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Abstract

This thesis examines the C*-algebras associated to semigroups of par-
tial isometries. There are many interesting examples of C*-algebras
generated by families of partial isometries, for example the C*-algebras
associated to directed graphs and the C*-algebras associated to in-
verse semigroups.

In 1992 Nica introduced a class of partially ordered groups called
quasi-lattice ordered groups, and studied the C*-algebras generated
by semigroups of isometries satisfying a covariance condition. We
have adapted Nica’s construction for semigroups of partial isometries
associated to what we call doubly quasi-lattice ordered groups. For
each doubly quasi-lattice ordered group we construct two algebras: a
concretely defined reduced algebra, and a universal algebra generated
by a covariant family of partial isometries. We examine when repre-
sentations of the universal algebra are faithful, and this gives rise to
a notion of amenability for doubly quasi-lattice ordered groups.

We prove several recognition theorems for amenability. In partic-
ular, we prove that the universal and reduced algebras are isomorphic
if and only if the doubly quasi-lattice ordered group is amenable. Fur-
ther, we prove that if there is an order preserving homomorphism from
a doubly quasi-lattice ordered group to an amenable group, then the
quasi-lattice ordered group is amenable and the associated universal

algebra is nuclear.
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CHAPTER 1

Introduction

This thesis will be examining the C*-algebras generated by semigroups of partial
isometries. There is an extensive literature examining the C*-algebras generated by
groups of unitaries and semigroups of isometries. Through the next several sections
we will introduce the results that have come before which provide a road map for our
theory. We begin by stating results about unitary representations of groups and then
stating results about the isometric representations of semigroups introduced by Nica.
We end with a brief discussion of partial isometric representations of semigroups and

an overview of the thesis structure and major results.

1.1. Group algebras

For a long time mathematicians have been interested in the C*-algebras generated
by representations of groups. For a discrete group G with identity e, a unitary repre-
sentation of G into a unital C*-algebra A is a map U : G — A such that U preserves the
group structure in the following sense: for g, h € G we have U, is unitary, U,U), = Ugy,
Ue = 1 where e is the identity of G and U; = U,-1. Note that all products of the form
UpUy,Ugs - . Uy, may be simplified to Uy, for some h € G. A group algebra of a group
representation U : G — A is the C*-subalgebra of A generated by {U, : ¢ € G}. There
are two specific group algebras that we are most interested in: the reduced algebra and
the universal algebra.

The reduced group algebra C(G) is concretely defined. Let {¢, : h € G} be the
usual orthonormal basis for ¢*(G). Then X : G — B((*(Q)) defined by A\e, = €z
is a group representation. Let C*(G) be the C*-subalgebra of B(¢*(G)) generated by
{\; 1 g € G}.

The universal algebra of G, C*(G), is characterized abstractly (see [18, §7.1.5]):
Let G be a group. There exists a C*-algebra generated by unitaries {u, : ¢ € G},
C*(G), that is universal for representations of G in the following sense: for any group
representation U : G — A there exists a unital homomorphism ¢y : C*(G) — A such
that ¢y (uy) = U,. Further the pair (C*(G), {u,}) is unique up to isomorphism.
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By the universal property of C*(G) there is a homomorphism , : C*(G) — C*(G)
such that 7, (u,) = Ay. The homomorphism 7, is faithful if and only if G is an amenable
group ([8],[18, Theorem 7.3.9]). Amenability is a concept that shows up all over
mathematics when dealing with groups. We will not concern ourselves here with the
precise definition of amenability, merely noting some other equivalent conditions: a
group G is amenable if and only if C*(G) is nuclear [17, Theorem 2]. A group G is
amenable if and only if the canonical trace 7 on C*(G) characterised by

T(ug) = Lase
0 otherwise
is faithful for positive elements, i.e. if a € C*(G), then 7(a*a) = 0 implies a = 0 (see
Lemma 5.14).

1.2. (C*-algebras generated by semigroups of isometries

Having examined the C*-algebras generated by groups, a natural next step is to
consider the C*-algebras generated by semigroups. Let P be a unital subsemigroup of
a group G. Throughout, all semigroups will be assumed to contain the group identity
which we denote e.! An isometric representation of P on a unital C*-algebra A is a
map, W : P — A, such that W, is an isometry for all p € P, W, = 1 where e is the
identity of G, and W,W, = W), for all p,q € P.

For any p € P, if p~* € P then W, is a unitary and Wy =W,

»—1. To avoid represen-

tations with automatically unitary operators we restrict our attention to semigroups
with no units except the identity: P N P~! = {e}. The pair (G, P) gives a partial
order on G: x < y if 271y € P. The theory follows the road map we outlined above
for group algebras: we define a representation of semigroups, find a concrete example,
construct a universal algebra and then find a notion of amenability for semigroups
which characterizes when the universal and concrete algebras are isomorphic. This is

also the path we will follow when we consider semigroups of partial isometries.

1.2.1. Coburn’s theorem. Consider the semigroup N under addition. For any
isometric representation W of N we have W,, = Wiy 41 = (Wp)". Thus any C*-
algebra generated by an isometric representation of N is a C*-algebra generated by
a single isometry, first studied by Coburn in [4]. Let {e, : n € N} be the usual
orthonormal basis for £2(N) and let S be the unilateral shift on ¢*(N) such that Se, =

IThese are more usually called monoids however we follow Nica’s precedent in [16].
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€nt1- Coburn found that any C*-algebra generated by a single non-unitary isometry is
isomorphic to C*(S), the C*-algebra generated by the unilateral shift S.

A formulation of Coburn’s result in terms of semigroup representations would say:

THEOREM ([4]). C*(S) is universal for isometric representations of N in the fol-
lowing sense: if W : N — A is an isometric representation, then there exists a homo-
morphism ¢y : C*(S) — A such that ¢pw (S) = Wy. Further, ¢w is faithful if and only
if 1 =W W) #0.

Another useful property of C*(S) is that the set K = {S™S*" : m,n € N} is linearly
independent and that span K is a dense subalgebra of C*(S). The simplification of
products into a product of just two terms holds for all isometric representations of N.
Let W : N — A be an isometric representation. Observe that any product of the form
W W, collapses to either W,,_,, or W . Let n; € N. Then any product of the form
W, Wi, Wy Wy .. Wy, may be simplified to W,V for some p,q € N. We can also

*
max{m,n}"

evaluate products of the range projections: W,,W; W, W = Wi ax{m.n}

1.2.2. Quasi-lattice ordered groups. Following the example of groups, a nat-
ural example of a semigroup representation is the map S : P — B((*(P)) defined by
Sp€z = €pz. The representation S is a natural generalisation of the unilateral shift for

N. Straightforward calculation shows that, for all p € P,

& ifplzePesp<lua

SPS;E;E =
0  otherwise.
For p,q € P we have
€, ifp<randqg<zx
SpSpSeSy€r =
0 otherwise.
If p and ¢ have no common upper bound in P then S5,575,5; = 0. For certain

semigroups we can write the product S5,5;5,5; as another 5,5 for some y € P.
Consider the semigroup N2. Any pair (a,b),(c,d) € N? has a natural least upper
bound, (a,b) V (¢,d) = (max{a,c}, max{b,d}). In particular, for S : N? — B({*(N?))
we have

*

(S(tl,b) SEka,b) ) (S(C,d) SEkc,d) ) = S(max{a,c},max{b,d}) S(max{a,c},max{b,d}) :

From the example of N?, it makes sense to restrict our attention to semigroups
with natural least upper bounds. In [16] Nica introduced a class of partially ordered
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groups called quasi-lattice ordered groups. A partially ordered group (G, P) is quasi-

lattice ordered if every finite subset of G with a common upper bound in P has a least

common upper bound in P. For a pair x,y € G we denote the least upper bound of x
and y in P by x V y.

Let (G, P) be a quasi-lattice ordered group. We say an isometric representation

W : P — A is Nica-covariant if, for all p,q € P,

W W

(1.1) W,W W, W = v
0 otherwise.

ifpVg<oo

For any quasi-lattice ordered group (G, P) the isometric representation S : P —
B({?*(P)) is covariant.

Using the covariance condition we can show that, for all p,q € P,

W(pfl(p\/q)W;fl(p\/q) ifpVg<oo

WyW, =
0 otherwise.
In particular for n; € P any product of the form W, W; W, Wy ...W, may be
simplified to W,W for some p,q € P.

1.2.3. Amenability for quasi-lattice ordered groups. As with the group al-
gebra there are two specific algebras that Nica associated with a quasi-lattice ordered
group, the reduced algebra and the universal algebra.

The reduced algebra C*(G, P) is concretely defined. Let C}(G, P) be the C*-
subalgebra of B(¢*(P)) generated by the shift analogues {S, : p € P}. (See [16,
§2.4].)

The universal algebra C*(G, P) is characterized abstractly. By [16, §4.1] there ex-
ists a C*-algebra generated by isometries {w, : p € P}, C*(G, P), that is universal for
covariant isometric representations of P in the following sense: for any covariant isomet-
ric representation W : P — A there exists a unital homomorphism ¢y : C*(G, P) — A
such that ¢y (w,) = W,. Further the pair (C*(G, P),{w,}) is unique up to isomor-
phism.

As was the case with group algebras we are interested in when the reduced and
universal algebras are isomorphic. This requires a notion of amenability for quasi-
lattice ordered groups. There are two equivalent amenability definitions given in the
literature. The first, stated by Nica [16, §4.2], states that a quasi-lattice ordered group
(G, P) is amenable if the homomorphism 7, : C*(G, P) — C!(G, P) is faithful. In the
same paper he noted an equivalent condition: there exists a conditional expectation £ :
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C*(G, P) — span{w,w;, : p € P} onto the diagonal algebra, and (G, P) is amenable if
and only if F is faithful for positive elements. In many ways this conditional expectation
plays the same role for amenability of quasi-lattice ordered groups that the trace does
in the amenability of groups. Laca and Raeburn [11] took this second condition as
their definition of amenability because it is easier to check. When we consider partial

isometric representations we will follow Laca and Raeburn’s definition of amenability.

1.2.4. Recognition theorems for amenable quasi-lattice ordered groups.
Nica proved that if (G, P) is a quasi-lattice ordered group and G is an amenable group
then (G, P) is amenable. However, he also proved in [16, §5] that the free group
on n generators (F,,, F;') is an amenable quasi-lattice ordered group. Since F,, is not
amenable we are then left with the problem of deciding when quasi-lattice ordered
groups are amenable. Laca and Raeburn introduced the notion of a controlled map: a
controlled map between two quasi-lattice ordered groups (G, P) and (K, Q) is an order
preserving homomorphism ¢ : G — K that preserves the least upper bound structure.
By [11, Proposition 6.6], if there is a controlled map from (G, P) to (K, Q) and K is an
amenable group, then (G, P) is an amenable quasi-lattice ordered group. Li extended
this result in [14, Corollary 8.3] and proved that if K is amenable, then C*(G, P) is a

nuclear C*-algebra.

1.2.5. Other semigroups of isometries. Since Nica published [16] there have
been many studies examining semigroups of partial isometries. Several have relaxed
the conditions of their semigroups. For example, Li in [13] and [14] studied the isomet-
ric representations of left-cancellative semigroups. Brownlowe, Larsen and Stammeier
[2] and Starling [22]| have examined the C*-algebras associated to semigroups with a
relaxed upper bound structure: right LCM semigroups. A semigroup P is right LCM
if it is left cancellative and for any p,q € P the intersection of principal right ideals
pP N qP is either empty or of the form rP for some r» € P. In particular, this » may

not be unique since these semigroups are permitted to have nontrivial units.

1.3. Partial isometries

There are many interesting examples of C*-algebras generated by partial isometries,
including graph algebras and the C*-algebras associated to inverse semigroups. In this
thesis we consider the C*-algebras generated by semigroups of partial isometries. While
there has been some study of semigroups of partial isometries this has mostly been
confined to totally ordered groups such as those studied by Lindiarni and Raeburn
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[15] and Kwasniewski and Lebedev [10]. An operator 7" on a Hilbert space H is a
partial isometry if, for all h € (ker T)*, |Th| = ||h||. We say T is a power partial

isometry if, for all n € N, T™ is a partial isometry.

PROPOSITION 1.1. [19, Proposition A.4] Let T' be a bounded operator on a Hilbert

space H. The following are equivalent.

(1) T is a partial isometry;
(2) TT*T = T;
(3) TT* is a projection;
(4) T* is a partial isometry;
(5) T*TT* = T*;
(6) T*T is a projection.
If so, TT* is the projection onto rangeT and T*T is the projection onto (ker T) .

For C*-algebras we use the algebraic relation TT*T = T to define a partial isometry.
All isometries are partial isometries (and are power partial isometries) as are their
adjoints. The main example of a non-isometric partial isometry is the truncated shift.
Let {e; : 1 <i < n} be an orthonormal basis for C". The truncated shift .J,, : C* — C"
is defined by

e — eir1 ifi<n
0 if 1 =n.

Let P be a unital semigroup and A be a unital C*-algebra. A map W : P — A
is a partial isometric representation if, for all p,q € P, W, is a partial isometry,
W,W, = Wp, and W, = 1 where e is the identity of G.

There are two immediate observations from this definition. The first observation
is that all compositions of the W, are also partial isometries which is a significant
restriction. In general, compositions of partial isometries are not themselves partial
isometries. By [6, Lemma 2] the composition of two partial isometries ST is a partial
isometry if and only if the projections S*S and T'T™ commute.

The second is that for any p € P and any n € N we have W' = W is a partial
isometry. Thus all of the W), are power partial isometries. By Halmos and Wallen
[6, Theorem 1] power partial isometries are unitarily equivalent to the direct sum of a
unitary operator, copies of the unilateral shift S on ¢(N), copies of S*, and copies of
the truncated shifts J,, for each n € N. We will not be using this observation in our
proofs but it does illustrate that the maps we consider we still have a large amount of

structure.



1.3.1. Analogue of Coburn’s theorem. Once again the case P = N has been
well studied, a partial isometric representation W : N — A being the positive powers
of a single power partial isometry. Hancock and Raeburn [7] proved an analogue of the

Coburn theorem for a C*-algebra generated by a single power partial isometry. Let
J=&,"1J, B, C" = @y, C".

In [7, Theorem 1.3] Hancock and Raeburn found that C*(J) was universal for C*-
algebras generated by a single power partial isometry. That is: for any C*-algebra A
generated by a power partial isometry 7" there is a homomorphism ¢ : C*(J) — A such
that ¢(J) = T. As with Coburn’s theorem we can rewrite Hancock and Raeburns’s
result to say that C*(J) is universal for partial isometric representations of N.

There are two algebraic properties of a single power partial isometry T' that serve
as a guide of what to expect for general semigroups. First, the range and source

projections compose nicely

T pRmIRTRR Tmax{m,n}T* max{m,n}
TEmmER T max{m,n}TmaX{m,n}'

Second, every product of the form 77T™*"2T™3  T™ may be simplified to a product
of the form TPT*T" where p,r < ¢.2

1.3.2. Doubly quasi-lattice Ordered semigroups. As we mentioned above,
the standard example of a power partial isometry is the truncated shift. So, just as
Nica generalised the unilateral shift for semigroups, we will attempt to generalise the
truncated shift. Let (G, P) be a quasi-lattice ordered group and let A be a subset
of P. Let {e, : * € A} be the usual orthonormal basis for ¢2(A). Naively we define
JA: P — B(f*(A)) by
J;‘ex _ ) em if px E‘A

0  otherwise.
For all p € P, the operator JI;4 is a partial isometry. However, J4 does not in general
preserve the semigroup multiplication. The map J4 is a partial isometric representation
if and only if, for every a,b € A, the set {x € P : za™! € P, and bx~! € P} C A.

2We have made a choice here. We could just as easily have simplified our product to the form
T*PTIT*" with p,r < q. If I was starting this project from scratch I would have chosen this as our

convention as certain calculations become easier to parse and are more intuitive.
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There exists a right-invariant partial order: x <, y if yz=' € P. We see that we can

rewrite
{reP:za'€P andbr ' € P} ={z€P:a<,z<, b}

In other words, if J4 is a representation, then A must have no “gaps” in the right-
invariant partial order. This result led us to the realization that when considering
partial isometries we needed to consider both partial orders on (G, P). To distinguish
them we write <; for the left-invariant partial order and <, for the right-invariant
order.
Fix a € P and define [, := {x € P : z <, a}. Consider the map J*: P — B({*(1,))
defined by
J;ex _ epr ifpr €1,
0  otherwise.
In particular, in Lemma 2.12 we will show that the range and source projections relate

to the left and right partial orders respectively:

Jager. — Ji€q-1a = € if g </ x
q“q T .
0 otherwise

T e, - Ji € =€ ifqr <, a
0 otherwise.

Following Nica’s example we insist that any finite set that has a common upper bound

in P with respect to the left or right order has a least upper bound with respect to

that order. In other words (G, P) is quasi-lattice ordered with respect to both left and

right partial orders. We call such a (G, P) doubly quasi-lattice ordered.

We say that a partial isometric representation W is covariant if

Wiia W
UATAMUATAEE SRR

0 otherwise

ifp\/lq<oo

wx, W if pV, q< oo
* * pVrg ' PVrq T
W W, W W, = ‘
0 otherwise.
Now that we have set up our basic definitions we can outline the thesis.
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1.4. Overview of the thesis

Chapter 2. We begin by presenting the basic definitions, properties and examples
we will use throughout the thesis. We start this chapter by defining doubly quasi-lattice
ordered groups and proving basic properties of these groups. We also present examples
of doubly quasi-lattice ordered groups, with discussion of particular interesting prop-
erties. We present several constructions that preserve doubly quasi-lattice order, such
as direct products and free products.

Having defined doubly quasi-lattice ordered groups we next define representations
of these semigroups by partial isometries. We then present a generalization of the
truncated shift for arbitrary doubly quasi-lattice ordered groups in Lemma 2.12. Then
we prove basic properties and manipulations. In particular we prove, in Lemma 2.13,
that any product of partial isometric representations Wy, W, W, ... W, is either zero
or simplifies to a product of just three terms W, W W,. We can also write down
multiplication and adjoint operations for these triples (Lemma 2.14). We end the
chapter with our first main result: defining the reduced algebra. In our case the
reduced algebra C{ (G, P, P°P) is generated by a direct sum of truncated shift analogues
in Definition 2.15.

Chapter 3. In this chapter we use the properties of partial isometric representa-
tions we have established to construct the universal algebra C*(G, P, P°?) in Theorem
4.8. The universal algebra C*(G, P, P°?) is generated by partial isometries {v, : p € P}
and has the universal property: for every covariant partial isometric representation
W : P — A there exists a homomorphism ¢y : C*(G, P, P®) — A such that
éw(v,) = W,. The proof is a straightforward construction of a %-algebra that sat-
isfies the algebraic structure of covariant partial isometric representations and is then
completed with respect to a norm defined by supremum over representations of the
x-algebra.

Chapter 4. With our universal algebra constructed we now wish to know when a
representation of the universal algebra is faithful. It turns out that faithfulness depends
on an amenability condition very similar to that of Nica and Laca and Raeburn. In
Definition 4.7 we define amenability for a doubly quasi-lattice ordered group (G, P) in
terms of a conditional expectation onto a diagonal subalgebra. This allows us to state
our third major result, Theorem 4.8, which describes when a given representation of
the universal algebra is faithful.

Chapter 5. This chapter is mostly background results about tensor products of

C*-algebras and group algebras. We set up the results we need to prove recognition
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theorems for amenable doubly quasi-lattice ordered groups. The main result of this
chapter is the construction of conditional expectations for concrete and abstract C*-
algebras. We will be reusing these results through the next two chapters.

Chapter 6. This chapter is devoted to a discussion of the recognitions theorems for
amenability. We begin by proving Theorem 6.2 which states that =, : C*(G, P, P°?) —
Cy(G, P, P°?) is faithful if and only if (G, P) is amenable. This result demonstrates
that our definition of “amenability” is analogous to Nica’s original definition and to
amenability of group algebras. We prove that amenability is a property of semigroups
preserved under semigroup isomorphisms in Theorem 6.4. We finally prove Theorem 6.6
which states that if (G, P) is a doubly quasi-lattice ordered group and G is an amenable
group then (G, P) is an amenable doubly quasi-lattice ordered group.

Chapter 7. In this chapter we prove our last major result, a stronger recognition
theorem for amenable doubly quasi-lattice ordered groups. A controlled map between
two doubly quasi-lattice ordered groups (G, P) and (K, Q) is an order preserving ho-
momorphism ¢ : G — K that preserves the least upper bound structure. Theorem 7.7
states that if K is an amenable group and there is a controlled map from (G, P) to
(K, Q) then (G, P) is an amenable doubly quasi-lattice ordered group and C*(G, P) is
a nuclear C*-algebra. This theorem allows us to show that our examples are amenable.
We can also construct new examples of amenable doubly quasi-lattice ordered groups
from free and direct products of known examples. In addition, Theorem 6.6 appears

as a special case of Theorem 7.7.
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CHAPTER 2

Definitions, examples and basic properties

Let P be a unital subsemigroup of a discrete group G such that P N P~ = {e}
where e is the identity of G. There is a partial order on G defined by z < y if 71y € P.
Some authors prefer an equivalent formulation: x < y < y € xP. The order < is left-
invariant in the sense that x < y implies zx < zy for every z € G. The partial order is

determined by the pair (G, P) of a group G and its subsemigroup P.

DEFINITION 2.1 ([16, Definition 2.1]). A partially ordered group (G, P) is quasi-
lattice ordered if every finite subset of G with a common upper bound in P has a least

common upper bound in P.

There are several equivalent conditions for a pair (G, P) to be quasi-lattice ordered
given in Lemma 2.3.

To handle the structure of a semigroup of partial isometries we must have a second
partial order. Consider the opposite group (G°P, P°P) where G°* = G and P°® = P
with operation @ -o, ¥y = yx. This group has a left-invariant partial order defined by
x<vyifat.,y € PP

DEFINITION 2.2. A partially ordered group (G, P) is said to be doubly quasi-lattice
ordered if (G, P), and its opposite group (G°P, P°P), are quasi-lattice ordered groups.

To avoid dealing with two distinct group operations, one on GG and one on G°P,
we will instead define two partial orders on (G, P) one of which will be left-invariant,
derived from (G, P), and the other right-invariant, derived from (G°P, P°P).

e Define the partial order <; by z <; y if 71y € P.
e Define the partial order <, by z <, y if yz=! € Pie. if 7' -, y € P°P.

NoTATION. If z and y have a common upper bound in P under <;, then their least
common upper bound will be denoted by x V; y. Similarly if x and y have a common
upper bound in P under <,, then their least common upper bound will be denoted
by x V, y. To simplify notation we introduce the symbol oo and say = V; y = oo or
x V,y = oo when x and y have no common upper bound in P under the respective
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partial order. We will also use oo as a shorthand: we say x V;y < oo if 2 and y have a

common left upper bound z V; y in P.

2.1. Properties of doubly quasi-lattice ordered groups

In 2002 Crisp and Laca established a set of equivalent conditions for quasi-lattice

ordered groups in [5, Lemma 7).

LEMMA 2.3 ([5, Lemma 7]). For a partially ordered group (G, P) the following
statements are equivalent:

(1) (G, P) is a quasi-lattice ordered group.

(2) Every finite set in G with a common left upper bound in P has a least left
common upper bound in P.

(3) Every element of G having a left upper bound in P has a least left upper bound
m P.

(4) If v € PP~', then there exist a pair of elements a,b € P with x = ab~'and

L one has a <; v and b <; v.

such that for every u,v € P with ab™' = uv™
(The pair a,b is clearly unique.)

(5) Every pair u,v of elements in P has a greatest lower bound u A, v with respect
to the right-invariant partial order on G.

(6) If v € PP~ then there exist a pair of elements a,b € P with x = ab™' and

such that a A\, b = 1.

Assuming that (1)-(6) hold and given x € PP~ there is in fact a unique pair a,b € P
satisfying statement (6), being precisely the pair a,b of statement (4).

While Lemma 2.3 is stated for the left-invariant partial order the proof is easily

adapted to the right-partial order.

LEMMA 2.4 ([5, Lemma 7]). For a partially ordered group (G, P) the following
statements are equivalent:

(1) (G, P°P) is a quasi-lattice ordered group.

(2) Every finite set in G- with a common right upper bound in P has a least right
common upper bound in P.

(3) Every element of G having a right upper bound in P has a least right upper
bound in P.

(4) If x € P71P then there exist a pair of elements a,b € P with x = a~'b and

L, one has a <, v and b <, v.

such that for every u,v € P with a™'b = u~
(The pair a,b is clearly unique.)
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(5) Every pair u,v of elements in P has a greatest lower bound u \;v with respect
to the left-invariant partial order on G.

(6) If z € PP then there exist a pair of elements a,b € P with x = a~'b and
such that a A\ b= 1.

Assuming that (1)-(6) hold and given x € P~ P there is in fact a unique pair a,b € P
satisfying statement (6), being precisely the pair a,b of statement (4).

The equivalent conditions of Lemma 2.3 give easier ways to check when a group
is quasi-lattice ordered. Which test is most efficient depends on the group. One
interesting consequence of Lemmas 2.3 and 2.4 is that we can write a definition of a

doubly quasi-lattice ordered group that only involves one of the partial orders:

COROLLARY 2.5. Let (G, P) be a left and right partially ordered group. The fol-

lowing are equivalent:

(1) (G, P) is doubly quasi-lattice ordered.

(2) Every element of G having a left upper bound in P has a least left upper bound
in P, and every pair u,v of elements in P has a greatest lower bound u A\; v
with respect to the left-invariant partial order on G.

(8) Every element of G having a right upper bound in P has a least right upper
bound in P. FEvery pair u,v of elements in P has a greatest lower bound u A, v

with respect to the right-invariant partial order on G.

Proor. We will show that (1) < (2) and then (1) < (3) follows by a symmetric
argument.

(1) = (2). Suppose that (G, P) is a doubly quasi-lattice ordered group. Then
(G, P) is a quasi-lattice ordered group and so Lemma 2.3(3) states that every element
of G that has a left upper bound in P has a least left upper bound in P. But (G°P, P°P)
is also a quasi-lattice ordered group and so Lemma 2.4(5) states that any pair in P has
a greatest lower bound u A; v with respect to the left-invariant partial order on G.

(2) = (1). Suppose that every element of G having a left upper bound in P has a
least left upper bound in P, and every pair u, v of elements in P has a greatest lower
bound w A; v with respect to the left-invariant partial order on G. Then, by 2.3(3)
(G, P) is quasi-lattice ordered and by 2.4(5) (G°P, P°P) is quasi-lattice ordered. Thus
(G, P) is doubly quasi-lattice ordered. O

The least upper bounds have nice algebraic structure which will be useful in many
proofs later in this thesis.
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LEMMA 2.6. Let (G, P) be a doubly quasi-lattice ordered group.

(1) The left least upper bound V, is associative: for all g,h,k € G which have a
common left upper bound (g Vi h) Vi k =gV (hV, k).

(2) The right least upper bound V, is associative: for all g,h,k € G which have a
common right upper bound (g V, h)V, k =gV, (hV, k).

PrOOF. (1). We will show that (¢ V; h) Vi k <, gV, (hV, k) and gV, (hV, k) <,
(g Vih)Vik. We have g, h, k <, gV, (h V, k) and hence g Vv, (h V; k) is an upper bound
for g and h. Therefore g V; h <, g V; (h V k) and so g V; (h V; k) is a common upper
count for k and g V; h. Thus (g, h) Vi k <, gV, (hV, k). The second inequality follows
by a similar argument.

The proof of (2) follows by symmetry. O

LEMMA 2.7. Let (G, P) be a doubly quasi-lattice ordered group. Let ¢ € P and
geq.

(1) The following are equivalent:
(a) qVig < oo;
(b) for allp € P pqV,pg < oo;
(c) there exists p € P such that pqV; pg < co.
In particular, for all p € P, pqVipg = p(q Vi g).
(2) The following are equivalent:
(a) ¢V, g < o0;
(b) for allp € P qpV, gp < o0;
(c) there exists p € P such that qp V, gp < 00.
In particular, for allp € P, qpV, gp = (¢ Vr g)p.

ProoF. We will prove (1) first and then (2) follows by symmetry.

(a) = (b). Let p,q € P and g € G. Suppose that ¢ V; g < co. We will show that
pq Vi pg exists and that pg V; pg <; p(q V; g). Observe that ¢ <, qV,g and g <, ¢V, g.
By left-invariance of the partial order we have pg <; p(q Vv, g) and pg <; p(q V; g).
Hence p(q V; g) is a left upper bound for pg and pg in P. Thus pq V, pg exists and
pa Vipg < p(q Vi g).

(b) = (c) is trivial.

(¢) = (a). Let p,q € P and g € G and suppose that there exists p € P such
that pg V; pg < co. We know pq <; pq Vi pg and pg <; pq V; pg. By left-invariance
q <1 p~'(pqVipg) and g <; p~(pq Vipg). Since ¢ € P we know that p~'(pg Vi pg) € P
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and hence that p~!(pq V; pg) is a common upper bound in P for ¢ and g. Hence ¢ V; g
exists and ¢ V; g <; p~'(pg Vi pg).

To prove that for all p € P, pq VvV, pg = p(q V; g) first observe that both upper
bounds exist or are co at the same time therefore this equality makes sense even when
the upper bound does not exist. Suppose that ¢ V; g < co. As we observed above
qVig9 <, pY(pqVipg). By left invariance we see that p(qV; g) <; pg Vi pg. In addition
we also showed that pq V; pg <; p(q Vi g). Thus pqg V; pg = p(qV, g). O

REMARK. It is important in the proof of Lemma 2.7 that ¢ € P. As a counter
example consider (Z,N). Since the least upper bound must be in N we have —3V —2 =
0. Then we see that (=3+1)V(—2+1)=-2v—-1=0but 1+(-3Vv—-2)=1+0=1.

Any partially ordered finite set has a minimal element. This fact will be crucial to

many proofs so we state and prove it below.

LEMMA 2.8. Let (X, <) be a partially ordered set. Any finite subset {x; : 1 < i <

n} C X has an element x; that is minimal in the sense that x; < x; implies x; = x;.

Proor. We will prove this lemma by induction on the size of the subset n. For
n = 1 the sole element x; is trivially minimal as x; < z; and z; = ;.

Suppose that the result is true for n = k. Now consider n = k£ + 1 and the subset
{z1,...,2k11}. The k-element subset {z1,...,x;} has a minimal element z; by our
induction hypothesis. Now we can compare the element x4, to z;. There are 3
possibilities: x; < @41, Ty < 4, or x; and x4 are not comparable.

If x; < x4y and z; # x4 then x; is still minimal for the subset {1, ..., Tk, Tp41}-

If 2441 < z; and x; # 2441 then we claim x4 is minimal. To prove this claim
suppose that there is some element x; such that x; < xy,q. Transitivity of the partial
order implies that z; < z;. But z; is minimal for {z1,...,x;} and hence z; = 2; and
we have a contradiction.

If x; and x4 are not comparable then z; is still minimal.

Thus the subset {zi,...,zx, 2511} has a minimal element. By the principle of

mathematical induction, every finite subset has a minimal element. U

2.2. Examples of doubly quasi-lattice ordered groups

With some notable exceptions most standard examples of quasi-lattice ordered
groups that appear in the literature are also doubly quasi-lattice ordered. We outline
these examples and give several methods for constructing new doubly quasi-lattice
ordered groups by combining known examples. We end this section by proving that
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(Q x Q%,NxN¥) is doubly quasi-lattice ordered and that the left and right orders are

significantly different in an interesting way.

ExampLES. (1). For all abelian groups G°®» = G and hence any abelian quasi-
lattice ordered group is also doubly quasi-lattice ordered with the two partial orders
coinciding.

(2). For any doubly quasi-lattice ordered group (G, P) its opposite group (G°P, P°P)
is also a doubly quasi-lattice ordered group.

(3). (Z,N) is doubly quasi-lattice ordered with both left and right orders given by
the usual order on Z. For m,n € Z we have m V;n = m V, n = max{m,n,0}. (We
include the 0 to ensure that the maximum is in N.)

(4). For all n € N the partially ordered group (Z",N") is doubly quasi-lattice or-
dered. Both left and right partial orders are given by (z1, %2, ...,2,) < (1,22, ..., Tp)
if z; <y, for all 1 < ¢ < n. Every pair z,y € Z" has a common upper bound in N”
and z Vy = (max{zy,y1,0}, max{xs, y2,0}, ..., max{z,, yn,0}).

(5). Consider the group of additive rationals Q and its subsemigroup QT = QN
[0,00). Then (Q, Q") is doubly quasi-lattice ordered (in fact totally ordered). Since Q
is dense in R, for all a € QT\{0} the set I, := {x € Q" : x < a} is countably infinite.
For most other standard examples of doubly quasi-lattice ordered groups, (G, P), the
set I, :=={x € P:x <, a} is finite for all @ € P. Sets of the form I, will become useful
later when defining examples of partial isometric representations. It is useful to have a
straightforward example where these sets are infinite, as a reality check of hypotheses.

(6). Let F,, be the free group with n generators {a; : 1 <i < n} and let F; be the
semigroup generated by {a; : 1 <i < n}U{e}. To see that (F,,F}) is a quasi-lattice
ordered group we use Lemma 2.3(4). Every z € F,/(F;")~! has unique reduced word

—1 1,1

a. a,;

z:ailaig...aimajn sy, Ay

such that a;,, # a;,. Suppose p,q € F,t such that z = pg~'. Since the reduced word

is unique we must have a; a;, ...a;, <; p and aj a;, ...a;, <; g. Thus, by Lemma

m n

2.3(4), (F,,F}) is quasi-lattice ordered. By symmetry the same argument shows that

(Fop_ (IF:F)°P) is quasi-lattice ordered and hence (IF,,, F7) is doubly quasi-lattice ordered.
Let t € Ff and write t = Gy, Gyl - - - G, If © € F and @ <; ¢ then the word of

x must be an initial segment of ¢. Thus the set {z € F,} :  <; t} can be rewritten as

{e <ian, <ianyan, <ivvo <4 Qny Qg -« Gy <p Gy Gy -« Gy, Gy, = T}

- Dy
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Thus {x € F}! : x <, t} is totally ordered. For all x,y € F;", if 2 V; y < oo then either
+

n

x <y yory <, x. Similarly, for all z,y € F}| if x V. y < oo then either x <, y or
Yy <,

(7). An nxn matrix M = (m;;) is a Coxeter matrix if m;; = mj; € {2,3,...}U{oo}
for i # j and m;; = 1. Let (a;a;)™ denote the word a,;a;a; ... with alternating a, and
a; of length m;;. The Artin group A, associated to M is the group on n generators

{a; : 1 <1 < n} with presentation

If m;; = oo then we impose no relation on a; and a;. So, for example, (ab)’> = (ba)®
means ababa = babab. We say an Artin group is right-angled if all the m;; are either 2
or 0o. (In other words each pair of generators either commutes or has no relation.)

Let Ajs be a right-angled Artin group and let A}, be the subsemigroup of Ay,
generated by {a; : 1 <i < n}. Then (Ay, Al,) is quasi-lattice ordered by [5, §5]. The
opposite group A} is also a right-angled Artin group and hence (A, (4},)°P) is also
quasi-lattice ordered. Thus (Aas, A},) is doubly quasi-lattice ordered.

(8). Let ¢,d € N\{0}. The Baumslag-Solitar group is the groups BS(c,d) with

presentation
BS(c,d) = ({1} : tz® = 2%).

Let BS(c,d)" be the subsemigroup of BS(c, d) generated by {z,t}. Spielberg showed
in [21, Theorem 2.11] that (BS(c,d), BS(c,d)™) is quasi-lattice ordered. Note that

BS(c,d)°P = ({x,t} it -op 2° = 2% oy t) = {2, 1} : 2°t = ta?) = BS(d, ¢).

Thus (BS(¢, d)°P, (BS(¢, d)*)°P) is quasi-lattice ordered and (BS(c, d), BS(¢, d)™) is dou-
bly quasi-lattice ordered.

(9). Spielberg also considered Baumslag-Solitar groups with negative coefficients.
In [21, Theorem 2.12] he showed that (BS(c, —d), BS(c, —d)™) is quasi-lattice ordered
if and only if ¢ = 1. This result gives us a class of quasi-lattice ordered groups that

are not doubly quasi-lattice ordered. Suppose d is positive and not equal to 1. Then
(BS(1, —d),BS(1, —d)™) is quasi-lattice ordered. However,

BS(1, —d) = BS(—d, 1) = BS(d, 1),

and by assumption d # 1. Thus (BS(1,—d)°P, (BS(1,—d)")°P) is not quasi-lattice
ordered.
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There are several methods of constructing new doubly quasi-lattice ordered groups
out of the known examples. The doubly quasi-lattice ordered properties are preserved

under direct products, free products and semidirect products.

ExAMPLES. (1). Suppose (G, P) and (K, @) are doubly quasi-lattice ordered groups.
The direct product (G x K, P x Q) is also a doubly quasi-lattice ordered group.

(91, k1) <1 (92, k2) © g1 <; g2 and ky <; ko
(g1, k1) <r (g2, k) © g1 <, g2 and ky <, ko.

Two elements (g1, k1), (92, k2) € G x K have a common left upper bound in P x @ if

and only if g1 V; g2 < 0o and ky V; ko < 0o. Then (g1, k1) Vi (92, k2) = (91 V1 92, k1 Vi k2).

Similarly, if g1 V,. g2 < oo and ky V, ky < oo then (g1, k1) V, (g2, k2) = (91 Vo g2, k1 Vi ko).
For example, (Z",N") is the direct product of n copies of (Z,N),

n n

(Z",N") = (H Z,HN).

(2). Let {(G;,P;) : i € I} be a family of doubly quasi-lattice ordered groups.
Let G* = x,c;G; be the free product of the G; and let P* = x;c;P;. Then (G*, P*)
is a doubly quasi-lattice ordered group. The elements of P* have reduced form x =
L1, %24y - - - T, Where xy; € P, and i # i,y for all E < m. For any two elements
x,y € P* we write

T =T14i10245 -+ Tmipy,

Y =Y151Y2,42 - - - Ynyjn-
We have z <; y if and only if m < n, 2y, = yi, for k < m, ip, = jn, and 2y, <
Yo -

Consider an element z € PP~ of the form z = L1, 02,0, - - xmzmy;}n .. '91_,31‘1 where
Ty € P, and y,; € P;. After initial cancellations z can be reduced to the form
2= T1,%2, - - xklkyl_]t .. .yijl.l for some k < m and | < n. If i; # j; then no further
cancellation is possible and we have a unique reduced form. It is then easy to see
that if z = pg~! then 1,204, ... 2k, <; p and Y1, ...y, <; q. If i, = j; then
TeiY, € P, P'. By Lemma 2.3(4), there exist left-minimal a,b € P, such that
ab™! = JUkzk?/fﬁ If 2 =pg ', then x1,, @04, ... Ty, <y pand y1j ... Yy, b <1 g
Thus (G*, P*) is a quasi-lattice ordered group. By a symmetric argument we see that
((G*)°P, (P*)°P) is also quasi-lattice ordered.

We can now describe the least upper bounds. Let x,y € P* and write x =
L1, 0250 - - Ty, AN Y = Y15,Y2j - - Ynyj,- Suppose that x V; y < oco. Suppose,
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without loss of generality, that m < mn. Write x V; y = 2 = 214, ... Z,. Since y <; 2
we see that vy, = 2xy, for bk < n and v, j, <; 2p4,. Similarly  <; 2z we see that
Tip = 2k, for Kk <m and 2, < 2my,, I m <n, then x <; y. If m =n then z,,,,,
is a common upper bound for z,,;,. and Y, j,. SO Zm.i,. = Tm,im Vi Y jm-

Similarly, Let z,y € P* and write * = 1, T2, - - - Tmyip, A0 Y = Y1,5,Y2.j5 - - - Ynjin -
Suppose that = V, y < oco. Suppose, without loss of generality, that m < n. Either

r<,yand zV,y=yorm=nand xy,; =y, for k>1and

TV Y = (14, Vo Y1.1) %209 T3005 - - - Lininy -

(3). Let (G, P) and (K, Q) be doubly quasi-lattice ordered groups and let o : K —
Aut(G) be a homomorphism such that, for all & € K, the automorphism oy, fixes P.
Then the semidirect product (G x, K, P x @) is doubly quasi-lattice ordered. Note
that for r;s € G and =,y € K we have

(r,2) " (5,9) = (au1 (1), 27) (5, 9)
= (ap1(r Hag-1(s), z7y)
= (a1 (rts), zty).
Since « fixes P it follows that (a,-1(r~'s),z7'y) € P x @ if and only if r~'s € P and
'y € Q. Thus (r,z) <; (s,y) if and only if r <; s and x <; y. Since it inherits
the same left order as (G x K, P x @) it follows that (G x, K, P x Q) is quasi-lattice
ordered. Since the left order is preserved for any (pi,q1), (p2,q2) € P X QQ we have

(P15 q1) Ni (p2: g2) = (p1 Arp2; g1 Arge). Thus, by Lemma 2.4(5) ((G X K)P, (P X Q)°P)
is quasi-lattice ordered. We can write down the right partial order,

(r,z) <, (t,2) & (t,2)(r,2) ' € PxQ

& (ta-1(rt),za7 ) e PxQ

S ap-1(r) <, tand x <, 2

S a-1(r) <, a-i(t) and © <, 2
If (r,z),(s,y) € G x4 K, then (r,z) V, (s,y) < oo if and only if z V, y < oo and
az-1(r) V, ay-1(s) < oo. Further,

(r,2) Vi (5,9) = (Qav,y(ae1(r) Vi ay-1(s)), © Vi y).
Thus, while the left order is preserved, the right order is twisted by a.
One of the more interesting examples of a doubly quasi-lattice ordered group is the

affine semigroup over the natural numbers that we define below. As we will see, the
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left and right partial orders have very different structures. Under the right order every
pair of elements has a least upper bound whereas under the left order many pairs have

no common upper bound.

DEFINITION 2.9. Let Q x Q7 denote the semidirect product of the additive rationals

Q and the positive multiplicative rationals Q* with operations defined by
(r,z)(s,y) = (r+xs,zy) for r,s € Q and z,y € Q.

and

(r,x) ' = (=2 'r,a7") forr € Q and x € Q.

Laca and Raeburn proved in [12, Proposition 2.2] that (Q x Q%,N x N¥) is a

quasi-lattice ordered group with left partial order:
(r,7) < (s,y) & (r,7)"(s,y) € N x N*
& (—zlr+a s, 27ly) € N x N™.
(Note that in this case, the automorphism does not fix N so we cannot apply example

(3) above.) To prove that (Q x Q% ,NxN*) is doubly quasi-lattice ordered we will now
show that ((Q » Q% )°P, (N x N*)°P) is also quasi-lattice ordered. The partial ordering

n ((Q = Q%)°P, (N x N*)°) is given by:

(r,2) < (s,9) & (r,2) " op (5,y) € (N NX)P
(2.1) & (s —yr tryzh) € (N x NX)oP

PROPOSITION 2.10. The pair ((Q x Q%)°P, (N x N*)) is a quasi-lattice ordered
group.

PRrROOF. By Lemma 2.3(3) it suffices to show that every element (r, z) € (Qx Q% )P
with an upper bound in (N x N*)°P has a least upper bound in (N x N*)°P. In fact we
can show more: that every (r,z) € (Q x Q% )° has a least upper bound in (N x N*)°P.

Let (r,x) € (Q x Q). Write r = 2 with p € Z, ¢ € N* and p, q coprime. Write
} We claim that

T (l
(m, gcd 0 5 —24 ) is an upper bound for (r,z) in (N x N*)°? and further it is the least such.

= ¢ with a,b € N and a,b coprlme Let m = max {O,

gcd qb

First, let us demonstrate that ( ,%) is an upper bound for (r, x). By (2.1) we
must show m — gcd( L ly € N and gcd( T x~! € NX. Compute:
b b 0 iftm=—%_
m — aq ZE_IT' —m — aq _Q —m— /4 _ ged(g,b)
ng(Q7 b) ng<Qa b) aq ng(Q7 b) —_bp ifm=0.

ged(g;b)
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Note that if m = 0 then p < 0 and hence — e N.

Also compute:

b—p) € N. In either case m —

bp
ged(g,b ged(g,b)

aq 1 aqg b bg «
ged(q, b) ged(g,b)a  ged(g, b)
Thus (m, %) is an upper bound for (r, x).
Second we show that (m, s b)) is the least upper bound in (NNNX)OP Let (k,c) €
(N x N*)°P be an upper bound for (r,z). We must show that (m (q b)) » (ko) ie.

that k — c(%{?’b))m and c%{?’b) € N*.
Consider k — c(£22 ) Tf m = 0 then k — (£ )m = k € N. If m =
then

k—c(—ng(q’b))mzk—c(ged(q’b)) bp —k—cé]—o—k—cx Iy,
aq ag ) ged(g, b) agq

gcd(q b) >0

But (r,7) <, (k,c) and so, by (2.1), we have k—cz~'r € N. Hence k—c(%{?’b))m e N.

ng(qb € NX we must know more about ¢. We claim that c is a

To prove that c==—"=
multiple of b) and hence that c% € N*. Since cz~! = %b € N~ it follows c is a
multiple of a. Thus we may write ¢ = ya with v € N.

Since k — cx~'r € N and k € N it follows that cx~'r € Z. Now consider

1 b
b b b c Vge p
cx™lr = va—]—) P _TP e dgq’b) = £ déq’b) e .
@ 4 T Gdlgd)  eedlah)
We know that p and ¢ are coprime and that p dé’q 5 and = d?q 5y are coprime. Thus v

must be a multiple of p d‘(’ D) and so ¢ is a multiple of = d( Ok We have shown that

cd(g,b) a :
B as € N* and hence that (m,m) <, (k,c). Hence (m,m?]’b)) is the least

upper bound for (r,z) in (N x N*)°P.
Thus ((Q x Q%)°P, (N x N*)P) is a quasi-lattice ordered group. O

REMARK. We have shown that ((Q »x Q*)°, (N x N*)°) is a quasi-lattice ordered
group but we can go further. Since every element of (Q x Q% )°® has a least common
upper bound it follows that every pair (m,a), (n,b) € (N x N*)°P has a least common

right upper bound in (N x N*)°P namely
(m,a) V, (n,b) = (lem(a, b) max{a™"m,b~"n},lem(a,b)).

The observation that every pair of elements (m,a), (n,b) € (N x N*)°P has a least
common upper bound stands in sharp contrast to the behaviour of the partial order
on (Q x Q%,N x N*). By [12, Remark 2.3|, a pair of elements (m,a), (n,b) € N x N*
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has a least common upper bound if and only if (m + aN) N (n + bN) is nonempty. In
particular
00 if (m 4+ aN)N (n+bN) =0
(ma Cl) Vi (nv b) = ( ) ( )
(I,lem(a, b)) if (m+ aN) N (n+ bN) # 0
where [ is the minimum element in (m + aN) N (n + bN).
This example demonstrates that the two partial orders of a doubly quasi-lattice
ordered group may be very different and that we are getting new information by con-

sidering both partial orders.

2.3. Covariant partial isometric representations

Let T be a bounded operator on a Hilbert space H. Then T is a partial isometry
if |Th| = ||h| for all h € (kerT)*. Equivalently, T" is a partial isometry if and only
if TT*T = T. Then T*T is the orthogonal projection onto (ker T')‘, and TT* is the
orthogonal projection onto the range of T. In an arbitrary C*-algebra we say a € A
is a partial isometry if aa*a = a, i.e. if the representation of a on a Hilbert space is a

partial isometry. (This definition also holds on a x-algebra.)

DEFINITION 2.11. Let A be a unital C*-algebra and let (G, P) be a doubly quasi-
lattice ordered group. A representation of P by partial isometries isamap W : P — A
such that W, is a partial isometry for all p € P, W, = 1 where e is the identity of G
and W, W, = W,, for z,y € P. A representation is covariant if it satisfies
WiviyWaey,, ifaViy <oo.

(2.2) WxW;WyW; =
0 otherwise.

* * W;Vry
(2.3) WEW, W, =

0 otherwise.

W,y ifaV,y < oo.

From here on we will refer to these representations as covariant partial isometric rep-

resentations.

Let W be a covariant partial isometric representation. Let x,y € P. The covariance
conditions (2.2) and (2.3) ensure that the range projections W, W and W, W commute
as do the source projections W W, and W;W,. Given two partial isometries S and T
[6, Lemma 2] states that their composition ST is a partial isometry if and only if S*S
and T'T* commute. The product W, W, = W, is a partial isometry and hence, W W,
and W, W, commute. Therefore, for any covariant partial isometric representation
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WP — A, theset {W,W; 2z € PyU{W;W, :y € P}is a family of commuting
projections.

Since we write x V y = oo if the least upper bound z V y does not exist, we will
use the convention Wi, = 0. Thus we can always write W, W; W, W= = W,y,,W, .
and W; W, W W, =Wz,

relations into an equivalent form better suited for calculations. Note that W, is a
partial isometry so W, = W, W;W,. We compute:

Wav,y. With this convention we can simplify our covariance

W;Wy = (W;WxW;)(WyW;Wy)
= WoWoWa, W, (by (2.2))

VY
= WEWoWor (v Wit oy Wi Wy

:c\/ly

= Wo-1(vip Wa-1(ov,) Wa Wa W W, (projections commute)

Lzviy)
- xil(x\/ly)Wz_l Z‘Vly WQ? Wy
= Wal(zvy) Wx*VZyW
Thus we have
(2.4) WiWy = Wat(av,y) Wa,yWy-
A similar argument using (2.3) shows that
(2.5) W.Wy =W W, Wi,y

NOTATION. In (2.4) and(2.5) there is an abuse of notation, namely that if xV,;y = oo
then the product 7' (z V; y) = 7 'oo is undefined. This does not cause problems: if
x Viy = oo then WiWoy,, Wy, ,W, = 0 and hence in (2.4) W;W, = 0. We impose the
convention that if z V; y = oo then for all g € G we write g(z V,y) = 0o = (x V, y)g
and Wy(zv,) = 0. Similarly for the right order: we let g(z V, y) = oo = (z V, y)g and

Wy(av,y) = 0 whenever x V, y = oo

We now have two equivalent covariance conditions. We use them interchangeably:
(2.2) and (2.3) are easier to check and give a clearer picture of what is going on, while

(2.4) and (2.5) are easier to use in calculations.

2.4. Examples of covariant partial isometric representations

ExaMPLES. (1). Consider (Z,N). Let T' be a partial isometry on a Hilbert space

H such that, for all n € N, T" is a partial isometry. We say 7' is a power partial

isometry. The map W : N — B(H) defined by W,, = T" and Wy = T° = 1, is
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a covariant partial isometric representation of N. A simple calculation shows that
W W, =TmT" =T = W,,,,,. Also we have covariance:
W Wo W, W = Tmrmr
T it i > m
MR i m > n
=T if i >m
T ifm>n
" ifn>m
_ Tmax{m,n}T* max{m,n}

*
max{m,n} "V max{m,n}

Similarly, W W, W*W, = W*

max{m,n}

Let T be the truncated shift on C" such that

Winaxgmmy- Thus W is covariant.

T('Tla Zo, ... rrn—l)xn) - (Oaxla Zo, ... 7$n—1)~
Written in terms of the usual basis elements {e; : 1 < i < n} for C" we see that

Te, — eir1 ifi<n
0 otherwise.
The truncated shift T" is a power partial isometry and is one of the standard exam-
ples. Halmos and Wallen proved [6, Theorem 1] that every power partial isometry is
composed of a direct sum of a unitary and copies of the unilateral shift, the backwards
unilateral shift and copies of the truncated shifts on C" for all n € N.

(2). Let T1,T be a pair of star-commuting power partial isometries on a Hilbert
space H, that is TyTy = ToTy and T7Ty = ToT}. The map W : N> — B(H) given
by Wimny = T{"T3 is a covariant partial isometric representation of N2. Since T3, T
star-commute their composition is also a power partial isometry. To see W is covariant

compute:
WonaWinmWoaWeg = T T T VT T, T
=" T T
_ Tlmax{m,p}Tl* max{m,p}TQmax{n,q}Tz* max{n,q}
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_ Tlmax{m,p} T2max{n,q} Tl* max{m,p} T2* max{n,q}

= WnnvieaWimmnvima)-

The two partial orders are the same, hence we also have

Wiy W) WioWo.a = Wiy, o Wmmv.m.q)

m,n

and (2.3) holds.

(3). Our definition of covariance and Nica’s original definition in [16] (see (1.1))
for isometric representations are very similar. In general Nica’s covariant isometric
representations are not covariant in our sense. An isometric representation of P cannot
be covariant (in the sense of Definition 2.11) unless p V, ¢ < oo for all p,q € P. As
a counterexample suppose that W : P — A is an isometric representation and that
p,q € P such that p V, ¢ = co. Since W), W, are isometries we have W W, W W, =
1 # 0. So W is not covariant in the sense of (2.3).

Since the truncated shift on C” is so central to the study of power partial isometries
it makes sense for us to attempt to find an analogous example for general doubly quasi-

lattice ordered groups:

LEMMA 2.12. Let (G, P) be a doubly quasi-lattice ordered group. Fix a € P and
define I, == {x € P:x <, a}. The map J*: P — B({*(1,)) defined by

Ope if pr € 1,
g5, =" I
0 otherwise

18 a covartant partial isometric representation.

PROOF. Observe that Jj is isometric on span{d, : pr € I,} and 0 otherwise. Thus
Jyy is a partial isometry for all p € P. To show that J* is a representation of P we
must show that J¢ =1 and JjJ; = J5,.
Fix z € I,. Compute J2, = 0¢y = 0. Thus J = 1.
Second, let p, ¢ € P and compute:
J% e ifqrel,
JoJis, =4 7"
0 otherwise
Opgz  if qx € I, and pgx € I,

0 otherwise.
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However pgz € I, implies pgr <, a which implies a(pgz)™' € P. Then a(pqzr)~tp =

a(qr)™' € P, so qv <, a. Thus pgz € I, implies gr € I,. Therefore:
Opgz i pgz € 1,

JJY, =
r 0 otherwise.

= Jp 0z
We claim that the adjoint J;* satisfies

1)
Jl‘f* 0y, = b
0 otherwise.

1, ifp <o

Let y € I,. Then consider the inner product:

(0pz | 6y) ifpr €,

(Jp0x | 0y) =
0 otherwise
)1 if y =px
- 0 otherwise
1 ifply=2a

0 otherwise

(0z | 5p-1y) if p~ly €1,
0 otherwise.

Now it follows that Ji*d, = 4

o1, if p~tz € I,. Note that for all z € I, and p € P,

p~tx <, a. Thus p~tz € I, if and only if p <; 2. We have thus proved our claim.
To show J* is a covariant representation we start by computing the range and
source projections:
J g1, =0, ifq<x
JgJgoe =4

0 otherwise

e = 0, if qr <, a
Jorgeg, =4 700 !
0 otherwise.

Using the above projections, compute:

Jojues, ifq< x
a Jax ya jax _ p-p
JoJaeJe TS, =

0 otherwise
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0, ifg<randp <z

0 otherwise.

If ¢ <, x and p <; x, then z is an upper bound for p and ¢ and so p V; q exists and
pV;q < x. Conversely, if p V; ¢ < x then p,q <; x. Thus:

0, fpVig<x
JOJ JO 05, = P
0  otherwise
=J% J% .

pVig“pVigoT

Similarly,

J*Je, if gr <, a
Josge e es, = § v vt B
0 otherwise

0, ifpr<,aandqr<,a

0  otherwise

By right-invariance pr <, a < p <, ez~ ! and gz <, a & ¢ <, az~!. Thus:

0y ifp<,axr !and q<, ar!
Sy I I 0, =
0 otherwise

Vand ¢ <, az™!, then az~! is a right

upper bound for p and ¢. Hence p V, ¢ exists and p V, ¢ <, ax™ !

Since z <, a, we know ax~! € P. If p <, ax~
Conversely, if

pV,q <, azr™ !, then p <, az~! and ¢ <, az~!. Thus:

0, ifpV,q<,ar?

Sy Iy I I 0, = ‘
0 otherwise
_ Tax a
- Jpvrquvrqu
Thus J* is a covariant partial isometric representation of P. [l

We will show later, in Lemma 2.16, that the family of partial isometric representa-
tions {J*: P — B((*(1,)) : a € P} of Lemma 2.12 is well behaved and has very useful

properties.
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2.5. Properties of covariant partial isometric representations

The covariance conditions, (2.4) and (2.5), are extremely powerful and allow us to
simplify any product of {W,} U {W;} into a product of just three terms and to write

down a formula for the multiplication of these terms.

LEMMA 2.13. Let (G, P) be a doubly quasi-lattice ordered group and let W : P — A

be a covariant partial isometric representation. Any product of the form Wy, Wi W, W ..

where n; € P, is either 0 or of the form W,W W, for some p,q,r € P satisfying p <, q
and r <; q.

Proor. We will prove this lemma by induction on the length of the product m. By
adding W, and W/ to the product we may assume that m > 3. We begin by proving
that the result holds for m = 3.

Fix a,b,c € P. Now compute:
WaWb*WC == WQW;\/er(a\/rb)b71 WC by (25)
= WaW;\/TbW(aVTb)b—lc

Recall that by convention, if a V, b = oo, then W, , = 0. To prevent the equation

from becoming unreadable let x = a V, b and y = (a V,. b)b~'c. Then:

W, Wi W, = W,W:W,
= WaWari vy Wiy Wy by (24)

xViy

= ar‘l(rvzy)W* Wy

(zV1y)

So we take p = az™'(z V;y), ¢ = (x V; y) and r = y. Examining the indices we see

immediately that r <; q. To see p <, ¢ we compute:
@ =@V zviy)) Tt =@Viy)(zViy) tlzat =2at = (aV, b)a?

Thus gp~' = (a V, b)a™! € P and hence p <, ¢. Thus any product W,W;W, is either
zero or can be written as W,W W, with p <, ¢ and r <; ¢ and the result holds for
m = 3. Now suppose that the result holds for m = k£ and consider m = k+1. We have
two cases to consider: if k + 1 is odd or even which determines whether the product
ends in an adjoint.

If £+ 1 is odd, then the product ends in W, , .
is either zero or may be simplified to W,W; W, W,
= W,W; W,

TNE41°

By assumption W,,, ... W> W,

Nk Ng+1

w41 Dy our assumption. We may then

simplify again to see W, W W, W, We have a product of length 3

k41
which may be simplified to the desired form as above.
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If £+ 1 is even, then the product ends in W* We simplify the first k& terms

Ng41°
Wi, Wa,Wa, Wy, ... W5 which gives 0 or W,W;W,. Then consider W,W W, Wy .
Compute:
WoW W W =W, W W, W5, L W mea-1- - (by (2.5))

= WpW:*l (W:WTW:)thrnkH)r*lW(?"Vrnk+1)nk+1‘1
=W,W: W*W‘;Vrnkﬂ 1 Weving ) v (WW.Wr=W)
- VV’LL’Tank+1)r 1 Lmirvrnk+1)

N1
Npy1— 1

So we have reduced the product to one of length 3 which we can put into the desired
form. By induction the proof is complete. 0

LEMMA 2.14. Let (G, P) be a doubly quasi-lattice ordered group. Let W : P — A
be a covariant partial isometric representation. Let a,b,c,p,q,r € P such that a <, b,
c<;b,p<,qandr <;q. Then

(1) (WaWyWe) (W WiWe) = Wap-1(pv,en) W

(epvea)(cp) 1 (bviep) Wiepvra)a—r

(2) rq < q, qp~' <o q and (W,WeW,)* = W W1
PRrROOF. (1). Compute:
(W Wy W) (W,WeW,) = W Wy (W, W)W,
- Wan;k(WCPW(tpvrq)W(Cp\/rq)q*)Wr (by (2.5))
= Wa(W;WCP)W(t:erq) W(cpvrq)qflr
= Wa(bel(bpr)W(’;)vlcp) WCP)W(Zp\/Tq)W(CPqu)q’lr (by (24))
= War1ovien) Wiep-10vien) Was Wer W ) Wiepv, gy (ep)- Wiewvryar

*

= Wabr-1viep) Wiep) -1 vien) Wep W (epvray(en) - Wiepvrya
= ab‘l(bVle)W(chTq)(cp)*l(b\/lcp)W(CPVTQ)Q_lr
(2) Compute:
(WpW;WT)* = W:WQW*
= WiavigWi, VoW, by (2.4)
=W W WW) (rVig=q)
= W W, W, I/Vq*v Wigvepp—1 by (2.5)
= WoaagWyWWiWe,r (g Vep =q)
= WT—1qW;qu—1 ]

29



-1 1

Since ¢(r~'q)™' = q¢7'r = r € P we have r~'q <, ¢. Similarly, gp~! <; ¢ because

(') 'q=pglq=peP.

In the previous two lemmas we have established the standard form for products of
covariant partial isometric representations and how these triple product multiply. In
Lemma 2.16 we will show that there is a partial isometric representation .J of P such
that the set {J,J;J, 1 p <, ¢,7 <; ¢} is linearly independent. This fact is crucial in

our construction of the universal algebra in the next chapter.

DEFINITION 2.15. Let (G, P) be a doubly quasi-lattice ordered group. Define J :
P — B(@®,cp (1) by Jp := B,cp Jo. Define the C*-algebra Cy (G, P, P°?) to be

acP “p
the C*-subalgebra of B(D,.p (*(1.)) generated by {.J, : p € P}.

a€eP

We choose the notation C¥ (G, P, P°P) advisedly. When we construct our universal
algebra in Chapter 3, we will call it C*(G, P, P°P) to stay consistent with Nica’s notation
of C*(G, P) for the universal algebra generated by isometric representations in [16].
We have added P°P to distinguish the two algebras and to emphasise that we have two
partial orders and are dealing with partial isometries. The C*-algebra C{ (G, P, P°P)
is a concretely defined C*-algebra of operators on a particular Hilbert space, and we
regard it as a “reduced algebra”. In our proofs Cf (G, P, P°?) takes a similar role to
C*(G) C B(£*(@)) for group algebras. Here the subscript ts stands for truncated shift,
as the J were constructed to generalise the properties of the truncated shift on C". In
fact for (Z,N), Ci(Z,N,N°P) and C*(Z,N,N°P) are both isomorphic to the C*-algebra
C*(J) studied by Hancock and Raeburn in [7, Theorem 1.3].

LEMMA 2.16. Let (G, P) be a doubly quasi-lattice ordered group. The set
S={LJyJr :p,q,7 € P,p <, q,7 <y q)
is linearly independent and span S is a dense unital x-subalgebra of Ci (G, P, P°P).

PROOF. Suppose, aiming for a contradiction, that S is linearly dependent. Then

there exists a set of nonzero complex numbers {); : 1 < i < n} and a set of distinct

triples {(pz‘a%'ﬂ’z) 1 < i < n pz >r Gy T4 <l Qz} with (pu(erz) 7é (pj7Qj7rj) for ¢ 7& j7

such that
Z Ny, T T, = 0.

Since J, = @,cp Jy it follows that o Mg gyl =0 for all a € P. We will
select a particular @ € P where a contradiction will fall out nicely. By Lemma 2.8
every partially ordered finite set has a minimal element. Thus the set {r; : 1 <i <n}
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must have some element 7, that is right-minimal in the following sense: if r; <, 7y
then 7; = r,. In the set {¢; : 1 < ¢ < n,r; = r} there exists some element g that
is left-minimal in the following sense: if ¢; <; g5 then ¢; = ¢,. We will show that
choosing a = ¢, gives a contradiction.
Consider Y, Nidp;Jy. Jr, acting on (%(1,). Since ry = r, <; qp it follows that
. qn € 1, so we can focus on the unit vector 0ptg, -
Now we compute Jjr Ji+*.Ji4d, -1, . We have

. 1 -1 -1 -1
Jan vl LTI Gn Sr Gh S Quay, TRy € P mry €F
—1 p—y
T T’k

. 4dn .
0 otherwise.

But rgr; !¢ P implies that r; <, 7, which only occurs if r; = 7 due to the minimality

of r,. Thus we have

an Jan* _ 1 Jpe—
th th* th5 L _ in J(Ii 5Ti7“k 1(1h if Ti Tk
pi Yq Yri Urgan

0 otherwise
JIJInto,, it =y,
0 otherwise.

Now we consider Ji**9,, . We have Ji**4, =9 if ¢; <; ¢» and zero otherwise. But

a tan
qp is left-minimal so ¢; <; g, if and only if ¢; = ¢,. Hence we have

qdh : = o
Jan Janx Jingy o — in 5%_1(111 if r; =1y and ¢; = gy
Pi 4 Ti rkf qn .
0 otherwise
Jgche lf r, =Tk and gi = Qqn

0 otherwise

0p, ifri=ryand ¢ =g
0  otherwise.

Now we compute:

n
D XTI T TS, = > Nidy, =0.
i=1 ie{iri=rr,qi=qn}
By our initial assumption the triples (p;, ¢;,7;) are distinct. Hence all the p; such that
r; = r and ¢; = g, must be distinct. Since the unit vectors d, are linearly independent
it follows that \; = 0 for all ¢ such that r;, = r; and ¢; = ¢, contradicting our
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assumption that the \; are nonzero. Thus S = {JpJ;JT :p,q,r € Pp <, q,r < q} is
linearly independent.
Since C{(G, P, P°P) is generated by {J, : p € P}, span{J,,, J! J,J: ...:n € P} is

n1“Yng N3 ngy

a dense unital *-subalgebra of C{ (G, P, P°?). By Lemma 2.13, any product of the form
Jny Iy Ing Sy, - - may be written as J,J;J, where p <, ¢ and 7 <; ¢. Thus the span S

n1“Yng N3 ny

is equal to span{J,, J* J.,J* ...:n; € P} and hence is a dense unital *-subalgebra of

ni1“ngo“N3“ng *°

Cx(G, P, P°P). 0
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CHAPTER 3

Constructing a universal C*-algebra

In this chapter we construct a C*-algebra which is universal for covariant partial

isometric representations.

THEOREM 3.1. Let (G, P) be a doubly quasi-lattice ordered group. Then there is a
unital C*-algebra C*(G, P, P°?) generated by partial isometries {v, : p € P} such that
v :p v, s a covariant partial isometric representation of P and that C*(G, P, P°P)
has the following universal property: for every covariant partial isometric representa-
tion W : P — A there is a unital homomorphism ¢w : C*(G, P, P°?) — A such that
Pw (vp) = Wp.

The pair (C*(G, P, P°P),{v,}) is unique up to isomorphism: for every pair (C,{w,})
satisfying this universal property there exists an isomorphism ¢,, : C*(G, P, P°?) — C
such that ¢, (v,) = w,.

In other words, C*(G, P, P°P) is universal for covariant partial isometric represen-
tations. As mentioned in the previous chapter we use the notation C*(G, P, P°P) to
stay consistent with Nica’s use of C*(G, P) while adding the P°P to emphasise that we
are working with two quasi-lattice orders.

To construct the C*-algebra C*(G, P, P°?) of Theorem 3.1, we construct a normed
x-algebra generated by partial isometries, and then complete it.

Our candidate for such a normed *-algebra A is the vector space over C with basis
{UP#N" RS P76 <G psqers Q}-

Recall that an element a of a x-algebra is a partial isometry if aa*a = a. Using
this we can define a covariant partial isometric representation into a x-algebra. Let
B be a unital x-algebra. A partial isometric representation into a *-algebra is a map
w : P — B such that w, is a partial isometry for all p € P, w. = 1 where e is the

identity of G’ and w,w, = w,, for x,y € P. A representation is covariant if it satisfies

*

wvy T VY < oo.

* * wxvlyw
W W, Wyw, = .
0 otherwise.
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. )
§ . Wiy Wav,y if xV,y < .
W W Wy Wy, = '
0 otherwise.

LEMMA 3.2. Define a multiplication on A by

Vab=1(bv1cp), (cpVra) (cp) L (5Viep) (cpvrq)g—tr U €D Vr g < 00 and bV, cp < 00.
Va,b,cUp,qr = .
0 otherwise.

This multiplication is assoctative.

This multiplication is constructed to mimic the multiplication of covariant partial
isometric representations as shown in Lemma 2.14. (Here v, ,, corresponds to Wqu* W,

for some covariant partial isometric representation W)

PROOF. We apply Van der Waerden’s method: consider the map ¥ : A — C} (G, P, P°P)
defined by V(3 cpgrtpgr) = D Cpardpt;Jr. We will show that W is injective and
U(a)¥(F) = ¥(ap) for all a,f € A. Then we can borrow the associativity of
Cy(G, P, P°?) to prove the multiplication defined on A is associative.

Suppose that V(> ¢, 4, Upgr) = V(O dpgrtpgr). Computing, we see that

PR/ A AR N S Y

By Lemma 2.16, the set {.J,J;J,} is linearly independent and hence ¢, 4, = d g, for
each triple p,q,r. Thus > ¢y grUpgr = 2 dpgrVpqr and ¥ is injective. By Lemma 2.14

we have:

Y (ap,e)V(Vpgr) = (Jady Je) (T Jr)

*

(Jabfl(b\/lcp) ‘](cp\/rq)(cp)*l(b\/lcp) J(cp\/rq)qflr) if cp Ve g, bV cp < 0.

0 otherwise.

\Il(vab*1(b\/lcp),(cp\/rq)(cp)*l(b\/lcp),(cp\/rq)qflr) if cp Vi q, b Vi cp < 0.
0 otherwise.
L

It follows immediately that ¥(a)W¥(8) = ¥(apf) for all o,5 € A. Therefore ¥ is
injective and preserves multiplication. Now we can use ¥ to prove that multiplication
on A is associative.

Fix a, 8,7 € A and consider (af)y. Now:

U((af)y) = ¥ (aB)¥(y)
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= V() V()

= W(a(67))-
Thus ¥((afB)y) = ¥(a(Fy)). By the injectivity of ¥, we have (af)y = a(f7). There-
fore multiplication in A is associative. O

Define a map a — a* by

* -
( §, CpgrVpgr)” = g Cp,q,rUr—1q,q,qp1-

e<rp<rq e<;p<rq
e<ir<igq e<ir<iq

In particular, (vpq,)* = v,—1444-1. This again mimics the adjoints of partial isometric
representations as shown in Lemma 2.14. The map a + a* is conjugate linear and is

an involution since

((Up,qm)*)* = (Urflq,q,qpfl)* = Upg—1q,q.q9¢=tr = Up,qr-

Thus A is a x-algebra.

We claim that v : P — A defined v, = v,,, is a covariant partial isometric
representation into a x-algebra. To see that v, = v, is the identity for A fix p,q,r € P
with p <, ¢ and r <; ¢. Compute:

Ve,e,eUp,q,r = Vee=1(eviep),(epVrq)(ep)~1(eViep),(epVrq)g—'r = Upgp=lp,gg—1r = Up,gq,r

and similarly vy g, Ve ee = Upgr. Thus ve .. is the identity.
Fix p,q € P. We have p <, pq and ¢ <, pq thus p V,; pg = pq and q V.. pq = pq. So

we can compute:

UpUq = Up,p,pVq,q,q

Upp=1(pVipq),(paVra)(pg) ~1 (pVipq).(paVra)a—tq
= Upp—1pg,pqa(pq)~'pa.peq—1q (p <1 pq and ¢ <, pq)

= Upq,pq,pq
= Upg-
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Thus vyv, = vy, and v preserves the semigroup multiplication. To see that v, is a
partial isometry:
* *
UpUpUp = Vppp(Vppp) Uppp
Up,p,pVe,p,eVp,p,p
Upp=1(pVipe),(peVrp)(pe) 1 (pVipe),(peV,p)p~teUp,p,p
Up,(pVrp),(pVrp)p~* Up,p,p
Up,p.eUp,p.p
Upp=1(pViep),(epVrp)(ep) =1 (pViep),(epVrp)p~tp
Up,p.p
= Up.
Thus v, is a partial isometry for all p € P. To prove covariance, observe that v,v; =
VpUpUe = Upp e and similarly vjv, = v . We compute:
* *
UpUpUqUy = Up,p,eVq,q,e

= Upp=1(pVieq),(eqVra)g— e~ (pVieq),(eqVra)g~te

= U(pvig),aq~(pV19),:99 "
= U(pVi9),(pVia).e
_ *
- U(pVZQ)U(leq)'

By a similar argument

* * _ _ _ *
UpUpUqUq = Ve,p,ple,q,q = Ve,(pVrq),(pVra) = V(pv,.q)V(pVrq)-:
We claim that {v, = v,,, : p € P} generates A as a x-algebra. From our definition
of A as a vector space we see that A = span{v, ., : p,q,7 € P,p <, ¢,7 <; ¢}. Thus it
3 — * _ * 3 1
will suffice to show that vy, 4, = VvV, = Vppp(Vggq) Vrryr Fix p,q,r € P with p <, q
and r <; ¢. We compute:
* _ *
UpUyUr = Up,pp(Vg,q,0) Vryrr
= Upppleqelrrr

Upp=1(pVipe),(peVrq)(pe) ~ (pVipe),(peVrg)g—teVrrr
= Up,(pVra),(pVra)g— Uryrr
Up,q.eVr,rr

= Upg—1(qvier),(erV.r)(er)~1(gVier),(erVor)r—ir
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= Upgq,r

Thus A is generated by {v,,, : p € P}. For ease of reading we will write v, = v,,
and then vy, 4 » = vV,
Next, we want to define a norm on A using representations of .A. We need to know

that appropriate representations exist.

LEMMA 3.3. Let (G, P) be a doubly quasi-lattice ordered group and let v : p — v,

be the covariant partial isometric representation constructed in Section 3.

(1) Let m be a unital x-representation of A on a Hilbert space H. Then m(v,) is a
partial isometry and there exists a covariant partial isometric representation
W : P — B(H) such that W, = m(v,).

(2) Let W be a covariant partial isometric representation W : P — B(H). Then

there exists a unital x-representation Ty : A — B(H) such that mw (v,) = W,

PROOF. (1). Suppose 7 is a unital representation of .4 on a Hilbert space H. We
showed above that for all p,q € P, v, is a partial isometry, v. = 1, v,v, = v, and
v: P — Ais covariant. Thus the map W : P — B(H) defined by W, = 7(v,) is a
covariant partial isometric representation.

(2). Suppose W is a covariant partial isometric representation W : P — B(H).
Define a map mw : A — B(H) by

_ *
™w § Cp,qrUpgr | = § , Cp,q,erWq W..
e<,p<rq e<,;p<rq
e<ir<iq e<ir<iq

Then my preserves addition and scalar multiplication. Multiplication and involu-
tion in A were defined to mimic the multiplication and adjoint of partial isometric
representations, thus my, also preserves multiplication and involution. In particular
Tw(vp) = Tw (Vppp) = WpW; W, = W, and 7w (ve) = We = 1. Hence my is a unital

x-representation. 0
Now we have the representations to define a norm on A. For all a € A define
||la|| :== sup{||w(a)| : 7 is a unital *-representation of A on a Hilbert space H }.

To see that this candidate for the norm is finite, fix a unital x-representation 7 of A
on a Hilbert space H. Observe that 7(v,,,) = W,W W, for some partial isometric
representation W. All partial isometries have norm less than or equal to 1, and thus
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[W,WsW, | < 1. Hence

(S ) [ 530 < 5 050 £ 5

So Y |¢pqr| is an upper bound for the norm of > ¢, 4,04 and so our candidate for

W,WiW,

the norm is well defined. Note that there is no issue taking the supremum over this
collection as the {||7(a)||} € R. Apart from showing ||a|| = 0 = a = 0 verifying the
norm axioms is straightforward, and we omit it.

Suppose |la]| = 0. Then ||7(a)|] = 0 for all 7 and hence 7(a) = 0 for all 7. Let
J: P — B(@,.p*(1,)) be the covariant partial isometric representation of Definition
2.15. By Lemma 3.3(2) there is a unital *-representation m; such that 7;(v,) = J, for
all p e P. Write a = Z Cp.grUpgr- LThen

e<,p<rq
e<ir<iq
*
0=my(a)= g Cp,a;rIpJy Jr-
e<,p<rq
e<ir<iq

Since {J,J;J 1 p,q,r € P,p <, q,r <; q} is linearly independent by Lemma 2.16,
each ¢, ,, = 0 and hence a = 0. Thus ||a|| = 0 implies @ = 0. Hence A is a normed
x-algebra and we may complete A with respect to that norm to obtain a C*-algebra
C*(G, P, P°?) generated by partial isometries {v, : p € P}.

PROOF OF THEOREM 3.1. Take C*(G, P, P°?) to be the C*-algebra constructed
above. Then C*(G, P, P°P) is generated by the partial isometries {v, : p € P}. Suppose
that A is a unital C*-algebra and that W : P — A is a covariant partial isometric
representation. Choose a faithful unital representation 7 : A — B(H). Now define
V:P — B(H) by V, :=mn(W,). Then V is a covariant partial isometric representation
of P.

By Lemma 3.3 there is a unital representation my : A — B(H) such that 7y (v,) =
V,. For all a € A,

|mv(a)|| < sup{||m(a)| : 7 is a unital *-representation of A} = ||a]|.

so my is bounded and extends to a representation of C*(G, P, P°?). With an abuse of
notation we continue to use my for the representation of C*(G, P, P°P) on H.
Now let ¢y := 7! oy This is a well-defined homomorphism from C*(G, P, P°P)

to A since 7 is faithful and range 7y C rangen. In particular
dw(vy) =7 omy(vy) =7 (V) = 1 (n(W},)) = W,

Thus ¢y has the required properties.
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To prove uniqueness, suppose that C' is a unital C*-algebra generated by a set of
partial isometries {w, : p € P} such that w : p — w, is a covariant partial isomet-
ric representation, and that the pair (C,{w,}) has the universal property. Then the
universal property of (C, {w,}) gives a homomorphism v, : C' — C*(G, P, P°?) such
that ¢, (w,) = v,. However, the w : P — C'is a covariant partial isometric representa-
tion so the universal property of C*(G, P, P°?) means that there is a homomorphism
¢y : C*(G, P,P°?) — C such that ¢,(v,) = w,. Further, ¢, is an inverse for 1,
and hence ¢,, is an isomorphism. Thus the pair (C*(G, P, P°?),{v,}) is unique up to

isomorphism. O

REMARK. It is important to note that C*(G, P, P°?) is not the same as C*(G, P)
that Nica constructed in [16, §4.2]. (See §1.2.3.) As we mentioned in §2.4, covariant
isometric representations are not in general covariant partial isometric representations.
When they are, i.e. when every pair in P has a common right upper bound in P, then
C*(G, P) is a quotient of C*(G, P, P°P). For example, (Z,N) is lattice ordered in both
left and right orders. Therefore the universal covariant isometric representation of w :
N — C*(Z,N) is a covariant isometric representation. Thus there is a homomorphism
Ow : C*(Z,N,N°?) — C*(Z,N). This ¢,, is a surjection, however, it is not faithful. As

shown in Lemma 2.16 viv; — vjvy # 0 however,
* * * *
O (Viv] — V309) = wiwy —wiwy =1 —1=0.

Thus C*(G, P, P°?)is a new, larger algebra associated to a given doubly quasi-lattice

ordered group.

3.1. Universal algebra of (G°P, P°P)

As we noted in Chapter 2, for any doubly quasi-lattice ordered group (G, P), its
opposite group (G°P, P°P) is also doubly quasi-lattice ordered. Therefore our construc-
tion of the universal algebra for (G, P) also applies to (G°P, P°P). For Nica’s covariant
isometric representations, the two universal algebras C*(G, P) and C*(G°P, P°?) are
distinet (for a discussion of the isometric case see [3, Remark 7.5]). However, this
distinction occurs because C*(G, P) only captures the left least upper bound structure
and C*(G°P, P°P) only captures the right least upper bound structure. As we showed
in Lemma 2.10 the left and right least upper bound structure of a doubly quasi-lattice
ordered group can be very different.

When we look at C*(G, P, P°?) we have already included all the information from
the two partial orders and so the switch to (G°P, P°P) is just a switch of labelling. As
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we show in Lemma 3.4, every covariant partial isometric representation of P°P is the

adjoint of a covariant representation of P.

NOTATION. Let (G, P) be a doubly quasi-lattice ordered group. Then (G°P, P°P)
must also be a doubly quasi-lattice ordered group. We need new notation for the left
and right orders on (G, P°?). Let <;,, be the left-invariant partial order on (G°P, P°P)
and let <, ., be the right-invariant partial order. It is easy to see that these “new”
orders are just the right and left orders respectively on (G, P):

1

T<ipye T pyuEPsyrtePsa<l,y

T<p Y S Y pr EPS T yE P <y

Similarly, (G°P, P°P) reverses the least upper bound structure: for all z,y € P we

have x Viopy =2V, yand o V,op y = 2V, y.

LEMMA 3.4. Let (G, P) be a doubly quasi-lattice ordered group and let A be a unital
C*-algebra. Let W : P — A be a map and define a map RV : P°® — A by RZV =W,.
The map W is a covariant partial isometric representation of P if and only if RV is a

covariant partial isometric representation of P°P.

PROOF. Suppose that W is a covariant partial isometric representation of P. Since
W, is a partial isometry for all p € P, so is W It follows that RXV = W, is a partial
isometry for all p € P°°. We have R = W* = 1. Fix p,q € P°° and compute:

W pW * * * * w w
RVRIV = WWr = (W,W,)* =W, =RY =R

Propq”
Thus R preserves the semigroup multiplication in P°P and hence is a partial isometric

representation. To show that R" is covariant, we compute:

W pWx pW pWsx __ * * o * _ pw Wx _ pW W
RYRV*RW RV = WW,W;W, = W, Wp,e=RY, RV =R" R

pPVrq PVrq~ "pVrq PVi,opqd” "PVi,opd
Wx pW pWsx pW __ * * * _ W« w . pWx w
Rp Rp Rq Rq o WPWP Wqu - WPquWszq o Rp\/zququ o var,Opq PVropq”

Thus R : P°? — A is covariant partial isometric representation of P°P.

To prove the reverse implication we use a symmetric argument. Suppose that
RW : P°® — A defined by RE/ := W, is a covariant partial isometric representation
of P°P. By the proof of the first part we know that RE" : (P°P)°P — A defined by

wa = (R))* is a covariant partial isometric representation of (P°°)°?. However,
(P°P)°P = P and, for all p € P, we have RF" = (RIV)* = (W})* = W,. Thus
REY — W and so W is a covariant partial isometric representation of P. [l

COROLLARY 3.5. Let (G, P) be a doubly quasi-lattice ordered group.
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(1) There exists a unital C*-algebra C*(G°P, P°P, P) generated by partial isome-
tries {w, : p € P°°} such that w : p — w, is a covariant partial isomet-
ric representation that has the following property: for every covariant par-
tial isometric representation W : P°® — A there is a unital homomorphism
ow = C*(GP, P°? P) — A such that ¢y (w,) = W,.

(2) There is an isomorphism ®., : C*(G, P, P°?) — C*(G°, P°®, P) such that

D(v,) = wy.

PRrROOF. (1). (G°P, P°?) is a doubly quasi-lattice ordered group and hence (1) fol-
lows immediately from Theorem 3.1.

(2). The map w : P°® — C*(G°P, P°?, P) is a covariant partial isometric represen-
tation of P°P. Hence, by Lemma 3.4, R* : P — C*(G, P°?, P) defined R = wy is a
covariant partial isometric representation of (P°P)°® = P. By Theorem 3.1, there is a

unital homomorphism
., : C*(G, P, P?) — C*(G®, P**, P)
such that ®,,(v,) = wy. To show that &, is an isomorphism we construct its inverse.
By Lemma 3.4, map R": P°® — C*(G, P, P°?) defined R} = v} is a covariant partial
isometric representation of P°P. Hence, by part (1), there is a unital homomorphism
¢, : C*(GP, P, P) — C*(G, P, PP)

such that ¢, (w,) = v5. Then ¢, 0P, (vy) = ¢y (wy) = (v;)* = v, and Pop0 Py, (wy) = Wy,

Thus ¢, is the inverse of ®,,. Hence ®,, is an isomorphism. [l
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CHAPTER 4

Faithful representations of C*(G, P, P°P)

In this chapter we seek to answer the question: given a doubly quasi-lattice ordered
group (G, P) and a covariant partial isometric representation W : P — A, when is the
corresponding homomorphism 7y : C*(G, P, P°?) — A of Theorem 3.1 faithful?

Let (G, P) be a doubly quasi-lattice ordered group. Then (G x G°P, P x P°P) is
quasi-lattice ordered. In particular, (G x G°P, P x P°P) has a partial order defined by
(x1,22) < (y1,99) if 1 <; 1 and 29 <, yo. Further, if 21 V; 41 < 0o and 23 V, yo < 00
then (x1,22) V (y1,92) = (21 Vi Y1, 22 V- y2). (Note that we are only considering one
partial order on (G x G°?, P x P°P) and so we use it without subscript.) For a finite
subset K C P x P°P let VK be the least common upper bound of K in P x P°P.

LEMMA 4.1. Let (G, P) be a doubly quasi-lattice ordered group and let W : P — A

be a covariant partial isometric representation. Then

{Lghxz) = Wx1W;1W;2Wx2 : (xl,xg) € P x POp}
18 a family of projections satisfying LK;,@) = 1 where e is the identity of G and LK/LZV =

LY, forz,y € P x P,

PRrROOF. Since W is a covariant partial isometric representation the projections
W, Wy and W}, W,, commute and hence each of the L)Y is a projection. As with

covariant representations, we use the convention L = 0. We have
LY o = WWWiW, = 1.
Fix z,y € P x P° where x = (21, 23) and y = (y1,92), and compute:
LZVLE/ = W W W We, Wy, Wo Wi W,
= W, Wy Wy, Wy W W, W, W,

o * *

- Wl’l Viy1 le Viyl WIL’Q\/TyQ Wx2\/ry2

.

— Y. O

DEFINITION 4.2. Let (G, P) be a doubly quasi-lattice ordered group. A function
L: P x P°® — A sees all projections if L(x) is a projection for all x € P x P°" and for
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every finite set I' C P x P°? and x ¢ F' such that x is a lower bound for F', we have

[T, (L(x) — L(y)) #0.

A covariant partial isometric representation W : P — A sees all projections
if the map LY : xP°® — A defined by LY ((x1,29)) = LV
Wo Wi W2 W, sees all projections.

where LFV =

(z1,x2) 21,12)

In the next lemma we show that “IV sees all projections” is a necessary condition
for my to be faithful.

LEMMA 4.3. Let (G, P) be a doubly quasi-lattice ordered group.

(1) Let J : P — B(@,cp*(1.)) be the covariant partial isometric representation
of Definition 2.15. Then J sees all projections.

(2) Let v : P — C*(G, P, P°?) be the universal covariant partial isometric repre-
sentation. Then v sees all projections.

(3) Let m : C*(G, P, P°®?) — A be a faithful homomorphism. Then W : P — A

such that W, = m(v,) sees all projections.

PROOF. (1). Let ' C P x P° be a finite set with lower bound = ¢ F. We see that

[Tzl -1))=ri+ Z = | B

yer KeP(F yeK
— LJ—|— E |K|LJ
KeP(F

Since z is a lower bound for F, VK # x for all K C F. Therefore we have a linear
combination of distinct projections of the form L] = J,, J: . J.,. By Lemma 2.16 the
set {JpJiJy o p < q,7 <; q} is linearly independent. So [] .p(LJ — L) cannot be 0.

Thus J sees all projections.

yeF

(2). By the universal property of C*(G, P, P°P) there is a representation m; :
C*(G, P, P°?) — C¥(G, P, P°?) such that m;(v,) = J,. From part (1) J sees all pro-
jections. Therefore v must also see all projections.

(3). We proved in (2) that v : P — C*(G, P, P°?) sees all projections. Thus, for
every finite set [ C P x P°® and x € P x P°P\ F such that x is a lower bound for F,
we have [, c(L; — Ly) # 0. Since 7 is faithful we see that

[Ty -1y) == <H<Lz —L;)) # 0.

yeF yeF

Thus W sees all projections. 0
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From Lemma 4.3(3) it follows that W seeing all projections is a necessary condition
for the corresponding representation 7wy, to be faithful. However, we need another
condition to complete the statement of our theorem. We take a moment to define a
conditional expectation on our universal algebra. This will allow us to define a property
of doubly quasi-lattice ordered groups that we shall call amenability. We will justify

our use of this term after we have defined it.

DEFINITION 4.4. Let A a be a unital C*-algebra and let B be a subalgebra of A. A
completely positive norm-decreasing linear map F : A — B is a conditional expectation
if, for all a € A and b,c € B, E(bac) = bE(a)c. A conditional expectation is faithful
for positive elements if E(a*a) = 0 for a € C*(G, P, P°?) implies a = 0.

We quote a theorem of Tomiyama which gives a more useful equivalent condition.

THEOREM 4.5 ([23, Theorem 1][1, Theorem 11.6.10.2]). Let A be a unital C*-algebra
and let B be a subalgebra of A. Suppose that E : A — B is a norm-decreasing linear

map. Then E is a conditional expectation if and only if E is an idempotent with norm
1.

PROPOSITION 4.6. Let (G, P) be a doubly quasi-lattice ordered group. Then there
is a unique norm-decreasing linear map E : C*(G, P, P°?) — C*(G, P, P°?) such that

n
* _ ) *
E(E /\ivpivqivﬁ> = E AiUp, Uy U,
i=1

qi=TiPs

and FE is a conditional expectation onto span{vpv;fpv,« :p,r € P}.

We require several lemmas for the proof of Proposition 4.6 and so we will defer
the proof until Section 4.2. We can now define a concept of amenability for doubly

quasi-lattice ordered groups and state the theorem that motivates this chapter.

DEFINITION 4.7. We say a doubly quasi-lattice ordered group (G, P) is amenable
if £ : C*(G, P, P®?) — C*(G, P, P°?) as described in Proposition 4.6, is faithful for

positive elements.

THEOREM 4.8. Let (G, P) be an amenable doubly quasi-lattice ordered group and
let W : P — A be a covariant partial isometric representation. Further, let wy be the
corresponding homomorphism of C*(G, P, P°?). If W sees all projections then my is
faithful.
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REMARK. We justify our use of the term “amenable” on several fronts. First, it
follows the precedent set by Nica in [16, §4.2] for an analogous property of quasi-
lattice ordered groups (for example [11, Definition 3.4] and [5, Definition 15]). Second,
we will prove in Theorem 6.2 that amenability is a necessary and sufficient condition
for the universal C*-algebra C*(G, P, P°?) to be isomorphic to the reduced C*-algebra
Cy(G, P, P°?). Third, we will prove in Proposition 6.6 if (G, P) is a doubly quasi-lattice
ordered group and G is amenable as a group, then (G, P) is amenable as a doubly quasi-
lattice ordered group. Fourth, the expectation £ is analogous to the canonical trace 7
on the universal group C*-algebra C*((G), which is faithful for positive elements if and

only if G is amenable as a group (see Lemma 5.14).

The rest of this chapter is devoted to the proof of Theorem 4.8. We divide the work
into two sections. The first section examines the diagonal subalgebra of C*(G, P, P°P)
generated by the projections LY. This diagonal subalgebra is also the range of E. The

second section covers the proof of Proposition 4.6.

4.1. The projections of C*(G, P, P°P)

In this section we examine the diagonal subalgebra span{v,v; v, : p,r} generated
by the range and source projections v,v;,v, = Lq(JW). We will show in Proposition 4.10
that my is faithful when restricted to span{v,v;,v. : p,r} if and only if W sees all
projections. We start by proving a restatement of [11, Lemma 1.4] which allows us to

write down the norm of a linear combination of projections.

LEMMA 4.9. [11, Lemma 1.4] Let (G, P) be a doubly quasi-lattice ordered group
and W : P — A be a covariant partial isometric representation. Suppose that W sees

all projections. Then for every finite set K C P x P°° we have
HZ)\QCLZV :max{‘ Z Az
zeK zeK,x<y

PrOOF. Fix a finite set K C P x P°?. We begin by decomposing the identity into

:yEPxPOp}.

a linear combination of the LY. We have

1=l +a-=> (I1e¥ I1 a-Lh)

zeK BCK z€B yeK\B

:ZLVWB H (1_LZV)

BCK yeK\B

= Z H (L\V/VB _LECB>~

BCK yeK\B
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We will now show that we can write >. . A,LY as a finite linear combination of

mutually orthogonal projections. We have

Z AxLIV - Z AJ/?( Z H (LEVB - LZ%B))

zeK zeK BCK yeK\B

=S (3 n I £l -2y

2€K BCK  yeK\B

(4.1) =3 (> T (B = L)),

zeK BCK  yeK\B

The term [, e 5(Lip — LiN,vp) is zero if @ ¢ B because then x € K\B and
LW =LY 5 =0 Ifx e Bthenz < VBso LY 5 — LZ[(/va = LY — LZ‘CB for
all y € K\ B. Thus we may reverse the order of summation in (4.1) to get:

D ML= ) e [] (LU~ Lylp)

zeK BCK zeB yeK\B

We claim that the {Qp := [[,cxp(LV5 — Lyup) : B € K} are mutually orthogonal.
Suppose that B,C' C K and B # C. Without loss of generality assume that there
exists z € C\ B (otherwise use B\C'). Then

QeQc = Qp(Lyp — L) LycQc
= Qp(Lpye — L pve)Qc
= Q5(Lpve — Liye)Qc
= 0.
Thus {Qp = [l,cxp(LVp — Lyup) : B € K} are mutually orthogonal projections.

Therefore we have written >, . AL} as a finite linear combination of mutually or-

thogonal projections

S =3 () I (B - 1w

zeK BCK zeB yeK\B

H Z)\ILK/ = max{‘ Z)\x
reEK reEB

We claim Qg # 0 if and only if there isay € P x P°® such that B={z € K : z <
y}. First, suppose that B = {z € K : © < y} for some y € P x P°°. Then B has a
common upper bound so VB < oo and F' = {2V B : z € K\B} is a finite set with VB ¢
F and VB is a lower bound for . Thus HyeK\B(L\/WB — L 5) = [Lep(LYp—LY) #0

by our assumption that W sees all projections.

Thus

:BgKandQB7éo}.
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Second, suppose that there is no y € P x P°? such that B = {z € K : x < y}.
There are two subcases: either B has no common upper bound, in which case VB = oo
and Lz = 0. Hence L\ — L, for all y € K\B since L\,z < LY. Or the second
subcase: B has an upper bound in P x P°P but there exists z € K\ B such that z < VB.
Then LV, — LY, 5 = LU — LV = 0. Thus we have proved our claim that Qp # 0 if
and only if there is a y € P x PP such that B ={z € K : 2 < y}.

Therefore
{BCK:Qp#0}={BCK:yecPxPPand B={re€ K:z<uy}}
Now applying this to the norm we calculated above

| Z ALY || = max{| Z)“”| :BC K and Qp # 0}

zeK z€B

:max{|2)\xl:yEPxPOpandB:{xEK:xSy}}

zeB

=max{| » A|:y€PxP7r}

zeK,x<y

Since K is finite, there are at most |P(K)| possible values for | > M| and hence

zeK,x<y
the maximum is well-defined. Thus

HZAQ,LZV :max{‘ SN
zeK reK,z<y

LEMMA 4.10. Let (G, P) be a doubly quasi-lattice ordered group and let W : P — A

be a covariant partial isometric representation. Then my : C*(G,P,P®) — A is

:yEPxPOp}. 0

faithful on span{v,vy,v, : p,r € P} if and only if W sees all projections.

PRroOF. First, suppose that my is faithful on Spﬁ{vpv;'fpvr :p,r € P}, We will
show that W sees all projections. Fix a finite set F' C P x P°? and = ¢ F' such that x
is a lower bound for F'. By Lemma 4.3, v : P — C*(G, P, P°?) sees all projections so
we have [, (L3 — Ly) # 0. Further,

H(LZ — L) € span{v,v,,v, - p,7 € P}
yeF

Since my is faithful on span{v,v},v, : p,r € P} we have

0 # mw (H(Lz - L;)) =@y -1y

yelr yeF

Thus W sees all projections.
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Second, suppose that W sees all projections. We will show that 7y, is isometric on

span{v,v;,v, : p,7 € P}. Observe that vyv),v, = L, and hence

(p.7)
span{v,v,, v, : p,7 € P} =58pan{ Ly : x € P x P}

Let K be a finite set in P x P°P. Since v and W see all projections we can apply

Lemma 4.9 to see that

1D ALl =max{| Y Af:yePxPPh=]) ALY

zeK rzeK,x<y rzeK

lmw (Y AL = 1Y AL = 1Y ALl

zeK rzeK zeK

Hence

Thus 7y is isometric on span{v,vy,v, : p,r € P} which is dense in span{v,v;,v, : p,7 €

P}. Hence my is faithful on span{v,v;,v, : p,r € P}. O

4.2. Construction of £ and proof of Proposition 4.6

In this section we put together the three lemmas we need to prove Proposition 4.6.
We first show how the projections LY interact with W, and Wy

LEMMA 4.11. Let (G, P) be a doubly quasi-lattice ordered group and let W : P — A

be a covariant partial isometric representation.

(1) For all p € P we have

w 1% w
WoLios02) = Lipas ovraayp-y W @d L, o)Wy = WLy

(z1,m2) — (pViz1),22p) "

(2) For all p € P we have

* w * w * *
W L(Il T2) T L(pfl(p\/zfcl)»mp)wp and L (z1 xz)W =W, L(pfvlﬁ(P\/rm)p 1y

PROOF. (1). Fix p € P and z = (z1,22) € P x P°?. To compute W,LY we use
the partial isometry identity to rewrite W), as W,W W, and perform the computation
using Lemma 2.14(1). Compute:

WLy = W, W W, W, Wi W,

T2T1

= Wyt

(p\/lpll)W(zgm\/rpzl)(pxl)*l (p\/lpazl)W(CI?QMVrprl)(ﬂsz)_ll“Q

Observe that p <; px; so pV;pry = pry. By Lemma 2.7(2) (xox1 V, px1) = (22 V, p)xq
Thus we simplify:

WPLW me W Wz2 Vrp

(z2Vrp)p~lpzy
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Since p <, 2 V, p we can write Wz,v,p) = Wigyv,p)p-1 Wp. Thus:

WoLY = Wy, W
_ W
= L(

px1,(pVra2)p™

(x2Vrp)p pxlw(ivzvrp)z)’l Wp
1 W.

To prove the second relation we compute:

LYW, = Wy Wi Wo, W,W*W,

T2T1

= W(xl(ﬂﬁle)’l(ftflevzafzp) W(Zvrmp)(:vzp)*l(zzmvzmp) W(pvrfczp)p”p

. *

= W(m\/zp Wxgpp 1 x1Vzp)Ww2p

_ *

= W W —1(z1Vip) szpp lezp)me
W

- W L L(pViz1),z2p)”

Thus the proof of (1) is complete.
(2). We prove (2) by passing to the adjoint and applying (1):

WL 2y = (Lioy anyWo)* = (W,L(;-

%%
(1,22 L

p~L(pViz1),x2p

Wy

)t =
YpViz1),@ep)) —

L(xl mg W (W Lm:ljl :)32 ) (L(pxl,(p\/ram)p 1)W ) W*LW

(px1,(pVrz2)p~t)-

Thus the proof is complete. 0J

LEMMA 4.12. Let (G, P) be a doubly quasi-lattice ordered group and let W : P — A
be a covariant partial isometric representation that sees all projections. Lety ., AW, Wy W,
be a fixed finite sum such that p; <, q; and r; <; q;. For ally € P x P°P there exists a

nonzero projection @, that satisfies

y(z )‘iniW;Wm)Qy = ( Z /\i>Qy'
= (pir)<y

PrOOF. Let )" | AW, W2, be a fixed finite sum and fix y = (y1,42) € P x P°P.

We can write down our candidate for @),,. For each ¢ such that r;p; # ¢; let
_ -1 —1 -1 -1
i = (i Vipig; i), (@ipi™ Vo yory @ip; )

bi = ((ri 'qs Viry api vn)s (i Vo Yapigy '),
It is not guaranteed that these upper bounds exist, however the proof still works if the

a; or b; are co. Now we define

a; ifa; £y
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Then write
Q=L ] @ =L DT @) = L)
qi=7:ipi,(pi,mi) LY qiFTiDi

(We are not worried if the yV (p;, ;) = oo or yVd; = oo because LY = 0 by convention.
In that case L) — LY = L}V.)

We claim d; £ y for all ¢ such that g; # r;p;. There are two cases to consider: either
a; Lyora; <y. If a; £ y then d; = a; and d; £ y. Now suppose a; < y. Then d; = b;

and we suppose, aiming for a contradiction, that b; < y. Since a;,b; < y we must have

(ritq Vir aipytyn) <o yr and (p; Vo pigs trivn) <oy

Thus r; 1ql-pi_ Yy < yq and Diq; Yran <, 1. By left-invariance we see

rtap iy < e oy <pig; i

Hence y; = piq; 'ryy1 and so q; = 7p;, giving a contradiction. Thus d; £ y.

We need to show @), is nonzero. The set

F=A{yV (pi,r:):q=mripi,(pi,ri) Lyt U{yVvd: ¢ # rip}

is finite, y is a lower bound for F and y ¢ F. We can write Q, = [[,c(L) — LYV).
Since W sees all projections, @), is nonzero.

We now want to see how @), interacts with a single W), W W, so we fix an 7. There

are three cases: (1) ¢; = rip; and (p;, 1) < y; (2) ¢ = rip; and (pi, 13) £ y; (3) @i # ripi-
(1). Suppose ¢; = r;p; and (p;, ;) < y. Then

Wy W Wy, = Wy, WE, W, =L

TiPi - (pi 77"1')

and so

QpriW;WmQy = QyLZVWpiW;inQy QyLW V;[fz,n Qy = QyLZVQy = Qy‘

(2). Suppose g; = rip; and (p;, r;) £ y. Then W, WrW, = L7’ and

(plaT'z
QprithWTiQy Qy(LW Lyv(p i) )WPZW;;WT’LQy
- Qy(LW Lyv(m ri) ) Vz[:i i) Qy
= Qy( yV(pi,ri) y\/ Di,Ti) )Qy
=0
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(3). Suppose that ¢; # r;p;. There are two subcases for the two values of d;, either
d; = a; or d; = b;. First, suppose that d; = a;. Then we can compute, using Lemma
4.11(1) and (2):
* w _ * T W
W, qu‘ WTiLy - Wpiqu‘L(Tiyh(Ti\/ryz)Tfl)W”

=W, WrLV"

W
@ (g, (eVpyar; 1)) T

=W, LV, Wi W,

(g; *(@iViriyr),(eVryar; M)as)

_ w *
=W, LV, W,

(g7 (@Viriv1) (@ Vey2ry g
1 k3

w *
- W W W,

(psq; (@Virayn),(pi Vo (@i Veyers ta))p;

=LV 1)WpiW;Wri (pi <; @)

((piVipig; triy1),(@iVeyer; 'ai)p;
- L&ivzpiqflnyl),(qip{lvryzn‘lqm?l))WpiW‘;‘ W,
= Ly Wy, Wi W,,.
Then
QW WaWrQy = Qy(Ly — Lya)Wp, Wy Wi L Q,
= Qy(LZV - LZ‘\//di)LZWpiW;WmQy
= Qy(L}a, — Ly )Wy, Wi W,,Q, = 0.

Second, suppose that d; = b;. Then we compute:

LZVWPZ' W‘Z‘Wri - WpiL&-_l(Pi\/zyl)vywz')W(; W,
=Wy, W;i ngp{l(pivzyl),(qivryzpi)qflW”
- Wpi W‘; LFZR\/zqz‘Pi_lyl)v(E\/rwpiqi_l)Wri
= Wpi Wq*z WTiLE%l(rivlqi\/lqipi_lw)7(€Vry2piqi_1)ri
- WpiW‘;iW”L%flqz-Vzrflqipflm)7(riV7-y2piQZlﬁ) (ri <1 @)
=W, W W, L) .

Then
Qpri Wq*i WmQy = QyLZVWpiW(ZWm(LZV - LZ‘Cdi)Qy
= QmeW(ZWnLZ(LZV - Lzzdi)Qy
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Thus we see that

Q, if ¢ =mrp and (p;,r;) <y

QyWPiW;WMQy -
0  otherwise.
Hence
Z)\W We W, )Q, = ( > Ai)Qy
qi=Tipi
(pi,ri)<y
and the proof is complete. 0

LEMMA 4.13. Let (G, P) be a doubly quasi-lattice ordered group and let W : P — A
be a covariant partial isometric representation. If W sees all projections then, for

i <r ¢; and r; < qi,
n
DSPRIATATA RN SRR
i=1 TiDi=(q;
PRrRoOOF. First observe that

> AW, WEW,, = Z ALY

T’Lp’t ql sz
Since W sees all projections, we can apply Lemma 4.9, to see

[ Z i L(pm,l = max{| Z il 1z € P x PP}

Tipi= 4i=TiPi
e (pisri) <z

Let y be an element of P x P°P that attains this maximum i.e.

> Al=max{| Y  A\[:z€Px PP}
s i
(This element y is not necessarily unique.) By Lemma 4.12 there exists a nonzero

projection @), such that

(43) QAW Wi, = (3 Me,
=1 qi=TiPq
(piri)<y

Since projections have norm < 1 we observe:

> (1@, ( ZAW Wi W, )Qyl

=1 X el

qi=TiPi
(pi,ri) <y
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PIRY

=TiDi
(pz T4 ) <y

By our choice of y we have | > ) il = max{| Z a=ripi Ni| 1 2 € P x P°P}. So:

pz 77”1)

||Z>\W WeW,, || > max{] Y  X\|:z€Px PP}
(zq;i,r:;lgz
_|| Z >\1 (pl,n)H
TiPi=qi
TiDi=q;

Thus H Z?:l )‘Zsz Wq*l Wn‘

2 H Zﬁpz:qz' Azwplw‘;er

and the proof is complete. [
We can now prove Proposition 4.6 using Lemma 4.13.

PROOF OF PROPOSITION 4.6. Define a map E on span{v,v;v, : p <, ¢,7 < q}
by

n
*
E( g Aivpivqivr E AiUp, Uy U,
i=1

=TiPi

By Lemma 4.3(2) v sees all projections and hence we can apply Lemma 4.13 to see

H Z)\ /Upzquv'rz > ” Z >\ Upzvql/UTz - ||E Z)\ /Upzv /U"'z

q’L_T’Lp’L
Hence E is norm-decreasing. The x-subalgebra span{v,viv, : p <, q,r < g} is

dense in C*(G, P, P°?), so we may extend E to a norm-decreasing linear map E on
C*(G, P, P°?). Tt is clear that FE is onto span{v,v;,v, : p,r € P} and hence, by conti-
nuity, onto span{v,v;,v, : p,r € P}.

To show that F is a conditional expectation it suffices, by Theorem 4.5, to show that
E is an idempotent. Fix a € span{v,v;,v, : p,r € P} and write a = " | A\vp, v} vy,

We compute:

E(E(a)) = E(E(Z Aitp, U Uy, ) = E( Z AiUp, U Ur, ) = Z AiUp, Uy U,
i=1

qi=TiPi =TiPi

So E(E(a)) = E(a). By continuity this relation extends to all b € C*(G, P, P°P). Thus
E' is an idempotent and hence is a conditional expectation by Theorem 4.5.
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To prove E is unique, suppose that there is another bounded, linear map F' on
C*(G, P, P°P) such that

n
* _ *
F(E AiUp, Vg Ur, ) = E AiUp, Uy U,
=1 q

i =TiPi
As we noted above, the x-subalgebra span{vpv;vr :p <, q,r <; ¢} is dense in
C*(G, P, P°®). For all a € span{v,viv, : p <, ¢, <; ¢} we have E(a) = F(a).
So E and F are bounded linear maps that agree on a dense subalgebra and hence
E = F. So F is indeed unique. O

We can now prove Theorem 4.8.

PROOF OF THEOREM 4.8. Let a € C*(G, P, P°?) such that my (a) = 0. To show
mw is faithful we will prove that a = 0.
We claim that, for all b € C*(G, P, P°?), we have ||[mw (E())|| < ||7w(b)||. By

continuity, it will suffice to prove this for b € span{v,viv, : p <, ¢,7 <; ¢}. Compute

lmw (B Aivp g ve)) | = lmw (Y Avp,vp,0n,)
i=1

qi=TiPi

qi=TiDsi

<D AW, W W, | (by Lemma 4.13)
=1

n
= ||7TW(Z Aivpiv;vm) -
=1

Thus for all b € C*(G, P, P°?), we have ||mw (E(b))|| < ||mw (b)]|.

Since my (a) = 0 it follows that my (a*a) = 0. So ||7w (E(a*a))|| < ||mw(a*a)| = 0,
and hence Ty (E(a*a)) = 0. We know that E(a*a) € span{v,v;,v, : p,r € P}. Further,
by Lemma 4.10, 7y is faithful on span{v,v;,v, : p, € P}. Thus
(4.4) mw(E(a*a)) = 0= E(a*a) = 0.

By assumption, (G, P) is amenable, that is, £ is faithful for positive elements. Hence
E(a*a) = 0 implies a = 0. Thus 7y is faithful. O
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CHAPTER 5

Necessary background and constructing conditional

expectations

The main results of this chapter are Lemma 5.18 and Lemma 5.15 which detail
two methods for constructing conditional expectations. Given the central role that
conditional expectations play in our definition of amenability these are central to proofs
in the next two chapters. These constructions require considerable set up, most of which
we will use again anyway. In particular, we need results about tensor products, group
algebras and amenable groups. Rather than constantly referring to results printed
elsewhere, we take a moment and dedicate the first three sections of this chapter to

going over the constructions and quoting the relevant results so we can refer back.

5.1. Tensor products of C*-algebras

We will be using tensor products of C*-algebras extensively, so we will take a
moment to go over the key points we will use. We start by defining the tensor product
of vector spaces. These results are taken from [20, Appendix B].

Let U,V be vector spaces. The tensor product of U and V is the vector space U ®V
together with a bilinear map 7" : (u,v) — u ® v such that, for any bilinear map B :
UxV — Z there is a unique linear map L : UGV — Z satistying LoT'(u,v) = B(u,v).
One can also think of U ® V' as the vector space spanned by {u ® v : v € U,v € V'}

where the addition of the u ® v is bilinear, for example:
A(u1 @ v) + Ag(ua @ v) = (Aug + Aaug) @ v

and

Mu®v)= (M) ®v=u® (\v).
If U and V are Hilbert spaces then, by [20, Lemma 2.59], there is a natural inner
product on U ® V satisfying

(U1 @ vy | ug @ va) = (ug | uz)(vy | va).

We can complete U ® V in the norm induced by this inner product to get a Hilbert
space U ® V. For Hilbert spaces there is a natural choice of norm, this is not the
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case for C*-algebras. (We use ® for purely algebraic tensor products and ® for tensor
products that have been completed in some norm.)

Let A and B be C*-algebras. Taking the algebraic tensor product of A and B there
is, by [20, Lemma B.1], a unique *-algebra structure on A ® B given by

(a®b)(c®d)=(ac®bd) and (a ®b)" = a* R b".

To get a C*-algebra we need to apply a norm to A ® B and complete it. There is,
in general, no unique norm on A ® B. However, there are two particular norms that

are useful in different situations: the spatial norm and the maximal norm.

5.1.1. The spatial norm. The spatial norm is defined by representing A ® B on
the tensor product of Hilbert spaces. Suppose that H and K are Hilbert spaces and
that S € B(H)and T € B(K). By [20, Lemma B.2] there is a unique bounded operator
S®T on H® K such that S®T(h® k) = Sh® Tk and ||S®T|| = ||S||||T||. Further, by
[20, Lemma B.3], there is an injective x-homomorphism ¢ : B(H)® B(K) - B(H®K)
such that (S ® T)(h ® k) = S®T(h ® k). So we can identify B(H) ® B(K) with a
subalgebra of B(H ® K) and take B(H) ®. B(K) to be the closure of B(H) ® B(K).

So suppose that A and B are arbitrary C*-algebras. Let 7 : A — B(H,) and
n: B — B(H,) be faithful nondegenerate representations. The map (a,b) — 7(a) ®
n(b) € B(H,® H,) is bilinear. Hence, by the universal property of the algebraic tensor
product, there exists a linear map 1 ®n : A® B — B(H, ® H,) characterized by
T ®n(a®b) = m(a) ®n(b). Since m and n are faithful, the map 7 ® 7 is injective on
A®B. We now have anorm on A®B: fort € A®B let ||t||, = [|[7®n(t)| H,0m,)- By
[20, Remark B.4] the completion of A® B in this norm is isomorphic to 7(A) ®@. n(B).
By [20, Theorem B.9], the norm || - ||, does not depend on our choice of 7 and 7 and

so we write || - ||z, = || - ||l min-

DEFINITION 5.1. If A and B are C*-algebras, then the norm || - || is called the
minimal norm (or spatial norm) on A ® B. The completion of A ® B with respect
t0 || + ||min is denoted, A @i, B, and is called the minimal tensor product. (Or spatial

tensor product.)

We call || - ||min the minimal norm because for all C*-norms || - ||, on A ® B we
have ||a ® b|| = ||al|||b|| and [|t||a > ||t||mn for all t € A® B. (See [20, Theorem B.38]).
The main result we use going forward regarding the minimal tensor is that it preserves

injective homomorphisms and representations:
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PROPOSITION 5.2 ([20, Proposition B.13]). Suppose that ¢ : A — C and 1) : B —
D are homomorphisms between C*-algebras. Then there is a unique homomorphism
GRY: AQuin B — C Quin D such that ¢ @ ¥(a ®b) = ¢(a) @ (b) for alla € A and
be B. If ¢ and v are injective, then so is ¢ @ 1.

5.1.2. The maximal tensor product. There is also a biggest norm on A ® B,
the maximal norm. This is the norm defined by taking the supremum over all other
C*-norms on A ® B.

|t]|max = sup{||t|l5 : || - ||l, is a C*-norm on A ® B}.
This supremum is well-defined by [20, Proposition B.25].

DEFINITION 5.3. The completion of A ® B in || + ||max is C*-algebra called the
maximal tensor product of A and B, and denoted by A ®.x B.

The maximal tensor product, A ®y.x B, is universal for representations of A and

B with commuting ranges.

THEOREM 5.4 (|20, Theorem B.27]). Suppose A and B are unital C*-algebras.
Then there are unital homomorphisms iy : A = A Quax B and ip : B — A Quayx B
such that

(1) ia(a)ipg(b) =ip(b)ia(a) =a®b fora e A, be B;
(2) if ¢ and ¢ are representations of A and B with commuting ranges, then there
is a representation ¢ Qmax ¥ of A Qmax B such that

¢ Qmax V(ia(a)ig(b)) = ¢(a)(b) fora € A, b e B.
(8) A @uax B =38pan{ia(a)ig(b):a € A and b € B}.

In this thesis, we only consider unital C*-algebras and so we don’t need to consider
the multiplier algebra M (A ®muax B), that appear in the more general statement of
Theorem 5.4. The maximal tensor product has an analogue of Proposition 5.2, however,

the maximal tensor product does not necessarily preserve injectivity.

LEMMA 5.5 ([20, Lemma B.31]). Suppose that ¢ : A — C and ¢ : B — D are
homomorphisms between C*-algebras. Then there is a unique homomorphism ¢ ® ) :
A Qmax B = C @umax D such that ¢ @max ¥(a @ b) = ¢(a) @ (b) for all a € A and
beB.
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5.1.3. Nuclear C*-algebras. We have two different completions of A ® B with
properties that are useful in different situations (as well as many intermediate com-
pletions). Obviously we would like to be able to use both sets of results. Fortunately,

there is a large class of C*-algebras where the two norms are the same.

DEFINITION 5.6. We say that a C*-algebra A is nuclear if, for every C*-algebra B,

A ® B has only one C*-norm. In particular || - ||min = || - [|max-

When we prove nuclearity in Chapter 7 we will use an equivalent condition: A is
nuclear if and only if the canonical homomorphism from A® . B t0 ARy, B is injective
for every C*-algebra B. Fortunately, it suffices to check only unital C*-algebras B (see
[20, Lemma B.42]).

EXAMPLES. e All commutative C*-algebras are nuclear. [20, Proposition
B.43]
e Let H be a Hilbert space with countable orthonormal basis. Then IC(H) the

set of compact operators on H is a nuclear C*-algebra.

5.2. States and tensor products

We will construct conditional expectations from states on tensor products, so we
collect the results we use. We prove two that we were unable to find a suitable reference

for. These results do not feature, beyond the construction of conditional expectations.

PROPOSITION 5.7 ([20, Proposition A.5]). For every state T on a C*-algebra A,

the GNS-construction gives a nondegenerate representation w, of A on a Hilbert space
H,.

PROPOSITION 5.8 (|20, Proposition A.6]). If p is a state on a C*-algebra A, then
there is a unit vector h, in H, which is cyclic for m, and satisfies p(a) = (m,(a)h, | h,)
for all a € A. Conversely, if h is a unit cyclic vector for a representation m : A —
B(H), then 7 : a +— (w(a)h | h) is a state on A, and the map a — 7w(a)h induces a
unitary isomorphism U of H, onto H, such that w(a) = Un.(a)U* for all a € A.

LEMMA 5.9. Let A and B be unital C*-algebras and let f : A — C and g: B — C
be states.
(1) Then there ezists a norm decreasing linear map id ® g : A @uin B — A such
that id ® g(a ® b) = g(b)a.
(2) Then there exists a norm decreasing linear map f ®id : A @uin B — B such
that f ® id(a ® b) = f(a)b.
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PROOF. We prove (1) and then (2) follows a symmetrical argument. (1). The map
from A x B to A defined by (a,b) — g(b)a is bilinear. Thus by the universal property
of the algebraic tensor product there exists a unique linear map id®g: A® B — A
such that id ® g(a ® b) = g(b)a. We wish to extend this map to the complete minimal
tensor product. To do this it will suffice to show that id ® ¢ is bounded in the spatial
norm.

Choose a faithful representation 74 of A on a Hilbert space K. By Proposition 5.8
there exist a representation 7, of B on a Hilbert space H, and a cyclic unit vector
h, € H, such that g(b) = (m,(b)hy|h,) for all b € B. By Proposition 5.2, there is a
unique representation 74 @ 7y : A Qmin B = B(K ® H,) satistfying 74 ® my(a ® b) =
ma(a) ® my(b). To show id ® g is norm-decreasing we will prove that for all c€ A® B
ma(id ® g(c)) is a bounded operator on K with [|74(id ® g(c))|| < |||

Write ce A®@ Basc=) . a; ®b;. Consider the map . : K x K — C given by

Be(4, k) = (ma(id ® g(c))jlk).

We claim S, is a bounded sesquilinear form.
Fix j,k € K. Compute:

B4, k) = (ﬂA(id®g(iai®bi)) ’ > Zg (ma(a;)jlk)

The inner product is sesquilinear and the m4(a;) are bounded linear operators on K.

Hence S, is sesquilinear. To show (. is bounded, compute:

|mumr:§jg ) (maai)jlk)

n

— | 0wy (b)hglig) (mala) )|

i=1

8.6 k) = |(ma ® Wg(iai @ b:) (j @ hy)lk @ hy )

i—1
< ‘WA®7T9<ZCL2‘®5¢>
i—1

Note that ||hy|| = 1, therefore ||7 ® hy|| = ||j|| and ||k ® hy|| = || &||-

15 hyllllk & gl

18G5, )| < ||| 13010

Thus . is bounded. Hence there exists, by [9, Theorem 3.8-4], a bounded operator
T. on K such that f.(j,k) = (T.jlk) and ||T.|| < ||¢||. In particular note that T, =
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ma(id®g(c)) and, |[|[Ta(id®@g(c))|| = ||Te]| < ||e|l. Thus id ® g is bounded in the spatial

norm and hence may be extended to the complete minimal tensor product AR, B. [

LEMMA 5.10 ([20, Corollary B.12]). Let A and B be unital C*-algebras and let
f:A—=Candg: B — C be states. There exists a unique state f ® g : A @uin B — C
such that f ® gla®b) = f(a)g(b).

LEMMA 5.11. Let A and B be unital C*-algebras and let f : A — C and g: B — C
be states. Then fo(id®g)=f®g=go (f®id).

Proor. We will show the first equality and the second will follow by symmetry.
Both f and id ® g are bounded and linear and hence their composition is likewise
bounded and linear. The state f ® g is also bounded. Hence it will suffice to show that
these two functions agree on the dense subspace spanned by elementary tensors. Let
a € Aand b€ B. Then

fo(id®g)la®b) = flg(b)a) = fla)g(h) = f®@gla®Db). [

5.3. Group algebras and amenable groups

For a group G, a unitary representation of GG into a unital C*-algebra A is a map
U : G — A such that U preserves the group structure in the following sense: for
g,h € G we have U,Uy, = Uy, U. = 1 where e is the identity of G, and Uy = Uy-1. The
group algebra of a group representation U : G — A is the C*-subalgebra of A generated
by {U, : g € G}. There are two specific group algebras that we are interested in: the
reduced algebra and the universal algebra.

The reduced group algebra C(G) is concretely defined. Let {e;, : h € G} be the
usual orthonormal basis for 2(G). Then A : G — B((*(@)) defined by A&, = €gn
is a group representation. Let C*(G) be the C*-subalgebra of B(¢*(G)) generated by
{\; 1 g€ G}

The universal algebra of GG is characterized abstractly:

THEOREM ([18, §7.1.5]). Let G be a discrete group. There exists a C*-algebra
C*(G) generated by unitaries {u, : g € G} such that u : g — ug, is a unitary rep-
resentation of G, which is universal for unitary representations of G in the following
sense: for any unitary representation U : G — A there exists a unital homomorphism
iy C*(G) — A such that ¢y (u,) = U,. Further the pair (C*(G),{uy}) is unique up
to isomorphism.
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By the universal property of C*(G) there is a homomorphism , : C*(G) — C*(G)
such that m,(u,) = A;. We call 7, the left regular representation of G' on *(G).

Let G be a group and consider ¢*°(G). We write 1¢ € (*°(G) for the indicator
function in G. For f € (*°(G) and g € G, let g - f be defined by (g- f)(h) = f(g'h)
for all h € G.

DEFINITION 5.12. A discrete group G is amenable if G admits a left-invariant mean:
that is, there exists a bounded linear functional y : £>°(G) — R, such that u(1g) =1,
and u(f) = u(g- f) for all f € (*(G) and g € G

This definition is not particularly useful for our purposes. So we state three equiv-
alent conditions that are more illuminating. (These will also serve as a model for the

properties we would like our amenable doubly quasi-lattice ordered groups to have.)

THEOREM 5.13. Let G be a discrete group. The following are equivalent:

(1) G is amenable.

(2) 7. : C*(G) — C*(G) is faithful.

(3) C*(G) is nuclear.

(4) The canonical trace T : C*(G) — C is faithful for positive elements: if T(a*a) =
0 then a = 0.

(1) < (2) is due to Hulanicki [8] (see also [18, Theorem 7.3.9]). (1) < (3) is due
to Paterson [17, Theorem 2]. We have been unable to find a suitable reference for

(1) < (4) but it is a known result. We prove it below:

LEMMA 5.14. Let C*(Q) be the reduced group algebra of G, let m, : C*(G) — C*(Q)
be the corresponding homomorphism of the universal group algebra C*(G) and let e be
the identity of G. Then 7 : C*(G) — C defined by 7(a) = (7 (a)e. | €) is a tracial

state. In particular, G is amenable if and only if T is faithful for positive elements.

ProOOF. To show that 7 is a state we must show that it is a positive linear functional
and that it has norm 1. By the linearity of m,. and the first coordinate of the inner
product, we have that 7 is linear. To show that 7 is positive, fix a € C*(G). Compute

T(a*a) = (m.(a*a)e. | €) = (7 (a)e. | mr(a)ee) = ||7Tr(a)€6||2 > 0.

To see that 7 is bounded with ||7]| < 1 we note

()] = |(mr(a)ec | ec) |< Imr(a)llllecl* < fall.

11 am required by longstanding tradition to mention that the word “amenable” was introduced

by Mahlon M. Day as a pun: a group is a-mean-able if you can put a mean on it.
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Further 7(u.) = 1 and hence 7 has norm 1. Thus 7 is a state.
Now we must show that 7 has the tracial property: 7(ab) = 7(ba). We will show
this by considering the dense subspace span{u, : g € G}. Fix g,h € G. Then

1 ifg=nht
T(uguh> = T(ugh) = (Wr(ugh)ee | €c) = (Aghee | €) = (Egh | €) = )
0 otherwise.

Similarly

1 ifg=nht
T(upuy) =
0 otherwise.
Thus we see, by linearity that for all a,b in the dense subspace span{u, : ¢ € G}
7(ab) = 7(ba). This relation then extends to the entire C*-algebra. Thus 7 is a tracial
state.

Now we can show that G is amenable if and only if 7 is faithful for positive elements.
First, suppose G is an amenable group. Let b € C*(G) such that 7(b*b) = 0. By the
tracial property 7(b*b) = 7(b*buguy) = T(uzb*buy) for all g € G. Then 0 = 7(b*b) =
|7 (buy )e||?. Thus

0= H7Tr(bug)€e|| = Hﬂr(b))‘gee” = HWT(b)EQH'

Hence 7,(b) = 0. Since G is amenable 7, is faithful and hence b = 0. Thus 7 is faithful
for positive elements.

Second, aiming for a contradiction, suppose that G is not amenable. Then , is
not faithful and there must exist b € C*(G) such that b # 0 and 7,.(b) = 0. Then
7(b*b) = (m,(b*b)e. | €.) = (0] €.) = 0. Thus 7 is not faithful for positive elements and
we have proved the contrapositive. So G is amenable if and only if 7 is faithful for

positive elements. 0

5.4. Coactions and conditional expectations

We defined amenability of a doubly quasi-lattice ordered group (G, P) in terms of
a conditional expectation on C*(G, P, P°?). Thus when proving that a given (G, P)
is amenable we need ways to construct conditional expectations that are known to be
faithful. There are two methods for constructing conditional expectations depending
on whether we are working with concrete or abstract C*-algebras. We first work with
concrete C*-algebras:
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5.4.1. Concrete C*-algebras. The next lemma is proved in full generality as we

will use it several times in different situations.

LEMMA 5.15. Let H and K be Hilbert spaces. Suppose that I is some index set
and {e; 1 i € I} is an orthonormal basis for K. Then there exists a faithful conditional
expectation A : B(H ® K) — B(H ® K) such that, for all T € B(H ® K), h,h' € H

and v € I, we have
(A(T)(h@e) | W @e)=(T(h®e) | N @e).
PROOF. Let T € B(H ® K). For each i € I consider the form
Bl (h,0) = (T(h®e) | B @e¢).

The form B} is bounded by ||T|| and is sesquilinear by the sesquilinearity of the inner
product. Therefore by [9, Theorem 3.8-4] there exists a bounded operator F! : H — H
such that (F(h) | W) =(T(h®e;) | B ®e;) and ||[EF| < ||T.

For all i € I let 1; be the projection onto span{e;}. The map F! ® 1; is a bounded
operator on H ® span{e;}. So we define

A(T) = @iGIET ® 11
Then A(T) is a bounded operator on @;c;H ® span{e;} = H ® K with norm
IA(T)|| = sup{|F @ 1;]| - i e I} < [|T.
In addition, we can compute:

(A(T)(h@e) | W @e) = (BjerF] @1i(h@e;) | W @ e;)
=(Fl'oLi(h®e) | N @e)

= (F'h | h)(es | &)
= (FF'h|n)

= ( )

T(h X e; | h/ X 6,‘).

It is now left to show that A is a conditional expectation and that A is faithful for
positive elements.

To prove that A is a conditional expectation, it suffices, by Theorem 4.5, to show
that A is an idempotent with norm 1. We know A is norm-decreasing and A(1) = 1,
hence we have |A|| = 1. To show A is an idempotent we fix T' € B(H ® K). We
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must show A(A(T)) = A(T). By construction A(T) := @ FF @ 1; so we only need

to show that F = F?

; ™ We compute:

B (h 1) = (@5 F] @ 1 (h®e) | W @e) = (FI @ 1Li(hoe) | K @e) = (F h | K).

This BiA ™ is a bounded sesquilinear form and hence there exists a unique bounded
operator FiA(T) such that (FiA(T)h | n') = BiA(T)(h, R'). However, (FiA(T)h | 1) =
(FTh | 1). By uniqueness F~") = FT and A(A(T)) = A(T).

To see A is faithful for positive elements we suppose there exists S € B(H ® K)
such that A(S*S) = 0. Then for all h € H and i € I

(A(S*S)(h@e) | hwe) = (SS(h@e) | hoe,)
= (S(h®e) | S(h®e,))
=[IS(h@e)|* =0.

Hence S(h®e;) =0 for all h € H and ¢ € I. Therefore S = 0 and hence A is faithful

for positive elements. Hence A is a faithful conditional expectation. OJ

5.4.2. Abstract algebras. If we are working with an abstract C*-algebra and do
not have an appropriate orthonormal basis we can construct a conditional expectation

on an arbitrary C*-algebra A using a coaction of a group G on A.
DEFINITION 5.16. Let G be a discrete group and let A be a unital C*-algebra. Let
ig : C*(G) = C*(G) @min C*(G)

be the comultiplication characterised by dg(uy) = uy ® u, for all g € G. A coaction of
G on A is a homomorphism § : A — A @i, C*(G) such that

(5 ®id) o = (id ® 6¢) o 6.

The fized-point algebra of § is the subalgebra A° := {a € A:d(a) = a® 1} of A. We
say that ¢ is nondegenerate if § is unital (i.e. a nondegenerate homomorphism) and

We will use an injective coaction d to construct a conditional expectation
Us:=(id®@7)0d.

However, we need two relations for the proof:
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LEMMA 5.17. Let A be a unital C*-algebra, let G be a discrete group, let
dg : C*(G) = C*(G) @min C*(G)

be the comultiplication of G, let T be the trace on C*(G) and let § be a coaction of G
on A. Then, for all x € A Quin C*(G), we have

(5.1) (idagumer(@) @ T) 0o (id ® dg) () = ((d®@ 7(x)) ® 1

(5.2) d0(id® 7)(z) = idag,c @) @ T o (d ®id)(z).
PROOF. (1). The set span{u, : g € G} is dense in C*(G). Hence
span{c®@u, : c € A, g € G}
is dense in A ®upin C*(G). So it will suffice, by linearity and continuity, to show that
(idag,mo(@) @ T) 0 (id ® dg) (c ® ug) = (Id @ T(c @ uy)) ® 1.
Fix ¢ € A and g € G and compute:
(idagnc(@) @ ) 0 (Id ® d6) (¢ ® ug) = (idag,,c(@) @ T)(c @ 0 (uy))
= ([dag,uc+(@) @ T)(c @ (ug @ uy))
= T(uy)(c @ uy).
For g € G, the trace 7(u,) = 0 unless g = e. Also u, is the identity in C*(G) and

7(ue) = 1. Thus:

. ) c®1l ifg=e
(ldA®minC*(G) & T) o (ld ® 5(;)(0 & Ug) =
0 otherwise

= (T(ug)c) @1
=[1d®T(c®uy)) ® 1.

Now (5.1) follows.
(2). To prove (5.2), it suffices to prove the relation for elementary tensors. Fix
ce A, d e C*"(G) and compute:

Jo(id®7)(c®d)=rT1(d)(c)
= ([dagymo¢) ® 7)(8(c) @ d)
= (idA®minC*(G) X ’7') e} (5 & ld)(C & d)

Now (5.2) follows. O
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Now we can apply (5.1) and (5.2) to construct a conditional expectation for a given

injective coaction.

LEMMA 5.18. Let A be a unital C*-algebra and let G be a discrete group. Let

d: A= AQuin C*(G) be an injective, unital coaction and let T be the trace of Lemma
5.14. Then

U:=@1d®7)od

is a conditional expectation of A onto A°. If G is an amenable group then U is faithful.

PRrROOF. Both id® 7 and ¢ are linear and norm decreasing, and thus ¥ is also linear
and norm decreasing.
We first show that range U = A°. Fix a € A°. Since A° is the fixed-point algebra

of ¢, we have §(a) = a ® 1. Now compute:
(5.3) U(a)=(id®71)od(a) =id®71(a®1) =1(1)a = a.

Thus ¥(a) = a and so A° C range Us.
To show the reverse inclusion, range ¥ C A%, we fix b € A and prove that §(¥(b)) =
U(b) ® 1. Compute:
o(W (b)) = do(ideT)od(b)
—_ (idA®minC*(G) ® T) (@) (5 ® ld) o 5(()) (by (52))

The coaction identity gives

S(W(b)) = (Idag,me=(@) ® 7)o (id ® dg) o 6(b)
=id@7(00b)®1 (by (5.1))
=V¥(h) ® 1.
Hence ¥(b) € A° and range ¥ = A°.
To show W is a conditional expectation it suffices, by Theorem 4.5, to show that
U is an idempotent with norm 1. As we showed in (5.3), ¥(a) = a for all a € A°.
Further, range U = A% and so U(¥(b)) = W(b) for all b € A. Thus V¥ is an idempotent.

We know that U is norm-decreasing and hence ||¥||,, < 1. Compute:
UV =ider(0(l)=ideor(lel) =1,

and it follows that ||¥||,, = 1. Thus U is a conditional expectation.
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Now suppose that GG is an amenable group. We will prove W is faithful in the sense
that ¥(b*b) = 0 implies b = 0. Suppose b € A satisfies U(b*b) = 0. Let f be an
arbitrary state on A. Then, applying Lemma 5.11, we see

0= f(w(b))
= fo(id®T)0d(b*d)
=(f®71)0d(b*d) (by Lemma 5.11)
=70 (f®id)od(b*d)
By Lemma 5.14, 7 is faithful for positive elements because G is amenable. Hence
(f ®id) 0 6(b*b) = 0. This in turn implies that for all states f on A and states g on
C(G),
go(f®id)od(b*d) = (f®g)od(b*b) = 0.
To see that §(b*b) = 0, let m : A — H; and my : C*(G) — Hj be faithful represen-
tations. By Proposition 5.2 m; ® 7y is a faithful representation of A ®;, C*(G) on
B(H, ® H,). For every pair of unit vectors h € Hy, k € H, there exists a state f, ® f
on A Quin C*(G) defined by
fr® frla) = (m @ m(a)(h@ k) | h® k).
Thus, for every pair of unit vectors h € Hq, k € Ho,
0= fn® fr(6(b"D))
= (m @m(6(0"0))(h® k) | h® k)
= (m @m(d(b))(h®E) | m & ma(0(b))h @ k)
= [lm © m2(8(0)) (h @ K)|1?
Hence 7 ® mo(0(b*b)) = 0. Since m ® my is faithful, 6(b*b)) = 0. The injectivity of §

implies b = 0. Hence V is faithful for positive elements. O
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CHAPTER 6

Recognition theorems for amenable doubly quasi-lattice

ordered groups

In this chapter we will outline several recognition theorems for amenable doubly
quasi-lattice groups. These are not the most powerful theorems available, and we will
prove a more complete recognition theorem in the next chapter. However, these results
give useful insights into the nature of amenability.

In Theorem 6.2, we prove that (G, P) is amenable if and only if the representation
7y C*(G, P, P?) — C{ (G, P, P°?) is faithful.

In Proposition 6.4, we first prove that the universal algebra generated by (G, P)
is determined by the semigroup P, and second, that amenability is a property of P
preserved under semigroup isomorphism.

Third, we prove Theorem 6.6, which states that if (G, P) is a doubly quasi-lattice
ordered group and G is an amenable group, then (G, P) is amenable in the doubly

quasi-lattice ordered sense.

6.1. Amenability and C{(G, P, P°P)

As we proved in Lemma 4.3(1), J sees all projections. Therefore, Theorem 4.8
implies that if (G, P) is amenable, then 7; : C*(G, P, P°?) — C{(G, P, P°?) is faithful.
We will now show that the converse is true. To do this we will construct a faithful

conditional expectation on C} (G, P, P°?) using Lemma 5.15.

LEMMA 6.1. There is a faithful conditional expectation A on C{ (G, P, P°?) such
that

A(JpJ;JT) _ Jp e ifq=rp
0 otherwise.

PROOF. For b € Plet {¢, : a € P,a <, b} be the usual orthonormal basis for ¢?(I}).
Let €, denote the orthonormal basis element ¢, € ¢2(1,) viewed in @, p (*(1,). Then
{€ap s a,b € Pa <, b} is an orthonormal basis for @, p £*(1,). We now apply Lemma
5.15 with H = C and K = @®pcpl?(I) to get a faithful conditional expectation A such
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that
(A(T)(eap)l€ap) = (T(€ap)l€ap)

for all T € B(®pepl?(I)). To see that

Jpdy it q=rp

A(JpJ;JT) =
0 otherwise
we compute:
(A(JPJ;‘L’)(Ga,b”Ga,b) = Eab |€a b)
(€pg-1rapl€ap) ifra <, band g < ra
otherwise.
if rp=gqand ra <, band q¢ <;ra
0 otherwise.
(Jp s Jr(€ap)leap) if rp=q
otherwise.
Thus
J,J T, ifg=r
A Jidy) = e BT

0 otherwise.

THEOREM 6.2. Let (G, P) be a doubly quasi-lattice ordered group. Then
g : C*(G, P, P?) — Ci(G, P, P°?)
is faithful if and only if (G, P) is amenable.

PROOF. First, suppose that (G, P) is amenable. We know J sees all projections,
by Lemma 4.3(1). Thus we may apply Theorem 4.8 to see that = is faithful.

Second, we suppose that 7, : C*(G, P, P°?) — C;(G, P, P°P) is faithful. By Lemma
6.1, there exists a faithful conditional expectation A on C{ (G, P, P°?) such that
Sy, ifqg=r
A(JPJ;JT) — P“q q p

0 otherwise.
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Recall that F is the conditional expectation on C*(G, P, P°?) of Proposition 4.6. We
claim that 7y o F' = Aomwj. Fix p,q,r € P such that p <, ¢ and r <; q. Compute:
my(v,vf,) ifg=r
Ty o E(vpv v,) = 1(0pyvr) =
0 otherwise.
JpdyJr it q=rp
0 otherwise.
= A(Jp 5 Jr)

= Ao my(vpv 0y).

By linearity and continuity this relation extends to the whole of C*(G, P, P°?) and
hence mjo E = Aomy.
Now suppose that a € C*(G, P, P°?) such that E(a*a) = 0. Then

0=my0FE(a"a) =Aomy(a*a).

However, A is faithful for positive elements and hence 7;(a) = 0. By assumption, 7
is faithful and hence @ = 0. Thus E is faithful for positive elements and (G, P) is

amenable. O

6.2. Amenability is a property of semigroups

One observation that is perhaps obscured by our notation is that the universal
algebra C*(G, P, P°P) associated to a doubly quasi-lattice ordered group is uniquely
determined by the semigroup P and does not depend on the group G. Similarly, the
amenability of (G, P) is determined by P. (Our constructions make use of the group
properties of G so it is still important that P is imbedded in a group.)

We first prove that a semigroup isomorphism is automatically order preserving and

preserves the least upper bound structure.

LEMMA 6.3. Let (G, P) and (K, Q) be doubly quasi-lattice ordered groups. Suppose
there is a semigroup isomorphism ¢ : P — Q). Then ¢ is left and right order preserving.
In particular, for x,y € P,

(1) x VvV, y < oo if and only if ¢(x) V, ¢(y) < co. If x V,y < oo then ¢(z V,y) =

o() Vi ¢(y);
(2) ©V,y < oo if and only if p(x) V, ¢(y) < co. If x V, y < oo then ¢(x V, y) =

o(x) Vi d(y).
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Proor. We first show that ¢ is left and right order preserving. Suppose that z,y €
P and r <;y. Then 27 'y € P and ¢(z~'y) € Q. We claim that ¢(x) o (y) = ¢(x1y)
and hence that ¢(x) <; ¢(y). To prove our claim compute:

o(y) = p(za™'y) = ¢(x)d(z'y).

Since ¢(x) € Q C K, there exists an inverse ¢(x)~! € K. Then

$(x) " p(y) = p(x) " d(x)p(zy) = bz~ "y).

Thus ¢(z)'¢(y) € Q. So x <; y implies ¢(x) <; ¢(y) and ¢ preserves the left order.
A similar argument shows that ¢ preserves the right order.

To show that ¢ preserves the least upper bound structure, suppose that x,y € P and
xV,y < 0o. We will show that ¢(x)V;¢(y) exists. Since ¢ is order preserving it follows
that ¢(x), d(y) <; ¢(xV,y). Thus ¢(x), ¢(y) have a common upper bound in ). Hence
o(x) Vi ¢(y) exists and ¢(x) V; o(y) <; ¢(x Vi y). To show the other direction suppose
that ¢(z)V;¢(y) < co. Observe that ¢~ : Q — P is also a semigroup isomorphism and
hence also order preserving. Thus ¢! (¢(z)V;¢(y)) is an upper bound for z = ¢~ (4(x))
and y = ¢ (¢(y)). Hence z V; y exists and z V; y <; ¢ (o(z) V; ¢(y)). Thus

oz Viy) <i oo~ (d(x) Vi d(y))) = d(x) Vi d(y)-

Hence zV;y < oo if and only if ¢(z) V,¢(y) < oo and ¢(z V,y) = ¢(x) V; ¢(y) whenever
x V;y < oo. A similar argument holds for the right order. 0

PROPOSITION 6.4. Let (G, P) and (K,Q) be doubly quasi-lattice ordered groups.
Let {v, : p € P} and {w, : ¢ € Q} be the generating elements of C*(G, P, P°?) and
C*(K,Q,Q°P) respectively. Suppose there is a semigroup isomorphism ¢ : P — Q.
Then:

(1) There exists an isomorphism m, : C*(G, P, P°?) — C*(K,Q,Q°?) such that

To(Vp) = We(p)-
(2) (G, P) is amenable if and only if (K, Q) is amenable.

PROOF. (1). We will first use the universal property of C*(G, P, P°?) to get a
candidate for m, and then prove that it is an isomorphism. We claim that 7" : P —
C*(K,Q, Q) defined by T, = wgy) is a covariant partial isometric representation of

P. Fix p,q € P. Since ¢ is a semigroup isomorphism we have

T, Ty = Wep)We(g) = We(pg) = Ipg
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and T = Wy(ey) = We, = 1. Hence T is a partial isometric representation. To show

Q
that T is covariant we use Lemma 6.3(1) which states that z V; y < oo if and only if

o(z) Vi o(y) < oo and ¢(x V; y) = ¢(x) Vi ¢(y) whenever x V; y < co. Thus
BT T T = Wom) W) Wala) Weq)

W (p)vid(a) W (p)vy(q) if ¢(p) Vi d(q) < o0

0 otherwise.

wd)(P\/lQ)w;(p\/lq) ifpVig<oo

0 otherwise.
) Ty, itpVig<oo
0 otherwise.
Similarly,
T, T ifpV,q<oo
T;TPT;Tq _ pVrgtpVrg pPVrgq
0 otherwise.

Hence T' is covariant. Thus, by Theorem 3.1 there exists a homomorphism 74 :
C*(G, P, P?®) — C*(K,Q,Q) such that m4(v,) = T, = wgr). Now we must prove
that this m, is an isomorphism.

Since ¢! : Q — P is an isomorphism the argument above gives a homomorphism
Ty 2 C*(K,Q, Q) — C*(G, P, P°P) such that my-1(wy) = vs-1(g). In particular w4

is an inverse for m, since
o1 (T (Vp)) = o1 (Wo(p) = Vo-1(0()) = Up
and
(g1 (wq)) = Te(vg-1(g)) = Wy
Thus 7, is an isomorphism from C*(G, P, P°?) to C*(K, Q, Q°P).

(2) By symmetry it suffices to show that if (K,(Q) is amenable then (G, P) is
amenable. Let Fg and Ep be the conditional expectations of Proposition 4.6 on
C*(K,Q,Q°?) and C*(G, P, P°P), respectively. We claim that

Ep = 71';1 o Egomy.
Computing on spanning elements we see:

o' 0 g oms(vpvyur) = 7" 0 Eg(Wan) W) Wer)
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5 (WowWhywery)  if ¢(rp) = ¢(q)

0 otherwise

-1 % .
Ty (w¢(p)w¢(q)w¢(T)) if rp=gq
0 otherwise
vpvvr i rp =g

0 otherwise

I
——

= Ep(vpv v,).

Since (K, Q) is amenable, Eg is faithful for positive elements. Since 7T¢:1 and 7y are
faithful, it follows that Ep must also be faithful for positive elements. Thus (G, P) is
amenable. So we have shown that (G, P) is amenable if and only if (K, Q) is amenable

and the proof is complete. O

6.3. Amenable groups

In this section we will justify our use of the term amenable by showing that if G
is an amenable group, then (G, P) is amenable as a doubly quasi-lattice group. The
converse is not true. As we will show in the next chapter there are many non-amenable
groups that have amenable doubly quasi-lattice ordered groups.

We will construct an injective coaction, then we can apply Lemma 7.2 to construct
a faithful conditional expectation that matches up with the conditional expectation F

of Proposition 4.6.

LEMMA 6.5. Let (G, P) be a doubly quasi-lattice ordered group. There is an injec-
tive, nondegenerate coaction 0 : C*(G, P, P°?) — C*(G, P, P°?) @un C*(G) such that
d(vp) = vy ® uy.

PrOOF. First let us construct a candidate for 4. We claim that W : P —
C*(G, P, P°?) @uin C*(G), defined by W, = v, ®u,, is a covariant partial isometric rep-
resentation. Unitaries are partial isometries and hence each W), is a partial isometry.
Observe W, = v.®u, = 1®1 and for p, ¢ € P we have W,W, = 0,0, @ upuy = Vpg @ Upq.
To prove W is covariant, fix z,y € P and compute:

W Wi W, W5 = vavgo,0, @ uguyuyu,
= valyv;kivly ® 1
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* * M
Vaviy Uy @ UaviyUiny,y if xViy < oo

0®1 otherwise
WaevyWay,, ifxViy <oo
0®1 otherwise.

Thus W,W; W, W, = Wiy, Wi

xViy*

Similarly, W; W, W W, = W

zVry

Wav,y- Thus W is
a covariant partial isometric representation of P. Hence, by Theorem 3.1, there exists a
homomorphism § : C*(G, P, P°?) — C*(G, P, P?)®@uminC*(G) such that §(v,) = v,Qu,.
We must now show that § is coassociative, injective and non-degenerate. We will
show that § is coassociative by considering the generators v,. Fix p € P. Compute:
(0 ®@id) o d(vy) = (6 ®id)(vy @ up)
= 0(vp) ©
= Up @ Up Q Uy
= v, ® b (up)
= (ild ® d¢g) 0 6(vp).
Since (0 ® id) o ¢ and (id ® dg) o ¢ are continuous homomorphisms which agree on
generators, 0 is coassociative.
To show that § is injective we will show that a faithful representation 7 may be
written as a composition of ¢ and another representation. Choose a faithful represen-

tation 7 : C*(G, P, P°?) — B(H) and let € be the trivial representation on C such that
€(uy) = 1 for all ¢ € G. By Proposition 5.2 there exists a homomorphism

T®e: C*(G, P,P?®) Qun C*(G) - B(H)® C = B(H).
We claim m = m ® e 0 6. Again we need compute only on the generators v,. Compute:
(m®e€)od(vy) = (T @ €)(vp ®uy) = 7(vy).

Now suppose d(a) = 0 for some a € C*(G, P, P°?). Then (7 ® €) o §(a) = 0 = 7(a),
and thus a = 0 since 7 is faithful. Hence ¢ is injective.

To prove that ¢ is nondegenerate we must show that
I(C*(G,P,P?))(1®C*(G)) = C*(G, P, P°®) ®uin C*(G).
It suffices to show that we can produce the spanning elements v,v;v, ® u,. Compute

0 (vpvg0r) (1 @ Upg-1r)1g) = VpUgUr @ Upg17(1 @ Upg-1r)=19) = Vpvg0r © Uy.
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Thus ¢ is nondegenerate.
We claim that ¢ has fixed-point algebra C*(G, P, P°P)° = Span{vpv;‘vr :rp = q}.
Fix p,q,r € P such that p <, ¢ and r <; q. Then consider
S (VU Uy) = VpUs U @ Upligtly = VpUsUp @ Upg—1p-
Then §(v,viv,) = vpviv, ® 1 if and only if rp = ¢. Thus
C*(G, P, P?) = span{v,v;v, 1 rp = q}. O

PROPOSITION 6.6. Let (G, P) be a doubly quasi-lattice ordered group. If G is an

amenable group then (G, P) is amenable.

PRrROOF. By Lemma 6.5 there is a coaction 0 : C*(G, P, P°?) — C*(G, P, P°?) ®
C*(G) characterised by 6(v,) = v, ® u,. By Lemma 5.18 there exists a conditional
expectation

Vs = (id®7)0d: C*(G, P, P®) — C*(G, P, P°P)°.
Since G is amenable Wy is faithful for positive elements. Now we can compute:
Vs(vpvpv,) = (Id @ 7) 0 6(vpv v;)
=(d® T)(vpv;kvr ® Upg-1r)
vpu v it g=r1p
0 otherwise.

In particular W4 agrees with the conditional expectation F of Proposition 4.6 on the
dense subspace span{vpv;‘vr :p <, ¢,7 <; q}. Thus ¥y is the conditional expectation

E is faithful for positive elements. So (G, P) is amenable. O

REMARK. We will see in the next chapter that Proposition 6.6 appears as a special
case of Theorem 7.7. However, Proposition 6.6 is an important point in its own right

and is much easier to prove.
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CHAPTER 7
Amenability of (G, P) and the Nuclearity of C*(G, P, P°P)

In this chapter we aim to prove a much stronger recognition theorem for amenable
doubly quasi-lattice ordered groups. We do this by setting up a group homomorphism
with certain properties from one doubly quasi-lattice ordered group (G, P) to another
(K, Q) where K is an amenable group. Doubly quasi-lattice ordered groups with such

a homomorphism are amenable and give nuclear C*-algebras.

7.1. Conditional expectations on tensor products

To prove nuclearity we will consider the tensor products A ®p.x C*(G, P, P°P) and
A®min Cr (G, P, P°?). We begin by constructing conditional expectations on these ten-
sor products. We will use Lemma 5.18 to construct a conditional expectation on A®pax
C*(G, P, P°?). We must first construct a suitable coaction on A ®y,.x C*(G, P, P°P).

LEMMA 7.1. Let (G, P) be a doubly quasi-lattice ordered group and let A be a unital
C*-algebra. Suppose that there exists a group K and a homomorphism ¢ : G — K.

Then there exists an injective nondegenerate coaction
dp A @max C* (G, P, P?) = A ®max (C*(G, P, P°?) @min C*(K))
characterised by d4(a ® v,) = a @ vy @ Ug(y for alla € A and p € P.

Proor. We will construct a homomorphism
i C*(G, P, P?) — C*(G, P, P?) Quin C*(K),

and then show that ¢, := id ® 7k is well-defined and has the properties we want. We
claim there exists a homomorphism 7 such that mx(v,) = v, ® ug(). To see this, we
will show that W : P — C*(G, P, P°P) @min C*(K), defined by W), = v, ® ug(y), is a
covariant partial isometric representation and then use the properties of the universal
algebra to get mx. Unitaries are partial isometries and hence W is partial isometric.

Observe that
We =0, ®@uge) =1®1,

WoWy = 0p0q @ Ug(p)Ug(q) = Vpg @ Ug(pg) Tor all p,q € P.
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To prove W is covariant, fix x,y € P and compute:
W W W, Wy = 00,005 @ U () U (1) U () Uy )

VpvyyUpy,y @ 1 1T Vi y < 00

0®1 otherwise

valy/l};\/ly ® vd)(m\/ly)v(?)(m\/ly) if z \/l Y <0

0 otherwise

- Wx\/lyW*

Viy*

Similarly W;W, W W, = W

vy Wav,y. Thus W is a covariant partial isometric repre-

sentation of P. Hence, by Theorem 3.1, there exists a homomorphism
ik : C*(G, P, P°®?) — C*(G, P, P°?) ®uax C*(K)

such that T (vp) = vp ® Ug(p)-
Since id : A — A and 7x : C*(G, P, P°®?) — C*(G, P, P°?) ®uin C*(K) are both

homomorphisms, Lemma 5.5 states that there exists a unique homomorphism
d®@ 7k A Qmpax C*(G, P, PP) = A Quax (C*(G, P, PP) Quin C*(K))
which acts on the generators of A ®y.x C*(G, P, P°P) as
id ® 7 (a @ vpvyv,) = a @ VU v @ Ug(pg—1r)-

Let 04 = id ® m. Since 4 is unital it is nondegenerate as a homomorphism. To
complete the proof we must show that 4 is injective, satisfies the comultiplicative
property and is nondegenerate.

To show that d4 is injective we will show that a faithful representation = may be
written as a composition of d; and another representation. Choose a faithful repre-
sentation 7 : A Quax C*(G, P, P°?) — B(H) and let € : C*(K) — C be the trivial
representation on C such that e(uy) = 1 for all £ € K. By Proposition 5.2 there exists

a homomorphism
TR e€: ARnax C(G, P, P?) Quin C*(G) - B(H) ® C = B(H).
By Theorem 5.4 there exists a homomorphism

At A ®@max (C*(G, P, PP) Quin C*(K)) = (A @max C* (G, P, P°?)) Quin C*(K)
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such that A(a ® v, ® uy) = a®@v, @ug. We claim 7 = (1 ®€) o Ao d,. We need compute

only on the generators a ® v,. Compute:
(r@€)orobs(a®uy) = (1 ©€) 0 Aa By B ts) = (1) (@D v, @ ) = T(aBy).

Now suppose d4(a) = 0 for some a € A @pax C*(G, P, PP). Then (1 ®€)odyg(a) =0=
7(a) thus a = 0 since 7 is faithful. Hence 4 is injective.

To prove that d,4 is nondegenerate we must show that
0p(A Omax C*(G, P, PP))(1© C*(K)) = (A Qmax C7(G, P, PP)) @min C*(K).
It suffices to show that we can produce the spanning elements a®uv,v;v, @u. Compute:
0 (@ vpv0r ) (1@ Ug(pg-17)-1k) = GO UV Ur R Ug(pg—17) (1D Ug(pg-1r)-11) = D VULV D .

Thus d4 is nondegenerate.

To prove comultiplicativity we must show that
(5¢ X ldC*(K)) e} (5¢) == idA(X)C*(G’,P,POp) ® (5[{ o 5¢
Again it suffices to calculate on the generators:

(66 ®ides(k)) © (0p)(a ® vpUsvr) = ((0g) @ ides (k) (@ @ VpU; U @ Ug(pg—1r))
= 0y(a @ vpuyv,) @ ides () (Ugp(pg—11))
= 4 ® UpU Uy @ Ug(pg=1r) ® Ug(pg-1r)
= a Q VpU, Uy ® Ok (Ugp(pg-1r))
= id ® 0 (a ® VU U, @ Ug(pg-1r))
= (idagcx(G,p,por) ® 0rc) © (04)(a ® vpvzvr).

Hence ((04) ® ide=(ky) © (0p) = (idages(a,p.pory ® 6x) © (dp) and so comultiplicativity

holds. Hence 4, is a coaction. O

We can now construct a conditional expectation Vg on A ®yax C*(G, P, P°P) using

Lemma 7.1.

LEMMA 7.2. Let (G, P) be a doubly quasi-lattice ordered group and let A be a unital
C*-algebra. Suppose that K is a group and that there is a homomorphism ¢ : G — K.

Then there exists a conditional expectation

Vg o A @Quax C*(G, P, P?) — span{a @ v,upv, :a € A, ¢(q) = ¢(rp) }
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such that
a®@vyzv, if $(q) = o(rp)

Vi (a ® vyvpv,) =
0 otherwise.

If K is amenable then Vi s faithful.

ProOOF. By Lemma 7.1, there exists a faithful coaction
8¢ 1 A @max C*(G, P, PP) = A @puax (C*(G, P, P?®) @ C*(K)).

Let 7 be the trace on C*(K) of Lemma 5.14. By Lemma 5.18, the map Vg :=

(idagc+(a,p,pery) @ T 0 (d4) is a conditional expectation. In particular,
Uk(a® vpv;‘vr) = (idagce(g,ppor)) @ T (dy)(a ® Upv;‘w)
= (idagc@,ppor)) @ T(a @ UpUg Uy @ Ug(pg=17))

a® vy, if ¢(q) = @(rp)

0 otherwise.

We claim that
range U = (A @pax C*(G, P, P°P))% = span{a ® vpUpvr 1 0(q) = (1)}

We see that span{a®u,v;v, : ¢(q) = ¢(rp)} C range V. To show the reverse inclusion,
fix b € range Wi and € > 0. We can approximate b as a linear combination of a®v,v;v,,

i.e. there exists ) " | a; ® vy, vy vy, such that [|[b— ", a; @ vy, v) vy, || < €. Since Vg is

linear and norm-decreasing, we have

€> ||V (b— Zaz@wpzv vm> H

=1

> \I]K(b) — Uk <Z a; @ Upivqivri) H
i=1
> |Ib— Z a; ® Uy, Uy Vr,

{i:p(ripi)=p(ai)}

Thus b € span{a ® vv;v, @ ¢(q) = ¢(rp)}. So range ¥y = span{a ® vyv;v, : ¢(q) =
¢(rp)} as claimed. Thus Vg has the desired form. Further, if K is an amenable group
then Lemma 5.18 states that Wy is faithful. O

We construct a faithful conditional expectation on A ®u, Cii(G, P, P°P) using
Lemma 5.15.
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LEMMA 7.3. Let A be a unital C*-algebra and let (G, P) be a doubly quasi-lattice
ordered group. There is a faithful conditional expectation A on A @umin Ci(G, P, P°P)
such that
a® J,J*J, ifqg=r
Ala® J,Ji ) = plodr fa=rp

0 otherwise.

PROOF. Let n be a faithful representation of A on a Hilbert space H. We can
embed A @i Ci (G, P, P°P) faithfully as bounded operators on H ® (®pepl*(1;)) by
Proposition 5.2. Let {e,p : a,b € P,a <, b} be the usual orthonormal basis for
@pepl?(I,). We apply Lemma 5.15 to get a faithful conditional expectation A such
that

<A<T)(h ® 6a,b)|h/ ® 6a,b) - (T<h ® 6a,b)|h/ ® €a,b)
for all T € B(H ® (®pepl®(Iy))), all h, W' € H and a,b € P with a <, b.
It remains to show that A has the property

a® J,JJ, ifg=r
Ala® J,JiT,) = r i
0 otherwise.

We compute:

® JpJg Jr(h @ €ap)|h @ €ap)
ah|h')(J, Sy Jr€apl€as)

(A@® T 1) (h @ eap)ll @ ay) = (a
(
(ah|h)(epg-1rapl€ap) if ra <, band ¢ < ra

0 otherwise.

0 otherwise.

(ah\h’)(JpJ;Jrea,b\ea,b) if rp=gq

B {(ahh') ifrp=¢q,ra<,band q<;ra

0 otherwise.

(a® J,,J;‘Jr(h ® €ap) W Re€qp) frp=y¢q

0 otherwise.
a®<]p<];=]r ifg=rp . .
Thus A(a®J,J; J;) = The conditional expectation on A® i,
0 otherwise.
Ci(G, P, P°?) is the restriction of A to A @min Cii(G, P, P°P). O

83



7.2. Controlled maps of doubly quasi-lattice ordered groups

We have adapted our definition of a “controlled map” in Definition 7.4 from [11,

Proposition 6.6].

DEFINITION 7.4. Suppose that (G, P) and (K, Q) are doubly quasi-lattice ordered
groups. A controlled map ¢ : (G, P) — (K, Q) is a group homomorphism ¢ : G — K
such that:

(1) 6(P) C Q

(2) for all z,y € P satisfying = V,; y < oo we have ¢(z) V; é(y) = ¢(z V, y), and
o(x) =dy) >z =y

(3) for all z,y € P satisfying x V,. y < oo we have ¢(z) V, ¢(y) = ¢(x V, y), and

¢(r) = ¢(y) =z =y.

Condition (1) implies that a controlled map is order preserving for both left and
right orders: if x <; y then 27y € P so ¢(x) 'é(y) = d(x~'y) € Q and hence
¢(r) <; ¢(y). Similarly z <, y implies ¢(z) <, ¢(y).

Conditions (2) and (3) are stronger than order preserving. Consider (Z?, N?) and the
homomorphism ¢ : (Z* N?) — (Z,N) defined by ¢((m,n)) = m+n for all (m,n) € Z>.
This homomorphism satisfies $(N?) C N and is order preserving, however it does not
satisfy ¢(x)V;0(y) = ¢(xV,y). Consider (1,0) and (0,1). We have (1,0)V,(0,1) = (1, 1)
but ¢(1,0) V; $(0,1) =1V, 1 =1 and ¢((1,0) V; (0,1)) = ¢(1,1) = 2.

The notion of a controlled map for quasi-lattice ordered groups was introduced by
Laca and Raeburn [11, Proposition 6.6]' (see also Crisp and Laca in [5, Proposition
16]). Li adapted Laca-Raeburn’s proof in [14, Corollary 8.2] to show that if (G, P)
has a controlled map into an amenable group, then the universal algebra generated by
covariant isometric representations of (G, P) is nuclear.

In this section we will prove that if there exists a doubly quasi-lattice ordered group
(k,Q) with K an amenable group and a controlled map ¢ : (G, P) — (K,Q), then
(G, P) is amenable and C*(G, P, P°P) is nuclear. The proofs that (G, P) is amenable
and that C*(G, P, P°P) is nuclear are very similar in structure so we shall prove them
both via Proposition 7.5. This approach follows the method of Li in [14, Corollary
8.2].

Let A be a unital C*-algebra. There exist homomorphisms id : A — A Quin
Cr (G, P, P°P) such that id(a) =a® 1 for all a € A and 7% : C*(G, P, P?) = A Qmin
Mt there is a mistake in the statement of [11, Proposition 6.6]: the final line should read
“If G is amenable then (G, P) is amenable”.
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Cr (G, P, P°P) such that 7% (v,) = 1®.J,. By Theorem 5.4 there exists a homomorphism
1d@7my 1 A®maxC*(G, P, PP) = AQuinCis(G, P, P°P) such that id®@7m;(a®v,) = a®J,.

PROPOSITION 7.5. Let (G, P) be a doubly quasi-lattice ordered group and let A be

a unital C*-algebra.

(1) There exists a conditional expectation ¥ on A @umax C*(G, P, P°?) such that

V(a ® vpuv,) = @@ty A a=TP
0 otherwise.
(2) Suppose there exists a doubly quasi-lattice ordered group (K,Q) with K an
amenable group and a controlled map ¢ : (G, P) — (K, Q). Then:
(a) The conditional expectation W is faithful for positive elements.
(b) The homomorphism id®m; : A®maxC* (G, P, P?) — AQminCi (G, P, P°P)

s an isomorphism.

REMARK. Note that we have defined id ® 7; from the maximal tensor product to
the minimal tensor product. This will become important when we want to prove that
the canonical homomorphism A ®y,.x C*(G, P, P?) — A Quin C*(G, P, P°P) is faithful
and hence that C*(G, P, P°P) is nuclear.

The proof of Proposition 7.5 requires Lemma 7.6. The proof of Lemma 7.6 is quite

involved so we will state the result here and defer the proof to Section 7.3.

LEMMA 7.6. Let (G, P) be a doubly quasi-lattice ordered group. Suppose that (K, Q)
is a doubly quasi-lattice ordered group with a controlled map ¢ : (G, P) — (K, Q). Then
id® 7y 1 A®max C*(G, P, P?) = A ®uin Cii(G, P, PP) is faithful when restricted to
span{a @ vviv, s a € A, ¢(q) = d(rp)}-

We now apply Lemma 7.6 to the proof of Proposition 7.5.

PROOF OF PROPOSITION 7.5. (1). Consider the identity homomorphism, id :

G — G. By Lemma 7.2, there exists a conditional expectation
U=V : AQuax C°(G, P, P°?) — span{a ® vyv,v, 1 a € A, q = rp}

such that
a@ i, ifg=r
U(a ® vyvv,) = r e
0 otherwise.
(2a). Suppose that ¢ : (G, P) — (K,Q) is a controlled map and that K is an
amenable group. We must show that the conditional expectation ¥ is faithful for
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positive elements. By Lemma 7.2, there is a faithful conditional expectation ¥y such

that

a @ vyviv, if — &(r

Uy (a®vyviv,) = PV ¢(q) = o(rp)
0 otherwise.

We claim that ¥ = Wo Wy. To prove our claim we calculate on the spanning elements

to see:

V(a @ vyvpv.) if ¢(q) = ¢(rp)

0 otherwise.

Vo Wk (a® vyvyv,) =

_ Ja®uvuv, if ¢=rp and ¢(q) = o(rp)
0 otherwise.

a@upuyu, it qg=rp

0 otherwise.
= U(a @ vpu,v;).

So we have proved our claim. Since U is faithful for positive elements, and conditional
expectations are positive maps, and ¥ = W o W it suffices to show that W is faithful

when restricted to
range ¥ = span{a @ vpv,v, : a € A, ¢(q) = ¢(rp)}.

By Lemma 7.3 there is a faithful conditional expectation A on A®ui, Cii(G, P, P°P)
such that

a®J,J ], ifqg=r
Ala® JJi,) = P =
0 otherwise.

We claim that Aocid® 7y =id® ;0 V. Fix a € A and p,q,r € P such that p <, ¢

and r <; ¢ and compute:

id® my(a @vpviv,) if rp =
id®myoW(a®vyv,) = 7(a ® vyvur) P=4q
0 otherwise

a® JpJ;J. ifrp=gq
0 otherwise
= Ala® JpJ;J;)
=Aoid ® ms(a ® vyvyv,).
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Thus Aocid ® 7y = id ® m; o ¥. By Lemma 7.6 id ® 7 is faithful when restricted
to span{a ® v,v;v, : ¢(rp) = ¢(q)}. It follows that A oid ® 7; is faithful for positive
elements in span{a ® v,v}v, : ¢(rp) = ¢(q)}. Thus ¥ must also be faithful for positive
elements when restricted to span{e ® v,vjv, 1 a € A,é(q) = ¢(rp)}. Hence V¥ is a
faithful conditional expectation of A @ C*(G, P, P°P) onto span{a @ vyv;v, : ¢ = rp}
and our proof of (2a) is complete.

(2b). Now we can prove that id®7; : A®max C* (G, P, PP) - A®uin Cis(G, P, P°P)
is faithful. Suppose that b € A Quyax C*(G, P, P?) and id ® 7;(b) = 0. Then id ®
77(b*b) = 0 and so A oid ® 7;(b*b) = 0. Now we see that id ® m; o U(b*b) = 0. Since
id @ 7 is faithful on span{a ® v,v;v, : ¢(rp) = ¢(q)} which contains the range of W, it
follows that W(b*b) = 0. But W is faithful for positive elements, so b = 0. Thus id ® 7
is faithful. O

REMARK. It is interesting that the properties of the controlled map ¢ : (G, P) —
(K, Q) have two independent roles in the proof of Proposition 7.5(2). First, in the
construction of Vg in Lemma 7.2 we use that ¢ is a homomorphism and that Vg
is faithful if K is amenable. The construction still works if K is not associated to a
doubly quasi-lattice ordered group. Second, Lemma 7.6 states that id ® 7 is faithful
when restricted to span{a @ vyviv, : ¢(q) = é(rp),a € A} and relies only on the
properties of ¢ as a controlled map. Thus the restriction of id ® 7 is faithful even if
K is not amenable. This split is analogous to the roles that “IV sees all projections”

and “(G, P) is amenable” play in the proofs in Chapter 4.

Now that we have completed our proof of Proposition 7.5 it is easy to state and

prove the theorem that motivates this chapter:

THEOREM 7.7. Let (G, P) be a doubly quasi-lattice ordered group. Suppose that
(K, Q) is a doubly quasi-lattice ordered group with a controlled map ¢ : (G, P) —
(K,Q). If K is an amenable group then (G, P) is amenable and C*(G, P, P°?) is

nuclear.

Proor. To prove that (G, P) is amenable we apply Proposition 7.5 with A =
C. Then VU as described in Proposition 7.5(1) is the conditional expectation E of
Proposition 4.6 and, by Proposition 7.5(2a), ¥ is faithful for positive elements. Thus
(G, P) is amenable.

To show C*(G, P, P°P) is nuclear, we fix a unital C*-algebra A, and show that
the canonical homomorphism from A ®,.x C* (G, P, P°P) to A ®upin C*(G, P, P°P) is an
isomorphism. Since (G, P) is amenable, Theorem 6.2 states that =, : C*(G, P, P°?) —
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Cx(G, P, P°P) is an isomorphism. It follows that 7' exists and is also an isomorphism.

Hence, by Proposition 5.2,

id® 715" A @i Ci(G, P, PP) = A @uin C*(G, P, PP)

1 1

exists and is faithful. Since 7" is surjective, id ® 7" is surjective and hence is an
isomorphism. In addition, by Proposition 7.5(2b), id ® m; from A Quax C*(G, P, P°P)

to A ®min Ci5(G, P, P°P) is an isomorphism. Hence
id® ;' oid @7y 1 A ®mpax C*(G, P, P?) = A ®@uin C*(G, P, P°?)
is the composition of two isomorphisms. Computing on generators we see that
ider;'cid@m(a@vuin,) =ide@r; (a® J,JiJ,) = a® v,

Thus id ® w}l oid ® my is the canonical homomorphism from A ®,. C*(G, P, P°P) to
A Quin C*(G, P, P°?). Hence C*(G, P, P°P) is nuclear. O

We devote the next section to the proof of Lemma 7.6. In the final section of this
chapter we give examples of amenable doubly quasi-lattice ordered groups with nuclear

C*-algebras.

7.3. Proof of Lemma 7.6

In this section we prove Lemma 7.6, which states that id ® 7, is faithful when
restricted to span{a ® vyv;v, : ¢(q) = ¢(rp),a € A}. The proofs in this section rely
on the order preserving properties of the controlled map and not on the amenability

of K. We first prove some basic properties of the controlled map.

LEMMA 7.8. Let (G, P) be a doubly quasi-lattice ordered group. Suppose that (K, Q)
is a doubly quasi-lattice ordered group with a controlled map ¢ : (G, P) — (K,Q). For
all x,y € G:

(1) If vV, y < oo then ¢(x) <; ¢(y) = x <, v.
(2) If x V, y < 00 then ¢(z) <, d(y) = 2 <, .

PRrROOF. (1). Let x,y € G such that x V; y < oco. Suppose that ¢(z) <; ¢(y). Then
o(z) Vi o(y) = ¢(y). By the definition of a controlled map ¢(x V; y) = ¢(x) V; ¢(y).
Therefore ¢(y~'(z V; y)) = o(y) 'éd(x V,y) = ex. Since y~'(z V;y) € P we have
eq Viy Hx Viy) = yHx Viy). Thus, since ¢p(eg) = ex = d(y~'(x Vv, y)), we have
eq =y Yz Viy) by the properties of the controlled map. Hence y = x V;y and x <; .

The proof of (2) follows from (1) by symmetry. O
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We need to break span{a ® vyviv, : ¢(q) = ¢(rp),a € A} down into more manage-
able chunks. We will partition span{a®uv,v;v, : ¢(q) = ¢(rp),a € A} into subalgebras,
and prove that id ® m; is isometric when restricted to these subalgebras. We can then
show that id ® 7; is isometric on the direct limit of these smaller subalgebras. Since
we have many variables we will build our subalgebras slowly. We use this direct limit
procedure twice: in Lemma 7.10 and again in Lemma 7.12. We then finally prove
Lemma 7.6.

We start with our smallest subalgebra: let ¢ € P and (s,t) € @ x Q°° such that
ts = ¢(q). Define

Diyy = 5pan{a ®@ vyv v, - a € A, (¢(p), o(r)) = (s, 1)}

Let {€qp : a,b € P,a <, b} be the usual orthonormal basis for @ycpl?(I;). Let P(‘i 9

denote the projection onto
H{, , =span{eqq : a <, q,¢(a) = s}.

LEMMA 7.9. Let (G, P) be a doubly quasi-lattice ordered group and let A be a unital

C*-algebra. Suppose that (K, Q) is a doubly quasi-lattice ordered group with a controlled
map ¢ : (G,P) — (K,Q). Let ¢ € P and (s,t) € Q x QP such that ts = ¢(q). Then
Dg&t) is a subalgebra and id ® 7; is isometric on D?s,t)- In particular, for r € DE’SJ),
the map

z= 1@ P, (d®r,) (@)l ® P{,

is an isomorphism of D, onto A® K(HF ).

PRroOF. This result relies on the properties of the truncated shift J so we will prove
it as a result on C*(G, P, P°?) and then extend it using the properties of the tensor
product to a result about A @uax C*(G, P, P°P). Let ¢ € P and (s,t) € @ x Q°P. Let

‘7(Z,t) = Spﬁ{vpvzvr (o(p), o(r) = (s, 1)}

We first prove that \7(‘2 » 1s a subalgebra, and then show that A ® \7(75 By = Dgs -
Since A is a C*-algebra it then follows immediately that D?&t) is a subalgebra. So we

will show that \7(?9 H is closed under multiplication and adjoints. Let p,,r,z,,z € P

such that (¢(p), o(r)) = (¢(x), ¢(2)) = (s,t). Now consider

(7.1) (UP’USUT)(UIUZUZ) = qu_l(quTx)UEkq\/rTx)(r;t)*l(qurx)U(q\/r”?)q_lz'
If either of the upper bounds, ¢ V; rz or ¢ V, rx don’t exist then (7.1) is zero. So we
suppose ¢ V; rx and ¢ V, rz both exist. Since ¢(q) = ts = ¢(rz) the properties of the
controlled map imply that ¢ = rz. Thus we can rewrite (7.1) as
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* : -1, _
vpvgv. frTg=ux

(UPU;UT)(U$U;UZ) =
0 otherwise.
Thus jé H is closed under multiplication.
To show that \7(‘2 p 18 closed under adjoints consider (v,v;v,)* = v,-1,0;0g,-1. Then

¢(r-tq) = ¢(r)"'d(q) = t~'ts = s. Similarly ¢(gp~!) = ¢. Thus J,) is closed under
adjoints and is a subalgebra.

To see that A ® j(qs y = DE’S, 1), observe that for every generating element a ® v,v;v,
with (¢(p), ¢(r)) = (s,t) we have a ® vv;0, € A® J{,. Thus D{,,) € A® jét

(st
Similarly, A ® j(‘i, e Dgs p and so A® ‘7(‘1 9 It then follows that D

() (s) !

subalgebra.

We claim that for j € j&t) the map x : j — P(S T 71(J )P&t

between .7(‘18 p and the compact operators K(H EJS 1t)) on H} (s4)- First we will show that

) is an isomorphism

the spanning elements of 7TJ(‘7(((13 t)) are rank-one operators on Hgs 0 Let p,r,a,b € P
such that, a <, b ¢(p) = s and ¢(r) = t. Compute:

Pq J J Jr€qq if b=q
(7.2) Pl ymi(vpvgon) P eap = o
0 otherwise

Pq
(7.3) = Y
0 otherwise.

€pg-traq if ra <, qgand ¢ <;ra and b= q.

By assumption ¢(q) = ts = ¢(ra). If ra <, q, then ra VvV, ¢ = q. So ¢(q) = ¢(ra)
implies that ¢ = ra. It then follows that €,,-1,44 = €p4. Further P(qs HEPa = Ema)- Thus

we may rewrite (7.2) as

€pg Lb=gqand a=r"q.
P(s T (Upuy UT)P(qs,t)ea,b = ,
0 otherwise.

So P ym(vpvgur) P,y 1s the rank one operator (- | €,-14,4)€pq-
Second we show that the spanning elements of .7(5 9 behave as matrix units on

q * * q .
H(s,t)' Let v,v50, v,050, € \Y(S’t). From above we have:

* ; — 1
. .\ Jovgue itz =1r""g
(vpv0,) (V2 00;) = ‘
0 otherwise.
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Thus VpUy Uy and Uz V50, behave as the matrix units £, ,-1, and F, .1, respectively in
the sense that

* * *
(00, ) (VeVv2) = Epp1g By oo1q = Op1g 0By o-1q = 0p1420U5 V...

Hence x gives a correspondence between the system of matrix units in ‘7(1 9 and
the system of matrix units associated with the canonical orthonormal basis in HE’S "

To see that y preserves multiplication observe that
P((i’t)ﬂj(vxv;kvz)P(qs’t)ﬂ‘](vpv;‘vr)Pé’t) €ab =

J PLymi(uvgu) Pl pepg ifb=gand a=7r""g.

0 otherwise.

€rq fb=¢q a=r"'qgand p=2"1q.

0 otherwise.

0 otherwise.

— q * * q
o P(s,t)ﬂ-J(U$quzvpqu7")P(s7t)Ea,b

As a consequence the map j — P(qs’t)ﬂ' J(vpv;‘vr)P(qs,t) is an isomorphism between J(‘;t)
and IC(HEIS ») the compact operators on HZIS H-

Since j(‘i " is isomorphic to the compact operators on a separable Hilbert space it
is nuclear. Thus A ®@pax j(qs By = A Qmin Jé y- Define

Bothid: A — Aand x : j(qs » — Ci(G, P, P°P) are injective, and hence Proposition
5.2 states that there exists a unique injective homomorphism id ® y : A ® j(’i H
A @min C(G, P, PP). Further, we have A® J{ , = D{,,
1® P{y(id®@my)(2)1 @ P, Thus the map z — 1® P{ ,(id®@ 7;)(z)1 ® P{ , is an

isomorphism of D , onto A ® K(H, ). O

- In particular, id ® x(x) =

Now we work up to a larger subalgebra: let (s,t) € @ x Q°P. Define

D(s) := span{a @ vyv e 2 a € A, (6(p), ¢(r)) = (s,1), ¢(q) = o(rp)}-

Let {€ap : a,b € Pya <, b} be the usual orthonormal basis for @ucpl?(I,). For each
(s,t) € Q@ X Q°P, let Py denote the projection onto

Hs 4 =span{eq : a,b € Pa <, b,¢(a) = s,p(b) = ts}.
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Let Z denote the collection of all finite subsets I C ¢~'({ts}) N P. For each
I e I(SJ) let 'D(I&t) be

(7.4) D(Is,t) = span{a ® vyu, v, :a € A, (¢(p), ¢(r)) = (s,t),q € I}.
In particular, each D{&t) is the finite span of D?S’t) such that ¢q € I.

LEMMA 7.10. Let (G, P) be a doubly quasi-lattice ordered group and let A be a C*-
algebra. Suppose that (K, Q) is a doubly quasi-lattice ordered group with a controlled
map ¢ : (G, P) = (K,Q). For each (s,t) € Q x QP the set L,y is directed, ordered
by inclusion. Further, for each I € I, the set D{s,t) is a C*-subalgebra of A Qmax
C*(G, P, P°?) and {D(Is,t) 1 € Ty} is an inductive system with limit

UIEI(S’t)IDI = D(S,t)'

(s:t)

PROOF. Fix (s,t) € Q x Q°. For any Iy, I, € Iy we have Iy U I, € Z(54). Hence
Z(sy) is directed, ordered by inclusion. Now we fix I € Z4. We first prove that
D(IS,t) is a subalgebra. Since A is a C*-algebra it will suffice to show that span{vpv;‘vr :
(o(p), d(r)) = (s,1),q € I} is closed under multiplication and adjoints. Let p, ¢, 7, x,y,z €
P such that ¢,y € I and (¢(p), ¢(r)) = (¢(x), ¢(z)) = (s,t). Now consider

(7.5) (vpvvr) (V2 v,) = Vpg—1 (qvira) Vlyvmr)(rz)~1 (qvyra) UV ara)y—Lz-

If either of the upper bounds, ¢ V; rz or y V, rz don’t exist then (7.5) is zero. So we
suppose ¢ V; rz and y V, rz both exist. Since ¢(q) = ¢(y) = ts = ¢(rz) the properties

of the controlled map imply that ¢ = rx and y = rz. Thus we can rewrite (7.5) as

v, ifg=yandr-lg==x

(v, ) (Vpv0;) = P 1 y K
0 otherwise.

Thus D(Is’ p 1s closed under multiplication.

To show that D{S,t) is closed under adjoints consider (v,v;v,)* = v,—140;Vg,-1. Then
d(r~tq) = ¢(r)'o(q) = t~'ts = s. Similarly ¢(¢gp~') = ¢. Thus D(Is’t) is closed under
adjoints and is a subalgebra.

We now show that Ulezm)D(fs y =
Since Dy is closed we have

D). For all I € I, we have D(Is,t) C Doy

UIEZ(s,t)D(IS,t) C Dspy.-
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To show the reverse inclusion fix T' € span{a ® v,viv. : (¢(p), ¢(r)) = (s,1),9(q) =
o(rp),a € A}. Then write T as a limit of finite sums of the form

In
Tn = Z Ai,nai,n & Upimv; LUrins
i—1
where, for all i, (¢(pin), d(rin)) = (s,t) and ¢(¢in) = ¢(rinpin). For each n we can
construct a finite set I, == {¢;, : 1 <@ < 1,} € I(sy). Thus each T,, € UIEI(s,t)D(IS t): It

follows that the limit T € Ufez(mDI

(5.0 and hence Uyez,, ,, D(I&t) = Ds,1)- O

LEMMA 7.11. Let (G, P) be a doubly quasi-lattice ordered group and let A be a C*-
algebra. Suppose that (K, Q) is a doubly quasi-lattice ordered group with a controlled
map ¢ : (G, P) = (K,Q). Let (s,t) € Q x Q. Then id ® 7 is isometric on D(sy).
Further, for all T' € Dy,

Hid &® 7TJ<T)1 ® P(S,t)H = HTH

ProoOF. By Lemma 7.12 Urez,, ,, D(IS H = Dys4). So, to prove that id®m; is isometric

on Dy, it suffices to prove that id ® m; is isometric on D(I n for each I € Z,,).

S,

Fix I € Z(;4. Suppose there exists T' € D(I&t) such that id ® 7;(T) = 0. We will

consider D(IS p s the span of all subspaces D‘(Zs " such that ¢ € I. For each ¢ € I and

eachn € Nlet T;,, € D?S " and write T as the limit of a sequence of finite sums:
(7.6) T = lim > Tym
qel

Let qo € I and consider the projection 1 ® P(qsO "
We claim that

(7.7) id @ 7, ( > Tq,n> 1& P, || = [Tyl
qel
To prove our claim we will examine the behaviour of the =« J(UPU;UT) = JpJ;Jr on

range P(‘f;t) = H(q;t). Fix p,q,r € P such that ¢ € I, (¢(p),o(r)) = (s,t). Fixa € P
such that a <, ¢o and ¢(a) = s. Compute

€ if ra <, qo and q <; ra.

" pg~1ra,qo
JpJq Jr€aqo =
0 otherwise.

If ra <, qo and q <; ra then ra V; g9 = qo and q V, ra = ra. Since ¢(q) = ¢(ra)
and ¢(qo) = ¢(ra) the properties of the controlled map imply that ¢ = gy = ra. Thus
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Ty JJ, P

(st) = 0 unless ¢ = qo. Thus

1d®m<z )1®qu

qel

= [[id @ 75 (Tgon)1 @ Py |-

Further, in Lemma 7.9, we proved that id ® 7; is an isomorphism between Dgg " and

A®K(HY,). Since range Y, = H{, we have [lid ® m;(Tyn)1 @ Pyl = [ Tyonll-
Thus we have proved our claim.

By our earlier assumption, id ® m;(7") = 0 and so as n — o0

a
ae (. J1em,| -0
qel
By our claim in (7.7),
id® m; ( Z Tq,n) 1® P(qsoﬂg) = ||T¢I0,Tl||
qel

and hence ||y, .|l = 0 as n — oo. Thus, for all ¢ € I, we have ||T},,|| — 0. Since [ is

T = lim > Tyu=0.

a€\{qo}

Thus id ® 7 is isometric on D( 0 for all I € Z(s4). Thus id ® 7; is isometric on the
direct limit U Iex,, t)D = D(s,1)-

We now show that ||1d @7 (T)1® Pyl = ||T|| for all T € D(sy). We will consider
the action of 7;(v,viv,) on Hy. Let p,q,7,a,b € P such that ¢(p) = ¢(a) = s,

¢(r) =t and ¢(q) = ¢(b) = ts. Then ¢, € Hsy. Compute:

finite we see that

€
(7.8) Tr(VpUs v )eap = Jpd; Jr€ap = .
0 otherwise.

pg~lra,b if ra <, b and ¢ <; ra.

If ra <, b then ra V, b =b. We know that ¢(b) = ¢(ra) and so, by the properties of
the controlled map, b = ra. Similarly, if ¢ <; ra then ¢(ra) = ¢(q) implies that ¢ = ra.
Rearranging gives a = r~!q. Thus we may rewrite (7.8) as
€ if a =r~1qg and g = b.
I T Jyeay =4 " aaned
0 otherwise.
So m;(vpvyv,) = JpJ;J, is the rank one operator (- | €,-144)€pq 00 H(sy. Therefore the

restriction of id ® 7;(7") to range 1 ® H(s ) is isometric. Hence

lid @ m)(T)1 ® Py | = lid © s (D).
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We already showed that id®7; is isometric on D). Thus [[id®@m(T)1Q Pyl = [|T]
for all T' € D, ) as desired.
O

We will now repeat this process once more to build span{a @ v,v;v, : ¢(q) =
o(rp),a € A} out of finite unions of D, ;). Let F denote the collection of all finite
subsets F' C @ x Q°P such that zVy € F whenever x,y € F' and x Vy < co. For each
F e F let Dr be

(7.9) Dy = span{a ® vyvyv, - a € A, (9(p), ¢(r)) € F,¢(q) = o(rp)}-

LEMMA 7.12. Let (G, P) be a doubly quasi-lattice ordered group and let A be a C*-
algebra. Suppose that (K, Q) is a doubly quasi-lattice ordered group with a controlled
map ¢ : (G, P) — (K, Q). Then the set F is directed, ordered by inclusion. Further, for
each F' € F, the set Dr is a C*-subalgebra of A @mpax C*(G, P, P°?) and {Dp : F € F}

18 an inductive system with limit
UperDr = span{a @ vyv v, : ¢(q) = é(rp),a € A}.

PrOOF. We first prove that Dp is a subalgebra. Since A is a C*-algebra it will
suffice to show that span{v,viv, : (¢(p), ¢(r)) € F,¢(q) = #(rp)} is closed under
multiplication and adjoints. Let p, q,r, x,y, z € P such that ¢(rp) = ¢(q), ¢(zx) = ¢(y)

and (o(p), o(r)), (¢(z), ¢(2)) € F. Now consider
(71()) (vaZUT)<v$U;UZ) = qu_l(q\/lrx)vzky\/rrz)(rx)*l(q\/lrx)v(y\/rrx)y_lz'

If either of the upper bounds g V, rz or y V, rz don’t exist, then (7.10) is zero. So we
suppose that ¢ V; rx and y V, rx both exist. We must show that

o((y vV, ra)y ™ zpg~ (g Vira)) = ¢((y Ve ra)(re) (g Virz))
and that
(6pg~" (g Vira)), 8((y V, rz)y~'2)) € F.
We know ¢(y~12) = ¢(z)~! and ¢(pg~!) = ¢(r)~", hence we can compute:
O((y vy ra)y~ zpg (g Vire)) = ¢((y vV, ra)a™r™ (g Vi re))
= o((y v, rx)(re) (g Virr)).

We must show that (¢(pg~'(q Vi rx)),d((y V, rz)y~'2)) € F. We compute:
)
)"

d(pg~ (g Virz)) = d(p)plq) ' d(q Vi r)
= ¢(p)o(q) ' [o(q) Vi o(r)]

95



(p)o(rp)~H[o(rp) Vi ¢(ra)]  (¢(q) = ¢(rp))
()" Hp(rp) Vi ¢(r)]

¢(r) " (rp) Vi o(r) " p(ra)]

o(p) Vi o()

Similarly, ¢((y V, rz)y~'z) = ¢(2) V, é(r). Since F is closed under V it follows that
(o(p), d(r)) V (p(x), d(2)) = (6(p) Vi d(x), d(r) V, ¢(2)) € F. Thus Dp is closed under

multiplication.

¢
¢

—

To show that D is closed under adjoints consider (v,v;v,)* = vp-140)vg,-1. Then

d(rtq) = o(r)1o(q) = é(r)té(rp) = ¢(p). Similarly ¢(gp~') = ¢(r). Hence
(e(r~'q), ¢(qp™")) = (6(p), &(r)).

In addition ¢(gp~1)o(r~tq) = ¢(rp) = ¢(q). Thus D is closed under adjoints and is a
subalgebra.

To prove that UperDp = Span{a @ v,ujv, « ¢(q) = ¢(rp),a € A} observe that for
all '€ F we have D C span{a ® v,viv, : ¢(q) = ¢(rp),a € A} and hence, since
span{a ® v,vsv, - ¢(q) = ¢(rp),a € A} is closed we have

UperDr C span{a ® vpyu v, : ¢(q) = ¢(rp),a € A}.

To show the reverse inclusion fix 7" € span{a ® v,v;v, : ¢(q) = ¢(rp),a € A}. Then

write 1" as a limit of finite sums of the form
ln
. i i *
Tn - : : Alvnalvn ® vpi,nvqimvri,n

i=1
where, for all i, ¢(1; ,pin) = ¢(¢in). For each n we can construct a finite set by taking
the closure under V of {(¢(pin), ¢(rin)) : 1 < i < I,} to get a finite V-closed set
F, € F. Thus each T, € UpcrDp. It follows that the limit T' € Upc #Dp. Hence

span{a ® vyv v, 1 ¢(q) = ¢(rp),a € A} € UperDr.
0]

We finally have all the pieces to prove Lemma 7.6 and complete the proof of Propo-

sition 7.2.

PROOF OF LEMMA 7.6. We must prove that id®m; is faithful on spﬁ{a@vz,v;w :
o(q) = ¢(rp),a € A}. By Lemma 7.12

span{a ® v,v,v, 1 ¢(q) = ¢(rp),a € A} = UperDr.
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So it suffices to prove that id ® 7 is isometric on Df for each F' € F.
Let F' € F. Suppose there exists T' € Dp such that id®7;(T") = 0. We will consider
Dy as the closed span of all subspaces D5y such that (s,t) € F. Let T(54), € Dy

for each n € N and write T" as the limit of a sequence of finite sums:

711 T = lim Ty
(7.11) lim (S;F (s,

We will show that for each (s,t) € F' the sequence T{s4), — 0. Since F is finite,
by Lemma 2.8, it has a minimal element (sg,%y). Without loss of generality we may
assume there exists p,r € P such that (¢(p), ¢(r)) = (so,t0). (If there is not then
Disy,t0) is empty. Hence Dp = Dp\((so,t)} and we may discard (s, ty) and move to the
next minimal element.) Consider the projection 1 ® P ,) on A @iy C (G, P, PP).

Claim: We claim that

d® 7TJ< Z T(s,t),n) I1® P(So,to)
(

s,t)EF

(7.12) = [ T(so,t0) -

We will prove the claim of (7.12) at the end of the proof. So assume (7.12). By our

earlier assumption, id ® 7;(7") = 0 and so as n — 0o

id ® m( > T(s,t),n> 1® Playso)|| — 0.
(s,t)eEF
However, by our claim in (7.12),
e ﬂJ( Z T(&t),n) L& Plsoto) || = ”T(So,to),nH
(s,t)eF

and hence ||T(s, )|l — 0 as n — oo.

So we may remove {7y, 1)} from the sum without changing the limit. Thus

T = T}L% Z T(s,t),n'
(s:t)€F\{(s05t0)}

We know that F'is finite. So we can repeat the above argument at most |F'| times
to see that T is 0. Thus id ® m; is isometric on Dp for all F € F. Thus id ® 7,
is isometric on the direct limit UpcrDp. Hence id ® 7y is faithful when restricted to
span{a ® vyvyvr : ¢(q) = &(rp),a € A}.

Proof of Claim: To complete the proof we must prove the claim of (7.12). We
must show that 1® P

We will examine the behaviour of the J,JrJ, = 7;(v,viv,) on range Ps, ) = H sy, t0)-

so,to) Sends all the T( s, to zero unless ¢ = qo, s = 5o and t = t.
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Fix (s,t) € F and p,q,r € P such that ¢(q) = ts, ¢(p) = s and ¢(r) =t. Fixa € P
such that a <, go and ¢(a) = so. Compute
Tt o = €pg-traq i 70 <p qo and ¢ < ra
0 otherwise.
We break this into two subcases: (1) s # sg, (2) s = so and t # ty.

(1). Suppose that s # sg. Then, since sy is minimal, it follows that s %; so.
Then ¢(p) £; ¢(a) which implies that ¢(rp) £, ¢(ra) by left-invariance. We then have
o(rp) = ¢(q) £ ¢(ra) and hence ¢ £, ra. So s %, so implies ¢ £, ra and hence
JpJy Jr€aqy = 0. Thus id @ 75 (v,v;0,)1 ® Prgg 40y = 0 if s # s0.

(2). Suppose s = sg and t # to. Then t £, to and hence tsy £, toso = &(qo) by
right-invariance. Then ¢(ra) £, ¢(qo) and hence ra £, qo. So JpJ; Jr€aq, = 0. Thus
id @ 77 (vpv;0,)1 @ Plgy ) = 0 if s = 89 and ¢ # to.

Thus we have shown that

id®my < Z T(s,t),n) 1 ® Psg o)
(

s,t)eF

- ”ld ® 7TJ(T(Soﬂfo),n)l ® P(So,to)”'

By Lemma 7.11 id ® 7; is isometric on Dy, ¢,y and for all Tis; 1o).n € D(sy,ts) We have
||1d ® 7TJ(zﬁ(So,l‘/o),n)l ® P(So,to) || = ||T(80,t0),n||'

Thus we have proved our claim and the proof of Lemma 7.6 is complete. U

7.4. Examples of amenable doubly quasi-lattice ordered groups

In this section we will give examples of amenable doubly quasi-lattice ordered
groups. To do this we will construct controlled maps into amenable groups and apply
Theorem 7.7.

EXAMPLES. (1). Suppose (G, P) is a doubly quasi-lattice ordered group and G is an
amenable group. The identity homomorphism ¢ : G — G is a controlled map. By The-
orem 7.7 (G, P) is an amenable doubly quasi-lattice ordered group and C*(G, P, P°P)
is nuclear. This example shows that Theorem 6.6 is actually a special case of Theo-
rem 7.7.

(2). For all n € N the additive group Z" is abelian and hence amenable. Thus
(Z",N") is an amenable doubly quasi-lattice ordered group and C*(Z",N" N"P) is
nuclear.

(3). The semidirect product Q x Q* of Proposition 2.10 is an amenable group. Thus
(Q x Q% ,N x N*) is amenable and C*(Q x Q* ,N x N*, (N x N*)°P) is nuclear.
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For examples without an amenable underlying group the proofs get more involved.
We begin by proving that the free group on n generators (F,,F}!) is an amenable
doubly quasi-lattice ordered group. This is a useful example because there are multiple
straightforward controlled maps into different amenable groups. We will focus of the

abelianization map v : F,, — Z" and the length map 6 : F,, — Z.

LEMMA 7.13. Let F,, be the free group on n generators {a; : 1 <i <n}, and let F}
be the subsemigroup generated by {a; : 1 <i<n}U{e}. Then

(1) The length map 0 : F,, — Z defined by 0(a;) = 1 for each i < n is a controlled
map 0 : (F,,Ft) — (Z,N);

(2) Let {e; : 1 < i <} be the usual generators of the additive group Z". The
abelianization map 1 : F,, — Z" defined by (a;) = e; for each i < n is a
controlled map v : (F,,,Fr) — (Z",N") ;

(3) (F,,F!) is amenable and C*(F,,,Ft, (F;})°P) is nuclear.

PROOF. (1). The map 6 is a homomorphism. For every x € F", we can write x as a
sequence of generators a; with positive powers, or the identity. Thus we have 0(x) € N
and hence 6 is order preserving. We must show that 6 is a controlled map. Suppose
that z,y € F and xV,;y < oo. Recall from Section 2.2 that if zV,y < oo, then x,y are
comparable. So we may assume, without loss of generality, that x <; y and x V;y = y.
Since 6 is order preserving we have 6(z) <; 6(y). Thus 0(y) V,0(x) = 0(y) = 0(x V, y).

Suppose that 2V, y < oo and 0(z) = 0(y). Then z and y have the same length and
are comparable. Thus x = y. The arguments for V, follow by symmetry. Thus 6 is a
controlled map.

(2). The abelianization map ¢ : F,, — Z" is a homomorphism and effectively counts
how many of each generator a; appear in a word of IF,,. For every x € FI we write x as
a sequence of generators with positive power or the identity so we have ¢(x) € N. Since
any pair x,y has a common upper bound in either the left or right order if and only
if they are comparable, the same argument from (1) follows. Hence 1 is a controlled
map.

(3). From (1) and (2) we see that (F,,F,}) has two natural controlled maps into
amenable groups. Thus Theorem 7.7 implies that (F,,F) is an amenable doubly

quasi-lattice ordered group and C*(F,,,F;" (F,)°P) is nuclear. O

LEMMA 7.14. Let (Gy, P1), (Ge, P»), (G3, P3) be doubly quasi-lattice ordered groups.
Suppose that ¢y : (G, P1) — (Ga, P») and ¢y : (Go, P2) — (G3, P3) are controlled maps.
Then ¢s 0 ¢y : (G, P) — (Gs, Ps) is a controlled map.
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PROOF. We can immediately see that ¢o0¢1(P;) C ¢o( P2) C P3, and hence ¢9 0 ¢y
is order preserving. Suppose that =,y € P and x V; y < oco. By the properties of the

controlled map we see

P20 ¢1(x V1Y) = d2(d1(x) Vi d1(y)) = b2 0 d1(x) Vi 2 0 d1(y).

If ¢y 0 ¢1(x) = g 0 $1(y) then we have ¢(z) = ¢1(y) and hence x = y. A symmetric
argument shows that = V, y < 0o then ¢g 0 ¢1(V,y) = ¢2 0 ¢1(x) V.. ¢2 0 ¢1(y) and
b 0 P1() = ¢ 0 P1(y) implies x = y. O

PROPOSITION 7.15. Let I be an index set. Let {(G;, P;) :i € I} and {(K;,Q;) : i €
I} be families of doubly quasi-lattice ordered groups. Suppose that for each i € I the
group K; is amenable and there exists a controlled map ¢; : (Gi, P;) — (K, Q;).

(1) Let G* = [],c; Gi and P* = [],c; P;. Then (G*, P*) is an amenable doubly
quasi-lattice ordered group and C*(G*, P>, (P*)°P) is nuclear.

(2) Let G* = %;c;G; and P* = x,c;P;. Then (G*, P*) is an amenable doubly
quasi-lattice ordered group and C*(G*, P*, (P*)°P) is nuclear.

PrOOF. (1). Let K* = [[,; K; and let Q* = [[,.; @i- Consider the homomor-
phism ¢ from G* = [],.; G to K* = [[,.; K; defined by ¢(z); = ¢;(x;). Each of the
¢; is a controlled map, hence ¢(P*) C Q*. Thus ¢ is order preserving. Suppose that
x,y € P and x V;y < oco. Then, by the properties of the direct product, for each i € I

we have z; V,y; < oo and (x V;y); = x; Vi y;. Since each ¢; is a controlled map we have

d(x Viy)i = iz Viyi) = ¢i(ws) Vi ¢i(ys) = d()i Vi d(y)s-

Therefore ¢(z V; y) = ¢(x) Vi (y).

Suppose that zV;y < oo and ¢(x) = ¢(y). For each i € I we have x; V;y; < oo and
B1(5) = 3(x): = () = di(ys). By the properties of the controlled map ¢;(z:) = ¢1(3:)
implies that z; = y; for all i and hence z = y. A symmetric argument shows that if
zV,y < oo then ¢(x V, y) = ¢(z) V. ¢(y) and ¢(z) = ¢(y) implies x = y. Therefore ¢
is a controlled map. The direct product of amenable groups is amenable, so it follows
that K* is amenable. We may apply Theorem 7.7 to see that (G*, P*) is an amenable
doubly quasi-lattice ordered group and C*(G*, P*, (P*)°P) is nuclear.

(2). Consider the homomorphism 9 from G* = *;c; G; to G* = [[,.; G; that takes
each z € G, in the free product to the same z in the direct product. We will show
that ¢ is a controlled map. Note that G is not in general amenable. However, we
can then compose ¢ with the controlled map ¢ of (1) to get an appropriate controlled
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map into an amenable group. It is straightforward to see that ¢(P*) C P* and hence
that 1 is order preserving.

Suppose that z,y € P* and z V; y < oo. Write
r = x17i1x2,i2x3¢3 .. ..I'me

Y=Y1.0Y2j2 - - - Yn,jn-
Without loss of generality, suppose that m < n. If m < n then x <; y in which case

Y(r) <0 Y(y) and Y(z Vi y) = Y(y) = »(x) ViP(y). If m = n then zy,, = yp, for
kE<m, ty = jm and Ty, Vi Ym.i,, < 00. Then

TVIY =T T2 - Tty (Tmgin VI Ymgm)-

Since Tom iy s Ymojm € i We have (om0 ViYmgn ) = O(@min ) Vi (Ym,) € Pi,,. Thus

we can compute:

T3 T2y - - Tin—1ipy 1 (Trnim Vi Ui ))
L1325 - - Tn—1im1 ) (U (Zimin,) ViV (Ymojin )

L1 24y - TrneLiine ) (T ) Vi V(T10 %235 - Tt 1)V Ymjin)

Suppose that V;y < co and ¢(z) = 1¥(y). Then m = n. Since zy;, = yi . for k < m,
it follows by left cancellation that ¥(zp.i.,) = ¥ (Ym.j,.)- SINCe Tinirs Ymjm € Li,, We
have ., ;,, = Ym.j,.- Thus = y. By a symmetric argument we see that if x V, y < oo
then Y (x V, y) = ¥(x) V, ¥(y) and ¢ (x) = ¥ (y) implies = y. Thus ® is a controlled
map.

Now let ¢ : (G*,Px) — (K*,P*) be the controlled map of (1) and consider
pot: (G*, P*) — (K*, P*). By Lemma 7.14 the composition of two controlled maps
is a controlled map. Thus ¢ o ¢ is a controlled map into an amenable group. We may
apply Theorem 7.7 to see that (G*, P*) is an amenable doubly quasi-lattice ordered
group and C*(G*, P*, (P*)°P) is nuclear. O
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