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Abstract

The goal of this thesis is to study the KMS states of graph algebras with a

generalised gauge dynamics.

We start by studying the KMS states of the Toeplitz algebra and graph

algebra of a finite directed graph, each with an a generalised gauge dynam-

ics. We characterise the KMS states of the Toeplitz algebra and find an

isomorphism between measures and KMS states at large inverse tempera-

tures. When the graph is strongly connected we can describe all of the KMS

states, and we get a unique KMS state at the critical inverse temperature.

Viewing the graph algebra as a quotient of the Toeplitz algebra we describe

the KMS states of the graph algebra.

Next we study the KMS states of graph algebras for row-finite infinite

directed graphs with no sources and the gauge action. We characterise the

KMS states of the Toeplitz algebra and discuss KMS states at large inverse

temperatures. We then show that problems occur at the critical inverse

temperature.

Lastly we study the KMS states of the Toeplitz algebras and graph algebras

for higher-rank graphs with a generalised gauge dynamics, using the same

method as we did for finite graphs. We finish by studying the preferred

dynamics of the system, where we get our best results.
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Chapter 1

Introduction

Let B be a C∗-algebra and G a locally compact group. An action of G on B is a

homomorphism α : G → AutB such that g 7→ αg(b) is continuous on G for each

b ∈ B. Then (B,α) defines a C∗-dynamical system, and α is the dynamics of the

system. Applications of C∗-dynamical systems include the study of the time evolution

in quantum and statistical mechanics.

In the study of quantum mechanical systems an equilibrium state of a C∗-dynamical

system can be described by a Kubo-Martin-Schwinger state, or KMS state. The be-

haviour of the KMS states varies with a parameter β called the “inverse temperature”.

A C∗-algebra has a set of analytic elements, and for β ∈ (0,∞) a state φ is a KMS

state at inverse temperature β if φ(ab) = φ(bαiβ(a)) for all a, b in this set. KMS states

are of interest in many areas, including topological graphs [1], groupoids [36, 29], and

number theory [25, 27].

A directed graph E = (E0, E1, r, s) consists of vertices E0 and edges E1, and re-

lations which tell us how they are related, called the range and source maps, r and s

respectively. We can form a graph algebra by associating projections Pv to the vertices

v ∈ E0 and partial isometries Se to the edges e ∈ E1 which satisfy certain relations.

We are interested in two such algebras: the graph algebra C∗(E) (see Section 2.2.2)

and the Toeplitz algebra T C∗(E) (see Section 2.2). The graph algebra C∗(E) has been

studied by, for example; Kumjian, Pask, Raeburn and Renault [24] using a groupoid

model, and Kumjian, Pask and Raeburn in [23]. The Toeplitz algebra T C∗(E) was

introduced in [14]. Write B for either C∗(E) or T C∗(E). Then there is a natural action

γ of the circle T on B called the gauge action, and we can lift the gauge action to a

natural dynamics (action of the real numbers) α of R on B by setting αt := γeit .

Fix n ≥ 2. Introduced in [5], the Cuntz algebra On is the C∗-algebra universal for
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a family of isometries {S1, . . . , Sn} such that
∑n

i=1 SiS
∗
i = 1. A consequence of this

relation is that the Si have mutually orthogonal ranges. For µ = µ1 . . . µ|µ| we write

Sµ := Sµ1 . . . Sµ|µ| . Then for a universal family {s1, . . . , sn} we have

On = span{sµs∗ν : µi, νi ∈ {1, . . . , n}}.

We can view On as the graph algebra C∗(E) of the graph E with one vertex and n

edges. In [30] Olesen and Pedersen showed that the system (On, α) has a unique KMS

state which occurs at inverse temperature lnn.

Let G be a finite set of n elements and A be an n × n matrix with entries in

{0, 1}, no zero rows or columns, and which is irreducible but not a permutation matrix.

Introduced in [6], the Cuntz-Krieger algebra OA is the C∗-algebra universal for a family

of partial isometries {Si}i∈G satisfying

(a)
∑

j∈G SjS
∗
j = 1, and

(b) S∗i Si =
∑

j∈G Ai,jSjS
∗
j , for all i ∈ G.

For µ = µ1 . . . µ|µ| we write Sµ := Sµ1 . . . Sµ|µ| . Then for a universal family {si}i∈G we

have

OA = span{sµs∗ν : µi, νi ∈ G}.

Again we can view OA as the graph algebra C∗(EA) of the graph EA with vertex set G
and edges from j to i whenever Ai,j = 1 (see [32, Remark 2.8] for example). Because

of the assumptions on the matrix A, the graphs EA have special properties:

(a) because A is required to be irreducible and not a permutation matrix, EA has the

condition that “every cycle has an entry”;

(b) because the entries of A are in {0, 1}, for vertices i, j in EA there is at most one

edge from j to i; and

(c) because A does not have any zero rows or columns, EA must have no sources or

sinks.

Write ρ(A) for the spectral radius of the matrix A. In [9] Enomoto, Fujii and

Watatani showed that the system (OA, α) has a unique KMS state which occurs at

inverse temperature ln(ρ(A)). This result was generalised to infinite matrices by Exel

and Laca in [12], but it was not until 2011 that Kajiwara and Watatani [21] pointed
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out that the result of [9] was not known for graphs with sources. They showed that

the presence of sources gave extra KMS states. Subsequently an Huef, Laca, Raeburn

and Sims [17] extended this result to arbitrary finite graphs E, that is, graphs which

potentially have sinks, sources, and multiple edges between vertices. The methods of

[17] were quite different: Exel and Laca [12] and Laca and Neshveyev [26] pointed out

that the Toeplitz algebra has a much richer KMS structure than its quotient, and they

use this idea to study the KMS states of T C∗(E) and C∗(E). Their results for KMS

states at the critical inverse temperature were for graphs with an irreducible vertex

matrix; in [19] they studied graphs with a reducible vertex matrix.

Higher-rank graphs (also known as k-graphs) Λ (see Section 5.1) and their graph

algebras C∗(Λ) (see Section 5.2.1) were introduced by Kumjian and Pask in [22] as

combinatorial models for higher-rank Cuntz-Krieger algebras. They also have Toeplitz

algebras T C∗(Λ) (see Section 5.2), introduced by Raeburn and Sims in [33]. Taking

B as either C∗(Λ) or T C∗(Λ), there is a natural gauge action γ of the torus Tk on B,

which lifts to a dynamics α of Rk on B. In [18], an Huef, Laca, Raeburn and Sims

extended the method of [17] to study KMS states of (T C∗(Λ), α) and (C∗(Λ), α). In

addition, the KMS states of 2-graphs with one vertex have been extensively studied,

for example by Yang in [38] and [39].

In this thesis we are interested in dynamics which are more general than those lifted

from the natural gauge actions of T on the algebras, which we call generalised gauge

dynamics. Fix n ≥ 2. Let {s1, . . . , sn} be a universal family generating On. For a

collection of real numbers {yj}nj=1 such that yj > 0 for all j, there is an action αy of R
on On such that

αyt (sj) = eityjSj for all t ∈ R.

We can recover the gauge dynamics from αy by taking yj = 1 for all j. Then Evans

[10] extended the result of [30] to (On, αy), showing there is a unique KMS state at

inverse temperature β if and only if 1 = e−βy1 + · · · + e−βyn . Similarly, Exel and

Laca [12] extended the results of [9] to show there is a unique KMS state of OA with a

generalised gauge dynamics (in the finite case). The KMS states of OA with generalised

gauge actions have also been studied by Exel in [11].

These results have been extended to study KMS states of the graph algebra C∗(E)

with a generalised gauge dynamics. Let E = (E0, E1, r, s) be a finite directed graph

and {pv, se} be the universal family generating C∗(E). For {re ∈ (0, 1)}e∈E1 we can
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define an action αr of R on C∗(E) such that

αrt (se) = e−it log(re)se.

Then Ionescu and Kumjian [20] used a groupoid model for C∗(E) to get results about

the KMS states of (C∗(E), αr). In [3] Carlsen and Larsen study the KMS states of

relative graph algebras, a generalisation of C∗(E) and T C∗(E), and a generalised

gauge dynamics. In [4] Christensen and Thomsen extend the results of [17] to include

generalised gauge actions, but they do not include results about the Toeplitz algebra

T C∗(E). None of them obtained a detailed description of all of the KMS states like

the one we present here.

The goal of this thesis is to study the KMS states of Toeplitz algebras T C∗(E)

and graph algebras C∗(E) with a generalised gauge dynamics. To do this we define a

generalised gauge dynamics and then use the method of [17] to study the KMS states

of graph algebras for a finite directed graph. We then study the KMS states of graph

algebras for infinite graphs with the gauge action by examining what happens to the

method of [17] when we remove the assumption that the graph is finite. Finally we use

the method of [18] to study the KMS states of graph algebras for higher-rank graphs

with a generalised gauge dynamics.

In Chapter 2 we review preliminary material required in our study of KMS states.

We start by recalling the definition of a directed graph E = (E0, E1, r, s), and then

define the Toeplitz algebra T C∗(E) and graph algebra C∗(E). Next we recall the

definition of the usual gauge action γ of T on T C∗(E). We then choose a function

y : E1 → (0,∞) and use it to find a generalised gauge dynamics αy of R on T C∗(E).

Finally we present the definition of KMS states and characterise the KMS states of

(T C∗(E), αy).

In Chapter 3 we study the KMS states of C∗-algebras for finite directed graphs with

a generalised gauge dynamics. First we study the KMS states of (T C∗(E), αy) at large

inverse temperatures. We then discuss the KMS states of (T C∗(E), αy) at the critical

inverse temperature when E is strongly connected. Finally we get a generalised gauge

dynamics αy of R on C∗(E) and study the KMS states of (C∗(E), αy).

In Chapter 4 we attempt to extend the results of [17] to row-finite infinite graphs

with no sources. Taking α to be the dynamics associated to the gauge action γ, we

start the chapter by characterising the KMS states of (T C∗(E), α). To study the KMS

states of (T C∗(E), α) at large inverse temperatures we present some background from

Banach spaces and then find an isomorphism between KMS functionals and a subset
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of `1(E0). We then show when the KMS states of (T C∗(E), α) factor through C∗(E).

Finally we give an example from [3] to show that we cannot guarantee existence of the

KMS states of (C∗(E), α) for infinite graphs.

In Chapter 5 we extend the results from Chapter 3 to higher-rank graphs, using

the method of [18]. We first introduce the required background material for a higher-

rank graph Λ and its C∗-algebras T C∗(Λ) and C∗(Λ). We then choose a functor

y : Λ→ [0,∞) and use it to define a generalised gauge dynamics αy of R on T C∗(Λ).

Next we present results about the characterisation of the KMS states of (T C∗(Λ), αy).

We characterise the KMS states of (T C∗(Λ), αy) at large inverse temperatures, by de-

scribing an isomorphism between measures and the KMS states of (T C∗(Λ), αy) at large

inverse temperatures. We use these results to describe KMS states of (T C∗(Λ), αy) at

the critical inverse temperature. We then describe the dynamics αy and get results

about the KMS states of (C∗(Λ), αy). Finally we present results about the KMS states

of (T C∗(Λ), αy) and (C∗(Λ), αy) for a preferred dynamics, and give an example to

illustrate these results.

We finish with an appendix containing useful results about the spectral radius of

nonnegative matrices (including consequences of the Perron-Frobenius theorem) and

the enumeration and convergence of sums.
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Chapter 2

Preliminaries

In this chapter we present definitions and results used in later chapters. We first define

a directed graph and its related notation. We then define T C∗(E) and discuss its

relationship with the graph algebra C∗(E). Next we present the definition of the gauge

action γ, as well as a generalised gauge dynamics αy. Finally we present the definition

of KMS states and characterise the KMS states of (T C∗(E), αy).

2.1 Directed Graphs

In this section we introduce the concept of a directed graph. We use the conventions

of [32] for directed graphs and, as in [17], borrow some notation from the higher-rank

graph literature.

A directed graph E = (E0, E1, r, s) consists of two sets E0, E1 and functions r, s :

E1 → E0. The elements of E0 are called vertices and the elements of E1 are called

edges. For each edge we call s(e) the source of e and r(e) the range of e. An edge

e ∈ E1 can therefore be thought of as travelling from s(e) to r(e). For a vertex v ∈ E0

we define

vE1 := {e ∈ E1 : r(e) = v}.

A graph is row-finite if vE1 is a finite set for every v ∈ E0, and in this thesis we will

only consider row-finite graphs. If vE1 = ∅ then v is called a source. For vertices

v, w ∈ E0 we also define

vE1w := {e ∈ E1 : r(e) = v, s(e) = w}.
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We can then define the vertex matrix A of a graph to be the E0 × E0 matrix with

entries

Av,w = |vE1w|.

A path of length n is a sequence µ = µ1µ2 . . . µn of edges µi ∈ E1 such that

s(µi) = r(µi+1) for 1 ≤ i ≤ n−1. We extend r and s to paths by defining r(µ) := r(µ1)

and s(µ) := s(µn). We denote by En the set of paths of length n, and for µ ∈ En

define |µ| := n, the number of edges in the path µ. We define E∗ :=
⋃
n≥0E

n. Then,

for example, we define

vE∗ := {µ ∈ E∗ : r(e) = v}.

A directed graph is strongly connected if for every pair of vertices v, w ∈ E0 there exists

a path µ ∈ E∗ such that s(µ) = w and r(µ) = v, that is, for all v, w ∈ E0, vE∗w 6= ∅.
Corollary A.12 tells us that the way we enumerate sums of nonnegative numbers

doesn’t matter. For example, taking f : E0 → [0,∞) we can write
∑

v∈E0 f(x) without

ambiguity, and we exploit this fact throughout.

2.2 The Toeplitz algebra T C∗(E)

In this section we introduce Toeplitz-Cuntz-Krieger families and their algebras, using

the definition of [14].

Let E be a row-finite directed graph. A Toeplitz-Cuntz-Krieger E-family {Pv, Se}
consists of mutually orthogonal projections {Pv : v ∈ E0} and partial isometries {Se :

e ∈ E1} such that

(TCK1) S∗eSe = Ps(e) for all e ∈ E1, and

(TCK2) Pv ≥
∑

e∈vE1 SeS
∗
e , for all v ∈ E0.

Note here that because E is assumed to be row-finite the sum in (TCK2) is finite.

It is proved in, for example, [14, Proposition 1.3] that there is a C∗-algebra T C∗(E)

generated by a Toeplitz-Cuntz-Krieger E-family {pv, se} which is universal in the sense

that given any Toeplitz-Cuntz-Krieger E-family {Qv, Te} in a C∗-algebra B, there is

a homomorphism πQ,T : T C∗(E) → B such that πQ,T (se) = Te for all e ∈ E1 and

πQ,T (pv) = Qv for all v ∈ E0. We call T C∗(E) the Toeplitz algebra of E. We use

the convention that a family denoted with lowercase letters (for example, {pv, se}) has
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the universal property, whereas a family denoted with uppercase letters (for example,

{Qv, Te}) can be any family.

We extend the partial isometries for edges to partial isometries for paths by defining

Sµ := Sµ1 . . . Sµ|µ| for µ ∈ E∗.

If µ ∈ E∗ is a path then repeated applications of (TCK1) give

S∗µSµ = (Sµ1Sµ2 . . . Sµn)∗Sµ1Sµ2 . . . Sµn(2.1)

= S∗µn . . . S
∗
µ2

(S∗µ1Sµ1)Sµ2 . . . Sµn

= S∗µn . . . S
∗
µ2

(Ps(µ1))Sµ2 . . . Sµn

= S∗µn . . . S
∗
µ2

(Pr(µ2))Sµ2 . . . Sµn

= S∗µn . . . (S
∗
µ2
Sµ2) . . . Sµn

...

= Ps(µn)

= Ps(µ).

Lemma 2.1. Let {Pv, Se} be a Toeplitz-Cuntz-Krieger E-family. Then

S∗eSf = δe,fPs(e) for all e, f ∈ E1.

Proof. [17, Corollary 1.2] tells us that the projections {SeS∗e : e ∈ E1} are mutually

orthogonal, and therefore

S∗eSf = S∗eSeS
∗
eSfS

∗
fSf =

S∗eSe if e = f

S∗e0Sf otherwise.

So by (TCK1) S∗eSf = δe,fPs(e).

Corollary 2.2. Let {Pv, Se} be a Toeplitz-Cuntz-Krieger E-family. Then, for µ, ν, σ, τ ∈
E∗, we have

(SµS
∗
ν)(SσS

∗
τ ) =


Sµσ′S

∗
τ if σ = νσ′

SµS
∗
τν′ if ν = σν ′

0 otherwise.

(2.2)

We call this the product formula.

9



Proof. We prove this for a Toeplitz-Cuntz-Krieger E-family by adapting the proof of

[32, Corollary 1.15], which was for a Cuntz-Krieger E-family.

We consider two cases, that |ν| ≤ |σ| and that |σ| < |ν|. First suppose that

n := |ν| ≤ |σ|, and factor σ = ασ′ with |α| = n. Then

(SµS
∗
ν)(SσS

∗
τ ) = SµS

∗
ν(SαSσ′)S

∗
τ = Sµ(S∗νSα)Sσ′S

∗
τ .

If ν = α, then Equation (2.1) implies that

(SµS
∗
ν)(SσS

∗
τ ) = SµPs(ν)Sσ′S

∗
τ = SµPr(σ′)Sσ′S

∗
τ = Sµσ′S

∗
τ .

If ν 6= α, let i be the smallest integer such that νi 6= αi. Then applying Equation (2.1)

gives

S∗νSα = (Sν1Sν2 . . . Sνn)∗Sα1Sα2 . . . Sαn

= S∗νn . . . S
∗
νi

(S∗νi−1
. . . S∗ν1Sα1 . . . Sαi−1

)Sαi . . . Sαn

= S∗νn . . . S
∗
νi
Ps(νi−1)Sαi . . . Sαn

= S∗νn . . . S
∗
νi
Pr(νi)Sαi . . . Sαn

= S∗νn . . . S
∗
νi
Sαi . . . Sαn .

Lemma 2.1 implies S∗νiSαi = 0, so S∗νSα = 0. Therefore

(SµS
∗
ν)(SσS

∗
τ ) = Sµ(S∗νSα)Sσ′S

∗
τ = 0.

Next suppose that |ν| > |σ|. Then we can factor ν = βν ′ and run a similar argument

to get

(SµS
∗
ν)(SσS

∗
τ ) = SµPs(σ)S

∗
ν′S
∗
τ = SµPr(ν′)S

∗
ν′S
∗
τ = SµS

∗
τν′ ,

if β = σ and 0 otherwise.

The product formula implies that

T C∗(E) = span{sµs∗ν : µ, ν ∈ E∗, s(µ) = s(ν)}.

2.2.1 The finite path representation

We now introduce the finite path representation, which is used in later proofs to show

properties of our universal family {pv, se}.
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Proposition 2.3. Let E be a row-finite directed graph. Write hµ for the point mass

at µ ∈ E∗, and let {Qv : v ∈ E0} and {Te : e ∈ E1} be the partial isometries on `2(E∗)

such that

Qvhµ =

hµ if v = r(µ)

0 otherwise

and

Tehµ =

heµ if s(e) = r(µ)

0 otherwise.

Then {Q, T} is a Toeplitz-Cuntz-Krieger E-family in B(`2(E∗)). We call the repre-

sentation πQ,T : T C∗(E)→ B(`2(E∗)) such that πQ,T (pv) = Qv and πQ,T (se) = Te the

finite path representation.

Lemma 2.4. Let hµ be the point mass at µ ∈ E∗. If {Q, T} is the Toeplitz-Cuntz-

Krieger E-family from Proposition 2.3 then

T ∗e hν =

hν′ if ν = eν ′

0 otherwise.

Proof.

T ∗e hν = T ∗e Tν1hν2...ν|ν|

=

Qs(ν1)hν2...ν|ν| if ν1 = e

0 otherwise

=

hν′ if ν = eν ′

0 otherwise.

Corollary 2.5. Let hµ be the point mass at µ ∈ E∗. If {Q, T} is the Toeplitz-Cuntz-

Krieger E-family from Proposition 2.3 then Qv 6=
∑

e∈vE1 TeT
∗
e .

Proof. Applying Lemma 2.4,(
Qv −

∑
e∈vE1

TeT
∗
e

)
hv = Qvhv −

∑
e∈vE1

TeT
∗
e hv

= hv −
∑
e∈vE1

Te0

= hv.

In particular, we have Qv −
∑

e∈vE1 TeT
∗
e 6= 0, so Qv 6=

∑
e∈vE1 TeT

∗
e .
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2.2.2 The graph algebra C∗(E)

If a Toeplitz-Cuntz-Krieger E-family {Pv, Se} also satisfies

Pv =
∑
e∈F

SeS
∗
e for all v ∈ E0,(CK2)

then {Pv, Se} is a Cuntz-Krieger E-family. As with the Toeplitz algebra there is a

C∗-algebra C∗(E) generated by a Cuntz-Krieger E-family {pv, se} which is universal

in the sense that given any Cuntz-Krieger E-family {Qv, Te} in a C∗-algebra B there

is a homomorphism πQ,T : C∗(E) → B such that πQ,T (se) = Te for all e ∈ E1 and

πQ,T (pv) = Qv for all v ∈ E0 ([32, Proposition 1.21]). We call C∗(E) the graph algebra

of E.

The following result tells us how T C∗(E) and C∗(E) are related.

Lemma 2.6. Let {pv, se} be the universal Toeplitz-Cuntz-Krieger E-family which gen-

erates T C∗(E). Let J be the ideal generated by {pv −
∑

e∈vE1 ses
∗
e : v ∈ E0}, and

q : T C∗(E)→ T C∗(E)/J be the quotient map. Write se = q(se) and pv = q(pv). Then

(T C∗(E)/J, {pv, se}) is universal for Cuntz-Krieger E-families, that is,

(a) {pv, se} is a Cuntz-Krieger E-family which generates T C∗(E)/J ; and

(b) if {Pv, Se} is a Cuntz-Krieger E-family in a C∗-algebra B then there exists a ho-

momorphism πP,S : T C∗(E)/J → B such that πP,S(se) = Se and πP,S(pv) = Pv.

Proof. To prove part (a) we need to show that {pv : v ∈ E0} is a mutually orthogonal

set, s∗ese = ps(e) for all e ∈ E1, pv =
∑

e∈vE1 ses
∗
e whenever v is not a source, and that

{pv, se} generates T C∗(E)/J . To show that {pv : v ∈ E0} is a mutually orthogonal

set, fix v, w ∈ E0. Then, because q is a homomorphism,

pvpw = q(pv)q(pw) = q(pvpw) = q(0) = 0.

To show that s∗ese = ps(e) for all e ∈ E1, fix e ∈ E1. Then, because q is a homomor-

phism,

s∗ese = q(s∗e)q(se) = q(s∗ese) = q(ps(e)) = ps(e).

Fix v ∈ E0 such that v is not a source. We aim to show that pv =
∑

e∈vE1 ses
∗
e. Then

0 = q
(
pv −

∑
e∈vE1

ses
∗
e

)
= q(pv)− q

( ∑
e∈vE1

ses
∗
e

)
= pv −

∑
e∈vE1

q(ses
∗
e).
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This implies that

pv =
∑
e∈vE1

q(ses
∗
e) =

∑
e∈vE1

q(se)q(s
∗
e) =

∑
e∈vE1

sfs
∗
f .

Finally, since T C∗(E) is generated by {pv, se}, {q(pv), q(se)} = {pv, se} generates

T C∗(E)/J .

To prove part (b) we want to get a homomorphism on T C∗(E) and then prove it

factors through a homomorphism of T C∗(E)/J . We then need to prove this homo-

morphism has the required properties.

Because {Pv, Se} is a Cuntz-Krieger E-family in B, it is a Toeplitz-Cuntz-Krieger E-

family in B, and the universal property of (T C∗(E), {pv, se}) gives a homomorphism

πP,S : T C∗(E) → B such that πP,S(se) = Se, πP,S(pv) = Pv. Because πP,S is a

homomorphism, kerπP,S is a closed ideal. Since {Pv, Se} is a Cuntz-Krieger E-family,

we have

πP,S

(
pv −

∑
e∈vE1

ses
∗
e

)
= Pv −

∑
e∈vE1

SeS
∗
e = 0,

so pv−
∑

e∈vE1 ses
∗
e ∈ kerπP,S. Since J is the closed ideal generated by {pv−

∑
e∈vE1 ses

∗
e}

it is the smallest closed ideal containing {pv−
∑

e∈vE1 ses
∗
e}. So J ⊆ kerπP,S. Therefore

there exists a homomorphism πP,S : T C∗(E)/J → B such that πP,S = πP,S ◦ q.
Now that we have our homomorphism we need to check it has the required proper-

ties. Fix se ∈ T C∗(E)/J . Then

πP,S(se) = πP,S(q(se)) = πP,S(se) = Se.

Fix pv ∈ T C∗(E)/J . Then

πP,S(pv) = πP,S(q(pv)) = πP,S(pv) = Pv.

Thus πP,S has the required properties.

Remark 2.7. Since (T C∗(E)/J, {pv, se}) has the universal property which deter-

mines the Cuntz-Krieger algebra, (T C∗(E)/J, {pv, se}) is canonically isomorphic to

the Cuntz-Krieger algebra [32, Corollary 1.22]. From now on we use this isomorphism

to identify C∗(E) with this quotient, and ker q with the ideal J .

2.3 The gauge action γ

The Toeplitz algebra T C∗(E) carries a gauge action γ of T, which satisfies

γz(sµs
∗
ν) = z|µ|−|ν|sµs

∗
ν .
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The gauge action has an associated dynamics α : R → Aut T C∗(E) defined by αt :=

γeit . Since the quotient map q of T C∗(E) onto C∗(E) is gauge-invariant, there is also

an a corresponding action α of R on C∗(E).

2.4 A generalised gauge dynamics αy

In [17] an Huef, Laca, Raeburn and Sims study KMS states of T C∗(E) and C∗(E)

with the gauge action γ. In this section we define an action αy of R on T C∗(E) which

is more general than the gauge action. We begin with a function y : E1 → (0,∞), and

extend it to a function y : E∗ → (0,∞) by

y(µ) =

|µ|∑
j=1

y(µj).

To define our generalised action using this function we use the method of [32, Propo-

sition 2.1], noting here we are working in T C∗(E) rather than C∗(E), and R rather

than T. We cannot define our action on T and use this to get an action on R, as is

done with the gauge action, because

γyz (se) = zy(e)se for every e ∈ E1

would not be well-defined, since z
1
2 is ambiguous, for example.

Proposition 2.8. Let E be a row-finite directed graph. Choose a weight function

y : E1 → (0,∞). Then there is an action αy : t 7→ αyt of R on T C∗(E) such that

αyt (se) = eity(e)se for every e ∈ E1(2.3)

and

αyt (pv) = pv for every v ∈ E0.(2.4)

To prove this we use the following lemma, stated here for convenience.

Lemma 2.9 ([14, Corollary 4.2]). Let E be a directed graph. Suppose that {Pv, Se} and

{Qv, Te} are Toeplitz-Cuntz-Krieger E-families such that each Pv and Qv is nonzero,

and such that

Pv 6=
∑
e∈E1v

SeS
∗
e and Qv 6=

∑
e∈E1v

TeT
∗
e

for every vertex v which emits at most finitely many edges. Then there is an iso-

morphism π of C∗(Pv, Se) onto C∗(Qv, Te) such that π(Pv) = Qv for all v ∈ E0 and

π(Se) = Te for all e ∈ E1.
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Proof of Proposition 2.8. Fix t ∈ R. We first aim to apply Lemma 2.9 to get an

isomorphism αyt satisfying Equation (2.3) and Equation (2.4). We know {pv, se} is a

Toeplitz-Cuntz-Krieger E-family which generates T C∗(E), so

{pv, eity(e)se}

is also a Toeplitz-Cuntz-Krieger E-family which generates T C∗(E). To see that pv −∑
e∈vE1 ses

∗
e 6= 0, fix v ∈ E0. Let πQ,T be the finite path representation from Proposi-

tion 2.3, then Corollary 2.5 tells us that

πQ,T (pv −
∑
e∈vE1

ses
∗
e) = Qv −

∑
e∈vE1

TeT
∗
e 6= 0.

It follows that pv −
∑

e∈vE1 ses
∗
e 6= 0. Because

eity(e)se(e
ity(e)se)

∗ = eity(e)e−ity(e)ses
∗
e = ses

∗
e,

we have

pv −
∑
e∈vE1

eity(e)se(e
ity(e)se)

∗ = pv −
∑
e∈vE1

ses
∗
e 6= 0.

We have therefore satisfied the assumptions of Lemma 2.9 and there exists an isomor-

phism αyt : T C∗(E)→ T C∗(E) such that αyt (se) = eity(e)se and αyt (pv) = pv.

We now show that αy : t 7→ αyt is a homomorphism of R into Aut T C∗(E). For

t, x ∈ R, the automorphisms αyt ◦αyx and αyt+x agree on the generators {pv, se}: looking

at se we have

(αyt ◦ αyx)(se) = αyt (α
y
x(se))

= αyt (e
ixy(e)se)

= eity(e)eixy(e)se

= ei(t+x)y(e)se

= αyt+x(se).

Similarly, looking at pv we have

(αyt ◦ αyx)(pv) = αyt (α
y
x(pv)) = αyt (pv) = pv = αyt+x(pv).

Since they agree on generators they agree on all of T C∗(E), and αy is a homomorphism

of R into Aut T C∗(E).
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Finally, we need to show that αy is continuous. Fix t ∈ R, a ∈ T C∗(E) and ε > 0.

Choose a finite linear combination c =
∑
λµ,νsµs

∗
ν , such that ‖a− c‖ < ε

3
. For µ ∈ E∗

we have

αyt (sµ) = αyt (sµ1sµ2 . . . sµ|µ|)

= eity(µ1)sµ1e
ity(µ2)sµ2 . . . e

ity(µ|µ|)sµ|µ|

= eit(y(µ1)+y(µ2)+···+y(µ|µ|))sµ1sµ2 . . . sµ|µ|

= eity(µ)sµ.

Since scalar multiplication is continuous, so is

x 7→ αyx(c) = αyx
(∑

λµ,νsµs
∗
ν

)
=
∑

λµ,να
y
x(sµs

∗
ν)

=
∑

λµ,να
y
x(sµ)αyw(s∗ν)

=
∑

λµ,νe
ix(y(µ)−y(ν))sµs

∗
ν .

So there exists δ > 0 such that

|x− t| < δ ⇒ ‖αyx(c)− α
y
t (c)‖ <

ε

3
.

Since automorphisms of C∗-algebras preserve the norm, we have ‖αyt (a−c)‖ < ε
3
. Thus

for |x− t| < δ we have

‖αyx(a)− αyt (c)‖ ≤ ‖αyx(a− c)‖+ ‖αyx(c)− α
y
t (c)‖+ ‖αyt (a− c)‖ < 3(

ε

3
) = ε.

Thus αy is continuous, as required.

Remark 2.10. If we take y to be the function such that y(e) = 1 for all e ∈ E1, then

y(µ) = |µ| for all µ ∈ E∗. Then αy is the dynamics lifted from the gauge action, as

studied in [17], for example.

2.5 KMS states

In this section we introduce the concept of KMS states, using the definitions from [17,

Section 1] and [27, Section 7].

Suppose that α is an action of R on a C∗-algebra B. An element b in B is analytic

for the action α if the function t 7→ αt(b) is the restriction to R of an entire function

on C. Let Ba be the set of analytic elements of B. For β ∈ (0,∞), a state φ of B is
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a KMS state at inverse temperature β for α, or a KMSβ state for (B,α), if it satisfies

the following KMS condition:

φ(ab) = φ
(
bαiβ(a)

)
for all a, b ∈ Ba.(2.5)

In fact, [31, Proposition 8.12.3] tells us that it suffices to check Equation (2.5) for a set

of analytic elements which spans a dense subset of B.

In the case where B is T C∗(E), for every µ, ν ∈ E∗, the function t 7→ αyt (sµs
∗
ν) =

eit(y(µ)−y(ν))sµs
∗
ν is the restriction of the entire function

z 7→ eiz(y(µ)−y(ν))sµs
∗
ν .

The elements sµs
∗
ν are therefore analytic. Since they span a dense subspace of T C∗(E),

it follows from [31, Proposition 8.12.3] that a state φ of (T C∗(E), αy) is a KMSβ state

for β ∈ (0,∞) if and only if

φ((sµs
∗
ν)(sσs

∗
τ )) = φ((sσs

∗
τ )α

y
iβ(sµs

∗
ν))

for all µ, ν, σ, τ ∈ E∗.

2.6 Characterising KMS states of (T C∗(E), αy)

In [17, Proposition 2.1] the KMS states of (T C∗(E), α) are characterised. In this

section we use a similar method to characterise the KMS states of (T C∗(E), αy).

Proposition 2.11. Let E be a row-finite directed graph. Choose a weight function

y : E1 → (0,∞). Let αy : R → Aut T C∗(E) be the action from Proposition 2.8. Let

β ∈ (0,∞).

(a) Let δµ,ν be the Kronecker delta function. If a linear functional φ satisfies

φ(sµs
∗
ν) = δµ,νe

−βy(µ)φ(ps(µ)) for all µ, ν ∈ E∗.(2.6)

then φ also satisfies the KMS condition.

(b) A state φ is a KMSβ state of (T C∗(E), αy) if and only if it satisfies Equation (2.6).

Proof. (a) Suppose that a linear functional φ satisfies Equation (2.6). To see that φ

satisfies the KMS condition (Equation (2.5)), consider a pair of spanning elements sµs
∗
ν
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and sσs
∗
τ in T C∗(E). Computations using the product formula (Equation (2.2)) give

φ(sµs
∗
νsσs

∗
τ ) =


φ(sµσ′s

∗
τ ) if σ = νσ′

φ(sµs
∗
τν′) if ν = σν ′

0 otherwise

=


e−βy(τ)φ(ps(τ)) if σ = νσ′ and τ = µσ′

e−βy(µ)φ(ps(µ)) if ν = σν ′ and µ = τν ′

0 otherwise.

(2.7)

Similarly,

φ(sσs
∗
τsµs

∗
ν) =


φ(sσµ′s

∗
ν) if µ = τµ′

φ(sσs
∗
ντ ′) if τ = µτ ′

0 otherwise

=


e−βy(ν)φ(ps(ν)) if µ = τµ′ and ν = σµ′

e−βy(σ)φ(ps(σ)) if τ = µτ ′ and σ = ντ ′

0 otherwise.

Therefore,

φ(sσs
∗
ταiβ(sµs

∗
ν)) =


e−β(y(µ)−y(ν))e−βy(ν)φ(ps(ν)) if µ = τµ′ and ν = σµ′

e−β(y(µ)−y(ν))e−βy(σ)φ(ps(σ)) if τ = µτ ′ and σ = ντ ′

0 otherwise.

(2.8)

If µ = τµ′ and ν = σµ′, then s(µ) = s(ν) and

φ(sµs
∗
νsσs

∗
τ ) = e−βy(µ)φ(ps(µ))

= e−βy(µ)φ(ps(ν))

= e−β(y(µ)−y(ν))e−βy(ν)φ(ps(ν))

= φ(sσs
∗
τα

y
iβ(sµs

∗
ν)).

So far our computations have been very similar to those in [17]. For the next step

we observe that y is additive, in the sense that if µ ∈ E∗ such that µ = µ′µ′′ then

y(µ) = y(µ′) + y(µ′′).
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If τ = µτ ′ and σ = ντ ′, then s(τ) = s(σ). Also, y(τ) = y(µ) + y(τ ′) and y(σ) =

y(ν) + y(τ ′), which implies that y(τ) = y(µ)− y(ν) + y(σ). So

φ(sµs
∗
νsσs

∗
τ ) = e−βy(τ)φ(ps(τ))

= e−βy(τ)φ(ps(σ))

= e−β(y(µ)−y(ν)+y(σ))φ(ps(σ))

= e−β(y(µ)−y(ν))e−βy(σ)φ(ps(σ))

= φ(sσs
∗
τα

y
iβ(sµs

∗
ν)).

Otherwise at least one of µ = τµ′ and ν = σµ′ fails and at least one of τ = µτ ′

and σ = ντ ′ fails, in which case Equation (2.7) tells us that φ(sµs
∗
νsσs

∗
τ ) = 0 and

Equation (2.8) tells us that φ(sσs
∗
ταiβ(sµs

∗
ν)) = 0.

Thus φ satisfies the KMS condition.

(b) In the forward direction suppose that φ is a KMSβ state of (T C∗(E), αy). We

want to show that φ satisfies Equation (2.6). Fix µ, ν ∈ E∗. The KMS condition gives

φ(sµs
∗
ν) = φ(s∗να

y
iβ(sµ)) = φ(s∗νe

−βy(µ)sµ) = e−βy(µ)φ(s∗νsµ).(2.9)

We consider the cases |µ| = |ν| and |µ| 6= |ν| separately. For |µ| = |ν|, the product

formula implies that s∗νsµ = δν,µps(µ), and Equation (2.9) gives

φ(sµs
∗
ν) = e−βy(µ)φ(s∗νsµ) = δµ,νe

−βy(µ)φ(ps(µ)).

Next, suppose that |µ| 6= |ν|. If µ doesn’t extend ν and ν doesn’t extend µ then the

product formula tells us that s∗νsµ = 0, and Equation (2.9) gives

φ(sµs
∗
ν) = e−βy(µ)φ(s∗νsµ) = 0.

Otherwise one of µ, ν extends the other, and since y(e) > 0 for all e ∈ E1, y(µ) 6= y(ν).

Applying the KMS condition again to Equation (2.9) gives

φ(sµs
∗
ν) = e−βy(µ)φ(s∗νsµ)

= e−βy(µ)φ(sµα
y
iβ(s∗ν))

= e−βy(µ)φ(sµe
βy(ν)s∗ν)

= e−β(y(µ)−y(ν))φ(sµs
∗
ν),

and since e−β(y(µ)−y(ν)) 6= 1, we have φ(sµs
∗
ν) = 0. Therefore φ satisfies Equation (2.6).

Conversely, suppose that φ satisfies Equation (2.6). Then part (a) tells us that φ

satisfies the KMS condition. In addition φ is a state, so it is a KMSβ state.
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Chapter 3

KMS states of C∗-algebras for finite

graphs with a generalised gauge

dynamics

In [20, Section 4.3] Ionescu and Kumjian use a groupoid model for C∗(E) to discuss

KMS states on C∗(E) with a generalised gauge dynamics. In [17] an Huef, Laca,

Raeburn and Sims use direct arguments to describe the KMS states of both T C∗(E)

and C∗(E) with the gauge dynamics. The goal of this chapter is to extend the method

of [17] to study the KMS states of both T C∗(E) and C∗(E) with a generalised gauge

dynamics.

First study the KMS states of (T C∗(E), αy) at large inverse temperatures. We then

discuss the KMS states of (T C∗(E), αy) at the critical inverse temperature when E is

strongly connected. Finally we get a generalised gauge dynamics αy of R on C∗(E)

and study the KMS states of (C∗(E), αy).

In this chapter we consider finite directed graphs, that is, directed graphs for which

E0 and E1 are finite sets. Since the set E1 is finite, vE1 is a finite set for all v ∈ E0, that

is, E is row-finite. Sums over E0 or E1 (or their subsets) are finite sums, so we don’t

have to worry about convergence, and we can easily switch sums using the algebra of

limits. Sums over E∗ are usually infinite sums but we can use Tonelli’s theorem and

the dominated convergence theorem to ensure convergence.
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3.1 KMS states of (T C∗(E), αy) and the subinvari-

ance relation

In this section we use the function y and fix θ ∈ [0,∞) to define a matrix B(y, θ)

that will be central to our proofs in the remainder of the chapter. We then describe a

subinvariance relation like that used in [17, Proposition 2.1(c)].

Definition 3.1. For y : E1 → (0,∞) and θ ∈ [0,∞), let B(y, θ) = (B(y, θ)v,w) be the

E0 × E0 matrix with entries

B(y, θ)v,w =
∑

e∈vE1w

e−θy(e),

where we take B(y, θ)v,w = 0 if vE1w = ∅.

Proposition 3.2. Let E be a finite directed graph. Choose a weight function y :

E1 → (0,∞). For θ ∈ [0,∞) let B(y, θ) be the matrix from Definition 3.1. Let

αy : R → Aut T C∗(E) be the action from Proposition 2.8. Let β ∈ (0,∞). Suppose

that φ is a KMSβ state of (T C∗(E), αy), and define mφ = (mφ
v ) by mφ

v = φ(pv). Then

the vector mφ ∈ [0,∞)E
0

satisfies the subinvariance relation B(y, β)mφ ≤ mφ and

‖mφ‖1 = 1.

Proof. First, each mφ
v is non-negative because φ is a state, and therefore a positive

functional. Next we show that mφ satisfies the subinvariance relation B(y, β)mφ ≤ mφ.

Fix v ∈ E0. If v is not a source then (TCK2) implies that φ(pv) ≥
∑

e∈vE1 φ(ses
∗
e) and∑

e∈vE1

φ(ses
∗
e) =

∑
e∈vE1

φ(s∗eαiβ(se))

=
∑
e∈vE1

e−βy(e)φ(s∗ese)

=
∑
e∈vE1

e−βy(e)φ(ps(e))

=
∑
e∈vE1

e−βy(e)mφ
s(e)

=
∑
w∈E0

∑
e∈vE1w

e−βy(e)mφ
w

=
∑
w∈E0

B(y, β)v,wm
φ
w

= (B(y, β)mφ)v.(3.1)
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Hence (B(y, β)mφ)v ≤ φ(pv) = mφ
v . Otherwise v is a source. Then B(y, β)v,w = 0 for

all w ∈ E0, and

(B(y, β)mφ)v =
∑
w∈E0

B(y, β)v,wm
φ
w = 0 ≤ mφ

v .

Therefore (B(y, β)mφ)v ≤ mφ
v for all v, so mφ satisfies B(y, β)mφ ≤ mφ.

Finally we show that ‖mφ‖1 = 1. Note that
∑

v∈E0 pv is the identity of T C∗(E).

Since φ is a state,

‖mφ‖1 =
∑
v∈E0

mφ
v =

∑
v∈E0

φ(pv) = φ
( ∑
v∈E0

pv
)

= φ(1) = 1.

3.2 KMS states of (T C∗(E), αy) at large inverse tem-

peratures

In this thesis, for A ∈Mn(C), we denote the spectral radius of A by ρ(A). The purpose

of this section is to study the KMSβ states of (T C∗(E), αy) for which 1 > ρ(B(y, β)).

By Corollary A.14, the condition 1 > ρ(B(y, β)) implies that (I − B(y, β)) is an

invertible matrix, which is crucial in the following proofs. The following lemma tells

us that if this condition holds for one β, it holds for all larger β′, so we say such results

are for “large inverse temperatures”.

Lemma 3.3. Let E be a finite directed graph. Choose a weight function y : E1 →
(0,∞). For θ ∈ [0,∞) let B(y, θ) be the matrix from Definition 3.1. If β ∈ (0,∞)

satisfies 1 > ρ(B(y, β)) and β′ ≥ β, then 1 > ρ(B(y, β′)).

Proof. Fix β′ ∈ (0,∞) such that β′ ≥ β. Then B(y, β′)v,w ≤ B(y, β)v,w, and hence

0 ≤ B(y, β′) ≤ B(y, β) in the sense of Section A.1. Then applying Corollary A.4

implies that ρ(B(y, β′)) ≤ ρ(B(y, β)). Thus ρ(B(y, β′)) < 1.

Theorem 3.4. Let E be a finite directed graph. Choose a weight function y : E1 →
(0,∞). For θ ∈ [0,∞) let B(y, θ) be the matrix from Definition 3.1. Assume that

β ∈ (0,∞) satisfies 1 > ρ(B(y, β)). Let αy : R → Aut T C∗(E) be the action from

Proposition 2.8.

(a) For w ∈ E0, the series
∑

µ∈E∗w e
−βy(µ) converges with sum xw ≥ 1. Set x :=

(xw) ∈ [1,∞)E
0
, and consider ε ∈ [0,∞)E

0
. Define m := (I − B(y, β))−1ε. Then

m ∈ [0,∞)E
0
, and ‖m‖1 = 1 if and only if ε · x = 1.
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(b) Suppose that ε ∈ [0,∞)E
0

satisfies ε · x = 1, and set m := (I − B(y, β))−1ε. Then

there is a KMSβ state φε of (T C∗(E), αy) satisfying

φε(sµs
∗
ν) = δµ,νe

−βy(µ)ms(µ).(3.2)

(c) The set

Σβ := {ε ∈ [0,∞)E
0

: ε · x = 1}

is a compact convex subset of RE0
and F : ε 7→ φε is an affine homeomorphism

of Σβ onto the simplex of KMSβ states of (T C∗(E), αy). For a KMSβ state φ of

(T C∗(E), αy) let mφ = (mφ
v ) be the vector with entries mφ

v := φ(pv). Then the

inverse of this isomorphism takes φ to (I −B(y, β))mφ.

Proof. (a) First we want to show that the series
∑

µ∈E∗w e
−βy(µ) either converges or is

finite. We start by showing that
∑

µ∈E∗w e
−βy(µ) converges. Let w ∈ E0 and fix n ∈ N.

Then ∑
µ∈Enw

e−βy(µ) =
∑
v∈E0

∑
µ∈vEnw

e−βy(µ) =
∑
v∈E0

B(y, β)nv,w.(3.3)

Since 1 > ρ(B(y, β)), Corollary A.14 tells us that the series
∑∞

n=0 B(y, β)n converges

in operator norm with sum (I − B(y, β))−1. This implies that for every fixed v ∈ E0

the series
∑∞

n=0B(y, β)nv,w converges. Then, by the algebra of limits,

∑
v∈E0

∞∑
n=0

B(y, β)nv,w =
∑
v∈E0

(
lim
N→∞

N∑
n=0

B(y, β)nv,w

)
= lim

N→∞

∑
v∈E0

N∑
n=0

B(y, β)nv,w

= lim
N→∞

N∑
n=0

∑
v∈E0

B(y, β)nv,w

=
∞∑
n=0

∑
v∈E0

B(y, β)nv,w.

Now Equation (3.3) tells us that

∑
v∈E0

∞∑
n=0

B(y, β)nv,w =
∞∑
n=0

∑
µ∈Enw

e−βy(µ),
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so
∑∞

n=0

∑
µ∈Enw e

−βy(µ) converges, and

∑
µ∈E∗w

e−βy(µ) =
∞∑
n=0

∑
µ∈Enw

e−βy(µ).

The sum is at least 1 because all the terms are non-negative and when n = 0,

B(y, β)nv,v = 1.

Next, let x := (xw) ∈ [1,∞)E
0

and fix ε ∈ [0,∞)E
0
. To see that m ≥ 0, fix v ∈ E0.

We want to show that mv ≥ 0. We have

mv =
(

(I −B(y, β))−1ε
)
v

=
( ∞∑
n=0

B(y, β)nε
)
v
.

Every element of B(y, β)n and ε is non-negative, so mv must be non-negative.

Finally we want to show that ‖m‖1 = 1 if and only if ε · x = 1. Computing, we get

‖m‖1 =
∑
v∈E0

mv

=
∑
v∈E0

((I −B(y, β))−1ε)v

=
∑
v∈E0

(( ∞∑
n=0

B(y, β)n
)
ε
)
v

=
∑
v∈E0

∞∑
n=0

∑
w∈E0

B(y, β)nv,wεw

=
∑
w∈E0

εw

( ∑
µ∈E∗w

e−βy(µ)
)

=
∑
w∈E0

εwxw

= ε · x.

Thus ‖m‖1 = 1 if and only if ε · x = 1.

(b) First we need to find a state of (T C∗(E), αy). We build a state using the finite

path representation πQ,T defined in Proposition 2.3. For µ ∈ E∗ we set

∆µ := e−βy(µ)εs(µ),(3.4)

and note that ∆µ ≥ 0. Taking hµ as the point mass for µ ∈ E∗, we aim to define φε by

φε(a) =
∑
µ∈E∗

∆µ(πQ,T (a)hµ|hµ)(3.5)
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for a ∈ T C∗(E). To show that Equation (3.5) defines a state, we need to show it is a

positive linear functional and that φε(1) = 1.

We first claim that
∑

µ∈E∗ ∆µ = 1. We start by showing that
∑

µ∈vE∗ e
−βy(µ)εs(µ)

converges. Fix v ∈ E0 and n ∈ N. Then∑
µ∈vEn

e−βy(µ)εs(µ) =
∑
w∈E0

∑
µ∈vEnw

e−βy(µ)εw

=
∑
w∈E0

B(y, β)nv,wεw

= (B(y, β)nε)v.(3.6)

We know that
∑∞

n=0(B(y, β)nε)v converges with sum ((I − B(y, β))−1ε)v. Since, by

Equation (3.6),

∞∑
n=0

(B(y, β)nε)v =
∞∑
n=0

∑
µ∈vEn

e−βy(µ)εs(µ),

the latter converges absolutely. Using Equation (3.4), we can write

mv := ((I −B(y, β))−1ε)v(3.7)

=
∞∑
n=0

∑
µ∈vEn

e−βy(µ)εs(µ)

=
∑
µ∈vE∗

e−βy(µ)εs(µ)

=
∑
µ∈vE∗

∆µ.

So
∑

µ∈vE∗ ∆µ converges as well. Finally,∑
µ∈E∗

∆µ =
∑
v∈E0

( ∑
µ∈vE∗

∆µ

)
=
∑
v∈E0

mv = ‖m‖1 = 1.

Thus
∑

µ∈E∗ ∆µ = 1, as claimed.

We now use that
∑

µ∈E∗ ∆µ = 1 to prove that Equation (3.5) converges for all

a ∈ T C∗(E). Fix a ∈ T C∗(E). Then applying the Cauchy-Schwarz inequality,

0 ≤ |∆µ(πQ,T (a)hµ|hµ)|

= |∆µ||(πQ,T (a)hµ|hµ)|

≤ ∆µ‖πQ,T (a)hµ‖‖hµ‖

≤ ∆µ‖πQ,T (a)‖‖hµ‖2

≤ ∆µ‖a‖ · 1.
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Since
∑

µ∈E∗ ∆µ converges,
∑

µ∈E∗ ∆µ‖a‖ converges and the comparison test tells us

that
∑

µ∈E∗ |∆µ(πQ,T (a)hµ|hµ)| converges. Thus
∑

µ∈E∗ ∆µ(πQ,T (a)hµ|hµ) converges

absolutely.

Now we need to show that φε defines a positive functional on T C∗(E). Linearity of

φε follows from linearity of the inner product in the first variable. Next we show that

φε(a
∗a) ≥ 0. Since

φε(a
∗a) =

∑
µ∈E∗

∆µ(πQ,T (a∗a)hµ|hµ) =
∑
µ∈E∗

∆µ(πQ,T (a)hµ|πQ,T (a)hµ)

is a sum of non-negative terms, φε(a
∗a) ≥ 0. Therefore φε is a positive functional.

Finally we need to show that φε(1) = 1. Applying Equation (3.7) gives

φe(1) =
∑
µ∈E∗

∆µ(πQ,T (1)hµ|hµ)

=
∑
µ∈E∗

∆µ(1hµ|hµ)

=
∑
µ∈E∗

∆µ‖hµ‖2

=
∑
µ∈E∗

∆µ

= 1.

Now φε is a positive linear functional and φε(1) = 1, so it is a state.

Next we prove that φε satisfies Equation (3.2). Fix λ ∈ E∗. Then

(πQ,T (sµs
∗
ν)hµ|hµ) = (T ∗ν hλ|T ∗µhλ) =

1 if λ = µλ′ = νλ′

0 otherwise.

Since µλ′ = νλ′ forces µ = ν, we have φε(sµs
∗
ν) = 0 if µ 6= ν. So suppose that µ = ν.

Then

φε(sµs
∗
µ) =

∑
µ∈E∗

∆λ(T
∗
µhλ|T ∗µhλ)

=
∑
λ=µλ′

e−βy(µλ′)εs(λ′)

=
∑
λ=µλ′

e−β(y(µ)+y(λ′))εs(λ′)

=
∑
λ=µλ′

e−βy(µ)e−βy(λ′)εs(λ′)

= e−βy(µ)
∑

λ′∈s(µ)E∗

∆λ′ .
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Now Equation (3.7) gives φε(sµs
∗
µ) = e−βy(µ)ms(µ). Thus φε satisfies Equation (3.2).

Since φ(pv) = mv, φε(sµs
∗
ν) = δµ,νe

−βy(µ)φ(ps(µ)), and Proposition 2.11(b) implies

that φε is a KMSβ state.

(c) We first show that Σβ is a compact convex subset of RE0
, and then that F is a

homeomorphism.

We show that Σβ is compact by showing it is closed and bounded. To see that Σβ

is closed in RE0
, take {εn} ⊂ Σβ and ε ∈ [0,∞)E

0
such that εn → ε. The dot product

is continuous from RE0 × RE0 → R, so εn → ε implies that εn · x→ ε · x. But εn ∈ Σβ

for all n, so εn · x = 1 for all n. Thus ε · x = 1, that is, ε ∈ Σβ. Thus Σβ contains

all of its limit points, and is therefore closed. To see that Σβ is bounded, we show

it is contained in a ball of finite radius. Take ε ∈ Σβ. This implies that ε · x = 1,

that is, that
∑

v∈E0 εvxv = 1. Since xv ∈ [1,∞) for all v ∈ E0,
∑

v∈E0 εv ≤ 1. Since

εv ≥ 0 for all v ∈ E0, we have 0 ≤ εv ≤ 1. Thus ‖ε‖2 =
∑

v∈E0 ε2v ≤ |E0|. This implies

that Σβ ⊆ B[0, |E0|] ⊆ RE0
, so Σβ is bounded. Since Σβ is closed and bounded the

Heine-Borel theorem tells us that it is compact.

Next we show that Σβ is convex. Fix k ∈ N. For i ∈ {1, . . . , k} take ci ∈ [0, 1] such

that
∑k

i=0 ci = 1 and let {εi} ⊂ Σβ. Then( k∑
i=0

ciεi

)
· x =

∑
v∈E0

( k∑
i=0

ciεi

)
v
xv

=
∑
v∈E0

k∑
i=0

ci(εi)vxv

=
k∑
i=0

ci
∑
v∈E0

(εi)vxv

=
k∑
i=0

ci(εi · x)

=
k∑
i=0

ci

= 1,

so ε =
∑k

i=0 ciεi ∈ Σβ. Thus Σβ is convex. We now know that Σβ is a compact convex

subset of RE0
.

We now show that F is a homeomorphism by showing that it is surjective, injective

and continuous.

To see that F : ε 7→ φε is surjective, let φ be a KMSβ state. Proposition 3.2

tells us that mφ := (φ(pv)) satisfies B(y, β)mφ ≤ mφ and ‖mφ‖1 = 1. Take ε :=
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(I − B(y, β))mφ. Then m := (I − B(y, β))−1ε = mφ. So ‖m‖1 = 1, and part (a) tells

us that ε · x = 1. Then we can apply part (b), which tells us that there is a KMSβ

state φε satisfying Equation (3.2), so that

φε(sµs
∗
ν) = δµ,νe

−βy(µ)ms(µ) = δµ,νe
−βy(µ)mφ

s(µ) = δµ,νe
−βy(µ)φ(ps(µ)).

Then Equation (2.6) gives

φε(sµs
∗
ν) = φ(sµs

∗
ν).

Then linearity implies that φε(b) = φ(b) for b in the dense ∗-subalgebra span{sµs∗ν :

µ, ν ∈ E∗, s(µ) = s(ν)}. Therefore φ = φε, so F is surjective.

To see that F is injective, suppose that F (ε) = F (ε′), that is, φε = φε′ . Let

m = (φε(pv)) and m′ := (φε′(pv)). Then m = m′. Now ε = (I − B(y, β))m =

(I −B(y, β))m′ = ε′. Thus F is injective.

To see that F is continuous, take {εn} ⊂ Σβ and ε ∈ Σβ such that εn → ε. This

implies that ((I − B(y, β))−1εn)v → ((I − B(y, β))−1ε)v for all v ∈ E0. Therefore,

writing mn for (I − B(y, β))−1εn, we have (mn)v → mv for all v ∈ E0. This in turn

implies that

φεn(sµs
∗
ν) = δµ,νe

−βy(µ)(mn)s(µ) → δµ,νe
−βy(µ)ms(µ) = φε(sµs

∗
ν),

for all µ, ν ∈ E∗. Then linearity implies that φεn(b) → φ(b) for b in the dense ∗-
subalgebra span{sµs∗ν : µ, ν ∈ E∗, s(µ) = s(ν)}. Therefore φ → φε in the weak∗

topology, so F is continuous.

Since F is a continuous bijection of a compact space Σβ onto a Hausdorff space

RE0
, F is a homeomorphism.

Finally we show that F is affine. Fix k ∈ N. Suppose that {εi : 1 ≤ i ≤ k} ⊆ Σβ

and {ci ∈ [0, 1] : 1 ≤ i ≤ k} satisfy
∑k

i=1 ci = 1. We need to check that F (
∑k

i=0 ciεi) =∑k
i=0 ciF (εi), that is, φ∑k

i=0 ciεi
(a) =

∑k
i=0 ciφεi(a) for all a ∈ T C∗(E). Fix a ∈ T C∗(Λ)

and write ε =
∑k

i=1 ciεi. Then

φε(a) =
∑
µ∈E0

∆µ(πQ,T (a)hµ|hµ)

=
∑
µ∈E0

e−βy(µ)
( k∑
i=0

ciεi

)
s(µ)

(πQ,T (a)hµ|hµ)

=
k∑
i=0

ci
∑
µ∈E0

e−βy(µ)(εi)s(µ)(πQ,T (a)hµ|hµ).
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Let ∆µ,i := e−βy(µ)(εi)s(µ). Then

φε(a) =
k∑
i=0

ci
∑
µ∈E0

∆µ,i(πQ,T (a)hµ|hµ) =
k∑
i=0

ciφεi(a).

Thus F is affine.

3.3 Finding the critical inverse temperature βc

In this section we show that there exists a nonnegative number βc such that

ρ(B(y, βc)) = 1

and that this βc is unique. In the next section we will use this βc to show that there

is a unique KMSβc state of (T C∗(E), αy) when E is strongly connected. Since the

behaviour of KMSβc states change we call this the “critical inverse temperature”.

To find βc we apply the Perron-Frobenius theorem (for example, [7, Theorem 2.6])

to B(y, θ). This requires that B(y, θ) is irreducible, that is, that for every pair v, w of

its index set there exists a positive integer m such that (B(y, θ)m)v,w > 0. So, for a

function y : E1 → (0,∞) and θ ∈ [0,∞), we first show that B(y, θ) is irreducible when

E is strongly connected (just as the vertex matrix A of E is irreducible if and only if

E is strongly connected). We assume that E is strongly connected for the rest of the

chapter.

Lemma 3.5. Let E be a finite directed graph which is strongly connected. The matrix

B(y, θ) from Definition 3.1 is irreducible.

Proof. An n× n non-negative matrix T is irreducible if for every pair v, w of its index

set, there exists a positive integer m such that (Tm)v,w > 0. Since the exponential

function takes positive values, B(y, θ)v,w > 0 when vE1w 6= ∅. Fix v, w ∈ E0. Then

because E is strongly connected there exists a path from v to w. Let m > 0 be the

length of such a path, and label the vertices in the path as v = v0, v1, . . . , vn = w.

Then

B(y, θ)mv,w ≥ B(y, θ)v0,v1B(y, θ)v1,v2 . . . B(y, θ)vn−1,vn .

Since each B(y, θ)vi,vi+1
> 0, B(y, θ)mv,w > 0, and B(y, θ) is irreducible.

We now extract the following result from [8, Theorem 6.9.6] to show there exists a

unique nonnegative number βc such that ρ(B(y, βc)) = 1.
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Proposition 3.6. Let E be a finite directed graph which is strongly connected and

choose a weight function y : E1 → (0,∞). For θ ∈ [0,∞) let B(y, θ) be the matrix

from Definition 3.1. Then the function θ 7→ ρ(B(y, θ)) is strictly decreasing and there

exists a unique βc ∈ [0,∞) such that ρ(B(y, βc)) = 1.

Proof. First we show that θ 7→ ρ(B(y, θ)) is strictly decreasing. Fix θ, θ0 ∈ [0, θ′]

such that θ > θ0 and v, w ∈ E0. If vE1w = ∅ then B(y, θ)v,w = B(y, θ0)v,w = 0. If

vE1w 6= ∅, since y takes positive values,

B(y, θ)v,w =
∑

e∈vE1w

e−θy(e) <
∑

e∈vE1w

e−θ0y(e) = B(y, θ0)v,w.

Take ξ > 0 to be the Perron-Frobenius eigenvector for B(y, θ0), that is, the vector such

that B(y, θ0)ξ = ρ(B(y, θ0))ξ. Since E is strongly connected every row has w ∈ E0 such

that B(y, θ)v,w < B(y, θ0)v,w. In addition ξw > 0, so we have B(y, θ)ξ < B(y, θ0)ξ =

ρ(B(y, θ0))ξ. Thus Proposition A.5(d) implies that ρ(B(y, θ)) < ρ(B(y, θ0)), that is,

θ 7→ ρ(B(y, θ)) is strictly decreasing.

Next we prove the existence of a non-negative solution to ρ(B(y, θ)) = 1 by applying

the intermediate value theorem.

We first claim the function θ 7→ ρ(B(y, θ)) is continuous. Fix θ0 ≥ 0. Lemma 3.5

tells us that B(y, θ0) is irreducible, so Proposition A.7 tells there exists a vector ξ > 0

such that B(y, θ0)ξ = ρ(B(y, θ0))ξ. Define numbers a := min ξv and b := max ξv; then

a and b are both greater than zero because ξ > 0. Let n = |E0| and fix ε > 0. The

entries B(y, θ)v,w of B(y, θ) are continuous functions of θ, so there exists δ > 0 such

that if |θ − θ0| < δ, then

|B(y, θ)v,w −B(y, θ0)v,w| <
aε

nb
(3.8)

for all v, w ∈ E0. For |θ − θ0| < δ and v ∈ E0 we have

(B(y, θ)ξ)v =
∑
w∈E0

B(y, θ)v,wξw

=
∑
w∈E0

B(y, θ0)v,wξw +
∑
w∈E0

(B(y, θ)v,w −B(y, θ0)v,w)ξw.

Now by Equation (3.8),

(B(y, θ)ξ)v <
∑
w∈E0

B(y, θ0)v,wξw +
∑
w∈E0

aε

nb
ξw

< ρ(B(y, θ0))ξv + n
aε

nb
b

≤ (ρ(B(y, θ0)) + ε)ξv

=
(

(ρ(B(y, θ0)) + ε)ξ
)
v
.
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This implies that B(y, θ)ξ < (ρ(B(y, θ0)) + ε)ξ. Thus Proposition A.5(d) implies that

ρ(B(y, θ)) < ρ(B(y, θ0))+ ε. We can do a similar calculation to show that ρ(B(y, θ)) >

ρ(B(y, θ0))− ε. For |θ − θ0| < δ we have

(B(y, θ)ξ)v =
∑
w∈E0

B(y, θ)v,wξw

=
∑
w∈E0

B(y, θ0)v,wξw −
∑
w∈E0

(B(y, θ0)v,w −B(y, θ)v,w)ξw.

Now by Equation (3.8),

(B(y, θ)ξ)v >
∑
w∈E0

B(y, θ0)v,wξw −
∑
w∈E0

aε

nb
ξw

> ρ(B(y, θ0))ξv − n
aε

nb
b

≥ (ρ(B(y, θ0))− ε)ξv

=
(

(ρ(B(y, θ0))− ε)ξ
)
v
.

This implies that B(y, θ)ξ > (ρ(B(y, θ0))− ε)ξ. Thus Proposition A.5(c) implies that

ρ(B(y, θ)) > ρ(B(y, θ0))− ε. Therefore

|θ − θ0| < δ =⇒ |ρ(B(y, θ0))− ρ(B(y, θ))| < ε.

Thus θ 7→ ρ(B(y, θ)) is continuous, as claimed.

Now that we know θ 7→ ρ(B(y, θ)) is continuous we can apply the intermediate

value theorem. First we need to find two endpoints. Take θ = 0, then B(y, 0) is the

vertex matrix A of E. Since the graph is strongly connected, each row of B(y, 0) has

at least one entry greater than or equal to 1. In other words, for all v ∈ E0 there

exists w ∈ E0 such that B(y, 0)v,w ≥ 1. Let 1n be the vector with all entries 1. Then∑
w∈E0 B(y, 0)v,w ≥ 1 for all v ∈ E0, so B(y, 0)1n ≥ 1n. Thus Proposition A.5(a)

implies that ρ(B(y, 0)) ≥ 1. Since θ is non-negative and y takes positive values,

B(y, θ)v,w → 0 as θ →∞. Therefore, for large enough θ we have B(y, θ)v,w ≤ 1
2

for all

v, w ∈ E0. Take θ′ to be such an θ. Then B(y, θ′)1n ≤ (1
2
)1n. Then Proposition A.5(b)

implies that ρ(B(y, θ′)) ≤ 1
2
. Now, by applying the intermediate value theorem on the

interval [0, θ′], there is a solution βc ∈ (0, θ′) to the equation ρ(B(y, βc)) = 1.

Finally, since the function θ 7→ ρ(B(y, θ)) is strictly decreasing, βc is unique.

Remark 3.7. If we take y to be the function such that y(e) = 1 for all e ∈ E1, then

we get B(y, θ) = e−θA. Then ρ(B(y, θ)) = ρ(e−θA) = e−θρ(A), so the uniqueness in

Proposition 3.6 tells us that βc = ln ρ(A). This is the critical inverse temperature of

the KMS states for T C∗(E) and C∗(E) with the gauge action, as studied in [17].
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3.4 KMS states of (T C∗(E), αy) at the critical in-

verse temperature

In this section we show the existence and uniqueness of a KMSβc state for (T C∗(E), αy)

when E is strongly connected. We call βc the critical inverse temperature and also show

that there are no KMSβ states of (T C∗(E), αy) when β < βc.

Choose βc to be the unique βc such that ρ(B(y, βc)) = 1, obtained by applying

Proposition 3.6. We now show the existence of a KMSβc state, following the methods

of [17, Proposition 4.1] and [17, Corollary 4.2].

Proposition 3.8. Suppose that E is a finite directed graph which is strongly connected.

Choose a weight function y : E1 → (0,∞). For θ ∈ [0,∞) let B(y, θ) be the matrix

from Definition 3.1. Let βc be the unique β such that ρ(B(y, βc)) = 1. Let αy : R →
Aut T C∗(E) be the action from Proposition 2.8. Then (T C∗(E), αy) has a KMSβc

state.

Proof. We first want to find m such that ‖m‖1 = 1 and B(y, βc)m ≤ m. Choose a

decreasing sequence {βn} ⊂ (βc,∞) such that βn → βc. Fix n ∈ N. Take x as defined

in Theorem 3.4(a). Choose εn ∈ [0,∞)E
0

such that εn · x = 1. Then Theorem 3.4(a)

implies that mn = (I −B(y, βn))−1εn has ‖mn‖1 = 1. Then

0 ≤ εn = (I −B(y, βn))mn = mn −B(y, βn)mn,

so B(y, βn)mn ≤ mn. By passing to a subsequence, we may assume that {mn} con-

verges pointwise to m, say. Then taking n→∞ tells us that B(y, βc)m ≤ m.

We now want to apply Theorem 3.4(b) to get a sequence of KMSβn states. De-

fine ε′n := (I − B(y, βn))m. We claim ε′n ∈ [0,∞)E
0
. Since βn > βc we have

0 ≤ B(y, βn)v,w ≤ B(y, βc)v,w for all v, w ∈ E0 and therefore m satisfies B(y, βn)m ≤
B(y, βc)m ≤ m. Then

ε′n := (I −B(y, βn))m = m−B(y, βn)m ≥ 0.

So ε′n ∈ [0,∞)E
0
, as claimed. Thus we can apply Theorem 3.4(a) with β = βn, which

tells us that ε′n ·x = 1. We can then apply Theorem 3.4(b), which gives a KMSβn state

φn satisfying

φn(sµs
∗
ν) = δµ,νe

−βny(µ)ms(µ).(3.9)
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Since the state space of T C∗(E) is weak∗ compact we may assume that by passing

to a subsequence that the sequence {φn} converges to a state φ. Taking n → ∞ in

Equation (3.9) tells us that φ satisfies

φ(sµs
∗
ν) = δµ,νe

−βcy(µ)ms(µ).(3.10)

Proposition 2.11(b) then implies that φ is a KMSβc state.

We now follow the method of [17, Theorem 4.3] to show uniqueness of this KMSβc

state.

Theorem 3.9. Suppose that E is a finite directed graph which is strongly connected.

Choose a weight function y : E1 → (0,∞). For θ ∈ [0,∞) let B(y, θ) be the matrix from

Definition 3.1. Let αy : R→ Aut T C∗(E) be the action from Proposition 2.8. Let βc be

the unique number such that ρ(B(y, βc)) = 1, which we know exists by Proposition 3.6.

Let ξ = (ξv) be the unimodular Perron-Frobenius eigenvector of the matrix B(y, βc).

(a) The system (T C∗(E), αy) has a unique KMSβc state φ. This state satisfies

φ(sµs
∗
ν) = δµ,νe

−βcy(µ)ξs(µ).(3.11)

(b) If β < βc, then (T C∗(E), αy) has no KMSβ states.

Proof. (a) We proved existence of φ in Proposition 3.8. Proposition A.7 tells us that ξ is

the unique vector such that B(y, βc)ξ = ρ(B(y, βc))ξ and ‖ξ‖1 = 1. Then we can take ξ

as m in Proposition 3.8, and Equation (3.10) tells us that φ satisfies Equation (3.11). To

establish uniqueness, suppose that ψ is a KMSβc state. Then Proposition 3.2 says that

mψ = (ψ(pv)) satisfies B(y, βc)m
ψ ≤ mψ and ‖mψ‖1. Since ρ(B(y, βc)) = 1, applying

Proposition A.8 gives B(y, βc)m
ψ = mψ. Thus mψ = ξ. Finally, fix µ, ν ∈ E∗. Then

Equation (3.11) gives

φ(sµs
∗
ν) = δµ,νe

−βy(µ)ξs(µ) = δµ,νe
−βy(µ)mψ

s(µ) = δµ,νe
−βy(µ)ψ(ps(µ)).

Therefore Equation (2.6) tells us that

φ(sµs
∗
ν) = ψ(sµs

∗
ν),

so φ = ψ.

(b) Suppose that φ is a KMSβ state of (T C∗(E), αy). Then Proposition 3.2 implies

that mφ := (φ(pv)) satisfies B(y, β)mφ ≤ mφ. In other words, mφ is subinvariant.

Since mφ ≥ 0 pointwise, Proposition A.9 implies that 1 ≥ ρ(B(y, β)). Therefore

ρ(B(y, βc)) ≥ ρ(B(y, β)), so by Proposition 3.6, β ≥ βc.
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3.5 KMS states of (C∗(E), αy)

In this section we define an action αy : R → AutC∗(E), and show when a KMS

states of (T C∗(E), αy) factors through a KMS state of (C∗(E), αy). We then deduce

uniqueness of the KMS state of (C∗(E), αy) from uniqueness of the KMSβc state of

(T C∗(E), αy).

Lemma 3.10. The set

P :=
{
pv −

∑
e∈vE1

ses
∗
e : v ∈ E0, v is not a source

}
consists of elements which are fixed by αy.

Proof. Fix t ∈ R and v ∈ E0 such that v is not a source. Then

αyt

(
pv −

∑
e∈vE1

ses
∗
e

)
= αyt (pv)− α

y
t

( ∑
e∈vE1

ses
∗
e

)
= pv −

∑
e∈vE1

αyt (ses
∗
e)

= pv −
∑
e∈vE1

eit(y(e)−y(e))ses
∗
e

= pv −
∑
e∈vE1

e0ses
∗
e

= pv −
∑
e∈vE1

ses
∗
e.

Remark 3.11. Recall that we are viewing C∗(E) as the image of the quotient map

q : T C∗(E) → T C∗(E)/J for the ideal J generated by P , and that the kernel of

q is J (Remark 2.7). Lemma 3.10 tells us the set P consists of elements fixed by

αyt : ker q → ker q, so it induces an automorphism αyt of C∗(E) such that

αyt (q(a)) = q(αyt (a))

for all a ∈ C∗(E). We therefore have an action αy : R→ AutC∗(E).

We now use the method of [17, Proposition 2.1(d)] to show when a KMS state of

(T C∗(E), αy) factors through C∗(E).

Proposition 3.12. Let E be a finite directed graph. Let β ∈ (0,∞). Choose a weight

function y : E1 → (0,∞). For θ ∈ [0,∞) let B(y, θ) be the matrix from Definition 3.1.

Let αy : R→ Aut T C∗(E) be the action from Proposition 2.8. Let φ be a KMSβ state
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of (T C∗(E), αy) and mφ = (mφ
v ) be the vector with entries mφ

v = φ(pv). Then φ factors

through C∗(E) if and only if

(B(y, β)mφ)v = mφ
v whenever v ∈ E0 is not a source.(3.12)

Proof. In the forward direction assume that φ is a KMSβ state of (T C∗(E), αy) and

that φ factors through C∗(E); that is, there is a state ψ of (C∗(E), αy) such that φ

is the composition ψ ◦ q with the quotient map q. Choose v ∈ E0 and suppose that

v is not a source. We want to show that mφ
v = (B(y, β)mφ)v. Define se := q(se) for

all e ∈ E1 and pv := q(pv) for all v ∈ E0. Lemma 2.6 then tells us that {pv, se} is a

Cuntz-Krieger E-family which generates C∗(E). Because pv =
∑

e∈vE1 ses
∗
e,

mφ
v = φ(pv)

= ψ ◦ q(pv)

= ψ(pv)

= ψ
( ∑
e∈vE1

ses
∗
e

)
= ψ

( ∑
e∈vE1

q(ses
∗
e)
)

=
∑
e∈vE1

ψ ◦ q(ses∗e)

=
∑
e∈vE1

φ(ses
∗
e).

Thus Equation (3.1) implies that mφ
v = (B(y, β)mφ)v.

For the reverse direction, we suppose that φ is a KMSβ state of (T C∗(E), αy)

satisfying Equation (3.12). We want to apply [17, Lemma 2.2] to the set P defined in

Lemma 3.10, noting ker q is the ideal generated by P (Remark 2.7).

First we need to show that we have met the conditions of [17, Lemma 2.2]. Choose

v ∈ E0 and suppose that v is not a source. Then pv ≥
∑

e∈vE1 ses
∗
e, so [32, Propo-

sition A.1] implies that pv −
∑

e∈vE1 ses
∗
e is a projection. So P is a set of projec-

tions. Lemma 3.10 tells us that P consists of elements fixed by αy. Now we need

a set F of analytic elements such that for all a ∈ F there exists an entire func-

tion fa such that αyz(a) = fa(z)a. Here F = {sµs∗ν : µ, ν ∈ E∗, s(µ) = s(ν)} and

αyt (sµs
∗
ν) = eit(y(µ)−y(ν))sµs

∗
ν . So for a = sµs

∗
ν ∈ F , fa(z) = eiz(y(µ)−y(ν)) satisfies

αyz(a) = fa(z)a.

Therefore F satisfies the conditions of [17, Lemma 2.2], and we can apply it. Fix

a KMS state φ and projection p ∈ P . We want to show that φ(p) = 0. Equation (3.1)
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implies that when v ∈ E0 is not a source

φ
(
pv −

∑
e∈vE1

ses
∗
e

)
= φ(pv)−

∑
e∈vE1

φ(ses
∗
e) = mφ

v − (B(y, β)mφ)v = 0.

Thus [17, Lemma 2.2] tells us that φ factors through a state of C∗(E).

We now apply Proposition 3.6 to show that there is a unique β for which a KMSβ

state of (C∗(E), αy) exists.

Proposition 3.13. Let E be a finite directed graph which is strongly connected. For

θ ∈ [0,∞) let B(y, θ) be the matrix from Definition 3.1. Suppose that φ is a KMSβ

state of (C∗(E), αy). Then β satisfies

φ(pv) =
∑
w∈E0

∑
e∈vE1w

e−βy(e)φ(pw).(3.13)

There is exactly one β which satisfies Equation (3.13), and it is the unique β such that

ρ(B(y, β)) = 1.

Proof. Let β ∈ (0,∞). Suppose that φ is a KMSβ state of (C∗(E), αy). Then, for

e ∈ E1, applying the KMS condition gives

φ(ses
∗
e) = φ(s∗eα

y
iβ(se)) = φ(s∗ee

−βy(e)se) = e−βy(e)φ(s∗ese) = e−βy(e)φ(ps(e)).

Fix v ∈ E0. Then, by (CK2),

φ(pv) =
∑
e∈vE1

φ(ses
∗
e) =

∑
e∈vE1

e−βy(e)φ(ps(e)) =
∑
w∈E0

∑
e∈vE1w

e−βy(e)φ(pw).

Introduce the vector m := (mv) = (φ(pv)). Then

mv =
∑
w∈E0

B(y, β)v,wmw,

or alternatively m = B(y, β)m. Then Proposition A.9 implies ρ(B(y, β)) = 1. Now

Proposition 3.6 tells us that β is unique.

Finally, we show uniqueness of the KMS state of (C∗(E), αy).

Theorem 3.14. Suppose that E is a finite directed graph which is strongly connected.

Choose a weight function y : E1 → (0,∞). For θ ∈ [0,∞) let B(y, θ) be the matrix

from Definition 3.1. Let αy : R→ Aut T C∗(E) be the action from Proposition 2.8. Let

βc be the real number such that ρ(B(y, βc)) = 1. The state φ from Theorem 3.9 factors

through a KMSβc state φ of (C∗(E), αy), and this is the only KMS state of (C∗(E), αy).
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Proof. Since φ is a KMS state, Proposition 3.2 tells us mφ = (φ(pv)) satisfies

B(y, βc)m
φ ≤ mφ.

Then applying Proposition A.8 gives B(y, βc)m
φ = mφ. Since E is strongly connected

it has no sources, so we can apply Proposition 3.12, which tells us that φ factors through

a KMSβc state φ of (C∗(E), αy).

To show uniqueness, suppose that ψ is a KMSβ state of (C∗(E), αy). Propo-

sition 3.13 tells us that β satisfies ρ(B(y, β)) = 1. Proposition 3.12 implies that

B(y, β)mψ◦q = mψ◦q. Now Theorem 3.9(a) implies that ψ◦q = φ = φ◦q, so ψ = φ.

Remark 3.15. If we define y by y(e) = 1 for all e ∈ E1, then βc = ln ρ(A) (Re-

mark 3.7). We therefore recover [17, Theorem 4.3] (which studies what happens at the

critical inverse temperature for the gauge action) from Theorem 3.9 and Theorem 3.14.

Remark 3.16. Theorem 3.14 implies the main result of [20, Section 4.3]; that there

exists a KMSβ state of (C∗(E), αy) if and only if β is the unique positive number for

which Perron numbers exist.

3.6 Examples

We finish the chapter with two examples which show that interesting examples exist.

Example 3.17. Let E be a directed graph with one vertex v and two edges e and f ,

as follows

v

e

f

We want to find a nontrivial function y such that (T C∗(E), αy) has a unique KMSβc

state. To do this we want to find y and βc such that ρ(B(y, βc)) = 1. By the definition

of the spectral radius we want e−βcy(e) + e−βcy(f) = 1. Then

1

eβcy(e)
+

1

eβcy(f)
= 1.

We can take p, q ∈ (1,∞) which are conjugate indices, that is

1

p
+

1

q
= 1.
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Then taking y(e) = ln p
βc

and y(f) = ln q
βc

satisfies our requirements. For example, we can

take p = 3, q = 3
2

and βc = 2. Then Theorem 3.9 tells us there is a unique KMS2 state

for (T C∗(E), αy), and Theorem 3.14 then tells us this state factors through a KMS2

state of (C∗(E), αy).

Remark 3.18. As we have remarked throughout the chapter (Remark 3.7 and Re-

mark 3.15), by taking y(e) = 1 for all e ∈ E1 we can use our results to study KMS

states for the gauge action, as studied in [17]. The reason our results look a little

different to [17] is that B(1, β) = e−βA, so the e−β scaling term is contained within the

matrix B(y, β) rather than explicitly in the formulas.
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Chapter 4

KMS states of C∗-algebras for

infinite graphs with the gauge

action

The goal of this chapter is to generalise [17] to study the KMS states of (T C∗(E), α)

and (C∗(E), α) for row-finite infinite graphs with no sources. By infinite we mean

graphs E = (E0, E1, r, s) for which E0 and E1 are potentially infinite sets, and recall

that no sources means that vE1 6= ∅ for all v ∈ E0.

Let α be the dynamics associated to the gauge action, as in Section 2.3. We start

the chapter by characterising the KMS states of (T C∗(E), α). To study the KMS

states of (T C∗(E), α) at large inverse temperatures we present some background from

Banach spaces and then find an isomorphism between KMS functionals and a subset

of `1(E0). We then show when the KMS states of (T C∗(E), α) factor through C∗(E).

Finally we give an example from [3] to show that we cannot guarantee existence of the

KMS states of (C∗(E), α) for infinite graphs.

Remark 4.1. We do not attempt to extend the results of Chapter 3 to study the KMS

states of (T C∗(E), αy) and (C∗(E), αy) row-finite infinite graphs with no sources. The

reason for this is generalisations of the Perron-Frobenius theorem typically require a

compactness hypothesis on the operator, and it would be difficult to show that the

operator θ 7→ B(y, θ) from Chapter 3 is compact.

4.1 Characterising KMS states of (T C∗(E), α)

In this section we characterise the KMS states of (T C∗(E), α).
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When E has infinitely many vertices, T C∗(E) does not have an identity. Instead

we use the following approximate identity.

Lemma 4.2. Choose a listing {v1, v2, . . . } of E0. The sequence

{
N∑
n=1

pvn}N

is an approximate identity of T C∗(E).

Proof. This follows from [32, Lemma 2.10] (the argument in [32, Lemma 2.10] is for

C∗(E) but carries over for T C∗(E)).

Lemma 4.3. Let φ be a state of T C∗(E) and for v ∈ E0 define mv := φ(pv). Then∑
v∈E0 mv = 1. In particular, m = (mv) ∈ `1(E0).

Proof. Choose a listing {v1, v2, . . . } of E0. Lemma 4.2 tells us that the sequence

{
∑N

n=1 pvn}N is an approximate identity of T C∗(E). Then [35, Lemma A7(a)] im-

plies that

∑
v∈E0

mv = lim
N→∞

N∑
n=1

mvn = lim
N→∞

N∑
n=1

φ(pvn) = lim
N→∞

φ
( N∑
n=1

pvn

)
= 1.

Thus ‖m‖1 = 1, so m ∈ `1(E0).

We can now characterise the KMS states of (T C∗(E), α), using the method of [17,

Proposition 2.1].

Proposition 4.4. Let E be a row-finite directed graph with no sources. Let β ∈ (0,∞).

Let γ be the gauge action and define αt := γeit.

(a) A linear functional φ satisfies the KMS condition if and only if

φ(sµs
∗
ν) = δµ,νe

−β|µ|φ(ps(µ)) for all µ, ν ∈ E∗.(4.1)

(b) A state φ of T C∗(E) is a KMSβ state of (T C∗(E), α) if and only if φ satisfies

Equation (4.1).

(c) Suppose that φ is a KMSβ state of (T C∗(E), α), and define mφ = (mφ
v ) by mφ

v =

φ(pv). Then mφ satisfies the subinvariance relation Amφ ≤ eβmφ. In addition,

‖mφ‖1 = 1 and

mφ ∈ `1(E0)+ := {(mv) ∈ `1(E0) : mv ≥ 0}.

42



Proof. (a) In the forward direction let φ be a linear functional satisfying the KMS

condition (Equation (2.5)). We want to show that φ satisfies Equation (4.1). Fix

µ, ν ∈ E∗. The KMS condition gives

φ(sµs
∗
ν) = φ(s∗ναiβ(sµ)) = φ(s∗νe

−β|µ|sµ) = e−β|µ|φ(s∗νsµ).(4.2)

We consider the cases |µ| = |ν| and |µ| 6= |ν| separately. For |µ| = |ν|, the product

formula (Equation (2.2)) implies that s∗νsµ = δν,µps(µ), and Equation (4.2) gives

φ(sµs
∗
ν) = e−β|µ|φ(s∗νsµ) = δµ,νe

−β|µ|φ(ps(µ)).

Next, suppose that |µ| 6= |ν|. If µ doesn’t extend ν and ν doesn’t extend µ then the

product formula tells us that s∗νsµ = 0, so Equation (4.2) gives

φ(sµs
∗
ν) = e−β|µ|φ(s∗νsµ) = 0.

Otherwise one of µ, ν extends the other, and |µ| 6= |ν|. Applying the KMS condition

again to Equation (4.2) gives

φ(sµs
∗
ν) = e−β|µ|φ(s∗νsµ) = e−β|µ|φ(sµαiβ(s∗ν)) = e−β|µ|φ(sµe

β|ν|s∗ν) = e−β(|µ|−|ν|)φ(sµs
∗
ν).

Since e−β(|µ|−|ν|) 6= 1, it must be that φ(sµs
∗
ν) = 0, thus φ satisfies Equation (4.1).

Conversely, suppose that φ satisfies Equation (4.1). Applying Proposition 2.11(a)

with y(e) = 1 for all e ∈ E0 tells us that φ satisfies the KMS condition.

(b) In the forward direction let φ be a KMS state. Then φ is a linear functional

satisfying the KMS condition, so part (a) tells us it satisfies Equation (4.1).

Conversely, suppose that φ is a state satisfying Equation (4.1). Then part (a) tells

us φ satisfies the KMS condition, so it is a KMS state.

(c) Fix v ∈ E0. Then, because the following sums are finite, applying Equation (4.1)

gives ∑
e∈vE1

φ(ses
∗
e) =

∑
e∈vE1

e−βφ(ps(e))

=
∑
e∈vE1

e−βmφ
s(e)

=
∑
w∈E0

∑
e∈vE1w

e−βmφ
w

= e−β
∑
w∈E0

|vE1w|mφ
w

= e−β(Amφ)v(4.3)
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Since E is row-finite and has no sources, vE1 is finite and v is not a source, so we can

use (TCK2) to get

(Amφ)v = eβ
∑
e∈vE1

φ(ses
∗
e) ≤ eβφ(pv) = eβmφ

v .

Next, Lemma 4.3 tells us that ‖mφ‖1 = 1 and mφ ∈ `1(E0). Because φ is a positive

linear functional, each mφ
v ≥ 0, so mφ ∈ `1(E0)+.

4.2 An isomorphism between `1(E0) and c0(E0)∗

We first give an explicit isomorphism between `1(E0) and c0(E0)∗. This is well-known,

but we include the proof as it is difficult to find a direct proof in the literature.

Theorem 4.5. Suppose that E is a row-finite graph, and m ∈ `1(E0). Then for

each f ∈ c0(E0) the series
∑

v∈E0 m(v)f(v) converges absolutely, and Φ(m) : f 7→∑
v∈E0 m(v)f(v) is a bounded linear functional with ‖Φ(m)‖ = ‖m‖1. Then Φ :

`1(E0)→ c0(E0)∗ is an isometric isomorphism.

Proof. Fix f ∈ c0(E0). We first want to see that
∑

v∈E0 |m(v)f(v)| converges. Since

|f(v)| ≤ ‖f‖∞,∑
v∈E0

|m(v)f(v)| ≤
∑
v∈E0

|m(v)||f(v)| ≤
∑
v∈E0

|m(v)|‖f‖∞ ≤ ‖m‖1‖f‖∞.

Thus
∑

v∈E0 |m(v)f(v)| converges with sum less than or equal to ‖m‖1‖f‖∞. Now

since
∣∣Φ(m)(f)

∣∣ ≤ ‖m‖1‖f‖∞, and

‖Φ(m)‖c0(E0)∗ := sup
f∈c0(E0)

∣∣Φ(m)(f)
∣∣

‖f‖∞
,

we have that Φ(m) is a bounded linear functional with ‖Φ(m)‖c0(E0)∗ ≤ ‖m‖1. To see

that

‖Φ(m)‖c0(E0)∗ ≥ ‖m‖1,

fix ε > 0. Choose a finite subset F of E0 such that
∑

v∈F |m(v)| > ‖m‖1 − ε. Define

fF by

fF (v) := m(v)−1|m(v)|
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for v ∈ {v ∈ F : m(v) 6= 0}. Then fF ∈ cc(E0) ⊆ c0(E0). Now

‖Φ(m)‖ ≥ |Φ(m)(fF )|

≥
∑
v∈E0

m(v)fF (v)

≥
∑
v∈F

m(v)m(v)−1|m(v)|

=
∑
v∈F

|m(v)|

> ‖m‖1 − ε,

thus ‖Φ(m)‖c0(E0)∗ ≥ ‖m‖1. Therefore ‖Φ(m)‖c0(E0)∗ = ‖m‖1.

To see that Φ is surjective let y ∈ c0(E0)∗. We want to show there exists m ∈ `1(E0)

such that Φ(m) = y. Take, as a candidate, m defined by m(v) = y(χ{v}). We first

want to see that m ∈ `1(E0), which we do by showing ‖m‖1 ≤ ‖y‖. Let Fk be finite

sets such that Fk ⊆ Fk+1 and
⋃∞
k=1 Fk = E0 (these exist because E0 is countable). For

each v ∈ E0 choose θ(v) such that m(v) = |m(v)|eiθ(v). Define gk :=
∑

v∈Fk e
−iθ(v)χv.

Then for all k, we have ‖gk‖∞ = 1, and

‖y‖ ≥ |y(gk)|

≥ y
(∑
v∈Fk

e−iθ(v)χ{v}

)
=
∑
v∈Fk

e−iθ(v)y(χ{v})

=
∑
v∈Fk

e−iθ(v)m(v)

=
∑
v∈Fk

|m(v)|.

Now the monotone convergence theorem tells us that the right hand side converges to

‖m‖1. Thus m ∈ `1(E0). Next we show Φ(m)(f) = y(f) for all f ∈ c0(E0). First, fix

g ∈ cc(E0). Then

Φ(m)(g) =
∑
v∈E0

m(v)g(v)

=
∑
v∈E0

y(χ{v})g(v)

= y
( ∑
v∈E0

χ{v}g(v)
)

= y(g).
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Finally, fix f ∈ c0(E0) and choose g ∈ cc(E0) such that ‖f − g‖ < ε
2‖y‖op . Then

‖Φ(m)(f)− y(f)‖ ≤ ‖Φ(m)(f − g)‖+ ‖Φ(mn)(g)− y(g)‖+ ‖y(g − f)‖

< ‖Φ(m)‖ ε

2‖y‖op

+ 0 + ‖y‖op
ε

2‖y‖op

= ‖m‖1
ε

2‖y‖op

+
ε

2

≤ ‖y‖op
ε

2‖y‖op

+
ε

2

=
ε

2
+
ε

2
= ε.

Thus Φ(m)(f) = y(f) for all f ∈ c0(E0), therefore Φ is surjective.

To see that Φ is injective fix m ∈ `1(E0) and suppose that Φ(m) = 0. We want

to show m = 0. Since Φ(m) = 0,
[
Φ(m)

]
(f) = 0 for all f ∈ c0(E0). In particular fix

w ∈ E0 and define fw := χw. Then

0 =
[
Φ(m)

]
(fw) =

∑
v∈E0

m(v)fw(v) =
∑
v∈E0

m(v)χw(v) = m(w).

Because this is true for arbitrary w ∈ E0, it is true for all w ∈ E0, so m = 0. Thus Φ

is injective.

Thus Φ is an isometric isomorphism.

The following lemma tells us that pointwise convergence in `1(E0) implies weak*

convergence in c0(E0)∗, which we will use in our next proofs.

Lemma 4.6. Suppose that {mn} is a norm-bounded sequence in `1(E0). Then Φ(mn)→
Φ(m) in the weak* topology on c0(E0)∗ if and only if mn(v)→ m(v) for all v ∈ E0.

Proof. Suppose that Φ(mn) → Φ(m). We want to show that mn(v) → m(v) for all

v ∈ E0. Fix v ∈ E0. Since Φ(mn)→ Φ(m),∑
w∈E0

mn(w)f(w)→
∑
w∈E0

m(w)f(w)

for all f ∈ c0(E0). Let f = χv. Then∑
w∈E0

mn(w)χv(w)→
∑
w∈E0

m(w)χv(w).

Thus mn(v)→ m(v).

Conversely, suppose that mn(v)→ m(v) for all v ∈ E0. Fix ε > 0 and f ∈ c0(E0).

We want to show that there exists N ∈ N such that if n > N then ‖Φ(mn)(f) −
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Φ(m)(f)‖ < ε. Let M ∈ N such that ‖mn‖1 < M for all n ∈ N, and choose g ∈ cc(E0)

such that ‖f − g‖ < ε
3M

. Since mn → m pointwise there exists N such that n > N

implies that

|mn(v)−m(v)| < ε

3‖g‖1

for all v ∈ supp(g). Then, taking n > N ,

‖Φ(mn)(f)− Φ(m)(f)‖

≤ ‖Φ(mn)(f − g)‖+ ‖Φ(mn)(g)− Φ(m)(g)‖+ ‖Φ(m)(g − f)‖

<
ε

3
+ ‖Φ(mn)(g)− Φ(m)(g)‖+

ε

3

=
2ε

3
+
∣∣∣ ∑
v∈supp(g)

mn(v)g(v)−
∑

v∈supp(g)

m(v)g(v)
∣∣∣.

Since g ∈ cc(E0) implies that the sums are finite,

‖Φ(mn)(f)− Φ(m)(f)‖ ≤ 2ε

3
+

∑
v∈supp(g)

|mn(v)−m(v)||g(v)|

<
2ε

3
+

∑
v∈supp(g)

ε

3‖g‖1

|g(v)|

=
2ε

3
+

ε

3‖g‖1

∑
v∈supp(g)

|g(v)|

=
2ε

3
+

ε

3‖g‖1

‖g‖1

< ε.

4.3 KMS functionals

A KMSβ functional is a norm-decreasing positive linear functional which satisfies the

KMS condition. Because the Toeplitz algebra T C∗(E) has no identity when E is

infinite, the set of KMS states is not compact. This makes it difficult to find a home-

omorphism between the simplex of KMS states and a subset of `1(E0)+, as in [17,

Theorem 3.1]. We therefore use the set of KMS functionals in our study of the KMS

states of (T C∗(E), α) at large inverse temperatures.

As in [28, pg. 272], if S is a subset of a locally convex space X we call the smallest

convex set containing S the convex hull of S, denoted by co(S).
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Lemma 4.7. Fix β ∈ (0,∞). Let co(KMSβ ∪ {0}) be the convex hull of the union of

the KMSβ states of T C∗(E) and the 0 functional. Then

co(KMSβ ∪ {0}) = {cφ : φ is a KMSβ state, c ∈ [0, 1]}

= {KMSβ functionals}

is weak* closed and compact.

Proof. We first show that

co(KMSβ ∪ {0}) = {cφ : φ is a KMSβ state, c ∈ [0, 1]}.(4.4)

The right hand side of Equation (4.4) is contained in co(KMSβ ∪{0}), so we only need

to show co(KMSβ ∪{0}) is contained in the right hand side of Equation (4.4). The set

co(KMSβ ∪ {0}) is the intersection of all convex sets containing KMSβ ∪ {0} and thus

is the smallest convex subset of the KMSβ functionals containing co(KMSβ ∪{0}) ([28,

pg. 272]). Therefore, to show it is contained in the right hand side of Equation (4.4) it

suffices to show the right hand side contains the KMSβ states and 0 functional and is

a convex set.

To see the right hand side contains the KMSβ states take c = 1, and to see it

contains 0 take c = 0.

To see the right hand side is convex fix KMSβ states φ, φ′ and c, c′ ∈ [0, 1]. Then

cφ, c′φ′ ∈ {cφ : φ is a KMSβ state, c ∈ [0, 1]}. Fix t ∈ [0, 1], and take the convex

combination Υ = tcφ+ (1− t)c′φ′. We want to show Υ ∈ {cφ : φ is a KMSβ state, c ∈
[0, 1]}. If cφ = c′φ′ = 0 we have Υ = 0, so we assume cφ 6= 0. We claim that ‖Υ‖ ≤ 1

and Υ
‖Υ‖ is a KMSβc state. Since φ and φ′ are states, and therefore of norm 1, by the

triangle inequality gives

‖Υ‖ = ‖tcφ+ (1− t)c′φ′‖ ≤ t|c|‖φ‖+ (1− t)|c′|‖φ′‖ ≤ t+ 1− t = 1.

Thus ‖Υ‖ ≤ 1. Next we show that Υ
‖Υ‖ is a KMSβc state. Since φ and φ′ are KMSβ

states, they are positive linear functionals, so by linearity Υ
‖Υ‖ is a positive linear func-

tional. Also by linearity Υ
‖Υ‖ satisfies the KMS condition, so it only remains to show Υ

‖Υ‖

is a state, that is, ‖ Υ
‖Υ‖‖ = 1. Since cφ 6= 0 and φ is a state, there exists a ∈ T C∗(E)

such that cφ(a∗a) > 0. In addition, c′φ′(a∗a) ≥ 0, so Υ(a∗a) > 0, and therefore Υ 6= 0.

Then ‖ Υ
‖Υ‖‖ = 1, so Υ

‖Υ‖ is a state. Thus Υ
‖Υ‖ is a KMSβc state. Therefore we have

proved our claim and Υ ∈ {cψ : ψ is a KMSβ state, c ∈ [0, 1]}, so Equation (4.4) holds.

Next we show that

{cφ : φ is a KMSβ state, c ∈ [0, 1]} = {KMSβ functionals}.(4.5)
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Fix a KMSβ state φ and c ∈ [0, 1]. Then it is clear cφ is a norm-decreasing positive

linear functional satisfying the KMS condition, so the left hand side is contained in

the right hand side. Conversely, fix a KMSβ functional ψ. We want to show ψ ∈ {cφ :

φ is a KMSβ state, c ∈ [0, 1]}. If ψ = 0 take c = 0 and we are done, so assume ψ 6= 0.

Then, noting

ψ = ‖ψ‖ ψ

‖ψ‖
,

since ψ is norm-decreasing and ψ
‖ψ‖ is of norm 1, and therefore a KMSβ state, ψ ∈ {cφ :

φ is a KMSβ state, c ∈ [0, 1]}. Thus Equation (4.5) holds.

To see that co(KMSβ∪{0}) is weak* closed suppose that {φn} is a sequence of KMSβ

functionals such that φn → φ weak*. This means φn(a) → φ(a) for all a ∈ T C∗(E)

so it follows that φ is a norm-decreasing positive linear functional. Since the φn are

KMSβ functionals,

φn(ab) = φn(bαiβ(a))

for all analytic a, b ∈ T C∗(E). The left hand side converges to φ(ab) and the right

hand side to φ(bαiβ(a)), so φ satisfies the KMS condition. Thus co(KMSβ ∪ {0}) is

weak* closed.

Finally we show that co(KMSβ∪{0}) is weak*-compact. The set of norm decreasing

positive functionals is a convex weak*-compact set by [28, Theorem 5.1.8]. We have

just shown co(KMSβ ∪ {0}) is weak* closed and it is a subset of the norm decreasing

positive functionals. Thus co(KMSβ ∪ {0}) is weak*-compact.

4.4 KMS states of (T C∗(E), α) at large inverse tem-

peratures

In this section we study the KMS states of (T C∗(E), α) at large inverse temperatures

by finding a homeomorphism between the KMS functionals and the following set.

Lemma 4.8. Suppose that x ∈ `∞(E0). Then the set

Σβ :=
{
ε ∈ `1(E0)+ : 0 ≤

∑
v∈E0

xvεv ≤ 1
}

is a weak*-closed, convex, compact set in `1 = c∗0.
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Proof. First we show that Σβ is closed in `1(E0). Fix {εn} ∈ Σβ and ε ∈ `1(E0) such

that εn → ε weak*. We want to show that ε ∈ Σβ, that is, 0 ≤
∑

v∈E0 xvεv ≤ 1. Let

Fk be finite sets such that Fk ⊆ Fk+1 and
⋃∞
k=1 Fk = E0 (these exist because E0 is

countable). Then, since εn → ε,
∑

v∈Fk xv(εn)v →
∑

v∈Fk xvεv. Since εn ∈ Σβ for all

n, 0 ≤
∑

v∈Fk xv(εn)v ≤ 1, therefore 0 ≤
∑

v∈Fk xvεv ≤ 1. Then 0 ≤
∑

v∈Fk xvεv ≤∑
v∈Fk+1

xvεv ≤ 1 for all k, so we can apply the monotone convergence theorem to get

0 ≤
∑

v∈E0 xvεv ≤ 1. Therefore ε ∈ Σβ, so Σβ is closed in `1(E0).

Next we show that Σβ is convex. Fix y, z ∈ Σβ and c ∈ [0, 1]. We want to show

that cy + (1 − c)z ∈ Σβ, that is 0 ≤
∑

v∈E0 xv(cy + (1 − c)z)v ≤ 1. Since the sum is

linear,

0 = c0 + (1− c)0 ≤ c
∑
v∈E0

xvyv + (1− c)
∑
v∈E0

xvzv ≤ c1 + (1− c)1 = 1.

Thus Σβ is convex.

The Banach-Alaoglu theorem states that the closed unit ball of `1(E0) is compact

in the weak* topology, and Σβ is weak*-closed inside the unit ball, so it is also compact.

To find a homeomorphism between co(KMSβ∪{0}) and Σβ we need that the vertex

matrix A = (|vE1w|)v,w∈E0 is bounded, so we add the following condition (which is

stronger than locally finite).

Proposition 4.9. Assume that |s−1(w)| ≤ K for all w ∈ E0. Then the vertex matrix

A is a bounded linear operator on `1(E0).

Proof. Fix ξ ∈ `1(E0). Then

‖Aξ‖1 =
∑
v∈E0

|(Aξ)v|

=
∑
v∈E0

|
∑
w∈E0

Av,wξw|

≤
∑
v∈E0

∑
w∈E0

|Av,wξw|

=
∑
v∈E0

∑
w∈E0

|Av,w||ξw|.
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Then, by Tonelli’s theorem,

‖Aξ‖1 ≤
∑
w∈E0

( ∑
v∈E0

Av,w

)
|ξw|

=
∑
w∈E0

( ∑
v∈E0

|vE1w|
)
|ξw|

=
∑
w∈E0

|s−1(w)||ξw|

≤ K
∑
w∈E0

|ξw|

≤ K‖ξ‖1.

Thus A is bounded with ‖A‖op ≤ K.

We view A as a bounded operator on `1(E0), so we write ρ(A) for the spectral

radius of A ∈ B(`1(E0)).

Theorem 4.10. Let E be a row-finite directed graph with no sources such that |s−1(w)| ≤
K for all w ∈ E0. Take β > ln(ρ(A)). Let γ be the gauge action and define αt := γeit.

(a) For v ∈ E0, the sum xv =
∑

µ∈E∗v e
−β|µ| converges, and x := (xv) ∈ `∞(E0). In

addition, xv ≥ 1 for all v ∈ E0. Let ε ∈ `1(E0)+ and define m := (I − e−βA)−1ε.

Then m ∈ `1(E0)+ and ‖m‖1 =
∑

v∈E0 xvεv.

(b) Suppose that ε ∈ `1(E0)+ and set m := (I − e−βA)−1ε. If
∑

v∈E0 xvεv ≤ 1 there is

a KMSβ functional φε of (T C∗(E), α) satisfying

φε(sµs
∗
ν) = δµ,νe

−β|µ|ms(µ).(4.6)

Moreover, if
∑

v∈E0 xvεv = 1, then φε is a KMSβ state.

(c) For a KMS functional φ define mφ = (mφ
v ) by mφ

v = φ(pv). Then there is a linear

homeomorphism F : co(KMSβ ∪ {0}) → Σβ defined by F (φ) := (I − e−βA)mφ for

all φ ∈ co(KMSβ ∪ {0}).

Proof of Theorem 4.10 (a). We first want to show that the series
∑

µ∈E∗v e
−β|µ| con-

51



verges. We start by showing that
∑

µ∈E∗v e
−β|µ| converges. Fix v ∈ E0. Then

∑
µ∈E∗w

e−β|µ| =
∞∑
n=0

∑
µ∈Enw

e−βn

=
∞∑
n=0

∑
v∈E0

e−βn|vEnw|

=
∞∑
n=0

∑
v∈E0

e−βnAnv,w

Then, applying Tonelli’s theorem,

∑
µ∈E∗w

e−β|µ| =
∑
v∈E0

∞∑
n=0

e−βnAnv,w.

Proposition 4.9 implies that A is a bounded operator on `1(E0). In addition, β >

ln(ρ(A)), so we can apply Corollary A.14, which tells us that the series
∑∞

n=0 e
−βnAn

converges in the operator norm to (I − e−βA)−1 ∈ B(`1(E0)). This implies that for

every fixed v, w ∈ E0 the series
∑∞

n=0 e
−βnAnv,w converges to (I− e−βA)−1

v,w. Then, with

hw ∈ `1(E0) the point mass at w,

xw =
∑
µ∈E∗w

e−β|µ|

=
∑
v∈E0

∞∑
n=0

e−βnAnv,w

=
∑
v∈E0

(I − e−βA)−1
v,w

=
∑
v∈E0

[(I − e−βA)−1hw]v.

Since (I − e−βA)−1 ≥ 0,

xw = ‖(I − e−βA)−1hw‖1 ≤ ‖(I − e−βA)−1‖op‖hw‖1 = ‖(I − e−βA)−1‖op.(4.7)

Thus x ∈ `∞(E0) with ‖x‖∞ ≤ ‖(I − e−βA)−1‖op. Each xv is at least 1 because all the

terms in the series Equation (4.7) are non-negative and when n = 0, e−βnAnv,v = 1.

Next, fix ε ∈ `1(E0)+. Since (I − e−βA)−1 ∈ B(`1(E0)), and (I − e−βA)−1 ≥ 0,

m := (I − e−βA)−1ε ∈ `1(E0)+ too.
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Finally,

‖m‖1 =
∑
v∈E0

mv

=
∑
v∈E0

((I − e−βA)−1ε)v

=
∑
v∈E0

(( ∞∑
n=0

e−βnAn
)
ε)v

=
∑
v∈E0

∞∑
n=0

∑
w∈E0

e−βnAnv,wεw

=
∑
w∈E0

εw

( ∑
µ∈E∗w

e−β|µ|
)

=
∑
w∈E0

εwxw.

To prove that φε is a state in the next part of the theorem, we will need the following

Lemma, a converse to [35, Lemma A7(a)].

Lemma 4.11. Let φ be a norm-decreasing, positive linear functional, and {ei} an

approximate identity in A such that φ(ei)→ 1. Then ‖φ‖ = 1.

Proof. The sequence {|φ(ei)|} is bounded above by 1, and since φ is positive, it is

increasing. Therefore {|φ(ei)|} converges to its supremum, so

sup
{ei}
{|φ(ei)|} = 1.

Then, since ‖ei‖ ≥ 1,

‖φ‖ = sup
{‖a‖≤1}

{|φ(a)|} ≥ sup
{ei}
{|φ(ei)|} = 1.

In addition, φ is norm-decreasing, and in particular ‖φ‖ ≤ 1, so ‖φ‖ = 1.

Proof of Theorem 4.10(b). Fix ε ∈ `1(E0) and take m := (I− e−βA)−1ε. We first want

to define φε then show it is a positive linear functional on (T C∗(E), αy), and that it

satisfies the KMS condition and Equation (4.6). We then assume that
∑

v∈E0 xvεv = 1

and show that φε is a state.

We build a linear functional by representing T C∗(E) on `2(E∗). Let πQ,T be the

finite path representation from Proposition 2.3. For µ ∈ E∗ we set

∆µ := e−β|µ|εs(µ),
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and note that ∆µ ≥ 0. We aim to define φe by

φε(a) =
∑
µ∈E∗

∆µ(πQ,T (a)hµ|hµ) for a ∈ T C∗(E).(4.8)

We first show that the sum in Equation (4.8) converges. To do this we claim that∑
µ∈E∗ ∆µ = ‖m‖1. We start by showing that

∑
µ∈vE∗ e

−β|µ|εs(µ) converges. Fix v ∈ E0

and n ∈ N. Then, since the graph is row-finite, that is, |vEn| <∞,∑
µ∈vEn

e−β|µ|εs(µ) =
∑
w∈E0

∑
µ∈vEnw

e−β|µ|εw

=
∑
w∈E0

e−βnAnv,wεw

= (e−βnAnε)v.(4.9)

Now β > ln(ρ(A)), so Corollary A.14 tells us that
∑∞

n=0(e−βnAnε)v converges with sum

((I − e−βA)−1ε)v = mv. Then, by Equation (4.9),

∞∑
n=0

(e−βnAnε)v =
∞∑
n=0

∑
µ∈vEn

e−β|µ|εs(µ),

and since E is row-finite the second sum is finite. Since the sum of non-negative entries

over a countable set is independent of the listing of the set, we have

∞∑
n=0

∑
µ∈vEn

e−β|µ|εs(µ) =
∑
µ∈vE∗

e−β|µ|εs(µ) =
∑
µ∈vE∗

∆µ.(4.10)

Therefore
∑

µ∈vE∗ ∆µ also converges with sum mv. Then, by Tonelli’s theorem,∑
µ∈E∗

∆µ =
∑
v∈E0

( ∑
µ∈vE∗

∆µ

)
=
∑
v∈E0

mv = ‖m‖1.(4.11)

We now use this to prove that Equation (4.8) converges for all a ∈ T C∗(E). Fix

a ∈ T C∗(E), then, applying the Cauchy-Schwarz inequality,

0 ≤ |∆µ(πQ,T (a)hµ|hµ)|

= |∆µ||(πQ,T (a)hµ|hµ)|

≤ ∆µ‖πQ,T (a)hµ‖‖hµ‖

≤ ∆µ‖πQ,T (a)‖‖hµ‖2

≤ ∆µ‖a‖ · 1.(4.12)
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Since
∑

µ∈E∗ ∆µ converges,
∑

µ∈E∗ ∆µ‖a‖ converges and the comparison test tells us

that
∑

µ∈E∗ |∆µ(πQ,T (a)hµ|hµ)| converges. Thus
∑

µ∈E∗ ∆µ(πQ,T (a)hµ|hµ) converges

absolutely for all a ∈ T C∗(E).

We can now show that φε defines a positive functional on T C∗(E). To do this we

need to show linearity, that is, that φε(wa+zb) = wφε(a)+zφε(b) for all a, b ∈ T C∗(E)

and w, z ∈ C, and that φε(a
∗a) ≥ 0 for all a ∈ T C∗(E). Fix a, b ∈ T C∗(E) and c ∈ C.

First we show that φε(wa+ zb) = wφε(a) + zφε(b). Since Equation (4.8) converges for

all a ∈ T C∗(E), using the algebra of series,

wφε(a) + zφε(b) = w
∑
µ∈E∗

∆µ(πQ,T (a)hµ|hµ) + z
∑
µ∈E∗

∆µ(πQ,T (b)hµ|hµ)

=
∑
µ∈E∗

∆µ

(
w(πQ,T (a)hµ|hµ) + z(πQ,T (b)hµ|hµ)

)
=
∑
µ∈E∗

∆µ((wπQ,T (a) + zπQ,T (b))hµ|hµ)

=
∑
µ∈E∗

∆µ(πQ,T (wa+ zb)hµ|hµ)

= φε(wa+ zb).

Next we show that φε(a
∗a) ≥ 0. By definition of φε,

φε(a
∗a) =

∑
µ∈E∗

∆µ(πQ,T (a∗a)hµ|hµ).

Since ∆µ(πQ,T (a∗a)hµ|hµ) is nonnegative for each µ, the sum is nonnegative, and

φε(a
∗a) ≥ 0. Thus φε is a positive linear functional.

Next we prove that φε is norm-decreasing. Fix a ∈ T C∗(E), then

|φε(a)| = |
∑
µ∈E∗

∆µ(φQ,T (a)hµ|hµ)| ≤
∑
µ∈E∗
|∆µ(φQ,T (a)hµ|hµ)|.

So by Equation (4.12),

|φε(a)| ≤
∑
µ∈E∗

∆µ‖a‖.

By Equation (4.11), |φε(a)| ≤ ‖m‖1‖a‖, and by part (a), |φε(a)| ≤
∑

v∈E0 xvεv‖a‖.
Since

∑
v∈E0 xvεv ≤ 1, |φε(a)| ≤ ‖a‖. Therefore φε is norm-decreasing.

Next we prove that φε satisfies Equation (4.6). Fix λ ∈ E∗. Then

(πQ,T (sµs
∗
ν)hλ|hλ) = (T ∗ν hλ|T ∗µhλ) =

1 if λ = µλ′ = νλ′

0 otherwise.
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Since µλ′ = νλ′ forces µ = ν, we have φε(sµs
∗
ν) = 0 if µ 6= ν. So suppose that µ = ν.

Then Equation (4.10) gives
∑

µ∈vE∗ ∆µ = mv, so

φε(sµs
∗
µ) =

∑
µ∈E∗

∆λ(T
∗
µhλ|T ∗µhλ)

=
∑
λ=µλ′

e−β|µλ
′|εs(λ′)

=
∑
λ=µλ′

e−β(|µ|+|λ′|)εs(λ′)

=
∑
λ=µλ′

e−β|µ|e−β|λ
′|εs(λ′)

= e−β|µ|
∑

λ′∈s(µ)E∗

∆λ′

= e−β|µ|ms(µ).

Thus φε satisfies Equation (4.6).

Next we show that φε satisfies the KMS condition. Fixing v ∈ E0 and calculating

φε(pv), by Tonelli’s theorem we get

φε(pv) =
∑
µ∈E∗

∆µ(πQ,T (pv)hµ|hµ)

=
∑
µ∈E∗

∆µ(Qvhµ|hµ)

=
∑
w∈E0

∑
µ∈wE∗

∆µ(Qvhµ|hµ).

Then, since Qvhµ = 0 if v 6= s(µ),

φε(pv) =
∑
µ∈vE∗

∆µ(Qvhµ|hµ) =
∑
µ∈vE∗

∆µ = mv.

Therefore

φε(sµs
∗
ν) = δµ,νe

−β|µ|ms(µ) = δµ,νe
−β|µ|φε(ps(µ)).

Now Proposition 4.4(b) tells us that φε is a KMSβ functional.

Finally, assume that
∑

v∈E0 xvεv = 1. Then we want to show that φε is a state,

that is, that ‖φε‖ = 1. Because
∑

v∈E0 xvεv = 1 part (a) tells us that ‖m‖1 = 1.

Choose any listing {vn} of E0. Lemma 4.2 tells us that the sequence {
∑N

n=1 pvn}N is

an approximate identity of T C∗(E). Since Qvhµ = δv,r(µ)hµ,

φe

( N∑
n=1

pvn

)
=
∑
µ∈E∗

∆µ

( N∑
n=1

Qvnhµ|hµ
)

=
∑
µ∈E∗

N∑
n=1

∆µ(Qvnhµ|hµ) =
∑
µ∈E∗

N∑
n=1

∆µ.
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Then, by the algebra of series,

φe

( N∑
n=1

pvn

)
=

N∑
n=1

∑
µ∈vnE∗

∆µ

→
∞∑
n=1

∑
µ∈vnE∗

∆µ

=
∑
µ∈E∗

∆µ

= ‖m‖1

= 1.

Now Lemma 4.11 implies φε is a state.

Proof of Theorem 4.10 (c). We aim to find a homeomorphism F between co(KMSβ ∪
{0}) and Σβ, noting that the topologies on both spaces is the weak∗ topology.

First we show that the range of F is contained in `1(E0). Fix φ ∈ co(KMSβ ∪{0}).
Since ‖mφ‖1 ≤ 1,

‖F (φ)‖1 = ‖(I − e−βA)mφ‖1 ≤ ‖I − e−βA‖op‖mφ‖1 ≤ ‖I − e−βA‖op.

Since A ∈ B(`1(E0)) implies that I − e−βA ∈ B(`1(E0)), its operator norm is finite, so

F (φ) ∈ `1(E0).

Next we show that F is linear. Let c, d ∈ R and φ, ψ ∈ co(KMSβ ∪ {0}). We need

to show that F (cφ+ dψ) = cF (φ) + dF (ψ). Fix v ∈ E0. Then

F (cφ+ dψ)v =
[
(I − e−βA)mcφ+dψ

]
v

=
∑
w∈E0

(I − e−βA)v,wm
cφ+dψ
w

=
∑
w∈E0

(I − e−βA)v,w[cφ+ dψ](pw)

= c
∑
w∈E0

(I − e−βA)v,wφ(pw) + d
∑
w∈E0

(I − e−βA)v,wψ(pw)

=
[
cF (φ) + dF (ψ)

]
v
.

Thus F is linear.

Since co(KMSβ ∪ {0}) is weak*-compact (by Lemma 4.7), to prove that F is a

homeomorphism it is enough to show that it is surjective, injective and continuous.

First we show that F is continuous. F maps elements from co(KMSβ ∪ {0}) ⊆
T C∗(E)∗ to Σβ ⊆ `1(E0). We want to show that F is weak* to weak* continuous, and
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we use Φ to identify `1(E0) as c0(E0)∗. Suppose that φn → φ weak* in T C∗(E)∗, that is,

for all a ∈ T C∗(E), φn(a)→ φ(a) in C. We want to show that Φ ◦ F (φn)→ Φ ◦ F (φ)

weak* in c0(E0)∗. By Lemma 4.6, it suffices to show that F (φn)v → F (φ)v for all

v ∈ E0. Computing:

F (φn)v =
(

(I − e−βA)mφn
)
v

=
∑
w∈E0

(I − e−βA)v,wm
φn
w

=
∑
w∈E0

(I − e−βA)v,wφn(pw)

= φn(pv)−
∑
w∈E0

e−βAv,wφn(pw).

Now, since φn(a)→ φ(a) for all a ∈ T C∗(E) and the sum above is finite (because E is

row-finite),

F (φn)v = φn(pv)−
∑
w∈E0

e−βAv,wφn(pw)

→ φ(pv)−
∑
w∈E0

e−βAv,wφ(pw) = F (φ)v.

Thus F is weak* continuous.

Next we show that F is injective. Let φ ∈ co(KMSβ ∪{0}) such that F (φ) = 0. We

want to show that φ = 0, and it suffices to show that φ(sµs
∗
ν) = 0 for all µ, ν ∈ E∗. We

have F (φ) = (I − e−βA)mφ = 0. Now β > ln(ρ(A)) implies that I − e−βA is invertible

in B(`1(E0)), and in particular is injective, so mφ = 0. Then φ(pv) = 0 for all v ∈ E0.

By Proposition 4.4(a), this implies that φ(sµs
∗
ν) = 0 for all µ, ν ∈ E∗, so φ = 0 and F

is injective.

Finally we show that F is surjective. Fix ε ∈ Σβ, and then part (b) gives φε and

m = (I − e−βA)−1ε. Fix µ ∈ E∗. Comparing Equation (4.6) with Equation (4.1) tells

us ms(µ) = φε(ps(µ)), and mφ
s(µ) = φε(ps(µ)) by definition. Therefore m = mφε , so

F (φε) = (I − e−βA)mφε = (I − e−βA)m = (I − e−βA)(I − e−βA)−1ε = ε,

so F is surjective.

Then, since F is surjective, injective and continuous, it is a homeomorphism.

4.5 KMS states of (C∗(E), α)

Since the quotient map q of T C∗(E) onto C∗(E) is gauge-invariant we get an action of

R on C∗(E), which we call α. In this section we show when a KMS state of (T C∗(E), α)
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factors through C∗(E).

Proposition 4.12. Let E be a row-finite directed graph with no sources. Let β ∈ (0,∞)

and A be the vertex matrix of E. Let γ be the gauge action and define αt := γeit. A

KMSβ state φ of (T C∗(E), α) factors through C∗(E) if and only if (Amφ)v = eβmφ
v for

all v ∈ E0.

Proof. We follow the method of [17, Proposition 2.1(d)]. Fix v ∈ E0. By [17,

Lemma 2.2] it suffices to check that φ
(
pv −

∑
e∈vE1 ses

∗
e

)
= 0 if and only if (Amφ)v =

eβmφ
v . Applying Equation (4.3),

φ
(
pv −

∑
f∈vE1

ses
∗
e

)
= φ(pv)− φ

( ∑
f∈vE1

ses
∗
e

)
= φ(pv)−

∑
f∈vE1

φ(ses
∗
e)

= φ(pv)− e−β(Amφ)v

= mφ − e−β(Amφ)v.

Multiplying both sides by eβ we see that φ
(
pv −

∑
e∈vE1 ses

∗
e

)
= 0 if and only if

(Amφ)v = eβmφ
v .

4.6 An example

The following example from Carlsen and Larsen [3, Example 7.2] shows that the exis-

tence of KMS states of (C∗(E), α) for infinite graphs is not guaranteed, even when the

graph is strongly connected. It is proved here using the same method as [3, Example

7.2], but applying our results instead of those in [3].

Example 4.13. Let E be the graph defined as follows

v1v0· · · v2 · · ·

e−1 e0 e1 e2

f2f1f0f−1

Fix β ∈ (0,∞) and suppose that there exists a KMSβ state φ of (C∗(E), α). Then

ψ := φ ◦ q is a KMSβ state of (T C∗(E), α). With mψ := (ψ(pv)), Proposition 4.12 tells

us that (Amψ)v = eβmψ
v for all v ∈ E0. Fix n ∈ Z. Then

mψ(vn) =
1

2
(mψ(vn−1) +mψ(vn+1)).
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So either mψ(vn−1) ≥ mψ(vn) or mψ(vn+1) ≥ mψ(vn). Without loss of generality

suppose that mψ(vn+1) ≥ mψ(vn). By induction on k ≥ 1,

mψ(vn+k) = kmψ(vn+1)− (k − 1)mψ(vn) ≥ mψ(vn).

However

∞∑
k=0

mψ(vn+k) ≤
∑
v∈E0

mψ(vn) = 1,

so it must be the case that mψ(vn) = 0. Thus mψ = 0, which contradicts that

‖mψ‖1 = 1 (Lemma 4.3). Therefore (C∗(E), α) has no KMS states.
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Chapter 5

KMS states of C∗-algebras for

higher-rank graphs with a

generalised gauge dynamics

The goal of this chapter is to generalise Chapter 3 to higher-rank graphs.

We first introduce the required background material on higher-rank graphs and their

C∗-algebras T C∗(Λ) and C∗(Λ). We then describe our generalised gauge dynamics αy.

Next we characterise of the KMS states of (T C∗(Λ), αy). We then get a subinvariance

relation and use this to characterise the KMS states of (T C∗(Λ), αy) at large inverse

temperatures. With this characterisation we describe the KMS states of (T C∗(Λ), αy)

at large inverse temperatures. We then discuss the KMS states of (T C∗(Λ), αy) at

the critical inverse temperature. Next we describe the dynamics αy and show when a

KMS state of (T C∗(Λ), αy) factors through C∗(Λ). Finally we discuss the KMS states

of (T C∗(Λ), αy) and (C∗(Λ), αy) for a preferred dynamics, for which we get our best

result.

5.1 Higher-rank graphs

In this section we present the definition of a higher-rank graph. We use the same

notation as [32, Chapter 10], [34] and [16].

Let k be a positive integer. We view Nk as a category with one object and write {ei}
for the usual basis. Fix m,n ∈ Nk. By m ≤ n we mean mi ≤ ni for all i ∈ {1, . . . , k}.
We write the pointwise maximum of m and n as m∨n; similarly the pointwise minimum

is denoted m ∧ n.

61



A higher-rank graph or k-graph is a countable category Λ = (Λ0,Λ, r, s) together

with a degree functor d : Λ → Nk which satisfies the factorisation property : if d(λ) =

m + n then there are unique µ, ν ∈ Λ with d(µ) = m, d(ν) = n such that λ = µν. We

call the elements λ ∈ Λ paths.

For n ∈ Nk we define

Λn := {λ ∈ Λ : d(λ) = n}.

We call the elements of Λn paths of degree n. For v ∈ E0 we define

Λnv := {λ ∈ Λn : r(λ) = v}

and

vΛn := {λ ∈ Λn : s(λ) = v}.

A k-graph (Λ, d) is row-finite if vΛn is finite for all n ∈ Nk and v ∈ Λ0, and has no

sources if vΛn is nonempty for all n ∈ Nk and v ∈ Λ0. In this chapter we only consider

higher-rank graphs which have no sources and are finite in the sense that Λn is finite

for all n ∈ Nk (this, in particular, implies that Λ is row-finite). Notice that we are not

asserting that Λ is a finite set.

For µ, ν ∈ Λ, we say that λ is a minimal common extension of µ and ν if d(λ) =

d(µ) ∨ d(ν) and λ = µµ′ = νν ′ for some µ′, ν ′ ∈ Λ. We write Λmin(µ, ν) for the set of

all minimal common extensions of µ and ν.

For i ∈ {1, . . . , k} let Ai be the matrix with entries (Ai)v,w = |vΛeiw|. We call

the Ai the vertex matrices of Λ. We say that Λ is coordinatewise irreducible if for all

i ∈ {1, . . . , k} the vertex matrix Ai is irreducible.

To visualise a k-graph Λ we can draw its skeleton, the directed graph (Λ0,∪ki=1Λei , r, s)

where an edge of degree i is drawn in colour ci. The factorisation property then gives

bijections between the cicj-coloured paths of length 2 and the cjci-coloured paths, and

we think of each pair as a commuting square in the skeleton. Then [15, Remark 2.3]

tells us that a complete collection of commuting squares determines the k-graph.

Example 5.1. Let Λ be the 2-graph defined by the skeleton (with edges of degree
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(1, 0) in solid lines and edges of degree (0, 1) in dashed lines)

v

e1

e2

f1

f2

and the factorisation property

e1f1 = f1e1, e1f2 = f1e2, e2f1 = f2e1 and e2f2 = f2e2.

This factorisation property gives the commuting squares:

• •

• •

• •

• •

• •

• •

• •

• •

e1

e1

f1 f1

e1

e2

f1 f2

e2

e1

f2 f1

e2

e2

f2 f2

Then we can write down all of the factorisations for a path λ ∈ Λ with degree (3, 1).

•v •v •v •v

•v •v •v •v

e1 e2 e2

e2 e2 e1

f1 f2 f2 f1

Thus λ = f1e2e2e1 = e1f2e2e2 = e1e2f2e1 = e1e2e2f1.

5.2 The Toeplitz algebra T C∗(Λ)

In this section we present the definition of Toeplitz-Cuntz-Krieger Λ-families and their

algebras. We use the definition from [33, Section 7].

A Toeplitz-Cuntz-Krieger Λ-family {T} consists of partial isometries {Tλ : λ ∈ Λ}
such that

(T1) {Tv : v ∈ Λ0} are mutually orthogonal projections;

(T2) TλTµ = Tλµ whenever s(λ) = r(µ);
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(T3) T ∗λTλ = Ts(λ) for all λ;

(T4) for all v ∈ Λ0 and n ∈ Nk, we have

Tv ≥
∑
λ∈vΛn

TλT
∗
λ ;

(T5) for all µ, ν ∈ Λ, we have (interpreting any empty sums as 0)

T ∗µTν =
∑

(η,ζ)∈Λmin(µ,ν)

TηT
∗
ζ .

There is a C∗-algebra T C∗(Λ) generated by a Toeplitz-Cuntz-Krieger Λ-family {tλ}
which is universal in the sense that: given any Toeplitz-Cuntz-Krieger Λ-family {Tλ}
in a C∗-algebra B there is a homomorphism πT : T C∗(Λ)→ B such that πT (tλ) = Tλ

for all λ ∈ Λ [33, Corollary 7.5]. We call T C∗(Λ) the Toeplitz algebra of Λ. In this

thesis we only study T C∗(Λ) when Λ is finite as this implies T C∗(Λ) has an identity,

that is
∑

v∈Λ0 tv = 1. The literature usually defines Qv := Tv for v ∈ Λ0 and calls

{Q, T} a Toeplitz-Cuntz-Krieger Λ-family. We avoid this definition so we don’t cause

confusion between a universal Toeplitz-Cuntz-Krieger Λ-family {q, t} and the quotient

map q used later in the chapter.

Lemma 5.2. Suppose that (Λ, d) is a k-graph and B is a C∗-algebra generated by a

Toeplitz-Cuntz-Krieger Λ-family {w} such that, for every Toeplitz-Cuntz-Krieger Λ-

family {T} in a C∗-algebra C, there exists a homomorphism ρT : B → C satisfying

ρT (wλ) = Tλ. Then there exists an isomorphism πw : T C∗(Λ)→ B such that πw(tλ) =

wλ.

Proof. The universal property of T C∗(Λ) gives us a homomorphism πw : T C∗(Λ)→ B.

The homomorphism πw is onto because the range of πw is a C∗-algebra containing {wλ},
and hence is all of B. Since ρT ◦ πw is the identity on {tλ} it is the identity on all of

T C∗(Λ). Therefore πw(a) = 0 implies that a = ρT (πw(a)) = 0, and πw is injective.

The following proposition gives an example of a Toeplitz-Cuntz-Krieger Λ-family.

Proposition 5.3. Let Λ be a finite k-graph. Write hλ for the point mass at λ ∈ Λ,

and let {Tλ : λ ∈ Λ} be the operators on `2(Λ) such that

Tµhλ =

hµλ if s(µ) = r(λ)

0 otherwise.
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Then {T} is a Toeplitz-Cuntz-Krieger Λ-family in B(`2(Λ)). We call the representation

πT : T C∗(Λ) → B(`2(Λ)) such that πT (tλ) = Tλ the path representation, and πT is

faithful.

Proof. [33, Example 7.4] proves that {T} is a Toeplitz-Cuntz-Krieger Λ-family and [33,

Corollary 7.7] proves that πT is faithful.

5.2.1 The graph algebra C∗(Λ)

A Toeplitz-Cuntz-Krieger Λ-family is a Cuntz-Krieger Λ-family if in addition we have

Tv =
∑
λ∈vΛn

TλT
∗
λ for all v ∈ Λ0 and n ∈ Nk.(CK)

As with the Toeplitz algebra there is a C∗-algebra C∗(Λ) generated by a universal

Cuntz-Krieger Λ-family {tλ}.
The following result tells us how T C∗(Λ) and C∗(Λ) are related.

Lemma 5.4. Let {tλ} be the universal Toeplitz-Cuntz-Krieger Λ-family which gener-

ates T C∗(Λ). Let J be the ideal generated by {tv −
∑

λ∈vΛei tλt
∗
λ : v ∈ Λ0 and i ∈

{1, . . . , k}}, and q : T C∗(Λ) → T C∗(Λ)/J be the quotient map. Write tλ = q(tλ).

Then (T C∗(Λ)/J, {t}) is universal for Cuntz-Krieger Λ-families, that is,

(a) {t} is a Cuntz-Krieger Λ-family which generates T C∗(Λ)/J ; and

(b) if {Tλ} is a Cuntz-Krieger Λ-family in a C∗-algebra B then there exists a homo-

morphism πT : T C∗(Λ)/J → B such that πT (tλ) = Tλ.

Proof. To prove part (a) we need to show that {tλ : λ ∈ Λ} is a Cuntz-Krieger Λ-

family and that it generates T C∗(Λ)/J . Since {tλ : λ ∈ Λ} is a Toeplitz-Cuntz-Krieger

Λ-family and q is a homomorphism, {tλ : λ ∈ Λ} is a set of partial isometries and (T1)

- (T3) hold. To see that (CK) holds, fix v ∈ Λ0 and n ∈ Nk. We aim to show that

tv =
∑

λ∈vΛn tλt
∗
λ. Then

0 = q
(
tv −

∑
λ∈vΛn

tλt
∗
λ

)
= q(tv)− q

( ∑
λ∈vΛn

tλt
∗
λ

)
= tv −

∑
λ∈vΛn

q(tλt
∗
λ).

This implies that

tv =
∑
λ∈vΛn

q(tλt
∗
λ) =

∑
λ∈vΛn

q(tλ)q(t
∗
λ) =

∑
λ∈vΛn

tλt
∗
λ.
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Thus (CK) holds. (CK) implies (T4) and (CK) combined with (T1)-(T3) implies (T5)

([22, Lemma 3.1]), so {tλ : λ ∈ Λ} is a Cuntz-Krieger Λ-family. Since T C∗(Λ) is

generated by {tλ}, {q(tλ)} = {tλ} generates T C∗(Λ)/J .

To prove part (b) we want to get a homomorphism on T C∗(Λ) and then prove it

factors through a homomorphism of T C∗(Λ)/J . We then need to prove this homomor-

phism has the required properties.

Because {Tλ} is a Cuntz-Krieger Λ-family in B, it is a Toeplitz-Cuntz-Krieger

Λ-family in B, and the universal property of (T C∗(Λ), {tλ}) gives a homomorphism

πT : T C∗(Λ)→ B such that πT (tλ) = Tλ. Because πT is a homomorphism, kerπT is a

closed ideal. Since {Tλ} is a Cuntz-Krieger Λ-family, we have

πT

(
tv −

∑
λ∈vΛn

tλt
∗
λ

)
= Tv −

∑
λ∈vΛn

TλT
∗
λ = 0,

so tv −
∑

λ∈vΛn tλt
∗
λ ∈ kerπT . Then, since J is the closed ideal generated by {tv −∑

λ∈vΛn tλt
∗
λ} it is the smallest closed ideal containing {tv−

∑
λ∈vΛn tλt

∗
λ}. So J ⊆ kerπT .

Therefore there exists a homomorphism πT : T C∗(Λ)/J → B such that πT = πT ◦ q.
Finally, we check it has the required property. Fix tλ ∈ T C∗(Λ)/J . Then

πT (tλ) = πT (q(tλ)) = πT (tλ) = Tλ.

Remark 5.5. Since (T C∗(Λ)/J, {tλ}) has the universal property which determines

the Cuntz-Krieger algebra, (T C∗(Λ)/J, {tλ}) is canonically isomorphic to the Cuntz-

Krieger algebra. From now on we use this isomorphism to identify C∗(Λ) with this

quotient and ker q with the ideal J .

5.3 A generalised action αy

View [0,∞) as a category (with one object, morphisms [0,∞) and composition defined

by addition). Then a weight functor y : Λ → [0,∞) is a functor and by definition it

satisfies the following relations:

(Y1) y(ιv) = 0 for all v ∈ Λ0, and

(Y2) y(µν) = y(µ) + y(ν) for all µ, ν ∈ Λ.

A traversing path λ1 . . . λ|d(λ)| ∈ Λ for λ ∈ Λ is a set of λn ∈ Λei with i ∈ {1, . . . , k}
such that λ = λ1 . . . λ|d(λ)|. We first want to show that it suffices to define y on

λn ∈ Λei with i ∈ {1, . . . , k}. That is, if we define y on λn ∈ Λei consistent with
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the factorisation property, then for all λ ∈ Λ, y(λ) is the same no matter how we

decompose λ to traversing paths.

Lemma 5.6. Suppose that y :
⋃
i Λ

ei → [0,∞) satisfies y(f) + y(g) = y(g′) + y(f ′)

for all commuting squares fg = g′f ′ in Λ. Suppose that µ1 . . . µN = ν1 . . . νN are

compositions of edges. Then
∑N

n=1 y(µn) =
∑N

n=1 y(νn).

Proof. For clarity we use the following notation in this proof. For λ ∈ Λ and n ≤ d(λ),

by the factorisation property we can write λ uniquely as λ = λ1λ2 with d(λ1) = n and

d(λ2) = d(λ)− n. We write λ1 = λ
(
0, n
)

and λ2 = λ
(
n, d(λ)

)
.

We proceed by induction on N . When N = 1 the result is trivial. Assume that the

result is true for K ≤ N and that µ1 . . . µK+1 = µ′1 . . . µ
′
K+1 = µ, say. If d(µK+1) =

d(µ′K+1) = ei, then unique factorisation gives µK+1 = µ
(
d(µ) − ei, d(µ)

)
= µ′K+1. So

suppose that d(µK+1) = ei and d(µ′K+1) = ej with i 6= j. Factorise µ
(
0, d(µ) − ei

)
=

µ
(
0, d(µ) − ei − ej

)
f , µ

(
0, d(µ) − ej

)
= µ

(
0, d(µ) − ei − ej

)
e with d(e) = ei and

d(f) = ej. Then µ
(
0, d(µ)− ei

)
= µ1 . . . µK and the inductive hypothesis implies that

y
(
µ
(
0, d(µ)− ei− ej

))
+ y(f) =

∑K
n=1 y(µn). Similarly y

(
µ
(
0, d(µ)− ei− ej

))
+ y(e) =∑K

n=1 y(µ′n).

Now, since fµK+1 = eµ′K+1 is a commuting square in Λ, our hypothesis on y tells

us y(f) + y(µK+1) = y(e) + y(µ′K+1). Thus

K+1∑
n=1

y(µn) =
K∑
n=1

y(µn) + y(µK+1)

= y
(
µ
(
0, d(µ)− ei − ej

))
+ y(f) + y(µK+1)

= y
(
µ
(
0, d(µ)− ei − ej

))
+ y(e) + y(µ′K+1)

=
K∑
n=1

y(µ′n) + y(µ′K+1)

=
K+1∑
n=1

y(µ′n).

So the inductive hypothesis holds for K + 1.

Proposition 5.7. Suppose that y :
⋃
i Λ

ei → [0,∞) satisfies y(f) + y(g) = y(g′) +

y(f ′) for all commuting squares fg = g′f ′ in Λ. Define y : Λ → [0,∞) by y(λ) :=∑|d(λ)|
n=1 y(λn) for every traversing path λ1 . . . λ|d(λ)| ∈ Λ. Then y is a weight functor.

Proof. Lemma 5.6 tells us that y is well-defined, so we just need to show that y is

a functor. That y preserves identity morphisms is trivial. To see that y preserves
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composition of morphisms fix µ, ν ∈ Λ. Choose traversing paths µ1 . . . µ|d(µ)| for µ and

ν1 . . . ν|d(ν)| for ν. Then

λ1 . . . λ|d(µν)| = µ1 . . . µ|d(µ)|ν1 . . . ν|d(ν)|

is a traversing path for µν. Since y is well-defined,

y(µν) =

|d(µν)|∑
i=1

y(λi) =

|d(µ)|∑
m=1

y(µm) +

|d(ν)|∑
n=1

y(νn) = y(µ) + y(ν).

We now use this weight functor to get a generalised gauge dynamics αy of R on

T C∗(Λ). As for directed graphs, we define our action directly on R rather than on T.

Proposition 5.8. Let (Λ, d) be a k-graph and choose a weight functor y : Λ→ [0,∞).

Then there is an action αy : r 7→ αyr of R on T C∗(Λ) such that

αyr(tλ) = eiry(λ)tλ for every λ ∈ Λ.

Proof. Fix r ∈ R. We first want to apply Lemma 5.2 to show that there exists an

automorphism αyr of T C∗(Λ) such that αr(tλ) = eiry(λ)tλ.

We claim {eiry(λ)tλ : λ ∈ Λ} is a Toeplitz-Cuntz-Krieger Λ-family. Since {tλ : λ ∈
Λ} are partial isometries, so are {eiry(λ)tλ : λ ∈ Λ}. To see (T1) is true fix v ∈ Λ0. By

(Y1) eiry(v) = 1 for v ∈ Λ0, so

(eiry(v)tv)
2 = t2v = tv,

and

(eiry(v)tv)
∗ = t∗v = tv.

Thus {eiry(v)tv : v ∈ Λ0} are projections. In addition, they are mutually orthogonal:

for w ∈ Λ0, w 6= v we have (eiry(v)tv)(e
iry(w)tw) = tvtw = 0. For (T2) fix λ, µ ∈ Λ such

that s(λ) = r(µ). Then, since λ 7→ eiry(λ) is a functor,

(eiry(λ)tλ)(e
iry(µ)tµ) = eiry(λµ)tλtµ = eiry(λµ)tλµ.

For (T3) fix λ ∈ Λ. Then, since eiry(λ) ∈ T,

(eiry(λ)tλ)
∗(eiry(λ)tλ) = t∗λe

−iry(λ)eiry(λ)tλ = t∗λtλ = ts(λ) = eiry(s(λ))ts(λ).
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For (T4) fix v ∈ Λ0 and n ∈ Nk. Then, since eiry(λ) ∈ T,∑
λ∈vΛn

(eiry(λ)tλ)(e
iry(λ)tλ)

∗ =
∑
λ∈vΛn

eiry(λ)tλt
∗
λe
−iry(λ)

=
∑
λ∈vΛn

tλt
∗
λ

≤ tv

= eiry(v)tv.

Finally, for (T5) fix µ, ν ∈ Λ0. Then, since λ 7→ eiry(λ) is a functor and eiry(λ) ∈ T,∑
(η,ζ)∈Λmin(µ,ν)

eiry(η)tη(e
iry(ζ)tζ)

∗

= e−iry(µ)eiry(µ)
( ∑

(η,ζ)∈Λmin(µ,ν)

eiry(η)tηt
∗
ζe
−iry(ζ)

)
e−iry(ν)eiry(ν)

= e−iry(µ)
( ∑

(η,ζ)∈Λmin(µ,ν)

eiry(µ)eiry(η)tηt
∗
ζe
−iry(ζ)e−iry(ν)

)
eiry(ν)

= e−iry(µ)
( ∑

(η,ζ)∈Λmin(µ,ν)

eiry(µη)e−iry(νζ)tηt
∗
ζ

)
eiry(ν).

Thus, since (η, ζ) ∈ Λmin(µ, ν) implies µη = νζ,∑
(η,ζ)∈Λmin(µ,ν)

eiry(η)tηt
∗
ζe
−iry(ζ)

= e−iry(µ)
( ∑

(η,ζ)∈Λmin(µ,ν)

eiry(µη)e−iry(µη)tηt
∗
ζ

)
eiry(ν)

= e−iry(µ)
( ∑

(η,ζ)∈Λmin(µ,ν)

tηt
∗
ζ

)
eiry(ν)

= e−iry(µ)t∗µtνe
iry(ν).

Thus {eiry(λ)tλ : λ ∈ Λ} is a Toeplitz-Cuntz-Krieger Λ-family, as claimed.

We next need to show that for every Toeplitz-Cuntz-Krieger Λ-family {T} in a C∗-

algebra B there exists a homomorphism ρT : T C∗(Λ) → B satisfying ρT (eiry(λ)tλ) =

Tλ. Fix a Toeplitz-Cuntz-Krieger Λ-family {T}. Then {e−iry(λ)Tλ} is also a Toeplitz-

Cuntz-Krieger Λ-family. Then the universal property [33, Corollary 7.5] gives us a

homomorphism πe−iry(λ)Tλ such that πe−iry(λ)Tλ(tλ) = e−iry(λ)Tλ. Therefore,

πe−iry(λ)Tλ(eiry(λ)tλ) = eiry(λ)(πe−iry(λ)Tλ(tλ)) = eiry(λ)(e−iry(λ)Tλ) = Tλ.

Thus taking ρT := πe−iry(λ)Tλ we have our required homomorphism, so Lemma 5.2 gives

an isomorphism αyr : T C∗(Λ)→ T C∗(Λ) such that

α(tλ) = eiry(λ)tλ.
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We now show that r 7→ αyr is a homomorphism of R into Aut T C∗(Λ). Fix λ ∈ Λ.

For r, x ∈ R, the isomorphisms αyr ◦ αyx and αyr+x agree on the generators tλ since

(αyr ◦ αyx)(tλ) = αyr(α
y
x(tλ))

= αyr(e
ixy(λ)tλ)

= eiry(λ)eixy(λ)tλ

= ei(r+x)y(λ)tλ

= αyr+x(tλ).

Therefore they agree on all of T C∗(Λ), so αy is a homomorphism of R into Aut T C∗(Λ).

Finally, we need to show that αy is continuous. Fix r ∈ R, a ∈ T C∗(Λ) and ε > 0.

Choose a finite linear combination c =
∑
ηµ,νtµt

∗
ν , such that ‖a− c‖ < ε

3
. Then

x 7→ αyx(c) = αyx(
∑

ηµ,νtµt
∗
ν)

=
∑

ηµ,να
y
x(tµt

∗
ν)

=
∑

ηµ,να
y
x(tµ)αyx(t

∗
ν)

=
∑

ηµ,νe
ixy(µ)tµe

ixy(ν)t∗ν

=
∑

ηµ,νe
ix(y(µ)+y(ν))tµt

∗
ν ,

which is continuous because scalar multiplication is continuous. So there exists δ > 0

such that

|x− r| < δ ⇒ ‖αyx(c)− αyr(c)‖ <
ε

3
.

Since automorphisms of C∗-algebras preserve the norm, we have ‖αyr(a−c)‖ < ε
3
. Thus

for |x− r| < δ we have

‖αyx(a)− αyr(a)‖ ≤ ‖αyx(a− c)‖+ ‖αyx(c)− αyr(c)‖+ ‖αyr(a− c)‖ < 3(
ε

3
) = ε.

Thus αy is continuous, as required.

5.4 Characterising KMS states of (T C∗(Λ), αy)

In [18, Proposition 3.1] the KMS states of (T C∗(Λ), α) are characterised. In this section

we apply this method to characterise the KMS states of (T C∗(Λ), αy).

We first get a condition to describe the KMS states. For every µ, ν ∈ Λ, the function

r 7→ αyr(tµt
∗
ν) = eir(y(µ)−y(ν))tµt

∗
ν is the restriction of the entire function

z 7→ eiz(y(µ)−y(ν))tµt
∗
ν .
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The elements tµt
∗
ν are therefore analytic. Since they span a dense subspace of T C∗(Λ),

it follows from [31, Proposition 8.12.3] that a state φ of (T C∗(Λ), αy) is a KMSβ state

for β ∈ (0,∞) if and only if

φ((tµt
∗
ν)(tσt

∗
τ )) = φ((tσt

∗
τ )α

y
iβ(tµt

∗
ν))

for all µ, ν, σ, τ ∈ Λ.

Proposition 5.9. Suppose that Λ is a finite k-graph with no sources. Let y be a weight

functor. Let αy : R → T C∗(Λ) be the action given by Proposition 5.8. Suppose that

β ∈ (0,∞) and φ is a state on T C∗(Λ).

(a) If φ is a KMSβ state of (T C∗(Λ), αy), then

φ(tµt
∗
ν) = δµ,νe

−βy(µ)φ(ts(µ)) for all µ, ν ∈ Λ with d(µ) = d(ν).(5.1)

(b) If

φ(tµt
∗
ν) = δµ,νe

−βy(µ)φ(ts(µ)) for all µ, ν ∈ Λ,(5.2)

then φ is a KMSβ state of (T C∗(Λ), αy).

(c) If y(µ) = y(ν) implies that d(µ) = d(ν) for all µ, ν ∈ Λ, then φ is a KMSβ state of

(T C∗(Λ), αy) if and only if Equation (5.2) holds.

Proof. (a) Fix µ, ν ∈ Λ such that d(µ) = d(ν). Then t∗νtµ = δµ,νts(µ). Then, since φ is

a KMSβ state, the KMS condition tells us that

φ(tµt
∗
ν) = φ(t∗να

y
iβ(tµ))

= φ(t∗νe
−βy(µ)tµ)

= e−βy(µ)φ(t∗νtµ)

= e−βy(µ)φ(δµ,νts(µ))

= δµ,νe
−βy(µ)φ(ts(µ)).

(b) Suppose that φ satisfies Equation (5.2), and consider two spanning elements tµt
∗
ν

and tσt
∗
τ with s(µ) = s(ν) and s(σ) = s(τ) (if s(µ) 6= s(ν), then tµt

∗
ν = tµts(µ)ts(ν)t

∗
ν =

0). We want to verify the KMS condition, that is, show that

φ(tµt
∗
νtσt

∗
τ ) = φ(tσt

∗
τα

y
iβ(tµt

∗
ν)) = e−β(y(µ)−y(ν))φ(tσt

∗
τ tµt

∗
ν).
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Equation (5.2) applied to (T5) implies that

φ(tµt
∗
νtσt

∗
τ ) =

∑
(α,η)∈Λmin(ν,σ)

φ(tµαt
∗
τη)

=
∑

(α,η)∈Λmin(ν,σ)

δµα,τηe
−βy(µα)φ(ts(α))

=
∑

(α,η)∈Λmin(ν,σ), µα=τη

e−βy(µα)φ(ts(α)).(5.3)

Similarly,

φ(tσt
∗
τ tµt

∗
ν) =

∑
(γ,ζ)∈Λmin(τ,µ), σγ=νζ

e−βy(σγ)φ(ts(γ)).(5.4)

We need to show that the indexing sets in the sums in Equation (5.3) and Equa-

tion (5.4) are closely related. To see this, suppose that (α, η) ∈ Λmin(ν, σ) satisfies

µα = τη. Since (α, η) ∈ Λmin(ν, σ), we have d(α)∧ d(η) = 0, because otherwise the ex-

tension is not minimal. [18, Lemma 3.2] tells us that since d(µ)+d(α) = d(τ)+d(η) and

d(α) ∧ d(η) = 0 we have d(µ) + d(α) = d(µ) ∨ d(τ); hence (η, α) belongs to Λmin(τ, µ).

The situation is symmetric, so we deduce that the map (α, η) 7→ (η, α) is a bijection of

the index set in Equation (5.3) onto the index set in Equation (5.4).

Fix (α, η) in the index set in Equation (5.3). Since s(α) = s(η), ts(α) = ts(η).

To verify the KMS condition, it therefore suffices for us to see that the summand

of Equation (5.3) with index (α, η) and the summand of e−β(y(µ)−y(ν))φ(tσt
∗
τ tµt

∗
ν) with

index (η, α) have the same coefficient. That is, we need to show that

e−βy(µα) = e−β(y(µ)−y(ν))e−βy(ση).

Since ση = να in the summand of e−β(y(µ)−y(ν))φ(tσt
∗
τ tµt

∗
ν),

e−β(y(µ)−y(ν))e−βy(ση) = e−β(y(µ)−y(ν))e−βy(να)

= e−β(y(µ)−y(ν)+y(να))

= e−β(y(µ)−y(ν)+y(ν)+y(α))

= e−β(y(µ)+y(α))

= e−βy(µα).

Thus φ is a KMSβ state.

(c) Let φ be a KMSβ state. Take µ, ν ∈ Λ with s(µ) = s(ν). If d(µ) = d(ν), then

part (a) gives our result. Suppose that d(µ) 6= d(ν). Applying the KMS condition
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twice gives

φ(tµt
∗
ν) = φ(t∗ναiβ(tµ))

= e−βy(µ)φ(t∗νtµ)

= e−βy(µ)φ(tµαiβ(t∗ν))

= e−βy(µ)eβy(ν)φ(tµt
∗
ν).

Since d(µ) 6= d(ν), we have y(µ) 6= y(ν), hence eβy(µ) 6= eβy(ν). Then φ(tµt
∗
ν) = 0. Thus

φ satisfies Equation (5.2).

Conversely, part (b) shows that if Equation (5.2) holds then φ is a KMS state.

5.5 Generalised vertex matrices Bi(y, θ)

In this section we present a generalised version of the vertex matrices Ai, which we will

use in our analysis of the KMS states of (T C∗(Λ), αy) and (C∗(Λ), αy).

Definition 5.10. Suppose that Λ is a finite k-graph. Choose a weight functor y : Λ→
[0,∞) and θ ∈ [0,∞). For i ∈ {1, . . . , k} let Bi(y, θ) = (Bi(y, θ)v,w) be the Λ0 × Λ0

matrix with entries

Bi(y, θ)v,w =
∑

λ∈vΛeiw

e−θy(λ),

where we take Bi(y, θ)v,w = 0 if vΛeiw = ∅.

We now present results about these matrices which will be used in our analysis of

the KMS states of (T C∗(Λ), αy) and (C∗(Λ), αy).

Lemma 5.11. Suppose that Λ is a finite k-graph. Choose a weight functor y : Λ →
[0,∞). For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the matrices from Defini-

tion 5.10. Then

{
Bi(y, θ) : i ∈ {1, . . . , k}

}
pairwise commute.

Proof. Fix i, j ∈ {1, . . . , k}. We want to show that Bi(y, θ)Bj(y, θ) = Bj(y, θ)Bi(y, θ).
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Fix v, w ∈ Λ0. Then

(Bi(y, θ)Bj(y, θ))v,w =
∑
u∈Λ0

Bi(y, θ)v,uBj(y, θ)u,w

=
∑
u∈Λ0

∑
λ∈vΛeiu

∑
σ∈uΛejw

e−θ(y(λ)+y(σ))

=
∑

µ∈vΛei+ejw

e−θy(µ).

Similarly,

(Bj(y, θ)Bi(y, θ))v,w =
∑

ν∈vΛej+eiw

e−θy(ν).

The factorisation property tells us that Λei+ej = Λej+ei , thus elements of the set

{Bi(y, θ) : i ∈ {1, . . . , k}} pairwise commute.

Before the next definition we observe that since the matrices Bi(y, θ) commute we

can unambiguously form this product.

Definition 5.12. Suppose that Λ is a finite k-graph. Choose a weight functor y :

Λ → [0,∞). For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the matrices from

Definition 5.10. Fix n = (n1, . . . , nk) ∈ Nk and define the matrix

B(y, θ)n :=
k∏
i=1

Bi(y, θ)
ni .

It follows from this definition that

B(y, θ)nv,w =
∑

λ∈vΛnw

e−θy(λ).

Lemma 5.13. Suppose that Λ is a coordinatewise irreducible finite k-graph. Choose

a weight functor y : Λ → [0,∞). For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the

matrices from Definition 5.10. Then the matrices Bi(y, θ) are irreducible.

Proof. Fix i ∈ {1, . . . , k}. Since Λ is coordinatewise irreducible the vertex matrix Ai is

irreducible. Therefore the coordinate graph (Λ0,Λei , r, s) is strongly connected. Thus

applying Lemma 3.5 tells us Bi(y, θ) is irreducible.

We can now prove a version of [18, Lemma 2.2], which we will use later in finding

KMSβ states.
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Proposition 5.14. Suppose that eΛ is a finite k-graph. Choose a weight functor

y : Λ → [0,∞). For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the matrices from

Definition 5.10. Suppose that β ∈ (0,∞) such that ρ(Bi(y, β)) < 1 for i ∈ {1, . . . , k}.
Then the series

∑
n∈Nk B(y, β)n converges in the operator norm to

∏k
i=1(I−Bi(y, β))−1.

Proof. By Lemma 5.11 the matrices Bi(y, β) commute, so the N th partial sum is

∑
0≤n≤N

B(y, β)n =
∑

0≤n≤N

k∏
i=1

Bi(y, β)ni =
k∏
i=1

Ni∑
ni=0

Bi(y, β)ni .

For each i ∈ {1, . . . , k} we have ρ(Bi(y, β)) < 1, and hence by Corollary A.14,

Ni∑
ni=0

Bi(y, β)ni

converges to (I − Bi(y, β))−1 in the operator norm as Ni → ∞. Thus as N → ∞ in

Nk, which means Ni →∞ for all i ∈ {1, . . . , k}, the product converges in the operator

norm to
∏k

i=1(I −Bi(y, β))−1.

We can then generalise Proposition 3.6 to higher-rank graphs.

Theorem 5.15. Suppose that Λ is a coordinatewise irreducible finite k-graph. Let

y : Λ → [0,∞) be a weight functor. For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ)

be the matrices from Definition 5.10. Then, for each i ∈ {1, . . . , k}, the function

θ 7→ ρ(Bi(y, θ)) is strictly decreasing and there exists a unique βi ∈ [0,∞) such that

ρ(Bi(y, βi)) = 1.

Proof. Fix i ∈ {1, . . . , k} and apply Proposition 3.6.

5.6 KMS states of (T C∗(Λ), αy) and the subinvari-

ance relation

In this section we describe a subinvariance relation like that used in [18, Section 4].

Proposition 5.16. Suppose that Λ is a finite k-graph with no sources. Let y : Λ →
[0,∞) be a weight functor. For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the matrices

from Definition 5.10. Let αy : R → T C∗(Λ) be the action given by Proposition 5.8.

Fix β ∈ (0,∞) and let φ be a KMSβ state on (T C∗(Λ), αy). Define mφ = (mφ
v ) by

mφ
v = φ(tv). Then mφ ∈ [0,∞)Λ0

, ‖mφ‖1 = 1, and for every subset K of {1, . . . , k} we

have
∏

i∈K(I −Bi(y, β))mφ ≥ 0 pointwise.
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Proof. First, because φ is positive, mv = φ(tv) ≥ 0 for all v ∈ Λ0. Thus mφ ∈ [0,∞)Λ0
.

Next, because T C∗(Λ) is finite,
∑

v∈Λ0 tv = 1, so we have

‖mφ‖1 =
∑
v∈Λ0

mv =
∑
v∈Λ0

φ(tv) = φ(1) = 1.

Fix K ⊆ {1, . . . , k}, J ⊆ K and v ∈ Λ0. Write eJ :=
∑

j∈J ej and

tJ =
∑

µ∈vΛeJ

tµt
∗
µ,

with ti = t{i}. Then for i ∈ K, (T4) tells us that tv ≥ ti, and since all the range

projections commute, we have
∏

i∈K(tv − ti) ≥ 0. Therefore φ(
∏

i∈K(tv − ti)) ≥ 0.

Then, [18, Lemma 4.2] tells us∏
i∈K

(tv − ti) =
∑
J⊆K

(−1)|J |tJ ,

so

0 ≤ φ
(∑
J⊆K

(−1)|J |tJ

)
=
∑
J⊆K

(−1)|J |φ(tJ)

=
∑
J⊆K

(−1)|J |
( ∑
µ∈vΛeJ

φ(tµt
∗
µ)
)
.

Thus, by Equation (5.1),

0 ≤
∑
J⊆K

(−1)|J |
( ∑
µ∈vΛeJ

e−βy(µ)ms(µ)

)
=
∑
J⊆K

(−1)|J |
( ∑
w∈Λ0

∑
µ∈vΛeJw

e−βy(µ)ms(µ)

)
=
∑
J⊆K

(−1)|J |
( ∑
w∈Λ0

( ∑
µ∈vΛeJw

e−βy(µ)
)
mw

)
=
∑
J⊆K

(−1)|J |
( ∑
w∈Λ0

B(y, β)eJv,wmw

)
=
∑
J⊆K

(−1)|J |
(
B(y, β)eJmφ

)
v

=
∑
J⊆K

(−1)|J |
((∏

j∈J

Bj(y, β)
)
mφ
)
v

=
((∏

i∈K

(I −Bi(y, β))
)
mφ
)
v
,

as required.
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Corollary 5.17. If there is a KMSβ state of (T C∗(Λ), αy), then 0 ≤ ρ(Bi(y, β)) ≤ 1

for i ∈ {1, . . . , k}.

Proof. We follow the the method of [18, Corollary 4.3]. Define mφ = (mφ
v ) by mφ

v =

φ(tv). Applying Proposition 5.16(a) to the singleton sets K = {i} shows that (I −
Bi(y, β))mφ ≥ 0 for i ∈ {1, . . . , k}. This says that for each i ∈ {1, . . . , k}, mφ ≥
Bi(y, β)mφ pointwise, therefore Proposition A.9 implies that ρ(Bi(y, β)) ≤ 1.

5.7 KMS states of (T C∗(Λ), αy) at large inverse tem-

peratures

In [18, Section 5] the assumption of rational independence in [18, Theorem 5.1] is

dropped to strengthen the characterisation of KMSβ states in [18, Proposition 3.1] for

large β. In this section we do the same, shedding the condition that y(µ) = y(ν)

implies that d(µ) = d(ν) for all µ, ν ∈ Λ used in Proposition 5.9(c). This gives a

characterisation of KMSβ states of (T C∗(Λ), αy) at large inverse temperatures.

Theorem 5.18. Suppose that Λ is a finite k-graph with no sources. Let y : Λ→ [0,∞)

be a weight functor. For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the matrices from

Definition 5.10. Let αy : R→ T C∗(Λ) be the action given by Proposition 5.8. Suppose

that ρ(Bi(y, β)) < 1 for i ∈ {1, . . . , k}. Then a state φ on T C∗(Λ) is a KMSβ state for

αy if and only if

φ(tµt
∗
ν) = δµ,νe

−βy(µ)φ(ts(µ)) for all µ, ν ∈ Λ.(5.5)

To prove this we first need two lemmas.

Lemma 5.19. Suppose that φ is a KMSβ state of (T C∗(Λ), αy) for some β ∈ (0,∞),

and that µ, ν ∈ Λ satisfy s(µ) = s(ν) and y(µ) = y(ν). Then φ(tµt
∗
µ) = φ(tνt

∗
ν) and

|φ(tµt
∗
ν)| ≤ φ(tµt

∗
µ).

Proof. The proof follows that of [18, Lemma 5.2]. By the KMS condition,

φ(tµt
∗
µ) = φ(tµts(µ)t

∗
µ) = φ(tµt

∗
νtνt

∗
µ) = e−β(y(µ)−y(ν))φ(tνt

∗
µtµt

∗
ν).

Therefore, since y(µ) = y(ν),

φ(tµt
∗
µ) = φ(tνt

∗
µtµt

∗
ν) = φ(tνts(ν)t

∗
ν) = φ(tνt

∗
ν).

Finally, the Cauchy-Schwarz inequality gives

|φ(tµt
∗
ν)|2 ≤ φ(tµt

∗
µ)φ(tνt

∗
ν) = φ(tµt

∗
µ)2.
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Lemma 5.20. Suppose that φ is a KMSβ state of (T C∗(Λ), αy) for some β ∈ (0,∞),

and that µ, ν ∈ Λ satisfy s(µ) = s(ν).

(a) If λ ∈ Λ satisfies Λmin(µλ, νλ) = ∅ then φ(tµλt
∗
νλ) = 0.

(b) Let n := (d(µ) ∨ d(ν))− d(µ). For j ∈ N we have

(5.6) φ(tµt
∗
ν) =

∑
λ∈s(µ)Λjn

φ(tµλt
∗
νλ).

Proof. The proof follows that of [18, Lemma 5.3].

(a) If Λmin(µλ, νλ) = ∅, then (T5) implies that t∗νλtµλ = 0, and the KMS condition

gives

φ(tµλt
∗
νλ) = e−βy(µλ)φ(t∗νλtµλ) = 0.

(b) We proceed by induction on j. The inductive hypothesis is “Equation (5.6)

holds for j”. That the inductive hypothesis holds for j = 0 is trivial.

For the inductive step, suppose that Equation (5.6) holds for some j ≥ 0. We want

to show that Equation (5.6) holds for j + 1. We start by working with the summands

on the right of Equation (5.6). Part (a) says φ(tµλt
∗
νλ) = 0 for λ ∈ s(µ)Λjn such that

Λmin(µλ, νλ) = ∅, so suppose λ ∈ s(µ)Λjn such that Λmin(µλ, νλ) 6= ∅. The KMS

condition implies that

φ(tµλt
∗
νλ) = φ(tνλt

∗
νλtµλt

∗
νλ)

= φ(tµλt
∗
νλα

y
iβ(tνλt

∗
νλ))

= e−β(y(νλ)−y(νλ))φ(tµλt
∗
νλtνλt

∗
νλ)

= φ(tνλt
∗
νλtµλt

∗
νλ).

Applying (T5) gives

φ(tµλt
∗
νλ) = φ(tνλ(t

∗
νλtµλ)tνλ)

=
∑

(η,ζ)∈Λmin(µλ,νλ)

φ(tνληt
∗
νλζ)

=
∑

(η,ζ)∈Λmin(µλ,νλ)

φ(tµληt
∗
νλζ).

Combining this with the induction hypothesis gives1

φ(tµt
∗
ν) =

∑
λ∈s(µ)Λjn

φ(tµλt
∗
νλ) =

∑
λ∈s(µ)Λjn

∑
(η,ζ)∈Λmin(µλ,νλ)

φ(tµληt
∗
νλζ).(5.7)

1In [18, (5.3)], φ(tµλt
∗
νλ) on the left hand side should be φ(tµt

∗
ν). Then the final equation in the

proof of [18, Lemma 5.3] should read φ(tµt
∗
ν) =

∑
τ∈s(µ)Λ(j+1)n φ(tµτ t

∗
ντ ).
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For (η, ζ) ∈ Λmin(νλ, µλ), we have

d(µλ) + d(ζ) = d(νλ) ∨ d(µλ) =
(
d(µ) ∨ d(ν)

)
+ d(λ),

which implies that d(ζ) =
(
d(µ) ∨ d(ν)

)
− d(µ) = n. Thus d(λζ) = (j + 1)n. Now

suppose that τ ∈ s(µ)Λ(j+1)n and φ(tµτ t
∗
µτ ) 6= 0. Then part (a) implies that there exists

(γ, δ) ∈ Λmin(µτ, ντ), and then µτγ = ντδ. But then with λ := τ(0, jn), the paths

ζ := τ(jn, (j + 1)n) and η := (τδ)(jn, jn + (d(µ) ∨ d(ν)) − d(ν)) give a pair (η, ζ) in

Λmin(νλ, µλ) such that τ = λζ. Thus Equation (5.7) gives

φ(tµt
∗
ν) =

∑
τ∈s(µ)Λ(j+1)n

φ(tµτ t
∗
ντ ),

and this is Equation (5.6) for j + 1.

Proof of Theorem 5.18. We follow the method of [18, Theorem 5.1]. First, suppose

that φ is a KMSβ state. Then we want to show that φ satisfies Equation (5.5). Fix

µ, ν ∈ Λ. We then have two cases, s(µ) 6= s(ν) and s(µ) = s(ν).

If s(µ) 6= s(ν), then tµt
∗
ν = tµts(µ)ts(ν)t

∗
ν = 0, so the left hand side of Equation (5.5)

is 0, and µ 6= ν, thus δµ,ν = 0, so the right hand side of Equation (5.5) is 0.

Otherwise s(µ) = s(ν), and we have a further two cases, d(µ) = d(ν) or d(µ) 6= d(ν).

If d(µ) = d(ν) then Proposition 5.9(a) tells us that Equation (5.5) holds.

Otherwise, d(µ) 6= d(ν) and we have a final two cases, y(µ) 6= y(ν) or y(µ) = y(ν).

Suppose that y(µ) 6= y(ν). Then eβy(µ) 6= eβy(ν). Applying the KMS condition twice

gives

φ(tµt
∗
ν) = φ(t∗ναiβ(tµ))

= e−βy(µ)φ(t∗νtµ)

= e−βy(µ)φ(tµαiβ(t∗ν))

= e−βy(µ)eβy(ν)φ(tµt
∗
ν),

and since e−βy(µ)eβy(ν) 6= 1, this must equal zero. So Equation (5.5) holds.

So the final case is that y(µ) = y(ν). Since d(µ) 6= d(ν), at least one of (d(µ) ∨
d(ν)) − d(µ) or (d(µ) ∨ d(ν)) − d(ν) is nonzero. Since φ(tνt

∗
µ) = 0 if and only if

φ(tµt
∗
ν) = 0, we may suppose that n := (d(µ)∨d(ν))−d(ν) is nonzero. Then for j ∈ N,

Lemma 5.20 gives

φ(tµt
∗
ν) =

∑
λ∈s(µ)Λjn

φ(tµλt
∗
νλ).
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For each λ ∈ s(µ)Λjn we have y(µλ) = y(νλ), and hence Lemma 5.19 implies that

|φ(tµt
∗
ν)| ≤

∑
λ∈s(µ)Λjn

|φ(tµλt
∗
νλ)|

≤
∑

λ∈s(µ)Λjn

φ(tµλt
∗
µλ)

=
∑

λ∈s(µ)Λjn

e−βy(µλ)φ(ts(λ))

= e−βy(µ)
∑
w∈Λ0

∑
λ∈s(µ)Λjnw

e−βy(λ)φ(tw).

Then by the definition of Bi(y, β),

|φ(tµt
∗
ν)| ≤ e−βy(µ)

∑
w∈Λ0

( k∏
i=1

Bi(y, β)jni
)
s(µ),w

φ(tw).(5.8)

For each i ∈ {1, . . . , k} such that ni > 0, Bi(y, β)jni is the (jni)
th term in the series∑∞

m=0Bi(y, β)m. Since ρ(Bi(y, β)) < 1, Corollary A.14 tells us that the series converges

in the operator norm to (I − Bi(y, β))−1. In particular, we have Bi(y, β)jni → 0 as

j → ∞. Since n 6= 0 there is at least one i ∈ {1, . . . , k} such that ni > 0. Thus as

j →∞, Equation (5.8) converges to 0, therefore |φ(tµt
∗
ν)| = 0.

Conversely, assume that Equation (5.5) holds for a state φ on T C∗(Λ). Then

Proposition 5.9(b) tells us that φ is a KMSβ state.

We now use this characterisation to get an isomorphism between measures and

the KMSβ states of (T C∗(Λ), αy) at large inverse temperatures, by which we mean

β ∈ (0,∞) such that 1 > ρ(Bi(y, β)) for all i ∈ {1, . . . , k}. This crucially implies that

I −Bi(y, β) are invertible matrices for all i ∈ {1, . . . , k}. The following lemma tells us

that if this condition holds for one β, it holds for all larger β′, hence the phrase “at

large inverse temperatures” is a reasonable description.

Lemma 5.21. Suppose that Λ is a finite k-graph with no sources. Let y : Λ→ [0,∞)

be a weight functor. For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the matrices

from Definition 5.10. If β ∈ (0,∞) satisfies 1 > ρ(Bi(y, β)) for all i ∈ {1, . . . , k} and

β′ ≥ β, then 1 > ρ(B(y, β′)).

Proof. Fix i ∈ {0, . . . , k}. Fix β′ ∈ (0,∞) such that β′ ≥ β. Then Bi(y, β
′)v,w ≤

Bi(y, β)v,w, and hence 0 ≤ Bi(y, β
′) ≤ Bi(y, β) in the sense of Section A.1. Thus

applying Corollary A.4 implies that ρ(Bi(y, β
′)) ≤ ρ(Bi(y, β)). Thus ρ(Bi(y, β

′)) <

1.
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Theorem 5.22. Suppose that Λ is a finite k-graph with no sources. Let y : Λ→ [0,∞)

be a weight functor. For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the matrices from

Definition 5.10. Let αy : R→ T C∗(Λ) be the action given by Proposition 5.8. Assume

that β ∈ (0,∞) satisfies ρ(Bi(y, β)) < 1 for all i ∈ {1, . . . , k}.

(a) For w ∈ Λ0, the series
∑

µ∈Λw e
−βy(µ) converges with sum xw ≥ 1. Set x := (xw) ∈

[1,∞)Λ0
, and consider ε ∈ [0,∞)Λ0

. Define m :=
∏k

i=1(I − Bi(y, β))−1ε. Then

m ∈ [0,∞)Λ0
, Bi(y, β)m ≤ m for all i ∈ {1, . . . , k}; and ‖m‖1 = 1 if and only if

ε · x = 1.

(b) Suppose that ε ∈ [0,∞)Λ0
satisfies ε · x = 1, and set m :=

∏k
i=1(I − Bi(y, β))−1ε.

Then there is a KMSβ state φε of (T C∗(Λ), αy) satisfying

φε(tµt
∗
ν) = δµ,νe

−βy(µ)ms(µ).(5.9)

(c) The set

Σβ := {ε ∈ [0,∞)Λ0

: ε · x = 1}

is a compact convex subset of RΛ0
and F : ε 7→ φε is an affine homeomorphism

of Σβ onto the simplex of KMSβ states of (T C∗(Λ), αy). For a KMSβ state φ of

(T C∗(Λ), αy) let mφ = (mφ
v ) be the vector with entries mφ

v := φ(tv). Then the

inverse of this isomorphism takes φ to
∏k

i=1(I −Bi(y, β))mφ.

Proof. (a) We first show that the series
∑

µ∈Λw e
−βy(µ) converges. Let w ∈ Λ0. Then∑

µ∈Λw

e−βy(µ) =
∑
n∈Nk

∑
Λnw

e−βy(µ) =
∑
n∈Nk

∑
v∈Λ0

B(y, β)nv,w.(5.10)

Since 1 > ρ(Bi(y, β)) for all i ∈ {1, . . . , k} Proposition 5.14 tells us that∑
n∈Nk

B(y, β)n

converges in operator norm with sum
∏k

i=1(I−Bi(y, β))−1.2 This implies that for every

fixed v ∈ Λ0 the series
∑

n∈Nk B(y, β)nv,w converges, so Equation (5.10) converges. The

sum is at least 1 because all the terms are non-negative and B(y, β)0
v,v = 1.

2In the last paragraph of [18, pg. 278],
∑∞
n=0 e

−βr·nAn should be
∑
n∈Nk e−βr·nAn and∑∞

n=0 e
−βr·nAn(w, v) should be

∑
n∈Nk e−βr·nAn(w, v).
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For the next part, let x := (xv) ∈ [1,∞)Λ0
and fix ε ∈ [0,∞)Λ0

. Because every

element of B(y, β)n and ε is non-negative and,

mv =
( k∏
i=1

(I −Bi(y, β))−1ε
)
v

=
( ∑
n∈Nk

B(y, β)nε
)
v
,

mv is non-negative. Thus m ∈ [0,∞)Λ0
. Next, fix j ∈ {1, . . . , k}. Then, since m ≥ 0

and Bi(y, β) < 1 for all i ∈ {1, . . . , k},

(I −Bj(y, β))m = (I −Bj(y, β))
k∏
i=1

(I −Bi(y, β))−1ε =
∏
i 6=j

(I −Bi(y, β))−1ε ≥ 0,

so Bj(y, β)m ≤ m. Finally,

‖m‖1 =
∑
v∈Λ0

mv

=
∑
v∈Λ0

( k∏
i=1

(I −Bi(y, β))−1ε
)
v

=
∑
v∈Λ0

(( ∑
n∈Nk

B(y, β)n
)
ε
)
v

=
∑
v∈Λ0

∑
n∈Nk

∑
w∈Λ0

B(y, β)nv,wεw

=
∑
w∈Λ0

εw

( ∑
µ∈Λw

e−βy(µ)
)

=
∑
w∈Λ0

εwxw

= ε · x.

Thus ‖m‖1 = 1 if and only if ε · x = 1.

(b) To find a KMSβ state we first need to find a state of (T C∗(Λ), αy). We build

a state by using the path representation πT of T C∗(Λ) on `2(Λ) from Proposition 5.3.

For λ ∈ Λ we define

∆λ := e−βy(λ)εs(λ),

and note that ∆λ ≥ 0. We aim to define φε by

φε(a) =
∑
µ∈Λ

∆µ(πT (a)hµ|hµ) for a ∈ T C∗(Λ).(5.11)

To see that Equation (5.11) defines a state we need to show that it is a positive linear

functional and that φε(1) = 1.
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We first claim that φε(1) =
∑

µ∈Λ ∆µ = 1. Fix v ∈ Λ0. Then∑
µ∈vΛ

∆µ =
∑
n∈Nk

∑
µ∈vΛn

e−βy(µ)εs(µ)

=
∑
n∈Nk

∑
w∈Λ0

∑
µ∈vΛnw

e−βy(µ)εw

=
∑
n∈Nk

∑
w∈Λ0

B(y, β)nv,wεw

=
∑
n∈Nk

(B(y, β)nε)v.(5.12)

Now, since 1 > ρ(Bi(y, β)) for all i ∈ {1, . . . , k} Proposition 5.14 implies that∑
n∈Nk

(B(y, β)nε)v

converges with sum

∑
µ∈vΛ

∆µ = mv = (
k∏
i=1

(I −Bi(y, β))−1ε)v.(5.13)

Part (a) implies that ‖m‖1 = 1, so∑
µ∈Λ

∆µ =
∑
v∈Λ0

∑
µ∈vΛ

∆µ =
∑
v∈Λ0

mv = ‖m‖1 = 1.(5.14)

We now use that
∑

µ∈Λ ∆µ = 1 to prove that Equation (5.11) converges for all

a ∈ T C∗(Λ). Fix a ∈ T C∗(Λ), then applying the Cauchy-Schwarz inequality

0 ≤ |∆µ(πT (a)hµ|hµ)|

= |∆µ||(πT (a)hµ|hµ)|

≤ ∆µ‖πT (a)hµ‖‖hµ‖

≤ ∆µ‖πT (a)‖‖hµ‖2

≤ ∆µ‖a‖ · 1.

Since
∑

µ∈Λ ∆µ converges,
∑

µ∈Λ ∆µ‖a‖ converges and the comparison test tells us

that
∑

µ∈Λ |∆µ(πT (a)hµ|hµ)| converges with sum less than or equal to ‖a‖, therefore∑
µ∈Λ ∆µ(πT (a)hµ|hµ) converges absolutely for all a ∈ T C∗(Λ).

Since φε(a
∗a) =

∑
µ∈Λ ∆µ(π(a)hµ|π(a)hµ) ≥ 0, φε is a positive linear functional,

and by Equation (5.14) φε(1) = 1, so φε is a state on T C∗(Λ).

83



We next verify that φε satisfies Equation (5.9). Fix µ, ν, λ ∈ Λ. Then

(πT (tµt
∗
ν)hλ|hλ) = (T ∗ν hλ|T ∗µhλ) =

1 if λ = µλ′ = νλ′

0 otherwise.

By unique factorisation, µλ′ = νλ′ implies that µ = ν, and hence φε(tµt
∗
ν) = 0 when

µ 6= ν. So suppose that µ = ν. Since
∑

µ∈vΛ ∆µ = mv, we have

φε(tµt
∗
µ) =

∑
µ∈Λ

∆λ(T
∗
µhλ|T ∗µhλ)

=
∑
λ=µλ′

e−βy(µλ′)εs(λ′)

=
∑
λ=µλ′

e−β(y(µ)+y(λ′))εs(λ′)

=
∑
λ=µλ′

e−βy(µ)e−βy(λ′)εs(λ′)

= e−βy(µ)
∑

λ′∈s(µ)Λ

∆λ′ .

Then applying Equation (5.13), φε(tµt
∗
µ) = e−βy(µ)ms(µ). Thus

φε(tµt
∗
ν) = δµ,νe

−βy(µ)φ(ts(µ)),

that is, φε satisfies Equation (5.9). Equation (5.12) gives

φε(ts(µ)) =
∑
λ∈Λ

∆λ(Ts(µ)hλ|hλ) =
∑

λ∈s(µ)Λ

∆λ = ms(µ).

Thus Proposition 5.9 implies that φε is a KMSβ state.

(c) We first prove that Σβ is a compact convex subset of RΛ, and then that F is a

homeomorphism.

We show that Σβ is compact by showing that it is closed and bounded. To see

that Σβ is closed in RΛ0
, take {εn} ⊂ Σβ and ε ∈ [0,∞)Λ0

such that εn → ε. The dot

product is continuous from RΛ0 × RΛ0 → R, so εn → ε implies that εn · x→ ε · x. But

εn ∈ Σβ for all n, so εn · x = 1 for all n. Thus ε · x = 1, and therefore ε ∈ Σβ. Thus Σβ

contains all of its limit points, and is therefore closed. To see that Σβ is bounded, take

ε ∈ Σβ. This implies that ε · x = 1, that is, that
∑

v∈Λ0 εvxv = 1. Since xv ∈ [1,∞)

for all v ∈ Λ0,
∑

v∈Λ0 εv ≤ 1. Since εv ≥ 0 for all v ∈ Λ0, we have 0 ≤ εv ≤ 1. Thus

‖ε‖2 =
∑

v∈Λ0 ε2v ≤ |Λ0|. Thus Σβ is bounded. Since Σβ is closed and bounded, the

Heine-Borel theorem tells us that it is compact.
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Next we show that Σβ is convex. Fix k ∈ N. For i ∈ {1, . . . , k} take ci ∈ [0, 1] such

that
∑k

i=0 ci = 1 and let {εi} ⊂ Σβ. Then

( k∑
i=0

ciεi

)
· x =

∑
v∈Λ0

( k∑
i=0

ciεi

)
v
xv

=
∑
v∈Λ0

k∑
i=0

ci(εi)vxv

=
k∑
i=0

ci
∑
v∈Λ0

(εi)vxv

=
k∑
i=0

ci(εi · x)

=
k∑
i=0

ci

= 1,

so ε :=
∑k

i=0 ciεi ∈ Σβ. Thus Σβ is convex. Therefore Σβ is a compact convex subset

of RΛ0
.

We now show that F surjective, injective, and continuous.

To see that F is surjective, let φ be a KMSβ state. Proposition 5.16(a) implies that

mφ = (φ(tv)) satisfies

ε :=
∏
i∈K

(I −Bi(y, β))mφ ≥ 0,

and ‖mφ‖1 = 1 because φ is a state. Then m :=
∏

i∈K(I − Bi(y, β))−1ε = mφ, so

‖m‖1 = 1, and part (a) tells us that ε · x = 1. Then we can apply part (b), which tells

us that there is a KMSβ state φε satisfying Equation (5.9). Then, for µ, ν ∈ Λ,

φε(tµt
∗
ν) = δµ,νe

−βy(µ)mφ
s(µ) = δµ,νe

−βy(µ)φ(ts(µ)).

So by Equation (5.1) φε(tµt
∗
ν) = φ(tµt

∗
ν). Then linearity implies that φε(b) = φ(b) for

b ∈ span{tµt∗ν : µ, ν ∈ Λ}. Thus φ = φε, so F is surjective.

To see show that F is injective, suppose ε, ε′ ∈ Σβ such that F (ε) = F (ε′), that is,

φε = φε′ . Define m :=
∏k

i=1(I − Bi(y, β))−1ε and m′ :=
∏k

i=1(I − Bi(y, β))−1ε′. Since

φε = φε′ , by Equation (5.9) m = m′. Now,

ε =
∏
i∈K

(I −Bi(y, β))m =
∏
i∈K

(I −Bi(y, β))m′ = ε′,
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and therefore F is injective.

To see that F is continuous, suppose that εn → ε in Σβ. We want to show that

φεn → φε. Since the states are all norm-bounded with norm 1 it suffices to show

φεn(b) → φ(b) for b in the dense ∗-subalgebra span{tµt∗ν : µ, ν ∈ Λ}. Since εn → ε, we

have that

(
k∏
i=1

(I −Bi(y, β))−1εn)s(µ) → (
k∏
i=1

(I −Bi(y, β))−1ε)s(µ)

for all µ ∈ Λ, therefore that m(εn)s(µ) → m(ε)s(µ) for all µ ∈ Λ. This in turn implies

that

φεn(tµt
∗
ν) = δµ,νe

−βy(µ)m(εn)s(µ) → δµ,νe
−βy(µ)m(ε)s(µ) = φε(tµt

∗
ν),

for all µ, ν ∈ Λ. Then linearity implies that φεn(b)→ φ(b) for b ∈ span{tµt∗ν : µ, ν ∈ Λ}.
Therefore φεn → φ in the weak∗ topology, so F is continuous.

Since F is a continuous bijection of Σβ, a compact space, onto the simplex of

KMS states of (T C∗(Λ), αy), a Hausdorff space, F−1 is continuous. Therefore F is a

homeomorphism.

Finally we show that F is affine. Fix k ∈ N. Suppose that {εi : 1 ≤ i ≤ k} ⊆
Σβ and {ci ∈ [0, 1] : 1 ≤ i ≤ k} satisfying

∑k
i=1 ci = 1. We need to check that

F (
∑k

i=0 ciεi) =
∑k

i=0 ciF (εi), that is, φ∑k
i=0 ciεi

(a) =
∑k

i=0 ciφεi(a) for all a ∈ T C∗(Λ).

Fix a ∈ T C∗(Λ). Then

φε(a) =
∑
λ∈Λ

∆λ(πT (a)hλ|hλ)

=
∑
λ∈Λ

e−βy(λ)
( k∑
i=0

ciεi

)
s(µ)

(πT (a)hλ|hλ)

=
k∑
i=0

ci
∑
λ∈Λ

e−βy(λ)(εi)s(µ)(πT (a)hλ|hλ).

Let ∆λ,i := e−βy(λ)(εi)s(λ). Then

φε(a) =
k∑
i=0

ci
∑
λ∈Λ

∆λ,i(πT (a)hλ|hλ) =
k∑
i=0

ciφεi(a).

Thus F is affine.
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5.8 Existence of KMS states of (T C∗(Λ), αy) at the

critical inverse temperature

In this section we describe the KMS states of (T C∗(Λ), αy) at a critical inverse tem-

perature βc, where the behaviour of the KMS states changes.

Proposition 5.23. Suppose that Λ is a coordinatewise irreducible finite k-graph. Let

y : Λ → [0,∞) be a weight functor. For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ)

be the matrices from Definition 5.10. Let αy : R → T C∗(Λ) be the action given by

Proposition 5.8. For i ∈ {1, . . . , k} let βi be the unique number satisfying ρ(Bi(y, βi)) =

1 given by Theorem 5.15. Let βc = max{βi : 1 ≤ i ≤ k}.

(a) The system (T C∗(Λ), αy) has a KMSβc state.

(b) If β < βc, then (T C∗(Λ), αy) has no KMSβ states.

Proof. (a) We first want to find m such that B(y, βc)m ≤ m. Choose a decreasing

sequence {βn} such that βn → βc. Fix n ∈ N. Take x as defined in Theorem 5.22(a).

Choose εn := [0,∞)Λ0
such that εn · x = 1. Define mn :=

∏k
i=1(I − Bi(y, β))−1εn.

Then Theorem 5.22(a) implies that mn ∈ [0,∞)Λ0
satisfies Bi(y, βn)mn ≤ mn for all

i ∈ {1, . . . , k} and ‖mn‖1 = 1. By passing to a subsequence, we may assume that {mn}
converges pointwise to m ∈ [0,∞)Λ0

and ‖m‖1 = 1. Then taking n→∞ tells us that

Bi(y, βc)m ≤ m for all i ∈ {1, . . . , k}.
We aim to define ε′n :=

∏k
i=1(I −Bi(y, βn))m and then to apply Theorem 5.22. To

do this we first need to check that ε′n ∈ [0,∞)Λ0
. Fix j ∈ {1, . . . , k}. Since βn > βc,

we have 0 ≤ Bj(y, βn)v,w ≤ Bj(y, βc)v,w for all v, w ∈ Λ0. Therefore m satisfies

Bj(y, βn)m ≤ Bj(y, βc)m ≤ m. Now,

ε′n :=
k∏
i=1

(I −Bi(y, βn))m =
k∏
i=1

(
m−Bi(y, βn)m

)
.

Since Bi(y, βn)m ≤ m for all i ∈ {1, . . . , k}, ε′n ∈ [0,∞)Λ0
, so the x from Theo-

rem 5.22(a) with β = βn satisfies ε′n · x = 1.

We can then apply Theorem 5.22(b), which gives a KMSβn state φn satisfying

φn(tµt
∗
ν) = δµ,νe

−βny(µ)ms(µ)

Since the state space of T C∗(Λ) is weak∗ compact we may assume that by passing to

a subsequence that the sequence {φn} converges to a state φ. Proposition 5.9(a) (or

[2, 5.2.3]) then implies that φ is a KMSβc state.
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(b) Suppose that φ is a KMSβ state of (T C∗(Λ), αy). Then Corollary 5.17 tells

us ρ(Bi(y, β)) ≤ 1 for all i ∈ {1, . . . , k}. Since θ 7→ ρ(Bi(y, θ)) is strictly decreasing

(Theorem 5.15) and there exists i ∈ {1, . . . , k} such that ρ(Bi(y, βc)) = 1, β ≥ βc.

5.9 KMS states of (C∗(Λ), αy)

In this section we get an action αy : R→ AutC∗(Λ) and then show when a KMS state

of (T C∗(Λ), αy) factors through a KMS state of (C∗(Λ), αy).

Lemma 5.24. The set

P :=
{
tv −

∑
λ∈vΛei

tλt
∗
λ : v ∈ Λ0 and i ∈ {1, . . . , k}

}
consists of elements which are fixed by αy.

Proof. Fix r ∈ R, v ∈ E0 and i ∈ {1, . . . , k}. Then

αyr

(
tv −

∑
λ∈vΛei

tλt
∗
λ

)
= αyr(tv)− αyr

( ∑
λ∈vΛei

tλt
∗
λ

)
= tv −

∑
λ∈vΛei

αyr(tλt
∗
λ)

= tv −
∑
λ∈vΛei

eit(y(λ)−y(λ))tλt
∗
λ

= tv −
∑
λ∈vΛei

e0tλt
∗
λ

= tv −
∑
λ∈vΛei

tλt
∗
λ.

Remark 5.25. Recall that we are viewing C∗(Λ) as the image of the quotient map

q : T C∗(Λ)→ T C∗(Λ)/J for the ideal J generated by P , and q as the ideal J generated

by P (Remark 5.5). Then αyr : ker q → ker q, and ker q consists of elements which are

fixed by αyr , so it induces an automorphism αy of C∗(Λ) such that

αyr(q(a)) = q(αyr(a))

for all a ∈ C∗(Λ). We therefore have an action αy : R→ AutC∗(Λ).

Proposition 5.26. Suppose that Λ is a finite k-graph with no sources. Let y be a

weight functor and αy : R → T C∗(Λ) be the action given by Proposition 5.8. Fix

β ∈ (0,∞) and φ a KMSβ state on (T C∗(Λ), αy). For i ∈ {1, . . . , k} let Bi(y, θ) be

the matrices from Definition 5.10. Define mφ = (mφ
v ) by mφ

v = φ(tv). A KMSβ state φ

factors through C∗(Λ) if and only if Bi(y, β)mφ = mφ for every i ∈ {1, . . . , k}.
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Proof. As in the proof of [18, Lemma 4.1(b)] it suffices to check the Cuntz-Krieger

relation (CK) on the generators ei of Nk. By Remark 5.5 we view C∗(Λ) as the quotient

of T C∗(Λ) by the ideal J generated by P from Lemma 5.24 . For each generating

projection of J , Equation (5.2) tells us that

φ
(
tv −

∑
λ∈vΛei

tλt
∗
λ

)
= mφ

v −
∑
λ∈vΛei

e−βy(λ)φ(ts(λ))

= mφ
v −

∑
w∈Λ0

∑
λ∈vΛeiw

e−βy(λ)φ(ts(λ))

= mφ
v −

∑
w∈Λ0

( ∑
λ∈vΛeiw

e−βy(λ)
)
φ(tw)

= mφ
v −

∑
w∈Λ0

Bi(y, β)v,wmw

= mφ
v − (Bi(y, β)mφ)v.(5.15)

If φ factors through a state of C∗(Λ), then the left-hand side of Equation (5.15) vanishes,

and we have mφ −Bi(y, β)mφ = 0. Suppose on the other hand that mφ = Bi(y, β)mφ.

Then Equation (5.15) implies that φ vanishes on the generators of J . Now, as in [18,

Lemma 4.1(b)], each of these generating projections is fixed by the action αy, and for

each spanning element a = tµt
∗
ν of T C∗(Λ), the analytic function fa(z) := eiz(y(µ)−y(ν))

satisfies αyz(a) = fa(z)a. Thus [17, Lemma 2.2] implies that φ vanishes on the ideal J ,

and hence factors through a state of C∗(Λ) = T C∗(Λ)/J .

Corollary 5.27. If there is a KMSβ state of (C∗(Λ), αy), then ρ(Bi(y, β)) = 1 for all

i ∈ {1, . . . , k}.

Proof. We follow the method of [18, Corollary 4.4]. Let φ be a KMSβ state of (C∗(Λ), αy).

Proposition 5.26 implies that the vector mφ := (φ(tv)) satisfies Bi(y, β)mφ = mφ for

all i ∈ {1, . . . , k}. Since each Bi(y, β) is irreducible (Lemma 5.13), Proposition A.9

implies that ρ(Bi(y, β)) = 1.

5.10 The preferred dynamics

In this section we show that under certain conditions there is a preferred dynamics in

which there is a unique KMSβc state. Corollary 5.17 and Corollary 5.27 imply that there

is a relationship between the dynamics αy and the range of possible inverse tempera-

tures β. In particular, Corollary 5.27 shows that the only possible inverse temperature

for a KMS state on (C∗(Λ), αy) satisfies ρ(Bi(y, β)) = 1 for all i ∈ {1, . . . , k}. In other
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words the βi such that ρ(Bi(y, βi)) = 1 satisfy β = βi for all i ∈ {1, . . . , k}. This tells

us that we get our best possible results about KMS states when the βi coincide. We

therefore normalise the dynamics αy to ensure this is the case, and refer to the nor-

malised dynamics as “the preferred dynamics”. The preferred dynamics for T C∗(Λ)

with the gauge action was studied in [18, Section 7], and the preferred dynamics for a

2-graph with one vertex was studied in [39].

For matrices A1, . . . , Ak ∈Mn(R) write ln(ρ(A)) for the vector

(ln(ρ(A1)), . . . , ln(ρ(Ak))).

For a weight functor y : Λ→ [0,∞), define y : Λ→ [0,∞) by

y(µ) = y(µ) +
1

βc
ln(ρ(B(y, βc))) · d(µ).

Then y is also a weight functor. We can find the preferred dynamics of the system

(T C∗(Λ), αy) and we can describe all the KMS states for this preferred dynamics.

Remark 5.28. In [18, Section 7], the preferred dynamics for (T C∗(Λ), α) is studied.

Taking Ai as the vertex matrix with entries Av,w = |vΛeiw|, it occurs when r :=

ln(ρ(Λ)) = (ln(ρ(A1)), . . . , ln(ρ(Ak))). If the ln(ρ(Ai)) are rationally independent we

can describe all of the KMS states for the preferred dynamics and the critical inverse

temperature occurs at βc = 1.

First we define the unimodular Perron-Frobenius eigenvector.

Lemma 5.29. Suppose that Λ is a coordinatewise irreducible finite k-graph. Let y :

Λ → [0,∞) be a weight functor. For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ) be the

matrices from Definition 5.10. Then the unimodular Perron-Frobenius eigenvectors

of the Bi(y, θ) are equal for i ∈ {1, . . . , k}; we denote this vector ξΛ and call it the

unimodular Perron-Frobenius eigenvector of Λ.

Proof. The matrices Bi(y, θ) are irreducible (Lemma 5.13) and commute (Lemma 5.11),

so we can apply [18, Lemma 2.1], which implies that their unimodular Perron-Frobenius

eigenvectors are equal.

Theorem 5.30. Suppose that Λ is a coordinatewise irreducible finite k-graph. Let

y : Λ → [0,∞) be a weight functor. For θ ∈ [0,∞) and i ∈ {1, . . . , k} let Bi(y, θ)

be the matrices from Definition 5.10. Let αy : R → T C∗(Λ) be the action given by

Proposition 5.8. Choose βc ∈ (0,∞), and define

y(µ) := y(µ) +
1

βc
ln(ρ(B(y, βc))) · d(µ)
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for all µ ∈ Λ. Let ξΛ be the unimodular Perron-Frobenius eigenvector for Λ from

Lemma 5.29. If y(µ) = y(ν) implies that d(µ) = d(ν) for all µ, ν ∈ Λ, then the system

(T C∗(Λ), αy) has a unique KMSβc state φ. The state satisfies

φ(tµt
∗
ν) = δµ,νe

−βcy(µ)ξΛ
s(µ) for all µ, ν ∈ Λ,(5.16)

and factors through a state φ of the quotient C∗(Λ). The state φ is the only KMS state

for (C∗(Λ), αy).

Proof. Fix j ∈ {1, . . . , k}. We first show that ρ(Bj(y, βc)) = 1. Now,

Bj(y, βc)v,w =
∑

λ∈vΛejw

e−βc(y(λ)+ 1
βc

ln(ρ(B(y,βc)))·d(λ))

=
∑

λ∈vΛejw

e−βc(y(λ)+ 1
βc

ln(ρ(Bj(y,βc))))

=
∑

λ∈vΛejw

e−βcy(λ)e− ln(ρ(Bj(y,βc)))

=
∑

λ∈vΛejw

e−βcy(λ)

ρ(Bj(y, βc)))

=
1

ρ(Bj(y, βc)))

∑
λ∈vΛejw

e−βcy(λ)

=
1

ρ(Bj(y, βc)))
Bj(y, βc)v,w.

Therefore Bj(y, βc) = 1
ρ(Bj(y,βc)))

Bj(y, βc), so ρ(Bj(y, βc)) = 1.

To show that a KMSβc state exists, choose a decreasing sequence {βn} such that

βn → βc. Since βn > βc, applying Theorem 5.22(b) to ε :=
∏k

i=1(I −B(y, βn))ξΛ gives

a KMSβn state satisfying

φn(tµt
∗
ν) = δµ,νe

−βny(µ)ξΛ
s(µ).(5.17)

Since the state space of T C∗(Λ) is weak* compact we may assume that the sequence

{φn} converges to a state φ. Letting n→∞ in Equation (5.17) shows that φ satisfies

Equation (5.16). Thus, since y(µ) = y(ν) implies that d(µ) = d(µ), Proposition 5.9(c)

implies that φ is a KMSβc state.

To establish uniqueness, suppose that ψ is a KMSβc state. Then Proposition 5.16(a)

says that mψ = (ψ(tv)) satisfies Bj(y, βc)m
ψ ≤ mψ. Then Proposition A.8 implies that

Bj(y, βc)m
ψ = mψ. Now, since Bi(y, βc)m

ψ = mψ for all i ∈ {1, . . . , k} and ξΛ is

the Perron-Frobenius eigenvector, mψ = ξΛ. Finally, fix tµ, t
∗
ν ∈ T C∗(Λ). Then, since
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y(µ) = y(ν) implies that d(µ) = d(µ), Proposition 5.9(c) implies that

ψ(tµt
∗
ν) = δµ,νe

−βcy(µ)ψ(ts(µ))

= δµ,νe
−βcy(µ)mψ

s(µ)

= δµ,νe
−βcy(µ)ξΛ

s(µ).

So Equation (5.16) implies that ψ(tµt
∗
ν) = φ(tµt

∗
ν). Thus φ = ψ.

Since Bi(y, βc)m
φ = mφ for all i ∈ {1, . . . , k}, Proposition 5.26 implies that φ

factors through a state of C∗(Λ).

To see that φ is the only KMS state of (C∗(Λ), αy), suppose that ψ is a KMSβ state

of (C∗(Λ), αy). Then ψ ◦ q is a KMS state of (T C∗(Λ), αy), and Proposition 5.26 shows

that Bi(y, β)mψ◦q = mψ◦q for all i ∈ {1, . . . , k}. Then the Perron-Frobenius theorem

implies that ρ(Bi(y, β)) = 1 for all i ∈ {1, . . . , k}. Thus uniqueness of the KMSβc state

of (T C∗(Λ), αy) implies that ψ = φ.

5.11 An example

We finish with an example which shows Theorem 5.30 gives examples not covered by

[18].

Example 5.31. Let (Λ, d) be the 2-graph defined by the skeleton

v

e1

e2

f1

f2

and the factorisation property

e1f1 = f1e1, e1f2 = f1e2, e2f1 = f2e1 and e2f2 = f2e2.

Fix βc ∈ (0,∞). Define y : Λ→ [0,∞) on edges by

y(e1) = 1 y(e2) =
√

2 y(f1) =
√

3 y(f2) =
√

2 +
√

3− 1.

Then Proposition 5.7 tells us y is a well-defined weight functor. From Definition 5.10

we get the 1× 1 matrices

B1(y, βc) =
[
e−βc + e−

√
2βc

]
B2(y, βc) =

[
e−
√

3βc + e−βc(
√

2+
√

3−1)
]
.
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Then

1

βc
ln(ρ(B1(y, βc))) =

1

βc
ln (e−βc + e−

√
2βc)

and

1

βc
ln(ρ(B2(y, βc))) =

1

βc
ln (e−

√
2βc + e−βc(

√
2+
√

3−1)).

Then we define

y(µ) := y(µ) +

[
1
βc

ln (e−βc + e−
√

2βc)
1
βc

ln (e−
√

3βc + e−βc(
√

2+
√

3−1))

]
· d(µ).

Now

B1(y, βc) =
[
e−βc(1+ 1

βc
ln (e−βc+e−

√
2βc )) + e−βc(

√
2+ 1

βc
ln (e−βc+e−

√
2βc ))

]
=
[

e−βc+e−
√
2βc

e
βc

1
βc

ln (e−βc+e−
√
2βc )

]
=
[
e−βc+e−

√
2βc

e−βc+e−
√
2βc

]
=
[
1
]

and

B2(y, βc)

=
[
e−βc(

√
3+ 1

βc
ln (e−

√
3βc+e−βc(

√
2+
√
3−1))) + e−βc((

√
2+
√

3−1)+ 1
βc

ln (e−
√
3βc+e−βc(

√
2+
√
3−1)))

]
=
[

e−
√
3βc+e−βc(

√
2+
√
3−1)

e
βc

1
βc

ln (e−
√
3βc+e−βc(

√
2+
√

3−1))

]
=
[
e−
√
3βc+e−βc(

√
2+
√
3−1)

e−
√
3βc+e−βc(

√
2+
√
3−1)

]
=
[
1
]
,

so ρ(Bj(y, βc)) = 1 for all j ∈ {1, . . . , k}.
Then, by Theorem 5.30, the system (T C∗(Λ), αy) has a unique KMS βc state φ,

and it satisfies

φ(tµt
∗
ν) = δµ,νe

−βcy(µ)ξΛ
s(µ).

Since y(e1) 6= y(e2), we can’t write y(µ) as r′ · d(µ) for some r′ ∈ [0,∞)k, so y(µ) is

not of the form r · d(µ) for some r ∈ [0,∞)k and this example is not just an example

of the preferred dynamics from [18].

93





Appendix A

Appendix

A.1 The spectral radius of nonnegative matrices

For A ∈ Mn(C), the spectral radius of A, denoted ρ(A), is the maximal absolute

value of all of the eigenvalues of A. For A,B ∈ Mn(R) we write A ≤ B if aij ≤ bij

for all 1 ≤ i, j ≤ n. In this section we study nonnegative real matrices, that is,

A = (aij) ∈Mn(R) such that A ≥ 0. We show that the spectral radius of nonnegative

real matrices are decreasing, that is, A ≤ B implies ρ(A) ≤ ρ(B).

Lemma A.1. Let A ∈Mn(R). Then ‖A‖L(Rn) = ‖A‖L(Cn).

Proof. First we show that ‖A‖L(Cn) ≤ ‖A‖L(Rn). Fix x, y ∈ Rn. Then

‖x+ iy‖2 =
n∑
j=1

|xj + iyj|2.

Because xj and yj are real numbers,

‖x+ iy‖2 =
n∑
j=1

|xj|2 + |yj|2 =
n∑
j=1

x2
j +

n∑
j=1

y2
j = ‖x‖2 + ‖y‖2.(A.1)

Let z = x+ iy. Then

‖Az‖2 = ‖Ax+ iAy‖2

= ‖Ax‖2 + (Ax | iAy) + (iAy | Ax) + ‖iAy‖2

= ‖Ax‖2 + ‖Ay‖2

≤ (‖A‖L(Rn)‖x‖)2 + (‖A‖L(Rn)‖y‖)2

= ‖A‖2
L(Rn)(‖x‖2 + ‖y‖2),
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and Equation (A.1) gives

‖Az‖2 ≤ ‖A‖2
L(Rn)‖x+ iy‖2 = ‖A‖2

L(Rn)‖z‖2.

Then because ‖A‖L(Cn) is the smallest c ∈ R such that ‖Az‖ ≤ c‖z‖, ‖A‖L(Cn) ≤
‖A‖L(Rn).

Conversely,

‖A‖L(Rn) = sup{‖Ax‖ : x ∈ Rn : ‖x‖ = 1}

≤ sup{‖Ax‖ : x ∈ Cn : ‖x‖ = 1}

= ‖A‖L(Cn).

Thus ‖A‖L(Rn) = ‖A‖L(Cn).

Lemma A.2. If A ≥ 0, then ‖A‖L(Rn) = sup{‖Ax‖ : x ∈ [0,∞)n, ‖x‖ = 1}.

Proof. Fix x ∈ Rn. Since A ≥ 0,

‖Ax‖2 =
n∑
j=1

|(Ax)j|2

=
n∑
j=1

∣∣∣ n∑
k=1

ajkxk

∣∣∣2
≤

n∑
j=1

∣∣∣ n∑
k=1

ajk|xk|
∣∣∣2

=
n∑
j=1

|(A|x|)j|2

= ‖A|x|‖2.

It follows that

‖A‖L(Rn) = sup{‖Ax‖ : x ∈ Rn, ‖x‖ = 1}

= sup{‖A|x|‖ : x ∈ Rn, ‖x‖ = 1}

= sup{‖Ax‖ : x ∈ [0,∞)n, ‖x‖ = 1}.

Corollary A.3. If 0 ≤ A ≤ B, then ‖A‖L(Rn) ≤ ‖B‖L(Rn).

Proof. Fix x ∈ [0,∞)n. Then, since A ≤ B entrywise,

‖Ax‖2 =
n∑
j=1

(Ax)2
j ≤

n∑
j=1

(Bx)2
j = ‖Bx‖2

96



Then, by Lemma A.2,

‖A‖L(Rn) = sup{‖Ax‖ : x ∈ [0,∞)n, ‖x‖ = 1}

≤ sup{‖Bx‖ : x ∈ [0,∞)n, ‖x‖ = 1}

= ‖B‖L(Rn).

Corollary A.4. If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B).

Proof. Since 0 ≤ A ≤ B we have 0 ≤ Ak ≤ Bk for all k ∈ N. Then applying

Corollary A.3 we get ‖Ak‖L(Rn) ≤ ‖Bk‖L(Rn) for all k ∈ N. Then Lemma A.1 tells us

that ‖Ak‖L(Cn) ≤ ‖Bk‖L(Cn) for all k ∈ N. Now L(Cn) is a Banach algebra over C, so

we can use the spectral radius formula to get

ρ(A) = lim
k→∞
‖Ak‖

1
k ≤ lim

k→∞
‖Bk‖

1
k = ρ(B).

The following results from Perron-Frobenius theory are used throughout this thesis

and stated here for convenience. We use the reference [7] as our main source for the

theory, because it makes it clear when the individual hypotheses are used.

Proposition A.5 ([7, Proposition 2.2]). Let A ∈ Mn(R) be a nonnegative matrix,

x ∈ Rn be a positive vector and λ be a nonnegative number.

(a) If λx ≤ Ax, then λ ≤ ρ(A).

(b) If Ax ≤ λx, then ρ(A) ≤ λ.

(c) If λx < Ax, then λ < ρ(A).

(d) If Ax < λx, then ρ(A) < λ.

Corollary A.6 ([7, Corollary 2.3]). Let A ∈ Mn(R) be a nonnegative matrix and

x ∈ Rn be a positive vector. If Ax = λx then λ = ρ(A).

A.1.1 The Perron-Frobenius theorem

We now present consequences of the Perron-Frobenius Theorem (for example, [7, The-

orem 2.6]) used throughout this thesis.

A nonnegative matrix T ∈ Mn(R) is irreducible if for every pair 1 ≤ i, j ≤ n there

exists a positive integer m such that (Tm)i,j > 0. For x = (xi) ∈ Rn we write x > 0 if

xi > 0 for all 1 ≤ i ≤ n.
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Proposition A.7 ([7, Corollary 2.2]). Let A ∈Mn(R) be nonnegative and irreducible.

Then there exists a unique vector x > 0 such that Ax = ρ(A)x and ‖x‖1 = 1.

Proposition A.8. Let A ∈Mn(R) be nonnegative and irreducible. If x ≥ 0 such that

x 6= 0 and either Ax ≥ ρ(A)x or Ax ≤ ρ(A)x, then Ax = ρ(A)x.

Proof. We apply the Perron-Frobenius theorem and then follow the method of [7,

Proposition 2.4]. Since A is a nonnegative irreducible square matrix we can apply the

Perron-Frobenius theorem to get a positive left eigenvector y. Then yTA = ρ(A)yT ,

which implies that

yT (Ax− ρ(A)x) = ρ(A)yTx− ρ(A)yTx = 0.

Because y > 0 and either Ax ≥ ρ(A)x or Ax ≤ ρ(A)x, this implies Ax = ρ(A)x.

Proposition A.9. Let A ∈Mn(R) be nonnegative and irreducible and λ be a nonneg-

ative number. If x ≥ 0 such that x 6= 0 and Ax ≥ λx, then ρ(A) ≤ λ. Moreover, if

Ax = λx, then ρ(A) = λ.

Proof. We use the method of [37, Theorem 1.6(a)] to show that x > 0 and then apply

Proposition A.5(b). Fix i satisfying 1 ≤ i ≤ n. Since Ax ≤ λx, we have Akx ≤ λkx for

every k ∈ N. We write the elements of Ak as a
(k)
ij , then

n∑
j=1

a
(k)
ij xj ≤ λkxi.

Now, since A is irreducible, for all j there exists kj such that a
(kj)
ij > 0. Choose j such

that xj > 0 (at least one exists because x 6= 0), then a
(kj)
ij xj > 0, so it follows that

xi > 0. Then Proposition A.5(b) tells us that ρ(A) ≤ λ. If in addition Ax = λx,

Proposition A.8 tells us ρ(A) = λ.

A.2 Enumeration and convergence of sums

Throughout this thesis we will use sums of the form
∑

x∈X in which the index set X is

possibly infinite. In this section we define what we mean by such sums. Fix a set X.

We use the σ-algebra of all subsets of X.

Lemma A.10. Let m be a measure on X and f : X → [0,∞) a measurable function.

Then there is a measure ν on X such that

ν(F ) =

∫
F

fdm.(A.2)
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Proof. We assume that Equation (A.2) and need to show that ν is a measure. To do

this we need to show that ν(∅) = 0 and that ν is countably additive, that is, if {Xn}∞n=1

is a sequence of disjoint sets, then ν(
⋃∞
n=1Xn) =

∑∞
n=1 ν(Xn). That ν(∅) = 0 is trivial:

ν(∅) =

∫
∅
fdm = 0.

To show the countable additivity of ν, write Y =
⋃∞
n=1Xn, such that the Xn’s are

disjoint and measurable. We first look at the characteristic function χ⋃∞
n=1Xn

. Fix

x ∈ X. Since the Xn’s are disjoint,

χ⋃∞
n=1Xn

(x) =

1 if x ∈
⋃∞
n=1 Xn

0 otherwise
=
∞∑
n=1

χXn(x)

Then, by the algebra of limits,

ν(Y ) = ν(
∞⋃
n=1

Xn)

=

∫
⋃∞
n=1Xn

fdm

=

∫
fχ⋃∞

n=1Xn
dm

=

∫
f
( ∞∑
n=1

χXn

)
dm

=

∫
f
(

lim
N→∞

N∑
n=1

χXn

)
dm

=

∫
lim
N→∞

N∑
n=1

(
fχXn

)
dm.

Now, define fN :=
∑N

n=1 fχXn . Since

fN+1 =
N+1∑
n=1

fχXn = fχXN+1
+ fN ≥ fN ,
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we can apply the monotone convergence theorem [13, 2.14] with fN to get that∫
lim
N→∞

N∑
n=1

(
fχXn

)
dm = lim

N→∞

∫ N∑
n=1

(
fχXn

)
dm

= lim
N→∞

N∑
n=1

∫ (
fχXn

)
dm

=
∞∑
n=1

∫
fχXndm

=
∞∑
n=1

∫
Xn

fdm

=
∞∑
n=1

ν(Xn).

Thus ν(Y ) =
∑∞

n=1 ν(Xn) and ν is a measure, as required.

Theorem A.11. Let X be a set and f : X → [0,∞) a function. Let m be the counting

measure on X, and define ∑
x∈X

f(x) :=

∫
X

fdm.

Let ν(F ) be given by Lemma A.10. If F ⊆ X, then
∑

x∈F f(x) = ν(F ). If X =
⊔∞
n=1 Fn

is a disjoint union, then ∑
x∈X

f(x) =
∞∑
n=1

( ∑
x∈Fn

f(x)
)
.

Proof. First we show that
∑

x∈F f(x) = ν(F ). Because ν(F ) =
∫
F
fdm we have,∑

x∈F

f(x) :=

∫
F

fdm = ν(F ).(A.3)

Next, Lemma A.10 tells us that ν is a measure. Then, by Equation (A.3),∑
x∈X

f(x) = ν(X) = ν(
∞⊔
n=1

Fn) =
∞∑
n=1

ν(Fn) =
∞∑
n=1

∑
x∈Fn

f(x).

Corollary A.12. Suppose that X is a countable set, and {xk : k ∈ N} is an enumer-

ation of X. Then for every function f : X → [0,∞) the series
∑∞

n=1 f(xn) has sum∑
x∈X f(x).

Proof. Apply Theorem A.11 with Fn = {xn}. Then∑
x∈X

f(x) =
∞∑
n=1

( ∑
x∈{xn}

f(x)
)

=
∞∑
n=1

f(xn).
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The following results are used throughout this thesis to show some of our infinite

sums converge. Thanks to Iain Raeburn for the proofs, which we were unable to find

in the literature.

Proposition A.13. Let A be a Banach algebra with identity, and suppose that a is an

element of A such that
∑∞

n=0 ‖an‖ converges. Then 1− a is invertible, with

(1− a)−1 =
∞∑
n=0

an.

Proof. We have to show that the sequence {SN} of partial sums SN =
∑N

n=0 a
n con-

verges in A to an inverse for 1− a. If M < N , we have

‖SN − SM‖ =
∥∥∥ N∑
n=M+1

an
∥∥∥ ≤ N∑

n=M+1

‖an‖ =
N∑
n=1

‖an‖ −
M∑
n=1

‖an‖.(A.4)

Since
∑
‖an‖ converges, its partial sums form a Cauchy sequence, and Equation (A.4)

implies that {SN} is a Cauchy sequence. Because A is complete, {SN} converges to an

element b :=
∑∞

n=0 a
n of A. From the continuity of multiplication, we have

(1− a)b = lim
N→∞

(1− a)
( N∑
n=0

an
)

= lim
N→∞

(1− aN+1),

which is 1 because the summands in the convergent series
∑
‖an‖ must go to 0. Simi-

larly b(1− a) = 1, and 1− a is invertible with inverse b.

Corollary A.14. Suppose that A is a Banach algebra with identity and a ∈ A. If

λ ∈ C satisfies |λ| > ρ(a), then the series
∑∞

n=0 λ
−nan converges in norm in A with

sum (1− λ−1a)−1.

Proof. The spectral radius formula implies that

‖λ−nan‖1/n = |λ−n|1/n‖an‖1/n = |λ|−1‖an‖1/n → |λ|−1ρ(a) < 1.

Thus the nth root test implies that the series
∑∞

n=0 ‖λ−nan‖ converges, and the result

follows from Proposition A.13.
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