractional derivative D* f given by (1.1.4) almost everywhere

by the uniqueness of the Fourier transform of L, (R)-functions.

1.2 Grinwald-type approximations

In the Griinwald-Letnikov approach to fractional calculus, the fractional derivative of
arbitrary order a > 0 is defined as the limit of the corresponding fractional difference
quotient [86, 95],

Dif(x) = lim he (Zg;zf(x—mh)), (1.2)

nh=x—a m=0

where a and x are the lower and upper terminals, respectively and G2 = (—1)m(z)
are given by (A.1). Podlubny [86, p.63] demonstrates the equivalence of the Riemann-
Liouville and the Griinwald-Letnikov definitions of the fractional derivative under the
assumption that f is m + 1-times differentiable where o < m + 1. Thus, in numerical
schemes, it is natural to use the Griinwald-Letnikov formula (1.2) with a fixed step
size h to approximate the fractional derivative operator. Here is the formal definition
of the shifted Griinwald formula that we use to approximate the fractional derivative

operator on R, (also see [44], [77], [105]).

13



Definition 1.2.1. Let f € Li(R) and h > 0, then the p-shifted Grinwald formula is
given by

A (@) = 2 S Gt (@ — (m— p)h), (13)

where the shift p € R and the properties of the Griinwald coefficients, G = (—1)’”(0‘)

m

can be found in Appendix A.

Observe the shift p used in the argument of the function f compared to (1.2) above.
Meerschaert et al. in [77] used this Griinwald formula, a modified version of (1.2),
with a non-negative integer shift p, to numerically approximate the Riemann-Liouville
fractional derivative. The authors also proved stability of their numerical scheme for
space-fractional advection dispersion equation with 1 < «a < 2, using the Griinwald
formula for space discretisation with shift p = 1 and the implicit Euler method for
time discretisation. In the same article in Remark 2.5, and in [102] in Remark 3.2,
the authors mention that the Griinwald formula with no shift or any shift p yields
first order consistency of numerical schemes for fractional-in-space partial differential
equations. However, they attribute the best performance of the numerical schemes to
the optimal shift p obtained by minimising ’ p— %| In [44], the authors refer to the
optimal shift as a "clever” shift using which yields a consistent approximation for the
Riemann-Liouville fractional derivative for sufficiently smooth functions. We show in
Chapter 2, that more is true of these remarks, that in fact the numerical schemes using

the Grinwald formula with integer shift are stable if and only if the shift p is optimal.

Remark 1.2.2. We make a clarification of the convention that we adopt at this juncture.
When we apply the shifted Griinwald formula (1.3) to a function f € Ly (R"), we always
assume implicitly that f is extended to L;(R) by setting f(x) = 0 for x < 0. To keep
matters simple, we will also refer to this extended function as f. In the case when the
shift p > 0 we regard Aj , as an operator on L1(R). However, in the case when p < 0,
with this convention, one can verify that the support of Ay f is contained in R* and
hence Aj  can be regarded as an operator on Li(RT). Indeed, for p < 0 if x < 0, then
forall m € N, x — (m —p)h < x4+ ph < x < 0 which, in view of our convention, implies
that f(z — (m — p)h) = 0 and hence Aj; f(r) = 0.

The following result of Tadjeran et al. [102], that the numerical schemes that employ
the shifted Griinwald formula yields second order consistency is our main motivation to
explore higher order schemes. Let the Sobolev space W13t (R) be given by Definition
B.1.1 and 1 < a < 2. Then, for f € W'¥(R), the authors showed that the error

term expansion for the numerical approximation of the Riemann-Liouville fractional

14



derivative of order a by the (non-negative integer) shifted Griinwald formula is given
by

n—1

A f(x) = D f(x) = Y (@D f(x)) b + O(h™),

=1

where the constants a; are independent of f, h and x. In the same paper, the au-
thors proved stability of their fractional Crank-Nicolson scheme by determining the
spectrum of the Griinwald matrix associated with the shifted Griinwald formula using
Gershgorin’s Theorem. Moreover, their fractional Crank-Nicolson scheme was shown
to be consistent with a second order in time and first order in space local trunca-
tion errors. Furthermore, they obtained a second order local truncation error in space
employing the Richardson extrapolation method.

This result that the Griinwald approximation for the fractional derivative is con-
sistent was further refined by Baeumer et. al. in [4, Proposition 4.9] to all f € X, (R)
with any shift p € R where X, is given in Definition 1.1.1, that is, Aj f — D“f in
Ly(R) as h — 0+. A proof for the unshifted case, p = 0 with @ > 0 and f € X,(RT)
can be found in [106, Theorem 13]. We generalise these results in Theorem 1.6.2 under
minimal regularity assumptions. That is, for f € X, 3(R) the convergence rate of
the first order Griinwald-type approximation for the fractional derivative operator in
L1(R) can be further fine-tuned to the order A?, 0 < 3 < 1as h — 0+. If p < 0,
then the same convergence rate holds in L;(R*) for f € X,;5(R"). Following that,
in Section 1.5, we construct higher-order Griinwald-type approximations for the frac-
tional derivative operator on R, by combining Griinwald formulae with different shifts
p and accuracy h such that the lower order error terms cancel out. We then conduct
a detailed error analysis using Fourier multipliers and conclude this chapter with the
main result, Corollary 1.6.3 on the consistency of the higher order schemes.

To begin with, we show that the shifted Griinwald formula given in Definition 1.2.1,

maps L1(R) into L;(R) and derive an explicit formula for its Fourier transform.

Lemma 1.2.3. Let f € Li(R), « € RY, p € R, h > 0 be fized, and the shifted
Grimwald formula Ajy ) be given by (1.3), then

?L!,pf S Ll (R>

Moreover, its Fourier transform is given by

— —_

(A5 p ) (K) = wap(=ikh) f) (k),
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Proof. Take note that the series >~ ~_ G2 is absolutely convergent, see (A.10). Thus,
the iterated integral

> [ Gt = (m = ph)] do < 321G 151,00 < o6
m=0 m=0
and the use of Fubini’s theorem [92, p. 141], is justified. Hence,

420 = | ds

7= 2 G = (m=ph)

<2 D NG Ny < oo

Therefore, the Fourier transform of the shifted Griinwald formula exists and using

Fubini’s theorem once again, we have

APk =hS gn / &% f(z — (m — p)h) da

The Fourier transform of the Griinwald formula can be written in the following product

form using the Binomial series (A.4),

o0

(i 7)h) =0 S0y (e

_ hfaefikhp(l _ eikh)af(k,)
O A B e D
— h™*(—ikh) (-um) e~ f (1)

= wa p(—ikh)(—ik)* f ()

—

= (iR [ (), (1.4)

where we have used Definition 1.1.2 in the last line and introduce the special function
—z «
Wap(2) = (%) eP. ]

Remark 1.2.4. Let o € R* such that 2¢ — 1 < a < 2¢g + 1 where ¢ € N and let

W(z) = (1) hoe~hrz(1 — eh#)e, (1.5)
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Note that the second line of (1.4) above shows that for any f € L;(R) the Griinwald

formula (1.3) can be expressed in the multiplier notation of Appendix C.3 as

hp = Lnativa
where the Grinwald multiplier is given by
Yanp(k) = P(ik) = (=1)THR™ %™ MP(L — ™)™ = (=1)"w, , (~ikh)(—ik)*. (1.6)
This fact that the Griinwald formula can be viewed as a multiplier operator naturally

leads us in Section 1.3 to study inequalities that estimate multiplier norms.

Remark 1.2.5. The Griinwald multiplier in Remark 1.2.4 above, involves the function
Wa,p- In the error analysis of the Griinwald schemes, as we will see later, the function
Wap : C — C, where @ € R* and p € R, plays a very important role. Hence, for easy

reference we give it a special name, omega function,

1—e =\
Wap(2) ::( ze ) e’

and study this function in detail in Section 1.4.

1.3 Bound for multiplier norms

In this section we study Carlson-type inequalities that bound L; (Fourier) multi-
plier norms. We refer to Appendix C.3 for the definition and results relating to L-
multipliers. These inequalities are not only crucial in our error analysis, but also
important in their own right. Firstly, they prove to be particulary useful in scenarios
where only the multipliers are known explicitly while the corresponding measures even
when they exist may not be known. Secondly, these Carlson-type inequalities help
bound multiplier operator norms by solely exploiting the properties of the multipliers
and as a consequence help to show that, in fact, the multipliers under consideration
are Li-multipliers. Thirdly, these inequalities help estimate the L;-norms of functions,
defined as the inverse Fourier transforms of functions in L, for 1 < r < 2 through
the L,-norms of the Fourier transform and its derivative. Lastly, as we will see in the
applications in Chapter 2, it turns out that it is essential to consider L,-spaces for
r# 2.

In some situations the Carlson-type inequality, given in Proposition 1.3.1 below, is

not directly applicable. One such scenario is when the decay of the multiplier at infinity

17



is insufficient for it to be in L, but its derivative has more than necessary decay to be
in L,. In this situation, we employ a partition of unity, and derive a similar result,
thereby enhancing the reach of the Carlson-type inequality. We do this in Section
1.3.1, where we study inequalities for multipliers which along with their generalised
first derivatives belong to L,(R), for 1 < r < 2. Another scenario where the Carlson-
type inequality cannot be applied is for periodic multipliers. In Section 1.3.2, we study

similar inequalities for periodic multipliers.

1.3.1 Carlson-type inequality

The first inequality that we consider is a special case of a more general Carlson-type
inequality, see [60, Theorem 5.10, p.107]. We give a simple proof here to keep our
discussions self-contained. The case r = 2 is usually referred to in the literature as
Carlson-Beurling Inequality, and can be found in [1, p.429] and [18, 24, 36].

Let W™ (R), r > 1, denote the Sobolev space of L,(R)-functions given in Definition
B.1.1 and F(L;) denote the ring of Fourier transforms of L;-functions as in Remark

B.3.2. The following result yields a sharp bound for the Li-multiplier operator norm.

Proposition 1.3.1 (Carlson-type inequality). If ¢y € W"(R), 1 < r < 2, then
there exists & € Ly such that é = 1, that is, ¥ € F(L1). Moreover, there exists a
constant C(r) > 0, independent of & and 1, such that

1 1
1€, < Ce) ellz, 1911,
where % + % =1.

Proof. Let v € WPY(R), 1 < r < 2 and set ¢_(k) := (—k), k € R. Then, define
the function £ := %zﬁ € Ly(R), where % + % =1, see Remark B.2.2. First, note that
lels, = |07, =2 [[4],, and ¥(@) = (=iw)i().
Moreover, recall the Hausdorff-Young-Titchmarsh inequality given by (B.1)
1 1
’ VEL, 1ST<2, o1
If ¢ = 0 there is nothing to prove. So let us assume that 1) # 0, then using Holder’s

191z,
(r=DY"1¥ll,

)

(r — 1)—1/T>

inequality in the second line, (B.1) in the third and setting v = we have

(Axvﬁuw¢n+/

2 z|>v
;; (v (900

L)) da

€l z, =

~

<

S|

Ls

Ls
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1
T

<2

(2 (v ||¢||Lr+vé ¥, (r = 1))

= Il
wir—1F

—

(k) = £(k) for almost all k € R
by the inversion formula for the Fourier transform. Since, v and f are continuous, this
holds for all k£ € R. m

Therfore, £ € Ly and so € exists. Thus, v(k) = 2i

T

Remark 1.3.2. In fact, the preceding proof shows that 1 is an L;-multiplier and the

Carlson-type inquality can be rewritten in multiplier notation of Appendix C.3 as

1Tyl = NIl < Cr)

where C(r) is independent of .

In some cases, the multiplier has insufficient decay to be in L, while its generalised
derivative might have more than necessary decay to be in L,. In such scenarios, par-
tition of unity turns out to be an excellent tool to bound the multiplier norm, see
[21, 22, 50]. The following result is a version of Carlson-type inequality employing a

partition of unity:.
Corollary 1.3.3. Let ¢y : R — C and 6, be such that Z]GZ i(x) =1 for all x € R. If
0,0 € WHI(R), 1 <r <2, for all j and Y, |6; (0,0) HLT < o0, where + +1 =1,

then ¢ € F(Ly); that is, there exists £ € L1(R) and a constant C(r) independent of &
and 1, such that f =1 and

€]z, < C(r Z 165

1
O;0)1L,-

Proof. By design, ¢(x) = >, 0;(z)¢(x) for almost all z. Let §; € Li(R) be such that
& = 0;4 by Proposition 1.3.1. By assumption, the partial sums

> g ZH@HLISO Zue

jzfn Ll _]—711

1
J¢)IH£T < Q.

Thus, the series > ;& converges to some { € Ly and
€]z, < C(r Z 165117, 164l

Hence, the use of Fubini’s theorem is Justlﬁed and

=Y &=v
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1.3.2 Carlson-type inequality for periodic multipliers

For periodic multipliers a Carlson-type inequality is not directly applicable as these
are not Fourier transforms of L;-functions. In [22] a suitable smooth cut-off function 7
with compact support was used where n = 1 in a neighborhood of [—7, 7], to estimate
the multiplier norm of a periodic multiplier v by the non-periodic one 7. For the
multiplier norm of n the above Carlson-type inequality can be then used. However,
we prove a result similar to Proposition 1.3.1 for periodic multipliers which along with
their derivatives have local L, bounds. This makes the introduction of a cut-off function
superfluous and hence simplifies the technicalities in later estimates.

Let W [—7, 7] below denote the Sobolev space of 27-periodic functions as in Def-

per

inition B.1.1.

Theorem 1.3.4. Let i € Whl[—m 7], 1 <r <2, then 1 is an Li-multiplier and there

per

1s C' > 0, independent of 1, such that

1 1
1 Tyllsz.) < laol + CO) IUNF, _pmg 1M1, (-

where % + % =1 and ag = % _Wﬂ Y(x)dx, denotes the 0 Fourier coefficient of .

Proof. Since ¢ € L,[—m, 7], it follows using Holder’s inequality that ¢ € Li[—m, 7] and
so we can define the £ Fourier coefficient of 1,
1 ™

:% -

e~ *ky(z)dx, k € Z.

Qg

First, note that [ag| < 5= [7_|#(2)|dz < oo and using integration by parts and the
fact that ¢ is absolutely continuous, we have that ikay are the Fourier coefficients of

Y’ . Next, recall the Hausdorff-Young inequality for Fourier series, see [23, p. 177],

1
- 1 11
(Z \aky> < (2m) iWHLTH,w l<r<2, —4+-=1

k=—o00

and Bellman’s inequality, see [14] and [60, p. 25],

00 af+a—f [e') [e'e) a—1
(Z bk) < Clo, ) 0 (Z kﬂbﬁ) L, B>1, by >0, keN,
k=1

k=1 k=1

On setting, a = f = s and by, = |ay|, we have

[e%¢) o0 s% o8} %(921)
> lal < CO(r) (Z !ak!s> (Z \(’ikak)ls> <Cr) v

k=1 k=1

1 , 1
zr[—w,ﬂ] ”w ”ET[—W,W} :
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Moreover, the same inequality holds for 31 |ax|. Thus,

1 1
L[] ||@Z)’||£T[,,r,ﬂ < Q. (1.7)

> larl < laol+C(r) v

k=—o00

This implies that v is the point-wise limit of its Fourier series [23, p. 166], that is;

[e.9]

W(x) = Z are™ for all z € R.

m=—0Q

Furthermore, let pu := ZOO

e oo @k0%, Where 0y, is the Dirac measure at k € Z given

by (C.3.1). Then, the series converges in the total variation norm; that is, ||u|tv =
Yoo lak] < oo and p € Mp(R), see Appendix C.3. Moreover, the use of Fubini’s
theorem is justified and taking Fourier transforms term by term we have i = 1. Hence,

¥ is an Ly-multiplier and

o0

1Tyl = el = ) larl = lao + C(r) |[¢

k=—00

1 et
[S/r[fﬂ,ﬂ ||77D ||lr/r[77r,7r] :

]

Remark 1.3.5. Firstly, note that the term |ag| cannot be removed from the above
estimate in general. To see this, consider v = 1. Secondly, the fact that if ¢’ €
L.[—m, 7|, r > 1, then the Fourier series of ¢ is absolutely summable, was first proved
in [104]. A multivariate version of (1.7) with a different proof to the one above can be
found in [54].

1.4 Griinwald (periodic) multiplier operators

The Griinwald formula (1.3) can be viewed as a multiplier operator as mentioned in

Remark 1.2.4. The Griinwald multiplier is given by
Dapp(k) = (=1)" W, (—ikh) (—ik)®.

In the error analysis of the consistency of the Griinwald schemes, for instance, in
Theorem 1.6.2 below, the function w,, : C — C, where a € RT and p € R, plays

a very important role. In this section, as mentioned in Remark 1.2.5, we study this

Wap(2) 1= (1 - 6_Z)aezp. (1.8)

omega function

z
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We also need the particular case of the omega function when o = 1 and p = 0, which

we simply denote by
1—e7

z

w(z) == wio(z) = (1.9)

The unshifted version of the omega function w, o(2), appears in the works of several
authors, including Westphal in [106] and [51, Chapter I1I], Butzer et. al. in [51, Chapter
I] and [90, p. 116], Samko et. al. in [95, Section 20] and Lanford and Robinson in [58].
To keep our discussion self-contained, we list and prove those properties of the omega
function with arbitrary shift p that are relevant for our purposes.

To this end, let us begin by showing that the omega function is analytic in some
neighbourhood of the origin. See Remark B.3.4 for the convention adopted in the
definition of the function z*, where z € C and fixed yu € C. Let us rewrite the omega

function as
Wap(z) = (w(z))%e™. (1.10)

As we take the negative real axis as the branch cut for the a-th power of w(z) and
since e is analytic, the omega function, w,,(2) is analytic, except where w(z) takes
values on the negative real axis and at the origin. Note that the principal branch here
is chosen such that
li =1 1.11
lim (=) = 1. (1.11)

since for z € R,

1_ —z
limw(z) = lim ( ¢ ) =lime”* =1

z—0 z—0 z z—0
by L’Hopital’s rule and lim,_, e = 1. Thus, w, ,(2) is analytic in some neighbourhood
of the origin as the singularity at z = 0 is removable, see [29, p. 103]. Hence, we can

write w,,(2) as a power series, that is, there exists R > 0, ay ., € R such that

Wap(2) = Zagnz” for all |z| < 2R. (1.12)
n=0

Remark 1.4.1. For convenience in calculations, if R > 1 we set R = 1 and thus, in

what follows 0 < R < 1.

Before we study the properties of the omega function in detail, let us briefly look at
the properties of the simplest case with a = 1 and p = 0. Firstly, note the recurrence

relation satisfied by the omega functions,

Wap(2)w(2) = War1p(2). (1.13)
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Differentiating (1.9) with respect to z we have

W(2) = ze ? —g —e %) _ e * —Zw(z)

Since, w(z) is analytic, we also have that w'(z) is analytic in the same neighbourhood

of the origin given in (1.12). Using the exponential series, we have
2

w(z)zl—%—i—%- - and
1 0 (_1)m+12m
)=t Y 1.14
() 2+m:1(m+1)!+m! (1.14)

As a consequence, there exists a constant C' > 0 such that for |z| < R, |w(z)] < C
and |w'(2)| < C. If Re(z) > 0 and |z| > R, note that |e | = e"F¢*) < 1 and that for
convenience in calculations we assume that 0 < R < 1, see comments following (1.12)

above. Hence, we have the following bounds,

<] gy, e (L15)
B +I; | < ‘27|, for Re(z) > 0 and |z| > R,
and
’w/<z)| S e ? W(Z) C’ 1 2 c for |Z’ - R’ (116)
T+ <mte <@ for Re(z) > 0 and |2| > R.

The observations made so far on w(z) yield the Taylor expansion and the bound for
the omega function, more importantly, the bound for its derivative on the imaginary

axis, all of which are used repeatedly in the error analysis.

Lemma 1.4.2. Let o« > 0, p € R and w,, be given by (1.8). Then, we have the
following:

1. The omega function has the following Taylor expansion,

1
Wap(2) =14+ (p— %)z + ﬁ(?)az +a+12p* — 12ap)2® + O(2?)

where |z| < 2R.

2. There exists a constant C' > 0 (chosen to be the mazimum of the constants in the

three scenarios below) such that

Clz| for |z| < R,
lwa,p(2) — 1] < C forz € iR, (1.17)
C forRez>0&p<0,

where 2R is the radius of convergence as described in (1.12).
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3. Let eithera > 1 and k € R or 0 < a <1 and k € [—m, «], then
d ‘
%(wayp(—zk)) < C. (1.18)
Proof. 1. Expanding w, (%) given by (1.8), using the binomial series, exponential

series and (1.14), we obtain

1—e "\ |
snple) = () e

2 2\ (2p)?

1

(3a® + a + 12p* — 12ap)2* + O(2*) (1.19)
where |z| < 2R.

2. The first inequality is clear from the fact that the power series expansion given
by (1.19) is absolutely convergent for |z| < 2R and so uniformly convergent for

|z| < R. Indeed,
«
wap(2) =11 < | (0= 5)2| + O(=P) < 2.

We only need to show that the second and third inequality hold for |z| > R as
they hold for |z| < R as a consequence of the first inequality.

So, let |z] > R and either z = ik for k € R or Re(z) > 0 & p < 0 and note that
for z =ik, k € R, |[e7™*?| = 1 and for Re(z) > 0 & p < 0, [e?| = ePRe(=) < 1.
Moreover, since it is the Laplace transform of an L;(R™)-function, see Lemma
1.4.6 below, note that w,,(—2) is continuous for Re(z) > 0. Thus, taking the
modulus on both sides of (1.10) and using (1.15), we have

c,  f R
wap(2)] = |w(2)|" 7] < { e (1.20)

<O, for |z| > R.
The proof of the first statement is complete on using the triangle inequality for
|wap(2) — 1.

3. Differentiating (1.10) with respect to z, we have

Wypl2) = @ (@(2)* W () + p (w(2))” e (1.21)

a,p

and note that
d . . / . / -
2 i) = (00l 8] = o)



< (alw(=ik)|" " o (=ik)| + p| |w(=ik)[*) [e7*7] . (1.22)

First, let v > 1, then using (1.15) and (1.16), since a —1 > 0 and |e="*?| =1, we

have

d C, for |k| < R,

L wan(—ik))] < 1.23
2 ”’{Mzsaﬂnwzﬁ (123

Now, let 0 < a < 1 and [z| < R, since w,, ,(2) is analytic we have

(2] = | = )|+ 0z

which implies that |w, ,(—ik)| < C for |k| < R as the power series is absolutely
convergent. To complete the proof, let R < |k| < 7, then it is clear that |w(—ik)|"
is bounded in view of (1.15) and so the second term in (1.22) is bounded. Rewrite

the first term as

aw(=ik)|" " W' (—ik)| = a |w(~ik)|* |w'(—ik)|

1
w(—ik)
and note that for R < |k| <,

1 —ik

B m
w(—ik)| |1 — ek

= 25n(R/2)

This completes the proof of the second statement in view of (1.15) and (1.16).
[l

We now study the most important property of the omega function, namely, that the
omega function is the Fourier transform of an L;-function and identify this function
explicitly. To this end, let us begin with the definition of power functions with support
in RT. We use ¢ to denote the power function in this section, instead of ps adopted
later in Definition 3.6, in order to emphasise the fact that we are working on R instead
of [0,1].

Definition 1.4.3. For o > 0, we define the power function ¢,_1, with supp(¢,_1) C

R*, by
ma—l A
a— =H y 1.2
bora(x) 1= H(x) s (1.24)
where the unit step function H is given by
1, ifx >0,
H(z)= (1.25)
0, ifx <0.
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We show that w, ,(—ik) is the Fourier transform of the p-shifted fractional difference

quotient of the power function with h = 1, given by

@3(2) = 3 Grar (@ — (m — ) (1.26)
m=0
where ¢, is given by (1.24) and G5, by (A.1). Take note that supp(®5) C [—p, oo)UR™
and that the sum on the right has only finite number of terms for a fixed x, since by
definition ¢o—1(x — (m —p)) =0 for all m > = + p.

By Proposition B.3.5, we have the Fourier transform pair, ¢o_i(k) = (—ik)*.
Clearly, for v > 0, ¢o_1 ¢ L1(R) and s0 ¢q_1(k) = (—ik)~* ¢ F(L;), where the ring of
Fourier transforms of L;-functions F(Lq), is given in Remark B.3.2. Nevertheless, we
provide a proof similar to that of the proof of the Carlson-type inequality in Corollary
1.3.3 to show that for a > 0,

> 0;(k)(~ik) ™ € F(Ly),
jez
J#0
where 0; for j € Z are the functions in a partition of unity given in Definition 1.4.4
below.
According to the authors mentioned at the start of Section 1.4, the most difficult
property to prove is the fact that ®§ € Li(R). Westphal in [106], uses a result on the

asymptotic behaviour of power functions from Ingham’s summability theory to show

that ®f is integrable at infinity and in Lemma 2 of the same article, the author shows

that |y e -
Wao(2) = < —° ) = / e 5 (t)dt, Rez >0,
0

z

where ®§ € Li(R") and [° ®f(¢) dt = 1. Take note that in Westphal’s definition of

#t is used as the kernel and therefore the region of convergence

the Laplace transform, e~
is the right half plane. In [95], a smooth step function was used to split ws into a
sum of two functions, and using the fact that if f € L;(R) and f’ € Ly(R), then f is
the Fourier transform of an L;(R) function, the authors show that w, o is the Fourier
transform of an L; function. In [58], the authors prove this property using Fourier
transform techniques and distribution theory. To keep our discussion self-contained, in
Lemma 1.4.6, we prove a similar result using Carlson-type inequality given in Corollary
1.3.3; that is, we show that wq ,(—ik) is the Fourier transform of &3 € L;(R). In the

proof of Lemma 1.4.6 we require a particular partition of unity which we define below.
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Definition 1.4.4. Let R be as in (1.12). Then, we first define 6, such that supp(6y) C
[_R7 R])

,

1, for |k] < R/2,
Oo(k) =< 2(R—|k|])/R, for R/2 < |k| <R,
\ 0 else.
Next, define
( 2(k — R/2)/R, for R/2 <k < R,
0,(k) = 1, for R <k <1,
2 —k, forl <k <2,
0, else,

so that supp(6,) C [R/2,2]. For j > 2, let

(k —272)/272 for 92 < k < 2,
0;(k) = (27 —k)/2571 for 2971 <k < 27,

0 else,
such that supp(6;) C [2/72,27]. For j < 0, define 0;(k) = 0_;(—k).
The following result plays a crucial role in the proof of Lemma 1.4.6.

Proposition 1.4.5. Let a > 0, then

> 0;(k)(—ik) ™ € F(Ly),
JEZ
Jj#0

where 0; are gien by Definition 1.4.4.

Proof. For convenience in calculations, for j # 0, let 6, (k) = 6;(k)(—ik)™® and write

O(k) =D 0;(k)(=ik)™* = > 6;a(k),

jET jEZ

J#0 770
where 6; are given in Definition 1.4.4. First note that supp(611.) C [£,2], for j > 2,
supp(0..) C [277%,27] and for j < —2, supp(f;,) C [-277,—27772]. Thus, the length
of the support of 0;, for j # 0 is less than 217l Moreover, for k € [%,2], k|7 <
(2)™" < C while for k € [2772,27] or k € [-277, —27972] [k|7* < 2722,

Hence, for each j # 0,

10;0]12, < C(2-20il-Daglil /1 — cbalili-2)/t < crolilti=20)/4,
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For |j] > 2, |9§(k)‘ < 27112 thus

1600 (k)| < C (|6 (k)] K[~ +160;(k)| k]~
< CoUi=D(=a=1) | o-lil+2o(lil-2)(-a)
S O23+2a2—(0¢+1)\j\

< O+l

0’ (k)| < % and so |0] (k)| < C. Hence, for each j # 0,
+1 1«

Moreover, for |j| =1, 2

10,17, < C(2-arllglilyys — co-lilzas/a
fres 2 —
Putting these together, there exists C' independent of j such that,
g g
16,4l %ZHQQ-,@H i < (9lil(1-20)/49—jl(2041)/4 < rg=aljl,

Thus, 6;, € W?!(R), and using Proposition 1.3.1, there exists &, € L;(R) such that
00 = éj,a for each j # 0. Define

go‘ = Z gj,om
JEZ
J70
then &, € Li(R), since
1 1 iy
S 18l 18017, < €S0 270 < o
A JEL
770 J#0
Thus, the use of Fubini’s theorem is justified and

éa - Zéj,a - Zej,a-

JEL JEL
70 70
Here is the lemma that lists the important properties of the omega function.

Lemma 1.4.6. Let a € R™, p € R and the functions wa, and @5 be given by (1.8)
and (1.26), respectively. Then the following hold:

1. @‘(k’) = W p(—ik), for k € R, where @(/{) denotes the Fourier transform of ®.
Moreover, wa, € F(L1), where F(Ly) denotes the ring of Fourier transforms as
in Remark B.3.2, that is, ®5 € Li(R).
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2. [p % (x)dx = 1.

3. L(®2) (2) = wap(—2), for Re(z) < 0 and p > 0, where L (%) (z) denotes the
Laplace transform of ®5 given by B.6.

Proof. 1. First note that ¢/a:(k) = (—ik)~® by Proposition B.3.5. Consider the
series given by (1.26),

Op(z) = ) Grndas(z — (m —p)).

m=0

Observe that there are only finite number of terms in the sum for a fixed x € R,
since for < m —p, ¢a—1(z — (m — p)) = 0 and that supp(®y) C [—p,00) U
R*. Note also that each term in the series corresponds to a regular tempered
distribution and the series Y *°_, G2 is absolutely convergent by (A.10), thus the
distribution @g € S’ where &’ denotes the space of tempered distributions, see
Appendix B.3. Hence, using Theorem B.3.3 we take the Fourier transform of

(1.26) term by term and use the Binomial series (A.4) to obtain

o (k) = F (Z G (x — (m — p)))

m=0

=" GAF (par(z — (m—p)))

- i(_m (;) (OnB) (i) e

1__ eik ae—ik:p ‘
—= ( (_Z;)Gf — wam(—lk‘).

We now show that the omega function is the Fourier transform of an L;(R)-
function, that is, w,, € F(L;), where F(L;) is given in Remark B.3.2. Rewrite

the omega function using the partition of unity given in Definition 1.4.4,

Wap(—ik) =Y 0;(k)wap(—ik)

= O (k)wa p(—ik) + (1 — ®)" e "0, (k)(—ik) ™. (1.27)
1%

Then, the first term belongs to W2!(R), since

supp (6o (k)wap(—ik)) C [- R, R]
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and w,,, is analytic there by (1.12). Thus, the first term, 0y (k)wa,,(—ik) € F(Ly)
by Proposition 1.3.1.

Consider the second term and note that ) ez 0;(k)(—ik)™* € F(Ly) by Propo-
J#0
sition 1.4.5, that is, there exists £, € L;(R) such that

D0, (0) (k)" = (k).
=

Moreover, using the Binomial series we have that

[e.e]

(1 _ eik)a _ Z ggeikm

m=0
where G2 is given by (A.1). Since, the series Y G2 is absolutely convergent
by (A.10) and

S Gatal-— (m—p))

o0
<D 1Ga ] ally, < oo,
Ly m=0

the function .
3" Gatala— (m—p)) € Li(R).
m=0

Hence, the use of Fubini’s theorem is justified below, and the second term of 1.27

is the Fourier transform of an L;-function, since

(1—e®) e ™ 0, (k)(—ik) = G PN 0, (k)(~ik)
JEL m=0 JEL
j#0 J#0

G (ol — (m —p))) (k)

F <Z G2 Eal — (m — p>>> (k).

. Let {k,} C R be a decreasing sequence such that lim,,_,, k,, = 0 and set f,(z) =
e ®o(x). Then, since ¢ € Li(R), f, € Li(R) and f, — ®%. Moreover,
| ful < |@%] for all n € N. Thus,

/R lim (e"™*0%(z)) dz = lim [ ™*®%(z)dx

n—00 n—oo R

by Lebesgue’s dominated convergence theorem. That is, in view of (1.11) we

have shown that

n—o0

/Rq)g(x) dr = lim w, p(—ik,) = 1.
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3. For Re(z) < 0 the iterated integral
S [ e Gba st~ on =)
m=0 0
=10 [ gt~ - )
m=0 m-—p
_ Z G2 [ (Re(:)m—p) / e (7)) dr
0

_ o| Re(@)m—p) 1
Z'g | CRe())

is convergent in view of (A.10) where we have used (B.10) in the last line. Thus,
the use of Fubini’s theorem is justified and interchanging summation with inte-

gration, the Laplace transform for Re(z) < 0 is given by,

- eztfgma_lu— (m — p) dt
ij o A L
> ( ) e e

m=0 (_Z)a

where we have used (B.10), (B.7) and the Binomial series (A.4). The proof

is complete using the fact that the Laplace transform of an L;(R™)-function is

continuous for Re(z) < 0.
[

Remark 1.4.7. Note that for &« > 1 one does not need to use a partition of unity. For

a > 1 we include here a simpler proof. Let a@ = 1, then wy ,(—ik) = (%) e~ *P and

using (B.7) in view of Proposition B.3.5,
e—ikp eike—ikp

wip(—ik) = T F(H(x+p)—H(x+p—1)), (1.28)

where the unit step function H is given by (1.25). Clearly, H(z +p) — H(z+p—1) €
Li(R). Let a > 1, then using the bounds given in the proof of Lemma 1.4.2, namely,
the bound in (1.20) for |w,,(—ik)| and the bound in (1.23) for ‘W‘, we have
that

loasl =i}, < [ ok
|k|<R k

|>R|!
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and the same is true for its derivative,

. 2
HM g/ C’dk+/ _dk < oo.
Ly k<R k=g |kl

dk )
Hence, using Proposition 1.3.1 with r = 2, w,, € W*!(R) and we have the required

result.

1.5 Construction of higher order Grinwald-type

approximations

In this section we construct higher order Griinwald-type approximations for the frac-
tional derivative operator. To start with, let us rewrite the Fourier transform of the
Griinwald formula given by (1.4) as the sum of the Fourier transforms of the fractional

derivative operator and the error term.

— ~

(Ag F) (k) = (—=ik) wap(—ikh) f(k)
— (—ik)*f (k) + (=ik)* (wap(—ikh) — 1) f(k)
— F@ (k) + (—ik)*(wap(—ikh) — 1) f (k), (1.29)

where w,,(2) is given by (1.8). Thus, the Fourier transform of the error in the ap-
proximation of the fractional derivative operator by the Griinwald formula is given
by

Cnp(k) = (AR F)(k) = f@ (k)
= (=ik)* (Wap(—ikh) = 1) f (k)
= (Wap(—ikh) — 1) F@ (k). (1.30)
Remark 1.5.1. Recall the Taylor expansion of w,, given by (1.12), that is, there exists
R > 0,a, € R such that

? TP

Wap(2) = Zagnz” for all |z| < 2R.
n=0
Since afy = 1, wap(2) =1 = Y07 a 2" and so we refer to the shifted Griinwald
formula as first order Grinwald-type approzimation which we justify in Theorem 1.6.2.
Further, recall Remark 1.2.4 where we expressed the Griinwald formula (1.3) in the

multiplier notation of Appendix C.3 as
Anp = Tyt n,
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where p, k € R, o € R such that 2¢ — 1 < a < 2¢+ 1 for ¢ € N, and
¢a,h,p(k) — (_1)q+1h—a€—ikhp(1 . eikh)a,

To construct higher order approximations we combine Griinwald formulae with
different weights b;, shifts p; and accuracy c;h in such a way that the lower order error
terms cancel out. To this end, let us consider the linear combination of the error terms
g:h in the Fourier space. Let N > 0 and for 0 < 57 < N, let b;, p; € R with

> bi=1 (1.31)

Jj=0

and ¢; > 0, then using (1.30) we have

N N
Z bjécjh,pj (k) = Z bj(wamj(_ikc] ) f(a) (Z bj jWa P] chj ) - 1) f (k)
=0

§=0
To be precise, for each 1 < n < N we require that the Taylor coefficients agjm of

Wa,p,; (2) satisfy

> bjag, =0. (1.32)

§=0
Since, ay, o = 1 for each j, we have that Z;'V:o bjay, o = Z;.V:O b; = 1. Therefore, there
exist dj such that

waap cz)—1= Z sz
J=N+1

for |z| < 2R. With the above preparation, we are ready to define the higher order

Griinwald-type approximation for the fractional derivative operator.

Definition 1.5.2. Let o € R" such that 2¢ — 1 < a < 2¢+ 1 for ¢ € N and let
[ € Xoinys(R), where N > 0, 0 < < 1. Moreover, for 0 < j < N, let b;,p; € R
with Z —obj =1 and ¢; > 0. Then, we define an N + 1 (higher) order Griinwald-type

approximation for the fractional derivative operator of order « by

Aaf — Z b Ac h p 1)q+1 zé\fzo bjwa,cjh,pj f (133)

7=0

The terminology used in this definition; that is, order N+1, will be justified in Corollary
1.6.3.
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Let us rewrite the Fourier transform of the error term to facilitate the errror analysis
in the next section. The Fourier transform of the error term of the first order Griunwald

approximation given by (1.30) can be written as

Cn(k) = (=ik)*(wap(—ikh) — 1) f (k)
_ B (Wap(—tkh) — 1) (_ik)oﬁ-ﬁf(k)

(—ikh)?
= P0G, (kh) fetB) (k). (1.34)

—

where

W5 ) = 2220 ik)(__i:;?vﬂg”( o (1.35)

and wap(2) is given by (1.8), af by (1.12) and 0 < 8 <1, N € N.

Let us obtain the Fourier transform of the error term of the higher order Griinwald
approximation. Recall (1.31); that is, Z;'V:() bj =1 and for 1 <n < N by (1.32), we
have that Z] _o bjay .,
P =0 bj in the second line by

= 0. So, in the calculations below, we are justified in replacing

N N
ZbJZa]n —tikc;h)

7=0 n=0
We repeat the same argument that led to (1.34) and obtain

e

~

Gulk) = (Agf = F@) (k) = Z bj (wap, (—ike;h) — 1) (—ik)* (k)

Z b; (wap —ikc;jh) Z ay, n(—ikc;h) ) (—ik)f (k)

J=0

Wap, (—ikeih) — SN a2 (—ike;h)” .
hNJrﬁ b N+,8 Py J n=0 "'p;j,n J ik a+N+8 k
Z (—ike;h)N+P (—ik) f(k)

— NS Z b TBWG o (kesh) fEENT (k) (1.36)

where a ., are the Taylor coefficients of wq ,, and W§ N, are given by (1.35).

1.6 Consistency of higher order Griinwald-type

approximations

In this section we show that the higher order Griinwald-type approximations converge

to fractional derivative operator in L; := L;(R). But first, we need the following
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important technical lemma which shows that the function W§ y  given by (1.35) is the
Fourier transform of an L;-function. This, as can be seen from the Fourier transforms of
the error terms given by (1.34) and (1.36), turns out to be crucial in obtaining a bound
for the Li-norm of the error term in the higher order Griinwald-type approximations

for the fractional derivative operator.

Lemma 1.6.1. Let

Wa,p(—ik iVO pn(—1k
\Dng(k) : )( Z%)N+,B ( A )

where wap(2) is given by (1.8), a5, by (1.12), N € Ng and 0 < 3 < 1. Then,
\IJ;N’p € f(Ll),

that is, W§ v, is the Fourier transform of some &5y, € Li(R) with supp(§5 y,) C
[—p, 00) URT.

Proof. First note that, since w,,(2) is analytic for |z| < 2R (see Section 1.4), and

N 00
. wa,p(z) - Zn:O ag,nzn . a _nt+l1-N-p3
iy ( ( 5 “lm| 2 e =0

n=N-+1

the singularity at the origin is removable. Hence, ¥ y (k) is analytic in [-2R, 2R].
Moreover, note that each term of W§ y (k) is the Fourier transform of a tempered
distribution satisfying the support condition in view of the proof of Part 1 of Lemma
1.4.6 and Proposition B.3.5. Thus, all that remains to show is that W5 . is the Fourier

transform of an L, function. We divide the proof into four parts.

1. Let N,p =0 and 8 < 1. This was proved in [106, Lemma 5] using results from

summability theory. Note that af, =1 and consider,

‘I}ﬁoo(k) %

Using the partition of unity given by Definition 1.4.4, we rewrite W§ (k) as

\113700 Zé’ ‘I’goo

JEZ
wa() Z]f) 1
JEZ
370
= O0(k) WG g0 (k) — > 0;(k) ¥ 4 wao(—ik) Y 6;(k)
JEZL JEZ
J#£0 J#0
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Note that supp(fo(k)¥5 (k) C [ R, R] and V§ (k) is analytic there. Thus,
the first term 6y(k)W§,,(k) € W*'(R) and by Proposition 1.3.1, the Fourier
transform of an L;-function. By Proposition 1.4.5, the second term is the Fourier
transform of an Li-function. The third term is the product of Fourier trans-
forms of L;-functions in view of Lemma 1.4.6 and thus, the Fourier transform of

convolution of L;-functions, and hence the Fourier transform of an L;-function.
Therefore, W5, € F(L1).

. Let N =0,p# 0and 8 < 1. Note that a;, = 1. Then, writing wa,(—ik) =

Wa,0(—ik)e™ ™ we split UG Op(k) as follows,

we (k) = Wap(—ik) =1 _ Wa o —ik)e ™ — 1 e~thr — 1
A0p (—ik)B (—ik)B (—ik)8

The first term is the Fourier transform of an L;-function as a consequence of the

= e_ikp\I’@O,g(k) +

first case in view of (B.7). To see that the second term is the Fourier transform

of an L;-function, let us rewrite using the partition of unity given in Definition
1.4.4,

e~tkp _ 1 e~ thp _ 1
— = 90(k)— e PN 0 (k) (—ik) ™ 0, (
M e BT 0
J#0 J#0
Note that supp(QO(k;)“;—Z)l) C [-R,R] and e(_jz)}l is analytic there and so

0o (k) _“:Z)Bl € W2(R), thus, by Proposition 1.3.1, the Fourier transform of an
Li-function. The other two terms are Fourier terms of L;-functions in view of
Proposition 1.4.5 and (B.7). Hence, Wg, € F(L1).

. Let @ > 1 and consider the remaining two possibilities, either N =0 and § =1
or N > 1and 0 < 8 < 1. Note that Carlson-type inequality given in Proposition
1.3.1 cannot be applied directly since g\ & Lo(R) for 8 < 1/2. Therefore,
we use Corollary 1.3.3, choosing a particular partition of unity (6;). jez given by
Definition 1.4.4. Rewriting,
\Ijg,N p Z 9 \Ijg N.p (),
JEL

we show that g\ € F(L1).

First, for j = 0, as ¥§ y , is analytic in (=2R,2R) we have that 0h¥§ y €
W2LR). For j # 0, we split the remaining series into two terms,

o wap ’Lk) - Zfzv 01 aan(_lk
ZQj(k)\Ifﬁva Z 03 (—ik)N+8 . Up.N 29

JEL JEL JEL
370 J7#0 J7#0
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Now, note that by Proposition 1.4.5 the second term is the Fourier transform of
an Li-function. Consider the first term and for convenience in calculations let us
e Wap(—ik) = SN Lo (—ik)n

() = b(k) S S T
Then, for j > 2, supp(f;) C [2772,27] and for j < 2, supp(#;) C [—27, —277%] so
that the length of the support of 6; is less that 2131 Also, ’9;(]@)} < 2713142 for

each j # 0, except when j = %1 in which case |#,,(k)| < Z. Moreover, in view

of Lemma 1.4.2, note that both w,; and wj, , are bounded and so the numerator
of T;(k) and its derivative are bounded. Also, recall that either N =0 and § =1
or N > 1, so in either case, the exponent in the denominator of the 7}(k) is at

least one. Hence, there exists C' independent of j such that

N—-1

(wap(—ik)] a5, C i
IT5(k)| < 16;(k)] [W +3 W] <o
and
o _.k N—-1 agn
i) < [ewy] | 2eelO L S 1l
k| k|
o) [\w&,p<—z’k>| AR rwa,p<—ik>r]

|k|N+B |k|N+ﬂ+l

(N+p5—n) as
+10;(k |Z ’k|N+B n+‘1p }

n=0

(6. ()] + 1) < 022b,

<<
=T

The length of the support of T} is less than 26l Therefore,
T2, < C(20-2l2lih /e < cg-lil/a

and the same holds for ||T}]|7,. Hence,

ST, I

JGZ
J#0

hm\»—‘

The proof of this case is complete on applying Corollary 1.3.3.
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4. Let 0 < a < 1 and consider the two possibilities once again, that is, either N = 0
and f =1or N > 1and 0 < 8 < 1. The Carlson-type inequality employing
a partition of unity cannot be applied for this case, since for a < 1, wy, , is not
bounded and if o < 1/2, w], , is not even locally in L,. Instead, we use induction
on N. First, let N =0, 5= 1. Now, using (1.13) we have

: ow(—ik) —1
Wap(—1k) W1 g,0(k) = Wap(—th)————
_ Watrip(—tk) =1 wap(—ik) —1
B —ik —ik
= 095, (k) — Ufg, (k).

Hence, U¢, , € F(L1), since the convolution of L;-functions is an L;-function for
the left hand side of the equation above we have that w,, ¥}, € F(L1) and by
case 3 above we have that \Ilfg’;ln € F(Ly).

To complete the proof, note that we already established that the assertion holds
for N =0 and 8 < 1 in case 1, so let us assume it holds for some N; that
is, assume that Wg y is the Fourier transform of an L; function satisfying the
support condition. Then, using the fact that the convolution of L; functions is an
L, function and the fact that we established the assertion for @ = 1, we obtain
that the product W§ , Wi, is also the Fourier transform of an L; function
satisfying the support condition as the support of the inverse of the second factor
of the product is contained in R*. Indeed, using Proposition B.3.5 we have
0lh) ZL iy i) (i)

—ik

= F(H(z)¢1(z) — H(z — 1)d1(x — 1) — H(z)) .

Furthermore, using (1.13) we have

W 0 (R W0 (k) = (“"“’p(_ik)(—_%ﬁviﬁm<‘*> ) (s =1)

—ik
Warrp(—ik) — w(=ik) S gz (<ik)"

V) o0(k) =

(_Z‘k)N+1+/3
B wa,P<_ik) - Zi\/ 0 pn(_Zk)
(_Z'k>N+1+5
| Warp(—ik) = S0 aot (—ik)"
o (—z’k:)N+1+5
ia w(—ik) = SN ab, (—ik)"
\n Zk)N+1—n+ﬂ

n=0
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 wap(—ik) = S0 du(—ik)"
k)N

(—i
N
\IngJFVIH,p Za BN+1 n,0 — W (k),

n=0

where wq,(2) and w(z) are given by (1.8) and 1.9, respectively, a3 are the Taylor
coefficients of wa1,, a;, are the Taylor coefficients of w and dn are such that
the equality holds. By case 3 above, the first two terms are Fourier transforms of
Ly functions. This implies that ¥ € F(L;). Thus, ¥ at k = 0 has to be bounded
and therefore d; = aj,, and ¥ = W5\, .

]

We are ready to prove the main result of this section. The following theorem and
its corollary, under the assumption that f € L;(R) has fractional derivative of order
a+ p or a+ N + [, respectively, not only show that the Griinwald-type approxima-
tions converge to the fractional derivative operator in the Li-setting, but also give the

convergence rate in terms of the regularity parameter .

Theorem 1.6.2. Let 0 < 8 <1, Xo(R) and Xo(R") be given by Definition 1.1.1 and
| fll,, be asin (1.1).

1. If f € Xo15(R), then there exists a constant C > 0 such that
HAz,pf - f(a)HLl(R) < Ch? ||fHa+B
as h — 0+.
2. If p <0 and f € Xor5(RY), then there exists a constant C' > 0 such that
HA f f HL (R+) < Ch? ||fHa+5
as h — 0+.
3. In particular when B =0, that is, if f € X, then
HAipf - f(a)HLl(R) —0

as h — 0+.
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Proof. 1. To prove the first statement, recall that we can rewrite the Fourier trans-
form of the error term, éh(k) as a constant multiple of the product of Fourier
transforms given by (1.34),

Cul(k) = WG o, (kh) fO*) (k).

Now by assumption f(@+# ¢ L;(R), see Definitions 1.1.1 and 1.1.2 for details.
By Lemma 1.6.1, Wg (k) = % is the Fourier transform of an L; function
£5 0, satisfying the support condition, supp(£5 y,,) C [~p,00) URT. This implies
that éh is the product of Fourier transforms of L;-functions and so the Fourier
transform of the convolution of Li-functions and therefore the Fourier transform
of an L;-function, (,. In fact, this argument of product of Fourier transforms
holds true for all f € Li(R) and thus ¥§, (k) is an L;-multiplier. Hence, using
the notation of Appendix C.3 we have

— 1B a+p3
Ch=nh T\ngoyp(h-)f( ).
Note that using (C.4) followed by (C.3) we have

1Twg By = [Twg 0I5 w) = “53707p||L1(R)'

Moreover, Lemma 1.6.1 implies that Hf‘g,&pH Li(R) < C for some constant C' and

hence we obtain the required norm estimate

| flat®) ‘

_ B
I60lz,my = [T 00 2],

< 07| Tug . onllscay 17, )

=1’ Hgg,O,p”Ll(R) Hf(aJrﬁ)HLl(R)

< Ch | fllass -

2. The second statement is proved using the same calculations in view of Remark
1.2.2 where we clarified the convention for extending the functions from L;(R") to
L1 (R) and justified that for p < 0, the Griinwald formula Aj  can be considered
as an operator on Li(R™). Thus, extending f € Li(R") to the left by zero and
noting that if p < 0, then supp(¢,) C RT the result follows by using Lemma
1.6.1 once again as in this case supp(£5 y,,) C R*. A proof of this result using
functional calculus techniques for the unshifted case, that is, when p = 0 and
f € Xo:p5(RT) can be found in [106, Theorem 13].
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3. As mentioned earlier, the case = 0 was proved in [4, Proposition 4.9] and is

included in the statement of the theorem here for the sake of completeness.

]

Corollary 1.6.3. Let 0 < g < 1, N € N and A;; be an N + 1 order Grinwald
approximation. Then there exists C' > 0 such that f € Xoin+5(R) implies that

< CAV O £l .
L) HfH +N+3

| Agr - g

ash — 0", If p; <0 for all0 < j < N and f € Xoint+5(Ry) then

| sy -y iy S O ks

+)

Proof. In view of (1.36), the Fourier transform of the error term for the higher order

Griinwald-type approximation is given by
N —_—
Gulk) = WYY by PG ey, (hes) fles N0 ().
j=0

By Lemma 1.6.1,
N

W (k) = Z bicl +5\1/gﬁN,pj(kcj)

5=0
is the finite sum of Fourier transforms of L; functions. Thus, in the multiplier notation
of Appendix C.3 we have that

Ch _ hN+BTgD(h.)f(a+N+ﬁ)

Hence, as a consequence of the previous theorem and using the same arguments there

in, QA'h is the Fourier transform of an L, function with

IChllz ey < CRY2 fllatwv+s.

The second statement follows along the same lines taking into account the support

condition satisfied by (. O]
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Chapter 2

Semigroups generated by

Grunwald-type approximations

In this chapter we investigate the stability and smoothing of numerical schemes for
fractional-in-space partial differential equations that employ Griinwald-type approxi-
mations for space discretisation. First, we discuss a general technical result which gives
a sufficient condition for multipliers associated with difference schemes approximating
fractional derivative operators to lead to stable schemes with desirable smoothing. Fol-
lowing that we study the first order Griinwald scheme and give an example of a second
order Griinwald scheme for fractional-in-space partial differential equations. In Section
2.2 we generalise the theory to fractional powers of generators of strongly continuous
(semi) groups in an abstract function space setting using the so-called transference

principle [4]. We conclude this chapter with results of some numerical experiments.

2.1 Semigroups generated by periodic multipliers

approximating fractional derivative operators

We begin this section with an important result that gives a sufficient condition for mul-
tipliers associated with the numerical scheme approximating the fractional derivative
to lead to stable scheme with desirable smoothing. In error estimates, the smoothing
of the numerical scheme will be used in an essential way to reduce the regularity re-
quirements on the initial data, and obtain optimal convergence rates when considering
space-time discretizations of abstract Cauchy problems with fractional derivatives or,
more generally, fractional powers of operators in Section 2.2. As mentioned in Section

1.3, observe below in Theorem 2.1.1 that the spaces L,(R) where r # 2 are essential
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when dealing with o < %
Let AC[—m, 7| denote the space of periodic functions that are absolutely continuous
and W, [—m, 7] denote the Sobolev space of L,[—n, w]-functions as in Definition B.1.1.

We refer to Definition C.1.1 for the definitions of the space of bounded linear operators

on Ly, B(Ly), and the operator norm ||'||B(L1)'

Theorem 2.1.1. Let « € R and ¢ € AC[—7,n| such that the following conditions

are satisfied:
(i) [Y(k)| < C[k[* for some C' > 0,
(i) ¢/ (k)| < C" k""" for some C" >0,
(iit) Re(v(k)) < —c|k|” for some ¢ > 0.

Then, v € Whll—m, 7] where r =2 if a > % and r < ﬁ if a < % Moreover,

per
(a) || Tooll g,y < K fort >0,
(b) ||TwethB(L1) S % fort > 07
where K and M depend on ¢, C and C" above.

Proof. Let r,s denote the Holder conjugates where

1 1
l<r<2 and —-+-=1. (2.1)
roos

1

In what follows, if a < Lget r < S

5 , otherwise, set r = 2, and keep in mind that

r(a—1) > —1. As a consequence of the assumptions,

b € Wyklom,x) and e € Wik~ 7] for ¢ > 0. 22)

per per

Thus, by Theorem 1.3.4, both 1) and ¥ are L;-multipliers. Using the formal properties
of Fourier transforms one can verify that the operator associated with the periodic
multiplier e’ coincides with the semigroup generated by the operator Ty; that is,

(T.ww)i>0 = (%), and by Theorem 1.3.4,

1
T

(e

(2.3)

1
T Nl g1y < laol +C [l |5

L."

Firstly,

ag] = ’i /” etw(k)dk’ < i/” (R g < QL /7r etk ke < 1,
™ —Tr

2m J_ . T 2m ).
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where we have used Assumption (iii). Next, using Assumption (iii) together with the

substitution T = t=|k|,

le™Il; ( / EXCIy dk:) <C < /7r St Re(U(k)) dk:) =
<C ( / - dk) <C (t / erelrl dT) D < Ctar. (24)
. o Jr

Making use of Assumptions (ii) and (iii), we have

d (k) dip (k) (k) ' < (a=1)\ _—rct|k|®
= |t—— < C(t" |k ) retlk|
‘d/{? ( ) dk € <C k| € )
Since r(a — 1) > —1, an application of (2.1) and the substitution 7 = ¢« |k|, yields
1 _ 2 .
H (etqp)/ T SC <tv / Tr(a—l)e—rcTadT) < C'tars. (25)
Ly[—m,x] R

Thus, the proof of (a) is complete in view of (2.3), (2.4) and (2.5).
In view of (2.2), v € Wl [—m, n]. Thus, using Theorem 1.3.4,

(e’

1
s

|Tpee gz, < laol + C e

Ly [—m,n] Ly—m7] : (26)

Note that

1 i & «
a0l < - / (k)| T dk < € / k| e~ ak < O,

where we have used Assumptions (i) and (iii). The use of the substitution 7 = ¢ |k|

and the Assumptions (i) and (iii), yield

e <C (/ |k|rere etk dk) < Ct v a. (2.7)
We also have by virtue of (2.5) and the three assumptions,

e = [t g () + el

<2 (k)" + 1) W(k)) " e
< C(|k|r(a—1) + tr|k|r(2a—1))e—rct|kz\a )

e ;

T

Thus, using (2.1) and the substitution 7 = ¢« |k|, and noting that

r2a—1) >r(a—1) > -1,

1 1
d v 1 1 @ rZ
_(wetw) SCt*;er /<|T’r(a1) + |7_‘7'(2a71))€77'c7' dr
dk Ly [—m,7] R
<Ct rtam, (2.8)
and the proof of (b) is complete in view of (2.1), (2.6), (2.7) and (2.8). O
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2.1.1 First-order Griinwald-type approximation

Let us consider the multiplier associated with the shifted Griinwald formula given in
Remarks 1.2.4 and 1.5.1,

Vanp(k) = (=11 A= e (1 — ek = (—1)1%hy, (—ikh)(—ik)®, (2.9)

where p,k € R, h,a € RT such that 2¢ — 1 < a <2¢+ 1, ¢ € N, and w,,(2) is given
by (1.8). Note that,

Yanp(k) =h" Yo ,(kh). (2.10)
We first show that the range of the multiplier associated with the shifted Griinwald

formula is completely contained in a half-plane if and only if the (integer) shift is

optimal.

Proposition 2.1.2. Let ¢y, be given by (2.9) with shift p € Z, k € R, h,a € RT
such that 2g — 1 < a <2q+1, g € N. Then

(a) Yo n, satisfies Assumptions (i) and (ii) of Theorem 2.1.1 with C, C" independent
of h.

(b) Re(Yonp) does not change sign if and only if |p— %‘ < % if and only if Yoy
satisfies the Assumption (iii) of Theorem 2.1.1 with ¢ independent of h.

Proof. First, let us recall (1.17) and (1.18); that is, for k € [—m, 7],
|wap(—ikh)] < Cand |w), (—ikh)| < C.
Thus, in view of (2.9), for k € [—m, 7],
[Yanp(K)] < C K" (2.11)

and

‘ dwa,h,p(k)

o ‘ = h™% |—aih(—=ikh)* ' wa,(—ikh) + (—ikh)*w), (—ikh)| < C'[k|*7",

(2.12)
for some C,C” > 0 independent of h. This completes the proof of Statement (a).
For the proof of Statement (b), it is sufficient to consider h = 1 in view of (2.10)
and so let ¢ 1= 1)41,. Moreover, since 1 is 2r-periodic and (k) = (—k), it is also
sufficient to consider k € [0, 7]. Rewrite ¢ (k) as follows,

W(k) = (=1)T e (e%(e}ik — e%))a = (—1)aHei(G Pk (—22’ sin (g))a
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Using the fact that for z > 0, (—iz)® = r%e7"*2, see Remark B.3.4, we obtain
+lya i« k i((g—p)k’—ﬂ>
(k) = (=1)7"2%sin S et )y 0< k<.

Therefore,

k « QT

Re (¢(k)) =(—1)7"12% sin® (§> cos ((5 —p)k — 7)

(2.13)
:(—1)‘1+1_7’20‘ sin® (g) cos ((% —p)(k — 7T)> )

where we have used the fact that for p € N, cos(f) = (—1)? cos( = pr). Clearly, as
0 < k <, in view of (2.13), Re (¢(k)) changes sign if and only if |¢ — p| > 1. Note
that by assumption a # 2¢ —1 for ¢ € N and so |§ —p| # % Furthermore, Assumption

(iii) of Theorem 2.1.1 implies that there is no sign change.

To complete the proof, all that remains to be shown is that ‘ — %‘ < % implies

that 1,5, satisfies Assumption (iii) of Theorem 2.1.1. To this end, first note the fact
that ¢ is independent of h follows from (2.10). Further, note that if 2¢ — 1 < a <
2q + 1, then }p— %’ < 3 implies that p = ¢. For 0 < = < m, sin(z/2) > z/7 and

cos((§ —p)(x — 7)) > cos(—(5 — p)7). Thus,

Re (1)) =~ 2¢sin £ ) cos (1 ~ it = )

2 2
\ (2.14)
< —2¢ k cos <(g - )7r> = —k“2% cos ((g - )7r> JT
S - 5 p 9 p -
This completes the proof of Statement (b). O

(6]

Remark 2.1.3. Let us note in passing that (p — 5) is the coefficient of z in the Taylor

expansion of the omega function given in Lemma 1.4.2.

Next, we show that with the optimal shift; that is, p = ¢, the operators T},
generate strongly continuous semigroups on L;(R), and in the case when p = 0; that
is, 0 < a < 1, on Li(R"), that are bounded uniformly in h. Recall, in particular
for an Li-multiplier, that the range of ¢, is always contained in the spectrum of the
associated operator Ty, , [1, Lemma 8.1.1]. This, in view of Proposition 2.1.2 and
Definition C.2.6, implies that, if the (integer) shift is not optimal, then the operator
T, cannot be sectorial. Hence, in view of Theorem C.2.8, the semigroups (7,:) £>0
generated by Tj, will not be uniformly bounded. On the other hand, in those cases
when the shift is optimal, we in fact show that the semigroups (Tew)tzo generated by
Ty

, are uniformly analytic in h; that is, there exists M > 0 such that the uniform
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estimate [Ty, v, |5,y < Mt~ holds for t,h > 0. As it turns out, this fact will
have significance when proving error estimates for Griinwald-type numerical schemes
for abstract Cauchy problems with fractional derivatives or, more generally, fractional

powers of operators in Section 2.2.

Theorem 2.1.4. Let a« € R, 2p—1 < a <2p+1, p €N, and consider the Grinwald
multiplier,
(k) = (1P e P (1 — M)

Then the following hold:

(a) {T.tw), }1>0 are strongly continuous semigroups on Ly(R) that are bounded uni-
formly in h > 0 and t > 0. In particular, if 1 < o < 2, then {T,w, }+>0 is a

positive contraction semigroup on Li(R) and for 0 < a <1, on Li(R™).

(b) The semigroups {T ., }+>0 are uniformly analytic in h > 0; that is, there exists
M > 0 such that the uniform estimate ||T,, v, |8,y < Mt~ holds fort,h > 0.

Proof. Proof of (a): To begin, note that vy,(k) = vq.n,(k) with ¢ = p given by (2.9),
also consult Remark 1.2.4. We only have to show that [|T,uw, |z, < K, for all
t > 0and h > 0, for some K > 1 and strong continuity follows by Theorem C.3.6.
Furthermore, it is enough to consider A = 1 in view of (C.4) and (2.10), so let ¢ := 9.
Consider, either 0 < o < 1 or 1 < a < 2 so that the optimal shift p = 0 or 1,

respectively. Taking Remark 1.2.4 into account, we have

(T (o) = (o0 () o = =)

0

(2}t + 3 1 (2) e = m )

m:O,mip

= (2) 10 + (@0

Since (—1)P*(=1)"(%) > 0, for m # p, it follows that T); is a positive operator on
Li(R) (or, Li(Ry) for 0 < a < 1 by recalling Remark 1.2.2 and so is '™V = T.,;.
Therefore, noting the fact that > - (=1)™(%) =0,

«
m.

Thj} = ethﬂ = et(i(Z)IJ’»T’&) = ei(z)tetT’J’ > 0

e — 9

and

Tl < e GVeTallin = o= ()te( 0P S (D™ (2)F Z 1.
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Let now a > 2, then by Proposition 2.1.2, v, satisfies the hypothesis of Theorem 2.1.1
and the proof of (a) is complete.

Proof of (b): Let o > 0, then the statement follows from Theorem 2.1.1 in view of
Proposition 2.1.2 and Theorem C.2.8, since rg(7'(t)) C D(Ty) = L1(R) forallt > 0. O

2.1.2 Examples of second order stable Griinwald-type approx-

imations

Let « € RT, 2¢—1 < a < 2¢+ 1, and ¢ € N. Consider the mixture of multipliers

associated with Griinwald formulae yielding a second order approximation,

On(k) := atapnp (k) + (1 = a)ta,2np, (),

where o5 ,(k) = (—1)7 h=%e=#*(1 — ¢kh)@ the multiplier associated with the p-
shifted Griinwald formula given by (2.9). Moreover, in view of Definition 1.5.2 we also

write
Ay = (=1)"T, .

It is worth noting here that there are many combinations of «,a,p;, and p, that
would yield a second order approximation; however, only some are stable. A simple
calculation, in view of (1.31) and (1.32), verifies the fact that if 0 < o < 1, then
a = 2,p1 = ps = 0 give a second order approximation. Similarly, for 1 < a < 2,
a=2-— %, p1=1, pp = % give a second order approximation. Therefore, we focus on

the stability of these second order schemes.

Proposition 2.1.5. Let ¢p(k) be as above, where a =2, p1 = p, =0, if 0 < a < 1
and a =2—2 p =1, p, =3, if 1 < a < 2. Then ¢, satisfies the assumptions of
Theorem 2.1.1 with constants ¢, C' and C" independent of h.

Proof. Assumptions (i) and (ii) of Theorem 2.1.1 are clearly satisfied in view of (2.11)
and (2.12) as they hold for any p € R. Let us show that Assumption (iii) of Theorem
2.1.1 is satisfied as well.

Note that

On(k) = h™"¢1(hk).

Thus, it is sufficient to consider the case h = 1, so let ¢ := ¢;. That is,

o(k) = ¢1(k) = (—=1)7 (ae_iplk(l — e““)a +(1— a)2—ae—i2p2k(1 . €i2k)a>
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and note that ¢ is 27-periodic. By symmetry, we only need to consider the real part

for 0 < k <, and so using (2.13) and the double angle formula we have

Re(6(k)) = (—1)7+12% sin® (g) (a cos A + (1 — a) cos® (g) cos B) ,

where A = (§ —p1)k — &F and B = (o — 2py)k — 9.
We consider for 0 < k < 7, the function

F(k) = (=17 (acos A+ (1 — a) cos B)

and show that F(k) < F(m) < 0. Then, since a > 0 and p; is the optimal shift, if
Re (1 — a)f2 (k) < 0, by (214),

Re(o(k)) < —ak®2% cos ((% - p)ﬁ) /7.

If Re ((1 — a)y?(k)) > 0, we will have the estimate
Re(o(k)) < F(m)2% sin® (g) < KYF(m)2% /7.

An easy check shows that F'(7) < 0. It remains to show that F'(k) > 0. Now, as
in both cases 2p; = ps and (1 — a)(a — 2ps) = —a (£ — m),

Q

F'(k) =(—1)7*! (—a (5 - p1> sin(A) — (1 — a) (@ — 2p2) sin(B))

=C/(a) (sin(A) — sin(B)) = 2C(a) cos (A Z B> s (A 3 B>

2 2 4
range of the arguments, the cosine factor is negative if « > 1 and positive if o < 1, the

where C(a) = —a($ —p1), 442 = (3 — p))k — %, and 458 = =% Checking the

sine factor is always negative, and hence F'(k) > 0. O

As a consequence, the bounds for the next result obtained from Theorem 2.1.1 are
independent of h, and thus we have the following result on the stability and smoothing

of the second order schemes.

Theorem 2.1.6. Let ¢p,(k) and a be as in Proposition 2.1.5. If 0 < o < 1 and a = 2,
orif 1 <o <2anda=2-—2 then {T,s, }1>0 are semigroups on Ly (RT) or Li(R),
respectively, that are uniformly bounded in h and t, strongly continuous, and uniformly

analytic in h.

Proof. The statement follows from Theorem 2.1.1 in view of Proposition 2.1.5 and
Theorem C.2.8. O
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2.2 Application to fractional powers of operators

Let X be a Banach space and —A be the generator of a strongly continuous group
of bounded linear operators {G(t) }er on X with ||G(t)|lsx) < M for all t € R for
some M > 1. If u is a bounded Borel measure on R and if we set ¢(z) := i(z) =

ffooo e**du(s), (z = ik), we may define the bounded linear operator

PY(—A)x = AG(S)Idu(S), z e X. (2.15)

It is well known that the map ¢ — 1 (—A) is an algebra homomorphism and is called the
Hille-Phillips functional calculus, see for example, [55]. That is, if v = 1 and ¢ = 7,
for some bounded Borel measures p and v, then (¢ + ¢)(—A) = ¢(—A) + (—A),
(¢ ) (—A) = ¢(—A)Y(—A) and (cp)(—A) = cp(—A), ¢ € C. A simple transference
principle shows, see e.g. [4, Theorem 3.1], that,

[D(=A)lsx)y < M| Thospiin |51 ®))- (2.16)

Note that if suppp € RT, then we may take —A to be the generator of a strongly
continuous semigroup and the properties of the Hille-Phillips functional calculus (2.15)
and the transference principle (2.16) still holds.

Let 2p—1 < a <2p+1, o€ R pe Nand {}o be the family of Borel

measures on R such that i, (z) = 1P (—2)°

, (z = ik). Then the operator family
given by

Sa(t)x == / G(s)rdu(s), z € X,t >0,
R

is a uniformly bounded (analytic) semigroup of bounded linear operators on X, see [4,
Theorems 4.1 and 4.6] for the group case. In case 0 < « < 1, we have supp p; C R* and
hence —A is allowed to be a semigroup generator and G to be a strongly continuous
semigroup and the analyticity of S, holds, see [11] and [108]. The fractional power A“
of A is then defined to be the generator of S, multiplied by (—1)?**. We note that the
fractional power of A may be defined via an unbounded functional calculus for group
generators (or, semigroup generators), formally given by f,(—A), where f,(z) = (—2)“.
This coincides with the definition given here for groups and, in case 0 < a < 1, for
semigroups, see [4] and [11] for more details. Thus, for the additional case of —A being
a semigroup generator and a > 1, we just set A* = f,(—A) as in [11].

The following theorem shows the rate of convergence for the Griinwald formula

approximating fractional powers of operators in this general setting. The extension to
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cases beyond the shift group is useful in several applications, for instance, applications
in hydrology that employ the flow group [4, 10]. For the sake of notational simplicity
we only give the first order version; the higher order version follows exactly along the

same lines and is discussed in Corollary 2.2.3.

Theorem 2.2.1. Let X be a Banach space and p € N. Assume that — A is the generator
of a strongly continuous group, in case p = 0, semigroup, of uniformly bounded linear
operators {G(t) her on X. Define

O =h""Y GaG((m—ph)z = (=1)""any(—A)z, € X,
m=0

where G& = (=1)™(2), Yanp(z) is given by (1.5) and o € RY such that 2 — 1 < o <
2¢+1, ge N.
Then, as h > 0, we have

|®F ,x — A%z|| < Chl|A* 'z, x € D(A*). (2.17)

Furthermore, if p = q, then (=1)P*1®7 , generate {S, ,(t)}i>0, strongly continuous
semigroups of linear operators on X that are uniformly bounded in h > 0 and t > 0
and uniformly analytic in h > 0; that is, there is M > 0 such that ||S}, ,,(t)||sx) < M
and [|®F , SE, (1)|lxy < Mt~ for all t,h > 0.

Proof. 1f g is defined by g(z) = %_Zz)_l, Rez <0, then by Lemma 1.6.1 with N =0
and f =1 and (C.4) we have that

| Thsngiirm |52, )y < Ch.
In case p = 0, we have that supp(g) C RT and hence,
| Thsng(irmyll Bz, ®+)) < Ch.
Therefore, by the transference estimate (2.16),
1hg(—=hA)||5x) < Ch
for some C' > 0. Thus, if z € D(A>™), then
|hg(—hA) A x| < Ch| A% iz|.

Using the unbounded functional calculus developed in [4] (in case p = 0 see [11]), we
have, for z € D(A**1),

hij(—hA)A* g = hg(hz)(—z)a+1]Z:_A] z
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— [ (h—a i(—l)m (Z) p(m—p)h(z) _ (—z)“)

=00 r— A%

] ,
z=—A

The strong continuity of S}, ;, follow from Theorem 2.1.4 and [4, Theorem 4.1], where

and the proof of (2.17) is complete.

the latter theorem establishes the transference of strong continuity, from L;(R) to a
general Banach space X (see, [11, Theorem 5.1] for the same result in the unilateral
case). Finally, the operator norm estimates follow from the L;-norm estimates in
Theorem 2.1.4 and the transference estimate (2.16), noting that by the functional
calculus of [4] and [11] it follows that (Y pye™>"r)(=A) = (=1)PHop ,SP, (t) for
t > 0 where 1, 5, is given by (1.5) and p = ¢. O

The stability and consistency estimates of Theorem 2.2.1 allow us to obtain un-
conditionally convergent numerical schemes for the associated Cauchy problem in the
abstract setting together with error estimates. To demonstrate this, we use the opti-
mally shifted first order Griinwald scheme as “spatial” approximation together with a
first order scheme for time stepping, the Backward (Implicit) Euler scheme, to match
the spatial order. Let 2p — 1 <a <2p+1, a € RT, p € N, X be a Banach space and
—A be the generator of a uniformly bounded strongly continuous group (semigroup if
p = 0) of operators on X and set A, := (—1)P" A% Consider the abstract Cauchy
problem

u(t) = Aqu(t); u(0) =z,
with solution operator {S,(f)}:>0, where, as we already mentioned, S, is a uniformly
bounded analytic semigroup as shown in [4, Theorem 4.6] and in [108] for 0 < o < 1;

that is, when —A is a semigroup generator. For its numerical approximation set
Up+1 — U

n+1T no_ (_1)]3—‘,-1@27{’

that is, with A, := (=1)PT1®P

a,h

pUnt1; Up=x,n=0,1,2,..;

Up = (I —TA0p) "x,n=1,2, ..
We have the following smooth data error estimate.

Theorem 2.2.2. Let2p—1 < a <2p+1, a € R, peN, ne N, and0 <e < 1. Let X
be a Banach space and —A be the generator of a uniformly bounded strongly continuous

group (semigroup if p=0) of operators on X and set t = nt. If v € D(A'), then

ta
1Sa ()2 — un|| < Cn~Y|z|| + R (A 2]), n=1,2,...;t >0, (2.18)
g
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and, if x € D(A), then

1Sa(®)z = unll < C(n M|zl + (1 + a)h

t
logﬁ‘ |Az]]), n=1,2,..;t>0. (2.19)
Proof. To show (2.18), we split the error as
Sa(t)r — up = Sa(t)r — S, (H)x + ST, ()7 — up 1= €1 + €.

It was shown in Theorem 2.2.1 that SZ’,I are bounded analytic semigroups on X, uni-
formly in h. Therefore, ||es| < Cn~!||z|, n € N, as shown in [30], with C' independent
of h and t. To bound e; we use the fact that all operators appearing commute being

functions of A, to write
t
er = Sa(t)r — S, (t)r = / (Aa — Aap)Sa(r)SE (¢t — )z dr (2.20)
0

Note that the analyticity of the semigroup S, implies that there is a constant M such
that for 0 < e < 1, the estimate ||AL°5,(¢)|] < Mt*~! holds for all ¢ > 0. Then, by
Theorem 2.2.1,

t
HmHSCh/HA”%Mﬂﬂhﬁ—ﬂﬂMr

_C’h/ 1AL *Sa(r)SP , (t — r)A™ =] dr < CHES ||A1+6 I,

which completes the proof of (2.18).
To show (2.19), write e; in (2.20) as

t

hot
er = / (An — Awh)Sa(r)SZ’h(t —r)zdr+ / (An — Aa’h)Sa(r)Sfl’h(t —r)zdr
0

It is already known that A,z — A,z as h — 0+ for all z € D(A,), see [4, Proposition
4.9] and [106], and hence we have stability || A ,x —Anz|| < C||Agz|| for all x € D(A,).

Therefore,

he ) ¢
llea ] SC’/ HA,l;ESa(r)A:UH dr +Ch | AaSa(r)Az|| dr
0 ha

<C(ha+h

t
o8 1z A
O

Note that the condition z € D(A™) in (2.18) might be hard to check for ¢ # 1,
depending on A and the Banach space X. However, one can always use ¢ = 1 as
D(A?) is usually quite explicit. We also obtain convergence and error estimates of
stable higher order schemes (such as the second order Griinwald formulae introduced

in Section 2.1.2).
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Corollary 2.2.3. Let a« € RT with2q—1<a <2q¢+1, g € N and let
N N
Won = (_1)q+1 Z qu)]o)jcjh = Z bjwmcjh,pj(_A)
=0 =0

be an N + 1-order Grinmwald approximation, where a5 ,(2) is given by (1.5) and
bj,c;,p; are as defined in (1.33). Assume the multiplier Z;V:o bjtba,c;np; (K), where
Yo np(k) is given by (1.6), satisfies (i)-(iii) of Theorem 1.6.2 with constants independent
of h. If one solves the Cauchy problem

Uu(t) = Vo pu(t); u(0) =z,

with a strongly A-stable Runge-Kutta method with stage order s and order r > s+ 1,

then, denoting the discrete solution by u, at time level t = nr,

1Sa(B) — | < C (n—’"nxn A

log%‘ ||AN+19[:H> Ch>0, t=nr,

for all z € D(ANT!).

Proof. 1t is straight forward to see that Theorem 2.2.1 holds for U, ;; i.e.,
|Uopnz — A%|| < CANTH| ANy ||, & € D(A*TNHY),

le™er gy < M and || U, petPon|| gy < M/t. Following the proof of Theorem 2.2.2

we obtain the “spatial” error estimate

|Sa(t)z — ePerp|| < CANT

t
logﬁ‘ | AN ]| (2.21)

t\I/a’h

Since the analyticity of the semigroups e is uniform in A (the constant M does not

depend on h), the statement follows from [68, Theorem 3.2] (see also [91]). O

Remark 2.2.4. The error estimates (2.18) and (2.19) are almost optimal in terms of the
regularity of the data. We conjecture that one could remove the slight growth in ¢ from
(2.18) or the logarithmic factor in (2.19) by considering the L;-case again and using
the theory of Fourier multipliers on Besov spaces. Then use the transference principle

to derive the abstract result. We do not pursue this issue here any further.

Remark 2.2.5. The convergence rate given in Corollary 2.2.3 can be extended using the

stability estimate
1Sa(t)z — e™Mera|| < Ol
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and (2.21) to certain real interpolation spaces as in [57, Corollary 4.4]. We note that
while the spaces D(A*) endowed with the graph norm are, in general, not interpolation
spaces, they are embedded within appropriate interpolation spaces (see, for example,
[47, Corollary 6.6.3]) and therefore we obtain

t
log —
ogha

N
[Sa(t) — un|| < C (n—"||a;|| +h? (A% + ||x||)> , h>0, t=n,
for all x € D(A®), s € [0, N + 1]. Also note that we indeed have convergence of u,
to Su(t)z for all z € X as 7 — 0 and h — 0 by Lax’s Equivalence Theorem as a
consequence of stability and consistency. The order of convergence, however, might be

very low depending on .

Remark 2.2.6. In recent work [27], Chen and Deng studied fourth order accurate
schemes for certain fractional diffusion equations. Their approach is very different
to ours, which we briefly compare and contrast below. Firstly, the authors develop a
fourth order approximation different to our higher order Griinwald-type approximation
for the (space) fractional derivative using Lubich’s fractional linear multistep methods
[64]. The authors refer to it as a weighted and shifted Lubich difference (WSLD) oper-
ator as a shift similar to ours is employed, see Definitions 1.2.1 and 1.5.2. In Theorem
2.4, the authors obtain point error estimates for their fourth order approximation for
the fractional derivative under the assumption that the function along with the frac-
tional derivative of order v + 4 as well as their Fourier transforms belong to Ly (R).
In comparison, the regularity assumptions that we require to obtain higher order ap-
proximations are very minimal; that is, we only require that the function along with
the fractional derivative of order o+ 4 belong to L1 (R). Then, using Fourier multiplier
theory and powerful Carlson-type inequalities, we obtain error estimates (see Corollary
1.6.3) in the L;-setting which are sharp in view of the minimal regularity assumptions.
Moreover, these error estimates from the L;-setting can be used to obtain point es-
timates similar to the ones obtained by these authors, with less stringent regularity
assumptions compared to theirs, using the transference principle (see Corollary 2.2.3).
Lastly, the authors exploit the Toeplitz matrix structure of their scheme and employ
the Grenander-Szergd Theorem to demonstrate stability. On the other hand, we use
semigroup theory to show stability and smoothing of our numerical scheme. For future
work, it might be worth considering their approach for showing stability of the numer-
ical scheme, as we found our proof of stability for an explicit numerical example very

technical and tedious, even in the case of a third order scheme.
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2.3 Numerical results

In this section we give the results of two numerical experiments. The first is to explore
the effect of the regularity of the initial distribution on the rate of convergence as needed
for Corollary 2.2.3, the other is to see how well a second and third order scheme fare

in the numerical experiment done by Tadjeran et. al [102].

Example 2.3.1. We consider X = L;[0,1] and A = (d/dx) with
D(A) = {f: f' € Ly, £(0) = 0}
and o = 0.8. We approximate the solution to the Cauchy problems
u'(t) = —A%(t);u(0) = f;, i=1,2,3

at t = 1 with

with first and second order Griinwald schemes (as in Proposition 2.1.5) as well as via
a convolution of f; with an a-stable density approximated using Zolotarev’s integral
representation [83], which gives the exact solution but both the convolution and the
density are computed numerically on a very fine grid. Note that —A® denotes the
Riemann-Liouville fractional derivative on the interval [0, 1] which we study in detail
in Chapters 3 and 4. Further, note that f; & D(A), fo € D(A) but f, & D(A?) and
f3 € D(A?). However, f; € D(A%) for 8, < 0.7 and f, € D(A%) for By < 1.7.
By Remark 2.2.5 we expect about 0.7-order convergence for both schemes in case of
up = f1, and first order convergence for the first order scheme for the other initial
conditions. We expect about 1.7-order convergence for the second order scheme in
case of ug = fy and second order convergence in case of ug = f3. For the temporal
discretization we use MATLAB’s ode45, a fourth-order Runge-Kutta method with a
forced high degree of accuracy in order to investigate the pure spatial discretization

error. We see in Figure 2.1 that we obtain the expected convergence in all cases.
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Figure 2.1: Lj-error for different initial conditions f; and a first (-) and second order
(x) scheme. Note the less than first order convergence for a “bad” initial condition; i.e.
one that is not in the domain of A. Also note the less than second order convergence
for a second order scheme but first order convergence for the first order scheme for an

initial condition that is in the domain of A but not in the domain of AZ2.

Example 2.3.2. Even though our theoretical framework is not directly applicable, be-
cause the fractional differential operator appearing in (2.22) is defined on a finite do-
main with boundary conditions and has a multiplicative perturbation and hence it is
not a fractional power of an auxiliary operator, we apply the second and third order
approximations to the problem investigated by Tadjeran et al. [102], namely approxi-

mating the solution to

Ou(z,t) _T'(22) ,50" u(x,t) ~t 3. _ .3
ot 3l t Oxl8 (I+z)e 2% u(x,0) =2 (2.22)

on the interval [0, 1] with boundary conditions w(0,¢) = 0,u(1,t) = e~*. The exact

solution is given by e *a?, which can be verified directly.
A second order approximation of the fractional derivative is given by Proposition

2.1.5. In order to obtain a third order approximation we consider

1
On(k) = ay, + b3, + ciy
with the coefficients a, b and ¢ such that ¢, is a third order approximation; i.e.

_7—8oz+3a2 =T+ 3«

_ S g A
T 3-1 " 3a-1" ¢

A quick plot of ¢y (k) for k € R strengthens the conjecture that the spectrum is in a

sector in the left half plane and hence we expect stability and smoothing. We use again
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a fourth order Runge-Kutta method to solve the systems to ¢ = 1. Table 1 suggests
that we indeed have second and third order convergence with respect to the spatial

discretization parameter Ax.

Az | Error 2™ Error rate Error 37 Error rate
1/10 | 6.825 x 1075 | - 9.180 x 1076 | -
1/15 | 3.048 x 107° | 2.24 ~ (15/10)? | 1.933 x 1075 | 4.75 > (15/10)3
1/20 | 1.708 x 1075 | 1.78 ~ (20/15)% | 7.825 x 1077 | 2.47 ~ (20/15)?
1/25 | 1.088 x 107° | 1.57 ~ (25/20)% | 3.922 x 10~7 | 2 ~ (25/20)3

Table 2.1: Maximum error behaviour for second and third order

Griinwald approximations.
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Chapter 3

Boundary conditions for
fractional-in-space partial

differential equations

The Fokker-Planck equation of a Lévy stable process on R is a fractional (in space) par-
tial differential equation. The (spatial) fractional derivative operator is non-local with
infinite reach. In Chapters 3 and 4 we investigate the truncated fractional derivative
operators on a bounded interval €2 with various boundary conditions. Moreover, we
identify the stochastic processes whose marginal densities are the solutions to the frac-
tional partial differential equations. That is, we show convergence of easily identifiable
(sub)-Markov processes (that are essentially finite state), to a (sub)-Markov process
governed by a Fokker-Planck equation on a bounded interval where the spatial oper-
ator is a truncated fractional derivative with appropriate boundary conditions. This
will be achieved using the Trotter-Kato theorem [37, p. 209], regarding convergence of
Feller semi-groups on Cy(2) and strongly continuous positive contraction semigroups

on L]0, 1], and hence showing process convergence [53, p. 331, Theorem 17.25].

3.1 Extension of a finite state Markov process to a

Feller process on [0, 1]

To set the stage, let the matrix GG,,«,, denote the generator of a finite state sub-Markov

process (X[ )i>0 € {1,...,n}. Then, for any function f: {1,...,n} — R,

(S (F), o f0)T) = BLACXPIXG = ).

7
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Identifying f with a vector f via f; = f(i), (S(¢))i>0 with
S(t) : f s efCmnf

is a family of bounded operators on ¢ = (R", ||.||s) called the backward semigroup of
the process (X}')i>0. For f =e;, (S(¢)f), gives the probability that X;* = j given that

X{ =1i. This is in contrast to the forward semigroup (T'(t));>0 with

*

T(t): g gTetG"X” = ethXng

acting on g € 7 = (R™, ||.||1), where T'(t)g is the probability distribution of (X}");>o

*
nxn

given that the initial probability distribution of X' is g. Here G is the adjoint of
Gnxn and g’ the transpose of g. In particular, if g = e;, (T'(t)g), gives the probability

that X|' = ¢ given that X[ = j.

Remark 3.1.1 (Transition rate matrix). We refer to G, x, and G}, as transition
rate matrices for the spaces ¢, and /7, respectively. Their diagonal entries g;; < 0
denote the total rate at which particles leave state 7 and their entries g;; > 0, i # j
signify the rate at which particles move from state ¢ to state j or from state j to
state 7, respectively. The processes are referred to as sub-Markovian if the diagonal
entries dominate the row and column sums, respectively, and note that in this case the

particles exit the domain completely and so the mass is not preserved.

Recall that these concepts are extendable to general Markov processes taking values
in a locally compact separable metric space 2 with the backward semigroup (S(%)):>0
acting on bounded functions and the forward semigroup (7'(t));>0 acting on Borel
measures on 2. Let Cy(€2) with sup-norm denote the closure of the space of continuous
functions with compact support in €. In particular, if (S(t));>0 is a positive, strongly
continuous contraction semigroup that leaves Cp(€2) invariant, then (X;):>o is called a
Feller process. On the other hand, for any positive, strongly continuous, contraction
semigroup (S(t))i>o on Co(Q2) (called Feller semigroups) there exists a process (X;)i>o
with (S(t))i>0 as its backwards semigroup [53, Chapter 17]. Furthermore, a family of
Feller semigroups converge strongly, uniformly for ¢ € [0,t,], to a Feller semigroup if
and only if their respective Feller processes converge in the Skorokhod topology, see
[53, p. 331, Theorem 17.25].
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3.2 Construction of the transition operators

We begin with the bounded domain where all the action takes place. In what follows,

we use

Q=1(0,1)] (3.1)

to represent the interval [0, 1], which may or may not contain its endpoints, depending
on the left and right boundary conditions that we impose on the fractional derivative
operator. For a Dirichlet boundary condition (or absorbing boundary condition) we
remove the endpoint from that side, which implies that Cy(2) will be the set of con-
tinuous functions that are zero at that endpoint. Note that if there are no absorbing
boundary conditions then Cy(£2) = C]0, 1] as the closed interval [0, 1] is compact.

In order to exploit the fact that convergence, uniformly for ¢ € [0, to], of Feller semi-
groups on Cy(€2) implies convergence of the processes we turn a (n)-state (sub)-Markov
process (X/)i=0 € {1, 2,... ,n} to a Feller process (X");>o € Q by having parallel
copies of the finite state processes whose transition matrices interpolate continuously.
The main idea here is to divide the interval [0, 1] into n + 1 grids of equal length A so
that the (Feller) process can jump between grids only in multiples of h. The transition
rates for the (Feller) process (X!*);>o in the interval [(i —1)h, ih] jumping up or down by
jh interpolate continuously between the transition rates of sub-Markov process (X}"):>o
being in state i — 1 going to state (i — 1 + j) and the transition rates of sub-Markov
process (X/'):>o being in state ¢ going to state (i + 7).

Let us make the necessary preparations in order to facilitate the definition of the

transition operator.

Remark 3.2.1. To be precise, let n € N, h = #1 and divide the interval [0, 1] into n+ 1

intervals such that the first n intervals are half open (on the right) while the (n + 1)
(last) interval is closed. We can then uniquely determine each x € [0, 1] by writing §

as the sum of its integer and fractional parts,

iRatis

For convenience in calculations, we write t(z) — 1 = |£] and M(z) = {£}, so that
7= (uz) = 1) + ),

where the two grid co-ordinate functions are defined as follows.
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Definition 3.2.2. For each = € [0, 1], the (step) function that returns the index of the
grid under consideration, ¢ : x — {1, 2,... ,n + 1}, is given by
(2) i+1, ifi<§<i+lforie{0,1,2,... n}
v(x) =
n+1, iff=n+1
The (sawtooth) function that returns the interpolant value, A : x — [0, 1] is given by
L—q, ife<f<i+1foried{0,1, 2,... ,n},
Mz)y=<¢ " - { }
1, ifZ=n+l.
Note that the value A(z) = 1 is taken only once at the right boundary =z = (n+1)h = 1,
while every other value 0 < A(z) < 1 is taken n + 1-times.

Let C ([0,1] ; R™") denote the space of vector-valued continuous functions v :
[0,1] — R™*. The projection operator P,,; : C[0,1] — C ([0, 1] ; R™!) is defined by

(Pat1f); (A) = F(A+35 = Dh), feC[0,1],

where A € [0,1] and j € {1, 2,... ,n+1}. The embedding (gluing) operator is defined

on the range of the projection operator; that is, let
D<En+1) = rg(Pn-i-l) cdcC ([07 1] ) Rn+1)

and define E, 1 : D(E,1+1) = C[0,1] by (E,41v) () = v;(2)(A(2)), where z € [0, 1] and

domain
D(Eps1) = {veC([0,1]; R*™) 1 v;51(0) = v;(1) for j=1,... ,n}.

Observe that E,.; is a bounded operator and D(E,1) is a closed subspace of
C ([0, 1); R™™), thus E,,; is closed. Moreover,

En-i-l (PN-Hf) = f: f € 0[07 1]’
Pn+1 (En+1’U) =0,V € D(En+1> (32)

Let G),x, denote a given n x n transition matrix on [ . Then, we construct the

corresponding (n + 1) x (n + 1) interpolation matriz,

91,1 D'Ngia -+ D'N)gin 0
Nl()‘)gll NT()\)gl,n
Gni1(A) = | NY(N)giq (1 —=XN)gi—1,-1 + Agi; N"(N)gi—1n | (3.3)
N'(N)gna N"(N)gn—1,n
O DT(/\)gn,l e Dr()‘)gn,n—l gn,n
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where the parameter A € [0,1], g;; are the entries of G,,x,,, and D', N', D", N" are
continuous interpolating functions of the parameter A such that G,1(\) is also a rate

matrix for each A\ € [0,1].

Remark 3.2.3. The interpolating functions are chosen in the following manner depend-
ing on the boundary conditions at hand. If the left boundary condition is Dirichlet,
then we set N' = 1 and take D' to be a continuous function of the parameter A that
interpolates from 0 to 1. If the left boundary condition is not Dirichlet, then we set
D! = 1 and take N' to be a continuous function that interpolates from 0 to 1. Similarly,
if the right boundary condition is Dirichlet, then we set N” = 1 and take D" to be a
continuous function that interpolates from 1 to 0. If the right boundary condition is
not Dirichlet, then we set D" =1 and N" to be a continuous function that intepolates
from 1 to 0.

Lastly, observe that the interior entries of G, are given by
[Gn—i-l()\)]%] = (1 - A)gi—l,j—l + )\gl,j for Z7.] S {27 37 Tt an} .

Let us verify that G, 1(Pny1f) € D(E,+1); that is,

(Gn+1<Pn+1f))z‘+1 (0) :( n+1( n—Hf)) ( ) =1,...,m,

where for k=1,...,n+ 1,

n+1

(Grir (Pasi ) V) = D [Gun Ny (Pasa f); (V).

=1

Keep in mind that irrespective of the boundary conditions,
N'(0)£(0) =0, N"(1)f(1) = 0, and N'(1), N"(0), D'(1), D"(0) = 1.

First,

n

(Gri1(Pasrf)), ()—gl,lf<h>+Z_;D< )g1f (k) = Zguf (jh)-
For k € {2,--- ,n},
(Grrr(Pasa )y, (1) = N'(Dgra f (R +§;gkjf (7h) + N"(1)gr-1,0.f (1)
:ilgk,jf(jh)
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and

(Grr1(Pos1f)), (0) = N'(0)gr1 £(0 +ng i1/ (( = Dh) + N (0)ge—1,nf (nh)

= Z gr-1,5.f (3h).
j=1

Lastly,

(Grga(Pasrf)) s ( ZD" Vgnj-1f (G = 1)) + gnnf(nh)

= Zgn,jﬂjh).

HenC67 Gn—H (Pn+1f) S D(En—i-l)

With this preparation, we are in a position to define the transition operator.

Definition 3.2.4. The bounded transition operator G : C[0,1] — C]0, 1] is given by

G f — (En+1Gn+1Pn+1) fv

where
(Ent1 (Grs1Par1 f)) (2) = [Grar(M2) (Pasr /) (M2))], ) -

Remark 3.2.5. Let us make the following observations:

e The inclusion of interpolating functions D!, D", N' and N is necessary to ensure
that G is a bounded operator on Cy(€2). Firstly, they are necessary to ensure that
lim, ., Gf(z) = 0 for a Dirichlet boundary point z;, € [0, 1] \ Q. Secondly, they
ensure the continuity of G f at the grid points z =1h, 1 <1 < n.

To see this, using Matrix 3.3, observe that

Gf(x)
(01 FO@)R) + S8 D) g1541 F (M) + 5)h), if o(z) = 1,

NZ(A(x))gL@),lf(A(x)h)
F 3 (1= M@)i-1 + M@ guarg1) F(A) +5))
N )00y () + ), if2 < u(z) <.

> it DT @) gn g f (@) + j)h)
+gnnf((Nz) +n)h)), ife(z) =n+1.

\

66



For a left Dirichlet boundary point z}, since

(r) =1, lim A\(z) = 0, D'(0) = 0 and lim f(x) — f(0) =0

x¢zé xin

we have that
lim Gf(z) = 0.

xixé
Similarly, for a right Dirichlet boundary point zj, since

vz)=n+1, imA(z)=1, D"(1) =0and lim f(z) — f((n+1)h) = f(1) =0

xtzy )

we have that
lim Gf(x) = 0.

xtzy
Next, consider the interior grid points x = ih, for ¢ = 1,...n. Approaching
the grid point from the right, note that irrespective of the boundary conditions,
in view of Definition 3.2.2, for « € [ih, (i + 1)h) we have lim,;;, A(x) — 0 and
t(x) =i+ 1. Moreover, N"(0) = 1 = D"(0) and if the left boundary condition is
Dirichlet, then f(0) = 0, else N'(0) = 0. Thus,
lim G f (v) = Z 9if (ih).
J:
On the other hand, approaching from the left, note that for = € [(i — 1)h,ih),
we have lim,4;, A(h) — 1 and «(z) = i. Moreover, D'(1) = 1 = N'(1) and if the
right boundary condition is Dirichlet, then f(1) =0, else N"(1) = 0. Thus,
lim Gf(z) = Zl 9i3f(Gh)-
]:
Hence, G f is continuous at each of the interior grid points, = ih. Furthermore,
the action of the transition operator coincides with the action of the rate matrix,

that is,
Gf — annf7

where G,,x,, is the given transition matrix and £ = (f(h),..., f(nh)).

e In view of (3.2) we have
el ,
S<t>f = eth = Z ﬁ (En+1Gn+1Pn+1>J f = En+1€th+1Pn+1f'
=07
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As E, ;1 and P, are positive contractions, (S(t));>o is a Feller semigroup if
(e!n+1) 50 is a positive contraction on C ([0, 1]; R™*1), which is the case if and only
if G,11()\) generates a positive contraction semigroup on ¢! for each A € [0, 1];

that is, G,,;+1()) is a rate matrix whose row sums are non-positive.

e Note that the approximation operator usually used in numerical analysis that is
obtained by linearly interpolating the vector Gf is not the generator of a positive

semigroup and so does not admit a straight forward stochastic interpretation.

In applications, one is usually interested in observing the evolution of the forward
semigroup that acts on the space of bounded (complex) Borel measures, Mg(2). It
is well known that L]0, 1] is isometrically isomorphic to a closed subspace of Mp(€2).
The forward semigroup denoted by (7(t)):>o is the adjoint of (S(¢)):>o and the action
of the generator G* of (T'(t));>o can be easily computed for g € L;[0,1]. To this end,
we first extend the definitions of E, ., and P, to L]0, 1]-functions.

Let Ly ([0, 1]; R"*!) denote the space of vector-valued Bochner integrable functions
v:[0,1] — R"™™ see [1, p. 13 ]. For g € Ly[0,1], define the projection operator
Poy1: Ly[0,1] = Ly ([0, 1]; R™1) by

(Fri19); (A) = g((A+ 5 = 1)h),

where A € [0,1] and j € {1, 2,... ,n+ 1}. Define the embedding (gluing) operator
Epi1 o Ly ([0,1; R™1) — Ly[0,1] by (Epq1v) (2) = vy (A(z)). where z € [0,1]. Note
that

Eni1 (Priag) = 9, g € 110, 1],
Pt (Bpirv) = v,v € Ly ([0,1; R™) .

Let g € L;1[0,1] and to simplify notation in the calculation below let P := P, and
A= A(x). Inview of Remark 3.2.1, for (i—1)h < z < ih we have x = (\(z) + ( — 1)) h.
Thus, using the substitution x = (A + (¢ — 1)) h along with Definition 3.2.4 we have

|| ©@nwatar=3 [ GNP (PN s
- Z/( < G )]w (Pf)j()‘(x))> (Pg)i(A(z))dz

- / (Z O, (P (A >) (Pg)i(\) hdA
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n+1

=3 [P, (Z (A <Pg>i<A>> hdx

i=1

i=1

n+l  .ip n+l
— Z/('l)h(Pf)j(/\(x)) (Z (G (A@))] (Pg)i(/\(x))> A

1
- | 1@ a@as.
Therefore,
G'g = En+1G£+1Pn+19
and thus, G* leaves L;[0, 1] invariant. Hence, we have shown the following proposition.

We refer to Appendix C for the definition of the part of an operator.

Proposition 3.2.6. The part of the adjoint transition operator G* in L4[0,1], denoted

by G* : L1]0,1] — L]0, 1], is given by
L1]0,1]

*

: f — (En.l'_lGZJ’,lPTL-i—l) f7

L1[0,1]
where
(Buti Gy Pus) £(2) = [GF, A@)(Past NG, -

Proposition 3.2.7. Let G, «, be an n X n rate matriz with non-negative off-diagonal
entries and non-positive row sums. For A € [0, 1], let the operator G be as in Definition
3.2.4 and assume that the interpolating functions D', D", N' and N" are such that
Gni1(A) is a rate matriz and G is a bounded operator on Cy(S2). Then G generates
a Feller semigroup on Cy(Q2) and G* generates a strongly continuous positive

1Y,
contraction semigroup on L]0, 1].

Proof. Let (S(t)),s, denote the semigroup generated by G and (7'(t)),, denote the
dual semigroup generated by G*. Firstly, note that (S(t)),, is a Feller semigroup on
Co(2) in view of Remark 3.2.5. Indeed, since G is a bounded operator, (S(t))¢>o is
strongly continuous. The fact that G,,11()) is a transition rate matrix with non-positive
row sums for each A € [0, 1] yields the fact (S(¢)):>0 is a contraction semigroup. Lastly,
positivity follows in view of the linear version of Kamke’s theorem, see [2, p. 124]:
that is, e/“w+1 > 0 if and only if g;; = 0 for i # j.) The same argument yields the
positivity of (7'(t))¢>0. Since (S(t))i>0 is a contraction semigroup and for all t > 0,
|T@)] = [IS®)|l, we have that (T'(t)),5, is a contraction semigroup on Mz(2). Next,
note that L,[0,1] is a closed subspace of Mp(€2). Hence, as G*, and thus (T'(t)),5,

)
L [0,1]) £50

see [37, p. 43, 61]. ]

leaves 1[0, 1] invariant, the part of G* in L;[0, 1] is the generator of <T(t)

69



3.3 Omne-sided fractional derivative operators with

different combinations of boundary conditions

In this section we define the one-sided fractional derivative operator, denoted in general
by A, as a densely defined, closed, linear operator from its domain D(A) C X into
X. The domain D(A) encodes a particular combination of boundary conditions, the
interval Q = [(0,1)] is given by (3.1) and

X = Cp(Q) or L]0, 1]. (3.4)
We use |||y to denote the X-norm where

) supeea | f(@)], i X = Co(Q)
11l ==

1 : (3.5)
JHf@)|de, if X = L4[0,1]

We make the necessary preparations in Sections 3.4 and 4.1 and show that these frac-
tional derivative operators are generators of positive contraction semigroups using the
Lumer-Philips Theorem. We do this by approximating the fractional derivative oper-
ators by the (transition operators) generators of the backward or forward semigroups

associated with the extended finite state (sub)-Markov processes.

3.3.1 Fractional integral operators and fractional derivatives

In preparation for the definition of the one-sided fractional derivative operators in Sec-
tion 3.3.2, we first define the linear (Riemann-Liouville) fractional integral operators
and study some of their properties that we use often in our discussions. Following that
we give the explicit definition of fractional derivatives on X and discuss the motivation
behind the choice of functions in the domains of the fractional derivative operators
which encode various boundary conditions. We conclude this section with the proper-
ties of some special functions which play important roles in our study of the fractional

derivative operators on X.

Remark 3.3.1. In what follows, when working in Cy(2), we use D" to denote the
classical integer-order derivative operator. On the other hand, when working in [0, 1],
(D™, W™0,1]) for n € N denotes the generalised integer-order derivative operator as
in Definition B.1.1.

Let pg denote the power function (monomial) given by
B
x

pa(z) := TGT1) if —1<pB<0forze(0,1], orif 3>0forz e [0,1].  (3.6)
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Let py denote the constant one function and 0 denote the zero function on [0, 1]. We
use ps to denote the power function on [0, 1], instead of ¢ as given in Definition 1.4.3,
to emphasise the fact that we are working on the interval [0, 1] and not on R.

First note that, since [|pg|, ) = m,

pg € L1]0,1] and if B > 0, ps € C[0,1]. (3.7)
Moreover,

D"pg = pp_n, for f >n—1,
Dpy = 0. (3.8)

Let v > 0 and f € L]0, 1], then the fractional integral of order ~, see Definition
1.1.3, is given by
If(z) = / py—1(z —s)f(s)ds, z > 0. (3.9)
0

If o, 5> 0and f € L]0, 1], then the fractional integrals have the following semigroup
property, see [86, p. 67],
I°IPf = [o1P . (3.10)

For f € AC|0,1], note that the derivative of the fractional integral is related to the

fractional integral of the derivative by

D(I'f) = I'(Df) + f(O)p,1. (3.11)

To see this, let us use the substitution v = x — s and write

rie) = [ =9l

Sy fw b= s)pya(s)ds — [ f(x = )py 1 (s)ds]

h—0 h
L “fle—s+h)— fla—s)
= lim VO 7 pv—l(s)ds}

where we have used the Lebesgue local average in the second term.
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Remark 3.3.2. For v > 0, if f € L]0, 1], then using (3.7) and Young’s inequality (B.2),

we have

1
||]7f||L1[0,1] <C ||p7—1||L1[0,1] ||f||L1[o,1} = Cm ||f||L1[0,1] < 0.

Thus, I" € B(L4[0,1]) for v > 0 and hence, continuous on L;[0,1]. Moreover, if
f € C|0, 1], then using (3.7) and Young’s inequality (B.2) again

prHLoo[o,l] < Hpv—1||L1[o,1] HfHLOO[O,l] < 0.

Moreover, since I7f € C[0,1], we have that I7 € B(C[0,1]) for v > 0 and hence,

continuous on C0, 1].

We end the discussion on fractional integral operators with the following crucial

proposition.

Proposition 3.3.3. Let f € L1]0,1]. Suppose that either 0 < o < 1 and f is bounded
on [0,€) for some e >0, or a > 1. Then

12f(0) := lim I f (x) = 0.

)

Proof. First, let 0 < o < 1 and f be bounded on [0, z], 2 < e. Then,

SE .’I)

II“f(x>|§/0 e = A5 ds < s (1506 / Pas(@ — 5)] ds
xoz

= sup (|f(s)])

—— = 0,asz | 0.
s€[0,z] F(CM + 1)

Next, let o = 1, then I*f(0) = If(0) = 0 by the absolute continuity of the Lebesgue
integral, see [56, p. 300]. Lastly, let @ > 1, then p,_; is continuous, that is bounded
on [0, 1]. Thus,

1 f ()| < / Paca(z — )] |£(5)] ds

l’al

< sup (pa—1(z —9)) HfHL1[0 1> F(a) “fHL101 — 0, asx | 0.

s€[0,x]

]

Let X be given by (3.4) and 1 < o < 2. Then, the first degree Caputo and the

Riemann-Liouwille fractional derivatives of order o« on X are given by
D%f = DI**Df and D*f = D*I*"°f, (3.12)
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respectively (see Definition 1.1.4). In what follows, if the context of the discussion
applies to both these fractional derivatives, we simply use A to denote them. Similarly,

fractional derivatives of order @ — 1 are given by
DX 'f =1 °Df and D*"'f = DI*"*f. (3.13)

Before we can introduce the respective domains of the fractional derivative operators
on X that encode various boundary conditions, we briefly discuss the motivation behind
the choice of the functions in the domains. To define the domains of the fractional
derivative operators on X (see Section 3.3.2), it is natural to employ the range of
the corresponding fractional anti-derivative (integral) operators. That is, view the
fractional derivative operators as the inverse of the corresponding fractional integral
operators. However, we will see that it is not as straightforward as that. For instance,
in the cases when the domains encode left and right Neumann boundary conditions,
non-zero steady state is possible, thus the fractional derivative operators in these cases
are not invertible.

It is easily verified that the fractional derivative A plays the role of left inverse of

the fractional integral /*. Indeed, for f € X and 1 < o < 2 in view of (3.10),
Da[ozf — DQ]Q—O;]ozf — D2]2f _ f7
DI*f = DI**DI*f = DI* “I*7'f = DIf = f. (3.14)

However, the fractional integral % is not the left inverse of A. In fact, let W0, 1]
denote the Sobolev space of L;[0, 1] functions given in Definition B.1.1, then we have
the following well known result, see for example [86, p. 70]. The next result is the
motivation for using the range of the fractional integral operator along with a certain
linear combination of power functions to define the domains of the fractional derivative

operators.
Proposition 3.3.4. Let 1 < a < 2. Then the following hold:

1 If 1>~ f e W0, 1], then
1°Df = f — D*7' f(0)pa—1 — I** f(0)pa-o-
2. If D71 f € W0, 1], then

I°Dg f = f = D™ f(0)pa—1 = f(O)po.
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Proof. We make use of (3.10), (3.11) with p,(0) = 0, and (3.12) in what follows.
Firstly, I*~*f € W21[0,1], thus I>~®f is continuously differentiable and DI*~°f is
absolutely continuous. Therefore, using the fact that if u € X is absolutely continuous
then I Du = u — u(0)py, we have
[°D*f = DII*D*I*"*f = DI*ID (DI*~*f)
=DI" (DIQ*af — DI2*O‘f(O)p0) =D (IQ*IID (IQ*O‘f) - Daflf(O)pa)
=D (I (P2 f = I f(0)po) — D" f(0)pa)
=D (If = D7 f(0)pa — I*~*f(0)pa-1)
= f =D f(0)pa—1 — I f(0)pa—s.

Similarly, D¢~ f = I*7*D is absolutely continuous and
I1°DYf = DI*ID (IQ_O‘Df)
= DI” (IQ*O‘Df — I2*O‘Df(0)p0) =DI*Df — I* *Df(0)pa_1
=IDf = DI f(0)pa—r = f = f(0)po — D™ f(0)pa—1,
where we used (3.8). O
We require the following properties of the power functions in our discussion of the

respective domains of the fractional derivative operators. The fractional integral of ps

of order v > 0 is given by, see [86, p. 72]
I"ps = Dt (3.15)
Let v > 0 and 8 > v, then
D'pg = D"I" Vpg = D"Dgin—r = Pp—v, (3.16)

where n = [v]. Note that, if # > 0, then in view of (3.11), D* 'ps = D !pg since
pp(0) = 0 and thus D%pg = DSps. Here is a summary of the fractional derivatives
of the special power functions that are used in the definitions of the domains of the
fractional derivative operators. In (3.17) below, when a result applies to both D% and
D® we just denote the fractional derivative by A. Using (3.12), (3.15) and (3.16), for
1 < a <2 we have

Apa = po,

Apa-1 =0,

Dgpo = 0,

D%pq_s = 0. (3.17)
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3.3.2 Fractional derivative operators on a bounded interval

encoding various boundary conditions

As discussed in Section 3.3.1, we define the domain of the fractional derivative op-

erators as the range of the fractional integral operator I, supplemented by a linear

combination of some particular power functions with constant weights that encode the

regularity as well as the boundary conditions satisfied by the functions in the domain.
Let X = Cy(Q2) or Ly]0,1]. We consider functions of the form

f=1%+aps + bpa—1 + cPa—2+dpy, g € X (3.18)

as candidates for the domain of the fractional derivative operator, where a,b,c,d € R

and pg = I‘(g—il) as given by (3.6).

Remark 3.3.5. Firstly, if ¢ # 0 in (3.18), then f ¢ Cy(€2). Secondly, note that D%p,—o
and D%pg are not defined in L;[0,1]. Therefore, for f given by (3.18), we set ¢ = 0
in the case of X = Cp(f2) and in the case of first degree Caputo fractional derivative
operators on L]0, 1]. We also set d = 0 for f given by (3.18) in the case of Riemann-
Liouville fractional derivative operators. Similarly, various boundary conditions imply

relations to be satisfied by the constants a, b, ¢, d.

In preparation for the definition (Definition 3.3.8) of fractional derivative operators
on X, let us first define formally the boundary conditions that we investigate, namely,
Dirichlet, Neumann and Neumann* boundary conditions where the latter appears nat-
urally as the adjoint of the Neumann boundary condition for the Riemann-Liouville

fractional derivative operator whose discussion we take up in Section 4.2.

Definition 3.3.6. Let A denote either the first degree Caputo fractional derivative
operator D¢ or the Riemann-Liouville fractional derivative operator D on X, where
the corresponding fractional derivatives are given explicitly by (3.12). Let us write A
in the form A = DF for brevity, where F is either D®~1 = [>**Df or D*~! = DI*~.

1. Dirichlet boundary conditions: A function f € X satisfies the left Dirichlet
boundary condition for the operator A if and only if f is continuous as x | 0
and f(0) = 0. Similarly, a function f € X satisifies the right Dirichlet boundary

condition for the operator A if and only if f is continuous as 1 1 and f(1) = 0.

2. Neumann boundary conditions: A function f € X satisfies the left Neumann

boundary condition for the operator A if and only if F'f is continuous as = |
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0 and Ff(0) = 0. Similarly, a function f € X satisfies the right Neumann
boundary condition for the operator A if and only if F'f is continuous as x T 1
and Ff(1) = 0. In particular, the zero flux condition F f(p) = 0 at the boundary
point p = 0 or 1, for the operator D% is I*~*D f(p) = 0 and for the operator D“
is DI*~“f(p) = 0.

3. Neumann* boundary condition: If X = Cjy(2), then a function f € Cy(2)
satisfies the right Neumann® boundary condition for the operator A if and only
if Df is continuous as x T 1 and Df(1) = 0.

Remark 3.3.7. In general, we use the abbreviation BC to refer to some combination
of left Dirichlet or Neumann boundary condition with right Dirichlet, Neumann or
Neumann* boundary condition encoded by the domain of the fractional derivative op-
erator A. The boundary conditions encoded by the domains are an essential part of
the definition of the fractional derivative operators on X. To emphasise this we denote
the fractional derivative operators on X by the pair (A, BC) instead of the conven-
tional (A, D(A)). For instance, if the domain of the fractional derivative operator D%
encodes a left Dirichlet and a right Neumann boundary condition, we write (D2, DN).
Also, when dealing with common properties of operators with a particular left or right
boundary condition combined with any of the other possible boundary conditions, for
example, a left Dirichlet boundary condition, we just write (A, De). However, for con-
venience when the boundary conditions at hand are obvious from the context we will

just write A for the fractional derivative operator on X.

Definition 3.3.8. (A, BC) is called a fractional derivative operator on X, if the oper-

ator A € {D2, D} and the respective domains are given as follows:
1. The domain of the first degree Caputo fractional derivative operator is given by
DDY,BC)={feX:f=1%+apy + bpa_1 +dpo, g € X}, (3.19)

where the constants a,b,d € R satisfy the respective relations for BC listed in
Table 3.1.

2. The domain of the Riemann-Liouville fractional derivative operator is given by
D(D*BC)={feX: f=1%+ap, + bpa—1 + Pa—2, g € X}, (3.20)

where the constants a,b,c € R satisfy the respective relations for BC listed in
Table 3.1.
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X =Cp(2),D(A,BC) = {I*g + apa + bpa—1 +dpo : g € Co(2)}, (0,1) C Q

Boundary condition Constants in D(A, BC)
Left Dirichlet f(0) =0, 2 (0,1] a=0,d=0
Left Neumann D 1f(0) =0, [0,1) C Q b=0
Right Dirichlet f(1)y=0,Qco,1) a=0, gy +d=—-1"(1)
Right Neumann | D*"'1f(1) =0, (0,1] € Q a+b=—1Ig(1)
Right Neumann* | Df(1)=0, (0,1] C Q cHe = —17g(1)

X = Ll[O, 1},ID(A, BC) = {]O‘g + ap, + bpafl + CPpa—2 + dpo g c Ll[O, 1]}

Boundary condition Constants in D(A, BC)
Left Dirichlet f(0)=0 a=0,c=0,d=0
Left Neumann DeLf(0) =0 b=0,c=0
Left Neumann DLf(0) =0 b=0,d=0
Right Dirichlet F(1)=0 =0, S 4 d = —1%(1)
Right Neumann Ff(1)=0 a+b=—Ig(1)

Table 3.1: Relations satisfied by the constants a, b, ¢, d for BC.

Remark 3.3.9 (Non-homogeneous fractional-in-space partial differential

equations with non-zero boundary conditions). To solve a non-homogeneous
fractional-in-space partial differential equation for any set of given time-dependent
boundary values it is sufficient to solve the corresponding homogeneous equation with
zero boundary conditions. To see this, consider the Cauchy problem associated with
the homogeneous fractional-in-space partial differential equation with zero boundary

conditions BC,

u(0) = up, (3.21)

where A denotes the fractional derivative operator on X whose domains encode BC.

Let us assume (3.21) is well-posed and let (7'(t)),-, denote the solution operator on X

£>0
(strongly continuous semigroup generated by A). Then, the mild solution to the Cauchy
problem associated with the non-homogeneous fractional-in-space partial differential

equation with zero boundary conditions [12],
u'(t) = Au(t) + f(t) fort e [0,7], f € Li([0,7],X)
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u(0) = uo,

is given by the variation of constants formula,

u(t) = T(t)ug + /o T(t—s)f(s)ds.

Next, consider the following non-homogeneous fractional-in-space partial differential

equations with non-zero boundary conditions,

%w(t,x) = D%(t,z) + f(t,x); w(0,2) = wy(z), (3.22)

where D® denotes a fractional derivative operator on 2 and f € L;([0,7], X). Let
g(t,x) be a function such that D*g, £g € L1([0,7],X) and satisfies the non-zero
boundary conditions. Further, assume that u solves the non-homogeneous fractional-

in-space partial differential equation with zero boundary conditions,

au(t, x) = Au(t,z) + D%g(t,x) — %g(t, z)+ f(t,x); uw(0,2) = wo(z) — g(0,z).

Then w = u + g solves (3.22) and satisfies the non-zero boundary conditions.
In view of this, we only study well-posedness and numerical solutions for the ab-
stract Cauchy problem (3.21) associated with fractional derivative operators (A, BC)

on X whose domains encode combinations of (zero) boundary conditions.

Proposition 3.3.10. The domains of the fractional derivative operators (A, BC) given

i Definitions 3.3.8 are equivalent to the following:

1. The domain of the first degree Caputo fractional derivative operator,

D(D¢,BC) ={f € X : [ =19+ apa + bpa-r +dpo, g € X
such that D f € X and f satisfies BC}.

2. The domain of the Riemann-Liouville fractional derivative operator,

DD BC)={feX:f=1+ aps + bpa—1 + Pa—2, g € X
such that D*f € X and f satisfies BC} .

Proof. Let
f=1%+apy + bpa—1 + cpa—2 + dpo, g € X,

then a simple calculation reveals that if the constants a, b, ¢, d satisfy the relations for
BC given in the Table 3.1 then D% f € X and D f € X, respectively and f satisfies the
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respective boundary conditions of BC. Therefore, to demonstrate the equivalence of
the definitions of the respective domains, we show that if f satisfies a particular left or
right boundary condition and Af € X, where A € {D%, D®}, then the corresponding
relations summarised in Table 3.1 are satisfied by the constants a, b, ¢, d.

To this end, let

=1+ apa + bpa—1 + cPa—2 +dpg, g € X and Af € X.
Further, let F' be either D~ or D*"!. Then, first observe that
Ff=1g+apy + bpo. (3.23)
Indeed, in view of (3.10) and (3.15),
D f = 1D (I%g + apa + bpa—_1 + dpo)

_ ]2—&]&—19 4 a-[2_apa—1 4 bI2_apa_2

= Ig+ ap1 + bpy
and

Dailf = DIzia (Iag + aPq, + bpafl + Cpa72>
= DI?g + aDpy + bDp, + cDpy
= Ig+ ap1 + bpo.

e Left Dirichlet boundary condition: Let f be continuous as z | 0 and f(0) = 0,
then
0= I"9(0) + apa(0) + bpa—1(0) + cpa—2(0) + dpo(0).
Note that p,(0), pa—1(0) =0 and I*g(0) = 0 by Proposition 3.3.3. This implies
that ¢,d = 0. Moreover, in the case when X = Cy(£2), besides ¢g(0) = 0 we also
require that the image Af € Cy(2); that is, Af(0) = 0. Thus, we have that
a = 0, since using (3.23),

0=Af(0) = (DFf)(0) = (D (Ig +apy +bpo)) (0) = g(0) +a = a.

On the other hand, in the case when X = L]0, 1], since ap, = I*(apy), the
constant a turns out to be redundant as the term apy can be incorporated into

g € L1]0,1]. Therefore, we set a = 0.
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o Left Neumann boundary condition: Let D' f(0) = 0 or D*'f(0) = 0, then in
view of Remark 3.3.5, ¢ = 0 or d = 0, respectively. Moreover, using (3.23) we
have

0=1g(0) + ap1(0) + bpo(0) = b,

since p1(0) = 0 and Ig(0) = 0 in view of Proposition 3.3.3.

e Right Dirichlet boundary condition: Let f be continuous as z 1 1 and f(1) =0,
then
0=1%(1) 4+ apa(1) + bpa—1(1) + cpa—2(1) 4+ dpo(1).
Moreover, in the case when X = Cy(£2) we require that g, Af € Cy(£2); that is,
g(1), Af(1) = 0. Therefore, a = 0, since using (3.23),

0=Af(1) = (DFf)(1) = (D (Ig+apy +bpo)) (1) = g(1) +a = a.

On the other hand, in the case when X = L]0, 1], since ap, = I*(app), the
constant a again turns out to be redundant as the term ap, can be incorporated
into g € L1[0,1]. Therefore, we set a = 0. Hence,
b+ (a—1)c
INGY)
Further, note that if X = Cy(2), since ¢ = 0 in view of Remark 3.3.5, this reduces
to

+d=—1%(1).

b (0%
W—i_d: -1 g(l).

e Right Neumann™ boundary condition: Note that p,_ o & Co(€2) and we use this

boundary condition only for X = Cy(Q2). Let Df be continuous as x T 1 and
Df(1) =0, then

D (I%g + apa + bpa—1 + dpo) = I°7'g + apa—1 + bpa—o.

Thus,
0= ]O‘_lg(l) + apo—1(1) + bpa_2(1)
and ( D
a+ (o —
— = —]""y(1).
o) 9(1)

e Right Neumann boundary condition: Let D>1f(1) = 0 or D! f(1) = 0; that
is, F'f(1) = 0, then using (3.23) we have

0=1Ig(1)+a+b.
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This implies that if Ff(1) = 0, then

a+b=—1Ig(1).

3.4 Properties of the one-sided fractional derivative

operators on a bounded interval

We prepare for the important task of showing that the closures of the fractional deriva-
tive operators (A, BC) generate contraction semigroups. To do this, we need to show

the following

e (A,BC) are densely defined, dissipative operators.

e rg(A] — A) are dense in X for some A > 0.

Then, as a consequence of the Lumer-Phillips Theorem (Theorem C.2.9) we can con-
clude that their closures generate contraction semigroups on X. In fact, we show
that the operators (A, BC) are closed. Hence, we actually conclude that the operators
(A, BC) themselves generate contraction semigroups.

In the remainder of this section, we establish that (A, BC) are densely defined,
closed operators, identify a core for each (A, BC) and show that rg(Al — A) are dense
in X. In Section 4.1, we take up the issue of dissipativity of the operators (A, BC).

We refer to Definition C.1.4 for the definition of invertible operators.

Proposition 3.4.1. Let the operators (A, BC) be such that their domains D(A,BC),
gwen by Definition 3.3.8, encode at least one Dirichlet boundary condition. Then the

operators (A, BC) are invertible.

Proof. Let the fractional derivative operator (A, BC) have either a left or right Dirichlet
boundary condition. For each such (A, BC), we show that there is a bounded operator
B on X such that BAf = f for all f € D(A,BC), and Bg € D(A,BC) and ABg =g
for all g € X.

First, making use of Table 3.1, note that @ = 0 in Definition 3.3.8. Next, as long as
one of the boundary conditions for the fractional derivative operator is Dirichlet, we
show that B, and B, are the inverses of (D%, BC) and (D%, BC), respectively, where
forge X

Bcg - [ag + bpozfl + dp07
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B,g = 1%g + bpa—1 + cpa-—2, (3.24)

and the relations satisfied by the constants b, c,d depending on ¢ € X and BC are
given in Table 3.1.

Clearly, since a = 0, B.g € D(D%,BC) and B,.g € D(D*,BC), in view of Definition
3.3.8 and Table 3.1. Moreover, I* is bounded on X in view of Remark 3.3.2 while the
constants b, ¢, d depend continuously on g. Thus, in view of (3.7), B, is a bounded

operator on X and B, is a bounded operator on L;[0,1]. Note that,
DEBeg = Dg (I%g + bpa—1 + dpo) = g,
D*B.g = D*(I%g + bpa—1 + CPa—2) = g. (3.25)

which follows directly on applying (3.14) and (3.17).
For f € D(A), making use of Proposition 3.3.4 we have

B.DYf =1°D¢f + bpa—1 + dpo
= [+ (b= D f(0)) pat + (d = f(0)) po
and
B.Df =1°D*f + bpa_1 + Cpa_2
= [+ (b= D f(0)) pa-1 + (¢ = I*7*£(0)) pa-a-

To complete the proof we show that B.D¢ f = f and B,D“f = f. In what follows, we

make use of Proposition 3.3.4 as required.

e Left Dirichlet boundary condition: In this case, since f is continuous as x | 0
and f(0) = 0, we have I*~*f(0) = 0 by Proposition 3.3.3. Moreover, a,c,d = 0.
To complete the proof for the left Dirichlet boundary condition, we verify that
in each of the scenarios below that either b = D2~ f(0) or b = D! f(0), as

required.
1. Right Dirichlet boundary condition: Let f(1) = 0, then
b=—T(a)I*D%f(1)
= —T(a) (f(1) = D27 f(0)pa-1(1) = F(0)po(1)) = D™ (0)
or
b=—T(a)I*Df(1)

= —T(a) (f(1) = D f(0)pa-i(1) = I*"*f(0)pa—2(1)) = D" f(0).
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2. Right Neumann™ boundary condition: Let Df(1) = 0, then
b= —T(a— 1)I*1Df(1)
= -T(a—-1)D(I*Df) (1) = ~T(a —1) (Df(1) — D" f(0)pa—2(1))
= D1 £(0).
3. Right Neumann boundary condition: Let F f(1) = 0, then
b= ~1DE (1) = ~ID (D) (1)
= =D (1) + DT f(0)po(1) = D™ f(0)
or
b=—IDf(1)—ID (D*'f) (1)
— D p(1) + DL (O)m(1) = DL (0).

e Right Dirichlet boundary condition: In this case, f(1) = 0 and a = 0. Note
that we are only left to consider left Neumann boundary condition; that is,
D71 f(0) = 0 or D271 f(0) = 0. We have that b = 0 and either

d=—I"D7f(1) = —f(1) + DZ" " f(0)pa-1(1) + f(0)po(1) = f(0)
c=—-T(a—=1)I*D*f(1)
= —T(a—1) (f(1) = D" f(0)pa—1(1) = I*"*f(0)pa—2(1))
= I*72£(0).

Thus, we have shown that B.D%f = f and B,D“f = f for f in the respective domains.
Hence, the operator (A, BC) are invertible if their domains encode at least one Dirichlet

boundary condition. O]

Remark 3.4.2. In the case of a left Neumann boundary condition combined with one
of the following right Neumann boundary conditions, the operators (A, BC) are not

invertible:
1. Right Neumann™ boundary condition: In this case the constant d is undetermined.

2. Right Neumann boundary condition: The constant d is undetermined in the case
of (D%, BC) while the constant c¢ is undetermined in the case of (D, BC).

83



Remark 3.4.3. In what follows, we use the phrase polynomials belonging to X and write
P € X where X = Cy(Q) or L;[0,1] and P are N*® degree polynomials of the form

xm

P(x> = Z kmpm<x>7 pm<x) = T X € [0, 1].

(m+1)

Note that here we implicitly assume that the constants k,, € R are such that P € X.
This is crucial especially when working in Cy(€2). For instance, for a left Dirichlet
boundary condition we require P € Cy(0, 1)]; that is, we require that P(0) = 0 and
so kg = 0. On the other hand, for a left Neumann boundary condition, P € C|0, 1)]
and thus the constant ky need not be zero. For a right Dirichlet boundary condition
we require P € Cy[(0,1), thus the constants k,, are such that P(1) = 0. However, this
need not be the case for a right Neumann boundary condition. Lastly, note that we
repeatedly make use of the well known fact that the polynomials belonging to X are

dense in X, Stone-Weierstrass theorem [42, see p. 141 Corollary 4.50].

We refer to Definition C.1.2 for the definition of a core (subspace dense in the graph

norm).

Theorem 3.4.4. The fractional derivative operators (A, BC) given by Definition 3.3.8
with 1 < o < 2 are densely defined, closed operators on X, where X = Cy(Q2) or L]0, 1]
given by (3.4). Moreover,

1. The subspace
C(D?, BC) = {fn : fn = ]aPn + apPo + bnpa—l + dnpo, n e N} (326)

is a core of the operator (D%, BC), where P, = Zﬁ’;o kypm € X and the con-
stants a,, b,, d, € R are given in Table 3.1.

2. The subspace
C(Daa BC) - {fn : fn — ]aPn + apPo + bnpa—l + ChPa—2, N € N} (327>

is a core of the operator (D, BC), where P, = ZZ":D kmpm € X and the con-

stants ay, by, c, € R are given in Table 3.1.

Proof. Proof of (A,BC) are densely defined:
Let (A,BC) be a fractional derivative operator on X = Cy(2) or L1[0,1]. Then,
given € > 0 and ¢ € X, we show that there exists f € D(A, BC) such that

o= Flix <e
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To this end, let ¢ € X and e > 0. Without loss of generality, if X = L;[0, 1], we

set ¢(0) = ¢(1) = 0. Let
0 =0~ (6(1) = ¢(0)T(a + 2)pa+1 — $(0)po,
and note that ¢ € Cy(0,1) or L;(0,1). As C°(0,1) is dense in Cy(0,1) and L1 (0, 1),
there exist § € C'2°(0, 1) such that
|6-0] =10 = (©1) = 60T (@ +2)pass — 6O — Ol < 5. (3:28)
For such 6 € C2°(0,1), let
9o = I""*D*0 + (¢(1) — ¢(0))T'(ax + 2)py

so that 1%gp = 6 + (¢(1) — #(0))['(v + 2)pat1. Next, for 0 < 6 := d(e) < 1, define

0, for0 <ax<1-—04,

0(5)(5p1(x —140) — (@ +2)pa(x — 1+ 5)), forl—6 <z <1. (3.29)

gs(z) =

Let us set g = gy + gs and construct the following function

f=0+(0(1) — ¢(0)( + 2)pat1 + I1%gs + ¢(0)po = I°g + ¢(0)po-

Note that gs satisfies all the left boundary conditions. Therefore, we need to show that
for each right boundary condition of BC there exists § > 0 and C(§) such that g € X
and the constants a, b, ¢ =0, and d = ¢(0) if X = Cy(2) or d =0 if X = L,[0, 1].

e Right Dirichlet boundary condition: For f to belong to D(A, eD) we need to find
C'(9) such that g € X and I%g(1) = —¢(0); that is,
0=yg(1) = go(1) + gs(1).

Thus, we set gs(1) = —gp(1) and obtain

C(5) = %522)5—2.

Note that I%g(1) = ¢(1) — #(0) = —¢(0), since §(1) = 0 and [*gs(1) = 0.

e Right Neumann boundary condition: For f to belong to D(A, eN) we need to find
C(6) such that g € X and Ig(1) = 0; that is,

0=1g(1) = 1Igp(1)+ Lgs(1).

Thus, we set Igs(1) = —Igp(1) and obtain

C(6) = —(1_]_ gﬁfilz))af’a
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e Right Neumann* boundary condition: For f to belong to D(A, eN*) we need to
find C'(0) such that g € X and I* 'g(1) = 0; that is,

0=1""g(1) =I""go(1) + I* "gs(1).
Thus, we set 1 1gs(1) = —I*"1gy(1) and obtain

_Ia—1g9(1>
1 a+2 )

st

C(5) =

(F(oHrl) I'(a+2)

To complete the proof, observe that for any BC, we have

|C(8)] < K673,
Therefore,
1% gs|| [1%g5(x)| < |C(0)] 2077 o5t
= su x =
9ol Leclor1] me(lg,l} % - ['a+2) !
and
o 2504—1—3 N
1 95HL1[0,1} <|C(0)] < 00",

['(a+3)
Thus, for ¢ € X, taking § < (%)ﬁ where C' = max {C4, Cs} and in view of (3.28),

1o = Fllx < ll¢ =0 —(&(1) = 2(0)T(a + 2)past1 — (0)pollx + [117gsllx <€

Hence, (A, BC) are densely defined operators on X.

Proof of (A,BC) are closed:

First, note that by Proposition 3.4.1, if the domains encode at least one Dirichlet
boundary condition, then the operators (A, BC) are invertible and hence closed, see
Definition C.1.4. On the other hand, as mentioned in Remark 3.4.2, when we have a left
Neumann boundary condition combined with a right Neumann or Neumann* boundary
condition, (A, BC) are not invertible. For those cases, we show that if { f,,} € D(A, BC)
such that f,, — f and Af, — ¢ in X, then f € D(A,BC) and Af = ¢.

In what follows, NN represents a combination of left Neumann boundary condition
combined with a right Neumann or Neumann® boundary condition. Consider the
sequences {f¢} € D(D%,NN) and {f,} € D(D* NN) given by

fTCL = Iagn + (pPo + bnpa—l + dnp(]’ 9n e X

and

fn - Iagn + anPa + bnpafl + CpPa—2, Gn € X,
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respectively. Firstly, using Table 3.1, since we have a left Neumann boundary condition,
b, = 0. Thus,
fﬁ - Iagn + apPo + anOa

where
an = —Iga(1) or @ = —(a) 1 g, (1)

for a right Neumann or a right Neumann® boundary condition, respectively. Also,
fn = ]agn + anPa + CpPa—2,

where a,, = —1g,(1) for a right Neumann boundary condition. In either scenario,
D::Xfyi7 Dafn = U0n + anpPo,

since D%py = 0 and D*p,_» = 0 in view of (3.17).
Let f¢ — f¢ fo — fand DSfS, D“f, = g, + a,po — ¢ in X. Then, in view of

Remark 3.3.2, since [ is continuous on X,
I%(gn + anpo) = 1%gn + anpa — 1°¢.
Thus,
dnpO = fﬁ - (Iagn + anpoz) — fc - [a(b e X
and
CnPo—2 = fn - (Iagn + anpa) — f - Ia¢ € X.
Therefore, there exist d, ¢ such that d,, — d and ¢,, — c¢. Hence,
fe=1% +dpo and [ = I"¢ + cpa—2.

It remains to show that f¢ € D(D% NN) and f € D(D* NN). To this end, using
Table 3.1, note first that f¢ and f satisfy the left Neumann boundary condition, since
b = 0. To see that the right boundary conditions are satisfied note that:

1. For a right Neumann boundary condition, since [ is continuous on X, we have

I9(1) = lim (I (gn — Ign(1)po) (1)) = lim (Ig,(1) — Ig.(1)p1(1)) = 0.

n—oo n—o0

2. For a right Neumann* boundary condition, since /%! is continuous on X, we

have

19716(1) = Tim (17" (g0 — D(@)1* g, (1)po) (1))

n—oo

= lim (I g, (1) — T(@)I* g, (Dpas(1)) = 0.

n—o0
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Therefore, f© € D(D% NN) and f € D(D NN). Lastly, since D2py = 0 and D%p,—o =

0 in view of (3.17), we have
DEf = Dg(I%¢ + dpo) = &

and
D*f = D*(I* 4+ cpo—2) = ¢
Hence, the fractional derivative operators (A, BC) are closed in X.

Proof of C(A,BC) is a core of (A, BC):

Let C(A,BC) be given by (3.26) and (3.27) for A = D and A = D?, respectively.
To show that C(A, BC) is a core of (A, BC), we show that for any f € D(A, BC), there
exists f, C C(A,BC) such that f, — f and Af,, — Af.

To this end, let f € D(A, BC) be given by

f=1%4 apa + bpa—1 + cpa—2 + dpo, g € X.

Then, consider

fo=1Py + anpa + buPa—1 + CaPa—2 + dupo,

where P, = ZZLO kmpm € X and the constants a,,b,,c, and d, are given in Table
3.1. Note that f, € C(A,BC) and since the polynomials belonging to X are dense in
X, for each g € X, there exist polynomials P, € X such that P, — ¢g in X.

Consider the following two cases:

1. At least one Dirichlet boundary condition: In these cases, using Table 3.1, observe
that a, = 0 while b,, ¢, and d,, are either zero or depend continuously on " P,

forve{a, 1, a—1}.

2. No Dirichlet boundary condition: In these cases, b, = 0 since we have a left

Neumann boundary condition while a,, depends continuously on I¥P, for v &€
{1, a —1}.
e Right Neumann™ boundary condition: In this case set d,, = d.
e Right Neumann boundary condition: For A = D2, set d, = d and for
A= D set ¢, =c.

In view of Remark 3.3.2, I”, v > 0 is continuous on X, thus [YP, — [Yg in X for
v € {a, 1, a —1}. Hence, f, — f in X. Moreover, using (3.14) and (3.17) we have
that

Af, =P, 4+ a,po and Af = g + apy.
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Thus, Af, — Af in X and hence, C(A4,BC) is a core of (A, BC). O

Let us turn to the task of showing that for each (A, BC), rg(Al — A) is dense in X
for some A > 0 as part of the requirement of the Lumer-Phillips Theorem as mentioned
at the start of Section 3.4. Since it is sufficient to show denseness of rg(Al — A) for
some A > 0, let A = 1. We show that rg(/ — A) is dense in X using the fact that the
polynomials belonging to X are dense in X. To be precise, we seek functions p € X
such that (I — A)p = P =" _ kupm € X. In Theorem 3.4.5 we show that linear
combinations of a certain variant of the two parameter functions of Mittag-Leffler type
yield such candidates.

To this end, consider the two parameter function of Mittag-Leffler type, which we

denote by E ;5 for o > 0, defined by the series expansion,
E; 4(x) meﬂg Jif —1< B <0forze (0,1, orif >0 forz € [0,1]. (3.30)

Note the connection with the standard two parameter Mittag-Lefler function £, g,
E} 5(x) = 2PEqg41(2z®), see [48] for details. We choose this slightly different form
of the two parameter Mittag-Leffler function in order to obtain the eigenfunctions as
given in (3.39) below, which we require in the proof of Theorem 3.4.5. Using (3.7), we

have

||E;:5HL1[0,1] S z% |pna+5”L1[01 S Z F TLOé —f—ﬁ i 2) < 00,
n=

n=0
thus
Eé,,@ € L,[0,1] and if § >0, E;ﬂ e C[0,1]. (3.31)

Take note of the crucial recurrence relation
EL s =18+ E g0 (3.32)
since
Bl () =pa(@) + > Prars(®) = (@) + Y Pratpra(®) = ps(x) + Ef 5,0 (2).

Using (3.15) and the fact that 7 is bounded on L0, 1], see Remark 3.3.2, the Riemann-
Liouville fractional integral of E; 5 € L1[0,1] of order v > 0 is given by

rr E:é B (Z pna+5) = ana—FB—I—u = E;”g_;,_y- (333)
n=0
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Let k € {1,2}, then in view of (3.8), for § >k — 1,

o0 o o
D" ;,6 = DF anaJrﬁ = Z kana+ﬁ = ana—l—ﬁ—k = E;ﬁ,k, (3.34)
n=0 n=0 n=0

where to interchange summation with differentiation we have used the fact that the
generalised integer-order derivative operator (D, W*1[0,1]) given in Definition B.1.1
is closed in L1[0, 1]. Moreover, since § > 0 the same result holds true for C[0, 1], taking
DF to be the classical integer order derivative.

Let 1 < a < 2 and m € Ny. We now list the derivatives and fractional derivatives
of the two parameter Mittag-Leffler functions that we require in the proof of Theorem

3.4.5. The fractional derivatives of order o — 1 are given by

Da_lE;,a-l-m = DI2_&E;,a+m - E:;,m—i—l?
D?_IE;,aer - I2_aDE:z,a+m - ]2_QE;,a+mfl - E;,m+17 (335>

where we have used (3.33) and (3.34). Moreover, using (3.32) and (3.35), the fractional

derivatives of order « are given by

DaE:;,oc—&—m = DDa_lE;,oc—&-m = E:c,m = DPm + E;,oz—‘rm?
D?Ez,a—{—m - DI2_&DE;,a+m - E;,m = Pm + E;,oz—l—m’ (336>

We make use of the derivatives and fractional derivatives of these three functions,

E o Ei .1 and E; , 5 in the proof of the next theorem which are obtained using

(3.17) (3.32), (3.33) and (3.34).

e [irst derivatives:

DEL,=D (po+ E:,) = E

a,a—1
DE;,a—l - E;,a—Z' (337)
e [ractional derivatives of order av — 1:
DS_IEZ,O = IQ_QDEZ,O =1 z,aq - E;h
DgilE;,afl = [2701DE;,a71 = ]2701E;,a72 = E;,Ov
Da_lE;,a—l - DI2_&E;,a—1 =DE;, = E.,
Da_lEZ,a—2 = D! (pa—2 + E2,2a—2) - D]2_aE;,2a—2 - E;,a—l' (3-38)
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0= =m0 kB aim T Baacs + 5Baa s + 150
X (A, BC) r S t
N *
X | (ADD) | Zmspinfieo() 0 0
'Z: kmE:;,'m (1)
X | (ADN) | “mepgpe 0 0
Co(Q) | (D2, DN) | Zm=oiplossna() 0 0
o Z'Z:O k""Ez,aer(l)
X (D, ND) 0 0 N N 0)
« Zm: kmE;,m (1)
X (DY, NN) 0 0 JOE; &_1(1)+1
N kmBEr (1)
o * m=0 a,a+m—1
Co(Q) | (D=, NN¥) 0 ) 0 ity
[e% Zm: kmE;,cx m(l)
L.[0,1] | (D*,ND) 0 - Sl 0
[e] Zm: kmE;,m 1(1)
L.[0,1] | (D*,NN) 0 il 0

Table 3.2: Constants r, s,t for ¢ given by (3.40).

e [ractional derivatives of order «a:

DYES, = DD EL = DE, = E;

a,0
D?E;,a—1 - DD?_IE;,Q—I = DE;,O = E:y,a—h
DaE;,afl = DDailEZ,afl = DEZ,O = EZZ,afu
DC”EZ‘W_2 = DD‘“AE;‘W_2 = E;a_2. (3.39)

Theorem 3.4.5. Let (A,BC) denote the fractional derivative operators on X as in
Definition 3.3.8. Then, rg(I — A) are dense in X for each (A,BC).

Proof. To show that rg(/—A) is dense in X = Cy(£2) or L;[0, 1] for each of the fractional
derivative operators (A, BC), we show that the polynomials P = er\nf,:o kmpm € X are
in rg(I — A).

To this end, let P = Zg:o kmpm € X as in Remark 3.4.3. Next, define

N
Y= Z kmE:z,a-i—m + TE;,a—l + SE;,a—Q + tE;,07 (34())
m=0

where the constants r, s, t are given in Table 3.2 for each fractional derivative operator
(A,BC).

We show that ¢ € X, ¢ € D(A,BC) and (I — A)p = P. Firstly, note that if
X = Cp(R), then s = 0 in (3.40). Recall that k,, € R ensure that P € X, then in
view of (3.31) and using the constants r, s, ¢ given in Table 3.2, it follows that ¢ € X.
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In view of Proposition 3.3.10, note that ¢ € D(A,BC), if ¢ satisfies the respective
boundary conditions BC for the operator (A, BC).

For each (A, BC), using (3.35), (3.36), (3.37), (3.38) and (3.39), it is easily verified
that ¢ € X satisfies the respective BC. For instance, consider (A,DD). Then, using
Table 3.2

Zk Z k E:za—i-m( )E*

SDDD aa+m E;;a 1(1> a,a— 1( )

Thus, ¢pp(0) = 0 and ¢pp(1) = 0. Moreover,

ZZ kmE;ca m( ) *
A()ODD Zk AE aa+m ) OEu* (71;_ AEaa 1( )

a,a—1
o kb, 1
:_Zk pm +E2a+m( ))+Z E* oca—l—m()

a,a—1

(1) E;a 1( )

= —P(z) + ¢pp().

Since, P € X, it also follows that Appp(0) = 0 and Agpp(1l) = 0. Hence, ¢pp €
D(A,DD). Similar arguments work for the other boundary conditions BC.
To complete the proof, using (3.36) and (3.39), observe that

N
- Z kmpm =P,
m=0
Hence, rg(l — A) is dense in X since the polynomials belonging to X are dense in
X. [
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Chapter 4

Grunwald-type approximations for
fractional derivative operators on a

bounded interval

In this chapter Grunwald-type (transition) approximation operators are constructed
for the fractional derivative operators on X. The semigroups generated by the frac-
tional derivative operators are shown to be the strong (and uniform for ¢ in compact
intervals) limit of the semigroups generated by the Griinwald transition operators. The
underlying stochastic processes associated with the Griinwald approximation operators
are identified. The highlight of the chapter is the result that shows the convergence
in the Skorohod topology of the well-understood stochastic processes associated with
the Griinwald (transition) approximation operators to the processes governed by the

corresponding fractional-in-space partial differential equations.

4.1 Grunwald-type approximations for fractional

derivative operators on Cj(f2) and 4]0, 1]

In what follows, let 1 < a < 2 and h = n+r1 for n € N. For the numerical scheme,

the boundary conditions encoded by the domain of the fractional derivative operators
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X =Co(Q), D(A,BC) ={I%G + aps + bpa—1 +dpo : g € Cp(2)}, (0,1) C Q2
Boundary condition | Boundary weights for G"_ D(A,BC)
bt = g«
0 — 0 7 7
é()(OH b, =], a=0,d=0
c (0, .
Dl(/\) = W/l\*)\’ Nl == 1
b= —got
D1 f(0) =0 Z o
e ) bn:_Z?:_olbg b=0
0,1) C Q
N'MN) =) D=1
1) =0 b =G
ft . al=)) a=0, g +d=—1(1)
QcClo1) Dr(\) = oo V=1
D' f(1) =0 by = -G
c f() % i—1 a+b=—]g(1)
(0,1] € Q N'(A)=1-X D=1
Df(l) =0 b — ga a+(a—1)b _ _Ia_lg(l)
(07 1] ) i i o)
N'(A)=1—-\ D=1

Table 4.1: Boundary conditions for Cy(£2).

(A,BC) are built into the generic n x n shifted Griinwald matrix

B Gy 0 - 0
gy :
h 1 . .1
ann:h_a : : 0 s (41)
biz—l 705—2 g? Qg‘
by b, e oo DY

using the boundary weights b, b7 and b,, which are listed in Tables 4.1 and 4.2 in terms
of the Griinwald coefficients, for Cy(£2) and L]0, 1], respectively. The n x n shifted
Griinwald matrices G play the role of the transition rate matrices of the underlying
finite state sub-Markov processes. The Griinwald transtion operators are constructed
using the theory developed in Sections 3.1 and 3.2.

In Section 4.2, we first discuss the adjoint formulation of the abstract Cauchy
problem on X associated with the fractional derivative operators (A, BC). In doing so,
we list the corresponding fractional derivative operators on X that are approximated
by the Grinwald transition operators. Following that we describe the physical reasons
behind the choice of boundary weights bl, b7, and b, that encode different boundary

conditions BC and appear in the generic Griinwald matrix given by (4.1) in the L]0, 1]
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X = 14[0,1], D(A,BC) = {I%g + apa + bpa—1 + cPa—2 +dpo : g € L]0, 1]}

Boundary condition | Boundary weights for G" D(A,BC)
= g«
f(0)=0 z ’a)\gl z a=0,¢=0,d=0
D ()\) — m, N — ]_
o= —go1
D1 f(0) =0 i = —Gin b=0,c=0

Ni(\) =\ D=1
by =0, 0 =Gg +G¢

D1 f(0) =0 b= G b=0, d=0
N'(A\) =X D'=1
by =G
f1)=0 b, = b, a=0, M5+ d = —1%(1)
D'(\) = 2255, N =1
b = -G
Ff(1)=0 by, = — S0 b a+b=—Ig(1)

N'(A)=1-X D=1

Table 4.2: Boundary conditions for L4[0, 1].

case used in the construction of the Griinwald transition operators.

In Section 4.3, we first deal with the second part of the requirement of Lumer-
Phillips Theorem as mentioned at the start of Section 3.4. That is, we show that the
fractional derivative operators (A, BC) on X given by Definition 3.3.8 are dissipative.
To do this, we prove a crucial result, Proposition 4.3.2, that the Griinwald transition
operators constructed in Section 4.2 approximate the respective fractional derivative
operators on X. Combining this with the fact that the Grinwald transition operators
(G",BC) are dissipative, we show that (A4, BC) are dissipative. Then, in view of The-
orems 3.4.4 and 3.4.5, since (A, BC) are densely defined closed operators with dense
rg(A — A) in X, the operators (A, BC) generate strongly continuous contraction semi-
groups as a consequence of the Lumer-Phillips Theorem (C.2.9). Moreover, employing
Proposition 4.3.2 we also show that the semigroups generated by the fractional deriva-
tive operators (A, BC) are the strong (and uniform for ¢ in compact intervals) limit
of the semigroups generated by the Griinwald transition operators using Trotter-Kato
Theorem (C.2.10). As a consequence, the underlying Feller processes associated with
(G",BC) converge in the Skorohod topology to the Feller process associated with the
fractional derivative operators (A, BC) [53, p. 331, Theorem 17.25].
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4.2 Adjoint formulation and boundary weights

In Section 3.3 we showed that each of the (left) one-sided fractional derivative operators
(A,BC) are densely defined, closed linear operators and identified a core for each of
them. As it turns out, because of a symmetry argument which we discuss below, it is
sufficient to consider only the left-sided fractional derivative operators on both Cy(2)
and L]0, 1].

Let us begin with the left-sided fractional derivatives AT € {D®* D%} of order
1 < a < 2 given by (3.12),

DIt f = DI***Df and DY f = D*I*~%* f,

where -
P f() = / Py — 8)f(s)ds, 7 > 0.

We use + in the superscript to distinguish it from the right-sided fractional derivatives
which we define below. Let v > 0 and f € L;[0,1], then the right-sided fractional
integral of order ~ is given by, see [86, p. 89|

I f(x) = / py—1(s —x)f(s)ds, x> 0.

Then, the right-sided Riemann-Liouville and the right-sided first degree Caputo frac-

tional derivatives of order «v are given by
DY f=(=D)[*** (=D)f and D f = (=D)*I*"*" f (4.2)

respectively. In what follows, if the context of the discussion applies to both these
fractional derivatives, we simply use A~ to denote them. Along similar lines, we also
define

Debf = P (=D)f and D f = (~D)I* " f

We require the following properties in the proof of the next result. Firstly, for
a, f>0and f € L]0, 1], the semigroup property,

JoEPEf = [oTBES (4.3)

Secondly, note that reversing the order of the double integral yields
1 1 T
/ I°T f(z)g(x) doz = / </ pa—1(x — 5)f(s) ds)g(m) dx
0 0 0

96



= [ ([ posta = ot as) 5305 = [ 5)1°=gts) s
(4.4)

We refer to Appendix C for definitions of the adjoint operators and the part of
operators. It is well known that, L0, 1] is isometrically isomorphic to a closed subspace
of the space of bounded (complex) Borel measures, Mz(£2), namely, the subspace
consisting of those measure which possess a density. Therefore, in what follows, we can
explicitly identify the part of the adjoint of (A™, BC) in L4[0, 1].

Theorem 4.2.1. Let (A*,BC) be a left-sided fractional derivative operator on Co(Q)
and (A~,BC) be the corresponding right-sided fractional derivative operator on L]0, 1]
whose domain encodes the same combination of boundary conditions BC as given in
Table 4.3. Then, (A=,BC) C (A%, BC)*|L,p,1] and (AT, BC) C (A~,BC)*|¢y ), where
(AT, BC)* denotes the adjoint of (A*,BC) on the space of bounded (complex) Borel
measures, Mp(Q) and (A=, BC)* denotes the adjoint of (A=, BC) on L]0, 1].

Proof. We show that for all ¢ € D(A",BC) and for all ) € D(A~, BC),
1 1
| Ao do= [ o@a v do
0 0

First, let BC € {DD,DN,ND, NN} and consider the pairs of operators (D%*, BC) on
Co(R2) and (D>, BC) on Ly[0, 1].
Let ¢ € D(D>*,BC) and ¢ € D(D%~,BC). Then, using integration by parts, we

have
/0 1 Dt o(x)o(x) de = DE M g(1)p(1) — D=1 h(0)4(0)
v [ Do dr 45)
Similarly,
/0 1 G(x) D&Y (x) dz = ¢(1) D~ (1) — ¢(0) D" 4(0)
+ [ Dowpet @ a4

Using (4.4) we have

/ D21+ () (- DY) da = / 1>+ Dg(z) (— D)ip(a) da

0 0
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:=Z:Dwxﬂ*ww—anwdx
- /0 De(x) D3 y(x) da.

Thus, the proof for the cases when BC € {DD, DN, ND, NN} is complete on observing
that the first two terms of (4.5) and (4.6) vanish upon using the respective boundary
conditions from Tables 4.1 and 4.2.

Next, let us consider the pair (D%, DN*) and (D*~, DN), and the pair (D1 NN*)
and (D®",NN). In what follows, for convenience let us use the notation f(z) :=
f(1 —z). Note using Table 4.2 that ¢ € D(D*~, eN) is given by

() = I g1(2) + 1o (7) + Pas (), g1 € L1[0, 1],

since by, d; = 0. Next, using Table 4.1 note that ¢ € D(D2, eN*) is given by

d(x) = I go(x) + appa(r) + bpa_1(x) + dpo(z), go € Co(S2).

Observe that
D o(x) = go(x) + aopo(w)
and
D% 4p(x) = g1(x) + arpy ().

Then, using the facts

(Apﬂ@ﬂ@dw:ﬂ“*ﬂm

and .
LéﬁﬁﬂﬂﬂdeW“*ﬂU,

along with (4.3), we have
/0 DT p(a)ip(x) dv = /0 (90(x) + aopo()) (Ia’gl(l') + aPq(2) + Cﬁa_z(@) dz

1
= / go(2) 1% g1 (x) dz + ar I go(1) + eI* T go(1)
0
+ (lo]l’_Ia’_gl(O) -+ a0a1]a+1’+p0(1) + aocfa_1’+p0(1)
1
= / go(z) I gy (x) dz
0

apa
+ aofﬁl’*gl(O) 4 a1[a+1,+g0(1> + 01

I'a+2)
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n c([o‘_l’+go(1) . ) (4.7)

Similarly,
| erpe-uie) aa
- /0 (["‘#go(x) + agpa () + bpa_1(x) + dpo(ac)> (gl(ac) + alﬁo(x)) dx

1
= / I go(z)g1(x) dz + a I 1% go(1) + aoI*tH g1(0) + agar I pa(1)
0

+ 0177 g1(0) + arbI " pai (1) + dI'g1(0) + ardI o (1)

apg
['a+2)

+ b(]“"gl(O) + ﬁ) + d(Il’_gl(O) + a1>. (4.8)

1
- / I go(w)gi () dz + aoI" " g1(0) + ar 1***go(1) +
0

Firstly, observe that in view of (4.4), the first two lines of (4.7) and (4.8) are the same.
To complete the proof, we now show that the other terms of (4.7) and (4.8) match as
well if and only if the respective boundary conditions are satisfied.

For the operator (D%, DN*), note that ag,d = 0 and b = —T'(a—1)I1*"1"go(1). For
the operator (D*~,DN), note that a; = 0 and ¢ = —I'(a—1)I% g, (0). Thus, the proof
for the pair (D®* DN*) and (D*~,DN) is complete. For the operator (D%, NN*),
note that b = 0 and ag = —T'(a)I* 1T go(1). For the operator (D*~,NN), note that
a; = —I7g;(0). Thus, the proof for the pair (D" NN*) and (D*~,NN) is complete.
This also completes the proof of the theorem. m

Remark 4.2.2. In fact, we show in Corollary 4.3.5, that (A=, BC) = (A",BC)*|1,0,
and (A", BC) = (A7, BC)*|¢,()- To do this, we require the dissipativity of the opera-
tors AT and A~ which is established using the convergence properties of the Griinwald
approximations. However, it turns out that we only need to consider left-sided deriva-
tives on both these spaces, which we justify below.

Let the (isomorphism) flip operator J : Ly[0,1] — L]0, 1] be given by J f(x) :=
f(1 —z) and note that 7' = J. Then,

D™ f(z) = T De* T f(w) and D f(a) = T D™ T f(a),

which follows on using the substitution 7 =1 — s in (4.2). In view of this relation and
Corollary 4.3.5, we define the left-sided fractional derivative operators (A<, BC) as the
flipped versions of the part of the adjoint of (A", BC); that is, using the right-sided
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(AT, BC), Cph(Q) (A=, BC), Ly[0,1] (A*,BC), L4]0,1]
(D>*,DN) (D>~ ,DN) (D> * ,ND)
(D> * ,NN) (D&~ ,NN) (D>* ,NN)
(D>*,DD) (D*“=,DD) = (D%~,DD) (D>, DD)
(D>*,ND) (D= ,ND) = (D%~ ,ND) (D>*,DN)
(D+ DN*) (D*~,DN) (D**T ND)
(D&, NN¥) (D*~,NN) (D** NN)

Table 4.3: Corresponding fractional derivative operators on Cy(2)
and L]0, 1].

fractional derivative operators (A, BC), we set
(A7, BC) f(z) = T (A7, BC)T ' f(x).

We use <> instead of + to emphasise the fact that upon reflection about = = %, the
right-sided fractional derivative operators correspond to left-sided fractional derivative
operators with the left and right boundary conditions of BC swapped. Since the semi-
groups generated by (A7, BC) and (A, BC) are similar semigroups [37, p. 59|, it is
sufficient to only consider the corresponding left-sided fractional derivative operator
(A<, BC) on L]0, 1] as given in Table 4.3.

Consider the abstract Cauchy problem on Cy(€2) associated to the left-sided frac-

tional derivative operator (A", BC) and the initial value o,
u'(t) = Atu(t) fort >0,
u(0) = up.

In view of Remark 4.2.2, we reformulate the abstract Cauchy problem in the adjoint

scenario on L]0, 1] in terms of left-sided fractional derivative operators,

u'(t) = A%u(t) fort >0,

We use the semigroups generated by the transition operators (G", BC) (see Defini-
tion 3.2.4) to approximate the semigroups generated by fractional derivative operators
(AT, BC) on C5(€2). The interpolation matrix G%_,(A) used in the construction of
(G",BC) is given by (4.9) below, where the parameter A € [0,1], N’ = 1 — X and we

have used the fact that the consecutive off-diagonal entries of the transition matrix
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Gh. . given by 4.1 are equal except when the first column or the last row entry is
involved, that is, (G2, ,)i—1,-1 = (Gl,,)i; if 7 # 2 and i # n. Note that, if the left

nxn

boundary condition of BC is Dirichlet, then we set N' = 1 and take D'()\) = affr\x“

On the other hand, if the left boundary condition is Neumann, then we set D' = 1 and
take N'(\) = . Similarly, if the right boundary condition of BC is Dirichlet, then we

set N" =1 and take D"(\) = ai‘,)‘,w else we set D' = 1 and take NY(\) = ).

Similarly, to approximate the semigroups generated by the fractional derivative op-
erators on 1[0, 1], as discussed in Section 3.2, we could have used the adjoint transition
operator G"* given by Proposition 3.2.6 constructed using the interpolation matrix
GI* | = (GI,,)". Further, recall that the domains of the fractional derivative opera-
tors given in Definition 3.3.8 involve the power functions pg, 8 € {o, a0 — 1,0 — 2,0}.

Therefore, in Ly calculations we need to approximate pg(l — x). However, in view
1
29
matrices GZJZ associated with the transition operators (G™, BC) approximating the

of Remark 4.2.2, using reflection about x = we obtain the flipped interpolation

left-sided flipped versions (A", BC) of the right-sided fractional derivative operators

(A=, BC). As a consequence, the calculations in the L]0, 1] case (see Section 4.1) are

simpler.
GZ_H(/\) =
b, D'(\)Gg 0
NYB, NV 4 \GP (o 0
NYA)B, Nb, + \GS gy gs& O
1 ! ' ! 1l ' o a ' . . .
7o NN, Nb._, + G, o, cee e e 0
N by XU+ N NG, + AW, 5 oo o NG NT(A)GS
0 D" (\)b, Dr(M\)br cee oo DT(A)BY bi

(4.9)

For g € L4]0, 1] recall Proposition 3.2.6,

(Gh*g)@:) = (En-l—l ((GZ+1)TPn+lg>) (z) = [(GZJA)T()‘(I))(Pn+1g>(/\<x>>}L(x) )

where for 2 € [0,1], A and ¢ denote the fractional and integer parts of ¥ given by
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Definition 3.2.2. Therefore, for f € L]0, 1],

(@20 @) = (1) (1= 2) = ()" A0 =) (P ) A1 = )

(1—x)
n+1

=3 [Gha A=),y (Pari N = 2)

n+1

= Z (G (1— >‘($))L,n+2—i (Pot1fIns2—i(A(2))

j=1
n+1

= Z (Gt (L= M2 o nas (Parrf)i(AM(2))

-3 O] (Pan (M)

where setting A’ = 1 — A\, we have [GZS(A)] = [Gz‘f’l()\/)}n-ﬁ—j,n-i-?—i' Hence, the

27‘7
transition operator G"* is given by

(@) = (Bur (Ch5Penf)) (@) = [(CEOE) P HO@)] o (410)
where the operators P, and F, | are as discussed in Section 3.2.

Remark 4.2.3. Tn (4.12), the flipped adjoint interpolation matrix G} (\), is obtained
by transposing the entries of G", (\') about the (other) diagonal (the diagonal going
from bottom left to top right). The interpolating functions D', D", N! and N” and
the boundary weights bl, b7, b, are given in Table 4.1 for G" 41 and in Table 4.2 for
e

n+1*

For the sake of consistency of notation, in GZ:{ (A), note that we have replaced X

with A in the arguments of D', D", N' and N" as well as relabelled the superscripts
of these interpolating functions and the boundary weights. This is justified, since the
interpolating function with index [ is viewed as interpolating from zero to one and
acting on the left boundary while the interpolating function with index r is viewed
as interpolating from one to zero and acting on the right boundary. Moreover, in the
Grinwald transition rate matrix the boundary weights with indices [ and r are used
to encode the left and right boundary conditions, respectively.

Therefore, for the L;-case we follow the same convention and use b} in the first
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column and b} in the last row of

However, note that as a result of the reflection, z — 1 — x,

the Matrix GZ;; now encode the mirrored boundary conditions of the corresponding

0

B!
bn

ge 0
Gy

«
—1 n—2

T
bn—l

g

«
1

0

9o

by

(4.11)

the boundary weights of

boundary conditions (BC) encoded by the boundary weights of Matrix G, ,. Lastly,

h,<>

compare matrices G",, and G, and observe that the interpolating functions D and

N have swapped roles.

b D'(X)Gg
NYNBL AL+ NG

NYOBE b+ NGS

NYN)BL AL + NG

-1

NY MY, AbL |+ Vb

0 D" (\)b,
r—1—x
vy N'(NGg
Dl()\)bl2 /\/bl1 + \GY

DOV, b+ AGS

DN Ny + A2

n—1

GZH(X) -
0
o 0
gt Go
o

NG, + N,
Dr(XN)by, 4

Gri(\) =

0
o 0
5 Gg

D' (N)by, Nbj,_y + N0,y NGy + A,
N (N

0 NT(A)b,
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Boundary weights for L,-case: Let g; ; denote the entries of the transition rate
matrix in the L;-case given by (4.11). Then, recall from Section 3.1, that the entries
i, for i # j denote the rate at which particles jump from state j to ¢ while for i = j
denote the total rate at which particles leave state j. Let us divide the interval [0, 1]
into n boxes (or grids) and visualise the state j as representing the ;' box. For an
arbitrary entry g;;, if ¢ = 7, then g;; corresponds to the rate at which particles jump
out of the j® box. On the other hand, if i < j, then g;; corresponds to the rate at
which particles jump backwards from j™ box and if ¢ > j, then g; ; corresponds to the
rate at which particles jump forwards from j™ box. Further, note that particles only
jump one box backwards and the rest are forward jumps. Therefore, in the L;-case
we can physically interpret j* column as keeping track of the rates of the particles
jumping out of ;' box into other boxes.

Consider the infinite Griunwald matrix

gt Gy 0
R R 0
— 4.1
ho 0 .. ’ ( 3>
w1 Gne gy gg

G: Gy - o G G

where the Griinwald coefficients G&, = (—1)™ (%) are given by (A.1). The left and right
boundary conditions are dealt with independently by truncating the infinite matrix

given by (4.13) to obtain the semi-infinite matrix

Ae

byl Gy gy 0

1| -

A R | NP (4.14)
bizfl n—o gy g(?
o TGy G
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to deal with the left boundary and the semi-infinite matrix

gt Gy O

| 5 o g9 0

» . (115)
w1 Ona i 0

vl b, b

to deal with the right boundary.

Left boundary conditions: We use the first row and first column of the semi-
infinite matrix given by (4.14) to encode the left boundary conditions. Note that the
entries of the infinite Griinwald matrix in the columns above the first row entries of the
semi-infinite matrix correspond to the rates of the particles that jump backward past
the left boundary. Moreover, the entries of the infinite Griinwald matrix in the rows to
the left of the first column entries of the semi-infinite matrix correspond to the rates
of the particles that would jump forward past the left boundary; that is, the entries
in the 7" row to the left of the first column entry corresponds to the rate of particles

that would jump into i*" box.

e Dirichlet: In this case, we conjecture that we have an absorbing left boundary.
The entries above the first row in the infinite matrix would therefore correspond
to the rates of the particles that are lost by jumping backwards through the left
boundary. However, since we expect the particles to be lost or killed after passing
through the left boundary, no particles jump forward past the left boundary.
Therefore, we set the entries to the left of the first column in the semi-infinite
matrix (4.14) to zero and take bl = G for i > 0.

e Neumann (Riemann-Liouville): In this case, we conjecture that we have no flux
at the left boundary; that is, no particles jump backward or forward through the
left boundary. Therefore, the entries above the first row in the infinite matrix
which correspond to the rates of the particles that would have jumped backwards
past the left boundary are set to zero and so we take b, = 0. Moreover, as we
expect no particles to jump forward past the left boundary, we set the entries to
the left of the first column to zero and take bl = G for i > 2. Lastly, since we

expect no flux at the left boundary, this implies that the mass of all the particles
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should be conserved. To ensure this, we need each column sum to be zero. Since

all the column sums are zero except the first column, using (A.6), we take

Bh=-Y Gi=Gi+Gf

k=2

to ensure the first column sum is zero.

Neumann (Caputo): In this case, firstly, we conjecture that we have no flux at
the left boundary. Therefore, the entries above the first row in the infinite matrix
which correspond to the rates of the particles that would have jumped backwards
past the left boundary are set to zero; that is, we take b} = 0. Moreover, we
expect no particles to jump forward past the left boundary and so the entries
to the left of the first column are set to zero. Secondly, note that the steady
state solutions for the abstract Cauchy problem associated with the operator
(D%, BC) are constant functions, since D%py = 0 in view of (3.17). Therefore,
for the corresponding Griinwald transition matrix we conjecture that each row

sum should be zero. Therefore, in view of (A.7), we take
i1
b==) Gi=-G"
k=0

In addition, using (A.6) note that — >, G¢ = G + Y neii1 Gif where the last
term corresponds to the sum of the entries in the row of the infinite matrix to the
left of the first column entry. Observe that the entries b for i € {2,---, n — 1}
are larger than each of the other row entries; that is, the rate of particles jumping
into i*" box from first box is significantly larger than the rate of particles jumping
from the other boxes. This can be physically interpreted as the increased disper-
sion of the process at the left boundary as modelled by the first degree Caputo

fractional derivative operator.

Right boundary conditions: We use the last row and last column of the semi-

infinite matrix given by (4.15) to encode the right boundary condition. Note that

the entries of the infinite Grinwald matrix in the columns below the last row entries

correspond to the particles that jump forward past the right boundary. Moreover, the

entries of the infinite Griinwald matrix in the rows to the right of the last column entries

correspond to the rates of the particles that jump backward past the right boundary.
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e Dirichlet: In this case, we conjecture that we have an absorbing right boundary.
Therefore, the entries below the last row of the infinite matrix would correspond
to the rates of the particles that are lost by jumping forward past the right
boundary. However, since we expect that the particles are lost or killed after
passing through the right boundary, no particles jump backward past the right
boundary. Thus, we set the entries to the right of the last column to zero and
take b] = G;* for ¢ > 0. Moreover, note that the entry b, is shared by both the

last row and first column of G", | and so we retain b, = b, depending on the

nxn’

left boundary condition.

e Neumann: We conjecture that we have no flux at the right boundary. Therefore,
the entries below the last row that would correspond to the rate of particles that
jump forward past the right boundary are set to zero. Similarly, the entries to
the right of the last column that correspond to the rate of particles that jump
backward past the right boundary are set to zero. Moreover, to conserve the mass
of all the particles, we need to ensure that all the column sums are zero. Thus,
we take b = — Y00 G2 = —G*! in view of (A.7) and similarly, b, = — >~ bl

Thus, there are six possible combinations of boundary conditions BC that we en-
code in the Grunwald transition matrices in the Li-case. In view of Remark 4.2.3 these
correspond to the respective mirrored boundary conditions for the Cy-case. In Section
4.3 we show that the Griinwald transition operators (G, BC), constructed using these
Griinwald transition matrices with the boundary weights as discussed above, approx-
imate the respective fractional derivative operators (A, BC) on X as summarised in

Table 4.3.

Remark 4.2.4. Note that irrespective of the left boundary condition of BC, A = D¢
in the Cy-case. Indeed, for f € X with f(0) = 0, using (3.11); that is, D(I7f) =
I'(Df)+ f(0)py,—1 we have

D*f=D*I**f =D (I>*Df — f(0)pi_a) = D2 f. (4.16)

Next note that the boundary weights 0] of the Griinwald transition matrices used
to approximate (D®, eN) are the same as the boundary weights b corresponding to
(D%, Ne). Lastly, note that the left Neumann boundary weights of the Griinwald
transition matrices used in the approximation of the operators (D* Ne) in L]0, 1]

yield the right Neumann* boundary weights for the operators (D%, eN*) in Cy(€2).
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4.3 Semigroups and processes associated with
Griinwald-type approximations and fractional

derivative operators on X

Let us begin by recalling the Griinwald transition operator (G" BC) on Cy(2) given
by Definition 3.2.4 and constructed using the interpolation matrix G%_, given by (4.9)
along with Table 4.1; that is, for ¢ € Cy(2),

(G"0) () = (Ens1 (Grir Purr9)) () = [GriaN@))(Pari®) A(@))] () - (417)

Similarly, the Griinwald transition operator (G"< BC) on L,[0, 1] is given by (4.10)
and constructed using the interpolation matrix GZ:{ given by (4.12) along with Table
4.2; that is, for ¢ € L]0, 1],

(@ 90)(w) = (Bur (ChfiPend) ) (1) = [(CRE @) Prad)M@))] - (418)

In Proposition 4.3.2, we show the following:

e For each of the fractional derivative operators (A1, BC) on Cy(2) given in Table
4.3 and each f € C(A",BC), there exists a sequence {f,} C Cy(f2) such that
fh — f and thh — A+f

e For each of the fractional derivative operators (A", BC) on L]0, 1] given in Table
4.3 and each f € C(A®,BC), there exists a sequence {f,} C L1[0,1] such that
frn — fand GO f, — ACf.

This is not trivial, since in general,
Gh (a'pa + bpa—l + CPa—2 + de) 7L> A+ (apoc + bpoc—l + CPa—2 + de) .

For instance, A*p,_; = 0 while G"p,_1 /4 0. In fact, showing that there exist such
functions f, € X turns out to be a tedious task involving elaborate constructions.
Therefore, to keep the current discussion coherent, we delay the detailed proof of
Proposion 4.3.2 to Section 4.5.

But first, we have the following lemma which identifies the stochastic processes

associated with the Griinwald approximation operators.

Lemma 4.3.1. Let the fractional derivative operators (AT, BC) and (A, BC) be given
by Definition 3.3.8 along with a core C(A,BC) as in Theorem 3.4.4, also see Re-

mark 4.2.2. Further, let the corresponding Grinwald transition operators (G", BC)
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and (G"< BC) be given by (4.17) and (4.18), respectively. Then, G" generate Feller
semigroups on Cy() and G™ generate positive, strongly continuous contraction semi-

groups on L1[0,1]. Furthermore, the operators G" and G are dissipative.

Proof. Firstly, let us verify using the boundary weights given in Tables 4.1 and 4.2 that

the matrices

oGy 0 - 0
Go ..o
h 1 . .1
ann - ﬁ : : el T 0
by Gno 0 GY Gf

are indeed transition rate matrices by making use of the recursion formula (A.2), G, | =
195, G5 =1, n € N. Note that all the entries of Gh..., except for the diagonal entries
are non-negative, whereas the diagonal entries are all negative. Combining this fact
with the binomial identity Y 2 G = 0 given by (A.5), we have that all row sums

of G

nxn in the case when

in the case when X = Cp(Q) and all column sums of G”, |
X = L,[0,1] are non-positive. Thus, in view of Proposition 3.2.7, the operators G"
and G"< are bounded. Moreover, G generate Feller semigroups on Cy(2) and G™*
generate positive, strongly continuous contraction semigroups on L4 [0, 1]. Then, it also

follows that the operators G and G"* are dissipative. m

We now state the crucial result of this section and give a brief sketch of the proof.

The detailed proof is given in Section 4.5.

Proposition 4.3.2. Let the fractional derivative operators (AT, BC) and (A7, BC) be
given by Definition 3.5.8 along with a core as in Theorem 3.4.4, also see Remark 4.2.2.
Further, let the corresponding Grimwald transition operators (G, BC) and (G™*,BC)
be given by (4.17) and (4.18), respectively. Then, we have the following

1. For each f € C(A,BC) there exists sequence { fr,} C Co(Q2) such that fr, — f and
Gh fy — AT fin Co(Q).

2. For each f € C(A®,BC) there exists sequence {fr} C L1]0,1] such that f, — f
and G fi, — A< f in L]0, 1].

Proof. Let 1 < a <2, n € Nand h = 5. To simplify notation, let us write G"

for both G and G"* as well as A for both A* and A®. Consider a typical element
f € C(A,BC) given in Theorem 3.4.4 in its general form,

f=1%P + apy + bpa—1 + cpa—2 + dpy,
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where the constants a,b,c,d € R are given in Tables 4.1 and 4.2 for each BC, and
polynomial P = ZZ:O kwpm € X as in Remark 3.4.3. We construct functions {f,} C
X and show that f;, — f and G"f, — Af in X for each of the fractional derivative
operators (A, BC) on X given in Table 4.3. The functions f;, have the following general
form

fo = TP+ ap0% + b9 + 992 + do) + ey, P € X,

where ay,, by, ¢, € R.

Outline of construction of f, € X: Firstly, the approximate power functions
are constructed such that the following hold (see Section 4.5.1, Definition 4.5.1 and
Lemma 4.5.3, and Section 4.5 for details):

1. The functions 9%, 99" and 99 are constructed such that they converge in the

X-norm to ps, pa_1 and pg, respectively.
2. The function 192’2 is constructed such that it converges to p,_o in Li-norm,
3. Ghﬁ‘f — Apg in the respective X-norm.

Secondly, the functions e;, are taken to be zero functions except in those cases when
BC has a right Neumann boundary condition where we require the function e; for
G"f, — Af, constructed such that e, — 0 in the X-norm. Thirdly, the real sequences
ap, by, ¢ are chosen such that they converge to a, b, ¢, respectively and f, € X. We
specify ap, by, ¢, in the detailed proof of Proposition 4.3.2 in Section 4.5.

Outline of proof of f, — f and G"f, — Af in Cy(Q):

For each of the fractional derivative operators (A, BC) on Cy(€2) given in Table 4.3,
and for each f € C(A,BC) we show that there exists a sequence {f,} C Cy(Q2) such
that f, — f and G"f,, — Af in Cy(€2). To this end, given € > 0 we show that there
exists 0 > 0 such that for h < 6,

Sup |fn(7) = f(z)] <€ (4.19)
and
51615 ‘thh(x) — Af(z)| <e (4.20)

The proof of (4.19) follows from the construction outlined above. To show (4.20), we

break the interval €2 into two parts, namely,

Qy(h) == QN [0,1— 2h) and Qu(h) := QN [1 — 2, 1]. (4.21)
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For = € Q;(h) we show that

sup |G" fu(z) — Af(z)| = O(h"), K > 0.

req

As a consequence, there exists 0; such that for A < 47,

sup |G ilx) — Af(@)] <
z€Q1(h)

(NN e

Similarly, for x € {25 we show that

sup ‘thh(x) — Af(z)| = O(h"), k> 0.
2€Qa(h)

This implies that there exists d, such that for h < ds,

sup ‘thh(a:) —Af(x)‘ <

xEQQ(h)

N

Then, taking § = min {01, d2}, for h < § we have Q = Q;(h) UQs(h) as well as uniform
convergence on the interval €, (4.19) and (4.20).

Interval €;:

1.

We consider the common properties of the Griinwald approximations of operators
with left Dirichlet boundary condition, (A, De) on ;.

We consider the common properties of the Griinwald approximations of the op-

erators with left Neumann boundary condition, (A, Ne) on ;.

Interval Q,:

1.

We first consider the common properties of the Griinwald approximations of the
operators with right Dirichlet boundary condition, (A, eD) on €. Following
that, we collate and complete the proof of Statement 1 of Proposition 4.3.2 for
the operators (A, DD) and (A, ND) separately.

. We first consider the common properties of the Griinwald approximations of the

operators with right Neumann® boundary condition, (A, eN*) on 5. Following
that, we collate and complete the proof of Statement 1 of Proposition 4.3.2 for
the operators (A, DN*) and (A, NN*) separately.

. We first consider the common properties of the Griinwald approximations of the

operators with right Neumann boundary condition, (A, eN) on 5. Following
that, we collate and complete the proof of Statement 1 of Proposition 4.3.2 for
the operators (A, DN) and (A, NN) separately.
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Outline of proof of f, — f and G"f, — Af in L0, 1]:

For each of the fractional derivative operators (A, BC) on L]0, 1] given in Table
4.3, and for each f € C(A,BC) we show that there exists a sequence {f,} C L]0, 1]
such that f, — f and G"f,, — Af in L;[0,1]. To this end, given € > 0 we show that
there exists 0 > 0 such that for h < 9,

| fr — fHLl[O,l] <€ and Hthh - Af||L1[0,1] <€

1. We first consider the common properties of the Griinwald approximations of
the operators with left Dirichlet boundary condition, (A, De). Following that,
we collate and complete the proof of Statement 2 of Proposition 4.3.2 for the
operators (A, DD) and (A, ND) separately.

2. We prove Statement 2 of Proposition 4.3.2 for the operator (D%, ND).
3. We prove Statement 2 of Proposition 4.3.2 for the operator (D&, NN).

4. We first consider the common properties of the Griinwald approximations of the
operators with left Neumann boundary condition, (D% Ne) on €. Following
that, we collate and complete the proof of Statement 2 of Proposition 4.3.2 for
the operators (D* ND) and (D, NN) separately.

O

The following theorem and its corollaries are the most important results of the
second part of this thesis. The following theorem establishes that the Griinwald-type

approximations converge to the left-sided fractional derivative operators on X.

Theorem 4.3.3 (Trotter-Kato type approximation theorem). Let the fractional
derivative operators (AT, BC) and (A%,BC) be given by Definition 3.3.8 along with
a core as in Theorem 3.4.4, also see Remark 4.2.2. Further, let the corresponding
Griimwald transition operators (G", BC) and (G"* ,BC) be given by (4.17) and (4.18),

respectively. Then, we have the following:

1. The operators (G",BC) and (A,BC) generate Feller semigroups on Co(Q2). The
operators (G™ BC) and (A<, BC) generate positive, strongly continuous, con-

traction semigroups on L0, 1].

2. The semigroups generated by (G" BC) converge strongly (and uniformly for t €
[0,%0]) to the semigroup generated by (A,BC) on Co(2). The semigroups gener-
ated by (G, BC) converge strongly (and uniformly for t € [0,ty]) to the semi-
group generated by (A<, BC) on L]0, 1].
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Proof. To simplify notation, let us write G* for both G"* and G"* as well as A for
both A* and A®. As a consequence of Proposition 4.3.2, for each f € C(A,BC)
there exists sequence {f,} C Co(Q) such that f, — f and G"f, — Af in Cy(Q) and
{fn} C L1[0,1] such that f, — f and G"f;, — Af in L;[0,1]. In view of Lemma 4.3.1,
G" are dissipative; that is,

(A= G") full = Al fal

for all f;, € X and all A > 0. Thus, as h — 0, in view of Proposition 4.3.2 we have

[(A=A)FII = ALl

for all f € C(A,BC) in the respective X-norms. As a consequence, this inequality
holds for all f € D(A,BC), and hence (A, BC) are dissipative. Furthermore, in view
of Theorems 3.4.4 and 3.4.5, (A, BC) are densely defined closed operators with dense
rg(A—A) in X. Hence, the operators (A, BC) generate strongly continuous contraction
semigroups as a consequence of the Lumer-Phillips Theorem (C.2.9). The proof of the
first statement is complete in view of Lemma 4.3.1. The second statement follows using
the Trotter-Kato theorem (C.2.10), in view of Proposition 4.3.2. O

We require the following lemma to prove the crucial Corollary 4.3.5 which explicitly
identifies the part of the adjoint of the left-sided fractional derivative operator in L4 |0, 1]
and the part of the adjoint of the right-sided fractional derivative operator in Cy(€2).

Lemma 4.3.4. Let the operators A, B be such that A C B, A is surjective and B is
injective, then A = B.

Proof. To see this, let € D(B). Then, since A is surjective and A = B|p(a) there
exists w € D(A) such that Bx = y = Aw = Bw. Next, since B is injective, we have
that = w. Thus, D(B) C D(A) and hence, B C A. O

As a consequence of Theorem 4.3.3, (A%, BC) generate strongly continuous con-
traction semigroups on L;[0,1] and the semigroups generated by the corresponding
right-sided fractional derivative operators (A~, BC) (with mirrored boundary condi-
tions) are similar semigroups in view of Remark 4.2.2, we have that (A~,BC) also

generate strongly continuous contraction semigroups on L;[0, 1].

Corollary 4.3.5. Let (AT,BC) be a left-sided fractional derivative operator on Cy((2)
and (A~,BC) be the corresponding right-sided fractional derivative operator on L]0, 1]

whose domain encodes the same combination of boundary conditions BC as given in

Table 4.3. Then, (A=, BC) = (A", BC)*|L,p1 and (AT, BC) = (A=, BC)*|cy.
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Proof. Firstly, in view of Theorem 4.2.1 we have that
I —(A7,BC) C (I —(A*,BC)*)|ri01) and I — (A*,BC) C (I — (A7, BC)")|cy @)

where [ is the identity operator on the respective spaces. Secondly, in view of Theo-
rem 4.3.3 and Remark 4.2.2, we have that (AT, BC) and (A~, BC) generate strongly
continuous semigroups on Cy(€2) and L]0, 1], respectively. Therefore, in particu-
lar, 1 € p((A",BC)) and 1 € p((A~,BC)). Thus, I — (A~,BC) is surjective and
I — (A",BC)" is injective which implies that (I — (A", BC)*)|,, is also injective.
Then, in view of Lemma 4.3.4, we have that I — (A, BC) = (I — (A", BC)*)|L,0.1)-
Hence,
(A7,BC) = (A", BC)"|140,1)-

A similar argument holds for the pair, (A", BC) and (A~, BC)*|¢yq)- O

The following result is the culmination of the second part of this thesis. This result
identifies the stochastic processes, which are governed by fractional-in-space partial
differential equations that employ fractional derivative operators (A, BC) on X with
boundary conditions BC, as limits of processes whose boundary behaviour is perfectly
understood. Let us briefly summarise the preparations made so far in Chapters 3 and
4 that yield this result in order to highlight its significance.

We began with transition rates of a finite state sub-Markov processes that signify
the process jumping from state ¢ to state j or from state j to state ¢ for the spaces ¢7,
and /7, respectively. The associated semigroups are the so-called backward semigroups
(e!@nxn),50 in the case of 7 and the forward semigroups (e/“nxn);5q in the case of ¢},
where the matrices G, «, and G, are adjoint of each other. We extended the back-
ward semigroups on £% to L (), restricted to its closed subspace Cy(£2). Similarly,
we extended the forward semigroups on ¢ to Mp(Q2), restricted to its closed sub-
space L1[0,1]. This general theory was then used in the construction Griinwald-type
approximations for the fractional derivative operators on X.

We studied the properties of the (left-sided) one-sided fractional derivative operators
(AT,BC) on X. In Corollary 4.3.5, the part in L;[0,1] of the adjoint of the left-
sided fractional derivative operators on Cy(2) was explicitly identified as the right
sided fractional derivative operator (A~, BC) where the domains of both the operators
encode the same boundary conditions BC. Moreover, in Remark 4.2.2, we justified that
it is sufficient to consider only the semigroups generated by the left-sided fractional

derivative operators on X, since the semigroups generated by the left-sided fractional
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derivative operators on L]0, 1] and the right-sided fractional derivative operators on
L]0, 1] are similar semigroups.

In Chapter 3, we showed that the left-sided fractional derivative operators (A, BC)
are densely defined closed operators on X and that rg(Al — A) are dense in X. To
conclude that the fractional derivative operators generate positive, strongly continuous
contraction semigroups using the Lumer-Philips Theorem we established dissipativity
of the left-sided fractional derivative operators on X using the Griinwald approxima-
tions. That is, in Proposition 4.3.2, we showed that the Griinwald approximations
(G",BC) converge to the respective fractional derivative operators (A, BC). As a fur-
ther consequence of Proposition 4.3.2, in Theorem 4.3.3, we established the convergence
of the semigroups generated by the Grinwald approximations to those generated by
the one-sided fractional derivative operators on X.

On the one hand, we showed that the Griinwald approximations generate posi-
tive, strongly continuous contraction semigroups on X, in particular, Feller semigroups
(Sh(t))i>0 on Cp(€2). On the other hand, we also showed that the fractional derivative
operators generate positive, strongly continuous, contraction semigroups on X, in par-
ticular, Feller semigroups (S(t)):>0 on Cp(2). Therefore, there exist Feller processes
(X150 and (X;)¢s0 with (Sp(¢))e=0 and (S(t))¢0, respectively, as their backward semi-
groups [53, Chapter 17]. Furthermore, in view of Theorem 4.3.3 the family of Feller
semigroups (Sp,(t));>0 generated by Griinwald approximations converge strongly, uni-
formly for t € [0,%], to the Feller semigroups (S(t)):>o generated by the fractional

derivative operators on X. As a consequence, we have the following important result.

Corollary 4.3.6. The stochastic processes (X! associated with the Grimwald ap-
prozimations (G",BC) converge in the Skorokhod topology to the processes (X;)i>o as-

sociated with the fractional derivative operators (A, BC).

Proof. The proof is complete in view of Theorem 4.3.3, Remark 4.2.2, Corollary 4.3.5
and [53, p. 331, Theorem 17.25]. O

This corollary marks the conclusion of the second part of this thesis. However, as
mentioned at the start of Section 4.3, the detailed proof of Proposition 4.3.2 is provided
in Section 4.5 and we make the necessary preparations for the same in Section 4.5.1.
But first, we have the following section on the numerical solutions for the Cauchy

problem associated with the fractional derivative operators on L]0, 1].
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4.4 Examples of Griinwald schemes for

Cauchy problems on L]0, 1]

In this section we provide some examples of numerical solutions to the Cauchy problem
associated with the fractional derivative operators (A, BC) on L;[0, 1] and the initial
value uy € L10, 1],

u'(t) = Au(t) fort >0,

u(0) = uy, (4.22)

that employs the Griinwald scheme. For the space discretisation of the Griinwald

scheme, we use the Griinwald transition matrix,

oG 0 - 0
gt '
h 1 .1
ann - ﬁ : : 0 ) (423)
blnfl ng gfé QS‘
bu b b

where the boundary weights are given in Table 4.4.

Boundary condition | Boundary weights for G".
f(0)=0 b =Gy
Dl f(0) =0 b =-6'
D7 f(0)=0 | bh=0, bk =G5 +Gp, b=gG2
f(1)=0 b =Gf', ba = b,
Ff(1) =0 by = =G5 ba = =30 b

Table 4.4: Boundary conditions and boundary weights for L;[0, 1].

To illustrate the efficiency of the Griinwald scheme in handling different boundary
conditions, we plot the numerical solutions to the Cauchy problem associated with the

fractional derivative operators on L;[0, 1] and the initial value

25x — 7.5, for 0.3 < x <0.5,
up(z) =< =250+ 7.5, for 0.5 <z < 0.7, (4.24)
0, otherwise.

at various times below. For the numerical scheme, we take o = 1.5, the time step
At = 0.01 and the space grid size h = 0.001. The MATLAB codes used to obtain the

numerical solutions are given in Appendix D.
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Figure 4.1: Time evolution of the numerical solution to the Cauchy problem associated
with (D! DD) and initial value ug given by (4.24).
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Figure 4.2: Time evolution of the numerical solution to the Cauchy problem associated
with (D!® DN) and initial value ug given by (4.24). Take note of the build up at the
right boundary.
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Figure 4.3: Time evolution of the numerical solution to the Cauchy problem associated
with (D! ND) and initial value ug given by (4.24).
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Figure 4.4: Time evolution of the numerical solution to the Cauchy problem associated
with (D! NN) and initial value ug given by (4.24).
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Figure 4.5: Time evolution of the numerical solution to the Cauchy problem associated
with (D5 ND) and initial value ug given by (4.24).
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Figure 4.6: Time evolution of the numerical solution to the Cauchy problem associated
with (D'® NN) and initial value ug given by (4.24).
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4.5 Detailed proof of Proposition 4.3.2

The proof is divided into two main cases X = Cy(2) and X = L;]0,1] where the

detailed proofs are given in Sections 4.5.2 and 4.5.3, respectively.

4.5.1 Construction of approximate power functions

In this section we make the necessary preparations for the proof of Proposition 4.3.2.

In what follows, let 1 < a < 2, n € N and h = Moreover, for z € [0,1],

1
n+1"
let (z) —1 = |%] and M) = {#} denote the integer and fractional parts on £ as

in Definition 3.2.2 and the Griinwald coefficients G2 = (—1)™(%) be given by (A.1).

Furthermore, to simplify notation, we write A := A(z) and N =1 — A,

Definition 4.5.1. The approximate power functions for Cy(€2) are defined as follows:

1.
o (2) = h° -\, if o(x) =1,
€Tr) =
' (VG & + 2G5 ifu(e) £ 1
2.
a—1 _ po—1 —a
@) = he T (NG L+ A6 ).
3.

() = po().

The approximate power functions for L0, 1] are defined as follows:

1.
_)\/7 if l/(ﬂf) = 17
9% (x) = h®
e { Grme ife(2) #1.
2.
1904*1< ) hozfl é(A,go + Ag1_0<>7 if L(ZU) = 17
€Tr) =
h (,\ LT AG G 1) if o(x) # 1.
3.
9 () = A, if o(z) =1,
S po(z), ifu(x) # 1.
4.
9778 w) = o (L= 000G +ONG )
where 6(\) = m
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Remark 4.5.2 (Canonical extension to [0,1+ &]). In the proof of Proposition 4.3.2,
when dealing with the right Dirichlet and Neumann* boundary conditions, we require
the values of the function f, in the interval (1, 1+ h]. Therefore, the domain of f; need
to be extended to the interval [0, 1 + h]. To do this, we also extend the definitions of
A and ¢ given in Definition 3.2.2 to the interval [0, 1 4 ], but consider z = 1 to belong
to the interval [1 — h, 1], that is, A(1) = 1 and (1) = n+ 1 and similarly, x = 1+ h to
belong to the extended interval (1,1 + h], that is, A(1 +h) =1 and ¢«(1 + h) =n + 2.

Let ¢ = ZZ:O kmPa+m- Let us also assume that ¢ is canonically extended to the
interval [0,1 + h| and = € [1 — h,1]. Then, the Taylor expansions around x = 1 are
given by

¢la —h) = ¢(1) = (2= Mhe'(1) + O(h%),
¢(x) = ¢(1) — (1 = N (1) + O(h?),
o(x + h) = (1) + Ahg' (1) + O(h?), (4.25)
where observe that A := A(x) = Az — h) = A(x + h) for x # 1.
We prove some of the properties of the interpolated functions that we use repeatedly.

Lemma 4.5.3. Let the approximate power functions be as in Definition 4.5.1. Then
vy, 19‘,1“_1 and 99 converge to pa, pa_1 and po, respectively in the X -norm. Moreover,

192’2 converges to po—o in L1]0, 1]-norm.

Proof. Firstly, observe that ¥ — pg in X-norm. In view of (A.9), on a fixed grid point
xz = (k+ 1)h, we have

00k + ) = hegpet = P o) = (- 0+ o),

[ +1)
_ o hk _

I ((k+1)h) = h*'G = (r()a) [1+ O(k™")] = pa—1(kh) + O(h)
and

—2 Copart _ (hEk)*7? —1

Oy ((k+1)h) = h*72G " = Mo —1) [1+O(K™)] = pa—a(kh) + O(h).

Then it follows that, as b — 0, U5 — pa, 19,2“_1 — Pa_1 in X-norm and 192_2 — Pa_g in
L4]0, 1]-norm. O

Lemma 4.5.4. Let 195 for p e {a,a—1, a — 2} given in Definition 4.5.1 be canoni-
cally extended to the interval [0,1 + h] and set A := A(z) = Az + h). Then we have
the following identities for x € [1 — h, 1],
a—2 -9
e R0 P
vy 5(1) n—2+a
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993 (1) n+1’
g @) . a—l
) Caeital
9z + h) o a—1

T
95 () , a

1= 7

U9 (1) n—1+a«
U5 (z + h) L«

L (4.26)

Moreover, for x € [1 — 2h, 1|, we have

0 ) = o ) = 0 ) (SO o)

95 (z) — 95 (x + h) = 95(1) (k + O(hQ)) : (4.27)

Fita
where k = 1(z) — 1.
Proof. Let x € [1 — h, 1] and in the following calculations we make use of

On (1) = RGO (1) = hTNG (1) =BG, (4.28)
along with Definition (4.5.1) and (A.2) as required. Firstly, setting 6 := 6(\) we have

9p 2 (x) W ((1—0)G, o +6G, ")
?9?;—2(1> - ha72g7;a+1

and
902z +h) R ((1—0)G, ! +0G,557)
19}05—2(1) o ha—2gga+1

n+oa—1
fr— 1— _—
(1-60)+0 ]

Secondly,

IpH(z) R (L= NG + A7)
ﬁg—l(l) o hoa—lg';oc
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and

Ip Mt h) R (L= NG+ MGt
,ﬁ}o;fl<1> o hozflggoz

Thirdly,

Op(x) R (L= NG, %"+ 26, )
(1) heg, o

and

99+ h) b (1= NG+ G,

I5(1) heG o
(- A+ )\n+ «
n
—1+2%
n

Next, for = € [1 — h, 1] using the above identities

99 (z) — 99 Ho + h) = 951 (1) (M + (a—1)A ( !

n—1+a«
— o (5 o)

and

ﬁﬂ@—ﬁﬂm+m=ﬁﬂw(

-«
n—14+«

::ﬁg(1)( -+()uﬁ)>.

Note that if z =1 — h, since A = 0, O(h?) terms above are absent.
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Moreover, for = € [1 — 2h,1 — h), using (4.28) and g,f = (1 + %) Q,’fH given by
(A.2), note that

99(x) = b ((1 = NG % " + G, %)

—ne (- Ngs (1 —— ) +agt (1 —5—
<< )n—2 ( n—2—|—a>+ n—1 ( n—l—I—a

1-X) a\
= Y« h he | — —a—1 a( _ o—a—1

—al a\
— Qo h ha —a—1 [ 1 — «Q «Q «Q o
e+ h)+ nt ( ( n—1+a) (n—2+a n—1+ao

= 9% (z + h) +99(1) (ﬁ + O(h2)>

and

19%_1(35) = ho! ((1 - NG, %+ )\gg—%)

_ pa—1 - —a _ a—1 —a _ a—1
= ((1 N "1(1 n—2+o¢>+)\g" (1 n—l—l—oz))

(@—1)(1—N) (@ — 1)\

zﬁgl(x+h)+h“‘1<— i T ota —Qg“—n_1+a>

S )
e (<12 (S )

=90 Yz + h) +9971(1) (% + O(h2)) :

O

Recall that for a > 0, f € Li1(R) or Cy(R) and h > 0, the shifted Griinwald formula
(1.3) is given by

1 o0
A f (@) = 223G fw — (k= p)h),
k=0

where the Griinwald coefficients, G = (—1)™(2) are given by (A.1).

We make use of this Griinwald formula repeatedly in the proofs of Propositions 4.5.7
and 4.3.2. For easy reference we rewrite them using the notation employed therein.
Let € [0,1 + A]; that is, x = (A(z) + ¢(z) — 1)h as in Definition 3.2.2. Then, for
1 < a < 2 with shift p =1 and for 0 < a — 1 < 1 with shift p = 0, we have

oz

)
A (@) = 203G + o) — 1= (k= 1)),
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(z)—1
A (@) = oy 30 G (@) +ifa) 1 R (1.29)

We state the following corollary of Theorem 2.2.1 which we use repeatedly in the proof
of Proposition 4.3.2.

Corollary 4.5.5 (Corollary of Theorem 2.2.1). Let 1 < a < 2, and let B > « in the
case of Cy(2) and B > « in the case of L41]0,1]. Further, let

0, ifx <0,
ps(x) =% palx), if0<z<2,
O(x), ifx>2,

where 8 € CF°(R) such that the extended function pg € Co(R) or Ly(R), respectively.
Then, given € > 0 there exists 6 > 0 such that for all h <,

143 525 — Pa—al| o 0y < 14728 — D°Bsll gy < € B> 0

and

HAg,ppﬁ _pﬁ_aHLl[O,l} < HAz,pﬁﬁ - DaﬁﬁHh(R) <& fzo

Remark 4.5.6. Let P = I*(P — P(0)py), P = Zﬁ:o kmpm € Co(£2). Note that,

since P(0) = 0, D*P = D2P. Therefore, assuming that P is canonically extended to
[0,1+ h], in view of Corollary 4.5.5 and Lemma 1.4.2, the error terms are given by

S )PP (@) + O(h?).

A5 P () = DEP(x) + h(p -
In view of Corollary 4.5.5 and Lemma 1.4.2, for @ = [*P, P = ZZ:O kmpm € L41]0,1]
we have the error terms,
a

43,Q(x) = D*Q(a) + h(p - 3

)DO‘HQ(:c) +O(h?)

and the same holds with D” replaced by D?.

We conclude the preparation for the proof of Proposition 4.3.2 with the following
result which contains only those properties of the approximate power functions that

we require.

Proposition 4.5.7. Let 9 for § € {a, a — 2}and in the case when X = Cy(Q), 997!
be given by Definition 4.5.1 and canonically extended to the interval (0,1 + h]. Let
Wz)—1=[%] and X := X(z) = {£} denote the integer and fractional parts of % as in
Definition 3.2.2. Then the following hold:
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Ay 0y (r) = 1= NG, oz) > 2.

2.
A5 05 (w) = b (u(2) =24+ 600 = NG ) s ofe) 2 2,

3.

Ap 00 @) =0, uo(z) > 2.
4.

A%Blﬁz_l(x) =1, o(z) > 2.
d.

AR 195 (@) = 0, () > 3.
0.

Aﬁfolﬁgd(a@) =0, v(z) > 3.

Proof. In what follows we make use of zm 0 9L Qk = QQ+Q given by (A.8) as re-
quired.

1. Let ¢(xz) > 2,0 = Xor 1 and note using (4.29) that

A% 9%(x) = h Zggﬂa <x (k- 1)h).
Then, since G 0 by , we have
1
t( v(z)—
- (1 - 9 gg Oé l(k 1)-3 +0 Z gL(x) ( ngczm)
k=

In view of (A.2) note that g,; = 1. Thus, the first term above reduces to

L:L‘)2

while the second term above reduces to
t(z)—1

ezgk Lw)lk_9g$)1 0.

Hence,
Aﬁ’lﬁﬁf(x) =1- ngzm).
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2. Let «(z) > 2 and # = X or 1, then using (4.29) we have

t(z)—1
Ap g0 (@) = D N getag (:c - k:h).
k=0
Note that Qk =k+1by (A2) and G={ =0 by (A.3). Thus,
AR () = h Z Gy ( 0G5 2> +h(A =135,
o(2)-2
h(1—6) Z GG i+ 1o Z GG o F (A= 1)G

h<<1 ~ )Gy 0G5 s+ (A1) ;;)1_1>
B((1 = 0)(e(x) = 2) + 0() = 1) + (A - G,
p(w) —2+0- NG ).

3. Let X = Cy(2) and ¢(z) > 2, then in view of (4.29), using G_{' = 0 we have

()
Ap oy )y =t (Z Gi ((1 = NG h1)2 T AgL(a?)—(k—l))—l))

t(z)—1

ng ‘“1k+Ang )

—p! ((1 — NG+ A ) =0,

| |
/\

since «(x) > 2 and GY =0, k> 1 by (A.2).

4. Let X = Cy(Q) and «(z) > 2, then in view of (4.29), using G"¢ =0 and G, ' =1
we have

t(z)—1
Ao @) = e ST gt (o — ki)

k=0

v(z)—
:Zg ( NG & s A )
v(x)—2 t(z)—1
=(1=0) > G0t D G0
k=0 k=0
=(1=NG, 52 +AG = 1.

I
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5. Let X = L4[0,1] and «(x) > 3, then in view of (4.29), using G_ ¢! =0
A%lﬁa 2 hQ (ng ( 1 — o :‘;)4‘11 i + egL_(mOé)+1k>>
t(z)—1 u(z)
( (1-96) Z GG+ gsg;;ti)
k=0

= (=006l +06L,) =0, (4.30)

2l >|~

since Qé =0 for k > 2.

6. Let X = L,[0,1] and «(x) > 3, then in view of (4.29), using G- =0
1 t(z)—1
A ) = E( 01 ((1-0),51,, + 60, ))

o(z)— u(z)—1
1_9 Z g]? lgL(s—&-l +6 Z glz: lg a+1 >

((1 —0)G,1) 2+ 99?@)-1) =0, (4.31)

> = DIH
/\

since g}g =0 for k > 1.

4.5.2 Proof of Proposition 4.3.2 for the case X = Cy(1?)

Proof. To simplify notation, we write A := A'. For each of the fractional derivative
operators (A, BC) on Cy(R2) given in Table 4.5, and for each f € C(A, BC) we show
that there exists a sequence {f,} C Co(Q2) such that f, — f and G"f), — Af in Cy(Q).
To this end, given ¢ > 0 we show that there exists o > 0 such that for h < 9,

sup |fu(@) = fl@)] < € (4.32)
and
sup |G" fu(z) — Af(z)| <e. (4.33)
e

We show (4.32) when dealing each of the operators (A, BC) separately.

To show (4.33), we break the interval € into two parts, namely,

Q(h) :=QNJ[0,1—2h) and Qa(h) := QN [1 — 2k, 1]. (4.34)
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(AT, BC), Co(Q) (A=, BC), L,[0,1] (A*,BC), Ly]0,1]
(D>*,DN) (D>~ ,DN) (D> ND)
(D> " ,NN) (D&~ ,NN) (D> NN)
(D>*,DD) (D*“=,DD) = (D%~,DD) (D, DD)
(D>*,ND) (D“=,ND) = (D%~,ND) (D>, DN)
(D>, DN¥) (D~ ,DN) (D> ND)
(D&, NN¥) (D*~,NN) (D> NN)

Table 4.5: Corresponding fractional derivative operators on Cy(2)
and L]0, 1].

For x € Qy(h) we show that
sup |G" fu(z) — Af(z)] = O(h"), K > 0.
e
As a consequence, there exists d; such that for h < 47,
€
sup ‘thh(a:) — Af(z)| < 7 (4.35)
:EGQl(h)
Similarly, for z € €2y we show that
sup |G"fu(z) — Af(z)| = O(h"), k> 0.
xEQQ(h)
This implies that there exists do such that for h < s,
€
sup |G" fu(x) — Af(@)] < 5
x€Q2(h)
Then, taking § = min {01, 2}, for h < 6 we have Q = Q;(h) UQs(h) as well as uniform
convergence on the interval €, (4.32) and (4.33).

(4.36)

Remark 4.5.8. With this line of argument in mind, in what follows, for A < § we loosely
use the phrases f, — f uniformly in Q and G" f;, — Af uniformly on Q; or € to refer
0 (4.35) or (4.36), respectively.

Take note that in the proof we repeatedly make use of the following:

1. f €C(A,BC) as in Theorem 3.4.4,
[ =1"P + apa + bpa—1 + dpo,

where the polynomial P = SN k,p, € Co(Q), see Remark 3.4.3. For conve-

nience in calculations below, we rewrite f € C(A, BC) as follows:
f=P+(P(0)+a)pa + bpa—1 + dpo, (4.37)
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where P = I*(P — P(0)py). Then, using (3.17),

Af = AP + (P(0) + a)py = P + apy. (4.38)

2. The interpolation matrix GI, (\) given by (4.9),

GZH()‘) =
bl1 Dl()\)gg 0
]\/l(>\)bl2 /\’bl1 + A\GP ags 0
NV N'by + AGS G g 0
1 l . 1 1l . « a ' ' . '
ﬁ N (/\)bz A bifl —+ Agifl o Cee e e 0
Nl()\)bn )\’bil,l + AL NGE o+ N, e e NGE A NT(N)GY
0 D" (\)b, Dr(\b-_, e e DTN b

. Table 4.6 for the boundary weights b!, b7, b,, the constants a,b,c,d and the
interpolating functions D!, D", N!, N’.

. The Griinwald formula given by (4.29),

Ajaf(@) =13 DG (@) + (@) =1 (k= 1)h)

where x = (A(x) + ¢(z) — 1)h as given by Definition (3.2.2) along with Corollary
4.5.5 and Remark 4.5.6.

. The approximate power functions given by Definition 4.5.1 and as mentioned
in Remark 4.5.2, we canonically extend the domains of P, py and 195 for g €
{a,a — 1} to the interval [0,1 + h| when required.

Remark 4.5.9. For easy reference, let us recall the outline of the proof of Proposition
4.3.2 for the Cy(Q2) case as given in Section 4.3.

Outline of the structure of the proof:

e Interval Q;:

1. We consider the common properties of the Griinwald approximations of

operators with left Dirichlet boundary condition, (A, De) on ;.
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X =C(),D(A,BC) = {I%g + apa + bpa—1 +dpo : g € Co(2)}, (0,1) C Q

Boundary condition | Boundary weights for G"_ D(A,BC)
bt = g«
O — 0 7 (2
é()(01] b, =], a=0,d=0
C (U, o
D'(\) = a)\i\)\/’ N'=1
b= —got
De=1£(0) =0 ' -t
0,1) C Q -
NN =\ D=1
o e a0 gy d = gl
D1 f(1) =0 by = -G
c f() 7 i—1 a+b:—Ig(1)
(0,1] € Q N'(A) =N, D" =
bT‘ — 0’ bT — gO{ _|_ ga’
Df(l) =0 0 brlz gqo ' a+(a—1)b ]—a_lg(l)
(0,1 c Q LT L)

N'(\) =N, D" =1

Table 4.6: Boundary conditions for Cy(£2).

2. We consider the common properties of the Griinwald approximations of the

operators with left Neumann boundary condition, (A, Ne) on ;.

e Interval (2,:

1. We first consider the common properties of the Griinwald approximations of
the operators with right Dirichlet boundary condition, (A, eD) on €. Fol-

lowing that, we collate and complete the proof of Statement 1 of Proposition

4.3.2 for the operators (A, DD) and (A, ND) separately.

2. We first consider the common properties of the Griinwald approximations
of the operators with right Neumann® boundary condition, (A, eN*) on (2.

Following that, we collate and complete the proof of Statement 1 of Propo-

sition 4.3.2 for the operators (A, DN*) and (A, NN*) separately.

3. We first consider the common properties of the Griinwald approximations of
the operators with right Neumann boundary condition, (A, eN) on 5. Fol-

lowing that, we collate and complete the proof of Statement 1 of Proposition

4.3.2 for the operators (A, DN) and (A, NN) separately.
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Interval €;:
Let ¢ € Cy(£2) be an arbitrary element, then note using Definition 3.2.4 that

G"¢(@) = (Bur1 (Ghi1Pani9)) (@) =[Gy (M (@) (Pasi9) (A @))] -

For x € QN [0, h); that is, for = Ah with «(z) = 1 this reduces to

1

Gholw) =

(o) + D'(NGga((A+ 1)) ). (4.39)

while for x € [h,1 — 2h), that is, for = (A + ¢(z) — 1)h with «(z) € {2,3,--- ,n — 1},

we have

Go(z) = (Nlu)bi(m)qs(m) b (VB + AG0 1) 0((A+ D)
v(z)—2
+ Gio((A+u(x) —1—(k—1))h) | . (4.40)

k=

[e=]

As mentioned in Remark 4.5.9, we first consider the common properties of the
operators with a left Dirichlet boundary condition, (A, De) on the interval ;. Fol-
lowing that we consider the common properties of the operators with a left Neumann
boundary condition, (A, Ne) on the interval ;.

Common properties for operators (A, De):

Note that a, d =0 and P € Cy(2) implies that P(0) = 0, see Remark 3.4.3. Thus,
f € C(A,De) given by (4.37) reduces to

f =P+ bpa-i, (4.41)

where P = I*P. We take
fn=P+b05 " +en. (4.42)

Note that for x € €, irrespective of the right boundary condition (see (4.106) and
(4.109) below), we always have that e;(z) = 0 and G"ej,(z) = 0. Also, since P(0) = 0
and ¥971(0) = 0, we have

£2(0) = 0. (4.43)
Next, assuming b, — b, which we show when dealing with the operators (A4, DD),
(A,DN*) and (A, DN) (see (4.61), (4.86) and (4.113) below), we show that

G fyy = G" (P + by0f ™) — AP = Af (4.44)
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uniformly on €2; for the operators (A4,De). Note that N! = 1, D'(\) = a/\“j/\, and
bl = G, Hence, for an arbitrary ¢ € X, using (4.39) for z € QN [0, h),

6"o(e) = 5z (G700 + 555+ 1)

_ % (a;‘i oA+ 1)h) - a¢(Ah)) : (4.45)
Using (4.40) for x € [h,1 — 2h),
u(z)
G"o(x) = % Gro((A+ (@) =1 = (k= 1))h) = A}, 6(x). (4.46)

B
Il

0
Let us deal with the first term, P of f,. Observe that P(x) = O(z**!) as x | 0,
since P(0) = 0. Moreover, since P(0) = 0, AP(z) = P(x) = O(x) as = | 0. Hence,
setting ¢ = P in (4.45) we have that
sup |G"P(z) — AP(z)| = O(h).
z€QN[0,h)
Next, setting ¢ = P in (4.46), in view of Corollary 4.5.5, note that
sup  |G"P(x) — AP(z)| = O(h).
x€[h,1—2h)

Hence,

sup |G"P(z) — AP(z)| = O(h).
ze
To complete the proof of (4.44) we show that G"J)~' — Ap,_, = 0. Firstly, for
z € QNJ0,h), setting ¢ = 99" in (4.45) and using G, = 0,
Gy () = % (M“—ixﬁgl((x +1)h) =ty (A))
1 a

_ P —a —Q
A <a)\ N ()‘ gL(()rl’l)h)*Q + )\gL(()\Jrl)h)fl)

— Oé()\/gb_(;h)72 + )\gL_(f\lh)1>>

1 A —a —a —o —a
“h (oz)\ oy WO G = O‘(Xg-l A% >>
1 A
=5 (a)\a—i— I\ (N + Aa) — a)\> = 0.

Next, for z € [h,1 — 2h) setting ¢ = ¥7" in (4.46) and using Proposition 4.5.7,
Gy (z) = Ap 0 (@) = 0.
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Hence,
G'fr=G" (P+bpy ") — AP = Af

uniformly in ;. This completes the proof of (4.44) for the operators (A, De).
Common properties for operators (A, Ne):
First, note that b = 0 and so f € C(A, Ne) given by (4.37) reduces to

f="P+(P(0) + a)pa + dpo, (4.47)
where P = I*(P — P(0)py), P € Cy(R2). We take
fh=P+ (P(O)kh + ah)ﬁﬁ + dpy + ep,. (448)

Note that for x € Qy, irrespective of the right boundary condition (see (4.106) and
(4.109) below), we always have that e, () = 0 and G"e;(x) = 0. Assuming (P(0)ky +
ap) — P(0) 4+ a, which we show when dealing with the operators (A, DD), (A, DN*)
and (A, DN) (see (4.70), (4.94) and (4.118) below), we show that

G" fo = G" (P + (P(0)kn + an)Vj; + dpo) — AP + (P(0) +a)po = Af ~ (4.49)

uniformly on €2y for the operators (A, Ne).
Further, note that D! = 1, N'(\) = X and b, = —G*,'. Using (4.39) for = € [0, h),
1

G"9l) = 7 (<G~ 00W) + G (A + 1))
= 5 (B + 1) — 6(wR)). (4.50)

Using (4.40) for z € [h,1 — 2h),

1
Gro(r) = 5 ( MG 0 + (~NGy + MG 1) o+ D)

t(z)—2
+ ) GEb((A+u(x) —1— (k— 1))h)> (4.51)

k=0

Let us deal with the first term P of f;,. Note that P(z) = (P — P(0)po)(x) =
O(z°*) and AP(z) = P(z) — P(0)po(z) = O(z) as = | 0. Thus, using (4.50) with
¢ =P for x € [0, h) we have

|G"P(z) — AP(2)| = O(h).

Next, setting ¢ = P in (4.51), we have
1 oa— [}
GhP(ZE) - ﬁ (( - /\gb(x)l_l - L(&t))P(/\h)
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=X (G0t + Ginyr) PUA+ 1))
+Zg (A4 u(z —1—(k—1))h)>

=h—1a<( = AT POV

~ N (G + Gl ) PO+ 1)h)> + A P(2). (452)
Firstly, sup,ep,1-an) |Ag P — AP| = O(h) in view of Corollary 4.5.5. Secondly,
since P(z) = O(x®*1) as x | 0, the first two terms in (4.52),

1
hoe

( Gila) — Q?(;)l_l) (AR) — <Qb($) ) +Q§}I),1> PN+ 1)/1))‘ = O(h)

Hence,

sup |G"P(z) — AP(z)| = O(h).

xef)
To complete the proof of (4.49), we show that for z € (),

G"po(z) = 0 and G"I¢(x) = 1.

First, let ¢ = po in (4.50), then G"py(x) = 0 for z € [0,h). Next in view of (A.7) w
have ka) ? =G0 ', and Gl 1 = QL(x 5+ G,y Thus, setting ¢ = po in (4. 51)
for z € [h,1 — 2h),

v(z)—2
1
G"po(z) = e ( - /\gfg)l_l + < N gf‘ o AG - 1> + Z gk)

1

" e
1

ha
For x € [0, h), setting ¢ = 9% in (4.50),

/I ra—1 et —
<_>\ L(a:) 1 Ag 2+/\g L(.Z’) 2)

(-9 1+>\Qf§;)1,2+>\gffx)_1> — 0.

Ghﬁz() )\Q /\+1 )3+>‘gL(,\+1 )2_()‘_1)>
=(1=NG T+ AG T -(A =1 =1,

since G-0' = 0. Lastly, for z € [h,1 — 2h), using (4.51), G-~ = 0 and gfg;){l =
Qfé;)lﬂ + szm)_l, we have

1
Ghﬁg(;p)—h ( Agax)l R (AR) + ( /\gb(x o T AG - ) Y(A+1)h)
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v(z)—2
+ D GROR((OA+ula) 1= (k= 1>)h))

k=0

= —/\<)\ - 1) L(:I! 1 + )‘( ) <gam) 2 + gboém)*l)

o(z)—2 v(z)—1
ng (k1) 3+AZG;;“Q e

v(z)—2 —

Z gl?gL x) 2 A Z gb_;v)_—ll—k
k=0

:(1—)\)9 +)\Q

t(z)— 1’
since G, ' = 1 in view of (A.2). Hence,

G"fr, = G" (P + (P(0)ky, + ap)9s + dpy) — AP + (P(0) +a)po = Af

uniformly in ;. This completes the proof of (4.49) for the operators (A, Ne).

Interval €y:

Let ¢ € Cy(£2) be any arbitrary element, then using Definition 3.2.4 note that

G"¢(x) = (Bns1 (Gry1 Pani9)) (2) =[Gy (M (@) (Par10)(A\(@))] ) -

For z € [1 —2h,1 — h); that is, x = (A +n — 1)h with «(z) = n we have

Gho(x) = h—la (Nl()\)bn¢(/\h) + (Wb + AV ) o((A+ 1)h)
+ ni (NG + M) d(A+n—1— (k—1))h)

+ N"(N)Gg (A + n)h)) (4.53)

and for x € QN [1 — h, 1]; that is, z = (A + n)h with ¢(z) = n + 1 we have
1
G o(a) = o (DT(A)bnqb((A + 1))

+ nz_: D (AN +n— (k —1))h) + Blo((A+ n)h)) . (4.54)

k=2

As mentioned in Remark 4.5.9, we now consider the common properties of the
operators with a right Dirichlet boundary condition, (A, eD). Following that we deal
with the operators (A, DD) and (A, ND) separately.
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Common properties for operators (A, eD):
Note that @ = 0 and so f € C(A, eD) given by (4.37), reduces to

[ =P+ P(0)ps + bpa_1 + dpo, (4.55)

where P = I*(P— P(0)po). Moreover, the relation ﬁ—i—d = —1%(1) for f € C(A, D)

reads
b P ! (0>
—F(>+d—— (1)_—i( 1)7

since ]o‘po(l) = pa(l) = T(atD)"

Note that N” = 1 and b} = G&. Thus, for arbitrary ¢ € Co(Q2) and = € [1—2h,1—h),
(4.53) becomes

(4.56)

o) = o (N%A)bncwh) + (Wb + 26, ) oA+ 1))

ha

n ni: Ged((A +n —k)h) + Ggo((A + n)h)>

— h—la (NZ(A)bnqb()\h) + (XbiH + AQS_1>¢((A + 1)h)

+ ni Ged(A+n—1—(k— 1))h)> : (4.57)

For z € QN [1 — h,1], (4.54) becomes

n—1

G"o(w) = 7o <DT<A>bn¢><<A £ 1B+ 3 DT NGEO(+n — (k= 1))

k=2

+ Gro((A + n)h)> . (4.58)

Proof of Statement 1 of Proposition 4.3.2 for the operator (A4,DD):
In this case, we further have d = 0 and P(0) = 0. Thus, f € C(A,DD) given by
(4.55) reduces to
f=P+bpa_i, (4.59)

(compare f € C(A,De) given by (4.41)). We take
S =P+ b0t (4.60)

where

b

" W)

(4.61)
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First, note that for a right Dirichlet boundary condition we do not require the
function ej,. Further, note that this choice is the same as the sequences f; constructed
for f € C(A,De) given by (4.42) with e, = 0. In view of (4.28) and (A.9), since
(n+1)h =1,

b b b
BN DN(e) — heIG T (@) — he e (14 O Y))

by, = —b+O0(h). (4.62)

Note in view of (4.56) that,
(1) =P1) + 6,997 (1) =P(1) + =—— = 0. (4.63)

Proof of frn — f for (A,DD):
Observe that f, € Cy(R), since fr(0) = 0 = f,(1) in view of (4.43) and (4.63).
Next, note that as h — 0, by, — b in view of (4.62), V5~ ' — p._; in the sup-norm in

view of Lemma 4.5.3. Thus,
fo—= f (4.64)

uniformly in €.
Proof of G" f,, — Af for (A,DD):

Observe that, in view of (4.44), it only remains to show that
G'fr = G"(P +bp05") — AP = Af (4.65)

uniformly on €2,.
Take note that N' = 1, D"(\) = -2, bl = G and b, = b, = G5. Therefore, for
€ [1 —2h,1—h), (4.57) becomes

G'o(r) = o2 Z Gro((A+(n—=1) = (k= 1))h) = Ay 1 6(x). (4.66)

Notice the similarity with (A, De) case above of (4.66) with (4.46) where «(z) = n.
This implies that the argument of G"f, — Af uniformly on [h,1 — 2h) made above
for (A, De) holds true for (A, DD) for the interval [1 — 2h,1 — h). Therefore, we only
need to deal with the interval QN [1 — h, 1].

Setting ¢ = fy, (4.58) becomes

G ful) = 5 (Drwg::fhm FIR) 430 D NG A+ — (k1))
FOEA(O+ n>h>>
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- (D’w S G AN+ 1 — (k= 1)h) — D'NGE, 1 falA)

+ (1= D"(N) G fu((A+n)h) = D"(NGg fr((A + (n + 1))h)> :

B _h_lap "NGri fa(AR) + R(A h) + D"(A) Ay fr(w), (4.67)

where

ROLR) = - (1= DTG A\ -+ mh) = D ONGfu (A -+ (n + 1))

We consider the three terms of (4.67) one by one and show the following:
e Firstly, the first term of (4.67),

D NG (AR = O(1).

e Secondly, the second term of (4.67),
[R(A )| = O(R*™).
e Thirdly,
| D"(N AR fulw) = Af(x)| = O(h).

Note that the first term of (4.67),

1

DT (NG fu(AR) | = O)

since |G2 4| = O(h*tY), |P(z)] = O(z*") as z | 0 and |05~ " (Ah)| = O(R*™'). Next
we show that the second term of (4.67),

[R(A h)| = O(h*™®).

If A =1, then R(1,h) = 0, since fr((n+ 1)h) = fr(1) = 0 in view of (4.63). Hence,

assuming A € [0,1), we have

RO = [ (0= DONGEAI + mh) = DG (4 0+ 1)
| he aN + A

ho
| T padfu(m) +aN fr(z + h)
_ ﬁ< = ) ‘ , (4.68)
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where x = (A + n)h. Using the Taylor series for P given by (4.25) and (4.56) with
d, P(0) =0, we have

falz) = P(2) + budy ™ ()
P(1) = (1 = N)AP'(1) + O(h?) + byl ()
b a—1 / 2
- —m + bhﬁh (I) - (1 - )\)hp (1) + O(h )
= Ri(A\,h) — NhP'(1) + O(h?).

Using (4.26), (4.70) and (4.61),

o1 b b (U7 (2) B bN (o — 1)
B ) = 003 ) = 50y = T (197;—1(1) N 1) - Tla)(n—1+a)

Similarly,

fu(z +h) =Pz + ) + b9 (2 + h)
= P(1) + AP/ (1) + O(h?) + by03 " (x + )

b a—1 / 2
= ~fay H 0O @+ )+ AP (1) + O(R)

= Ry(\, h) + ARP' (1) 4+ O(h?),

where
) b b (90 (z+h) bA( — 1)
Ro(\ ) = b3 (4 h) — —— = : ) T N amt D
2(Ah) = bl (@ + ) = 5 = T ( 99 (1) ) P(a)(n +1)
Then, observe that
/ Cale—1bAN 1 1 (2
a)\Rl()\,h)+a)\ RZ(Aah)_ F(CL/) <n+1 n—1—|—04> _O(h )
Thus,
1 [—adANVRP'(1) + adNRP' (1) + O(hY)| -, s
RO = 1 ) =00,

Lastly, consider the third term of (4.67), D"(\)Ajf, fu(x). Using Proposition 4.5.7
note that Ag 05 '(z) = 0, for z € [1 — h,1) and so A} f, = Ap,P. Next, for
f€C(A,DD), Af = AP = P in view of (4.38) with a = 0. Moreover, P € Cy(2) and
so Af(1) = P(1) =0 and D"(1) = 0. Furthermore, Af and D" are continuous as = 1 1
and A\ T 1, respectively. Therefore, for z € [1 — h, 1],

|D"(MN)AP(z) — AP(x)| = O(h).
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In view of Corollary 4.5.5,
| A /P(x) — AP(z)| = O(h).

Therefore,

|D"(A) Ay P(z) — AP(z)| = O(h)
for x € [1 — h, 1) since |[D"(A)| < 1. Thus,

| D"(NAR  fu(x) — Af(2)] = O(h).

Hence,
G'fy = G"(P+b05') — AP = Af

uniformly on y; that is, the proof of (4.65) is complete. This also completes the proof
of Statement 1 of Proposition 4.3.2 for the operator (A,DD), in view of (4.44) and
(4.64).

Proof of Statement 1 of Proposition 4.3.2 for the operator (A,ND):

In this case, we further have b = 0. Thus, f € C(A,ND) given by (4.55) reduces to

f =P+ P(0)pa + dpo,
(compare f € C(A, Ne) given by (4.47)). We take
fh =P+ P(O)khﬁg + dpo, (469)

where
1

(D (a+ 1)

First, note that for a right Dirichlet boundary condition we do not require the function

kn (4.70)

en. Further, note that this choice is the same as the sequences f; constructed for
f € C(A,Ne) given by (4.48) with b = 0 and ¢;, = 0.
In view of (4.28) and (A.9), since (n+ 1)h = 1,

1 1 1
- = 1+0(h).

O T D) WG, Tt D) he(— D (1+ O((n— 1))
(4.71)

Proof of frn — f for (A,ND):
Observe that as h — 0, k;, — 1 in view of (4.71) and ¥ — p, in the sup-norm in

view of Lemma 4.5.3. Thus,
Jo = f (4.72)
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uniformly in Q.
Proof of G f,, — Af for (A,ND):

Observe that, in view of (4.44), it only remains to show that
G" fr, = G"(P + P(0)kp95 + dpo) — A (P + P(0)ps) = Af. (4.73)

uniformly on €25.
Take note that N'(\) = A\, bl = =G and b, = — S0 bf = — S0 G = —Go~}.
Therefore, for z € [1 —2h,1 — h), (4.57) becomes

Ghp(x) = —% (Ag:f:%cbuh) (= NG+ AGe, )M+ DR

+igﬁ¢((k+n— 1— (k- 1))h)> (4.74)

Notice the similarity with (A, Ne) case above of (4.74) with (4.51) with ¢(x) = n. This
implies that the argument of G"f, — Af uniformly on [h,1 — 2h) made above for
(A, Ne) holds true for (A, ND) for the interval [1 —2h,1 — h). Therefore, we only need
to deal with the interval Q N [1 — A, 1].

Setting ¢ = f;, and using G~} + G = G2, (4.58) becomes

G fula) = 5 ( — DYNGETL A+ D)+ D7) :Z_‘;gsfhw Fn= (k= 1))
FGR(N +n>h>>,
= ( = DG — DG (A 1))
+ D"()) :Z:ggfh((A +n—(k—1))h)
+ (1= D ON)GE -+ m)h) = D NG S+ (0 -+ 1>>h>>,
= RO\ R) + D" (A5 (@) - G fn(AR) + %;i:‘lfh((A + Wl)), (4.75)
where

ROLA) = - (1= DTG A+ mh) = DG fu(A-+ (n + 1))

We consider the terms of (4.75) one by one and show the following:
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e Firstly, the first term |R(\, h)| = O(R*™9).

e Secondly,

Dr(/\) <Az71fh(x) o gnglfh()\h) + iqz_lfh(()\ + 1)h‘)> o Af(x)’ — O(h)

First, we show that the first term of (4.75), |R(\, h)| = O(h*~®). That is,
'% ((1 — D"(N)GF (A +n)h) — D"(N)GG fu((A + (n + 1))h)> ‘ — O(h> ).

If A =1, then D"(\) = 0 and f,((n+1)h) = fr(1) = 0 in view of (4.63). Therefore,

R(1,h) = 0. Hence, assuming A € [0,1) and using D"(A\) — 1 = a/\j\H, we have

RO = | (1= DOGEA( + m)h) = DG+ -+ D)

(67

_ | [(D””()\) — Dafu((A+n)h) — D"\ fal(A +n + 1)h)} ‘

B —afu(z) — aX fu(x + h)
(e

where © = (A + n)h. Using the Taylor series for P given by (4.25), (4.56) with b = 0

h
1
h
1

and kj, = m, we have
fu(z) =P(x) + P(0)kp9% () + dpo(x)
=P(1) — (1 = NhP'(1) + O(h?) + P(0)kp95 (z) + d

__P(0) (ﬁz@:)
T(a+1) \92(1)

= Ri(\, h) — NIP'(1) + O(h?),

— 1) — (1= NAP'(1) + O(h?)

where

Similarly,

fr(x 4+ h) =Pz +h)+ P0)kp95(z + h) + dpo(x + h)
= P(1) + AP (1) + O(h?) + P(0)kp 9% (x + h) + d

__PO (ﬂz‘(ﬂh)
T Tla+1) \ (1)

= Ry(\ h) + ARP'(1) + O(h?),

— 1) + ARP'(1) + O(h?)
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where

CPO) (Ot h)
RQ(A’“‘P(aH)( 220 ‘1)'

Then using (4.26) observe that

, P(0)a2AN 1 1
—aAR1 (A h) — aN Ry(A, h) = r(& =y (n e ﬁ) = O(h?).

Thus, (4.76) yields

1
R\ D) = —
ROV = 1

AANREP (1) — aANRP'(1) + O(h?)

= O(h?>™®).
aX + A ( )

Next, we split the second term of (4.75) by setting g, = fi — dpo = P + P(0)kpV5,

D7) (A7 fule) — Tl LG IO D))

= —D"()\) (gnglgh()‘h) + iﬁz_lgh(()\ + 1)h))
+dD" (V) (Afpo() -

+ DM AR ().

G 1po(AR) 4+ G2 po (A + 1)h)>
ha

First note that g,(Ah) = O(h®) and g5((A + 1)h) = O(h®) since in view of Definition
4.5.1, 9¢(z) = O(h®) for x € [0,2h] and P(z) = O(z**!) as = | 0. Therefore, since
Ga! = O(h*), |Gpta| = O(h**!) and [D"(M)| < 1,

‘DT oy (Zaan ) + G2 an(0+ D)y ’

= O(h*). (4.77)

Next note that

GraiPo(AR) + G tpo((A + l)h)) =0, (4.78)

ha
; +1 -1 - 1
since A% 1po(x) = 75 > opto Of = 7=Gn11 and G2y + G271 = Gorl in view of (A.7).

Using Corollary 4.5.5

aD" (V) (A5 pol) -

| A /P(z) — AP(z)| = O(h).
In view of Proposition 4.5.7, note that for = € [1 — h, 1],
ALLR() = 1= NG, = 1+ O(h™)

since |G%,,| = O(h®*!). Moreover, since k, — 1 in view of (4.70) and Ap,(z) =

po(z) = 1, we have
| P(0) (knAf; 197 (x) — Apa(2))| = O(h*T).

144



Thus,

| A5 190 () — Af ()]
— | A7 (P(x) + PO)ku5(2)) — A(P(z) + P(0)pa())| = O(h). (4.79)

For f € C(A,ND), since P € Cy(2), note that Af(1) = P(1) = 0. Moreover,

Dr(\) = ag,)i)\ and D"(1) = 0. Furthermore, Af and D" are continuous as = 1T 1 and

A T 1, respectively. Therefore, for z € [1 — h, 1]

|D"(N)Af(x) — Af(x)| = O(h).

Thus, for z € [1 — h, 1), in view of (4.77), (4.78) and (4.79),

G fnA) + GR (A + 1)h)
ha

D7) (431 (@) - ) — Af(@)| = oh).

Hence,
G" fn = G"(P + P(0)knd}; + dpo) — A(P + P(0)pa) = Af

uniformly on Qy; that is, the proof of (4.73) is complete. This also completes the proof
of Statement 1 of Proposition 4.3.2 for the operator (A4,ND), in view of (4.49) and
(4.72).

As mentioned in Remark 4.5.9, we now consider the common properties of the
operators with a right Neumann® boundary condition, (A, eN*). Following that we
deal with the operators (A, DN*) and (A, NN*) separately.

Common properties for operators (A, eN*):

Note that f € C(A, eN*) is given by (4.37)

f =P+ (P(0) +a)pa + bpa—1 + dpo, (4.80)
where P = I%(P — P(0)py). The relation a+1(“o(zc:)1)b = —I1°7lg(1), for f € C(A,oN")
reads ( b P(0)

a+(a—
— 2 — P = —P(1) - —=, (4.81

o ()= =P(1) = )

since P’ = I*"Y(P — P(0)py) and I 'py(1) = pa_1(1) = ﬁ
Note that b = 0, b} = G + G, b = G*, D" = 1 and N"(\) = X. First, let

x € [1 —2h,1 — h) and setting ¢ = f in (4.53), we have

G fula) = 5 (N%A)bnfhuh) + (Vo +2G2, ) (O + 1))
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n—2

+ 37 (NGE + G2 ) ful(A+ n — ))

k=2

+ (NGE+A(GE + ) ful(A+ 1 — D)

+ NG frn((N+ n)h))

_ % (Nl()\)bn Fa(AR) + (Xb;_l + Ag;“_l)fh((A +1)h)

n—2

3G (At n = 1= (k= 1)h)

k=0

+)\<fh(()\+n— 1)h) —fh(()\+n)h))>. (4.82)

Next, let « € [1 — h, 1] then setting ¢ = f;, in (4.54), we have

G" fulw) = - (bnfh(()‘ +1h) + i Geu(A+n—(k=1))h)

= ho
k=2

+ (G5 + G0 (A + n)h)>

. %(% SO A4 DB + S GO — (k— 1))

+ (N + 1)) — ful(A+n + 1)h)> (4.83)

Proof of Statement 1 of Proposition 4.3.2 for the operator (A, DN*):
In this case, we further have a, d = 0 and P(0) = 0. Thus, (4.80) reduces to

f - P + bpa—1~ (484)
We take
fo =P+ b0 (4.85)
where ; . )
p, = =14 a) (4.86)

I (DT () |
First, note that for a right Neumann* boundary condition we do not require the func-
tion e,. Further, note that this choice is the same as the sequences f;, constructed for

f € C(A,De) given by (4.42) with e, = 0. Next note that since (n+1)h = 1 and using
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(4.28) and (A.9),

_bn—1+a)h b(n—1+a)h B
"= 99N (D)) he~tna=l(1+0(n 1)) b+ O(h). (4.87)

Proof of fr, — f for (A,ND):
Observe that as h — 0, b, — b in view of (4.87) and ¥9~' — p,_; in the sup-norm

in view of Lemma 4.5.3. Thus,

uniformly in €.
Proof of G f,, — Af for (A,ND):
Observe that, in view of (4.44), it only remains to show that We show that

Gy = GM(P + b)) — AP = Af (4.89)

uniformly on €.
Note that N' = 1, b} = G* and b, = b" = G%. Therefore, for x € [1 — 2h,1 — h),
(4.82) becomes

G fu(z) = % (Zg,‘jfh(()\+n —1—(k=1))h)

A+ = D) = fil(A+ n>h>)>
= A3 )+ (RO n = D) = R+ ), (4.90)
Similarly, for x € [1 — h, 1] (4.83) becomes
G" fu(x) = Af 1 fn(z) — %Gﬁﬂfh(m) + % <fh<<)‘ +n)h) = fa((A+n+ 1)h))- (4.91)

Let us deal with the terms of (4.90) and (4.91) one by one. First, let us consider
their first terms. Then, in view of Corollary 4.5.5, for = € [1 — 2h, 1] we have that

| A P(z) — AP(z)| = O(h).
Moreover, in view of Proposition 4.5.7, Aﬁf’lﬂz_l =0 for x € [1 — 2h,1]. Thus,
| Aj 1 fu(2) = Af(x)] = O(h).

To complete the proof we show the following:
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e The second term of (4.91),
1 o (03
G| = o)

e For x € [1 — 2h,1]; that is, for z = (A+n — 1)h and (A +n)h

% (fh(:c) — fu(z + h))’ = O(h*™).

First, note that G2, ; = O(h**!) and f5((Ah) = O(h®1), since 95~ (AR) = O(h®!) in
view of Definition 4.5.1 and P(z) = O(z*™) as = | 0. Thus, the first term of (4.91)

G| = o)

For z € [1 — 2h, 1], using (4.27), we have

—(av —1)bh

T o)

by (V5 (z) =05 (z + h)) =

Moreover, using (4.25) and (4.81) with a, P(0) =0,

P(x) — P(x + h) = —hP'(1) + O(h?) = % + O(Rh?).
Thus,
o= ) = fule+ )| = O(R),
Hence,

G" fr, = G"(P + P(0)kyV5; + dpo) — A(P + P(0)pa) = Af

uniformly on y; that is, the proof of (4.89) is complete. This also completes the proof
of Statement 1 of Proposition 4.3.2 for the operator (A, DN*), in view of (4.44) and
(4.88).

Proof of Statement 1 of Proposition 4.3.2 for the operator (A, NN*):

In this case, we further have that b = 0. Thus, (4.80) reduces to

f =P+ (P(0)+ a)pa + dpo. (4.92)
We take

fh = P + (P(O)kh + ah)"z?;‘ + dpo, (493)

148



where
(n—14+a)h a(n—1+a)h

T e(M(a+1) ~ (D (a + 1)

First, note that for a right Neumann* boundary condition we do not require the func-

ky, and ay,

(4.94)

tion e,. Further, note that this choice is the same as the sequences f;, constructed for
f € C(A,Ne) given by (4.48) with e, = 0. Next note that as h — 0,

(P(0)kp, + an) — (P(0) + a), (4.95)

since (n + 1)h = 1 and using (4.28) and (A.9), we have

(n—1+a)h (n—1+a)h -
I (a+1)  h*(n—1)>(1+0((n—1)"1)) 1+ O(h).

Proof of fr, — f for (A,ND):
As h — 0, ¥ — p, in the sup-norm in view of Lemma 4.5.3. Thus, in view of

(4.95),
fo = f (4.96)
uniformly in €.
Proof of G"f,, — Af for (A,ND):

Observe that, in view of (4.49), it only remains to show that
G"fu = G" (P + (P(0)kn + an)dy + dpo) — AP + (P(0) + a)py = Af  (4.97)

uniformly on €2,.
Note that N'(\) = A, b} = —G*! and since bj = 0, in view of (A.7),

n—1 n—1 n—1
bn=—=Y W ==(G5+G1) =Y G =-> G =-G|.
1=0 1=2 1=0

Thus, using G*~y + G |, = G}, (4.82) becomes

n—1»

1

thh(x) = ﬁ

( — AGTL fu(AR) + ( — NG+ Ag;‘:_l)fh((A +1)h)
+ 3G RO — 1= (k= 1))

+ /\<fh(<)‘ +n—1)h) = fu((A+ n)h))>

% ( _ (Agg_—ll + gg)fh(Ah) DY (Qﬁfgl + QS_1>fh(()\ +1)h)

149



+ iggmﬁn —1—(k—1)h)
A+ = Dh) = ful(A+ n>h>)>

= Aj fu(w) = hi ((Agf;:% G2 ) fuAR) + NG (A + 1)h))

. A<fh<<x+n— D) - fh<<A+n>h>)‘ (498)

Next, note that b, — G* = =G ! in view of (A.7). Thus, (4.83) becomes

G fule) = o ( =G+ D)+ DGR+ = (k= 1)h)

+ (A m)h) = fal(A+n+ 1)h))>

_ hi ( B (gsﬂfh(m) +G0 (A + 1>h>)

n+1

+ ) G fal(A+n— (k—1))h)

k=0

+ (Al mh) = A+ + 1>h>)>

= AL (o) — o (G PO+ G5 (O )

N Su((A+n)h) — fu((A+n+1)h)
he '
We deal with the terms of (4.98) and (4.99) one be one and show the following:

(4.99)

e For z € [1 —2h,1—h),

A fal) =5 (AGETHG) S+ XGE Fu( A+ 1)) ) —Af | = O(B). (4100

e For z € [1 —h,1],

(GO + G (O D)) — Af

A(flz,lfh(x)

—O(h).  (4.101)

e For x € [1 — 2h,1]; that is, z = (A+n — 1)h and (A +n)h

fh(ﬂf) — fh(ﬂf + h)
hoz

' = O(h*™). (4.102)
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Let gr, = fn — dpo = P + (P(0)ky, + ap)V5. For x € [1 — 2h, 1], using Corollary 4.5.5
|Ap /P(x) — AP(x)| = O(h).

In view of Proposition 4.5.7, Af 105 (z) = 1-XGf,,, where t(x) = n or n+1. Moreover,

since (P(0)ky +ay) — P(0) +a in view of (4.95), po(z) =1 and |G5,) | = O(h*+1), we
" |(P(0)kn + an) AR 195 (x) — (P(0) + a)po(x)| = O(h**Y).
Thus,
AR 1gn(2) — Af(2)]
= A7 (P(2) + (P(0)ky + an)9y () — (AP(z) + (P(0) + a)po(x))| = O(h).
(4.103)

Proof of (4.100): Observe that,

d
h

R ((A.c;:::% +G2)po(AR) + (1 = NG tmo((A + 1>h>) ‘

> G- (Agf;_ll +G+(1— /\)Qf:_11>
k=0

_ 4

= ha
d a—1 « a—1

== |9 =G+ Gin)| =0,

Next, since gy (M) = O(h%), gu((A+1)h) = O(h), |G2] = O(h**) and [G3~}| = O(h)
we have that
1
ha

((Ag;f:f G2 ) an(AB) + (1= NGatan(A+ 1>h>) ‘ = 0(h")

Hence, in view of (4.103),

AR fale) — 7 <(Ags—% +G) FuAR) + (1= NGad ful A + 1)h>> — Af(x)

Apagn(x) — Af(x)| + O(h®) = O(h).

Proof of (4.101):
Observe that,

d

1
A 1po(x) — e <g§+1p0(/\h) + G po(A + 1)h)> ‘
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]’La = ‘gnJrl n+1 } =0.

n+1
ng - ( w1 +Q§i‘1>

Next, since g, (\h) = O(ho*1) and |G = O(h®) we have that

n+1| =

- (gs+1gh<Ah> +G3 g+ 1>h>) i = o(n").

Hence, in view of (4.103)

A2, fla) - ,%( Go 1 ful W) + G (A + 1>h>> - Af(2)

= |45 191(x) — Af(x)| + O(h) = O(h).

Proof of (4.102): For x € [1 — 2h, 1], using (4.27), we have

(P(0)kp, + ap) (05 (z) — 95 (xz + h)) = W +O(h?).
Moreover, using (4.25) and (4.81),
P(s) — Pla+h) = —hP'(1) + O(h?) = . (g)(;) D o)
e Fule) = fula + )| _ o
o = O(h*™),
Hence,

G"fr, = G" (P + (P(0)ky, + ap)9s + dpy) — AP + (P(0) + a)py = Af

uniformly on Qy; that is, the proof of (4.97) is complete. This also completes the proof
of Statement 1 of Proposition 4.3.2 for the operator (A, NN*), in view of (4.49) and

(4.96).

As mentioned in Remark 4.5.9, we now consider the common properties of the

operators with a right Neumann boundary condition, (A, eN). Following that we deal

with the operators (A, DN) and (A, NN) separately.
Common properties for operators (A, eN):
Note that f € C(A, eN) is given by (4.37)

f=P+(P(0) + a)pa + bpa-1 + dpo, (4.104)
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where P = I*(P — P(0)po). The relation a +b = —1g(1), for f € C(A, eN) reads
a+b=—IP(1)=-D*'P(1) — P(0), (4.105)

since DY7'P = I(P — P(0)po) and Ipy(1) = pi(1) = 1.
When dealing with a right Neumann boundary condition it turns out that in order

for G" f}, to converge to Af we need the term ey, in f, which is constructed as follows:

0, ifzeQn[0,1—h),

= { —hA(AP(1) + (P(0) +a)), ifz e[l —h1].

(4.106)

Then, e, € Cy(2) and as h — 0, e, — 0.
Note that N"(\) =\, D" =1 and b} = —G*7".
Let ¢ € Cy(R2) be an arbitrary element, then using (4.53) for x € [1 — 2h,1 — h),

we have

G"(x) = hi (N%A)W(Ah) + (N = AGR5) ¢((A + 1h)

3
)

+ ) (NG = AGT) o((A+n— 1= (k—1))h)

1

B
Il

+NGro((A + n)h)>

1
= ((N’()\)bn — NG+ A ,‘;j11>¢()\h)

X (s + Gy )0+ D)
+ in:ggqs((A +n—1—(k—1))h)

- /\nz_:g,f_lgzﬁ(()\ tn—1- k))h))

A 1
= NAG 0(a) = FAT () + oo ((Nl()\)bn — NG+ AGeT ) o(Mh)

X (B + G ) ol + 1)h)> S @a07)
Using (4.54) for x € [1 — h, 1], we have
G o(a) = (wm SR = DGOl 0 (k- 1>>h>)
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1 0 ot o
=7a (% P(Ah) + (bn + Go=1) d(A+ 1)h) — ; Ge (N +n — k:)h)>

- _%Azpl (z) + h—la (gslgb(m) + (b +Gi1) oA+ 1)h)) (4.108)

Moreover, it follows on using (4.9), (4.107) and (4.108) that
0, ifz e QnN[0,1—2h),
Glep(z) = =N (AP(1) + (P(0) +a)), ifxe[l—2h,1—h), (4.109)
AMAP(L) + (P(0) +4a)), ifze[l—h1]
Next take note of the error terms for the Griinwald-type approximation of the fractional
derivatives of P given in Remark 4.5.6. First, for x € [1 — 2h,1 — h),

a—1

A P(x) = AL, P(1) = DEP(1) + b (0 = 2) = So= ) AP(1) + O(R),
A3 P(a) = AL, _,P(1) = AP(1) + O(h). (4.110)
Next, for z € [1 — h, 1],

a—1

ApS P(x) = ApSL P(1) = DETYP(1) + h<(>\ —1)— )AP(l) +0(h?). (4.111)

Moreover, since !Aﬁylp(gj) — AP(z)| = O(h) in view of Corollary 4.5.5, we have that
AP(1) = AP(xz) + O(h), = € [1 — 2h,1]. (4.112)

Proof of Statement 1 of Proposition 4.3.2 for the operator (A, DN):
In this case, we further have a,d = 0 and P(0) = 0. Thus, f € C(A,DN) given by
(4.104), reduces to
f =P+ bpa—l-
We take
fh - P + bhﬁg_l ‘f‘ €En
with
a—1
b, =0+ hTAP(l). (4.113)
Note that this choice is the same as the sequences f; constructed for f € C(A,De)
given by (4.42).
Proof of fr, — f for (A,DN):
As h — 0, b, — b, e, — 0 in the sup-norm and 19%‘1 — Pa—1 in the sup-norm in

view of Lemma 4.5.3. Thus,
fn— f (4.114)
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uniformly in €.
Proof of G f,, — Af for (A,DN):

Observe that, in view of (4.44), it only remains to show that
G"fu=G" (P+by " +e,) = AP = Af (4.115)

uniformly on €25.
Note that N' = 1, b, = G* and b, = —G%~|. Therefore, for z € [1 — 2h,1 — h),
using G + G271 = G2, (4.107) becomes

A N
G(r) = N AR 0(a) — S AT 0(a) — - Ga (). (4.116)
For z € [1 — h, 1], (4.108) becomes
Ghola) = 7 A530(@) + - Ga (). (1.117)

Let x € [1—2h,1—h), then using (4.109) with « = 0, P(0) = 0 and (4.116), observe
that

Gh f(2) = Gh((P(x) + bhﬁg’l(:c)> + Glep(z)
A

= (1= M)A, (P@) + b0y (@) = 5 ARG (P(a) + by~ ()
~ (1 - NAP) — %(1 —A)ge (P(Ah) + bhﬁgfl(m)).

Since, |P(Ah) + byd ' (AR)| = O(h*™!) and |Go™| = O(h®), the last term

L g <P()\h) + bhq‘}zl()\h))‘ — O(h*).

ha

In view of Proposition 4.5.7
Ap 07 () = 0 and Aiglﬁffl(x) =1

Thus, using (4.105), (4.110) and (4.112),

G" fi(z) — AP(x)

(1—=X)(AP(1) + O(h))

_2 (Dg—lm) rh(-2) -

a—1

A >AP(1) +O(R?) + bh)
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— (1= MAAP(1) — (AP(1) + O(h)) | + O(R*™h)

= [(1 = N)AP(1)
Ab Aa—1) A Aa—1)
+ 5 = MA=2AP(1) + = AP(1) — = = ——5—AP(1)

— (1 = XAAP(1) — AP(1)| + O(R*) = O(R* ).

Next, let € [1—h, 1], then using (4.109) with a = 0, P(0) = 0 and (4.117), observe
that

Gt fu(z) = G" (P(m) n bhﬁg—l(x)> + Glep()
1
T h

Since |P(AR) + bty (AR)| = O(h*~!) and [G2!| = O(h®), the last term

Ao (P(2) + by M (z)) + AAP(L) + %ggl (P(AR) + b (WR)).

%Qz‘—l (PO + buty ™ (AR) ) | = O 7).

In view of Proposition 4.5.7
Apton Tt (x) = 1.

Thus, in view of (4.105), (4.111) and (4.112),

thh(a:) — AP(x)

a—1

5 >A7?(1) +O(h2) + bh)

_ ‘ _ % (Dg—lpu) Fh((-1) -

+ AAP(1) — (AP(1) + O(R)) | + O(h* 1)

a—1 b a-—-1

——(()\—1)— ; )AP(l)—E— —AP(1)

+AAP(1) — AP(D)| + O(h*) = O(ho Y.

Hence,

G" fr, = G" (P + (P(0)kp, + ap)9s + dpy) — AP + (P(0) + a)py = Af
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uniformly on €; that is, the proof of (4.115) is complete. This also completes the
proof of Statement 1 of Proposition 4.3.2 for the operator (A, DN), in view of (4.44)
and (4.114).
Proof of Statement 1 of Proposition 4.3.2 for the operator (A, NN):
In this case, we further have b = 0. Thus, f € C(A,NN) given by (4.104), reduces
to
f=P+(P(0)+ a)ps + dpo.

We take
fn="P + (P(0)ky, + an)V% + dpo + ey,

where .
kn =1+ hand aj, = a(l—l—h)—l—h%AP(l). (4.118)

Proof of fr, — f for (A,NN):
Note that as h — 0,

(P(O)kn + an) = (P(0) + a)(1 + h) + hO‘T_lAm) s (P(0) + a).

Moreover, as h — 0, e, = 0 in the sup-norm and v}} — p, in the sup-norm in view of
Lemma 4.5.3. Thus,

fo f (4.119)
uniformly in 2.
Proof of G"f,, — Af for (A,NN):

Observe that, in view of (4.44), it only remains to show that
G" o = G" (P + (P(0)kn + an)V5 + dpo + e) — AP + (P(0) + a)py = Af  (4.120)

uniformly on €25.
Note that N'(A) = A, b} = —G27' and b, = 32770 G = S22 G L. Therefore,
for € [1 —2h,1 —h), using G~y + G* | = G~ (4.107) becomes

n

A
Gro(x) = N AT 16(x) — 3 A5 ()
n—1
" ((A -Gt = NG )o(Mh)
1=0

— NG lo((A + 1)h)> : (4.121)

157



For z € [1 — h, 1], (4.108) becomes

1

G () = —7 A" <x>+%(gz—wm+ig?—1¢<u+1>h>). (4.122)

Let € [1 —2h,1 — h), then using (4.121) and (4.109), setting

gn =P + (P(0)ky, + ap)Vy

we have
G" fu(x) = G" (P(x) + (P(0)kn + ap) 95 (2)) + dG"po(x) + G en(x)

= XA 10(x) — AT gn(x) — WY (AP(1) + (P(0) +a)

1 1
+ d()\/ (Az,ﬂ?o(x) - ﬁgf:po()\h) - ﬁgg:%]?o(()\ + 1)h))

n—1
— %(A%lpo(f) - hal_l Zgia_lpo()\h)>>
=0

1 n—1 / o
e ((A;gz‘al = NG ) gn(Ah) = NGl gn((A + 1)h)> S (4123)

S GeT = 0(heY), |GaTY = O(h®) and |GS| = O(het),

Since |gn(Ah)| = O(h?),
the last line of (4.123)

hia ((A nz g - A’QZ“)gh(Ah) —NGrZign((A + 1)h)> ' = O(h* ™).

Next in view of (A.7) observe that the second line of (4.123)
/ a 1 o 1 a—1
a| X (A51poa) = - Gapoh) = - Gaipo((A + 1))

n—1
(A le) — o S Q?lpo(Ah)>>
1=0

- hii(x(ggf—gz— o) —A(igﬁ—l—zlg?*)) =0.

Consider the first line of (4.123) which we rewrite as

A 40l g () — AN (AP(1) + (P(0) + a))

XA%J%(@ T
= (1= NALP) — A3 P() — (1= NA(AP(1) + (P(0) + a)
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POk a) (- VA @)~ TAGR). (124)

Using (4.105) and (4.110), the first line of (4.124) becomes
(1= V)45, Pla) = 2455 P () — (1= NA(AP(D) + (P(0) + a)
=(1—=X) (AP(1) + O(h))

A (Dz”P(l) +h((A -2 -2 1>AP(1) i OW))

h
— (1= NA(AP() + (P(0) + )
= AP(1) + (P(0) + a)

+ (P(0) +a) (% —1-X+ >\2)> a2 ; 11473(1) + O(h)

In view of Proposition 4.5.7

A 05 (2) =1+ (A= 1)Gy = 1+ O(h*™)
At () =h(n+ A =24+ (A =1)Ga}) = 1+ (A= 3)h+ O(h*™).

Thus, using (4.118), the second line of (4.124) becomes

(PO + ) (1~ NAG 05 (2) — 45505 ()

— ((P(O) +a)(1+h)+h2 ; 1A7?(1)> ( — % +14+22 = A2+ O(ha“))

A -1
= —(P(0) + a) (E —1-X+ /\2)) - )\QTAP(l) + O(h).
Putting the two terms together and using (4.112), the first line of (4.123) (rewritten

as (4.124)) becomes

(1-NAg,P(r) - %A%W(z) — (1= NA(AP(1) + (P(0) + )
— AP(1) + (P(0) + a) + O(h)

= AP(z) + (P(0) +a) + O(h)
and so
G" fu(x) = AP(z) + (P(0) + a) + O(h* ™).
Hence, for x € [1 —2h,1 — h)

G" fir(x) — Af(x)

G" fi(x) — AP(x) + (P(0) +a) | = O(h*™").
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Proof of G"f,, — Af on [1 — h,1]: Using (4.122) and (4.109), on setting
gn =P + (P(0)ky, + an)V;
let us rewrite as

G" fu(z) = G" (7’( ) + (P(0)kn + an)V5i(x)) + dG"po(x) + G"en(x)

A o) +A(A7><> (P(0) +a))
( A7 (4.125)
+— (Qf: "po(Ah) +nzga "po((A+ )h)))
+—(ga Lgn(AR) +Zga . >\+1)h)> (4.126)

Since |gn(AR)| = O(h%),
(4.125),

"y G = O(ho1) and |GSY = O(h®), the last term of

% (gg_lghﬂm +2_ 9 (A + 1)h)> i — O(he™).

Next, the second term of (4.125)

n—1
d(—gAzo polz) + (gs (M) + D G o <A+1>h>)>
=0

- d(— %(fjgf—l — g —i@%l)) ~o.
1=0 1=0

In view of Proposition 4.5.7
Ap gy =h(n+ 14X =24+ (A —-1)G5) =14 (A —2)h + O(h*t").
Consider the first term of (4.125), then using (4.105) and (4.111) we have

hAz“o gn(2) + A(AP(1) + (P(0) + a))

— —gA%lP(a:) — (P(0)kn + %)%Ai‘olﬁﬁ(:ﬁ) +A(4P(1) + (P(0) +a))
—% (De= Py +h((A-1) -

o —

1)AP( 1) + O(h?)
AT R >+A(A7>< )+ (P(O) +a))

h
(P(0) +a) — (A — DAP(1) + & (1)

— (P(0)kp, + an)

> =
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_ %((P(O) Fa)(1+h) + S 1AP(1)) (1+ (A —2)h+O(r))
+AP(1) + AP(0) + a) + O(h)
~Yopy+a) = 0= nara) + =L apq)

h

%(P(O) +a) — (P(0) +a) O‘T_IAP(l) — (A= 2)(P(0) + a)
+ AAP(1) + A(P(0) +a) + O(h)
= AP(1) + (P(0) + a) + O(h).
Therefore, using (4.112), since AP(1) = AP(z) + O(h) we have
G" fu(z) = AP(x) + (P(0) + a) + O(h*™1).

Thus, in view of (4.112) | for x € [1 — h, 1]

G" fu(z) — Af(2z)| = O(R*7h).

Hence,
G"f, = G" (P + (P(0)ky, + ap)9s + dpy) — AP + (P(0) + a)po = Af

uniformly on y; that is, the proof of (4.97) is complete. This also completes the proof
of Statement 1 of Proposition 4.3.2 for the operator (A, NN*), in view of (4.49) and
(4.96).

The proof of Statement 1 of Proposition 4.3.2 for all the fractional derivative oper-

ators on Cy(2) given in Table 4.5 is complete. O

4.5.3 Proof of Proposition 4.3.2 for the case X = 4]0, 1]

Proof. To simplify notation, we write G" := G"* and A := A®. For each of the
fractional derivative operators (A<, BC) := (A, BC) on L]0, 1] given in Table 4.7, and
for each f € C(A,BC) we show that there exists a sequence {f,} C L]0, 1] such that
fn — fand G"f,, — Af in L1[0,1]. To this end, let f € C(A, BC) as in Theorem 3.4.4,

f=Q+apa + bpa—1 + cpa—2 + dpo, (4.127)
where @ = [*P for some polynomial P = ZZZO kmPm- Then, in view of (3.17),
Af = AQ + apyg = P + apy. (4.128)
Keep in mind that we repeatedly make use of the following:
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(AT, BC), Cph(Q) (A=, BC), Ly[0,1] (A*,BC), Ly[0,1]
(D>*,DN) (D>~ ,DN) (D> ND)
(D> * ,NN) (D&~ ,NN) (D>, NN)
(D>*,DD) (D*“=,DD) = (D%~,DD) (D>, DD)
(D>*,ND) (D= ,ND) = (D%~ ,ND) (D>, DN)
(D+ DN*) (D*~,DN) (D> ND)
(D&, NN¥) (D*~,NN) (D> NN)

Table 4.7: Corresponding fractional derivative operators on Cy(2)
and L]0, 1].

1. The Griinwald formula given by (4.29),
u(x)

= ng +1(x) = 1= (k= 1))h)

where z = (\(z) + ¢(z) — 1)h as given by Definition (3.2.2).

Aj o f(x

2. The canonical extension of @ and for x € [nh, 1], the Taylor expansions of Q

around z = 1 given by

Qz —h) = Q(1) — (2 = MhQ'(1) + O(h?),

Qx) = Q1) — (1 = MhQ'(1) + O(h?),

Q(x +h) = Q(1) + A\hQ'(1) + O(h?), (4.129)
where A := \(z) = Az — h) = A(z + h).

3. The interpolation matrix given by (4.12),

Grii(\) =
v NG 0

DY (A)B,  NBL+ MG go 0

DY, XD, + AGS gy gy 0
1
ha

DZ(A>bl /\/bé,1 + /\gioil ?72

D' (\)b, NbL |+ )\bn L ONGe LAY, NGE + A DT(N)GS

0 N"(A\)b, NT(_, NT(M\)by b
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X = 14[0,1], D(A,BC) = {I%g + apa + bpa—1 + cPa—2 +dpo : g € L]0, 1]}
Boundary condition | Boundary weights for G" D(A,BC)
= g«
f(0)=0 z ’a)\gl z a=0,¢=0,d=0
D'(A) = 25, N'=1
bt = —go—1
D1 f(0) =0 i = —Gin b=0,c=0
Ni(\) =\ D=1
by =0, 0 =Gg +G¢
D1 f(0) =0 b= go b=0,d=0
N\ =\ D=1
bj =G}
f1) =0 b, =1}, a=0, Bl b d = —17g(1)
Dr(A) =225 N'=1
b = -G
Ff(1)=0 by = — S 0 a-+b=—1Ig(1)
N'A) =N, D' =1

Table 4.8: Boundary conditions for L;[0, 1].

4. The approximate power functions 195 , B €{a,a—1,a— 2,0} given by Definition

4.5.1 and their canonical extensions when required.

5. The error terms for the Griinwald-type approximation of the fractional derivative

given in Remark 4.5.6,
Apo' Q) = A3 L,Q(1) = D*1Q(1) + O(h), @ € [(n — 1)h, nh)
Apg' Q) = A35L, (1)
— Do) + h((/\ 1) -
D*Q(1) = A5 ,Q(x) + O(h), x € [(n — 1)h, 1] (4.130)

a—1

)D&Qu) +O(h?), x € [nh,1],

and the same hold with D replaced by D?.

6. Table 4.8 for the boundary weights b., b7, b,, the constants a,b,c,d and the
interpolating functions D!, D", N!, N".
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Common properties for operators (A, De):

We first consider the common properties of the operators with a left Dirichlet
boundary condition, (A, De). Following that we consider the right boundary conditions
one by one and deal with the operators (A, DD) and (A, DN) separately.

In these cases, since a,c¢,d =0, f € C(A, De) given by (4.127) reduces to

f =9+ bpa_i1. (4.131)
Moreover, Af given by (4.128) reduces to

Af = AQ. (4.132)

Next, we take

fn=0+ b0 " +ep, (4.133)

where the function e;, = 0 except when the right boundary condition is Neumann. Next,
note that D'(\) = = +A” N' =1 and b\ = G*. Next, observe that the approximate
power function ¥~ " in the L,[0,1]-case is constructed such that the following three
identities hold as they are crucial for both cases, (4,DD) and (A, DN).

For x € [0, h),

= ( 5 OR) + Ggo (A + 1>h>)

<g1 ()\ go +>\g1_ >+g8¢()\lgo—a+>\gl—a)>

[0
1 NGy “ + G * ' —a —a
- = (4%) + (NG + AG; )) = 0. (4.134)

For z € [h, 1],

k=0

t(z)—1
i( NG ) + 7 G )\+L($)—1—(k—1))h)>
_ 1 Dl )\ o )\/g() +)‘g1 Rl )\
1 () L( -1
E(’\ga)"’_/\lzgk 1+k+AZ agm) k>
k=0
1 t(z)—1 t(z)
E(A, Z gk‘ L(:L" 1+k+)\zg/€ L:):) k:)
k=0
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1 0 0

where we have used (A.8) and the fact that G) = 0 for k > 1.
For z € [(n — 1)h, 1],

v(z)—

%(Dl(A)Qf(‘x)l O (NR) + Z Gom el /\—l—L(x)—l—k)h))

t(z)—2
1 (NG Y+ AQ
k=0
1 t(z)—2 t(z)—2
=+ A 1+A'Zgg G Mﬂzgg G >
1 u(z)—2 vx)—
a—1lp—a a—1lp—a
= E N Z gk gL(x)—Z—i—k +A Z gk gL(CIJ)—l—k’)
k=0 =
1 _AN+A ]
= — — 4.1

where we have used (A.8) and the fact that G, ' =1 for k > 0.
Proof of Statement 2 of Proposition 4.3.2 for the operator (A,DD):
In this case, we further have that D"(\) = 22~ N" = 1, b} = G* and b, = G°.

aX+A\?
Moreover, the relation r( = —1° g(1) for f € C(A,DD) reads
L —Q(1) (4.137)
L(a) '

We do not require the function e, and so we take f, = Q + bhﬁ‘;’l, where

b

= e )

(4.138)

This implies that f, — f in L]0, 1], since Hﬁ‘i_l — po‘_lHLl[O T 0 in view of Lemma
4.5.3. To show Hthh — AfHL1[0 y 0, we show the following:

1.
0, € [0, (n — 1)h),
G () = { —LIADOW) | O(pi=e) g e [(n—1)h,nh),  (4.139)
W) 4 O(ht-e), x € [nh,1].
2.

GhQ(;E)
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( Aj19Q(x), x €0,h),
1 _ @
Az Q(z) + TG 9N v € [h(n—1)h),

= Ar,Q(x) + EO-naw (4.140)

_I_(DZ(A)—}ZLQSQ(M) + O(h'), z € [(n—1)h,nh),

Go QAR -~
[ A51Q(z) — Qh(o}) — "“ha( ) 4 O(ht~), x € [nh,1].

Then, using (4.132), (4.139) and (4.140) note that
h
”G fn = AfHLl[o,l]

1
_ / |G"Q(x) + G0 () — AQ(x)| dur
0

1 n+1
g/ |42, Q(z) — AQ(x |dx+2/
0

< ”Ag,lQ - AQ||L1[O,1] + O(hZ_a)a

Ah g dz + O(h*™®)

since Q(Ah) = O(h*) and

AR
=0

in view of (A.10).
hence ||G" f, — AfHLl[O g — 0in the case of (A,DD).
Proof of (4.139): For z € [0, h), in view of (4.134)

hylg_AQHLl[o,u — 0, and

Ghb9° (z) = 0.

For = € [h, (n — 1)h), in view of (4.135),

<Xg0—“ + Ag;")>

«

. b .
Ghbhﬁa 1( ) }?(Dl()\) ()

(z)—1

+ Z gl‘: (A,gl, —1+k + )\gL(J: )) = 0.

k=0

Next, let © € [(n — 1)h,nh), then using (4.135) with «(x) = n and (4.26) we have

. b L INGT 4 AG . .
Ghbhﬁ 1(33’) = ﬁh (Dl()\)gn < : : ) + Z gk’ /\ gn 1+k + Agn—k))

L bh(D”(A) — DI (A +n)h)
ha
_ WD) = DR (A +n)h) _ b(D"(N) — 1) (1 ~ N(a- 1)>
heT ()99~ (1) heT (o) n—14+a«
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_ (") = 1) ey _ |
= W + O(h ) = —

Dr(\) = 1)
he

+ O(hl_a>,

where we have also used (4.137) in the last line. Lastly, let € [nh, 1], then using
Ge., = O(heth), 9971 (Ah) = O(h®1) for the first term below, followed by (4.135)
with ¢(z) =n + 1 and (4.26) we have

—b
G~ () = D' (NG 0 (W)

b NGy + MG - P o
+ Eh (Dl()\) 7?;4_1( 2 o : )> + Z gl? <)\ gn+k + )\gnJrlk))
k=0

T (At 1)h)

ha
b2 (A + n + 1)h) b Ma— 1)
= — O h/a - — 1 O h‘a
heT ()99 (1) + O har(a)< T > +O(h%)
o b 11—\ Q<]‘) 11—«
= el (o) +O(h ™) = e +O(h" ™),
where we have also used (4.137) in the last line.
Proof of (4.140): Observe that
A 9(x), xz e [0,h),
G"O(z) = B g
A Q) + TV o [ (n — 1)),

Therefore, let x € [(n — 1)h,nh), then using the Taylor expansion (4.129) we have

o) = i((D%A) C1GION) + 3 GEQ((A 0 — 1 (k— 1)h)

ha
k=0

+ (D7) = DA + n)h)>

- — ((Dl()\) — 1)G2Q(Nh) + zn:QSQ((A +n—1=(k=1)h)

+(D"(A) - 1)(Q@) + O(h))>

(D' = D) | (D) — DGO

= Afolé,lg(z) + he h

O(h'=).

Lastly, let « € [nh, 1], then using the Taylor expansion (4.129) we have

G'Q(x) = hi < — G2, Q(Ah) + nzggg(u +n— (k—1))h)

167



—Q((AN+n+ l)h))

Q1)+ O(h)

—G 1 Q(Ah N
= Jrhl—a() + Ah,lQ(x) _ "
1 @ Q(\h
= Ap 1 Q(x) — Qh(a> — g"“h%( ) + O(h}=2).

Proof of Statement 2 of Proposition 4.3.2 for the operator (A, DN):
1, ) = —G* and b, =

In this case, we further have that N"(\) = X, D"
o1 Moreover, the relation b = —Ig(1) for f € C(A,DN) reads

- Z?;ol g =-6,"1.
b=-D1Q(1). (4.141)

Let f, = Q + 099! + ¢,. When dealing with a right Neumann boundary condition

it turns out that we require the term e, for G" f), to converge which is constructed as

follows:
if 2 € [0, nh),
ifz €[0,nh) (4.142)

0,
en(x) = - ‘
“XQ(A+n)h) + b9y (A +n)h)), ifz € [nh,1].
Then, it follows that as h — 0, [len||;, o — 0. This also implies that f, — f in
L1]0, 1], since in view of Lemma 4.5.3, Hﬁg_l - po‘_lHLl[O g =0

Moreover, observe that

G"ep ()
0, if x € [0, (n—1)h),
= —2(Q(A+n)h) + b9 (A +n)h)), ifz € [(n—1)h,nh), (4.143)
A (Q(A+n)h) + b9 (A +n)h)), ifx € [nh,1].
To show that ||G"f, — AfHL1[0 ; — 0, we show the following:
1.
Gy ()
0, S [07 (n - 1)h)a
= = gal(Xfp)h) + O(h*Y), we[(n—1)h,nh),  (4.144)
=X Mgerl(A+n)h) + O(h*™Y), x € [nh,1].
2.

G"Q(x)
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(A, Q(w), z € [0,h),
A5, Q(x) + T DII0ON, 2 € [y (n— 1)h),
((A—D’(A))Q;‘::i —A'9z> Q(AR)
= Ay, Q(x) + = (4.145)
A 2ACHN) 4 o g e [(n— 1), nh),
A%Q(x) 1 NGaT Q(\h)

hO(
L +>‘le — —’\Q((Zjn)h) +C, x € [nh,1].

Then, using (4.132), (4.143), (4.144) and (4.145) we have

Hthh - AfHLl[O,l}
1
= | |G"Q(x) + G"bp9y " (2) + Gen(x) — AQ(z)| dw
0
1 n—1 " .ip

< 0 | AR 1 Q(z) — AQ(x)| dz + ; /(Z._l)h he dr
nh a—1 ! i
(e g,
(n—1)h he nh e

< HA%,IQ B AQHLI[O,H +O(h),

since Q(Ah) = O(h*) and 1" |Ge| < oo in view of (A.10). Using Corollary 4.5.5,
as h — 0, ||Az’1Q — AQHLI[O g 0, and hence Hthh — AfHL1[0 g 0 in the case of
(A,DN).

Proof of (4.144): For x € [0, (n — 1)h), we showed in (4.134) and (4.135) that
G b9 (z) = 0.

Next, let x € [(n — 1)h,nh), then rewriting —G>~} = —AG>} — NGt + XG2, and
using (4.135) and (4.136) with «(z) = n, we have

Ghy9e\ (z) = % ( — DY(A)Ge 192 (Ah)
n—1
+ Y (NG = AGTNT (A +n =1 — (k= 1)h)
k=1

+G05 (A + n)h))>

- ( — NDI(N)GE e (M)
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n—1
+X< NGO () + Y G )\+n—1—(kz—1))h))
k=0

n—2

—A(D'ONGI T ) + DG (A — 1= B)))

k=0

+ G5 (A + n)h))>

- —% %9@ (A +n)h) - h—i)\’Dl(A)gg‘lﬁg‘l(Ah)
= e e mn) + 0,

since GO = O(h®) and 991 (Ah) = O(h~1). Lastly, let « € [nh, 1], then using (4.136)

we have

Gy (z) = 0 ( Zg“ L)L (A +n — k)h)

e (P n)h))

b

= = (VDG k) = AGET T (A + )
23( (NG 9 (AR) +Zg“ /. 1((A+n—k>h>>

= —% - %9"‘ (A +n)h) + %D%A)gs—wz—l(m)
/
== = T (OB 00,

since G2~ = O(h®) and 95~ (Ah) = O(h71).
Proof of (4.145): Observe that

A1 Q(), z € [0,h),
(D{(\)-1)g2,, Q(Ah)

{ Ay, Q) + =y , xz€lh,(n—1)h).
Let z € [(n — 1)h,nh), then using (4.130) we have

GhQ(x) =

n—1

G"Q(r) = hi < = D'NGTI QAR + > (NGE = AGE)Q((A+n — 1 — (k= 1))h)
+ G5 Q((A + n)h))>
- — (( — D'NGat! = NG+ 2GeTt ) Q)
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—i—XiQ?Q((A—l—n— 1— (k—1)h)

_ Anigg_ll)g(u +n—1—Fk)h)+XG5Q((A+ n)h))>

(A= DHONGaT! = XGE) QAR Ao\ + n)h))
e T

+NA;,Qx) —

A a—1
EAh,O (z)
(A= DHONGaT! = XGE) QAR Ao\ + n)h))
e T
Ab

+ A7, Q) + 5 + C.

Lastly, let « € [nh, 1], then using (4.130) we have

n—1

Q) = i(— N ) 3G QA+ — k)h)

he k=1
-G+ n)h))
- % (ng;—lg(Ah) — MGy O((A + n)h)>

(Zg ~19(( )\+n—k)h)>

_ %(ngj‘lg()\h) AQ((A+n)h )) - %/Azol (z)
- % (xgg—lg(w AQ((A+n)h )) + 7 +A5,Q(x) +C

Proof of Statement 2 of Proposition 4.3.2 for the operator (D2, ND):
In this case, since a,b,c =0, f € C(D2,ND) given by (4.127) reduces to

f=0Q+dp. (4.146)
Moreover, Af given by (4.128) reduces to
Def = DeO. (4.147)

Next, we take
fn=Q+dd. (4.148)

Then, f, — f in Ly[0, 1], since in view of Lemma 4.5.3, 99 — po in L0, 1].
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Note that N'(\) = A\, D' =1 = N", D"(\) = aff\;w by = =G b = G and

b, = —G%~!. Moreover, the relation d = —I%g(1) for f € C(D%, ND) reads

d=-9(1). (4.149)
To show that Hthh — D?fHLl[o T 0, we show the following:
1.
0, x €[0,(n—1)h),
Ghady(x) = —ZAL9(1), x € [(n— 1)h,nh), (4.150)
=9(1), x € [nh,1].
2.
GhQ(z)

[ 4z,0(x)
(= G0 Q) = NGIL Q((A + 1)h)), z€[0,(n—1)h),
A2 Q(x) + 75 (— G2 Q(AR) — NG 1 Q((A + 1)h))

+ 2101y + O(h'), z € [(n — 1)k, nh),
A2 Q(x) + 55 (= G QOAR) = G 1 Q((A + 1)h))
\ —L0(1) + O(h'?), z € [nh, 1.
(4.151)

Then, using (4.147), (4.150) and (4.151) we have

Hthh - DngLl[O,l]

1
_ /O G Q(x) + G (x) — D2Q(x)| dx

! o= [ AR)GE ! A+ 1)h)GeT!
< [anew - prowlar+ Y [ |SERE LB IV g,
+O(h**)

< HA?:JQ - D?QHLl[O,l} + O(h2’°‘),

since Q(Ah), Q((A+ 1)h) = O(h®) and 317 G| < oo in view of (A.10). Using
Corollary 4.5.5, as h — 0, | Aj,Q— D?QHLl[O g~ 0. Hence,

Hthh - DngLl[O,l} — 0
in the case of (D%, ND).
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Proof of (4.150): Let x € [0, h), then
d
G (x) = h—a( —G5TIA+AGY) =0

Let x € [h, (n — 1)h), then using (A.7) and L(x =g% ), + Gilz)_1 we have
d t(z)—2
G o () = = (= MGty = NG+ AT + > g
d o— a— oa—

( —A L(x g 1 + )\g 1 + )\gb(ac)—l + g[,(ét)172> = 0.

T he
~1 =G>5 + G~ |, observe that for z € [(n — 1)h,nh),

n—1»

Next, using (A.7) and

d !l ro— « = [e% r Q
G" vy (x h—( T NG G+ ; Gi + D (A>9’o)
d n—2
= (=G -G AT A + Y G+ (DTN - 1)
k=0
_ QM) gy
== (D"(\) —1).
and for = € [nh, 1],
d n—1 1
G"d(z) = h—a( -G+ Z g,i‘) _ 9
k=1

Proof of (4.151): Let x € [0, h), then
o — 96O £ AGE(0+ 1
ha
~Go1Q(MR) — NGETTQ((A + 1)h
— gl Q( ) th Q(( + ) )_i_A?Lz’lQ(x)

Let @ € [h, (n — 1)h), then using G~' = G2~ + G |

G"Q(x )—hl( Gl 1 QL) + (= NGy + MG 1) Q((A + 1)h)
v(z)—2
+ 3 Gra((A +ua) —1— (k- 1>>h>>
- %(‘sz;@w - NGO+ 1)

¢(x)

+ng (A + u(z —1—(k—1))h))
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1 a— (0%
= = ( =G0 Q) = NG QA + D) ) + 47, 0(w).
Let x € [(n — 1)h,nh), then using the Taylor expansion (4.129) we have

1

GhO(z) = — ( — Gl QAR + (= NGaTy + XG5 ) QA+ 1)h)

ha

+ igsg(@ +n—1—(k—1)h)+D"(NGEO((\+ n)h)>
= hi < = G Q(AR) = NGRZi Q((A + 1)h) + (D"(A) = 1)G5 Q((A + n)h)

+ iggg(u tn—1- (k- 1))h)>

= %( =G Q) = NG Q((A + 1)h)>
+ 4, Q@) + PN AR
= (-9 e - vaiL e+ 1)

+ AR Q(x) + (Drwh_al)g(l) +O(h' ™).

Let = € [nh, 1], then using the Taylor expansion (4.129) we have

GhQ() hla< G O((AN+1)h +ng (A+n—( —1))h))

- ( Gi QUAR) = G Q((A + 1)h) = GF QA+ + A)

+ng (A +n—( —1))h))
1

= ( — G2 QM) — GET (A + 1)h)> +A45,Q(x)

1 11—«
- ﬁg(l) + O(h' ™).

Proof of Statement 2 of Proposition 4.3.2 for the operator (D2 NN):
In this case, since b,c¢ =0, f € C(D2,NN) given by (4.127) reduces to

f=Q+apa +dpg (4.152)
and Af given by (4.128) reads
D2 f = DQ + apo. (4.153)
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Note that N/(\) = A\, D! =1 = D", N"(\) =1 -\ bl = —G*' = b and b, =
— B =322 Get Moreover, the relation a = —Ig(1) for f € C(D%,NN) reads

a=—D>1Q(1). (4.154)
Next, we take
fn = Q-+ avy + dY) + ey (4.155)

When dealing with a right Neumann boundary condition we require the term e;, con-

struced as follows:

0, if z € [0,nh),
en(r) = _ (4.156)
{ —AQ((A +n)h) + ads (A +n)h) +d), ifz € [nh,1].

Then, as h — 0, [l (o, — 0. This also implies that f, — f in L]0, 1], since in
view of Lemma 4.5.3, ¥ — p, and 99 — po in L]0, 1].
Further, observe that

0, if 2 € [0, (n — 1)h),
Glen(x) = —2(Q((A+n)h) + a3 (A +n)h) +d), ifz € [(n—1)h,nh),
A (Q((A+n)h) + a9 (A +n)h) +d), ifx € [nh,1].
(4.157)
To show that Hthh — DngLlM — 0, we show the following:
1.
0, x €0, (n—1)h),
G (z) =< Az € ((n—1)hnh), (4.158)
—L . x € [nh1].
2.
G"avy (z)
@ x € [07 (n - ]')h)7
= ¢ a+2D271Q(1) + 298(\ +n)h) + O(1), € [(n—1)h,nh), (4.159)
a+ ¥ DeTIQ(1) — MU5((A + n)h) + O(1), x € [nh, 1],
3.
G"Q(x)
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( Aj 1 Q(x)
+e (= gf{;)lg()‘h) /\’ ( ; 2 QA+ 1)h)), z €[0,(n—1)h),
AR, Q) — 3D Q(1) + 4% ((/\ +n)h) +0(1)

+h%<(z FgeTt = NG gL QM)
NG O((M + 1)h)>, x € [(n — 1)h,nh),
A 1Q(w) = 5D Q(1) = 2 Q((A + n)h) + O(1)
ik (A'gg—lg(m FN GO+ 1)h)> , € [nh,1].

(4.160)
Then, using (4.153), (4.158), (4.159) and (4.160) we have
IG" fo = DE | 0.
/ |G"Q(z) + G"ady () + G"dY))(z) — (D2 Q(z) + apo(x))| dz
SAL%QW—WQMM
. "gi /:ll)h QARG + ga((x FONGS L om

< ”Az,lQ B D?Q”Ll[o,l] +O(h),

since Q(Ah), Q((\+ 1)h) = O(h®) and 31/ G| < oo in view of (A.10). Using

h1Q— D?QHLI[OJ] — 0. Hence,

Hthh - D?fHLl[o,l] —0
in the case of (D%, NN).
Proof of (4.158): Let = € [0, h), then

G (x) = — G5+ AGY) =0

a0

Let « € [h, (n — 1)h), then using (A.7) and G . QLOE;)I_Q + GJl,)—1 We have

L(a:

t(z)—2
d a— o— (0% &4
Gy (x) = ﬁ( - )\gb(x)l_l - XgL(x)l—Q +AG )1 + Z g’f)
k=0
d a— 1 a— 1 e a—1 —
- ﬁ( AgL(a: a g ot /\g 2 )\g -1t gb(x)72> =0
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Next, using (A.7) observe that for x € [(n — 1)h,nh),

n—2 n—3
Ghdﬁo ()\Zga L \Ggo— 1 gzz 21+>\/ng _/\Zggfl_i_ggy)
k=0
d d)\
ha( NGd NG+ (L= X)G5) = 2

and for z € [nh, 1],

h 7,90 d / — -1 / — -1 -1 dA
G () = ﬁ<>\ g -XY g -Gt = -
i=0 k=1
Proof of (4.159) : Let x € [0, h), then
G'ady(z) = a(— G N +AGS) = a

Let « € [h, (n — 1)h), then using (A.7), (A.8) and G- = =G L+ Gl)—1 We have
Ghavi(w) = a( NG + (“NGL, + A )G+ Y GG )

(z)—1
- a(A’gf;x)_l NG+ Y GrGy 2311146)

k=0

_ag

v(z)—

since QL’(i)_l = 1. Next, for x € [(n — 1)h,nh), using (A.7), (A.8) and G*~| =G>, +

n—1
G~ | observe that
o) =o( - o+ (¥g -0

+A’Zg3 i AZG? 'G5 + 00,
n—2
:a(_x;g;“ NG+ 6o )
+A’ng o AZG;,' G, + 0G5 G, )
Aa

—a -~ X Z G 4 NG = MG, ) + (A + m)h)

~af - xZgal A1) + %190‘(()\+n)h)
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— a2 AT e (3 )+ O(1)

h he
ot 21)3 19(1) + %190‘(()\+n)h)+0(1),

since a = —D*'Q(1), G, ', =1,G.% =n—1and anl G < 0o in view of (A.10).
Lastly, for « € [nh, 1], using (A.7), (A.8) and G~} = G*" + G | observe that

Ghaqga (A/Zga lgoa 1 )\/Zga 1 nal 1k (c)yflg;afl)
n—1
_ ( Zga lgoa 1 )\/Zg]{: 1 ;_alf_lk_)\gnglg;afl>
=0
n—1 )\CL
=aN ) G = NaG 2 — U ((A+ n)h)
=0
e % _ %190‘(0\ +n)h) + 0(1)
N A
= a+ 5D Q(1) = S2R (A -+ m)h) + O(1),

since a = —D1Q(1), G2, = n and Y77 G271 < oo in view of (A.10).
Proof of (4.160): Let z € [0, h), then

G Qi) = 9GO G0+ 1

_ —GrO(M) — NGETIQ((A + 1)h)
= o +

Ay Q(x)

Let @ € [h, (n — 1)h), then using G~! = G~ + G |

G"Q(x) = hl( Gl Q) + (= NGy + MG 1) Q((A + 1)h)
v(z)—2
4—§:Q%%M+d@—1—@F4DM>

1
h( Gite) Q) = NG Q((A + 1)h)

v(x)

+§:@: (A + oz —1—@p4»m>

= (- gpren >—Ag;z;;_19<<x+1>h>)+ A3, Q(x),
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Next, let = € [(n — 1)h,nh), then using g,j“*l = g,?:f + G, and the Taylor expansion
(4.129) we have

G"Q(z) = hia (229?‘19(%) + (= NG = AGi55) QA+ Dh)
+ A'gggg((ﬂn —1—(k=1)h)
- Anfg;;—l (A +7n—1—Fk)h)
+ G5 Q((A + n)h))
= % ((gjg?—l —XNGo+ A 3:11) Q(Ah) = NGZ1 Q((A+ 1)h)
+ A/gggg((ﬁn —1—(k=1)h)
- )\:Z_:Q,?‘IQ(()\Jrn —1—k)h)
+AGEQ((A + n)h))
= % ((gjg?—l — NG+ A f;:}) Q(Ah) = NG2Z1 Q((A + 1)h)>
. + NA7 Q(x) — %Ag’gl () + %Q((A +mn)h)

n—2
= % ((Z Gt = NGo + AQ?‘Z:%) Q(AR) = NGa= 1 Q((X + 1)h)>
=0

AT, Q(e) 5D Q(1) + - (A + m)h) + O(1).

Lastly, let « € [nh, 1], then using the Taylor expansion (4.129) we have

G"Q(x) = % (X ni GX1O((A+1)h) = XN ni G 'Q((A+n —k)h)
—GiT (M + n)h)>

1 ) ra— ’ a—
—ﬁ<>\gn L)+ N 3G + 1)

=0
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— N Xn: GO O((A+n —k)h) — AGET O((A + n)h))

1 ! o— /ni1 oa—
:ﬁ@ GOIQ(AR) 4 A Z:g 1Q((A+1)h)>

N /\

— - Aho Qz) = 2 (A +n)h)
o 1 IPa—1 /n < a—1
_E(Agn Q(AR) + A ;g Q((A+ 1)h
~ (Do) + h(( - 1) - 2T Ave) + 0(?))
——Q(()\+nh

1 o /n—l .
:E(Agn PO(AR) + XY GrTQ((A + 1)h)

=0

A7,0(x) — DI Q(1) ~ (A + mph) + O(1).

Common properties for operators (D%, Ne):

We first consider the common properties of the operators (D, Ne) and following
that consider the right boundary conditions one by one and deal with the operators
(D%, ND) and (D, NN) separately.

In these cases, since b,d = 0, f € C(D*, Ne) given by (4.127) reduces to

f=Q+aps + cpa-s. (4.161)
Moreover, Af given by (4.128) reduces to
D f = D“Q + apy. (4.162)
Next, we take

fh = Q + ahﬁg -+ Chﬁg_Q + ep. (4163)

Note that N(A\) =\, D! =1 = N", b\ =G5 + G¢ and for i > 2, b} = G~

Next recall 997 %(z) = ha—2<(1 — G)QL(:?H 4 eg (o) 1> given in Definition 4.5.1
where 0 := 0(\) = m
constructed such that the following hold:

Let x € [0, h), then

and observe that the approximate power function 192“’2 is

Ghﬁa 2( ) <<g0 4 gl )ng a+1 T /\gO ((1 - 0)90_a+1 4 le—a+1)>
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-
[

(1—a)6+)\—>\0+(a—1))\0>

—0((a =N +A) + >\> = 0. (4.164)
Let o € [h, 2h), then

Gy (x) = % (ggeggaﬂ + (NG5 +G1) +267) (1= 0)Gy ! + 6G,H)

4 g(c)x((l . e)gl—od—l 4 99;&—}—1))

_ i(@gﬂx_a)(u —0) + (a — 1))

+(1—9)(a—1)+@9>

= %(a(a— DO+ N(1—-6)—a(l-10)

+N(a—1)0 —ala—1)0+ (1 —0)(a — 1))

— % <9((a — DN +)) - >\> = 0. (4.165)

Proof of Statement 2 of Proposition 4.3.2 for the operator (D* ND):
In this case, we further have that « = 0 and so f € C(D* ND) given by (4.161)

reduces to
=9+ cpa—s. (4.166)

Moreover, Af given by (4.162) reduces to

D*f = D“Q. (4.167)

Note that N" = 1, D"(\) = aj‘\“/’\J;A, bl = G and b, = GY. Moreover, the relation

c=—T(a—1)I%(1) for f € C(D* ND) reads
c=—T(a—1)0(1). (4.168)
Next, setting ap, = 0 and e, = 0 in (4.163) we have
fn=Q+ a2 (4.169)
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We also set
c

= : 4.170
" e 1) )
Then, f;, — f in L;[0, 1], since in view of Lemma 4.5.3, 99" — p,_o in L]0, 1].
To show that ||G" f, — DO‘fHLl[0 ; — 0, we show the following:
1.
0, z € [0,(n—1)h),
Grepdp(x) = ¢ —2Z10(1) + O(h'~), =€ [(n—1)h,nh),  (4.171)
7w Q1) + O(h'=2), x € [nh,1].
2.
G"Q(x)
43,Q(x) +O(1), v e [0,20),
AY 2h, (n —1)h
e eRh-1h)
A5, Q(r) + =2—Q(1) + O(h'™), x € [(n — 1)h,nh),
A5 1Q(w) — 52 Q(1) + O(h' ™), z € [nh,1].

Then, using (4.167), (4.171) and (4.172) we have

”thh - Daf”Ll[O,l]

= /1 |G"Q(x) + G"epdy*(x) — D*Q(z)| da

< /01 | Az Q(z) — D*Q(x)| dz + O(h*)

= 45,2 = D*Ql|, o, + O(W*™).

0,1]
Using Corollary 4.5.5, as h — 0, HA’;’;IQ — DQQHLI[O T 0. Hence,
Hthh - DafHLl[o,l} — 0

in the case of (D% ND).

Proof of (4.171): For z € [0,2h) it is clear that G"¢, 9 *(x) = 0 in view of (4.164)
and (4.165). Next, for x € [2h, (n — 1)h), then G"07?(x) = A 97 (z) = 0 in view
of let x € [(n — 1)h,nh), then using with ¢(z) = n, (4.170) and (4.26) we have

n—1
Gheyd2(z) = % (ggegg‘”*l +> g8 ((1 —0)G, % + 0G5 1))
k=1
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+ D NG (A4 m)h)

—%<g3990°‘“+293( 0)G, %, + 69, ‘““))
k=0

(D7)~ 1) G053+ n)h)

- % (D"(A) = 1)027 (A + n)h)

(D"(N) —1)Q(1) (19;‘2(()\ + n)h))
e 757 (1)

= P Low) v omt,

Lastly, let « € [nh, 1], then using with «(x) = n + 1 in the second line, (4.170) and
(4.26) we have

thhﬁa 2 (ng< 1 -0 g a+1 +anf1+1k>>

Ch

== n—i—lﬁa 2<)\h)

he
(gn+1egoa+1+zgs(<1—e>g 00, ))

— —gaﬁa (AN n+1)h)
— _C_h S9N+ 0+ 1)h) + O(h*™)
I (A +n+1)h)

_ _Q( )R D +O(h* )
= % + O(h'~%),

where we have also used the fact that |G2, | = O(h*t!) and |95 *(Ah)| = O(h*72) to
simplify the first term in the second line.
Proof of (4.172): Let x € [0, h), then

G"Q(x) = ((Qo +G1) QM) + MGy Q((A + 1)h)>

_ % (gf‘Q(Ah) +Goa((A+ 1)h)>

+ hi (%‘Q(Ah) + (A =1)Gg((A + 1>h>>

= A(;LY,IQ<J;) + 0(1)7

183



since Q(Ah), Q((A+ 1)h) = O(h®). Let x € [h,2h), then

G"Q(x) = (ggg(m + (NG5 +G7) +AGT) Q((A + 1)h)

1
he
+ G5 QA + 2)h)>

— A2, 0(x) + %(A’(gg LG+ (A= )G Q((A + 1)h)

= A3,Q(x) +0(1),
since Q((A+1)h) = O(h*). For x € [2h, (n—1)h), it is clear that G"Q(z) = A Q(x).
Let z € [(n — 1)h,nh), then using the Taylor expansion (4.129) we have

n—1

1 (0% [e3
G"Q(z) = e (Qn Q(Ah) + ng OQ((AN+n—1—(k—1))h)

k=1
+DTM%Q«X+MM>
= a0 + P o mpn)
= a2,0() + 2N o0y 4 o)

ha

Lastly, let « € [nh, 1], then using the Taylor expansion (4.129) we have

1 - o
GhQ(ZE) = ﬁ (;Qk Q((/\ +n— (l{? — 1)h))

— 2T QOW) + 47, Q) — 1 QA+ + 1)h)
= 47,Q() — QA+ n+ D)+ O(h)
= 43, Q(r) — --Q(1) + O(h~)

since |G| = O(h*™) and [Q(Ah)| = O(h®).
Proof of Statement 2 of Proposition 4.3.2 for the operator (D* NN):
In this case, f € C(D* NN) is given by (4.161),

=09+ ap, + cpa—s. (4.173)
Moreover, Af is given by (4.162),
D% f = D“Q + apo. (4.174)

184



Note that N* = X, D" =1, b} = —G*" and b, = — 3.1 G = —G°~}. Moreover,
the relation a = —Ig(1) for f € C(D* NN) reads

a=—-D*"1Q(1). (4.175)
Next, setting a, = a and ¢, = ¢ in (4.163) we have
fo = Q+ ad¥(x) + ¥y + ey, (4.176)
where since we are dealing with a right Neumann boundary condition we construct

en(x)

B { 0, if z € [0,nh),

) . (4.177)
—A(Q((A +n)h) + ads (A + n)h) + 32 (A +n)h)), ifz € [nh,1].

Then, as h — 0, e[, (o, — 0. This also implies that f, — f in L]0, 1], since in
view of Lemma 4.5.3, 9% — p, and 992 — p,_» in L;]0, 1].
Further, observe that

(

0, ifx €[0,(n—1)h),
— 2 (Q((A+n)h) + ad (A +n)h)
Glep(r) = +c07 (A +n)h)), ifz € [(n—1)h,nh), (4.178)
A(Q((A +n)h) + ady (A + n)h)
+c0y (A +n)h)), ifz € [nh,1].

\

To show that Hthh — Do‘fHLl[0 g 0, we show the following:

1.
Oa HAS [O, (n — 1)h>,
Grety(x) = ¢ 2209 2(A+n)h)) + O(h*~2), a € [(n— 1)h,nh), (4.179)
—25 02 (A +m)h) + O(h*7?), @ € [nh,1].
2.
( a+aN (o —2), z € [0,h),
a+aXN(l—Gg), x € [h,2h),
a—aNGy,, x € [2h, (n — 1)h),
Grady(x) =4 a+2D*1Q(1) (4.180)

—i—%ﬁ‘,ﬁ(()\ +n)h)) +O(1), =€ [(n—1)h,nh),
a+ 4 D*1Q(1)
—2295((A+n)h) + O(1), = € [nh,1].

185



GhQ(x)
Ay 1Q(x) + O(1), € [0,2h)

_ A%,lg(li)v [2 7(” - 1) )
Ap Q(x) — 4 D1Q(1) + 2 Q((A + n)h)) + (1), € [(n — 1)h,nh),
A 1Q(z) — 3 D*1Q(1) — 2Q((A+n)h) + O(1), = € [nh,1].

(4.181)
Then, using (4.174), (4.179) and (4.181) we have

Hthh - DafHLl[O,l}

/ |G"Q(x) + G"ady (x) + G ety (x) + Glep(x) — (D*Q(x) + apo(x))| da

g/ | A 1 Q(z) — |dx+2/ |aNGey | de + O(h* )
0
= |45 = D*Q[, (o, + O,
since Y1~ 31 G2, < oo in view of (A.10). Using Corollary 4.5.5, as h — 0,
HA 19— DQQHL 01] — 0.

Hence,
Hthh - DafHLl[O,l} — 0

in the case of (D* NN).

Proof of (4.179): For = € [0, 2h) it is clear that G"c¥? ?(z) = 0 in view of (4.164)
and (4.165). Next, for x € [2h, (n — 1)h), in view of Proposition 4.5.7, G'c9 % (x) =
cAg 197 %(x) = 0. Therefore, let = € [(n — 1)k, nh), then in view of Proposition 4.5.7

thﬁa 2( ) ha( ga l,l9a 2<>\h)
n—1

+Z<ng AG™ 1)19“ (A+n—1—(k—=1))h)

k=1
+ G50 (A + n)h)>
== (( = Gnl NG = NG9 (M)
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+ X i Gaor (A +n—1—(k—1))h)

k=0

—AZga L9e=2 (A +n — 1 — k)h)

+AGLIE2(A + n)h)>

=~ a7 TR + NeAR 957 (@)

AC 1 o AC oo
= A (@) + 2T (A n)h))
AC oo o
= 20 (A n)h)) + O(h*),
since [957*(Ah)| = O(h®?) and |G~ | = . Lastly, let = € [nh, 1], then in view
of Proposition 4.5.7
thﬁa 2( < )\/Zga 11904 2 )\+TL— ) ) ga l’l9a 2((A+n)h)>
ga 119‘“ 2(\h) ——Zgg 1790‘ 2(A+n—k)h)

— zjga 1992((A + n)h)

/\/C a—1 qa— )\/ @ «@ )‘C a—
= ST N TR ) — S AT (@) — U (A4 k)
A
= SO+ m)h) + O(h ),

since [G27!| = O(h®) and |07 2(AR)| = O(h*72).
Proof of (4.180): Let x € [0, h), then

G%m@=%0%+wwmm+wwmwum>

- a((1 ) (A= 1)+ A)
=a+aN(a—2).

Let = € [h,2h), then
Ghavi(x) = /% (gg‘ﬁz(m) + (NG +G7) + AGT) 0 (A + 1)h)
+ GO (N + 2)h)>
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=a+aN (1l —GJ).
For x € [2h, (n — 1)h), in view of Proposition 4.5.7,
G"ay(x) = adp 95 () = a — aN Gy,

Therefore, let x € [(n — 1)h,nh), then in view of Proposition 4.5.7

Gha192< ) = ha( ga 1,l9a<)\h>

3
—-

30 (VG = AGE ) I+ n = 1= (k= 1)h)

1

B
Il

+ G (A + n)h))
- = (( — Gl + MG = NG (Ah)

+ in:g,‘j‘ﬁ%(()\ +n—1—(k—1))h)

k=0
n—1
=AY G (At n—1—k)h)
k=0
F GO\ + n)h)>
A A
— NaGe™! + NaAg 95 (x) — T‘LA;—OW;;(:(;) + h—jﬁg(u +n)h))

= NaG>t + Na(l — NG?)
— %(h(n —1-X ‘H)) + &19;“(()\ +n)h))

n—1 ha

=NaG> ' +a— da— (N)%aG”

Ah“( (=2 = NG + %9;;(@ +n)h))
= 0+ D7) + ML+ m)h)) + O(1),

where we replaced a = —D*"1Q(1) in view of (4.175).
Lastly, let « € [nh, 1], then in view of Proposition 4.5.7

n—1
Ghads(z) = ha( A’Zgg L9 (N +n — )h)—gglﬁz((A+n)h)>
QO‘ L9 (AR) — Zgg L (A +n — k)h)
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A
- h—jgg—lﬁg((A +n)h)

Na Lo 1o Na o oa \a
= SO0 RO = S ARG (@) — SR ((A + n)h)
N N A
= SEGe o) = S8 (h(n = NG ) = 2R+ mh)
J— )\/a/ a—1 qa )\,a’ ! ro—1 )\CL a
= SO RO — 7(1 —h—hXG)) - SO+ )
N A
= a+ 5-D°71Q(1) — (A + m)h) + O(1),

where we replaced a = —D*"1Q(1) in view of (4.175).
Proof of (4.181): Let x € [0, ), then

G"Qls) = 7 <<93 QM) + AGFQ(A + 1>h>>
— (gfwh) +G3Q+ 1>h>>

n hia (gg‘Q()\h) + (A= 1)Ggo((A + 1)h)>
- A}o;lg(x) + 0(1)7

since Q(Ah), Q((A+ 1)h) = O(h*). Let x € [h,2h), then

G"Q(x) = % (%"Q(Ah) + (NG5 +01) +AG7) Q((A + Dh) + G5 (A + Q)h))

= 47,0(0) + 5 (NGE) QA+ 1))

= A5,Q(2) + O(1),

since Q((A+1)h) = O(h*). For x € [2h, (n—1)h), it is clear that G"Q(z) = A Q(x).
Next, let x € [(n — 1)h,nh), then using (4.130) we have

—_

n—

:h—i<—gg; )+ 3 (NG = 2G ) QA +n = 1= (k= 1)h)

1

G"Q(x)

e
Il

+QSQ((A+n)h)>
L (( — ol Mg NG QA
+ Xiggg(()\ +n—1—(k—1))h)
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—AZg O((A+n—1—Fk)h)

+ MGG A((A + n)h))

G )+ XA Q) — AT Q) + QA+ m)h)

he
I fa )\ a— )\ «
= NAR,Q(x) = 4751 Q@) + -2 Q((A + n)h)) + O(h%)
Ao A
2D +

— A7,0) - 5

—Q((A+n)h)) +O(1),
since |Q(Ah)| =

O(h®) and |Go—{| = O(h®). Lastly, let @ € [nh, 1], then using (4.130)
we have

G"Q(x) = hi ( ~ X Z Ge QA+ 1 — k)h) — G5 Q((A + n)h))

X gar o) _—Zg;: YO+ n— )h) — 2G5 QA+ m)h)

= —%A%l (x) — —aQ(()\ +n)h) + O(h?)
_ 2’(Da Q) +h((A-1) - O‘gl)D“Q(lHO(hZ))

— —9((A+n)h) + O(h")

— 43,Q() ~ 3 D" Q(1) — - Q((A+ mh) + O,

since |G27| = O(h*) and |Q(A\h)| = O(h®).
The proof of Statement 2 of Proposition 4.3.2 for all the fractional derivative oper-
ators on L0, 1] given in Table 4.7 is complete.

This also completes the proof of Proposition 4.3.2. m
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Appendix A

Properties of Grunwald coefficients

The Grinwald coefficients, which we denote by G, play a significant role in our study of
numerical approximations of fractional derivative operators. We list here their relevant
properties, see [84, p. 16-21].

The Griinwald coefficients expressed as a quotient of Gamma functions are related

to the binomial coefficients by

g =i~ () = (") -

where a € R and m € Ny. Note the recurrence relation

o n—ao.,, o
n+l — n——Hg”’ gO =1, neN (A'Q)
and that
Go=0,fm< -1 meZ. (A.3)

Setting z = 1 in the Binomial series,

o0

(1—x)* =) gaa"™, (A.4)

m=0

we have

> Gn=0. (A.5)
m=0

As a consequence, we have the following relation between the partial and tail sums of

the Griinwald coefficients,
k

Sa-- Y g (A6)

m=0 m=k-+1
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The partial sum of the Griinwald coefficients is also given by

k

> Gn =g (A.7)

m=0

The following summation formula for the product of binomial coefficients is well known

which we rewrite in terms of Grinwald coefficients,

i:%gl?_m = (—1)’“2 <;",L) <k ?m) = (—1)’“<q ZQ) =Gi*e. (A.8)

m=0 m=0
The quotient of Gamma functions has the asymptotic behaviour,

'm—-a) {1_1_ 04(042;— 1)

Tml) + O(mQ)} , M — 00,

where m € N and a € R. As a consequence, for o € Ny, we have the asymptotics

G = [1+O0(m™)] (A.9)

and the absolute convergence of the series for a > —1,

D 1Ga] < oo. (A.10)
m=0
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Appendix B

Reminder on function spaces,

distributions and transforms

B.1 Function spaces

We say that a property holds locally on R if it holds for any finite interval. We collate

the definitions of the various function spaces that we work with.
Definition B.1.1 (Function spaces).

1. Let Q C R, then L.(92) for 1 < r < oo, denotes the space of complex-valued
Lebesgue measurable functions on {2 that satisfy || f||; ) < o0, where the L, (£)-

norm is given by

([, |f ()" dz)? 1< p < oo,
Ilz,@) = |7l = esssup | f(a)] ifp = oc.
e

It is well known that L,.(£2) with the usual pointwise addition and scalar multipli-
cation can be made into a Banach space by identifying functions that are equal

almost everywhere.

2. AC|a,b] denotes the space of absolutely continuous functions on [a,b]; that is,
for u € ACla,b], there exists v € Li[a,b] such that u(x) = u(a) + [ v(t)dt for
x € [a,b|.

3. Let D" denote the operator theoretic n'™ power of the generalised derivative
operator D, where D : AC[0,1] C L1[0,1] — L4[0,1] is given by Df(x) = f'(x)
for almost all z € [0, 1].
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4. WrHR) for r > 1, denotes the Sobolev space of L,(R)-functions with generalised
first derivative in L,(R); that is, f € W™Y(R) if f € L,.(R), f is locally absolutely
continuous, and Df € L,(R).

5. Whi[—m, x| for r > 1, denotes the Sobolev space of 2m-periodic functions g on R

where both ¢ and its generalized derivative Dg belong to L,[—, 7].

6. Let W'"[0,1] for n € N, denote the Sobolev space of functions such that the

function along with its generalised derivatives up to order n belong to L;]0, 1],
W0, 1] = {u € Ly[0,1] : D*u € Ly[0,1], k=1,2,..n}.

In particular, for n = 1, W0, 1] = AC|0, 1] while for n = 2, u is continuously
differentiable and Du € AC|0,1] so that D*u € L]0, 1].

We list some of the well known inequalities.

1. The well known Hausdorff-Young-Titchmarsh inequality [23, p.211] is given by

I 1
lall,, < @m)* flull,, u€ Ly, 1<r<2, —4 - =1 (B.1)

2. Let p,r,s > 1 be such that %—i— % = 110 + 1. Let f € L.(R), g € Lg(R). Then, the

Young’s inequality for the convolution f x g is given by

| f * gHLP(R) <cC Hf”LT(R) lg Ls(R) * (B.2)

B.2 Fourier and Laplace Transforms

Definition B.2.1 (Fourier transform). If f € L;(R), then we define the Fourier
transform fof f by

f(k) = / e* f(z)dz, keR. (B.3)
R
Moreover, if f € L;(R), then the inverse Fourier transform is given by
< 1 A
flz)=— / e * f(k)dk, = €R. (B.4)
21 Jr

Remark B.2.2. 1t is well known that the Fourier transform of f € L;(R) is bounded
and belongs to Cy(R). For 1 < r < 2, to define the Fourier transform of f € L,(R)
(and similarly, the inverse Fourier transform of f € L,(R)) where L,(R) is given by
Definition B.1.1, it is first defined for f € L,.(R) N L;(R) as in Definition B.3 above.
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Then, using the fact that L,(R) N L (R) is dense in L, (R), the definition above is then
extended to the whole of L,(R) using (B.1). Thus, the Fourier transform of f € L,.(R)
is a function f € Ls(R), where % + i =1.

For f € W™"(R) where 1 < r < 2, the Fourier transform of the integer order
derivative is well known and is given by [23, page 195]

D f(k) = (=ik)" f (k). (B.5)

We also make note of the following theorem on the uniqueness of Fourier transforms,
see [92, p. 187].

Theorem B.2.3. If f € Lyi(R) and f(k) = 0 for all k € R, then f(x) = 0 almost

everywhere.

For functions that are defined only on the half-line R™, the Laplace transform is

defined as follows.

Definition B.2.4. Let f € L1(R") then we define the Laplace transform by

fz) = /R @), Re(z) <0 (B.6)

Moreover, it is well known that the Laplace transform of L;(R™)-function is analytic

for Re(z) < 0 and continuous for Re(z) < 0.

Remark B.2.5. Note that when there is no confusion, we use the same notation f and
f to denote both the Fourier and Laplace transforms and their inverses, respectively.
However, if and when the need arises, we use F(f) and L(f) for Fourier and Laplace
transforms, respectively.

Lastly, both the Fourier and Laplace transforms have the following translation

property,

F(f(z = a))(k) = ““F(f(2))(k), a €R
L(f(z = a))(z) = e”L(f(2))(2), a €RT. (B.7)
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B.3 Distributions

The contents of this section are adapted from [25, 111].
Let S denote the space of Schwartz functions of rapid descent on R. Let &’ denote
the space of tempered distributions (continuous, linear functionals on §). If f is a

locally integrable function, then the so-called reqular distribution f € &' is given by
< f,0 >:/f(t)0(t) dt, # € S. (B.8)
R
We now define the distributional Fourier and inverse Fourier transforms.

Definition B.3.1. If f € &, then we define the Fourier transform f € &' by

(78)=(7.)

where 6 € S and @ is given by (B.3). In a similar fashion, for g € &', the inverse Fourier

transform § € S’ is defined by

(9.0) = (3.9,
where 1) € S and ) is given by (B.4).
Remark B.3.2. The regular distributions corresponding to the ordinary Fourier and
inverse Fourier transforms are uniquely determined. We denote the ring of (distribu-
tional) Fourier transforms of Li-functions by F(Ly). In general, f € F(L;) if there
exists g € Li(R) such that f = g, where § denotes the regular distribution correspond-

ing to the function g.

For f,, f € S, we say that f,converges in S’ to f if <fn,9> — <f,0> forall 0 € S.

Theorem B.3.3. Let the distributional Fourier and inverse Fourier transforms be as

i Definition B.3.1. Then we have the following:

1. The Fourier transform and its inverse are continuous linear mappings of 8" onto
itself.

2. If the series >~ , fn converges in S' to f, then
jor (i) -2r () es
n=1 n=1

that is, the distributional Fourier transformation can be applied to a series term

by term.
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Remark B.3.4. To define the function z* where z € C and a € R is fixed, follow-
ing the standard practice in complex analysis [29], we take the negative real axis as

alog z

the branch cut and define z* := e = |z|"e"™®e% where — < arg(z) < 7 and

log z denotes the principal branch of the logarithm, defined on the open connected set

C/{zeR:z2<0}.

The Gamma function has the following well-known integral representation,

[a) = /000 t* et dt, Re(a) > 0. (B.9)

This integral representation of the gamma function has the following general version,
see [95, p. 137],

/Oo Go1(t)e ™ dt = 27 2 #0, (B.10)
0

where ¢, is given by (1.24), Re(a) > 0, if Re(z) > 0 and 0 < Re(a) < 1, if Re(z) = 0.
We conclude with a result similar to B.10 for Fourier transforms, that we require
in Section 1.4. We use (—ik)~® for o > 0 to denote both the function and the corre-

sponding regular distribution in S’

Proposition B.3.5. Let ¢ 1 be given by (1.24), then the distributional Fourier trans-

form of ¢o_1 1s a reqular tempered distribution,
Ga-1(k) = (—ik)™, a € RY,

Proof. We give a brief sketch of the proof. Let o, e € Rt and consider f., the regular
distribution associated with the function f.(x) = e “*¢o_1(x). Then, for each ¢ >
0, fo € Li(R), f. € & and f. converges to ¢o_1 in S’ as e — 0. Moreover, the
distributional Fourier transform fe € S’ is given by the regular distribution, see [25, p.
139]

) 1k
e~ fatan L(E)

fe(k) = (e —ik) ™" = e

As € — 0, f. converges to (—ik)™® in &' O
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Appendix C

Reminder on operator theory,

semigroups and multipliers

The contents of this appendix are adapted from the treatises, [1, 4, 37, 47]. In what

follows, let (X, ||-|| ) denote a Banach space.

C.1 Operator theory

Let (A, D(A)) denote a linear operator A : D(A) C X — X with domain D(A).

Definition C.1.1. Let B(X) denote the space of all bounded linear operators A :

X — X with operator norm given by

[Allgxy = sup L Afllx = [ fllx = 1}, A € BX).
Definition C.1.2 (Graph norm and core). The graph norm of (A, D(A)) is given
by
1FLa = 1A lx + 1Af ]k f e DA).
A subspace C(A) of D(A) is called a core for A if it is dense in D(A) in the graph norm.

Definition C.1.3 (Closed operator). Let {f,}, .y C D(A) be an arbitrary sequence
such that ||f, — f||x — 0 and [[Af, — g|[x — 0. Then, (A, D(A)) is said to be closed,
if feD(A)and Af =g.

Definition C.1.4 (Invertible operator). An operator A on X is said to be invertible
if there exists B € B(X) such that BAf = f for all f € D(A), and Bg € D(A) and
ABg = g for all g € X. Moreover, A is invertible if and only if A is closed, the range
rg(A) = X and the kernel Ker(A) = {0}, see [1, p. 462].
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Definition C.1.5. For a closed linear operator (A, D(A)), its resolvent set is given by
p(A) :={\ € C: A\ — Aisinvertible}

and its spectrum by o(A) := C/p(A). The operator R(A, A) := (M — A)~! € B(X) is

called the resolvent operator, where I denotes the identity operator on X.

Definition C.1.6 (Dissipative operator). A linear operator (A, D(A)) is called
dissipative if

AL =A) fllx = Alfllx
for all A > 0 and f € D(A).

If an operator A has a dense domain in X, we refer to A as a densely defined

operator and we define its adjoint operator on the dual space X* as follows.

Definition C.1.7 (Adjoint operator). For a densely defined operator (A, D(A)) on
X, the adjoint operator (A*, D(A*)) on X* is defined by

D(AY) :={z" € X*: Fy* € X" such that (Ax,z") = (z,y") Vo € D(A)},
A*x* = y* for 2" € D(A").
Let Y be a Banach space that is continuously embedded in X denoted by ¥ — X.

Definition C.1.8 (Part of an operator). The part of A in Y is the operator Aly
defined by

Alyy == Ay
D(Aly) ={yeDA)NY : AyeY}

Definition C.1.9 (Positive operator). Let f : X — R where X = Cy(2) or L,(Q2)
as given in Definition B.1.1 and €2 is a locally compact topological space. Then f is
called a positive function on Cy(€2) (L1(Q2)) denoted by f > 0, if f(z) > 0 for all
(almost all) z € Q. A linear operator T' : X — X is called a positive operator, if
T f > 0 whenever f > 0.

C.2 Semigroups

Definition C.2.1 (Semigroup). A family (7'(t)),., of bounded linear operators on

X, is called a (one-parameter) semigroup (on X), if
T(t+s)=T(t)T(s), forallt,s >0, (C.1)
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where I denotes the identity operator on X. Moreover, if (C.1) is satisfied for all
t,s € R, then (T'(t)),cp is called a (one-parameter) group on X.

Definition C.2.2 (Strongly continuous semigroup). A semigroup is called a
strongly continuous semigroup or Cy-semigroup, if the functions ¢ — T'(t) f are continu-
ous from [0, 00) into X for all f € X. Moreover, a group is called a strongly continuous
group or Cy-group, if the functions t — T'(t)f are continuous from R into X for all
feX.

Definition C.2.3 (Bounded semigroup). A strongly continuous semigroup (group)
is called bounded, if for some M > 1, [|[T(t)||5x) < M for allt > 0 (t € R). A strongly
continuous semigroup (group) is called contractive, if ||T(t)[|lzx) < 1 for all £ > 0
(t € R).

Definition C.2.4 (Generator of a semigroup). The generator A : D(A) C X — X

of a strongly continuous semigroup (7'(t)),5, on X is the operator

o L= f
Af = lﬁgT,

defined for every f € D(A) where

hl0

D(A) = {f € X: lim% exists}

Definition C.2.5 (Positive semigroup). A semigroup (7'(t)),., on X is called pos-
itive if T'(t) > 0 for all ¢t > 0.

Moreover, if the semigroup has generator A then the semigroup is positive if and
only if R(A, A) > 0 for sufficiently large real A.
Let the sector X5 be defined by

Ys:={ e C:largA| <o} /{0}.

Definition C.2.6 (Sectorial operator). A closed linear operator A with dense do-
main D(A) in X is called sectorial (of angle ), if there exists 0 < § < 7 such that the

following are satisfied:

e The sector ¥z 14 is contained in the resolvent set p(A) given by Definition C.1.5.
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e For each € € (0,0) there exists a constant M, > 1 such that

M, _
IR(A, A)llpx) < i forall A € X219 ./ {0},

where the resolvent operator R(\, A) is given by Definition C.1.5.

Definition C.2.7 (Analytic semigroup). A family (7'(z)) y of bounded linear

z€XsU{0
operators is called an analytic semigroup (of angle § € (0, 7]) if

1. T(0) =1 and T'(z1 + 2z2) = T(z1)T(z2) for all 21, z9 € 3.
2. The map z — T'(z) is analytic in 3.
3. lim, ;o T'(2)f = fforall fe X, z€ 3y and 0 < <.

Moreover, if ||T'(2)|sx) is bounded in the sector Xy for each 0 < ¢ < 4, then

(T'(2)) .es;ut0y 18 called a bounded analytic semigroup.

We state the following well-known important theorems without proof. For proofs

we refer the reader to, for example [37].

Theorem C.2.8. Let A be an operator on X with domain D(A). Then the following

statements are equivalent:
1. A is sectorial.
2. A generates a bounded analytic semigroup (T(2)) ex, 00y 0 X-

8. A generates a bounded strongly continuous semigroup (T'(t)),s, on X such that
rg(T'(t)) € D(A) for allt >0, and

M = sup [[tAT'(t)| 5 x) < 00
>0

Theorem C.2.9 (Lumer-Phillips theorem). For a densely defined, dissipative op-
erator (A, D(A)) on X the following statements are equivalent:

1. The closure A of A generates a contraction semigroup.

2. rg(A — A) is dense in X for some (hence all) X > 0.
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Theorem C.2.10 (Trotter-Kato approximation theorem). Let (T,,(t)),~,, n €
N and (T'(t)),>, be strongly continuous semigroups on X with generators A, and A,

respectively. Further, assume that they satisfy the estimate
||T(t)||B(L1) , HTn(t)HB(Ll) < Me*', forallt >0, n € N,

for some constants M > 1, w € R. Let C(A) be a core for A and consider the following

statements:
(a) C(A) C D(A,) for alln € N and A,x — Az for all x € C(A).

(b) For each x € C(A), there exists x,, € D(A,) such that

r, — x and A,z,, — Azx.

(¢) R\ Ap)x — RN\, A)x for all x € X and some, hence all A > w.
(d) T,(t)x — T(t)x for all x € X, uniformly fort € [0, o).
Then we have the following implications
(a) = (b) = (c) & (d),
while (b) & (a).
Definition C.2.11. The initial value problem

u'(t) = Au(t) fort >0,
u(0) = =z, (C.2)

is called the abstract Cauchy problem associated to (A, D(A)) and the initial value .
Definition C.2.12. Let v : RT™ — X. Then

e v is called a classical solution of (C.2) if u is continuously differentiable with
respect to X, u(t) € D(A) for all t > 0, and (C.2) holds.

e u is called a mild solution of (C.2), if u is continuous, fot u(s)ds € D(A) for all
t >0 and

ult) = A/Otu(s) ds + .

Theorem C.2.13. If (A, D(A)) is the generator of the strongly continuous semigroup
(T'(t)) >, then:
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e For every x € D(A), the function
w:t—u(t) =T(t)x
is the unique classical solution of (C.2).

o For every x € X, the function
w:tu(t) =T(t)x
is the unique mild solution of (C.2).

Definition C.2.14. The abstract Cauchy problem (C.2) is called well-posed if the
following hold:

1. For every x € D(A), there exists a unique classical solution u(-, z) for (C.2).
2. D(A) is dense in X.

3. For every sequence {xn}neN C D(A) such that lim,,_,, x,, = 0, one has

lim w(t,z,) =0
n—o0

uniformly in compact intervals [0, o).

Theorem C.2.15. For a closed operator A : D(A) C X — X, the associated abstract
Cauchy problem (C.2) is well-posed if and only if A generates a strongly continuous

semigroup on X.

C.3 Multipliers

In what follows, let B(IR) denote the Borel o-algebra and Mg(R) the set of all bounded

(complex) Borel measures on R.

Definition C.3.1. The Dirac measure concentrated at k& € R is denoted by 9, where
for £ € B(R),
0k(E) =) f(x)
zeE

and
1, ifz=k,

€T =
/@) {0, otherwise.
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A collection of sets {E,,}, is called a partition of E € B(R), if E = U_, E,, and
fOTZ?éj7 EZHE] :Q)

Definition C.3.2. The total variation of a (complex) Borel measure p on R is a
bounded, positive measure denoted by |u| : R — [0, 00), where the set function |u| is
defined on B(R) by

| (B) = sup Y [p(En)],

the supremum being taken over all partitions { E,,} of E. On setting the total variation

norm to be

eellry = [l (R),
and defining addition and scalar multiplication in the usual manner, (Mg(R), |||/1)

is a normed vector space, see [92, Chapter 6.
We state the following well-known result without proof, see [92, Theorem 6.13].

Theorem C.3.3. Let pu be a complex Borel measure on R with density p € L1(R); that
is, p(dz) = p(x)dz. Then,

letllpy = el -
Definition C.3.4. Let ¥ be a complex-valued measurable function, ¢ : R — C. Then
Y is called a Ly-(Fourier) multiplier, if for each f € L;(R), there exists ¢ € Li(R)
such that v f = ¢ where f and ¢ are the Fourier transforms of f and ¢, respectively
as defined by (B.3).

Definition C.3.5. If ¢ is an L;-multiplier, then we define the operator associated
with ¢, Ty : Li(R) = Ly(R), by T}, f := ¢ where ¢ = F 1 (WF(f)).

We list here the properties that we use often.

e T, is an everywhere defined closed operator, thus by the closed graph theorem,
Ty € B(L1(R)), where B(L;(R)) is given by Definition C.1.1.

e For an Li-multiplier, the range of the function v is contained in the spectrum
o(Ty) of the operator associated with the multiplier ¢, see Definition C.1.5 for

the definition of spectrum.

e A necessary and sufficient condition for ) to be an L;-multiplier is that v is the

Fourier-Stieltjes transform of a bounded (complex) Borel measure; that is,

o0

o) = alk) = [ e (o

—0o0

for some p € Mp(R). Furthermore, |[Ty5,,) = ll#llpy-
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e If the measure p has a density distribution p; that is, pu(dx) = p(z)dz then
1 Tyllgizy = ol = 191, - (C.3)

e Finally, we have the invariance of the operator norm under translation and scal-
ing. Let ¢ be an L;-multiplier, a € R and h > 0. Define (k) := ¢(k + a) and
(k) :=1(hk). Then, ) and 1)y, are multipliers and

||T¢||B(L1) = ”TWHB(Ll) = HTWHB(Ll)- (0'4)

We conclude this appendix with the following result, see [1, Proposition 8.1.3].

Theorem C.3.6. Let i be an Li-multiplier, then the following statements are equiv-

alent:

1. €™ is an Li-multiplier and there exist constants M,w > 0 such that

[ Teewl g,y < Me*', t > 0.

2. Ty generates a strongly continuous semigroup on Li(R)); that is, (e'"%);>o =

(Toew )0 s a strongly continuous semigroup on Ly (R).
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Appendix D

MATLAB codes for Grunwald

schemes

%%% Timeevolutionplots
%% This script plots the numerical solution to Equation (4.22) in
% Section 4.4 at different time points,

% Dby Harish Sankaranarayanan Oct 2014 as part of the PHD Thesis

%% Define Variables

alpha=1.5;

n=1000; % # of x grid points
t=[.04,.1,.2,.5];

% snapshots plotted at 0 and given times (has to be at least size 2)
BC=1:6; % make a plot for each BC
% (D~alpha_c,DD) set A=1

% (D"alpha_c,DN) set A=2

% (D~alpha_c,ND) set A=3

% (D~alpha_c,NN) set A=4

% (D~alpha,ND) set A=5

% (D~alpha,NN) set A=6

%% initial value function

u0fun=0(x) (x>0.3&x<=0.5) .*%(x-0.3)*25+(x>0.5&x<0.7) .*(0.7-x)*25;
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%% initialise solution

h=

X=

1/ (n+1);
(h:h:1-h)’;

u0=u0fun(x) ;

%% loop for different figures according to different BC
for A=BC,

figure(A)

GMatrix=GrunwaldMatrixBC(A,alpha,n);

options=odeset(’Jacobian’,GMatrix);
% Use MATLAB ODE solver
[*,s0l]=0del15s(@(",x) GMatrix*x,[0,t],u0,options);

plot(x,so0l);

x1im([0,1]) ;y1im([0,5])
legend(’t=0’,’t=0.04’,’t=0.1",’t=0.2’,°t=0.5")

end

function M = GrunwaldMatrixBC(A,alpha,n)

b
b
b
b
b
b

h
b
h
b
b
b

This function computes the entries of the n x n Grunwald

matrix given by Equation (4.23)

for the fractional

derivative operators

on L_1 [0,1] given in Table 4.4 .

alpha = 1.5

n denotes the size

(D~alpha_c,DD) set
(D~alpha_c,DN) set
(D~alpha_c,ND) set
(D~alpha_c,NN) set
(D~alpha,ND)  set
(D~alpha,NN)  set

of the matrix

A=1
A=2
A=3
A=4
A=5
A=6

%% build lower triangular n by n Grunwald matrix

M=

zeros(n) ;

shift=1;
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w=1;
% construct Grunwald coefficients given by Equation (A.1)
for k=1:n+shift;
M=M+diag(w*ones(n-abs(k-1-shift),1),1-k+shift);
w=w* (k-alpha-1) /k;
end
%% sum(A,2) adds the row entries while sum(A) adds the column entries
% M is the Transition matrix for L1 with default A=1 for DalphacDD
%% Boundary weights
switch A
case 2, %DalphacDN
M(end, :)=-sum(M(1:end-1,:)); % boundary weights b~r_i
M(end,1)=M(end,1)-M(1,2); % overwrite b_n
case 3, %DalphacND
M(:,1)= -sum((M(:,2:end)),2); % boundary weights b~1_i
M(end,1)= M(end,1)-M(end-1,end) ;% overwrite b_n
case 4, %DalphacNN
M(:,1)= -sum((M(:,2:end)),2); % boundary weights b~1_i
M(end, :)=-sum(M(1:end-1,:)); % boundary weights b r_i
case 5, %DalphalND
M(1,1)=M(1,1)+M(1,2); % change only b_1_1
case 6, %DalphaNN
M(1,1)=M(1,1)+M(1,2); % change only b_1_1
M(end, :)=-sum(M(1:end-1,:)); % boundary weights b"r_i and b_n
end
%% scale Matrix with h~(-alpha)
M=(n+1) "alpha* M;
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