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Abstract

The goal of this thesis is to study the KMS states of graph algebras with a

generalised gauge dynamics.

We start by studying the KMS states of the Toeplitz algebra and graph
algebra of a finite directed graph, each with an a generalised gauge dynam-
ics. We characterise the KMS states of the Toeplitz algebra and find an
isomorphism between measures and KMS states at large inverse tempera-
tures. When the graph is strongly connected we can describe all of the KMS
states, and we get a unique KMS state at the critical inverse temperature.
Viewing the graph algebra as a quotient of the Toeplitz algebra we describe
the KMS states of the graph algebra.

Next we study the KMS states of graph algebras for row-finite infinite
directed graphs with no sources and the gauge action. We characterise the
KMS states of the Toeplitz algebra and discuss KMS states at large inverse
temperatures. We then show that problems occur at the critical inverse

temperature.

Lastly we study the KMS states of the Toeplitz algebras and graph algebras
for higher-rank graphs with a generalised gauge dynamics, using the same
method as we did for finite graphs. We finish by studying the preferred

dynamics of the system, where we get our best results.
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Chapter 1
Introduction

Let B be a C*-algebra and G a locally compact group. An action of G on B is a
homomorphism a : G — Aut B such that g — «,(b) is continuous on G for each
b € B. Then (B,«) defines a C*-dynamical system, and « is the dynamics of the
system. Applications of C*-dynamical systems include the study of the time evolution

in quantum and statistical mechanics.

In the study of quantum mechanical systems an equilibrium state of a C*-dynamical
system can be described by a Kubo-Martin-Schwinger state, or KMS state. The be-
haviour of the KMS states varies with a parameter 3 called the “inverse temperature”.
A C*-algebra has a set of analytic elements, and for 8 € (0,00) a state ¢ is a KMS
state at inverse temperature 3 if ¢(ab) = ¢(bayz(a)) for all a, b in this set. KMS states
are of interest in many areas, including topological graphs [1], groupoids [36, 29], and
number theory [25, 27].

A directed graph E = (E°, E' r,s) consists of vertices E° and edges E!, and re-
lations which tell us how they are related, called the range and source maps, r» and s
respectively. We can form a graph algebra by associating projections P, to the vertices
v € E° and partial isometries S, to the edges e € E' which satisfy certain relations.
We are interested in two such algebras: the graph algebra C*(E) (see Section 2.2.2)
and the Toeplitz algebra TC*(E) (see Section 2.2). The graph algebra C*(E) has been
studied by, for example; Kumjian, Pask, Raeburn and Renault [24] using a groupoid
model, and Kumjian, Pask and Raeburn in [23]. The Toeplitz algebra 7C*(E) was
introduced in [14]. Write B for either C*(E) or TC*(E). Then there is a natural action
~ of the circle T on B called the gauge action, and we can lift the gauge action to a

natural dynamics (action of the real numbers) a of R on B by setting ay := 7.

Fix n > 2. Introduced in [5], the Cuntz algebra O,, is the C*-algebra universal for
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a family of isometries {Sy,...,S,} such that > " | S;Sf = 1. A consequence of this
relation is that the S; have mutually orthogonal ranges. For p = ... p), we write

Sy =Sy -+ Sy, Then for a universal family {s1,...,8,} we have

O, =span{s,s, : u;,v; € {1,...,n}t}.

We can view O, as the graph algebra C*(E) of the graph E with one vertex and n
edges. In [30] Olesen and Pedersen showed that the system (O,,, a) has a unique KMS
state which occurs at inverse temperature Inn.

Let G be a finite set of n elements and A be an n X n matrix with entries in
{0, 1}, no zero rows or columns, and which is irreducible but not a permutation matrix.
Introduced in [6], the Cuntz-Krieger algebra O 4 is the C*-algebra universal for a family

of partial isometries {S; }icg satisfying
(a) > jeg5i5; =1, and
(b) S;‘Sl = Z]’EQ AZ"]'S]'S;, for all ¢ € Q

For pp = py ...y we write S, == S, ..., . Then for a universal family {s;}icg We

have
O, = span{s,s, : i, v; € G}.

Again we can view O4 as the graph algebra C*(E4) of the graph E,4 with vertex set G
and edges from j to i whenever A;; =1 (see [32, Remark 2.8] for example). Because

of the assumptions on the matrix A, the graphs E4 have special properties:

(a) because A is required to be irreducible and not a permutation matrix, F4 has the

condition that “every cycle has an entry”;

(b) because the entries of A are in {0, 1}, for vertices i,j in E4 there is at most one

edge from j to 7; and

(c) because A does not have any zero rows or columns, £4 must have no sources or

sinks.

Write p(A) for the spectral radius of the matrix A. In [9] Enomoto, Fujii and
Watatani showed that the system (Oa,«a) has a unique KMS state which occurs at
inverse temperature In(p(A)). This result was generalised to infinite matrices by Exel

and Laca in [12], but it was not until 2011 that Kajiwara and Watatani [21] pointed
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out that the result of [9] was not known for graphs with sources. They showed that
the presence of sources gave extra KMS states. Subsequently an Huef, Laca, Raeburn
and Sims [17] extended this result to arbitrary finite graphs E, that is, graphs which
potentially have sinks, sources, and multiple edges between vertices. The methods of
[17] were quite different: Exel and Laca [12] and Laca and Neshveyev [26] pointed out
that the Toeplitz algebra has a much richer KMS structure than its quotient, and they
use this idea to study the KMS states of TC*(F) and C*(E). Their results for KMS
states at the critical inverse temperature were for graphs with an irreducible vertex

matrix; in [19] they studied graphs with a reducible vertex matrix.

Higher-rank graphs (also known as k-graphs) A (see Section 5.1) and their graph
algebras C*(A) (see Section 5.2.1) were introduced by Kumjian and Pask in [22] as
combinatorial models for higher-rank Cuntz-Krieger algebras. They also have Toeplitz
algebras 7C*(A) (see Section 5.2), introduced by Raeburn and Sims in [33]. Taking
B as either C*(A) or TC*(A), there is a natural gauge action 7 of the torus T* on B,
which lifts to a dynamics o of R¥ on B. In [18], an Huef, Laca, Raeburn and Sims
extended the method of [17] to study KMS states of (7C*(A),«) and (C*(A),a). In
addition, the KMS states of 2-graphs with one vertex have been extensively studied,
for example by Yang in [38] and [39].

In this thesis we are interested in dynamics which are more general than those lifted
from the natural gauge actions of T on the algebras, which we call generalised gauge
dynamics. Fix n > 2. Let {s1,...,$,} be a universal family generating O,. For a
collection of real numbers {y;}%_, such that y; > 0 for all j, there is an action a¥ of R
on O, such that

o (s;) = €™ S; for all ¢t € R.

We can recover the gauge dynamics from oV by taking y; = 1 for all j. Then Evans
[10] extended the result of [30] to (O,,a¥), showing there is a unique KMS state at
inverse temperature 3 if and only if 1 = e ' + ... + ¢ P Similarly, Exel and
Laca [12] extended the results of [9] to show there is a unique KMS state of O4 with a
generalised gauge dynamics (in the finite case). The KMS states of O 4 with generalised

gauge actions have also been studied by Exel in [11].

These results have been extended to study KMS states of the graph algebra C*(F)
with a generalised gauge dynamics. Let E = (E° E' r,s) be a finite directed graph
and {p,, s.} be the universal family generating C*(E). For {r. € (0,1)}.cp: we can
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define an action a” of R on C*(E) such that

a;(s.) = e tlog(re) g

Then Ionescu and Kumjian [20] used a groupoid model for C*(E) to get results about
the KMS states of (C*(E),a"). In [3] Carlsen and Larsen study the KMS states of
relative graph algebras, a generalisation of C*(F) and 7TC*(E), and a generalised
gauge dynamics. In [4] Christensen and Thomsen extend the results of [17] to include
generalised gauge actions, but they do not include results about the Toeplitz algebra
TC*(E). None of them obtained a detailed description of all of the KMS states like
the one we present here.

The goal of this thesis is to study the KMS states of Toeplitz algebras 7C*(E)
and graph algebras C*(F) with a generalised gauge dynamics. To do this we define a
generalised gauge dynamics and then use the method of [17] to study the KMS states
of graph algebras for a finite directed graph. We then study the KMS states of graph
algebras for infinite graphs with the gauge action by examining what happens to the
method of [17] when we remove the assumption that the graph is finite. Finally we use
the method of [18] to study the KMS states of graph algebras for higher-rank graphs
with a generalised gauge dynamics.

In Chapter 2 we review preliminary material required in our study of KMS states.
We start by recalling the definition of a directed graph £ = (E° E',r,s), and then
define the Toeplitz algebra TC*(E) and graph algebra C*(E). Next we recall the
definition of the usual gauge action v of T on TC*(FE). We then choose a function
y: E' — (0,00) and use it to find a generalised gauge dynamics a¥ of R on TC*(E).
Finally we present the definition of KMS states and characterise the KMS states of
(TC*(E),aY).

In Chapter 3 we study the KMS states of C*-algebras for finite directed graphs with
a generalised gauge dynamics. First we study the KMS states of (T C*(FE), a¥) at large
inverse temperatures. We then discuss the KMS states of (TC*(E), a¥) at the critical
inverse temperature when F is strongly connected. Finally we get a generalised gauge
dynamics @¥ of R on C*(E) and study the KMS states of (C*(E),aY).

In Chapter 4 we attempt to extend the results of [17] to row-finite infinite graphs
with no sources. Taking « to be the dynamics associated to the gauge action vy, we
start the chapter by characterising the KMS states of (T C*(E), «). To study the KMS
states of (TC*(FE), «) at large inverse temperatures we present some background from

Banach spaces and then find an isomorphism between KMS functionals and a subset
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of /1(E®). We then show when the KMS states of (TC*(E),«) factor through C*(E).
Finally we give an example from [3] to show that we cannot guarantee existence of the
KMS states of (C*(FE), @) for infinite graphs.

In Chapter 5 we extend the results from Chapter 3 to higher-rank graphs, using
the method of [18]. We first introduce the required background material for a higher-
rank graph A and its C*-algebras 7C*(A) and C*(A). We then choose a functor
y: A — [0,00) and use it to define a generalised gauge dynamics a¥ of R on TC*(A).
Next we present results about the characterisation of the KMS states of (TC*(A), a¥).
We characterise the KMS states of (TC*(A),a¥) at large inverse temperatures, by de-
scribing an isomorphism between measures and the KMS states of (7C*(A), a¥) at large
inverse temperatures. We use these results to describe KMS states of (TC*(A),a?) at
the critical inverse temperature. We then describe the dynamics @¥ and get results
about the KMS states of (C*(A),a¥). Finally we present results about the KMS states
of (TC*(A),a¥) and (C*(A),a¥) for a preferred dynamics, and give an example to
illustrate these results.

We finish with an appendix containing useful results about the spectral radius of
nonnegative matrices (including consequences of the Perron-Frobenius theorem) and

the enumeration and convergence of sums.






Chapter 2
Preliminaries

In this chapter we present definitions and results used in later chapters. We first define
a directed graph and its related notation. We then define TC*(FE) and discuss its
relationship with the graph algebra C*(E). Next we present the definition of the gauge
action v, as well as a generalised gauge dynamics o¥. Finally we present the definition
of KMS states and characterise the KMS states of (TC*(E), aY).

2.1 Directed Graphs

In this section we introduce the concept of a directed graph. We use the conventions
of [32] for directed graphs and, as in [17], borrow some notation from the higher-rank
graph literature.

A directed graph E = (E°, E',r,s) consists of two sets E°, E' and functions r, s :
E' — E°. The elements of E° are called vertices and the elements of E' are called
edges. For each edge we call s(e) the source of e and r(e) the range of e. An edge
e € E' can therefore be thought of as travelling from s(e) to r(e). For a vertex v € E°

we define
vE' :={e € E':r(e) = v}.

A graph is row-finite if vE' is a finite set for every v € E°, and in this thesis we will
only consider row-finite graphs. If vE' = () then v is called a source. For vertices

v,w € E° we also define

vE'w = {e € E' : r(e) = v, s(e) = w}.



We can then define the vertex matriz A of a graph to be the E° x E° matrix with

entries
Ay = WE W]

A path of length n is a sequence pu = pipy ...ty of edges p; € E' such that
s(pi) = (i) for 1 < i < n—1. We extend r and s to paths by defining r(u) := r(u1)
and s(u) := s(u,). We denote by E™ the set of paths of length n, and for u € E™
define |u| := n, the number of edges in the path p. We define E* := J, . E". Then,

for example, we define
vE* :={u e E* :r(e) =v}.

A directed graph is strongly connected if for every pair of vertices v, w € E° there exists
a path u € E* such that s(u) = w and 7(u) = v, that is, for all v,w € E°, vE*w # ().

Corollary A.12 tells us that the way we enumerate sums of nonnegative numbers
doesn’t matter. For example, taking f : E® — [0, 00) we can write Y, _po f(x) without

ambiguity, and we exploit this fact throughout.

2.2 The Toeplitz algebra TC*(F)

In this section we introduce Toeplitz-Cuntz-Krieger families and their algebras, using
the definition of [14].

Let E be a row-finite directed graph. A Toeplitz-Cuntz-Krieger E-family {P,, S}
consists of mutually orthogonal projections {P, : v € E'} and partial isometries {S, :
e € E'} such that

(TCK1) S;S. = Py for all e € E', and
(TCK2) P, >, m SeSE, for all v e EY.

Note here that because E is assumed to be row-finite the sum in (TCK2) is finite.
It is proved in, for example, [14, Proposition 1.3] that there is a C*-algebra TC*(FE)
generated by a Toeplitz-Cuntz-Krieger E-family {p,, s.} which is universal in the sense
that given any Toeplitz-Cuntz-Krieger E-family {Q,,T.} in a C*-algebra B, there is
a homomorphism 7gr : TC*(E) — B such that mgr(s.) = T. for all e € E' and
mor(py) = Q, for all v € E° We call TC*(E) the Toeplitz algebra of E. We use

the convention that a family denoted with lowercase letters (for example, {p,, s.}) has

8



the universal property, whereas a family denoted with uppercase letters (for example,
{Q.,T.}) can be any family.

We extend the partial isometries for edges to partial isometries for paths by defining
Sp = Suy -+ Sy, for p € E*.
If u € E* is a path then repeated applications of (TCK1) give

(2.1) 578, = (SuShs - -+ Sy ) Sys Sz « - Sy
=S S5 S )S s - S
=S5 S (Pau))Sha -+ S
= S S (Prun)Sha -+ S
=S (55,5) - S,

s(pn)

s(p)-

Lemma 2.1. Let {P,,S.} be a Toeplitz-Cuntz-Krieger E-family. Then
S5:8¢ = 0e,f Py(e) foralle, f € E".

Proof. [17, Corollary 1.2] tells us that the projections {S.S* : e € E'} are mutually

orthogonal, and therefore

SS. ite=f
SeSy = 5.55.57575; =
S:0Sy  otherwise.

So by (TCKl) S:Sf = 5e,fPs(e)- ]

Corollary 2.2. Let {P,, S.} be a Toeplitz-Cuntz-Krieger E-family. Then, for pu,v,o,7 €

E*, we have

SuerSy if o =wvo’

(2.2) (545,)(5,52) = 4 5,5

T/

if v =o'

0 otherwise.

We call this the product formula.



Proof. We prove this for a Toeplitz-Cuntz-Krieger E-family by adapting the proof of
[32, Corollary 1.15], which was for a Cuntz-Krieger E-family.
We consider two cases, that |v| < |o| and that |o| < |v|. First suppose that

n = |v| < |o|, and factor o = ao’ with |a| = n. Then
(S1S2)(S5S2) = S,S5(SuSor)S: = 5,(5152) 555
If v = «, then Equation (2.1) implies that
(S152)(5052) = SuPy) S = Sy PrionSur S = SyS-.

If v # «, let i be the smallest integer such that v; # «;. Then applying Equation (2.1)

gives

S*Su = (S0, Sy - S0 ) Sy Say - - - Sa,
= S SIS SE Say e Say )+ Sa
— S S Puyy1)Sas - - Sen,
— S .85 Py Sas - - - Sa

— S 5 Say e S

Un

n

n

Lemma 2.1 implies S} S,, = 0, so S;5, = 0. Therefore
(S,2)(S552) = S,(S:5) Sur S = 0.

Next suppose that |v| > |o|. Then we can factor v = S/ and run a similar argument
to get
(SuS;)(9557) = S, Ps(0)Sy Sy = SuPrw)Sy St = 8,55,

if 8 = o and 0 otherwise. n

The product formula implies that

TC*(E) =span{s,s, : p,v € E*,s(u) = s(v)}.

2.2.1 The finite path representation

We now introduce the finite path representation, which is used in later proofs to show

properties of our universal family {p,, s }.
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Proposition 2.3. Let E be a row-finite directed graph. Write h, for the point mass
at u € E*, and let {Q, : v € E°} and {T. : e € E'} be the partial isometries on (*(E*)
such that

h, ifv=r
thu _ W f (N)
0 otherwise
and
he, if s(e) =r
Tehu _ © f ( ) (N)

0 otherwise.

Then {Q, T} is a Toeplitz-Cuntz-Krieger E-family in B((*(E*)). We call the repre-
sentation o1 : TC*(E) — B((*(E*)) such that 7gr(p,) = Q» and mgr(se) = T, the

finite path representation.

Lemma 2.4. Let h, be the point mass at p € E*. If {Q,T} is the Toeplitz-Cuntz-
Krieger E-family from Proposition 2.3 then

h, ifv=e
T h, = /

0 otherwise.

Proof.
Tihy =TT,
Qs fr1=e
0 otherwise
_ hy, ifv=-ev -
- 0  otherwise.

Corollary 2.5. Let h, be the point mass at p € E*. If {Q,T} is the Toeplitz-Cuntz-
Krieger E-family from Proposition 2.3 then Qy # Y cop 1T,

Proof. Applying Lemma 2.4,

(Qu= 3" T )by = Quhu = Y TTIR,

ecvE! ecvE!
=h,— Y _ T.0
ecvE!
= h,,.
In particular, we have Q, — > c g T.T) # 0,50 Qu # Y cppn T ]
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2.2.2 The graph algebra C*(F)

If a Toeplitz-Cuntz-Krieger F-family {P,, S.} also satisfies

(CK2) P, = Z SeST for all v € E°,
ceF
then {P,,S.} is a Cuntz-Krieger E-family. As with the Toeplitz algebra there is a
C*-algebra C*(E) generated by a Cuntz-Krieger E-family {p,, s.} which is universal
in the sense that given any Cuntz-Krieger E-family {Q,,T.} in a C*-algebra B there
is a homomorphism 7o 7 : C*(E) — B such that g r(s.) = T. for all e € E' and
mo.r(py) = Q, for all v € E° ([32, Proposition 1.21]). We call C*(E) the graph algebra
of .
The following result tells us how 7C*(E) and C*(E) are related.

Lemma 2.6. Let {p,, s.} be the universal Toeplitz-Cuntz-Krieger E-family which gen-
erates TC*(E). Let J be the ideal generated by {p, — > .com Sesi : v € E'}, and
q:TC*(E)— TC*(E)/J be the quotient map. Write 5. = q(s.) and p, = q(p,). Then
(TC*(E)/J,{Dy,Se}) is universal for Cuntz-Krieger E-families, that is,

(a) {D,,Sc} is a Cuntz-Krieger E-family which generates TC*(E)/J; and

(b) if {P,,S.} is a Cuntz-Krieger E-family in a C*-algebra B then there exists a ho-
momorphism Tpg : TC*(E)/J — B such that Tps(5.) = Se and Tps(p,) = P,.

Proof. To prove part (a) we need to show that {p, : v € E°} is a mutually orthogonal
set, 55 = Py(e) for all e € E', D, = .com SeS: whenever v is not a source, and that
{P,,5.} generates TC*(E)/J. To show that {p, : v € E} is a mutually orthogonal

set, fix v,w € E°. Then, because ¢ is a homomorphism,

PuPuw = 4(Pv)q(Pw) = q(Pupw) = q(0) = 0.

To show that 5}5, = Ty, for all e € E', fix e € E'. Then, because ¢ is a homomor-

phism,

5.5 = q(s2)q(se) = q(s;8e) = q(Ps(e)) = Ds(e)-

Fix v € E° such that v is not a source. We aim to show that p, = >___ g1 S.5:. Then

0=aq(p.— Y sesi) =atw) —a( D sest) =5, = D alsest):

ecvE! ecvEl
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This implies that
Po= > dlsess) = > qlse)a(ss) = > 55}
ecvEl ecvEl ecvEl
Finally, since TC*(FE) is generated by {py,sc}, {q¢(pv),q(se)} = {D,,Se} generates
TC*(E)/J.

To prove part (b) we want to get a homomorphism on 7C*(FE) and then prove it
factors through a homomorphism of 7C*(E)/J. We then need to prove this homo-
morphism has the required properties.

Because {P,, S.} is a Cuntz-Krieger E-family in B, it is a Toeplitz-Cuntz-Krieger F-
family in B, and the universal property of (T C*(E), {pu, se}) gives a homomorphism
nps : TC*(E) — B such that mpg(s.) = Se, mps(ps) = P,. Because mpg is a
homomorphism, ker 7p 5 is a closed ideal. Since {P,, S.} is a Cuntz-Krieger E-family,
we have

mrs(po= 3 sest) = Po= Y S50 =0,
ecvE! ecvE!
SO Pu— pcppt SeSs € kermpg. Since J is the closed ideal generated by {py,—> ., SeSi}
it is the smallest closed ideal containing {p, — > c g1 Sesi}. So J C ker mpg. Therefore
there exists a homomorphism 7pg : TC*(E)/J — B such that mps =7pgoq.

Now that we have our homomorphism we need to check it has the required proper-

ties. Fix 5. € TC*(E)/J. Then

Trs(3e) =Tps(q(se)) = mps(se) = Se.
Fix p, € TC*(E)/J. Then
7ps(Dy) =Trs(a(py) = mps(py) = Po.
Thus 7p g has the required properties. O

Remark 2.7. Since (TC*(E)/J,{P,,5¢}) has the universal property which deter-
mines the Cuntz-Krieger algebra, (TC*(E)/J,{P,,3.}) is canonically isomorphic to
the Cuntz-Krieger algebra [32, Corollary 1.22]. From now on we use this isomorphism
to identify C*(FE) with this quotient, and ker ¢ with the ideal J.

2.3 The gauge action v

The Toeplitz algebra T C*(FE) carries a gauge action vy of T, which satisfies

*\ S lul=lvl *
V:(susy) = 2 SuSy
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The gauge action has an associated dynamics o : R — Aut 7C*(E) defined by oy :=
Yeit. Since the quotient map ¢ of 7C*(E) onto C*(F) is gauge-invariant, there is also

an a corresponding action @ of R on C*(E).

2.4 A generalised gauge dynamics oY

In [17] an Huef, Laca, Racburn and Sims study KMS states of 7TC*(E) and C*(F)
with the gauge action . In this section we define an action o of R on 7 C*(E) which
is more general than the gauge action. We begin with a function y : B! — (0, 00), and
extend it to a function y : E* — (0,00) by

|l

y() =Y yluy).

j=1
To define our generalised action using this function we use the method of [32, Propo-
sition 2.1], noting here we are working in 7C*(E) rather than C*(E), and R rather
than T. We cannot define our action on T and use this to get an action on R, as is

done with the gauge action, because
7Y (se) = 2¢@s, for every e € E'
would not be well-defined, since 22 is ambiguous, for example.

Proposition 2.8. Let E be a row-finite directed graph. Choose a weight function
y: E' — (0,00). Then there is an action oV : t — of of R on TC*(E) such that

(2.3) od(s.) = s, for every e € E*
and
(24) o (py) = po for every v € E°.

To prove this we use the following lemma, stated here for convenience.

Lemma 2.9 ([14, Corollary 4.2]). Let E be a directed graph. Suppose that {P,,S.} and
{Qu,T.} are Toeplitz-Cuntz-Krieger E-families such that each P, and Q, is nonzero,
and such that
Po# ), 580 and Qu# ) LT
e€EWw e€EWw

for every vertex v which emits at most finitely many edges. Then there is an iso-
morphism © of C*(P,,S.) onto C*(Q,,T.) such that n(P,) = Q, for allv € E° and
7(S.) =T, for all e € E.

14



Proof of Proposition 2.8. Fix t € R. We first aim to apply Lemma 2.9 to get an
isomorphism ¢« satisfying Equation (2.3) and Equation (2.4). We know {p,, s.} is a
Toeplitz-Cuntz-Krieger E-family which generates TC*(E), so

{p, s}

is also a Toeplitz-Cuntz-Krieger E-family which generates 7C*(E). To see that p, —
Y ecort Sess # 0, fix v € E°. Let mor be the finite path representation from Proposi-
tion 2.3, then Corollary 2.5 tells us that

ﬂ-Q,T(pU - Z SeS:) = Qv - Z TeT: 7é 0.

ecvE! ecvEl

It follows that p, — > ..,z Sest # 0. Because

ecvE

ezty(e) Se(ezty(e) Se)* _ ezty(e)efzty(e) 565: — SeS*

e’

we have

Dy — Z eity(e)se(eity(e)se)* =P, — Z Sess # 0.

ecvEl ecvE!

We have therefore satisfied the assumptions of Lemma 2.9 and there exists an isomor-
phism o) : TC*(E) — TC*(E) such that of(s.) = s, and of (p,) = po.

We now show that o : t — «} is a homomorphism of R into Aut 7C*(FE). For
t,z € R, the automorphisms af o a¥ and «of, , agree on the generators {p,, s.}: looking

at s, we have

(o 0 af)(se) = o/ (af(se))
= a}(e™s,)
= (@) giry(e) g
— eilttale) g
= a%—&-:c(SE)'

Similarly, looking at p, we have

(af 0 al)(py) = & (a(py)) = & (py) = po = a?—i—x(pv)'

Since they agree on generators they agree on all of TC*(FE), and o is a homomorphism

of R into Aut TC*(E).
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Finally, we need to show that o is continuous. Fix t € R, a € TC*(E) and € > 0.
Choose a finite linear combination ¢ = ) A, 8,5}, such that ||a —¢|| < 5. For u € E*

we have

oy () = o (Suy Sy - - - Stip)

— Lity(pr) ity(p2) ity ()
=e Sy € Spg - - - €V,

— ott(u(p)+y(uz)++y(pu))
=e WS Spg - Sy,

— eity(w) S

Since scalar multiplication is continuous, so is

r— al(c —ay ZAW,S#
=D Auwadl(sys;)
= Z)\M b0 (s,)ad (s))
— Z A et y(m)—y(v)) 5,55

So there exists § > 0 such that

|z —t] <0 = laf(c) — (e )H<§

Since automorphisms of C*-algebras preserve the norm, we have ||/ (a —c)|| < §. Thus
for |z —t] < ¢ we have

laz(a) = af ()]l < llad(a = o)l + llad(e) — af(e)]| + lla(a = o)l < 3(%)

=€
Thus oY is continuous, as required. O

Remark 2.10. If we take y to be the function such that y(e) =1 for all ¢ € E', then
y(p) = |p| for all 4 € E*. Then o is the dynamics lifted from the gauge action, as

studied in [17], for example.

2.5 KMS states

In this section we introduce the concept of KMS states, using the definitions from [17,
Section 1] and [27, Section 7).

Suppose that « is an action of R on a C*-algebra B. An element b in B is analytic
for the action « if the function ¢ — ay(b) is the restriction to R of an entire function

on C. Let B* be the set of analytic elements of B. For 8 € (0,00), a state ¢ of B is
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a KMS state at inverse temperature (8 for «, or a KMSs state for (B, «), if it satisfies
the following KMS condition:

(2.5) o(ab) = gb(baw(a)) for all a,b € B*.

In fact, [31, Proposition 8.12.3] tells us that it suffices to check Equation (2.5) for a set
of analytic elements which spans a dense subset of B.
In the case where B is TC*(E), for every pu,v € E*, the function ¢ — of(s,s;) =

et -y)g s* is the restriction of the entire function

v

The elements s,,s;, are therefore analytic. Since they span a dense subspace of TC*(E),
it follows from [31, Proposition 8.12.3] that a state ¢ of (TC*(E), a¥) is a KMSs state
for 5 € (0,00) if and only if

O((s5,)(5057)) = D((s557)0(5057))

for all pu,v, 0,7 € E*.

2.6 Characterising KMS states of (TC*(E), oY)

In [17, Proposition 2.1] the KMS states of (7C*(E),«) are characterised. In this

section we use a similar method to characterise the KMS states of (TC*(E), a¥).

Proposition 2.11. Let E be a row-finite directed graph. Choose a weight function
y: Bl — (0,00). Let o¥ : R — Aut TC*(E) be the action from Proposition 2.8. Let

B € (0,00).
(a) Let d,, be the Kronecker delta function. If a linear functional ¢ satisfies
(2.6) A(5,55) = Opne P b (py)) for all y,v € BE*.
then ¢ also satisfies the KMS condition.
(b) A state ¢ is a KMSp state of (TC*(E), a¥) if and only if it satisfies Equation (2.6).

Proof. (a) Suppose that a linear functional ¢ satisfies Equation (2.6). To see that ¢

satisfies the KMS condition (Equation (2.5)), consider a pair of spanning elements s,,s;,
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and s,st in TC*(E). Computations using the product formula (Equation (2.2)) give

(
O(suersy) if o =vo’

D(8u8,,5557) = o(syst,,) ifv=or

\ 0 otherwise

(
e P (pyry) if 0 =vo’ and 7 = po’
(2.7) = q e W p(py) if v=o0v and p =10

\ 0 otherwise.

Similarly,

(
O(sosy) A p=rp
O(sg578u8,) =  ¢(se55,) if 7= pr’
\() otherwise
( .
e (py)) if p=Tp and v = oy
= €_By(0)¢<ps(a)> if 7= /“J and o = v71’

0 otherwise.

\

Therefore,

6—5@(#)—@/(”))e—ﬁy(l/)¢(ps(y)) if = TM/ and v = o'lu’
(2.8)  B(sosiaip(susy)) = 6’5@(“)’1’("))e’ﬁy(")qﬁ(ps(g)) if r=p7r" and 0 = v7’

0 otherwise.

If u=7p" and v = oy, then s(u) = s(v) and

O(su555057) = € P W (py()
_ e‘ﬁy(“)gb(ps(y))
_ e—B(y(u)—y(V))e—ﬁy(V)qg(ps(y))

= (ZS(SUS:CY%(S#S:;))'

So far our computations have been very similar to those in [17]. For the next step

we observe that y is additive, in the sense that if 4 € E* such that p = p/u” then
y(w) = y(') +y(u").
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If 7 = ur’ and o = v7/, then s(7) = s(0). Also, y(7) = y(u) + y(7') and y(o) =
y(v) + y(7'), which implies that y(7) = y(u) — y(v) + y(o). So

D(sus5505%) = e PV G(pyry)

— B_ﬂy(T)gb(ps(U))

= POy g Y

_ e*ﬂ(y(u)*y(V))e*ﬁy(o)qg(ps(a))

= ¢(sos705(5,8,))-

Otherwise at least one of u = 7y’ and v = oy’ fails and at least one of 7 = ur’
and o = v7’ fails, in which case Equation (2.7) tells us that ¢(s,s)s,s:) = 0 and
Equation (2.8) tells us that ¢(s,staus(s,s;)) = 0.

Thus ¢ satisfies the KMS condition.

(b) In the forward direction suppose that ¢ is a KMSgs state of (TC*(E),a¥). We
want to show that ¢ satisfies Equation (2.6). Fix p,v € E*. The KMS condition gives

(2.9) B5,53) = d(s5ali(s,)) = B(sseWs,) = e PW)g(s3s,).

We consider the cases |u| = |v| and |u| # |v| separately. For |u| = |v|, the product

formula implies that s}s, = 0,,,Ps(u), and Equation (2.9) gives

¢(SHSZ) = G_By(“)¢(szsu) = 5u,ue_ﬂy(#)¢(ps(u))-

Next, suppose that |u] # |v|. If p doesn’t extend v and v doesn’t extend p then the

product formula tells us that ss, = 0, and Equation (2.9) gives
O(spusy) = e Wg(s)s,) = 0.

Otherwise one of y, v extends the other, and since y(e) > 0 for all e € E', y(u) # y(v).
Applying the KMS condition again to Equation (2.9) gives

O(susy) = e PG(s)s,)
= e W g (s,al) ( v))
= ¢ P g(s,eM Vs
— e Bl —ylv ))¢(3#5V)7
and since e PWHW=v) £ 1 we have ¢(s,s%) = 0. Therefore ¢ satisfies Equation (2.6).
Conversely, suppose that ¢ satisfies Equation (2.6). Then part (a) tells us that ¢
satisfies the KMS condition. In addition ¢ is a state, so it is a KMSg state. n
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Chapter 3

KMS states of C*-algebras for finite
graphs with a generalised gauge

dynamics

In [20, Section 4.3] Ionescu and Kumjian use a groupoid model for C*(E) to discuss
KMS states on C*(E) with a generalised gauge dynamics. In [17] an Huef, Laca,
Raeburn and Sims use direct arguments to describe the KMS states of both TC*(FE)
and C*(FE) with the gauge dynamics. The goal of this chapter is to extend the method
of [17] to study the KMS states of both 7C*(E) and C*(E) with a generalised gauge

dynamics.

First study the KMS states of (TC*(E), a¥) at large inverse temperatures. We then
discuss the KMS states of (TC*(E),a¥) at the critical inverse temperature when E' is

strongly connected. Finally we get a generalised gauge dynamics @¥ of R on C*(FE)
and study the KMS states of (C*(E),a).

In this chapter we consider finite directed graphs, that is, directed graphs for which
E° and E* are finite sets. Since the set E! is finite, vE! is a finite set for all v € E°, that
is, E is row-finite. Sums over E° or E' (or their subsets) are finite sums, so we don’t
have to worry about convergence, and we can easily switch sums using the algebra of
limits. Sums over E* are usually infinite sums but we can use Tonelli’'s theorem and

the dominated convergence theorem to ensure convergence.
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3.1 KMS states of (TC*(E),a’) and the subinvari-

ance relation

In this section we use the function y and fix 6 € [0,00) to define a matrix B(y,0)
that will be central to our proofs in the remainder of the chapter. We then describe a

subinvariance relation like that used in [17, Proposition 2.1(c)].

Definition 3.1. For y : E' — (0,00) and 6 € [0, 00), let B(y,0) = (B(y,0),.) be the

E° x EY matrix with entries

B(y,0)pw= Y e ™),

ecvElw

where we take B(y,0),., = 0 if vE'w = (.

Proposition 3.2. Let E be a finite directed graph. Choose a weight function y :
E' — (0,00). For 6 € [0,00) let B(y,0) be the matriz from Definition 3.1. Let
a¥ : R — Aut TC*(E) be the action from Proposition 2.8. Let f € (0,00). Suppose
that ¢ is a KMSps state of (TC*(E),a¥), and define m? = (m?) by m¢ = ¢(p,). Then
the vector m® € |0, oo)EO satisfies the subinvariance relation B(y, 3)m® < m? and
Im?]ly = 1.

Proof. First, each m? is non-negative because ¢ is a state, and therefore a positive
functional. Next we show that m? satisfies the subinvariance relation B(y, 3)m® < m?.
Fix v € E°. If v is not a source then (TCK2) implies that ¢(p,) > >, m @(ses?) and

Z P(sesy) = Z P(scaip(se))

ecvE! ecvE!

= > e 9g(sts.)

ecvEl

= > e 9%(pye))

ecvEl

_ —By(e),,?
= Z € Mes(e)

ecvE!

S Y ey

weEY ecvElw

= Z B(y7 ﬁ)v,wmﬁ

weR0

(3.1) = (B(y, B)m?),.
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Hence (B(y, 8)m?), < é(p,) = m?. Otherwise v is a source. Then B(y, 3),., = 0 for
all w € E° and

(B(y, Bym®)y = > B(y, B)vuwms =0 < mj.
weE0
Therefore (B(y, 3)m?), < m¢ for all v, so m? satisfies B(y, 3)m® < m?.
Finally we show that |[m?||; = 1. Note that Y. g0 py is the identity of TC*(E).

Since ¢ is a state,

veE" veEQ veED

3.2 KMS states of (TC*(E),a?) at large inverse tem-

peratures

In this thesis, for A € M, (C), we denote the spectral radius of A by p(A). The purpose
of this section is to study the KMSg states of (TC*(E), a¥) for which 1 > p(B(y, 5)).
By Corollary A.14, the condition 1 > p(B(y,)) implies that (I — B(y,[3)) is an
invertible matrix, which is crucial in the following proofs. The following lemma tells
us that if this condition holds for one 3, it holds for all larger ', so we say such results

are for “large inverse temperatures”.

Lemma 3.3. Let E be a finite directed graph. Choose a weight function y : E* —
(0,00). For 6 € [0,00) let B(y,0) be the matriz from Definition 3.1. If 5 € (0,00)
satisfies 1 > p(B(y, 5)) and B’ > B, then 1 > p(B(y, ')).

Proof. Fix f' € (0,00) such that §° > . Then B(y, /' )vw < B(Y,)vw, and hence
0 < B(y,p") < B(y,p) in the sense of Section A.1. Then applying Corollary A.4
implies that p(B(y, ) < p(B(y, 3)). Thus p(B(y, 5')) < 1. O

Theorem 3.4. Let E be a finite directed graph. Choose a weight function y : E' —
(0,00). For 6 € [0,00) let B(y,0) be the matriz from Definition 3.1. Assume that
p € (0,00) satisfies 1 > p(B(y,5)). Let ¥ : R — Aut TC*(E) be the action from
Proposition 2.8.

(a) For w € E°, the series Y cpu, e P converges with sum x, > 1. Set x =

(z4) € [1,00)%°, and consider € € [0,00)"". Define m := (I — B(y, §))'e. Then

m € [0,00)%, and ||m||; = 1 if and only if e - x = 1.
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(b) Suppose that € € [0,00)"" satisfies e -z = 1, and set m := (I — B(y, 3))"‘e. Then
there is a KMSs state ¢. of (TC*(E), a¥) satisfying

(3.2) Fe(5u8y) = Gupe Wiy

(¢c) The set
S5 :={ee0,00)" ez =1}

1s a compact convexr subset of RE and F : € — e 15 an affine homeomorphism
of ¥g onto the simplex of KMSs states of (TC*(E),aY). For a KMSs state ¢ of
(TC*(E),a¥) let m® = (m?) be the vector with entries m¢ := ¢(p,). Then the
inverse of this isomorphism takes ¢ to (I — B(y, 8))m?.

Proof. (a) First we want to show that the series > p.,, e~ P either converges or is
finite. We start by showing that >
Then

(3.3) Z e By — Z Z e By(1) ZB

pneEE™Ww vEEY pevE™w veERO

pEE*w e~ P¥) converges. Let w € E° and fix n € N.

Since 1 > p(B(y, )), Corollary A.14 tells us that the series )~ B(y, 3)" converges
in operator norm with sum (I — B(y,3))"!. This implies that for every fixed v € E°
the series > ° | B(y, )y, converges. Then, by the algebra of limits,

S B, = 3 ( Jggnwimm)z,w)

vEE0 n=0 veEEOQ n=0

Now Equation (3.3) tells us that

D2 BuMin= ), ™,

veEO n=0 n=0 peE"w
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SO D 020D pemnw € () converges, and

> =3y

neE*w n=0 pe E"w

The sum is at least 1 because all the terms are non-negative and when n = 0,

B(yvﬂ)g,v = 1
Next, let x := (z,,) € [1,00)"" and fix € € [0,00)"". To see that m > 0, fix v € E°.
We want to show that m, > 0. We have

o= (=B ) = (ZByﬁ)

Every element of B(y, 5)" and € is non-negative, so m, must be non-negative.

Finally we want to show that ||m||; = 1 if and only if € - x = 1. Computing, we get

lmlly = m,

veE0

= 3 (- By, 8) o).

=ZZZB

vEEO n=0 weE°

-3 e ( S e*ﬁy(u)>

weRY nEE*w
= E Ewlw
weEY
= €-XT.

Thus ||m||; =1 if and only if - 2 = 1.
(b) First we need to find a state of (TC*(E),a¥). We build a state using the finite

path representation g+ defined in Proposition 2.3. For p € E* we set
(3.4) Ay, = e‘ﬁy(“)es(ﬂ),
and note that A, > 0. Taking h, as the point mass for y € £*, we aim to define ¢. by

(3.5) Pe(a) = Z Au(mgr(a)hy|hy)

pneE*
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for a € TC*(E). To show that Equation (3.5) defines a state, we need to show it is a
positive linear functional and that ¢.(1) = 1.

We first claim that = 1. We start by showing that >
converges. Fix v € E® and n € N . Then

Z e*ﬁy(u)es(u) — Z Z e*ﬁy(u)ew

nevkEn weE? pevE™w

- Z B(y, B)Z,wew

weEO

(3.6) = (B(y, 8)"€)w.

We know that "> (B(y,)"€), converges with sum ((I — B(y, 3)) '€),. Since, by
Equation (3.6),

_lgy(.u‘) ES

pnek* pnEVE* €

> B =D 3 Py,
n=0 n=0 pevEn

the latter converges absolutely. Using Equation (3.4), we can write

(3.7) my == ((I = By, )" e)

o0

ST e ey,

n=0 pevEn

= 3 P,

pneEvE*

= > A,

pneVE*

So > v B A, converges as well. Finally,
D=3 (X A= m=lmlhi=1
ueE* veE0  pevE* vEEOQ

Thus > ,cp- Ay =1, as claimed.
We now use that > pem Dy
a € TC*(E). Fix a € TC*(F). Then applying the Cauchy-Schwarz inequality,

= 1 to prove that Equation (3.5) converges for all

0 < |Au(mor(a)hylhy,)]
= |Aul[(mq,r(a)hulhy)]
< Aullmgr(a)hull|hl
< Aullmgr(a)|[|[hll?
< Ayllalf-1
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A, converges, Y A,lla]| converges and the comparison test tells us

Since ) -
that >~ cp-
absolutely.

pneE*
A, (mor(a)hy|h,)| converges. Thus )

wems Du(mor(a)hylh,) converges

Now we need to show that ¢. defines a positive functional on 7C*(FE). Linearity of
¢ follows from linearity of the inner product in the first variable. Next we show that
¢c(a*a) > 0. Since

pe(a*a) = Z Au(mgr(a*a)hulhy) = Z Ayu(ror(a)hulmor(a)hy,)
neE* pneE*

is a sum of non-negative terms, ¢.(a*a) > 0. Therefore ¢, is a positive functional.

Finally we need to show that ¢.(1) = 1. Applying Equation (3.7) gives

(1) = Z Ap(mr(L)hy|hy)

pneE*

= Z Au(lhulhu>

pneE*

=D Aullhl?

neE*
=2 A
pneE*

=1.

Now ¢, is a positive linear functional and ¢.(1) = 1, so it is a state.
Next we prove that ¢, satisfies Equation (3.2). Fix A € E*. Then
i} . . 1 ifA=pN=vXN
(mr(susy)hulhy) = (15 hA|Tuh>\) =
0 otherwise.
Since puX = v\ forces p = v, we have ¢.(s,s;) = 0 if u # v. So suppose that y = v.
Then
Se(spst) = Y ANTha|T) 1)

pneE*

= Z e_ﬁy(u)‘/)es()\/)

A=pN

=3 P
A=pN

— Z e*ﬁy(u)efﬁy(/\’)gs(m
A=pN

— o By Z Ay

Nes(p)E*
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Now Equation (3.7) gives ¢(s,s%) = e "W). Thus ¢, satisfies Equation (3.2).

Since @(py) = My, de(suss) = e W (py,), and Proposition 2.11(b) implies
that ¢. is a KMSg state.

(c) We first show that ¥z is a compact convex subset of R”", and then that F is a
homeomorphism.

We show that X3 is compact by showing it is closed and bounded. To see that ¥4
is closed in R®", take {e,} C X5 and € € [0,00)"" such that €, — . The dot product
is continuous from R”’ x R¥" — R, so ¢, — ¢ implies that €, - © — ¢- . But ¢, € X3
for all n, so €, - =1 for all n. Thus e- 2 = 1, that is, e € ¥3. Thus ¥z contains
all of its limit points, and is therefore closed. To see that ¥z is bounded, we show
it is contained in a ball of finite radius. Take ¢ € Yg. This implies that € -2 = 1,
that is, that > _po €2, = 1. Since z,, € [1,00) for all v € E°, 37 o€, < 1. Since
€, > 0 for all v € E°, we have 0 < ¢, < 1. Thus [[¢]|* = >, po €2 < |E°|. This implies
that X5 C B[0,|E°|] € R®’, so X4 is bounded. Since ¥4 is closed and bounded the
Heine-Borel theorem tells us that it is compact.

Next we show that ¥4 is convex. Fix k € N. For i € {1,...,k} take ¢; € [0, 1] such
that 3% ¢; = 1 and let {¢;} C $5. Then

k k
<Zciei> T = Z (Zciei> Ty
i=0 veE0 | i=0 v

k

== Z Z Ci(ei)vxv

/UEEO =0
k

= Z C; Z (ei)vxv

= veEEY
k

= Zci(ei - T)

k

=2
i=0

=1

Y

SO € = Zf:o ci€; € Xg. Thus ¥z is convex. We now know that X3 is a compact convex
subset of R”.

We now show that F'is a homeomorphism by showing that it is surjective, injective
and continuous.

To see that I : € — ¢, is surjective, let ¢ be a KMSs state. Proposition 3.2
tells us that m® := (¢(p,)) satisfies B(y,8)m? < m® and |[m?||; = 1. Take € :=
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(I — B(y,))m?. Then m := (I — B(y,3))"te = m?. So ||m||; = 1, and part (a) tells
us that € - = 1. Then we can apply part (b), which tells us that there is a KMSg
state ¢, satisfying Equation (3.2), so that

Pe(susy) = u,ue_ﬁyw)msm) = 5M7V€—ﬂy(u)mfw) = uwe—ﬁy(u%(psw))-

Then Equation (2.6) gives
Pe(su5,) = d(sus)).

Then linearity implies that ¢.(b) = ¢(b) for b in the dense x-subalgebra span{s,s}, :
p,v € E* s(u) = s(v)}. Therefore ¢ = ¢, so F' is surjective.

To see that F is injective, suppose that F'(¢) = F(€), that is, ¢. = ¢o. Let
m = (¢(py)) and m’ = (¢pe(py)). Then m = m/. Now ¢ = (I — B(y,5))m =
(I — B(y,B))m’ = €. Thus F is injective.

To see that F' is continuous, take {€,} C ¥g and € € ¥z such that ¢, — e. This
implies that ((I — B(y,8)) 'en)e — (I — B(y,)) te), for all v € E°. Therefore,
writing m,, for (I — B(y,3)) 'e,, we have (m,), — m, for all v € E°. This in turn

implies that
Ger (55%) = O™V () ) = Opwe™ ™ Wmgy = de(spsy),

for all pu,v € E*. Then linearity implies that ¢, (b) — ¢(b) for b in the dense *-
subalgebra span{s,s} : p,v € E* s(u) = s(v)}. Therefore ¢ — ¢ in the weak*
topology, so F'is continuous.

Since F'is a continuous bijection of a compact space ¥z onto a Hausdorft space
RE’ F is a homeomorphism.

Finally we show that F' is affine. Fix & € N. Suppose that {¢; : 1 <i < k} C ¥4
and {¢; € [0,1] : 1 <4 < k} satisfy Sr_, ¢; = 1. We need to check that F(3F  cie;) =
S ciF(e), that is, G5k oo (@) = S i, (a) for all a € TCH(E). Fix a € TC*(A)

. k
and write e = )., ¢;e;. Then

¢e(a) = Z Au(ror(a)hulhy)

HEEO
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¢€(a> = Z Ci Z Au,i(ﬂ-QT h |h Z Cz¢61

Thus F' is affine. O

3.3 Finding the critical inverse temperature [,

In this section we show that there exists a nonnegative number (. such that

p(B(y,fBe)) =1

and that this £, is unique. In the next section we will use this 5. to show that there
is a unique KMSg, state of (TC*(E),a?) when E is strongly connected. Since the
behaviour of KMSg, states change we call this the “critical inverse temperature”.

To find . we apply the Perron-Frobenius theorem (for example, [7, Theorem 2.6])
to B(y,#). This requires that B(y,#) is irreducible, that is, that for every pair v, w of
its index set there exists a positive integer m such that (B(y,6)™),. > 0. So, for a
function y : E* — (0,00) and 6 € [0, 00), we first show that B(y, #) is irreducible when
F is strongly connected (just as the vertex matrix A of E is irreducible if and only if
E is strongly connected). We assume that E is strongly connected for the rest of the

chapter.

Lemma 3.5. Let E be a finite directed graph which is strongly connected. The matrix
B(y, 0) from Definition 3.1 is irreducible.

Proof. An n x n non-negative matrix T is irreducible if for every pair v, w of its index
set, there exists a positive integer m such that (7),, > 0. Since the exponential
function takes positive values, B(y,0),., > 0 when vE'w # 0. Fix v,w € E°. Then
because E is strongly connected there exists a path from v to w. Let m > 0 be the
length of such a path, and label the vertices in the path as v = vy, vy,...,v, = w.
Then

B(y’ 0) > B<y7 e)vﬂyle(y7 0)”17“2 tee B(y7 9)7}”,177_)71*
Since each B(y,0)y, v, > 0, B(y,0)7", > 0, and B(y, ) is irreducible. O

We now extract the following result from [8, Theorem 6.9.6] to show there exists a

unique nonnegative number 5. such that p(B(y, 5.)) = 1.
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Proposition 3.6. Let E be a finite directed graph which is strongly connected and
choose a weight function y : E* — (0,00). For 6 € [0,00) let B(y,0) be the matriz
from Definition 3.1. Then the function 0 — p(B(y,0)) is strictly decreasing and there
exists a unique B, € [0,00) such that p(B(y,B.)) = 1.

Proof. First we show that 6 — p(B(y,0)) is strictly decreasing. Fix 60,6, € [0,0’]
such that 6 > 6y and v,w € E°. If vE'w = () then B(y,0)y.. = B(y,00)vw = 0. If
vEMw # (), since y takes positive values,

By, 0)w= 3. 9 < 3 e = By,6,),.,

ecvElw ecvElw
Take £ > 0 to be the Perron-Frobenius eigenvector for B(y, 6y), that is, the vector such
that B(y, 0p)¢ = p(B(y,0))E. Since E is strongly connected every row has w € E° such
that B(y,0)pw < B(y,00)vw- In addition &, > 0, so we have B(y,0){ < B(y,0y)¢ =
p(B(y,00))¢. Thus Proposition A.5(d) implies that p(B(y,0)) < p(B(y,6)), that is,
0 — p(B(y,0)) is strictly decreasing.

Next we prove the existence of a non-negative solution to p(B(y, 8)) = 1 by applying
the intermediate value theorem.

We first claim the function 6 — p(B(y,0)) is continuous. Fix 6, > 0. Lemma 3.5
tells us that B(y, ) is irreducible, so Proposition A.7 tells there exists a vector £ > 0
such that B(y, 6y)¢ = p(B(y,00))¢. Define numbers a := min¢, and b := max&,; then
a and b are both greater than zero because £ > 0. Let n = |E°| and fix € > 0. The
entries B(y, 6),. of B(y,#) are continuous functions of 6, so there exists 6 > 0 such

that if |0 — 6y] < 9, then

ae
(38) |B(y7 0)’0,11) - B(y7 90)v,w| < %

for all v,w € E°. For | — 6y| < § and v € E° we have

(B(y7 0)6)1} = Z B(y7 Q)U,wfw

weR0
- Z B<y> 90)v,w€w + Z (B(% e)v,w - B(?/, GO)v,w)gw‘
weEO weEO

Now by Equation (3.8),
(B(y,0)8)y < Y By, 00)owbu + Y b

weRO weEo

ae

< (p(B(ya 60)) + e)gv
= ((p(Bly.00)) + )¢) .
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This implies that B(y, 0)¢ < (p(B(y,6)) + €)§. Thus Proposition A.5(d) implies that
p(B(y,0)) < p(B(y,0))+e. We can do a similar calculation to show that p(B(y,0)) >
p(B(y,6y)) — €. For |0 — 0y| < § we have

(B(y,0)€)0 = Y By, 0)uubu

weR0
=Y B, 00)owbo — > (BW.00)vw — By, 0)vw)su.
weE0 weE0

Now by Equation (3.8),

(B(yv 0)5)1} > Z B(y7 QO)U,wéw - Z %fu}

we k0 weRO

> p(B(y, 00))& —n-—b
> (p(B(y. bh)) — €)&
= ((o(B(y.00)) - €)6) .

v

This implies that B(y,0)¢ > (p(B(y,00)) — €)§. Thus Proposition A.5(c) implies that
p(B(y,0)) > p(B(y,0)) — €. Therefore

|0 — 60| < =>|p(B(y,6h)) — p(B(y,0))] <e.

Thus 0 — p(B(y,#)) is continuous, as claimed.

Now that we know 6 — p(B(y,0)) is continuous we can apply the intermediate
value theorem. First we need to find two endpoints. Take # = 0, then B(y,0) is the
vertex matrix A of E. Since the graph is strongly connected, each row of B(y,0) has
at least one entry greater than or equal to 1. In other words, for all v € E° there
exists w € E° such that B(y,0),. > 1. Let 1" be the vector with all entries 1. Then
> wero B(y,0)pw > 1 for all v € E° so B(y,0)1" > 1". Thus Proposition A.5(a)
implies that p(B(y,0)) > 1. Since # is non-negative and y takes positive values,
B(y,0)yw — 0 as § — co. Therefore, for large enough # we have B(y,6),,, < 3 for all
v,w € E°. Take ¢’ to be such an §. Then B(y,¢')1" < (3)1". Then Proposition A.5(b)
implies that p(B(y,#')) < % Now, by applying the intermediate value theorem on the
interval [0, €], there is a solution /. € (0,6’) to the equation p(B(y, 5.)) = 1.

Finally, since the function 6 — p(B(y,0)) is strictly decreasing, (. is unique. [

Remark 3.7. If we take y to be the function such that y(e) =1 for all e € E*, then
we get B(y,0) = e %A. Then p(B(y,0)) = p(eA) = e=?p(A), so the uniqueness in
Proposition 3.6 tells us that . = Inp(A). This is the critical inverse temperature of
the KMS states for TC*(E) and C*(E) with the gauge action, as studied in [17].
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3.4 KMS states of (TC*(E),a¥) at the critical in-

verse temperature

In this section we show the existence and uniqueness of a KMSg, state for (TC*(E), V)
when F is strongly connected. We call (3, the critical inverse temperature and also show
that there are no KMSg states of (TC*(E),a¥) when 5 < f..

Choose f3. to be the unique . such that p(B(y,5.)) = 1, obtained by applying
Proposition 3.6. We now show the existence of a KMSg, state, following the methods
of [17, Proposition 4.1] and [17, Corollary 4.2].

Proposition 3.8. Suppose that E is a finite directed graph which is strongly connected.
Choose a weight function y : E' — (0,00). For 6 € [0,00) let B(y,0) be the matriz
from Definition 3.1. Let (3. be the unique B such that p(B(y,B.)) = 1. Let o¥ : R —
Aut TC*(E) be the action from Proposition 2.8. Then (TC*(E),a¥) has a KMS;,

state.

Proof. We first want to find m such that ||ml|; = 1 and B(y, 5.)m < m. Choose a
decreasing sequence {3,} C (8., 00) such that 8, — f.. Fix n € N. Take x as defined
in Theorem 3.4(a). Choose €, € [0,00)"" such that €, - 2 = 1. Then Theorem 3.4(a)
implies that m,, = (I — B(y, 8,)) '€, has ||my,||; = 1. Then

0 S €n = ([ - B(ya Bn))mn =Mn — B(ya 5n)mn7

so B(y, fn)m, < m,. By passing to a subsequence, we may assume that {m,} con-
verges pointwise to m, say. Then taking n — oo tells us that B(y, 5.)m < m.

We now want to apply Theorem 3.4(b) to get a sequence of KMSg, states. De-
fine € := (I — B(y,B,))m. We claim €, € [0,00)"". Since 8, > . we have
0 < B(Y, Bu)oaw < B(Y, Be)vw for all v,w € E® and therefore m satisfies B(y, 3,)m <
B(y, B.)m < m. Then

So ¢ € [0,00)", as claimed. Thus we can apply Theorem 3.4(a) with § = $3,, which
tells us that €/, - = 1. We can then apply Theorem 3.4(b), which gives a KMSg, state
¢n satisfying

(39) QSTL(S#S::) — 5#,1/6_’8"?!(#)7”5(“)'
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Since the state space of TC*(FE) is weak* compact we may assume that by passing
to a subsequence that the sequence {¢,} converges to a state ¢. Taking n — oo in

Equation (3.9) tells us that ¢ satisfies
(3.10) (5u8,) = G PV Pmy.
Proposition 2.11(b) then implies that ¢ is a KMSg, state. ]

We now follow the method of [17, Theorem 4.3] to show uniqueness of this KMSg,

state.

Theorem 3.9. Suppose that E is a finite directed graph which is strongly connected.
Choose a weight functiony : E' — (0,00). For6 € [0,00) let B(y,0) be the matriz from
Definition 3.1. Let oV : R — Aut TC*(E) be the action from Proposition 2.8. Let (3, be
the unique number such that p(B(y, 5.)) = 1, which we know exists by Proposition 3.6.

Let £ = (&,) be the unimodular Perron-Frobenius eigenvector of the matriz B(y, B.).

(a) The system (TC*(E),a¥) has a unique KMSs, state ¢. This state satisfies
(3.11) G(5,55) = Oppe PVIE .

(b) If B < Be, then (TC*(E),a¥) has no KMSs states.

Proof. (a) We proved existence of ¢ in Proposition 3.8. Proposition A.7 tells us that ¢ is
the unique vector such that B(y, 5.)¢ = p(B(y, 5.))§ and ||£]]; = 1. Then we can take &
as m in Proposition 3.8, and Equation (3.10) tells us that ¢ satisfies Equation (3.11). To
establish uniqueness, suppose that 1 is a KMSg, state. Then Proposition 3.2 says that
m¥ = (¥(p,)) satisfies B(y, B.)m¥ < m¥ and ||m¥||;. Since p(B(y, 8.)) = 1, applying
Proposition A.8 gives B(y, B.)m¥ = m¥. Thus m¥ = £. Finally, fix u,v € E*. Then
Equation (3.11) gives

¢(8y82) _ #’Ve—ﬂy(u)gs(u) _ #,Ve—ﬁy(u)m:fw) _ 5%”6—631(#)15(},8(#))'

Therefore Equation (2.6) tells us that
P(susy) = V(sus,),
SO ¢ = 1.
(b) Suppose that ¢ is a KMSg state of (TC*(E),a¥). Then Proposition 3.2 implies
that m® := (é(p,)) satisfies B(y, 8)m?® < m?. In other words, m? is subinvariant.

0 pointwise, Proposition A.9 implies that 1 > p(B(y,)). Therefore
p(B(y, B)), so by Proposition 3.6, 8 > f.. ]

Since m?

p(B(y, bc))

>
>
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3.5 KMS states of (C*(F),a”)

In this section we define an action @¥ : R — AutC*(E), and show when a KMS
states of (TC*(FE),a¥) factors through a KMS state of (C*(E),a"). We then deduce
uniqueness of the KMS state of (C*(F),aY) from uniqueness of the KMSgs, state of
(TC*(E),aY).

Lemma 3.10. The set

P = {pv - Z sess v € B, vis not a source}

consists of elements which are fized by oV.

Proof. Fix t € R and v € E° such that v is not a source. Then

of (pv - Z 833:> = af(p,) — O‘%( Z 838:>

ecvE! ecvE!
_ ) *
=Dv — E ay (Sese)
ecvEl
it(y(e)—y(e *
—p— 3 O 5
ecvEl
= Py — E eoses:
ecvE!
*
=Py — E S¢S, ]
ecvEl

Remark 3.11. Recall that we are viewing C*(E) as the image of the quotient map
q: TC*(E) — TC*(E)/J for the ideal J generated by P, and that the kernel of
q is J (Remark 2.7). Lemma 3.10 tells us the set P consists of elements fixed by

af : ker ¢ — ker ¢, so it induces an automorphism @; of C*(F) such that
@/(q(a)) = q(@/(a))
for all a € C*(E). We therefore have an action @ : R — Aut C*(E).

We now use the method of [17, Proposition 2.1(d)] to show when a KMS state of
(TC*(E),a?) factors through C*(E).

Proposition 3.12. Let E be a finite directed graph. Let B € (0,00). Choose a weight
function y : E' — (0,00). For 6§ € [0,00) let B(y,0) be the matriz from Definition 3.1.
Let o¥ : R — Aut TC*(E) be the action from Proposition 2.8. Let ¢ be a KMSy state
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of (TC*(E),a¥) and m® = (m?) be the vector with entries m? = ¢(p,). Then ¢ factors
through C*(E) if and only if

(3.12) (B(y, Bym?), = m¢ whenever v € E° is not a source.

(2

Proof. In the forward direction assume that ¢ is a KMSs state of (TC*(E), o) and
that ¢ factors through C*(E); that is, there is a state ¢ of (C*(F),a¥) such that ¢
is the composition 1 o ¢ with the quotient map ¢. Choose v € E° and suppose that
v is not a source. We want to show that m? = (B(y, 8)m?®),. Define 5, := q(s.) for
all e € E' and p, := q(p,) for all v € E°. Lemma 2.6 then tells us that {p,,s.} is a
Cuntz-Krieger E-family which generates C*(E). Because p, = Y c, g1 5ess,

o(po)

o q(py)

(Do)

(5 )

ecvE!

=o( Y alses?)

ecvE!

= ) Yoq(ses;)

ecvEl

= Z Cb(SeS:)-

ecvEl

my,

I
< g <

Thus Equation (3.1) implies that m¢ = (B(y, 3)m?),.

For the reverse direction, we suppose that ¢ is a KMSg state of (TC*(E),aY)
satisfying Equation (3.12). We want to apply [17, Lemma 2.2] to the set P defined in
Lemma 3.10, noting ker ¢ is the ideal generated by P (Remark 2.7).

First we need to show that we have met the conditions of [17, Lemma 2.2]. Choose
v € E° and suppose that v is not a source. Then p, > Y ecort SeSs, 80 [32, Propo-
sition A.1] implies that p, — > . g Ses: is a projection. So P is a set of projec-
tions. Lemma 3.10 tells us that P consists of elements fixed by Y. Now we need
a set F of analytic elements such that for all a € F there exists an entire func-
tion f, such that a¥(a) = f,(2)a. Here F = {s;s} : p,v € E* s(u) = s(v)} and
of (s,st) = etWW—v0g ¢ So for a = s,s% € F, fa(z) = eWWvW) gatisfies
a(a) = fo(z)a.

Therefore F satisfies the conditions of [17, Lemma 2.2], and we can apply it. Fix
a KMS state ¢ and projection p € P. We want to show that ¢(p) = 0. Equation (3.1)
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implies that when v € E° is not a source

O(pe— 3 sest) = 6() = 30 0lsest) = ml — (Bly, Bym?). = 0.

ecvE! ecvE!

Thus [17, Lemma 2.2] tells us that ¢ factors through a state of C*(F). O

We now apply Proposition 3.6 to show that there is a unique 3 for which a KMSg
state of (C*(E),aY) exists.

Proposition 3.13. Let E be a finite directed graph which is strongly connected. For
0 € [0,00) let B(y,0) be the matriz from Definition 3.1. Suppose that ¢ is a KMSs
state of (C*(E),a¥). Then [ satisfies
(3.13) => ) e M(p,

weEY ecvElw

There is exactly one 5 which satisfies Equation (3.13), and it is the unique B such that

p(B(y,B)) = 1.

Proof. Let B € (0,00). Suppose that ¢ is a KMSs state of (C*(E),a¥). Then, for
e € E', applying the KMS condition gives

P(sesy) = QS(S:Q?,B(Se)) = QS(S:e_By(e)Se) = e—ﬂy(e)¢(szse) = 6_6y(e)¢(p8(e))~

Fix v € E°. Then, by (CK2),
Bp) = 3 olsest) = D0 e M lpa) = 3 3 e
ecvEl ecvEl weEL ecvElw
Introduce the vector m := (m,) = (¢(py)). Then
my, = Z B(yaﬁ)v,wmwa
weko

or alternatively m = B(y, f)m. Then Proposition A.9 implies p(B(y,3)) = 1. Now
Proposition 3.6 tells us that 3 is unique. O

Finally, we show uniqueness of the KMS state of (C*(E),aV).

Theorem 3.14. Suppose that E is a finite directed graph which is strongly connected.
Choose a weight function y : EY — (0,00). For 6 € [0,00) let B(y,0) be the matriz
from Definition 3.1. Let o¥ : R — Aut TC*(E) be the action from Proposition 2.8. Let
Be be the real number such that p(B(y, B.)) = 1. The state ¢ from Theorem 3.9 factors
through a KMSjy, state ¢ of (C*(E),a"), and this is the only KMS state of (C*(E), ).
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Proof. Since ¢ is a KMS state, Proposition 3.2 tells us m® = (¢(p,)) satisfies
By, Be)m?® < m?.

Then applying Proposition A.8 gives B(y, B.)m® = m?. Since E is strongly connected
it has no sources, so we can apply Proposition 3.12, which tells us that ¢ factors through
a KMSg, state ¢ of (C*(E),a¥).

To show uniqueness, suppose that ¢ is a KMSz state of (C*(E),a?). Propo-
sition 3.13 tells us that [ satisfies p(B(y,5)) = 1. Proposition 3.12 implies that
B(y, 3)m¥°? = m¥°?. Now Theorem 3.9(a) implies that ¢yoq = ¢ = doq,so¢ = ¢. [

Remark 3.15. If we define y by y(e) = 1 for all e € E', then 8. = Inp(A) (Re-
mark 3.7). We therefore recover [17, Theorem 4.3] (which studies what happens at the

critical inverse temperature for the gauge action) from Theorem 3.9 and Theorem 3.14.

Remark 3.16. Theorem 3.14 implies the main result of [20, Section 4.3]; that there
exists a KMSg state of (C*(E),aY) if and only if 8 is the unique positive number for

which Perron numbers exist.

3.6 Examples

We finish the chapter with two examples which show that interesting examples exist.

Example 3.17. Let E be a directed graph with one vertex v and two edges e and f,

as follows

e
g
f
We want to find a nontrivial function y such that (7C*(E), o¥) has a unique KMSg,
state. To do this we want to find y and 5. such that p(B(y, 5.)) = 1. By the definition

of the spectral radius we want e %¥(¢) 4 ¢=#(/) = 1. Then

1 1

ech(e) T eﬂcy(f) =1

We can take p,q € (1,00) which are conjugate indices, that is
1 1

S4s =1
P q
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Then taking y(e) = lg—cp and y(f) = lg—cq satisfies our requirements. For example, we can
take p =3, ¢ = % and . = 2. Then Theorem 3.9 tells us there is a unique KMS, state
for (TC*(E),aY), and Theorem 3.14 then tells us this state factors through a KMS,

state of (C*(E),a).

Remark 3.18. As we have remarked throughout the chapter (Remark 3.7 and Re-
mark 3.15), by taking y(e) = 1 for all e € E' we can use our results to study KMS
states for the gauge action, as studied in [17]. The reason our results look a little
different to [17] is that B(1,8) = e #A, so the e=# scaling term is contained within the
matrix B(y, §) rather than explicitly in the formulas.
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Chapter 4

KMS states of C*-algebras for
infinite graphs with the gauge

action

The goal of this chapter is to generalise [17] to study the KMS states of (TC*(F), «)
and (C*(E),a) for row-finite infinite graphs with no sources. By infinite we mean
graphs E = (E° E',r,s) for which E° and E' are potentially infinite sets, and recall
that no sources means that vE* # ) for all v € E°.

Let a be the dynamics associated to the gauge action, as in Section 2.3. We start
the chapter by characterising the KMS states of (TC*(E),a). To study the KMS
states of (TC*(F), «) at large inverse temperatures we present some background from
Banach spaces and then find an isomorphism between KMS functionals and a subset
of /'(E"). We then show when the KMS states of (TC*(E), a) factor through C*(E).
Finally we give an example from [3] to show that we cannot guarantee existence of the
KMS states of (C*(E), @) for infinite graphs.

Remark 4.1. We do not attempt to extend the results of Chapter 3 to study the KMS
states of (TC*(E),a¥) and (C*(E),aY) row-finite infinite graphs with no sources. The
reason for this is generalisations of the Perron-Frobenius theorem typically require a
compactness hypothesis on the operator, and it would be difficult to show that the
operator 6 — B(y, ) from Chapter 3 is compact.

4.1 Characterising KMS states of (TC*(E), «)

In this section we characterise the KMS states of (TC*(FE), «).
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When E has infinitely many vertices, 7C*(E) does not have an identity. Instead

we use the following approximate identity.

Lemma 4.2. Choose a listing {vi,vs,...} of E°. The sequence

{Z pvn}N

is an approximate identity of TC*(E).

Proof. This follows from [32, Lemma 2.10] (the argument in [32, Lemma 2.10] is for
C*(FE) but carries over for TC*(E)). O

Lemma 4.3. Let ¢ be a state of TC*(E) and for v € E° define m,, := ¢(p,). Then
> wepo My = 1. In particular, m = (m,) € ('(E°).

Proof. Choose a listing {vi,vs,...} of E°. Lemma 4.2 tells us that the sequence
{ijzlpvn} N is an approximate identity of 7C*(FE). Then [35, Lemma A7(a)] im-
plies that

N N N
veE0 n=1 n=1 n=1
Thus ||ml|j; =1, so m € (*(EY). O

We can now characterise the KMS states of (7C*(E), «), using the method of [17,
Proposition 2.1].

Proposition 4.4. Let E be a row-finite directed graph with no sources. Let 3 € (0,00).
Let v be the gauge action and define oy := it

(a) A linear functional ¢ satisfies the KMS condition if and only if
(4.1) o(sus),) = 5%,,6_5'“'(;5(]95(#)) for all p,v € E*.

(b) A state ¢ of TC*(E) is a KMSs state of (TC*(E),«) if and only if ¢ satisfies
Equation (4.1).

(c) Suppose that ¢ is a KMSs state of (TC*(E), ), and define m® = (m?) by m¢ =
d(py). Then m® satisfies the subinvariance relation Am® < e’m?. In addition,

|m?]l; =1 and
m? € (Y(E") .= {(m,) € ((E°) : m,, > 0}.
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Proof. (a) In the forward direction let ¢ be a linear functional satisfying the KMS
condition (Equation (2.5)). We want to show that ¢ satisfies Equation (4.1). Fix
w,v € E*. The KMS condition gives

(4.2) 0(su5,) = d(s,cip(s,)) = d(spe Ms,) = e Mo(s)s,).

We consider the cases |u| = |v| and || # |v| separately. For |u| = |v|, the product
formula (Equation (2.2)) implies that s}s, = d,,,ps(,), and Equation (4.2) gives

¢(3u3;) = €_m”‘¢(3§$u) = 5#,1/6_5‘“%(175(#))'

Next, suppose that |u] # |v|. If o doesn’t extend v and v doesn’t extend p then the

product formula tells us that s}s, = 0, so Equation (4.2) gives

O(susy) = e Mo (sys,) = 0.

Otherwise one of p, v extends the other, and |u| # |v|. Applying the KMS condition
again to Equation (4.2) gives

B(s,8%) = 6—5\#\(25(5;5“) — e_ﬁl“l(b(s“aw(s:j)) — e—a%(sﬂemwsi) — e—ﬁ(lul—\VI)(é(S#Sz).

Since e PUkI=IV) 2£ 1 it must be that ¢(s,s?) = 0, thus ¢ satisfies Equation (4.1).
Conversely, suppose that ¢ satisfies Equation (4.1). Applying Proposition 2.11(a)
with y(e) = 1 for all e € E° tells us that ¢ satisfies the KMS condition.
(b) In the forward direction let ¢ be a KMS state. Then ¢ is a linear functional
satisfying the KMS condition, so part (a) tells us it satisfies Equation (4.1).
Conversely, suppose that ¢ is a state satisfying Equation (4.1). Then part (a) tells
us ¢ satisfies the KMS condition, so it is a KMS state.
(c) Fix v € E°. Then, because the following sums are finite, applying Equation (4.1)

gives

Z ¢(568:) = Z 6_6¢(ps(e))

ecvEl ecvEl

= > e fmly,

ecvE!

DI IRT

weEY ecvElw

=7 Z lvE'w|m?

weR0

(4.3) = e (Am?),
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Since E is row-finite and has no sources, vE! is finite and v is not a source, so we can
use (TCK2) to get

() = 3 olsest) < Polp) = P
ecvEl

Next, Lemma 4.3 tells us that |m?||; = 1 and m? € (*(E®). Because ¢ is a positive
linear functional, each m¢ > 0, so m? € (*(E°)*. O

4.2 An isomorphism between (!(E") and cy(E°)*

We first give an explicit isomorphism between ¢*(E°) and cq(E°)*. This is well-known,

but we include the proof as it is difficult to find a direct proof in the literature.

Theorem 4.5. Suppose that E is a row-finite graph, and m € (*(E®). Then for
each f € co(E®) the series Y, pom(v)f(v) converges absolutely, and ®(m) : f
Y owepo m(v)f(v) is a bounded linear functional with ||®(m)| = [m|,. Then @ :

H(E®) — ¢o(E®)* is an isometric isomorphism.

Proof. Fix f € co(E®). We first want to see that ) _zo [m(v)f(v)| converges. Since
[f@)] < (1 flloo,

Y im@)f ) < Y im0 < Y m@)lfllse < llmlallf oo

veEEY veEEY veEO

Thus Y, cpo [m(v) f(v)| converges with sum less than or equal to ||ml1||f|lcc. Now
since [®(m)(f)| < [Iml|1[|f]loo, and

d
Hq)(m)Hco(EO)* = sup { (m>(f)|’
f€co(EV) ”fHOO

we have that ®(m) is a bounded linear functional with ||®(m)||(go) < [[m][1. To see
that

1 () [leo ()= = [l

fix € > 0. Choose a finite subset F' of E° such that >, _.|m(v)| > [|m|; — €. Define
fr by

fr(v) = m(v) " m(v)]
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for v € {v € F:m(v) #0}. Then fr € c.(E®) C co(EY). Now

[@(m)|| = [@(m)(fr)]
> Z m(v

vEEO

> > m(v)ym(v) " fm(v)]

vel

= Im(v)

veF

> [lmlls — e,

thus {|®(m)lle,(z0)- = [[mll1. Therefore [|®(m)[|ey(zo) = [[m]]s-

To see that @ is surjective let y € co(EY)*. We want to show there exists m € ¢! (E?)
such that ®(m) = y. Take, as a candidate, m defined by m(v) = y(xq). We first
want to see that m € ¢*(EY), which we do by showing ||m/|; < ||y||. Let F} be finite
sets such that Fj, C Fiy1 and -, F. = E° (these exist because E° is countable). For
each v € E° choose 0(v) such that m(v) = [m(v)[e”™). Define g := 3 cp e Wy,
Then for all k, we have [|gx||.c = 1, and

191l = Ty(g)]

( Z efiG(v)X{v}>

vEFY,

Z e —i6 v) X{v}

UEFk

= e
vEF},

:Z|m

veFy

Now the monotone convergence theorem tells us that the right hand side converges to
|m|l;. Thus m € ¢*(E"). Next we show ®(m)(f) = y(f) for all f € co(E). First, fix
g € c.(E®). Then



Finally, fix f € ¢y(E°) and choose g € ¢.(E°) such that ||f — g|| < 3Ty Lhen

[@(m)(f) = y(NI < N@m)(f = g)ll + 12 (mn)(9) — () + lly(g = S

€
< ()
op

€
op

€
+

Imlls=—
mii——— + =
Nllon 2
< fyllopm—— + =
= Wler oy llop 2
€ €

IR

Thus ®(m)(f) = y(f) for all f € ¢o(E), therefore ® is surjective.

To see that @ is injective fix m € ¢('(E°?) and suppose that ®(m) = 0. We want
to show m = 0. Since ®(m) = 0, [®(m)](f) = 0 for all f € ¢;(E°). In particular fix
w € E° and define f,, := x.,. Then

0=[em)](f) = D m)fulv) = Y mv)xw(v) = m(w).

veED veED
Because this is true for arbitrary w € E°, it is true for all w € E°, so m = 0. Thus ®
is injective.

Thus & is an isometric isomorphism. O

The following lemma tells us that pointwise convergence in ¢!(EY) implies weak*

convergence in cg(E°)*, which we will use in our next proofs.

Lemma 4.6. Suppose that {m,} is a norm-bounded sequence in (*(E®). Then ®(m,,) —
®(m) in the weak™ topology on co(E®)* if and only if m,(v) — m(v) for all v € E°.

Proof. Suppose that ®(m,) — ®(m). We want to show that m,(v) — m(v) for all
v € E°. Fix v € EY. Since ®(m,,) — ®(m),

D ma(w)f(w) = Y m(w) f(w)
for all f € ¢o(EY). Let f = x,. Then
D ma(w)xo(w) = Y m(w)x,(w).

Thus m,(v) = m(v).
Conversely, suppose that m,(v) — m(v) for all v € E°. Fix € > 0 and f € ¢(E").
We want to show that there exists N € N such that if n > N then ||®(m,)(f) —
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O(m)(f)| <e. Let M € N such that ||m,||; < M for all n € N, and choose g € c.(E°)
such that ||f — g|| < 55;. Since m,, — m pointwise there exists N such that n > N
implies that

€
3”9”1

[mn(v) —m(v)] <
for all v € supp(g). Then, taking n > N,

1@ (mn)(f) = 2(m)(f)]]
< 1@ (mn) (f = 9l + [[@(mn)(g) = D(m) ()] + |@(m)(g — )

€ €
<zt [®(m)(g) — @(m)(g)| + 3
2¢
=S+ X mag - Y m)ew)|
v€supp(g) vEsupp(g)
Since g € c.(E°) implies that the sums are finite,
2€
12 (ma)(f) = ()N < 5 + [mn(v) —m(v)||g(v)]
vesupp(g)
2¢ €
<5+ lg(v)]
3 ey Sllalls
2¢ €
RS
! vesupp(g)
Ty Sl
= 5 T o 19
3 3gll "
< €. ]

4.3 KMS functionals

A KMSs functional is a norm-decreasing positive linear functional which satisfies the
KMS condition. Because the Toeplitz algebra 7C*(E) has no identity when E is
infinite, the set of KMS states is not compact. This makes it difficult to find a home-
omorphism between the simplex of KMS states and a subset of ¢}(E°)", as in [17,
Theorem 3.1]. We therefore use the set of KMS functionals in our study of the KMS
states of (TC*(E), «) at large inverse temperatures.

As in [28, pg. 272], if S is a subset of a locally convex space X we call the smallest

convex set containing S the convez hull of S, denoted by co(.S).

47



Lemma 4.7. Fiz § € (0,00). Let co(KMSg U {0}) be the convex hull of the union of
the KMSgs states of TC*(E) and the O functional. Then

co(KMSp U{0}) = {c¢ : ¢ is a KMSy state,c € [0,1]}
= {KMSs functionals}

is weak™ closed and compact.
Proof. We first show that
(4.4) co(KMSs U {0}) = {c¢ : ¢ is a KMSj state, ¢ € [0, 1]}.

The right hand side of Equation (4.4) is contained in co(KMSzU {0}), so we only need
to show co(KMSz U {0}) is contained in the right hand side of Equation (4.4). The set
co(KMSg U {0}) is the intersection of all convex sets containing KMSg U {0} and thus
is the smallest convex subset of the KMSj functionals containing co(KMSgU{0}) ([28,
pg. 272]). Therefore, to show it is contained in the right hand side of Equation (4.4) it
suffices to show the right hand side contains the KMSg states and 0 functional and is
a convex set.

To see the right hand side contains the KMSy states take ¢ = 1, and to see it
contains 0 take ¢ = 0.

To see the right hand side is convex fix KMSp states ¢, ¢’ and ¢, € [0,1]. Then
co, ¢ € {cp : ¢is a KMSy state,c € [0,1]}. Fix t € [0,1], and take the convex
combination Y = tcg + (1 —t)’¢’. We want to show T € {c¢ : ¢ is a KMSj state, ¢ €
[0,1]}. If ¢ = ¢/ = 0 we have T = 0, so we assume c¢ # 0. We claim that || 1] <1
and Hg—” is a KMSp, state. Since ¢ and ¢’ are states, and therefore of norm 1, by the
triangle inequality gives

1T} = [[tcd + (L = )|l < tlellloll + (1 = )N <t +1-t=1.
Thus ||T|| < 1. Next we show that ﬁ is a KMSg, state. Since ¢ and ¢' are KMSg

states, they are positive linear functionals, so by linearity ﬁ is a positive linear func-

tional. Also by linearity ”—%‘ satisfies the KMS condition, so it only remains to show H%E_H

is a state, that is, || = || = 1. Since c¢ # 0 and ¢ is a state, there exists a € TC*(E)

k3l
such that co(a*a) > 0. In addition, ¢'¢'(a*a) > 0, so T(a*a) > 0, and therefore T # 0.
Then Hﬁ“ =1, so ﬁ is a state. Thus ﬁ is a KMSg, state. Therefore we have

proved our claim and Y € {ct : ¢ is a KMSg state, ¢ € [0, 1]}, so Equation (4.4) holds.
Next we show that

(4.5) {cp : ¢ is a KMSp state, ¢ € [0, 1]} = {KMSp functionals}.
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Fix a KMSs state ¢ and ¢ € [0,1]. Then it is clear ¢¢ is a norm-decreasing positive
linear functional satisfying the KMS condition, so the left hand side is contained in
the right hand side. Conversely, fix a KMSs functional . We want to show ¢ € {c¢ :
¢ is a KMSg state, ¢ € [0,1]}. If ©» = 0 take ¢ = 0 and we are done, so assume 1) # 0.
Then, noting

v

b=l ol

since 1 is norm-decreasing and u?ﬁ_u is of norm 1, and therefore a KMSg state, 1) € {c¢ :

¢ is a KMSj state, ¢ € [0, 1]}. Thus Equation (4.5) holds.

To see that co(KMSgU{0}) is weak™ closed suppose that {¢,,} is a sequence of KMSg
functionals such that ¢, — ¢ weak*. This means ¢, (a) — ¢(a) for all a € TC*(FE)
so it follows that ¢ is a norm-decreasing positive linear functional. Since the ¢, are
KMSg functionals,

¢n(ab) = on(baip(a))

for all analytic a,b € TC*(FE). The left hand side converges to ¢(ab) and the right
hand side to ¢(ba;s(a)), so ¢ satisfies the KMS condition. Thus co(KMSg U {0}) is
weak™ closed.

Finally we show that co(KMSgU{0}) is weak*-compact. The set of norm decreasing
positive functionals is a convex weak*-compact set by [28, Theorem 5.1.8]. We have
just shown co(KMSsz U {0}) is weak™ closed and it is a subset of the norm decreasing

positive functionals. Thus co(KMSg U {0}) is weak*-compact. O

4.4 KMS states of (TC*(E), ) at large inverse tem-

peratures

In this section we study the KMS states of (TC*(E), «) at large inverse temperatures
by finding a homeomorphism between the KMS functionals and the following set.

Lemma 4.8. Suppose that x € (*°(E°). Then the set

Y= {e cHENT:0< Z Ty < 1}

veEEY

is a weak*-closed, conver, compact set in {* = cf.
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Proof. First we show that Y4 is closed in ¢*(E°). Fix {¢,} € X5 and € € ¢}(E°) such
that €, — ¢ weak™. We want to show that e € X, that is, 0 < > _po 246, < 1. Let
F}, be finite sets such that Fj, C Fj4q and (J,o, Fy = E° (these exist because E° is

countable). Then, since €, — €, Y Ty(€n)y — EveFk Ty€y. Since €, € Xg for all

vEFY,
n, 0 < ZveFk Ty(€n)y < 1, therefore 0 < ZveFk Tp€y, < 1. Then 0 < ZveFk Tp€y <
Y e Fppy oo < 1 for all k, so we can apply the monotone convergence theorem to get
0 <>, cpo To€w < 1. Therefore € € X, so ¥ is closed in ' (E®).

Next we show that ¥ is convex. Fix y,z € ¥3 and ¢ € [0,1]. We want to show
that cy + (1 — ¢)z € g, that is 0 < Y _po 2y(cy + (1 — ¢)2), < 1. Since the sum is

linear,

O:cO—l—(l—c)Ochxvyv—i—(l—c)vazvgcl—i—(l—c)l:l.

veERY veERY

Thus Y3 is convex.

The Banach-Alaoglu theorem states that the closed unit ball of ¢!(E°) is compact
in the weak™ topology, and X5 is weak*-closed inside the unit ball, so it is also compact.
0

To find a homeomorphism between co(KMSzU{0}) and ¥ we need that the vertex
matrix A = (|[vE'w|)ywero is bounded, so we add the following condition (which is

stronger than locally finite).

Proposition 4.9. Assume that |s~'(w)| < K for allw € E°. Then the vertex matrix

A is a bounded linear operator on (*(EP).
Proof. Fix £ € (*(E"). Then

1AEl = D (A€,

veERD

- Z | Z Av,wgw‘

veEE0 weEko

<Y Al

vEEY weEo

= Z Z |Av,w||€w|-

vEEO we ko

20



Then, by Tonelli’s theorem,

lagh < 3 (3 Avw )l

weEY  veEo

- (Z vE"w]) Il

weEY veEo

=I5 (W)l

weR0

<K Y |l

weEo

< K¢

Thus A is bounded with ||All,, < K. O

We view A as a bounded operator on ¢'(E°), so we write p(A) for the spectral
radius of A € B(¢*(EY)).

Theorem 4.10. Let E be a row-finite directed graph with no sources such that |s~(w)] <
K for allw € E°. Take 8 > In(p(A)). Let v be the gauge action and define ay = i .

(a) Forv € E°, the sum xy = Y, po, e "W converges, and x := (x,) € (*(E°). In
addition, x, > 1 for allv € E°. Let ¢ € (*(E°)T and define m := (I — e PA)~!
Then m € ('(E°)T and ||m|ly = >, cpo Tv€o-

(b) Suppose that € € (*(E°)* and set m := (I —e PA) e, If 3, po 2v€y < 1 there is
a KMSs functional ¢, of (TC*(E),«) satisfying

(4.6) ¢e(3#3i) = 5u,ve_m#‘ms(u)'

Moreover, if ZveEo Ty€y, = 1, then ¢ is a KMSy state.

(c) For a KMS functional ¢ define m?® = (m?) by m¢ = ¢(p,). Then there is a linear
homeomorphism F : co(KMSz U {0}) — X3 defined by F(¢) := (I — e PA)m® for
all ¢ € co(KMSz U {0}).

Proof of Theorem 4.10 (a). We first want to show that the series ) e Al con-

pneE*v

ol



verges. We start by showing that ZueE*v e Pl converges. Fix v € E°. Then

Z e Blul — Z Z e Bn

pneEE*w n=0 pe E"w

= i Z e P v Emw|

n=0 vy E°

n=0 ye E0

Then, applying Tonelli’s theorem,

Z e Bl — Z ie_ﬁnAZ,w-

pneEE*w veEOY n=0

Proposition 4.9 implies that A is a bounded operator on ¢*(E°). In addition, 8 >
In(p(A)), so we can apply Corollary A.14, which tells us that the series > 2 e #"A"
converges in the operator norm to (I — e ?A)~! € B({*(E)). This implies that for
every fixed v,w € E° the series Y > e /" A7 = converges to (I —e PA), . Then, with
h, € (*(E°) the point mass at w,

Ty = Z e Blul

uneE*w

=> ie_ﬁ "AG

veE0 n=0

=Y (I—e’A),),

veED

—Z (I — e PA) " hyl.

veERD

Since (I — e PA)~ >0,
47 we= (I =P hylli < (1= e A loplhull = (1 = €7 A) ™ [lop.

Thus x € (*°(E°) with ||z||e < ||(I — e PA)7|op. Each x, is at least 1 because all the

terms in the series Equation (4.7) are non-negative and when n = 0, e ?"A? =1
Next, fix e € 1(E°)T. Since (I — e PA)~t € B({*(E?)), and (I — e PA)~! >0,
m = (I —ePA)"te € (L(E°)T too.
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Finally,

Il = m,

—vi I —ePA) e,
T (e

= Z Z Z e*B"Agywew

veE0 n=0 we ko

= ew( S e—mm)

weFR0 pnEE*w
= E Ewlw- ]
weE°

To prove that ¢, is a state in the next part of the theorem, we will need the following

Lemma, a converse to [35, Lemma A7(a)].

Lemma 4.11. Let ¢ be a norm-decreasing, positive linear functional, and {e;} an

approzimate identity in A such that ¢(e;) — 1. Then ||¢| = 1.

Proof. The sequence {|¢(e;)|} is bounded above by 1, and since ¢ is positive, it is

increasing. Therefore {|¢(e;)|} converges to its supremum, so
sup{[p(e;)|} = 1.
{ei}

Then, since ||e;]| > 1,

ol = sup {|¢(a)]} = sup{[d(ei)[} = 1.
{llall<1} fei}

In addition, ¢ is norm-decreasing, and in particular ||¢[ < 1, so [|¢|| = 1. O]

Proof of Theorem 4.10(b). Fix € € (*(E") and take m := (I —e#A)~te. We first want
to define ¢, then show it is a positive linear functional on (7C*(FE),a¥), and that it
satisfies the KMS condition and Equation (4.6). We then assume that ) _po Zy€, = 1
and show that ¢, is a state.

We build a linear functional by representing 7C*(E) on (*(E*). Let mgr be the

finite path representation from Proposition 2.3. For u € E* we set

Ay = e ey,
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and note that A, > 0. We aim to define ¢, by

(4.8) de(a) = Y Au(mgr(a)hylhy,) for a € TC*(E).

neE*

We first show that the sum in Equation (4.8) converges. To do this we claim that
> pem By = |Im]l1. We start by showing that > . 5. e Plrleg () converges. Fix v € E°
and n € N. Then, since the graph is row-finite, that is, [vE"| < oo,

Z e—ﬁlulgs(u) — Z Z e—ﬁlulew

pnevE™ weE? pevE™w

=D AL

weEo

(4.9) = (e7P"A"),.

Now 3 > In(p(A)), so Corollary A.14 tells us that >~ (e7?"A"¢),, converges with sum
(I — e PA)~te), = m,. Then, by Equation (4.9),

o0

S (e ane), Z S e e,

n=0 n=0 pevEn

and since F is row-finite the second sum is finite. Since the sum of non-negative entries

over a countable set is independent of the listing of the set, we have

(4.10) Z Z —Blule, Z e—ﬂ\u\es(u) — Z A,.

n=0 pcvEn HEVE* HEVE*

Therefore ) p also converges with sum m,. Then, by Tonelli’s theorem,

uEvE*

(4.11) Yoa=Y ( 3 A#> =" m, = |m].

nEE* veEE0  pevE* veE"

We now use this to prove that Equation (4.8) converges for all a € TC*(E). Fix
a € TC*(E), then, applying the Cauchy-Schwarz inequality,

0 < |Au(mor(a)hylhy,)]
= |1Aull(mor(a)hylhy)]
< Aullmgr(a)hu [l
< Aullmgr(a) [l hll?
(4.12) < Aylal -1
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A, converges, Y A,lla]| converges and the comparison test tells us

Since ) - e
that > g [Au(mgr(a)hyulh,)| converges. Thus -
absolutely for all a € TC*(E).

We can now show that ¢, defines a positive functional on 7C*(E). To do this we
need to show linearity, that is, that ¢.(wa+2b) = weo.(a)+z¢.(b) for all a,b € TC*(E)
and w, z € C, and that ¢.(a*a) > 0 for all « € TC*(E). Fix a,b € TC*(F) and ¢ € C.
First we show that ¢.(wa + 2b) = we.(a) + z¢.(b). Since Equation (4.8) converges for

all a € TC*(E), using the algebra of series,

woe(a) + 2¢:(b) = w Z A#(WQ,T((I)humu) +z Z Au(WQ,T@)humu)

pneE* neE*

= Z A, (w(wQ,T(a)hu!hu) + Z(WQ,T(b)thu))

pnek*

wems Du(mor(a)hylh,) converges

= 3" Aul(wrgr(a) + 2mgr (b)) hylhy)

neE*

= Z Au(ror(wa + 2b)hy|hy,)

neE*

= ¢c(wa + 2b).

Next we show that ¢.(a*a) > 0. By definition of ¢,

Pe(aa) = Z Au(mgr(a*a)hy|hy).

pnek*
Since A, (mgr(a*a)h,|h,) is nonnegative for each p, the sum is nonnegative, and
¢c(a*a) > 0. Thus ¢, is a positive linear functional.
Next we prove that ¢, is norm-decreasing. Fix a € TC*(FE), then
Pe(a)] = | Z Au(dgr(a)hylhy)| < Z |Au (b r(a)hyulhy)l-
pnek* pnek*
So by Equation (4.12),
[0c(a)] < Y Ayllal.
peE*
By Equation (4.11), [¢c(a)| < [lm[L[all, and by part (a), [pc(a)] < 32.cpo zveullal-
Since Y, po Tu€y < 1, [@c(a)] < ||al|. Therefore ¢, is norm-decreasing.
Next we prove that ¢, satisfies Equation (4.6). Fix A € E*. Then
1 ifA=pN=vX

(m@r(susy)halhy) = (TyhA T hy) =
0 otherwise.
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Since puX = v\ forces p = v, we have ¢.(s,s;) = 0 if u # v. So suppose that y = v.
Then Equation (4.10) gives > ., p. A, = my, 50
Se(spst) = Y ANThalT; )

neE*

_ —BluN|
o Z € €5

A=pN

A=pN

_ —Blul ,—BIN|
= Z e e Es(nr)

A=pN

— o Blul Z Ay

Nes(u)E*

_ 6—5\u\ms(u).

Thus ¢, satisfies Equation (4.6).
Next we show that ¢, satisfies the KMS condition. Fixing v € E° and calculating
®¢(py), by Tonelli’s theorem we get
¢6(pv) = Z AM(WQT(pv)hulhu)

HEE*

= Z Au(thu’hu)

pneE*

= Z Z Au(thu‘hu)-

weE? pewk*
Then, since Q,h, = 0 if v # s(p),
Sepo) = > Du(Quhylhy) = Y Ay =my,
peEVE* peEVE*

Therefore

¢6(3M3;) = 5M7V€_me5(ﬂ) = 5M7V€_6M¢6(p5(u))'

Now Proposition 4.4(b) tells us that ¢, is a KMSs functional.

Finally, assume that ZUE go Tp€y = 1. Then we want to show that ¢, is a state,
that is, that [[¢c|| = 1. Because ) _po vy = 1 part (a) tells us that |m|, = 1.
Choose any listing {v,} of E°. Lemma 4.2 tells us that the sequence {37 p, }u is
an approximate identity of 7C*(E). Since Quh, = 0y r(u) Py

¢e<ipvn> = Z AM(innhumu) = Z iAu(Qvnhu‘hu) = Z iAM'

peE* n=1 peE* n=1
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Then, by the algebra of series,

¢(§jlp) 3 Y 4,

n=1 pcv, B*

23X A,

n=1 pcv, £*

:ZAN

neE*
= [Imll

=1
Now Lemma 4.11 implies ¢, is a state. O

Proof of Theorem 4.10 (¢). We aim to find a homeomorphism F between co(KMSgz U
{0}) and X4, noting that the topologies on both spaces is the weak* topology.

First we show that the range of F' is contained in ¢*(E). Fix ¢ € co(KMSzU{0}).
Since ||m?||; <1,

IF @)l = (I = e P A)m? ||y < 1T — e P Allop[m? [y < [T — €™ Allop.

Since A € B(*(E®)) implies that I —e# A € B(¢*(E)), its operator norm is finite, so
F(¢) € (1(E?).

Next we show that F is linear. Let ¢,d € R and ¢, € co(KMSg U {0}). We need
to show that F'(cp + dip) = cF(¢) + dF (¢). Fix v € E°. Then

Fleg +dv), = (I — e P Aymeote

_ Z (I — e_BA)U,wmed""w

= > (I —ePA)yulcd + di](pn)
=c Y (T—ePA)udpn) +d Y (1= e PA)u(pu)
= [cF(¢) + dF(w)} R

Thus F' is linear.
Since co(KMSgz U {0}) is weak*-compact (by Lemma 4.7), to prove that F' is a
homeomorphism it is enough to show that it is surjective, injective and continuous.
First we show that F' is continuous. F maps elements from co(KMSg U {0}) C
TC*(E)* to X5 C (*(E?). We want to show that F' is weak* to weak* continuous, and
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we use ® to identify (1 (E) as ¢o(E®)*. Suppose that ¢, — ¢ weak® in TC*(E)*, that is,
for all a € TC*(E), ¢n(a) — ¢(a) in C. We want to show that ® o F(¢,) — o F(¢)
weak* in co(E°)*. By Lemma 4.6, it suffices to show that F(¢,), — F(¢), for all
v € E°. Computing:

F(én)y = ((1 _ e*ﬁA)m%)U
= Z (I — e PA)yymor

weE°

- Z (I - e_ﬂA)v,wgbn(pw)
weEo

= ¢n<pv) - Z e_ﬁAv,w¢n(pw)'

weEO
Now, since ¢, (a) — ¢(a) for all @ € TC*(E) and the sum above is finite (because F is
row-finite),

F((bn v an pv Z e vw¢n pw)

weEO

Z e vw¢ pw _F(¢)U'

weE°
Thus F is weak* continuous.

Next we show that [ is injective. Let ¢ € co(KMSgU{0}) such that F'(¢) = 0. We
want to show that ¢ = 0, and it suffices to show that ¢(s,s}) =0 for all u,v € E*. We
have F(¢) = (I — e PA)m? = 0. Now 8 > In(p(A)) implies that [ — e P A is invertible
in B(*(EY)), and in particular is injective, so m? = 0. Then ¢(p,) = 0 for all v € E°.
By Proposition 4.4(a), this implies that ¢(s,s}) =0 for all y,v € E*, so ¢ =0 and F
is injective.

Finally we show that F' is surjective. Fix ¢ € ¥, and then part (b) gives ¢. and
m = (I — e PA)7te. Fix p € E*. Comparing Equation (4.6) with Equation (4.1) tells
Us My(u) = Pe(Ps(n)), and mf(#) = ¢e(ps(uy) by definition. Therefore m = m?, so

Flp) =T —ePAm? =T —ePAm=(1—-ePAI-ePA)e=c¢,

so F'is surjective.

Then, since F'is surjective, injective and continuous, it is a homeomorphism. [

4.5 KMS states of (C*(F), @)

Since the quotient map g of TC*(E) onto C*(F) is gauge-invariant we get an action of

R on C*(E), which we call @. In this section we show when a KMS state of (7TC*(E), @)
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factors through C*(E).

Proposition 4.12. Let E be a row-finite directed graph with no sources. Let § € (0, 00)
and A be the verter matriz of E. Let v be the gauge action and define oy = Yer. A
KMSg state ¢ of (TC*(E), ) factors through C*(E) if and only if (Am?), = e®m? for
allv € E°.

Proof. We follow the method of [17, Proposition 2.1(d)]. Fix v € E° By [17,
Lemma 2.2] it suffices to check that ¢(p, — Y .copi Sest) = 0 if and only if (Am?), =
e?m¢. Applying Equation (4.3),

o= Y sest) = 0lp) — o Y sest)

fevEl fevEl

= QS(pU) - Z QS(SES:)

fevEl
= ¢(py) — ¢ 7 (Am?),
=m® — e P(Am?®),,.

Multiplying both sides by e we see that gb(pv — D ecw
(Am?®), = e®m?. O

Bl ses:) = 0 if and only if

4.6 An example

The following example from Carlsen and Larsen [3, Example 7.2] shows that the exis-
tence of KMS states of (C*(F), ) for infinite graphs is not guaranteed, even when the
graph is strongly connected. It is proved here using the same method as [3, Example

7.2], but applying our results instead of those in [3].

Example 4.13. Let E be the graph defined as follows

€_1 €0 €1 €9
N T N TN TN
e Vo U1 (D) e
N N N N
Jo1 fo fi fa

Fix 5 € (0,00) and suppose that there exists a KMSg state ¢ of (C*(E),@). Then
V= ¢poqis a KMSg state of (TC*(E), ). With m¥ := ((p,)), Proposition 4.12 tells
us that (Am¥), = e’m? for all v € E°. Fix n € Z. Then

(1) = 5 (ta-) + ¥ (000).
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So either m¥(v,_1) > m¥(v,) or m¥(v,.1) > m¥(v,). Without loss of generality
suppose that m¥(v,41) > m¥(v,). By induction on k > 1,

mw(vn-&-k) = kmw(vn—f—l) — (k- l)mw(vn) > mw(vn).

However
o0
me(vnﬂc) < Z mw@n) =1,
k=0 veEO0

so it must be the case that m¥(v,) = 0. Thus m¥ = 0, which contradicts that
|m¥|l; = 1 (Lemma 4.3). Therefore (C*(E), @) has no KMS states.
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Chapter 5

KMS states of C*-algebras for
higher-rank graphs with a

generalised gauge dynamics

The goal of this chapter is to generalise Chapter 3 to higher-rank graphs.

We first introduce the required background material on higher-rank graphs and their
C*-algebras TC*(A) and C*(A). We then describe our generalised gauge dynamics aV.
Next we characterise of the KMS states of (7TC*(A), ). We then get a subinvariance
relation and use this to characterise the KMS states of (7C*(A), oY) at large inverse
temperatures. With this characterisation we describe the KMS states of (7C*(A), a¥)
at large inverse temperatures. We then discuss the KMS states of (7C*(A),a¥) at
the critical inverse temperature. Next we describe the dynamics @Y and show when a
KMS state of (TC*(A), a¥) factors through C*(A). Finally we discuss the KMS states
of (TC*(A),a¥) and (C*(A),a?) for a preferred dynamics, for which we get our best

result.

5.1 Higher-rank graphs

In this section we present the definition of a higher-rank graph. We use the same
notation as [32, Chapter 10], [34] and [16].

Let k be a positive integer. We view N¥ as a category with one object and write {e;}
for the usual basis. Fix m,n € N*. By m < n we mean m; < n; for all i € {1,...,k}.
We write the pointwise maximum of m and n as mVn; similarly the pointwise minimum

is denoted m A n.
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A higher-rank graph or k-graph is a countable category A = (A° A, r,s) together
with a degree functor d : A — N* which satisfies the factorisation property: if d(\) =
m + n then there are unique p, v € A with d(u) = m,d(v) = n such that A = pv. We
call the elements A € A paths.

For n € N* we define

A" = {AeA:d(\) =n}.

We call the elements of A" paths of degree n. For v € E° we define

ANv:={Ae A" :r()) =v}

and

vA" = { A e A" s(A\) = v}

A k-graph (A, d) is row-finite if vA™ is finite for all n € N¥ and v € A°, and has no
sources if vA™ is nonempty for all n € N¥ and v € A°. In this chapter we only consider
higher-rank graphs which have no sources and are finite in the sense that A" is finite
for all n € N¥ (this, in particular, implies that A is row-finite). Notice that we are not

asserting that A is a finite set.

For p,v € A, we say that A is a minimal common extension of p and v if d(\) =
d(p) Vd(v) and X = up’ = v/ for some p',v/ € A. We write A™" (1, v) for the set of
all minimal common extensions of 1 and v.

For i € {1,...,k} let A; be the matrix with entries (4;),» = |[vA“w|. We call
the A; the vertex matrices of A. We say that A is coordinatewise irreducible if for all

i€ {l,...,k} the vertex matrix A; is irreducible.

To visualise a k-graph A we can draw its skeleton, the directed graph (A%, UF_ A% 7, s)
where an edge of degree ¢ is drawn in colour ¢;. The factorisation property then gives
bijections between the c;c;-coloured paths of length 2 and the c;c;-coloured paths, and
we think of each pair as a commuting square in the skeleton. Then [15, Remark 2.3]

tells us that a complete collection of commuting squares determines the k-graph.

Example 5.1. Let A be the 2-graph defined by the skeleton (with edges of degree
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(1,0) in solid lines and edges of degree (0,1) in dashed lines)

€1

@

()
A4

7
7 N
7y N
/ f A
\
[N 1/ \
\ - /
~ -

f2

and the factorisation property
erfr = fier, eifa = fiea, eafi = fae1 and eafa = foea.

This factorisation property gives the commuting squares:

€1 €2 €1 €2
PP e« o [P E— oe—— o
| | | | | | | |
| | | | | | | |
fil fi fi L fa fa fi fe L fa
v v v v v v v v
[ R J [ . [ [ J
€1 €1 €9 €2

Then we can write down all of the factorisations for a path A € A with degree (3,1).

€9 €2 €1
0 = QY = Y = [ X
l l l l
| | | |
S ' fo ' fo 1
| | | |
v v ¥ v
U U U )
1 2 2

Thus A = fiesese; = €5 faegea = e1e2 fae1 = erezeafi.

5.2 The Toeplitz algebra 7C*(A)

In this section we present the definition of Toeplitz-Cuntz-Krieger A-families and their

algebras. We use the definition from [33, Section 7].
A Toeplitz-Cuntz-Krieger A-family {T'} consists of partial isometries {T) : A € A}

such that
(T1) {T, : v € A’} are mutually orthogonal projections;
(T2) T\T, = T\, whenever s(\) = r(u);
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(T3) T3Ty = Tuy for all \;

(T4) for all v € A° and n € N*¥, we have

T,> Y Ty

AEVAT

(T5) for all u,v € A, we have (interpreting any empty sums as 0)

T, = Y T
(n,¢) €A™ (1,v)

There is a C*-algebra TC*(A) generated by a Toeplitz-Cuntz-Krieger A-family {¢,}
which is universal in the sense that: given any Toeplitz-Cuntz-Krieger A-family {7)}
in a C*-algebra B there is a homomorphism 7 : TC*(A) — B such that 7r(ty) = T\
for all A € A [33, Corollary 7.5]. We call TC*(A) the Toeplitz algebra of A. In this
thesis we only study 7C*(A) when A is finite as this implies 7C*(A) has an identity,
that is ZUE Aoty = 1. The literature usually defines @, := T, for v € AY and calls
{Q, T} a Toeplitz-Cuntz-Krieger A-family. We avoid this definition so we don’t cause
confusion between a universal Toeplitz-Cuntz-Krieger A-family {¢, ¢} and the quotient

map ¢ used later in the chapter.

Lemma 5.2. Suppose that (A,d) is a k-graph and B is a C*-algebra generated by a
Toeplitz-Cuntz-Krieger A-family {w} such that, for every Toeplitz-Cuntz-Krieger A-
family {T} in a C*-algebra C, there exists a homomorphism pr : B — C' satisfying
pr(wy) = Tx. Then there exists an isomorphism m, : TC*(A) — B such that m,(t\) =

Wy

Proof. The universal property of 7C*(A) gives us a homomorphism ,, : TC*(A) — B.
The homomorphism 7, is onto because the range of m,, is a C*-algebra containing {w, },
and hence is all of B. Since pr o 7, is the identity on {t,} it is the identity on all of
TC*(A). Therefore m,(a) = 0 implies that a = pr(m,(a)) = 0, and 7, is injective. [

The following proposition gives an example of a Toeplitz-Cuntz-Krieger A-family.

Proposition 5.3. Let A be a finite k-graph. Write hy for the point mass at X € A,
and let {T\ : X € A} be the operators on (*(A\) such that

hun if s(p) = r(N)

0 otherwise.

T,hy =
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Then {T} is a Toeplitz-Cuntz-Krieger A-family in B(¢*(A)). We call the representation
mr : TC*(A) — B((*(A)) such that 7r(ty) = Ty the path representation, and wr is
faithful.

Proof. [33, Example 7.4] proves that {T'} is a Toeplitz-Cuntz-Krieger A-family and [33,
Corollary 7.7] proves that 7 is faithful. O

5.2.1 The graph algebra C*(A)

A Toeplitz-Cuntz-Krieger A-family is a Cuntz-Krieger A-family if in addition we have

(CK) T,= ) T\T; for all v € A° and n e N¥.

AEVAT

As with the Toeplitz algebra there is a C*-algebra C*(A) generated by a universal
Cuntz-Krieger A-family {¢,}.
The following result tells us how 7C*(A) and C*(A) are related.

Lemma 5.4. Let {t\} be the universal Toeplitz-Cuntz-Krieger A-family which gener-
ates TC*(A). Let J be the ideal generated by {t, — >\ pei taty v € A” and i €
{1,...,k}}, and q : TC*(A) — TC*(A)/J be the quotient map. Write t\ = q(t,).
Then (TC*(A)/J,{t}) is universal for Cuntz-Krieger A-families, that is,

(a) {t} is a Cuntz-Krieger A-family which generates TC*(A)/J; and

(b) if {T»\} is a Cuntz-Krieger A-family in a C*-algebra B then there exists a homo-
morphism T : TC*(AN)/J — B such that Tr(ty) = Th.

Proof. To prove part (a) we need to show that {fy : A\ € A} is a Cuntz-Krieger A-
family and that it generates TC*(A)/J. Since {t) : A € A} is a Toeplitz-Cuntz-Krieger
A-family and ¢ is a homomorphism, {¢) : A € A} is a set of partial isometries and (T1)
- (T3) hold. To see that (CK) holds, fix v € A° and n € N*. We aim to show that
ty = sconn brly. Then

0= q(tv -y wj) = q(t,) — q( > m;) =T, — > qtrty).

AEvA™ AEVA™ AEvA™

This implies that

=Y qtaty) = > qlta)gt) = Y iy

AEvA™ AEvA™ AEVAT
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Thus (CK) holds. (CK) implies (T4) and (CK) combined with (T1)-(T3) implies (T5)
([22, Lemma 3.1]), so {ty : A € A} is a Cuntz-Krieger A-family. Since TC*(A) is
generated by {t\}, {q(tr)} = {t,} generates TC*(A)/J.

To prove part (b) we want to get a homomorphism on 7C*(A) and then prove it
factors through a homomorphism of 7C*(A)/J. We then need to prove this homomor-
phism has the required properties.

Because {T)\} is a Cuntz-Krieger A-family in B, it is a Toeplitz-Cuntz-Krieger
A-family in B, and the universal property of (7TC*(A),{t,}) gives a homomorphism
7r : TC*(A) — B such that 7p(t)) = T). Because 7r is a homomorphism, ker 77 is a

closed ideal. Since {T)} is a Cuntz-Krieger A-family, we have
7TT<tU -y w;) =T,— Y NI} =0,
AEvAn AEvA”"

SO ty — D yepan taty € kermp. Then, since J is the closed ideal generated by {t, —

Y seonn taty} it is the smallest closed ideal containing {t,—) ., an taty}. So J C ker .

Therefore there exists a homomorphism 7 : 7C*(A)/J — B such that 7y = Tr o q.
Finally, we check it has the required property. Fix ¢y, € TC*(A)/J. Then

7T<2_f>\) = ﬁT(q(t,\)) = 7TT(t>\) = T>\. ]

Remark 5.5. Since (7C*(A)/J,{t\}) has the universal property which determines
the Cuntz-Krieger algebra, (TC*(A)/J,{t,}) is canonically isomorphic to the Cuntz-
Krieger algebra. From now on we use this isomorphism to identify C*(A) with this

quotient and ker g with the ideal J.

5.3 A generalised action oY

View [0, 00) as a category (with one object, morphisms [0, c0) and composition defined
by addition). Then a weight functor y : A — [0,00) is a functor and by definition it

satisfies the following relations:
(Y1) y(t,) =0 for all v € A°, and

(Y2) y(pv) = y(p) +y(v) for all p,v € A.

A traversing path Ay ... Agy) € A for A € Ais aset of A, € A% with i € {1,...,k}
such that A = A;... Agoy. We first want to show that it suffices to define y on
An € A% with ¢ € {1,...,k}. That is, if we define y on A, € A% consistent with
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the factorisation property, then for all A € A, y(A) is the same no matter how we

decompose A to traversing paths.

Lemma 5.6. Suppose that y : |J; A% — [0,00) satisfies y(f) + y(9) = y(¢') + y(f")

or all commuting squares fg = ¢'f" in A. Suppose that py...uny = vi...vyN are
H H

compositions of edges. Then 22;1 Y(pn) = Zﬁ:{:l y(Vn).

Proof. For clarity we use the following notation in this proof. For A € A and n < d(\),
by the factorisation property we can write A uniquely as A = A\ Ay with d(A;) = n and
d(X2) = d(X) — n. We write A\; = A(0,n) and Ay = A(n, d(N)).

We proceed by induction on N. When N = 1 the result is trivial. Assume that the
result is true for K < N and that ... x4 = ph . gy = p, say. If d(pxs) =
d(t4,) = €, then unique factorisation gives pxi1 = p(d(p) — €;,d(p)) = plir. So
suppose that d(pr41) = €; and d(p,,) = e; with i # j. Factorise (0,d(p) — ¢;) =
1(0,d(p) — e; — e;) f, p(0,d() — e;) = p(0,d(n) — e; — ej)e with d(e) = e; and
d(f) =e;. Then u(O7 d(p) — ei) = 1 ... g and the inductive hypothesis implies that
y(1(0,d(p) —ei— ;) +y(f) = Sony y(pn)- Similarly y(1(0, d(p) — e; —¢;)) +y(e) =
S y():

Now, since furi1 = eplc,, is a commuting square in A, our hypothesis on y tells

us y(f) + y(ux+1) = y(e) + y(ui,). Thus

K+1 K
> ylpn) =D ylin) + y(ux )
n=1 n=1
= y(1(0,d(p) — e: — ¢;)) + y(f) + y(pxcs1)
= y(1(0,d(p) — e; — €5)) +y(e) + Y1)
K
= y(u) + Yl )
n=1
K+1
=Dyl
n=1
So the inductive hypothesis holds for K + 1. O

Proposition 5.7. Suppose that y : |J, A* — [0,00) satisfies y(f) + y(9) = y(g') +
y(f") for all commuting squares fg = ¢'f" in A. Define y : A — [0,00) by y(\) :=
ZLCQ)' y(An) for every traversing path Ay ... Ngxy € A. Then y is a weight functor.

Proof. Lemma 5.6 tells us that y is well-defined, so we just need to show that y is

a functor. That y preserves identity morphisms is trivial. To see that y preserves

67



composition of morphisms fix p, v € A. Choose traversing paths fi; ... 14(, for g and

V1...Vqw) for v. Then

AL /\|d(ul/)\ = M1 Hd(p)|P1 - - - Vid())

is a traversing path for pv. Since y is well-defined,

() d(w) ()
y(w) = 3y = 3 ylmn) + 3 y(m) = yl) + y(v). O

We now use this weight functor to get a generalised gauge dynamics a¥ of R on

TC*(A). As for directed graphs, we define our action directly on R rather than on T.

Proposition 5.8. Let (A, d) be a k-graph and choose a weight functor y : A — [0, 00).
Then there is an action ¥ : 7 +— a¥ of R on TC*(A) such that

ad(ty) = Nty for every A € A.

Proof. Fix r € R. We first want to apply Lemma 5.2 to show that there exists an
automorphism a¥ of TC*(A) such that a,(ty) = ™Mt

We claim {e™WVty : A € A} is a Toeplitz-Cuntz-Krieger A-family. Since {ty : A €
A} are partial isometries, so are {e™™ty : A € A}. To see (T1) is true fix v € A°. By
(Y1) €™ =1 for v € A° so

and
(eIt ) = t* =t

Thus {e"¥®¢, : v € A’} are projections. In addition, they are mutually orthogonal:
for w € A%, w # v we have (e"¥Wt,)(e™Wt,) = t,t, = 0. For (T2) fix A\, u € A such
that s(A\) = 7(u). Then, since A — ™ is a functor,

(6iry(/\)t/\>(eiry(u)t#) — e”’y(A“)t,\tu — e"y(’\“)tw.

For (T3) fix A € A. Then, since ¢"¥® € T,

(eiry(’\)t)\)*(eiTy(A)tA) _ tie—iry(k)eiry(k)t — ry(s(N)

A = Bty =ty ts(n)-
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For (T4) fix v € A® and n € N¥. Then, since ¢"¥™ € T,

Z <€iry(/\)t>\)<eiry()\)t)\)* — Z eiry()\)t)\t;e*”y()‘)
A€vA™ AEVAT

Finally, for (T5) fix p, v € A°. Then, since A = €¥™ is a functor and ™™ € T,
Z ei’”y(”)tn(e”’y(otg)*
(m,Q)eA™I (p,v)
_ e—z’ry(u)ewy(m( 3 ez‘ry(mtntzgiry(c))64ry<u>eiry<u>
(n,)eA™n (p,v)
— e ry(w) < Z etry(n) eiv'y(n)tntzefiry(@e*iv’y(l/)> ery(v)
(n,Q)EA™IR (p,v)
_ e—"y(*”( S e"yW)e—"y(”C)tntz) eiry(v).
(n,Q)EA™IR (p1,v)
Thus, since (, ) € A™(u, v) implies un = v(,
Z ez‘ry(n)tntze—iry(o
(n,Q)EA™IR (p1,1)
— i) < Z eiry(un)e—iry(un)tntz) eiry()
(n,Q) €A™ (p,v)

_ e—irl/(ﬂ)( S WZ) Liry(v)

(m,Q)EA™™ (1,v)
— e_iry(“)tzt,jeiry(y).
Thus {e"¥Mty : A € A} is a Toeplitz-Cuntz-Krieger A-family, as claimed.

We next need to show that for every Toeplitz-Cuntz-Krieger A-family {7'} in a C*-
algebra B there exists a homomorphism pr : TC*(A) — B satisfying pr(e™Mt,) =
Ty. Fix a Toeplitz-Cuntz-Krieger A-family {T'}. Then {e="¥MT,} is also a Toeplitz-
Cuntz-Krieger A-family. Then the universal property [33, Corollary 7.5] gives us a
homomorphism 7, —iryop, such that m,wyog, (t2) = e "NT). Therefore,

We—iry(A)T)\ (@iry()\)t)\) - eiTy(A) (ﬂ-e—iry()\)T)\ (tA)) - eiTy(A) (e_iTy(A)T)\) - T/\
Thus taking pr := 7,-iry)1, We have our required homomorphism, so Lemma 5.2 gives

an isomorphism o : TC*(A) — TC*(A) such that

O[(t>\) = 6”2”()\)15)\.
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We now show that r — ¥ is a homomorphism of R into Aut 7C*(A). Fix A € A.
For r,z € R, the isomorphisms o¥ o o¥ and o, , agree on the generators t, since
(@ 0 al)(t) = a¥(al(t)
= a¥(e*vNi,)
— ezry( )ezxy()\)t)\
— (irto)yN g,
= ol ().

Therefore they agree on all of TC*(A), so o¥ is a homomorphism of R into Aut 7C*(A).
Finally, we need to show that a¥ is continuous. Fix r € R, a € TC*(A) and € > 0.

Choose a finite linear combination ¢ = ) n,,t,t;, such that |ja —¢|| < §. Then

x = al(c) =al Z Nyt
IZmMmﬁ
= sl (t)al(t)
- Z M Veimy(u)t ey g

_ Z M, et (y( u)+y(l/)) w

which is continuous because scalar multiplication is continuous. So there exists ¢ > 0
such that

[z — 7] <6 = lai(c) —at(c)] < g
Since automorphisms of C*-algebras preserve the norm, we have |a¥(a—c)|| < 5. Thus

for |z —r| < § we have
€
laz(a) — ax(a)|| < llaz(a — o)l + laz(c) — ax(e)ll + llav(a — )l < 3(3) =«

Thus oY is continuous, as required. O

5.4 Characterising KMS states of (7C*(A), oY)

In [18, Proposition 3.1] the KMS states of (7C*(A), ) are characterised. In this section
we apply this method to characterise the KMS states of (7C*(A), a¥).
We first get a condition to describe the KMS states. For every u,v € A, the function

r al(t,t) = e Wyt ¢ i the restriction of the entire function

PRI eiZ(y(#)—y(V))t#t;i_

70



The elements ¢t} are therefore analytic. Since they span a dense subspace of TC*(A),
it follows from [31, Proposition 8.12.3] that a state ¢ of (TC*(A),a¥) is a KMSg state
for 5 € (0,00) if and only if

O((tuty)(tot?)) = d((tatT)as(tut;))
for all p,v, 0,7 € A.

Proposition 5.9. Suppose that A is a finite k-graph with no sources. Let y be a weight
functor. Let oV : R — TC*(A) be the action given by Proposition 5.8. Suppose that
B € (0,00) and ¢ is a state on TC*(A).

(a) If ¢ is a KMSs state of (TC*(A),aY), then

(5.1) o(tut,) = uye_ﬂy(“)gb(ts(u)) for all p,v e A with d(p) = d(v).

(b) If
(5.2) o(tut,) = 5ujye_5y(”)¢(t5(u)) for all u,v € A,
then ¢ is a KMSg state of (TC*(A), ).

c) If y(u) = y(v) implies that d(p) = d(v) for all u,v € A, then ¢ is a KMSs state of
B
(TC*(A),a¥) if and only if Equation (5.2) holds.

Proof. (a) Fix p,v € A such that d(u) = d(v). Then tt,, = 0,5 Then, since ¢ is
a KMSg state, the KMS condition tells us that

o(tuty) = o(tyais(t,))
_ gb(t*e_ﬁy(“)tu)
_ e—ﬁy(ﬂ)qg(tytu)
= eiﬁy(“%(éu,vtsm))
_ 5M7V€—By(u)¢(ts(u))'

(b) Suppose that ¢ satisfies Equation (5.2), and consider two spanning elements ¢,,t}
and t,t% with s(u) = s(v) and s(0) = s(7) (if s(u) # s(v), then t,t) =t tsytso)ts =
0). We want to verify the KMS condition, that is, show that

O(tutytats) = dtotialy(tuty)) = e "W Vg(t txt 7).
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Equation (5.2) applied to (T5) implies that

(b(tut;toti) = Z ¢(tuatin)

(a,n)EA™In (1 o)

= Z 5W7m€—5y(ua)¢(ts(a))

(ameA™(v,0)

(53) = > e P (t(a)).

(am)eA™n(v,0), pa=Tn

Similarly,

(5.4) O(totrtuty) = > e PPt y)).
(1, QOEA™R(T,), oy=1C

We need to show that the indexing sets in the sums in Equation (5.3) and Equa-
tion (5.4) are closely related. To see this, suppose that (a,n) € A™"(v, o) satisfies
pa = 7. Since (a,n) € A™" (v, g), we have d(a) A d(n) = 0, because otherwise the ex-
tension is not minimal. [18, Lemma 3.2] tells us that since d(p)+d(a) = d(7)+d(n) and
d(a) Ad(n) = 0 we have d(u) + d(«) = d(p) V d(7); hence (1, @) belongs to A™" (7, ).
The situation is symmetric, so we deduce that the map (a,n) — (n, ) is a bijection of
the index set in Equation (5.3) onto the index set in Equation (5.4).

Fix (o,n) in the index set in Equation (5.3). Since s(a) = s(1), ts@) = ts)-
To verify the KMS condition, it therefore suffices for us to see that the summand
of Equation (5.3) with index («,7) and the summand of e PWW=v0D (¢, ¢t 1) with

index (1, a) have the same coefficient. That is, we need to show that

e Puna) — =Bly()—yW)) o —=By(on)

Since o = va in the summand of e PWW =y (¢ 15t %),

e Py)=yW)) o=Pylon) — ,=Bly(u)=y)) ,—Py(va)
— o Bly(w)—y()+y(va))

e P —y(W)+y()+y(a))

_ B +y(e)

— ¢ Bylpa)

Thus ¢ is a KMSg state.
(c) Let ¢ be a KMSg state. Take p,v € A with s(p) = s(v). If d(p) = d(v), then
part (a) gives our result. Suppose that d(u) # d(v). Applying the KMS condition
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twice gives
P(tuty) = o(t,cip(ty))
_ e—ﬁy(u)qb(tl’it“)
= Gt 005(1)

— o By By(v) ¢(tut;) ]

Since d(u) # d(v), we have y(u) # y(v), hence €Y £ e%¥). Then ¢(t,t) = 0. Thus
¢ satisfies Equation (5.2).
Conversely, part (b) shows that if Equation (5.2) holds then ¢ is a KMS state. [

5.5 Generalised vertex matrices B;(y,0)

In this section we present a generalised version of the vertex matrices A;, which we will
use in our analysis of the KMS states of (7C*(A),a¥) and (C*(A),aY).

Definition 5.10. Suppose that A is a finite k-graph. Choose a weight functor y : A —
[0,00) and 0 € [0,00). For i € {1,...,k} let Bi(y,0) = (Bi(y,0),.) be the A® x A°

matrix with entries

Bz(ya Q)U,w = Z G—Oy()\)7

AEvACiw

where we take B;(y,0),., = 0 if vA“w = ().

We now present results about these matrices which will be used in our analysis of
the KMS states of (TC*(A),a¥) and (C*(A),aY).

Lemma 5.11. Suppose that A is a finite k-graph. Choose a weight functor y : A —
[0,00). For 6 € [0,00) and i € {1,...,k} let B;(y,0) be the matrices from Defini-
tion 5.10. Then

{Bi(y,0) :ie€{1,... k}}
pairwise commute.

Proof. Fix i,5 € {1,...,k}. We want to show that B;(y,0)B,(y,0) = B;(y,0)B;(y,0).

73



Fix v,w € A°. Then

(Bi(y’ 0>Bj(yu 0))1},111 = Z Bz’ (ya g)v,qu(ya Q)u,w

ueA0

= Z Z Z e 0wV +y(o)

w€AO NevAiu gcuiw

— Z e~ Ou(n)

pevA®iTe g
Similarly,
(Bj (y7 Q)Bl<y7 0))1)710 = Z 6—01/(1/)'
vevA% iy
The factorisation property tells us that A%*™% = A%*% thus elements of the set
{B;(y,0) :i € {1,...,k}} pairwise commute. O

Before the next definition we observe that since the matrices B;(y, ) commute we

can unambiguously form this product.

Definition 5.12. Suppose that A is a finite k-graph. Choose a weight functor y :
A — [0,00). For 6 € [0,00) and i € {1,...,k} let B;(y,0) be the matrices from
Definition 5.10. Fix n = (ny,...,n;) € N*¥ and define the matrix

k

B(y,0)" := H Bi(y,0)"™.

i=1
It follows from this definition that
B(y,0), = > e
AEvATw

Lemma 5.13. Suppose that A is a coordinatewise irreducible finite k-graph. Choose
a weight functor y : A — [0,00). For 6 € [0,00) and i € {1,...,k} let B;i(y,0) be the

matrices from Definition 5.10. Then the matrices B;(y,0) are irreducible.

Proof. Fixi € {1,...,k}. Since A is coordinatewise irreducible the vertex matrix A; is
irreducible. Therefore the coordinate graph (A°, A% r,s) is strongly connected. Thus
applying Lemma 3.5 tells us B;(y, 0) is irreducible. ]

We can now prove a version of [18, Lemma 2.2}, which we will use later in finding
KMSg states.
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Proposition 5.14. Suppose that e\ is a finite k-graph. Choose a weight functor
y: A — [0,00). For6 € [0,00) and i € {1,...,k} let B;(y,0) be the matrices from
Definition 5.10. Suppose that B € (0,00) such that p(B;(y,5)) < 1 fori e {1,... k}.
Then the series Y, . B(y, 8)" converges in the operator norm to [T (I-Bi(y,8)".

Proof. By Lemma 5.11 the matrices B;(y, 3) commute, so the N*! partial sum is

> Blud)r= ). HBi(y,ﬁ)”’:Hi:Bi(y,ﬁ)”f.

0<n<N 0<n<N i=1 i=11,=0
For each i € {1,...,k} we have p(B;(y,3)) < 1, and hence by Corollary A.14,

N;

0

n;=

converges to (I — B;(y,3))! in the operator norm as N; — co. Thus as N — oo in

N* which means N; — oo for all i € {1,...,k}, the product converges in the operator
norm to Hle(] — Bi(y,p)) " O

We can then generalise Proposition 3.6 to higher-rank graphs.

Theorem 5.15. Suppose that A is a coordinatewise irreducible finite k-graph. Let
y: A — [0,00) be a weight functor. For 6 € [0,00) and i € {1,...,k} let B;(y,0)
be the matrices from Definition 5.10. Then, for each i € {1,...,k}, the function
0 — p(B;(y,0)) is strictly decreasing and there exists a unique B; € [0,00) such that

P(Bz'(% Bz)) =1

Proof. Fix i € {1,...,k} and apply Proposition 3.6. O

5.6 KMS states of (TC*(A),o?) and the subinvari-

ance relation

In this section we describe a subinvariance relation like that used in [18, Section 4].

Proposition 5.16. Suppose that A is a finite k-graph with no sources. Lety : A —
[0, 00) be a weight functor. For® € [0,00) andi € {1,...,k} let B;(y,0) be the matrices
from Definition 5.10. Let o¥ : R — TC*(A) be the action given by Proposition 5.8.
Fiz 8 € (0,00) and let ¢ be a KMSs state on (TC*(A),a¥). Define m® = (m?) by
m? = ¢(t,). Then m? € [0,00)"", |m?||y = 1, and for every subset K of {1,...,k} we
have [],c (I — Bi(y, 8))m?® > 0 pointwise.
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Proof. First, because ¢ is positive, m, = ¢(t,) > 0 for all v € A°. Thus m? € [0, 00)’
Next, because TC*(A) is finite, ) 10ty = 1, so we have
Im?ll =Y my =Y é(t,) = ¢(1) = 1.
veAD vEAD
Fix K C{l,...,k}, JC K and v € A°. Write e; :=

>t

pnevAeJ

jes€j and

with ¢; = tg;. Then for i € K, (T4) tells us that ¢, > t;, and since all the range
projections commute, we have [, . (t, —t;) > 0. Therefore ¢([[;cx(t, — 1)) > 0.
Then, [18, Lemma 4.2] tells us

H(tv — ;) = Z(—l)ljltJ,

ieK JCK
SO

0< ¢< Z(_1>|J|t.])

JCK

= (=)lg(t,)

JCK

=S V(Y eltt).

JCK HEVACT

Thus, by Equation (5.1),

0<§ |J|<Ze )

peEVACT
- IJ\( Z Z )mS(u))
JCK wEAD pEVASTw
=X M (3 e )m)
JCK weAO  pevACIw
|J\( S By, 8)2 mw)
JCK weA0
— IJ\<B y, ) eJm)
JCK
- E ()
JCK jed Y
= ((TT¢ = Bitw.8))me)
ieK
as required. N

76



Corollary 5.17. If there is a KMSs state of (TC*(A),a¥), then 0 < p(B;(y,[)) <1
forie{l,... k}.

Proof. We follow the the method of [18, Corollary 4.3]. Define m?® = (m?) by m¢ =
o(t,). Applying Proposition 5.16(a) to the singleton sets K = {i} shows that (I —
Bi(y,8))m? > 0 for i € {1,...,k}. This says that for each i € {1,...,k}, m® >
Bi(y, 8)m? pointwise, therefore Proposition A.9 implies that p(B;(y, 3)) < 1. O

5.7 KMS states of (TC*(\),a”) at large inverse tem-

peratures

In [18, Section 5] the assumption of rational independence in [18, Theorem 5.1] is
dropped to strengthen the characterisation of KMSg states in [18, Proposition 3.1] for
large 5. In this section we do the same, shedding the condition that y(u) = y(v)
implies that d(u) = d(v) for all u,v € A used in Proposition 5.9(c). This gives a

characterisation of KMSg states of (7TC*(A),a¥) at large inverse temperatures.

Theorem 5.18. Suppose that A is a finite k-graph with no sources. Lety: A — [0, 00)
be a weight functor. For 6 € [0,00) and i € {1,...,k} let B;(y,0) be the matrices from
Definition 5.10. Let o¥ : R — TC*(A) be the action given by Proposition 5.8. Suppose
that p(Bi(y,B)) <1 forie {1,...,k}. Then a state ¢ on TC*(A) is a KMSs state for
oY if and only if

(5.5) G(t,th) = 0,6 Wp(ty)  for all v € A.
To prove this we first need two lemmas.
Lemma 5.19. Suppose that ¢ is a KMSs state of (TC*(A),aY) for some § € (0, 00),
and that pi,v € A satisfy s(u) = s(v) and y(u) = y(v). Then ¢(t,t},) = o(t.t;) and
|0(tut;)| < o(tut,).
Proof. The proof follows that of [18, Lemma 5.2]. By the KMS condition,
P(tut?) = d(tutsqts) = d(tutt,ty) = e PWW VDGt top 1),
Therefore, since y(u) = y(v),
P(tuty,) = O(tutitut,) = d(tutsoyty) = o(tut;).
Finally, the Cauchy-Schwarz inequality gives
[Gtuty)* < $(tut})o(tt)) = d(tut],)” =
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Lemma 5.20. Suppose that ¢ is a KMSs state of (TC*(A),aY) for some € (0,00),
and that p,v € A satisfy s(pu) = s(v).

(a) If X € A satisfies ™™ (pX, v\) = 0 then ¢(t,th,) = 0.
(b) Letn = (d(p) Vd(v)) —d(p). For j € N we have

(5.6) (b(tutz) = Z (b(tukti)\)-
A€s(u)Ain
Proof. The proof follows that of [18, Lemma 5.3].
(a) If A™(uX, v\) = 0, then (T5) implies that ¢,¢,, = 0, and the KMS condition

gives

G(tuntsy) = e WNg(trt,,) = 0.

(b) We proceed by induction on j. The inductive hypothesis is “Equation (5.6)
holds for 5”7. That the inductive hypothesis holds for j = 0 is trivial.

For the inductive step, suppose that Equation (5.6) holds for some j > 0. We want
to show that Equation (5.6) holds for j + 1. We start by working with the summands
on the right of Equation (5.6). Part (a) says ¢(¢,at:,) = 0 for A € s(u)A?™ such that
A™R (N V) = 0, so suppose A € s(u)AJ" such that A™®(u), vA) # 0. The KMS

condition implies that

P(turtyn) = Oltuatintunt;y)
= Qb(tuktztxo‘?ﬂ(tw\tzx))
— e’ﬁ(y(”)‘)*y(”)‘))qb(tu)\t;)\tmt;\)
= ¢(tw\tz/\tu>\t:\)-

Applying (T5) gives

P(tunt;y) = O(tua(tyatun)tn)

= Z ¢(tw\ntz,\<)

(n,Q)EA™IR (LA, N)

= Z (b(t#AWtZ)\C)’

(M, Q) EA™R (A, )
Combining this with the induction hypothesis gives?

(5.7) ¢(tut;): Z ¢(tukt;\): Z Z ¢(tu/\nt;\<)-

A€s(p)AIn AEs(L)AI™ (1,¢) EA™IR (A, \)

n (18, (5.3)], ¢(turtsy) on the left hand side should be ¢(t,t;). Then the final equation in the
proof of [18, Lemma 5.3] should read ¢(t,t}) = 3=, cy(yau+nn S(turtyr).
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For (n,¢) € A™" (v, uX), we have
d(pX) + d(¢) = d(vA) v d(pA) = (d(p) v d(v)) + d(N),

which implies that d(¢) = (d(p) V d(v)) — d(n) = n. Thus d(A) = (j + 1)n. Now
suppose that 7 € s(p)AVT)"™ and d(t,rty,) # 0. Then part (a) implies that there exists

(7,6) € A™"(ur,v7), and then pury = v7d. But then with A := 7(0,jn), the paths

¢ = 7(jn, (j + Dn) and 7 := (70)(jn, jn + (d(p) V d(v)) — d(v)) give a pair (1, () in
A™n(p X, p) such that 7 = A(. Thus Equation (5.7) gives

R D S ()

7—65(“)[\(]""1)"

and this is Equation (5.6) for j + 1. O

Proof of Theorem 5.18. We follow the method of [18, Theorem 5.1]. First, suppose
that ¢ is a KMSg state. Then we want to show that ¢ satisfies Equation (5.5). Fix
w, v € A. We then have two cases, s(u) # s(v) and s(u) = s(v).

If s(p) # s(v), then t,t;, =t tywtswt; = 0, so the left hand side of Equation (5.5)
is 0, and p # v, thus 6, = 0, so the right hand side of Equation (5.5) is 0.

Otherwise s(u) = s(v), and we have a further two cases, d(p) = d(v) or d(u) # d(v).
If d(u) = d(v) then Proposition 5.9(a) tells us that Equation (5.5) holds.

Otherwise, d(u) # d(v) and we have a final two cases, y(u) # y(v) or y(u) = y(v).

Suppose that y(u) # y(v). Then eV =£ Av¥) - Applying the KMS condition twice

gives

o(tut,) = ot ua(ty))
_ e_ﬂy(”)(ﬁ(t;tp)
= e W o(t,ai(t))
_ B_By(’u)eﬁy(’/)QS(tut;),

and since e~ ef¥() £ 1 this must equal zero. So Equation (5.5) holds.

So the final case is that y(u) = y(v). Since d(u) # d(v), at least one of (d(u) V
d(v)) — d(p) or (d(u) Vv d(v)) — d(v) is nonzero. Since ¢(t,t;,) = 0 if and only if
¢(t,t;) = 0, we may suppose that n := (d(p) V d(v)) — d(v) is nonzero. Then for j € N,

Lemma 5.20 gives

¢(tut;>: Z Qb(tukt;)-

A€s(pu)AIn
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For each A\ € s(u)A’™ we have y(u\) = y(vA), and hence Lemma 5.19 implies that

B(tats) < Y 18(tintia)]

Aes(p)AIm

Z ¢(tu>\tz>\)

A€s(p)AIn

= Z eiﬁy(“)‘%(ts()\))

AEs(p)AIn

— o Py Z Z e_ﬁy(’\)qb(tw).

weAY Aes(p)Ainw

Then by the definition of B;(y, ),

) —By(w) Jm

(58) o(tut2)] < e Z(HB (w.07™)  ltw)
For each i € {1,...,k} such that n; > 0, B;(y,3)’™ is the (jn;)™ term in the series
> o Bily, B)™. Since p(B;(y, 8)) < 1, Corollary A.14 tells us that the series converges
in the operator norm to (I — B;(y,3))~'. In particular, we have B;(y, 3)’™ — 0 as
j — o0o. Since n # 0 there is at least one ¢ € {1,...,k} such that n; > 0. Thus as
j — 00, Equation (5.8) converges to 0, therefore |¢(,t})| = 0.

Conversely, assume that Equation (5.5) holds for a state ¢ on TC*(A). Then
Proposition 5.9(b) tells us that ¢ is a KMSg state. O

We now use this characterisation to get an isomorphism between measures and
the KMSg states of (TC*(A),a¥) at large inverse temperatures, by which we mean
p € (0,00) such that 1 > p(B;(y,8)) for all i € {1,...,k}. This crucially implies that
I — B;(y, ) are invertible matrices for all i € {1,...,k}. The following lemma tells us
that if this condition holds for one (3, it holds for all larger 8’, hence the phrase “at

large inverse temperatures” is a reasonable description.

Lemma 5.21. Suppose that A is a finite k-graph with no sources. Let y : A — [0,00)
be a weight functor. For 6 € [0,00) and i € {1,...,k} let B;(y,0) be the matrices
from Definition 5.10. If 5 € (0,00) satisfies 1 > p(B;(y, 5)) for alli € {1,...,k} and
B> B, then 1> p(B(y, 7).

Proof. Fix i € {0,...,k}. Fix 8 € (0,00) such that 5/ > . Then B;(y, [ )pw <
Bi(y, 8)vw, and hence 0 < By(y, ') < Bi(y,[) in the sense of Section A.1. Thus
applying Corollary A.4 implies that p(B;(y, ")) < p(Bi(y,5)). Thus p(B;(y, (")) <
1. [
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Theorem 5.22. Suppose that A is a finite k-graph with no sources. Lety : A — [0, 00)
be a weight functor. For 6 € [0,00) and i € {1,...,k} let B;(y,0) be the matrices from
Definition 5.10. Let o¥ : R — TC*(A) be the action given by Proposition 5.8. Assume
that B € (0,00) satisfies p(Bi(y,5)) <1 for alli € {1,... k}.

a) Forw € A", the series e converges with sum x,, > 1. Set x 1= (zy) €
F. A0, the series 3y, P00 th 1. S

A, and consider € € [0,00)2". Define m = [[\_,(I — Bi(y,8))‘e. Then
m € [O,OO)AO, Bi(y,B)m < m for alli € {1,...,k}; and |m|; = 1 if and only if

e-x=1.

1,00

(b) Suppose that e € [0,00)\" satisfies € - = 1, and set m := [[*_,(I — Bi(y, B))'e.
Then there is a KMSs state ¢. of (TC*(A), a¥) satisfying

(5.9) Se(tuty) = Suwe” Wiy,

(c) The set
S5 :={ee€0,00)" ie-x=1}

is a compact convex subset of RY and F : € — ¢, is an affine homeomorphism
of ¥g onto the simplex of KMSy states of (TC*(A),a¥). For a KMSs state ¢ of
(TC*(A),a¥) let m® = (m?) be the vector with entries m® = ¢(t,). Then the
inverse of this isomorphism takes ¢ to Hle(_f — Bi(y, B))m?.

Proof. (a) We first show that the series }_ ,,, e P converges. Let w € A°. Then

(510) Z e*ﬁy(ﬂ) — Z Zeﬁgy(ﬂ) — Z Z B(yaﬁ)ﬁ,w

neAw neNk Amw neNk veAo

Since 1 > p(B;(y,B)) for all i € {1,...,k} Proposition 5.14 tells us that

> By, B)"

neNk

converges in operator norm with sum [[_, (7 — B;(y, 8))~".2 This implies that for every
fixed v € A” the series ) w B(y, 8)1,, converges, so Equation (5.10) converges. The

sum is at least 1 because all the terms are non-negative and B(y, )}, = 1.

’In the last paragraph of [18, pg. 278], > o° e #""A" should be > e #""A" and
S e P AT (w, v) should be Y, i €T A™ (w, ).
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For the next part, let = := (z,) € [1,00)"" and fix € € [0,00)"". Because every

element of B(y, )" and € is non-negative and,

k

m, = (I = Biw.9)7'¢) = (D Bl.8)e) .

i=1 neNk

m,, is non-negative. Thus m € [0, oo)AO. Next, fix j € {1,...,k}. Then, since m >0
and B;(y,p) < 1forallie{1,... k},

(I = Bj(y, B))m = (I = By(y, 8)) | [(1 - ) te=T](T - Bi(y.B)) e >0,
i=1 i#j

so B;(y, B)m < m. Finally,

[mll; = Z My

veAO
-3 (I0-5i0.0™)
veAl =1

- (),

veAO neNk

=YD D BB

veAO neNF weAl

-y 6w( S 6*611(#))

weAO pnEAw
= E Ewlw
weAO
=€ Xx.

Thus [[ml[; =1 if and only if -z = 1.

(b) To find a KMSp state we first need to find a state of (7TC*(A),a?). We build
a state by using the path representation 7 of 7C*(A) on ¢*(A) from Proposition 5.3.
For A € A we define

Ay = eiﬁy(/\)ﬁs(k)a
and note that Ay > 0. We aim to define ¢, by

(5.11) de(a) = Au(mr(a)hy|hy,) for a € TC*(A).

HEA

To see that Equation (5.11) defines a state we need to show that it is a positive linear

functional and that ¢.(1) = 1.
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We first claim that ¢.(1) = 3 ) Ay = 1. Fix v € A°. Then

Z A, = Z Z e—By(u)es(u)

nEVA neNk pevA™

—3% Y e,

neNkF weAS pevAnrw

=> > BB ucw

neENFk weAO

(5.12) = > (B(y,8)"e).

neNk

Now, since 1 > p(B;(y, 3)) for all i € {1,...,k} Proposition 5.14 implies that

converges with sum

(5.13) > A =my = ([0 - Biy.8) e

pEVA i=1

Part (a) implies that ||m|; = 1, so

(5.14) SA=33Y A= m=|m=1

HEA veAD pevA veEAD

We now use that > .\ A, = 1 to prove that Equation (5.11) converges for all
a € TC*(A). Fix a € TC*(A), then applying the Cauchy-Schwarz inequality

0 < |Au(mr(a)hylhy)|
= [Aul[(rr(a)hyl )|
< Apllmr(a) byl
< Ayller(a)lli
< Apllal] - 1.

Since _ cn A, converges, > 1 Ayllal converges and the comparison test tells us

HEA
that >° . [Au(mr(a)hylhy)| converges with sum less than or equal to [lal|, therefore
> pen Dulmr(a)hylhy,) converges absolutely for all a € TC*(A).

Since ¢c(a*a) = 3 ,p Au(m(a)hylm(a)hy) > 0, ¢, is a positive linear functional,

and by Equation (5.14) ¢.(1) = 1, so ¢, is a state on TC*(A).
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We next verify that ¢, satisfies Equation (5.9). Fix p,v, A € A. Then

. i} i} 1 ifA=pN=vX
(77 (tut; ) halhn) = (T ha|Thy) =
0 otherwise.

By unique factorisation, A" = v\ implies that p = v, and hence ¢.(t,t;) = 0 when

p # v. So suppose that p = v. Since ) = m,, we have

/LEvA

Se(tuty) =Y AN(Trha|Tyhy)

HEA

=Y ey,
A=pN’

= Z e P+
A=pN

= Z e*ﬁy(u)efﬁy(k’)gs(k,)
A:;M’

S

XNes(u)A

Then applying Equation (5.13), ¢(t.t};) = e Wmy,y. Thus

P(tuty) = 5uyve_ﬂy(u)¢(t5(u) ),

that is, ¢, satisfies Equation (5.9). Equation (5.12) gives

e s(u Z A)\ h)\|h)\ Z A)\ = Ms(u)-

AEA Aes(p)A

Thus Proposition 5.9 implies that ¢, is a KMSg state.

(c) We first prove that Y5 is a compact convex subset of R*, and then that F' is a
homeomorphism.

We show that >3 is compact by showing that it is closed and bounded. To see
that X5 is closed in RY", take {e,} C %5 and € € [0, 00)A such that €, — €. The dot
product is continuous from RA” x R — R, so €, — € implies that ¢, - x — € - x. But
€n, € X for all n, so €, -x =1 for all n. Thus €-2 = 1, and therefore € € Yg. Thus X3
contains all of its limit points, and is therefore closed. To see that ¥3 is bounded, take
¢ € Yg. This implies that e - 2 = 1, that is, that ) _,0 €.z, = 1. Since z, € [1,00)
for all v € A% 3" o€, < 1. Since ¢, > 0 for all v € A%, we have 0 < ¢, < 1. Thus
lell> = > eno€r < |A?. Thus ¥z is bounded. Since 3 is closed and bounded, the

Heine-Borel theorem tells us that it is compact.
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Next we show that ¥4 is convex. Fix k € N. For i € {1,...,k} take ¢; € [0, 1] such
that -  ¢; =1 and let {¢;} € ¥5. Then

N
v
Il ||
o M”
s
=y S
Nl SO
e \_/
=
e

I
o
s

SO € 1= Zf:o ci€; € Yg. Thus g is convex. Therefore Xz is a compact convex subset
of R\,

We now show that F' surjective, injective, and continuous.

To see that F' is surjective, let ¢ be a KMSs state. Proposition 5.16(a) implies that
m? = (¢(t,)) satisfies

E—HJ B;(y, 3))m® >0,

and [|m?[|; = 1 because ¢ is a state. Then m := [[, (I — Bi(y,3)) 'e = m?, so
|lm||y = 1, and part (a) tells us that e x = 1. Then we can apply part (b), which tells
us that there is a KMSg state ¢ satisfying Equation (5.9). Then, for p,v € A,

Pe(tuty) = uyveiﬁy(“)mfw) = O G (t ()

So by Equation (5.1) ¢c(t,t)) = ¢(t,t;). Then linearity implies that ¢.(b) = ¢(b) for
b € span{t,t} : p,v € A}. Thus ¢ = ¢, so F is surjective.

To see show that F' is injective, suppose €, € € X such that F'(e) = F(€'), that is,
¢e = ¢o. Define m := [[F_,(I — Bi(y, 3)) "¢ and m’ := [[-_,(I — Bi(y,8))"
¢ = ¢, by Equation (5.9) m = m/. Now,

€. Since

e =10 - Biy. 8)ym = T[ I - Bily. &))m' =€,

1€K €K



and therefore F' is injective.

To see that [ is continuous, suppose that €, — € in Y. We want to show that
¢e, — ¢ Since the states are all norm-bounded with norm 1 it suffices to show
Pe, (b) — @(b) for b in the dense *-subalgebra span{t,t; : p,v € A}. Since €, — €, we
have that

k k

(T = Bitw B) e = (] = Bily. ) ")t

i=1 =1

for all ;1 € A, therefore that m(e,)s) — m(€)s) for all 4 € A. This in turn implies
that

Gey, (tutz) = 5u,ve_ﬁy(u)m(en)5(u) - 5M,V€_ﬁy(u)m(e)s(u) = Cbs(tuti)a

for all u, v € A. Then linearity implies that ¢, (b) — ¢(b) for b € span{t,t} : p,v € A}.
Therefore ¢., — ¢ in the weak* topology, so F' is continuous.

Since [’ is a continuous bijection of g, a compact space, onto the simplex of
KMS states of (TC*(A),a¥), a Hausdorff space, F~! is continuous. Therefore F is a
homeomorphism.

Finally we show that F' is affine. Fix k& € N. Suppose that {¢; : 1 < i < k} C
Yp and {¢; € [0,1] : 1 < i < k} satisfying Zle ¢; = 1. We need to check that
F(Xigca) = YigaF(), that is, o . (a) = Y1 cige,(a) for all a € TC*(A).
Fix a € TC*(A). Then

de(a) =Y Ax(mr(a)halhy)

AEA
k
_ Ze—ﬁM( cl-ei) (mr(a)hahy)
AEA i=0 s(r)
k
=> > eV () (mr(a)halhy).
=0 AEA

Let Ay, := e‘ﬁy(k)(ei)sm. Then

i=0  AeA i=0
Thus F is affine. O
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5.8 Existence of KMS states of (TC*(A),a?) at the

critical inverse temperature

In this section we describe the KMS states of (TC*(A),a¥) at a critical inverse tem-
perature f3., where the behaviour of the KMS states changes.

Proposition 5.23. Suppose that A is a coordinatewise irreducible finite k-graph. Let
y: A — [0,00) be a weight functor. For 6 € [0,00) and i € {1,...,k} let B;(y,0)
be the matrices from Definition 5.10. Let o¥ : R — TC*(A) be the action given by
Proposition 5.8. Fori € {1,...,k} let B; be the unique number satisfying p(B;(y, B;)) =
1 given by Theorem 5.15. Let B, = max{f; : 1 <i < k}.

(a) The system (TC*(A),a¥) has a KMSgs, state.
(b) If B < B., then (TC*(A),a¥) has no KMSg states.

Proof. (a) We first want to find m such that B(y, 5.)m < m. Choose a decreasing
sequence {f,} such that 5, — f.. Fix n € N. Take z as defined in Theorem 5.22(a).
Choose €, := [0,00)" such that e, -z = 1. Define m, := [[\_,(I — Bi(y,3)) '€n.
Then Theorem 5.22(a) implies that m,, € [0,00)A satisfies B;(y, 8,)m, < m,, for all
ie{l,...,k}and |m,||; = 1. By passing to a subsequence, we may assume that {m,, }
converges pointwise to m € [0,00)A” and ||m/||; = 1. Then taking n — oo tells us that
Bi(y, B.)m < m for all i € {1,... k}.

We aim to define €, := Hle(] — Bi(y, Bn))m and then to apply Theorem 5.22. To
do this we first need to check that €, € [O,oo)AO. Fix j € {1,...,k}. Since 3, > 0.,
we have 0 < B;(y, Bu)ow < Bj(y,Be)vw for all v,w € A’ Therefore m satisfies
Bj(y, Bu)m < B;(y, 8.)m < m. Now,

€n 1= f[(f — Bi(y, Bn))m = H (m — Bi(y, 5n)m>

i=1
Since Bi(y, Bn)m < m for all i € {1,...,k}, €, € [0,00)"", so the z from Theo-
rem 5.22(a) with 8 = 3, satisfies €, - = = 1.

We can then apply Theorem 5.22(b), which gives a KMSg, state ¢,, satisfying

¢n (tut;) — mye—ﬁny(ll)ms(u)

Since the state space of TC*(A) is weak* compact we may assume that by passing to
a subsequence that the sequence {¢,} converges to a state ¢. Proposition 5.9(a) (or
[2, 5.2.3]) then implies that ¢ is a KMSp, state.
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(b) Suppose that ¢ is a KMSg state of (TC*(A),a¥). Then Corollary 5.17 tells
us p(Bi(y,B)) < 1foralli e {1,...,k}. Since 0 — p(B;(y,0)) is strictly decreasing
(Theorem 5.15) and there exists ¢ € {1,...,k} such that p(B;(y,5.)) =1, 8 > B.. O

5.9 KMS states of (C*(A),@Y)

In this section we get an action @’ : R — Aut C*(A) and then show when a KMS state
of (TC*(A), ) factors through a KMS state of (C*(A),a@Y).

Lemma 5.24. The set

P::{tv— Z taty v € A andie{l,...,k}}

AEvA©i

consists of elements which are fized by Y.

Proof. Fixr e R,v e E®and i € {1,...,k}. Then

ol (t— 30 tats) =al(t) —a( 30 )

A€EvA©i A€vA©i

=t,— »  al(tt})
A€EvA©i

=t, — Z () y()‘))t,\ti
AEVA©i

=t,— Y "Lt]
AEVA©i

=t,— Yt} O
AEvAC

Remark 5.25. Recall that we are viewing C*(A) as the image of the quotient map
q:TC*(N) — TC*(A)/J for the ideal J generated by P, and ¢ as the ideal J generated
by P (Remark 5.5). Then o : ker ¢ — ker ¢, and ker ¢ consists of elements which are

fixed by o, so it induces an automorphism @’ of C*(A) such that

@/ (q(a)) = q(@}(a))
for all a € C*(A). We therefore have an action @’ : R — Aut C*(A).
Proposition 5.26. Suppose that A is a finite k-graph with no sources. Let y be a
weight functor and ¥ : R — TC*(A) be the action given by Proposition 5.8. Fix
p € (0,00) and ¢ a KMSy state on (TC*(A),a¥). Fori e {1,...,k} let Bi(y,8) be
the matrices from Definition 5.10. Define m® = (m?) by m¢ = ¢(t,). A KMSy state ¢
factors through C*(A) if and only if Bi(y, 8)m? = m?® for everyi € {1,...,k}.
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Proof. As in the proof of [18, Lemma 4.1(b)] it suffices to check the Cuntz-Krieger
relation (CK) on the generators e; of N*. By Remark 5.5 we view C*(A) as the quotient
of TC*(A) by the ideal J generated by P from Lemma 5.24 . For each generating
projection of J, Equation (5.2) tells us that

ot = 3 ) =ml— 3 e ()

AEVA©i AEVACi

=m? — Z Z e‘ﬁy(”gb(ts@))

weEA? NevACiw

=mf— Y < 3y e‘ﬁy“)>¢(tw)

weAO  AEvAfiw

- mg - Z Bi<y7ﬂ)v,wmw

weAO

(5.15) =mj — (Bi(y, B)m?),.

If ¢ factors through a state of C*(A), then the left-hand side of Equation (5.15) vanishes,
and we have m? — B;(y, 8)m® = 0. Suppose on the other hand that m® = B;(y, 8)m?.
Then Equation (5.15) implies that ¢ vanishes on the generators of J. Now, as in [18,
Lemma 4.1(b)], each of these generating projections is fixed by the action ¥, and for
each spanning element a = t,t! of TC*(A), the analytic function f,(z) := e®*(¥W-v()
satisfies a¥(a) = f,(2)a. Thus [17, Lemma 2.2] implies that ¢ vanishes on the ideal J,
and hence factors through a state of C*(A) = TC*(A)/J. O

Corollary 5.27. If there is a KMSs state of (C*(A), @), then p(B;(y,5)) =1 for all
ie{l,... k}.

Proof. We follow the method of [18, Corollary 4.4]. Let ¢ be a KMSg state of (C*(A), @Y).
Proposition 5.26 implies that the vector m? := (¢(t,)) satisfies B;(y, 8)m?® = m? for
all © € {1,...,k}. Since each B;(y,[) is irreducible (Lemma 5.13), Proposition A.9
implies that p(B;(y,8)) = 1. O

5.10 The preferred dynamics

In this section we show that under certain conditions there is a preferred dynamics in
which there is a unique KMSg, state. Corollary 5.17 and Corollary 5.27 imply that there
is a relationship between the dynamics a¥ and the range of possible inverse tempera-
tures 8. In particular, Corollary 5.27 shows that the only possible inverse temperature
for a KMS state on (C*(A),a¥) satisfies p(B;(y,5)) =1 for all i € {1,...,k}. In other
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words the f3; such that p(B;(y, 3;)) = 1 satisty g = 3; for all i € {1,...,k}. This tells
us that we get our best possible results about KMS states when the (3; coincide. We
therefore normalise the dynamics a¥ to ensure this is the case, and refer to the nor-
malised dynamics as “the preferred dynamics”. The preferred dynamics for 7C*(A)
with the gauge action was studied in [18, Section 7|, and the preferred dynamics for a
2-graph with one vertex was studied in [39].

For matrices Ay, ..., Ax € M,(R) write In(p(A)) for the vector

(In(p(A1)), .., In(p(41))).

For a weight functor y : A — [0,00), define 7 : A — [0, 00) by
1

(1) = y(u) + 3 In(p(B(y, B.))) - d(p).

Then 7 is also a weight functor. We can find the preferred dynamics of the system
(TC*(A),a?) and we can describe all the KMS states for this preferred dynamics.

<

Remark 5.28. In [18, Section 7], the preferred dynamics for (7C*(A), «) is studied.
Taking A; as the vertex matrix with entries A,, = |vA%w|, it occurs when r :=
In(p(A)) = (In(p(A)),...,In(p(Ag))). If the In(p(A4;)) are rationally independent we
can describe all of the KMS states for the preferred dynamics and the critical inverse

temperature occurs at 8. = 1.
First we define the unimodular Perron-Frobenius eigenvector.

Lemma 5.29. Suppose that A is a coordinatewise irreducible finite k-graph. Let y :
A — [0,00) be a weight functor. For 6 € [0,00) and i € {1,...,k} let B;(y,0) be the
matrices from Definition 5.10. Then the unimodular Perron-Frobenius eigenvectors
of the Bi(y,0) are equal for i € {1,...,k}; we denote this vector £ and call it the

unimodular Perron-Frobenius eigenvector of A.

Proof. The matrices B;(y, 0) are irreducible (Lemma 5.13) and commute (Lemma 5.11),
so we can apply [18, Lemma 2.1], which implies that their unimodular Perron-Frobenius

eigenvectors are equal. O

Theorem 5.30. Suppose that A is a coordinatewise irreducible finite k-graph. Let
y: A — [0,00) be a weight functor. For 6 € [0,00) and i € {1,...,k} let B;(y,0)
be the matrices from Definition 5.10. Let o¥ : R — TC*(A) be the action given by
Proposition 5.8. Choose . € (0,00), and define

mm=mm+émwm%m»dw

90



for all p € A. Let & be the unimodular Perron-Frobenius eigenvector for A from
Lemma 5.29. If y(p) = y(v) implies that d(p) = d(v) for all u,v € A, then the system
(TC*(A),a”) has a unique KMSs, state ¢. The state satisfies

(5.16) qb(t'ut;) — 'u’ye—ﬁcg(u)gA

s() for all p,v € A,

and factors through a state ¢ of the quotient C*(A). The state ¢ is the only KMS state
for (C*(A),@¥).

Proof. Fix j € {1,...,k}. We first show that p(B;(7, 5.)) = 1. Now,

B (T, Be)ow = Z o~ BN+ 5, n(p(B(y,5:)))-d(N)

AEvASTw

_ Z e Pe(y(N)+5; n(p(B;(y,0e))))
AEVA“Tw

— Z e_ﬂcy _hl p(B (y /Bc)))
AEVA%Tw

B Z e_/BCy(A)
s P T

_ Z —Bey(A

= e
p( j )\GvA Jw

1
= —Bj(y7 60)'0,10

p(Bj(y, Be)))

Therefore B;(7, B.) = B(TBj(y,ﬁc) so p(B;(y,4.)) = 1.
To show that a KMSp, state exists, choose a decreasing sequence {3,} such that

fn — Be.. Since B, > S., applying Theorem 5.22(b) to € := Hle(f — B(Y, Bn))EN gives
a KMSg, state satistying

(5' 17) ¢n(tut2) — 5%1/67’8"?(“)5?(,1)

Since the state space of TC*(A) is weak® compact we may assume that the sequence
{¢n} converges to a state ¢. Letting n — oo in Equation (5.17) shows that ¢ satisfies
Equation (5.16). Thus, since y(u) = y(v) implies that d(u) = d(u), Proposition 5.9(c)
implies that ¢ is a KMSg, state.

To establish uniqueness, suppose that ¢ is a KMSg, state. Then Proposition 5.16(a)
says that m¥ = (¢(t,)) satisfies B;(7, 8.)m¥ < m¥. Then Proposition A.8 implies that
B;(y, B.)m?¥ = m¥. Now, since B;(7,S.)m¥ = m¥ for all i € {1,...,k} and &" is
the Perron-Frobenius eigenvector, m¥ = ¢*. Finally, fix t,,t¢; € TC*(A). Then, since
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7(un) = y(v) implies that d(u) = d(p), Proposition 5.9(c) implies that

(0 (t,utZ) = mue_ﬁ@(u) P (tS(u) )

—ﬁcg(ﬂ)m"/}( )
s(p

= mue—ﬁcy(u)gé\(u)_

= Opup€

So Equation (5.16) implies that ¢ (t,t}) = ¢(t,t)). Thus ¢ = .

Since B;(7, B.)m® = m? for all i € {1,...,k}, Proposition 5.26 implies that ¢
factors through a state of C*(A).

To see that ¢ is the only KMS state of (C*(A),@¥), suppose that 1 is a KMSj state
of (C*(A),a¥). Then ¢ oq is a KMS state of (TC*(A),a¥), and Proposition 5.26 shows
that B;(y, 3)m¥°? = m¥°4 for all ¢ € {1,...,k}. Then the Perron-Frobenius theorem
implies that p(B;(y,5)) = 1 for all ¢ € {1,...,k}. Thus uniqueness of the KMSg, state
of (TC*(A),a¥) implies that ¢ = ¢. O

5.11 An example

We finish with an example which shows Theorem 5.30 gives examples not covered by
[18].

Example 5.31. Let (A, d) be the 2-graph defined by the skeleton

and the factorisation property
erfi = fier, eifa = fie2, eafi = faer and ez fs = faes.
Fix g, € (0,00). Define y : A — [0, 00) on edges by
yle) =1  ylea)=v2  y(f)=v3  y(f)=v2+V3-1

Then Proposition 5.7 tells us y is a well-defined weight functor. From Definition 5.10

we get the 1 X 1 matrices

Bi(y, Bc) = |e P + e*\/iﬂc] Bs(y, B.) = [eﬂ/gﬁc LBV |
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Then
(B, ) = (e + e

and

Blh’l(p(Bg<y,Bc))) — %ln (e—x/iﬁc + e—ﬁc(\/i+x/§—1)).

Then we define

5 In (e + e~ V28e)

y(p) = y(p) + Ly (e, +€_5C<ﬁ+\/§_1))] ~d(p).
Now
Bl(@, Bc) — _e—ﬁc(l—&—iln(e_ﬂc—i-e_ﬂﬁc)) + e—ﬁc(ﬁ—i-ﬁ%ln(e_ﬂc—i-e_ﬁﬁc))]
e—Be 1 e—V2Be

- _eﬁcﬂ—lcln(efﬁwe*\@ﬁc)]

_ [eBeqe—v26e

o _e*Bc+e*\/§ﬁc

_ 1}
and

BQ(@) Bc)

e*\/§5c+e*5c(\/§+\/§*1)
- Bcl%ln (e—\/gﬁc+e*5¢:(\/§+\/§*1))
Le c

_ _6*\/§5c+e*ﬁc(\/§+\/§*1)
- _e_\/§ﬁ0+e*ﬁe(\/§+\/§71)

=1/,

so p(B;(y,p.)) =1forall j € {1,...,k}.

. _e,ﬁc(\/@rﬁ%ln (e=V3Be 4= Bec(V2Z+V3-1))) 4 e*BC((‘/iﬂ/g*lHFlcln (e=V3Be 4= Be(V2Z+V3-1)))

Then, by Theorem 5.30, the system (7C*(A),a?) has a unique KMS . state ¢,

and it satisfies

Ot L) = 5%”6—6@(#)&\(#)_

Since y(ey) # y(es), we can’t write y(u) as 1’ - d(u) for some r’ € [0, 00)*

, 80 () is

not of the form r - d(u) for some r € [0,00)* and this example is not just an example

of the preferred dynamics from [18].
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Appendix A

Appendix

A.1 The spectral radius of nonnegative matrices

For A € M,(C), the spectral radius of A, denoted p(A), is the maximal absolute
value of all of the eigenvalues of A. For A, B € M,(R) we write A < B if a;; < b;;
for all 1 < 4,5 < n. In this section we study nonnegative real matrices, that is,
A = (a;;) € M,(R) such that A > 0. We show that the spectral radius of nonnegative
real matrices are decreasing, that is, A < B implies p(A) < p(B).

Lemma A.1. Let A € Mn(R) Then ||A||L(]Rn) = ||A||L((Cn)

Proof. First we show that ||Al|rcn) < ||AllL@ny. Fix 2,y € R". Then
o+ iyll> = | + iy
j=1
Because x; and y; are real numbers,

(A.1) lz +ayl® =Y laP + lyslP =Y af + > o7 = =l + Iyl
j=1 j=1 j=1
Let z = z +1y. Then

[A2]|* = [| Az + iAy]*
= [[Az||* + (Az | iAy) + (iAy | Az) + [|iAy|”
= [|[Az|* + || Ay]*
< (IAllz@y ll=1)* + (LAl 2@ lyl)?
= AL oy (111 + N1yl
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and Equation (A.1) gives
142" < [|AIZ @l + iyl = Al Lm 121"

Then because ||A||Lcr) is the smallest ¢ € R such that ||Az|| < c||z||, ||Allr@eny <

[ Al )
Conversely,
Al @ny = sup{[[Az|| : z € R" : ||| = 1}
< sup{||Az|| : z € C" : ||z|| = 1}
= [[Allzen.-
Thus [[Al|n) = [|A]lzic). O

Lemma A.2. If A >0, then ||Al|L@®n) = sup{||Az|| : x € [0,00)", ||z|| = 1}.

Proof. Fix x € R™. Since A > 0,

| Az? = Z\ (Ax);
_ ]Zl(za]kxk
< ;‘Z%kmw
= ;I(Alxl)ﬂ?

= [|Al[[J*.

It follows that
[Alln) = sup{[|Az]| : 2 € R”, [lz]| = 1}
= sup{[|Afz][| : = € R, [lz]| = 1}
= sup{||Az[| : z € [0,00)", [|z]| = 1}. 0
Corollary A.3. If0 < A < B, then || Al L@ny < || B||L@nr)-

Proof. Fix x € [0,00)". Then, since A < B entrywise,

n

|Az]?> =) (Az); < Y (Bux); = ||Bal?

j=1 j=1
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Then, by Lemma A.2,

| AllL@ny = sup{||Az| : x € [0,00)", [|x|| = 1}
sup{|| Bz : x € [0,00)", ||z| =1}
| Bl Lrny.- O

IN

Corollary A.4. If0 < A < B, then p(A) < p(B).

Proof. Since 0 < A < B we have 0 < AF < B* for all k € N. Then applying
Corollary A.3 we get || A¥||@n) < || B¥||L®n for all k € N. Then Lemma A.1 tells us
that || A*||1cry < ||B¥||Lcny for all k € N. Now L(C") is a Banach algebra over C, so

we can use the spectral radius formula to get
p(4) = lim ||+ < lim |[B|[* = p(B). m
k—o0 k—o00

The following results from Perron-Frobenius theory are used throughout this thesis
and stated here for convenience. We use the reference [7] as our main source for the

theory, because it makes it clear when the individual hypotheses are used.

Proposition A.5 ([7, Proposition 2.2]). Let A € M,(R) be a nonnegative matriz,

x € R™ be a positive vector and X be a nonnegative number.

(a) If \e < Az, then X\ < p(A).

(b) If Az < Az, then p(A) < A.

(c) If \x < Az, then A < p(A).

(d) If Az < Az, then p(A) < .

Corollary A.6 ([7, Corollary 2.3]). Let A € M,(R) be a nonnegative matriz and

x € R" be a positive vector. If Ax = Az then A = p(A).

A.1.1 The Perron-Frobenius theorem

We now present consequences of the Perron-Frobenius Theorem (for example, [7, The-
orem 2.6]) used throughout this thesis.

A nonnegative matrix T' € M, (R) is irreducible if for every pair 1 <i,j < n there
exists a positive integer m such that (7");; > 0. For x = (x;) € R™ we write z > 0 if

z; >0foralll <i<n.
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Proposition A.7 ([7, Corollary 2.2]). Let A € M, (R) be nonnegative and irreducible.
Then there ezists a unique vector x > 0 such that Az = p(A)x and ||z||; = 1.

Proposition A.8. Let A € M,(R) be nonnegative and irreducible. If x > 0 such that
x # 0 and either Az > p(A)x or Az < p(A)x, then Ax = p(A)x.

Proof. We apply the Perron-Frobenius theorem and then follow the method of [7,
Proposition 2.4]. Since A is a nonnegative irreducible square matrix we can apply the
Perron-Frobenius theorem to get a positive left eigenvector y. Then yTA = p(A)y7,

which implies that
y' (Az — p(A)z) = p(A)y"z — p(A)y"z = 0.
Because y > 0 and either Az > p(A)z or Az < p(A)z, this implies Az = p(A)x. O

Proposition A.9. Let A € M,(R) be nonnegative and irreducible and X be a nonneg-
ative number. If x > 0 such that © # 0 and Ax > Az, then p(A) < \. Moreover, if
Az = Az, then p(A) = \.

Proof. We use the method of [37, Theorem 1.6(a)] to show that = > 0 and then apply
Proposition A.5(b). Fix i satisfying 1 < i < n. Since Az < Az, we have A¥x < Mz for

every k € N. We write the elements of A* as a55)7 then

n
Z agf)xj < Nz,
j=1

(i)
ij
x; > 0, so it follows that

Now, since A is irreducible, for all j there exists k; such that a,;;”” > 0. Choose j such
(k)
ij

x; > 0. Then Proposition A.5(b) tells us that p(A) < A. If in addition Az = Az,
Proposition A.8 tells us p(A) = A. O

that x; > 0 (at least one exists because z # 0), then a

A.2 Enumeration and convergence of sums

Throughout this thesis we will use sums of the form ) __ in which the index set X is
possibly infinite. In this section we define what we mean by such sums. Fix a set X.

We use the o-algebra of all subsets of X.

Lemma A.10. Let m be a measure on X and f: X — [0,00) a measurable function.

Then there is a measure v on X such that
(A.2) v(F) = / fdm.
F
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Proof. We assume that Equation (A.2) and need to show that v is a measure. To do
this we need to show that v(()) = 0 and that v is countably additive, that is, if { X, }22,
is a sequence of disjoint sets, then v(|J,~, X,,) = > -~ v(X,). That v(0) = 0 is trivial:

v() = /@fdm = 0.

To show the countable additivity of v, write Y = |J._, X,,, such that the X, ’s are
disjoint and measurable. We first look at the characteristic function x~  x,. Fix

x € X. Since the X,,’s are disjoint,

1 ifee X, &
XUz, x, (7) = = xx.(@)
n=1

0 otherwise

Then, by the algebra of limits,

Now, define fy := 22[21 fxx,- Since

N+1

frgr = Z Ixx = Xxy + v 2 [,
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we can apply the monotone convergence theorem [13, 2.14] with fy to get that

/J\}l_{ﬂooz fXX dm— hm /Z fXXn dm
= hm Z/ fXXn dm
= f nd

;/ XX, am
:; andm
= v(Xy)

Thus v(Y) =3, v(X,,) and v is a measure, as required. O

Theorem A.11. Let X be a set and f : X — [0,00) a function. Let m be the counting

measure on X, and define

> fa) = [ sam.

reX
Let v(F) be given by Lemma A.10. If F C X, then )y . f(x) =v(F). If X =77, F,

15 a disjoint union, then
S i@ =Y (X 1),
rzeX n=1 xz€F,
Proof. First we show that Y . f(x) = v(F). Because v(F) = [, fdm we have,
(A.3) / fdm = v(
xGF
Next, Lemma A.10 tells us that v is a measure. Then, by Equation (A.3),
Y f@) =vX)=v(| |F) =) v(F) =) f() O
reX n=1 n=1 n=1 zeF,

Corollary A.12. Suppose that X is a countable set, and {x) : k € N} is an enumer-
ation of X. Then for every function f : X — [0,00) the series Y~ f(x,) has sum

ZxEX f(l’)
Proof. Apply Theorem A.11 with F,, = {x,}. Then

S50 =3 (X 1) = 3 sten e

reX n=1 ze&{z,}
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The following results are used throughout this thesis to show some of our infinite
sums converge. Thanks to Iain Raeburn for the proofs, which we were unable to find

in the literature.

Proposition A.13. Let A be a Banach algebra with identity, and suppose that a is an

element of A such that Y " ||a"|| converges. Then 1 — a is invertible, with

(1—a)'=> a"

Proof. We have to show that the sequence {Sx} of partial sums Sy = Zﬁ[:o a" con-

verges in A to an inverse for 1 —a. If M < N, we have

N N N M
A sy =Sul=| X @< X el =D e =D el
n=1 n=1

n=M+1 n=M+1

Since > ||a™|| converges, its partial sums form a Cauchy sequence, and Equation (A.4)
implies that {Sy} is a Cauchy sequence. Because A is complete, { Sy} converges to an

element b := > ja" of A. From the continuity of multiplication, we have

N
- — 1 o ny _ J; _ N+1
(b= Jim (=) (3 0") = lim (1 -

which is 1 because the summands in the convergent series > ||a™|| must go to 0. Simi-

larly b(1 —a) =1, and 1 — a is invertible with inverse b. O

Corollary A.14. Suppose that A is a Banach algebra with identity and a € A. If
A € C satisfies |A| > p(a), then the series Y - A~ "a" converges in norm in A with

sum (1 — A"ta)™L.
Proof. The spectral radius formula implies that
A a [ = AT [ = (A e = A pla) < 1

Thus the nth root test implies that the series > - |[A7"a"|| converges, and the result

follows from Proposition A.13. O]
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