
C∗-algebras generated by

semigroups of partial isometries

Ilija Tolich

a thesis submitted for the degree of

Doctor of Philosophy

at the University of Otago, Dunedin,

New Zealand.

March 31, 2017



Abstract

This thesis examines the C∗-algebras associated to semigroups of par-

tial isometries. There are many interesting examples of C∗-algebras

generated by families of partial isometries, for example the C∗-algebras

associated to directed graphs and the C∗-algebras associated to in-

verse semigroups.

In 1992 Nica introduced a class of partially ordered groups called

quasi-lattice ordered groups, and studied the C∗-algebras generated

by semigroups of isometries satisfying a covariance condition. We

have adapted Nica’s construction for semigroups of partial isometries

associated to what we call doubly quasi-lattice ordered groups. For

each doubly quasi-lattice ordered group we construct two algebras: a

concretely defined reduced algebra, and a universal algebra generated

by a covariant family of partial isometries. We examine when repre-

sentations of the universal algebra are faithful, and this gives rise to

a notion of amenability for doubly quasi-lattice ordered groups.

We prove several recognition theorems for amenability. In partic-

ular, we prove that the universal and reduced algebras are isomorphic

if and only if the doubly quasi-lattice ordered group is amenable. Fur-

ther, we prove that if there is an order preserving homomorphism from

a doubly quasi-lattice ordered group to an amenable group, then the

quasi-lattice ordered group is amenable and the associated universal

algebra is nuclear.
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CHAPTER 1

Introduction

This thesis will be examining the C∗-algebras generated by semigroups of partial

isometries. There is an extensive literature examining the C∗-algebras generated by

groups of unitaries and semigroups of isometries. Through the next several sections

we will introduce the results that have come before which provide a road map for our

theory. We begin by stating results about unitary representations of groups and then

stating results about the isometric representations of semigroups introduced by Nica.

We end with a brief discussion of partial isometric representations of semigroups and

an overview of the thesis structure and major results.

1.1. Group algebras

For a long time mathematicians have been interested in the C∗-algebras generated

by representations of groups. For a discrete group G with identity e, a unitary repre-

sentation of G into a unital C∗-algebra A is a map U : G→ A such that U preserves the

group structure in the following sense: for g, h ∈ G we have Ug is unitary, UgUh = Ugh,

Ue = 1 where e is the identity of G and U∗g = Ug−1 . Note that all products of the form

Ug1U
∗
g2
Ug3 . . . Ugn may be simplified to Uh for some h ∈ G. A group algebra of a group

representation U : G→ A is the C∗-subalgebra of A generated by {Ug : g ∈ G}. There

are two specific group algebras that we are most interested in: the reduced algebra and

the universal algebra.

The reduced group algebra C∗r (G) is concretely defined. Let {εh : h ∈ G} be the

usual orthonormal basis for `2(G). Then λ : G → B(`2(G)) defined by λgεh = εgh

is a group representation. Let C∗r (G) be the C∗-subalgebra of B(`2(G)) generated by

{λg : g ∈ G}.
The universal algebra of G, C∗(G), is characterized abstractly (see [18, §7.1.5]):

Let G be a group. There exists a C∗-algebra generated by unitaries {ug : g ∈ G},
C∗(G), that is universal for representations of G in the following sense: for any group

representation U : G → A there exists a unital homomorphism φU : C∗(G) → A such

that φU(ug) = Ug. Further the pair (C∗(G), {ug}) is unique up to isomorphism.
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By the universal property of C∗(G) there is a homomorphism πr : C∗(G)→ C∗r (G)

such that πr(ug) = λg. The homomorphism πr is faithful if and only if G is an amenable

group ([8],[18, Theorem 7.3.9]). Amenability is a concept that shows up all over

mathematics when dealing with groups. We will not concern ourselves here with the

precise definition of amenability, merely noting some other equivalent conditions: a

group G is amenable if and only if C∗(G) is nuclear [17, Theorem 2]. A group G is

amenable if and only if the canonical trace τ on C∗(G) characterised by

τ(ug) =

1 g = e

0 otherwise

is faithful for positive elements, i.e. if a ∈ C∗(G), then τ(a∗a) = 0 implies a = 0 (see

Lemma 5.14).

1.2. C∗-algebras generated by semigroups of isometries

Having examined the C∗-algebras generated by groups, a natural next step is to

consider the C∗-algebras generated by semigroups. Let P be a unital subsemigroup of

a group G. Throughout, all semigroups will be assumed to contain the group identity

which we denote e.1 An isometric representation of P on a unital C∗-algebra A is a

map, W : P → A, such that Wp is an isometry for all p ∈ P , We = 1 where e is the

identity of G, and WpWq = Wpq for all p, q ∈ P .

For any p ∈ P , if p−1 ∈ P then Wp is a unitary and W ∗
p = Wp−1 . To avoid represen-

tations with automatically unitary operators we restrict our attention to semigroups

with no units except the identity: P ∩ P−1 = {e}. The pair (G,P ) gives a partial

order on G: x ≤ y if x−1y ∈ P . The theory follows the road map we outlined above

for group algebras: we define a representation of semigroups, find a concrete example,

construct a universal algebra and then find a notion of amenability for semigroups

which characterizes when the universal and concrete algebras are isomorphic. This is

also the path we will follow when we consider semigroups of partial isometries.

1.2.1. Coburn’s theorem. Consider the semigroup N under addition. For any

isometric representation W of N we have Wn = W1+1+...+1 = (W1)n. Thus any C∗-

algebra generated by an isometric representation of N is a C∗-algebra generated by

a single isometry, first studied by Coburn in [4]. Let {εn : n ∈ N} be the usual

orthonormal basis for `2(N) and let S be the unilateral shift on `2(N) such that Sεn =

1These are more usually called monoids however we follow Nica’s precedent in [16].
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εn+1. Coburn found that any C∗-algebra generated by a single non-unitary isometry is

isomorphic to C∗(S), the C∗-algebra generated by the unilateral shift S.

A formulation of Coburn’s result in terms of semigroup representations would say:

Theorem ([4]). C∗(S) is universal for isometric representations of N in the fol-

lowing sense: if W : N → A is an isometric representation, then there exists a homo-

morphism φW : C∗(S)→ A such that φW (S) = W1. Further, φW is faithful if and only

if 1−W1W
∗
1 6= 0.

Another useful property of C∗(S) is that the set K = {SmS∗n : m,n ∈ N} is linearly

independent and that spanK is a dense subalgebra of C∗(S). The simplification of

products into a product of just two terms holds for all isometric representations of N.

Let W : N→ A be an isometric representation. Observe that any product of the form

W ∗
mWn collapses to either Wn−m or W ∗

m−n. Let ni ∈ N. Then any product of the form

Wn1W
∗
n2
Wn3W

∗
n4
. . .Wnm may be simplified to WpW

∗
q for some p, q ∈ N. We can also

evaluate products of the range projections: WmW
∗
mWnW

∗
n = Wmax{m,n}W

∗
max{m,n}.

1.2.2. Quasi-lattice ordered groups. Following the example of groups, a nat-

ural example of a semigroup representation is the map S : P → B(`2(P )) defined by

Spεx = εpx. The representation S is a natural generalisation of the unilateral shift for

N. Straightforward calculation shows that, for all p ∈ P ,

SpS
∗
pεx =

εx if p−1x ∈ P ⇔ p ≤ x

0 otherwise.

For p, q ∈ P we have

SpS
∗
pSqS

∗
q εx =

εx if p ≤ x and q ≤ x

0 otherwise.

If p and q have no common upper bound in P then SpS
∗
pSqS

∗
q = 0. For certain

semigroups we can write the product SpS
∗
pSqS

∗
q as another SyS

∗
y for some y ∈ P .

Consider the semigroup N2. Any pair (a, b), (c, d) ∈ N2 has a natural least upper

bound, (a, b) ∨ (c, d) = (max{a, c},max{b, d}). In particular, for S : N2 → B(`2(N2))

we have

(S(a,b)S
∗
(a,b))(S(c,d)S

∗
(c,d)) = S(max{a,c},max{b,d})S

∗
(max{a,c},max{b,d}).

From the example of N2, it makes sense to restrict our attention to semigroups

with natural least upper bounds. In [16] Nica introduced a class of partially ordered
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groups called quasi-lattice ordered groups. A partially ordered group (G,P ) is quasi-

lattice ordered if every finite subset of G with a common upper bound in P has a least

common upper bound in P . For a pair x, y ∈ G we denote the least upper bound of x

and y in P by x ∨ y.

Let (G,P ) be a quasi-lattice ordered group. We say an isometric representation

W : P → A is Nica-covariant if, for all p, q ∈ P ,

(1.1) WpW
∗
pWqW

∗
q =

Wp∨qW
∗
p∨q if p ∨ q <∞

0 otherwise.

For any quasi-lattice ordered group (G,P ) the isometric representation S : P →
B(`2(P )) is covariant.

Using the covariance condition we can show that, for all p, q ∈ P ,

W ∗
pWq =

W(p−1(p∨q)W
∗
q−1(p∨q) if p ∨ q <∞

0 otherwise.

In particular for ni ∈ P any product of the form Wn1W
∗
n2
Wn3W

∗
n4
. . .Wnm may be

simplified to WpW
∗
q for some p, q ∈ P .

1.2.3. Amenability for quasi-lattice ordered groups. As with the group al-

gebra there are two specific algebras that Nica associated with a quasi-lattice ordered

group, the reduced algebra and the universal algebra.

The reduced algebra C∗r (G,P ) is concretely defined. Let C∗r (G,P ) be the C∗-

subalgebra of B(`2(P )) generated by the shift analogues {Sp : p ∈ P}. (See [16,

§2.4].)

The universal algebra C∗(G,P ) is characterized abstractly. By [16, §4.1] there ex-

ists a C∗-algebra generated by isometries {wp : p ∈ P}, C∗(G,P ), that is universal for

covariant isometric representations of P in the following sense: for any covariant isomet-

ric representation W : P → A there exists a unital homomorphism φW : C∗(G,P )→ A

such that φW (wp) = Wp. Further the pair (C∗(G,P ), {wp}) is unique up to isomor-

phism.

As was the case with group algebras we are interested in when the reduced and

universal algebras are isomorphic. This requires a notion of amenability for quasi-

lattice ordered groups. There are two equivalent amenability definitions given in the

literature. The first, stated by Nica [16, §4.2], states that a quasi-lattice ordered group

(G,P ) is amenable if the homomorphism πr : C∗(G,P )→ C∗r (G,P ) is faithful. In the

same paper he noted an equivalent condition: there exists a conditional expectation E :

4



C∗(G,P )→ span{wpw∗p : p ∈ P} onto the diagonal algebra, and (G,P ) is amenable if

and only if E is faithful for positive elements. In many ways this conditional expectation

plays the same role for amenability of quasi-lattice ordered groups that the trace does

in the amenability of groups. Laca and Raeburn [11] took this second condition as

their definition of amenability because it is easier to check. When we consider partial

isometric representations we will follow Laca and Raeburn’s definition of amenability.

1.2.4. Recognition theorems for amenable quasi-lattice ordered groups.

Nica proved that if (G,P ) is a quasi-lattice ordered group and G is an amenable group

then (G,P ) is amenable. However, he also proved in [16, §5] that the free group

on n generators (Fn,F+
n ) is an amenable quasi-lattice ordered group. Since Fn is not

amenable we are then left with the problem of deciding when quasi-lattice ordered

groups are amenable. Laca and Raeburn introduced the notion of a controlled map: a

controlled map between two quasi-lattice ordered groups (G,P ) and (K,Q) is an order

preserving homomorphism φ : G→ K that preserves the least upper bound structure.

By [11, Proposition 6.6], if there is a controlled map from (G,P ) to (K,Q) and K is an

amenable group, then (G,P ) is an amenable quasi-lattice ordered group. Li extended

this result in [14, Corollary 8.3] and proved that if K is amenable, then C∗(G,P ) is a

nuclear C∗-algebra.

1.2.5. Other semigroups of isometries. Since Nica published [16] there have

been many studies examining semigroups of partial isometries. Several have relaxed

the conditions of their semigroups. For example, Li in [13] and [14] studied the isomet-

ric representations of left-cancellative semigroups. Brownlowe, Larsen and Stammeier

[2] and Starling [22] have examined the C∗-algebras associated to semigroups with a

relaxed upper bound structure: right LCM semigroups. A semigroup P is right LCM

if it is left cancellative and for any p, q ∈ P the intersection of principal right ideals

pP ∩ qP is either empty or of the form rP for some r ∈ P . In particular, this r may

not be unique since these semigroups are permitted to have nontrivial units.

1.3. Partial isometries

There are many interesting examples of C∗-algebras generated by partial isometries,

including graph algebras and the C∗-algebras associated to inverse semigroups. In this

thesis we consider the C∗-algebras generated by semigroups of partial isometries. While

there has been some study of semigroups of partial isometries this has mostly been

confined to totally ordered groups such as those studied by Lindiarni and Raeburn
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[15] and Kwasniewśki and Lebedev [10]. An operator T on a Hilbert space H is a

partial isometry if, for all h ∈ (kerT )⊥, ‖Th‖ = ‖h‖. We say T is a power partial

isometry if, for all n ∈ N, T n is a partial isometry.

Proposition 1.1. [19, Proposition A.4] Let T be a bounded operator on a Hilbert

space H. The following are equivalent.

(1) T is a partial isometry;

(2) TT ∗T = T ;

(3) TT ∗ is a projection;

(4) T ∗ is a partial isometry;

(5) T ∗TT ∗ = T ∗;

(6) T ∗T is a projection.

If so, TT ∗ is the projection onto rangeT and T ∗T is the projection onto (kerT )⊥.

For C∗-algebras we use the algebraic relation TT ∗T = T to define a partial isometry.

All isometries are partial isometries (and are power partial isometries) as are their

adjoints. The main example of a non-isometric partial isometry is the truncated shift.

Let {ei : 1 ≤ i ≤ n} be an orthonormal basis for Cn. The truncated shift Jn : Cn → Cn

is defined by

Jnei =

ei+1 if i < n

0 if i = n.

Let P be a unital semigroup and A be a unital C∗-algebra. A map W : P → A

is a partial isometric representation if, for all p, q ∈ P , Wp is a partial isometry,

WpWq = Wpq and We = 1 where e is the identity of G.

There are two immediate observations from this definition. The first observation

is that all compositions of the Wp are also partial isometries which is a significant

restriction. In general, compositions of partial isometries are not themselves partial

isometries. By [6, Lemma 2] the composition of two partial isometries ST is a partial

isometry if and only if the projections S∗S and TT ∗ commute.

The second is that for any p ∈ P and any n ∈ N we have W n
p = Wpn is a partial

isometry. Thus all of the Wp are power partial isometries. By Halmos and Wallen

[6, Theorem 1] power partial isometries are unitarily equivalent to the direct sum of a

unitary operator, copies of the unilateral shift S on `2(N), copies of S∗, and copies of

the truncated shifts Jn for each n ∈ N. We will not be using this observation in our

proofs but it does illustrate that the maps we consider we still have a large amount of

structure.
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1.3.1. Analogue of Coburn’s theorem. Once again the case P = N has been

well studied, a partial isometric representation W : N → A being the positive powers

of a single power partial isometry. Hancock and Raeburn [7] proved an analogue of the

Coburn theorem for a C∗-algebra generated by a single power partial isometry. Let

J = ⊕∞n=1Jn : ⊕∞n=1Cn → ⊕∞n=1Cn.

In [7, Theorem 1.3] Hancock and Raeburn found that C∗(J) was universal for C∗-

algebras generated by a single power partial isometry. That is: for any C∗-algebra A

generated by a power partial isometry T there is a homomorphism φ : C∗(J)→ A such

that φ(J) = T . As with Coburn’s theorem we can rewrite Hancock and Raeburns’s

result to say that C∗(J) is universal for partial isometric representations of N.

There are two algebraic properties of a single power partial isometry T that serve

as a guide of what to expect for general semigroups. First, the range and source

projections compose nicely

TmT ∗mT nT ∗n = Tmax{m,n}T ∗max{m,n}

T ∗mTmT ∗nT n = T ∗max{m,n}Tmax{m,n}.

Second, every product of the form T n1T ∗n2T n3 . . . T nk may be simplified to a product

of the form T pT ∗qT r where p, r ≤ q.2

1.3.2. Doubly quasi-lattice Ordered semigroups. As we mentioned above,

the standard example of a power partial isometry is the truncated shift. So, just as

Nica generalised the unilateral shift for semigroups, we will attempt to generalise the

truncated shift. Let (G,P ) be a quasi-lattice ordered group and let A be a subset

of P . Let {εx : x ∈ A} be the usual orthonormal basis for `2(A). Naively we define

JA : P → B(`2(A)) by

JAp εx =

εpx if px ∈ A

0 otherwise.

For all p ∈ P , the operator JAp is a partial isometry. However, JA does not in general

preserve the semigroup multiplication. The map JA is a partial isometric representation

if and only if, for every a, b ∈ A, the set {x ∈ P : xa−1 ∈ P, and bx−1 ∈ P} ⊆ A.

2We have made a choice here. We could just as easily have simplified our product to the form

T ∗pT qT ∗r with p, r ≤ q. If I was starting this project from scratch I would have chosen this as our

convention as certain calculations become easier to parse and are more intuitive.
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There exists a right-invariant partial order: x ≤r y if yx−1 ∈ P . We see that we can

rewrite

{x ∈ P : xa−1 ∈ P, and bx−1 ∈ P} = {x ∈ P : a ≤r x ≤r b}.

In other words, if JA is a representation, then A must have no “gaps” in the right-

invariant partial order. This result led us to the realization that when considering

partial isometries we needed to consider both partial orders on (G,P ). To distinguish

them we write ≤l for the left-invariant partial order and ≤r for the right-invariant

order.

Fix a ∈ P and define Ia := {x ∈ P : x ≤r a}. Consider the map Ja : P → B(`2(Ia))

defined by

Jap εx =

εpx if px ∈ Ia
0 otherwise.

In particular, in Lemma 2.12 we will show that the range and source projections relate

to the left and right partial orders respectively:

Jaq J
a∗
q εx =

Jaq εq−1x = εx if q ≤l x

0 otherwise

Ja∗q J
a
q εx =

Ja∗q εqx = εx if qx ≤r a

0 otherwise.

Following Nica’s example we insist that any finite set that has a common upper bound

in P with respect to the left or right order has a least upper bound with respect to

that order. In other words (G,P ) is quasi-lattice ordered with respect to both left and

right partial orders. We call such a (G,P ) doubly quasi-lattice ordered.

We say that a partial isometric representation W is covariant if

WpW
∗
pWqW

∗
q =

Wp∨lqW
∗
p∨lq if p ∨l q <∞

0 otherwise

W ∗
pWpW

∗
qWq =

W ∗
p∨rqWp∨rq if p ∨r q <∞

0 otherwise.

Now that we have set up our basic definitions we can outline the thesis.
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1.4. Overview of the thesis

Chapter 2. We begin by presenting the basic definitions, properties and examples

we will use throughout the thesis. We start this chapter by defining doubly quasi-lattice

ordered groups and proving basic properties of these groups. We also present examples

of doubly quasi-lattice ordered groups, with discussion of particular interesting prop-

erties. We present several constructions that preserve doubly quasi-lattice order, such

as direct products and free products.

Having defined doubly quasi-lattice ordered groups we next define representations

of these semigroups by partial isometries. We then present a generalization of the

truncated shift for arbitrary doubly quasi-lattice ordered groups in Lemma 2.12. Then

we prove basic properties and manipulations. In particular we prove, in Lemma 2.13,

that any product of partial isometric representations Wp1W
∗
p2
Wp3 . . .Wpn is either zero

or simplifies to a product of just three terms WpW
∗
qWr. We can also write down

multiplication and adjoint operations for these triples (Lemma 2.14). We end the

chapter with our first main result: defining the reduced algebra. In our case the

reduced algebra C∗ts(G,P, P
op) is generated by a direct sum of truncated shift analogues

in Definition 2.15.

Chapter 3. In this chapter we use the properties of partial isometric representa-

tions we have established to construct the universal algebra C∗(G,P, P op) in Theorem

4.8. The universal algebra C∗(G,P, P op) is generated by partial isometries {vp : p ∈ P}
and has the universal property: for every covariant partial isometric representation

W : P → A there exists a homomorphism φW : C∗(G,P, P op) → A such that

φW (vp) = Wp. The proof is a straightforward construction of a ∗-algebra that sat-

isfies the algebraic structure of covariant partial isometric representations and is then

completed with respect to a norm defined by supremum over representations of the

∗-algebra.

Chapter 4. With our universal algebra constructed we now wish to know when a

representation of the universal algebra is faithful. It turns out that faithfulness depends

on an amenability condition very similar to that of Nica and Laca and Raeburn. In

Definition 4.7 we define amenability for a doubly quasi-lattice ordered group (G,P ) in

terms of a conditional expectation onto a diagonal subalgebra. This allows us to state

our third major result, Theorem 4.8, which describes when a given representation of

the universal algebra is faithful.

Chapter 5. This chapter is mostly background results about tensor products of

C∗-algebras and group algebras. We set up the results we need to prove recognition

9



theorems for amenable doubly quasi-lattice ordered groups. The main result of this

chapter is the construction of conditional expectations for concrete and abstract C∗-

algebras. We will be reusing these results through the next two chapters.

Chapter 6. This chapter is devoted to a discussion of the recognitions theorems for

amenability. We begin by proving Theorem 6.2 which states that πJ : C∗(G,P, P op)→
C∗ts(G,P, P

op) is faithful if and only if (G,P ) is amenable. This result demonstrates

that our definition of “amenability” is analogous to Nica’s original definition and to

amenability of group algebras. We prove that amenability is a property of semigroups

preserved under semigroup isomorphisms in Theorem 6.4. We finally prove Theorem 6.6

which states that if (G,P ) is a doubly quasi-lattice ordered group and G is an amenable

group then (G,P ) is an amenable doubly quasi-lattice ordered group.

Chapter 7. In this chapter we prove our last major result, a stronger recognition

theorem for amenable doubly quasi-lattice ordered groups. A controlled map between

two doubly quasi-lattice ordered groups (G,P ) and (K,Q) is an order preserving ho-

momorphism φ : G→ K that preserves the least upper bound structure. Theorem 7.7

states that if K is an amenable group and there is a controlled map from (G,P ) to

(K,Q) then (G,P ) is an amenable doubly quasi-lattice ordered group and C∗(G,P ) is

a nuclear C∗-algebra. This theorem allows us to show that our examples are amenable.

We can also construct new examples of amenable doubly quasi-lattice ordered groups

from free and direct products of known examples. In addition, Theorem 6.6 appears

as a special case of Theorem 7.7.
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CHAPTER 2

Definitions, examples and basic properties

Let P be a unital subsemigroup of a discrete group G such that P ∩ P−1 = {e}
where e is the identity of G. There is a partial order on G defined by x ≤ y if x−1y ∈ P .

Some authors prefer an equivalent formulation: x ≤ y ⇔ y ∈ xP . The order ≤ is left-

invariant in the sense that x ≤ y implies zx ≤ zy for every z ∈ G. The partial order is

determined by the pair (G,P ) of a group G and its subsemigroup P .

Definition 2.1 ([16, Definition 2.1]). A partially ordered group (G,P ) is quasi-

lattice ordered if every finite subset of G with a common upper bound in P has a least

common upper bound in P .

There are several equivalent conditions for a pair (G,P ) to be quasi-lattice ordered

given in Lemma 2.3.

To handle the structure of a semigroup of partial isometries we must have a second

partial order. Consider the opposite group (Gop, P op) where Gop = G and P op = P

with operation x ·op y = yx. This group has a left-invariant partial order defined by

x ≤ y if x−1 ·op y ∈ P op.

Definition 2.2. A partially ordered group (G,P ) is said to be doubly quasi-lattice

ordered if (G,P ), and its opposite group (Gop, P op), are quasi-lattice ordered groups.

To avoid dealing with two distinct group operations, one on G and one on Gop,

we will instead define two partial orders on (G,P ) one of which will be left-invariant,

derived from (G,P ), and the other right-invariant, derived from (Gop, P op).

• Define the partial order ≤l by x ≤l y if x−1y ∈ P .

• Define the partial order ≤r by x ≤r y if yx−1 ∈ P i.e. if x−1 ·op y ∈ P op.

Notation. If x and y have a common upper bound in P under ≤l, then their least

common upper bound will be denoted by x ∨l y. Similarly if x and y have a common

upper bound in P under ≤r, then their least common upper bound will be denoted

by x ∨r y. To simplify notation we introduce the symbol ∞ and say x ∨l y = ∞ or

x ∨r y = ∞ when x and y have no common upper bound in P under the respective

11



partial order. We will also use ∞ as a shorthand: we say x∨l y <∞ if x and y have a

common left upper bound x ∨l y in P .

2.1. Properties of doubly quasi-lattice ordered groups

In 2002 Crisp and Laca established a set of equivalent conditions for quasi-lattice

ordered groups in [5, Lemma 7].

Lemma 2.3 ([5, Lemma 7]). For a partially ordered group (G,P ) the following

statements are equivalent:

(1) (G,P ) is a quasi-lattice ordered group.

(2) Every finite set in G with a common left upper bound in P has a least left

common upper bound in P .

(3) Every element of G having a left upper bound in P has a least left upper bound

in P .

(4) If x ∈ PP−1, then there exist a pair of elements a, b ∈ P with x = ab−1and

such that for every u, v ∈ P with ab−1 = uv−1, one has a ≤l u and b ≤l v.

(The pair a, b is clearly unique.)

(5) Every pair u, v of elements in P has a greatest lower bound u∧r v with respect

to the right-invariant partial order on G.

(6) If x ∈ PP−1 then there exist a pair of elements a, b ∈ P with x = ab−1 and

such that a ∧r b = 1.

Assuming that (1)-(6) hold and given x ∈ PP−1 there is in fact a unique pair a, b ∈ P
satisfying statement (6), being precisely the pair a, b of statement (4).

While Lemma 2.3 is stated for the left-invariant partial order the proof is easily

adapted to the right-partial order.

Lemma 2.4 ([5, Lemma 7]). For a partially ordered group (G,P ) the following

statements are equivalent:

(1) (Gop, P op) is a quasi-lattice ordered group.

(2) Every finite set in G with a common right upper bound in P has a least right

common upper bound in P .

(3) Every element of G having a right upper bound in P has a least right upper

bound in P .

(4) If x ∈ P−1P then there exist a pair of elements a, b ∈ P with x = a−1b and

such that for every u, v ∈ P with a−1b = u−1v, one has a ≤r u and b ≤r v.

(The pair a, b is clearly unique.)
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(5) Every pair u, v of elements in P has a greatest lower bound u∧l v with respect

to the left-invariant partial order on G.

(6) If x ∈ P−1P then there exist a pair of elements a, b ∈ P with x = a−1b and

such that a ∧l b = 1.

Assuming that (1)-(6) hold and given x ∈ P−1P there is in fact a unique pair a, b ∈ P
satisfying statement (6), being precisely the pair a, b of statement (4).

The equivalent conditions of Lemma 2.3 give easier ways to check when a group

is quasi-lattice ordered. Which test is most efficient depends on the group. One

interesting consequence of Lemmas 2.3 and 2.4 is that we can write a definition of a

doubly quasi-lattice ordered group that only involves one of the partial orders:

Corollary 2.5. Let (G,P ) be a left and right partially ordered group. The fol-

lowing are equivalent:

(1) (G,P ) is doubly quasi-lattice ordered.

(2) Every element of G having a left upper bound in P has a least left upper bound

in P , and every pair u, v of elements in P has a greatest lower bound u ∧l v
with respect to the left-invariant partial order on G.

(3) Every element of G having a right upper bound in P has a least right upper

bound in P . Every pair u, v of elements in P has a greatest lower bound u∧r v
with respect to the right-invariant partial order on G.

Proof. We will show that (1) ⇔ (2) and then (1) ⇔ (3) follows by a symmetric

argument.

(1) ⇒ (2). Suppose that (G,P ) is a doubly quasi-lattice ordered group. Then

(G,P ) is a quasi-lattice ordered group and so Lemma 2.3(3) states that every element

of G that has a left upper bound in P has a least left upper bound in P . But (Gop, P op)

is also a quasi-lattice ordered group and so Lemma 2.4(5) states that any pair in P has

a greatest lower bound u ∧l v with respect to the left-invariant partial order on G.

(2)⇒ (1). Suppose that every element of G having a left upper bound in P has a

least left upper bound in P , and every pair u, v of elements in P has a greatest lower

bound u ∧l v with respect to the left-invariant partial order on G. Then, by 2.3(3)

(G,P ) is quasi-lattice ordered and by 2.4(5) (Gop, P op) is quasi-lattice ordered. Thus

(G,P ) is doubly quasi-lattice ordered. �

The least upper bounds have nice algebraic structure which will be useful in many

proofs later in this thesis.

13



Lemma 2.6. Let (G,P ) be a doubly quasi-lattice ordered group.

(1) The left least upper bound ∨l is associative: for all g, h, k ∈ G which have a

common left upper bound (g ∨l h) ∨l k = g ∨l (h ∨l k).

(2) The right least upper bound ∨r is associative: for all g, h, k ∈ G which have a

common right upper bound (g ∨r h) ∨r k = g ∨r (h ∨r k).

Proof. (1). We will show that (g ∨l h) ∨l k ≤l g ∨l (h ∨l k) and g ∨l (h ∨l k) ≤l
(g ∨l h)∨l k. We have g, h, k ≤l g ∨l (h∨l k) and hence g ∨l (h∨l k) is an upper bound

for g and h. Therefore g ∨l h ≤l g ∨l (h ∨l k) and so g ∨l (h ∨l k) is a common upper

count for k and g∨l h. Thus (g∨l h)∨l k ≤l g∨l (h∨l k). The second inequality follows

by a similar argument.

The proof of (2) follows by symmetry. �

Lemma 2.7. Let (G,P ) be a doubly quasi-lattice ordered group. Let q ∈ P and

g ∈ G.

(1) The following are equivalent:

(a) q ∨l g <∞;

(b) for all p ∈ P pq ∨l pg <∞;

(c) there exists p ∈ P such that pq ∨l pg <∞.

In particular, for all p ∈ P , pq ∨l pg = p(q ∨l g).

(2) The following are equivalent:

(a) q ∨r g <∞;

(b) for all p ∈ P qp ∨r gp <∞;

(c) there exists p ∈ P such that qp ∨r gp <∞.

In particular, for all p ∈ P , qp ∨r gp = (q ∨r g)p.

Proof. We will prove (1) first and then (2) follows by symmetry.

(a) ⇒ (b). Let p, q ∈ P and g ∈ G. Suppose that q ∨l g < ∞. We will show that

pq ∨l pg exists and that pq ∨l pg ≤l p(q ∨l g). Observe that q ≤l q ∨l g and g ≤l q ∨l g.

By left-invariance of the partial order we have pq ≤l p(q ∨l g) and pg ≤l p(q ∨l g).

Hence p(q ∨l g) is a left upper bound for pq and pg in P . Thus pq ∨l pg exists and

pq ∨l pg ≤l p(q ∨l g).

(b)⇒ (c) is trivial.

(c) ⇒ (a). Let p, q ∈ P and g ∈ G and suppose that there exists p ∈ P such

that pq ∨l pg < ∞. We know pq ≤l pq ∨l pg and pg ≤l pq ∨l pg. By left-invariance

q ≤l p−1(pq ∨l pg) and g ≤l p−1(pq ∨l pg). Since q ∈ P we know that p−1(pq ∨l pg) ∈ P
14



and hence that p−1(pq ∨l pg) is a common upper bound in P for q and g. Hence q ∨l g
exists and q ∨l g ≤l p−1(pq ∨l pg).

To prove that for all p ∈ P , pq ∨l pg = p(q ∨l g) first observe that both upper

bounds exist or are ∞ at the same time therefore this equality makes sense even when

the upper bound does not exist. Suppose that q ∨l g < ∞. As we observed above

q ∨l g ≤l p−1(pq ∨l pg). By left invariance we see that p(q ∨l g) ≤l pq ∨l pg. In addition

we also showed that pq ∨l pg ≤l p(q ∨l g). Thus pq ∨l pg = p(q ∨l g). �

Remark. It is important in the proof of Lemma 2.7 that q ∈ P . As a counter

example consider (Z,N). Since the least upper bound must be in N we have −3∨−2 =

0. Then we see that (−3 + 1)∨ (−2 + 1) = −2∨−1 = 0 but 1 + (−3∨−2) = 1 + 0 = 1.

Any partially ordered finite set has a minimal element. This fact will be crucial to

many proofs so we state and prove it below.

Lemma 2.8. Let (X,≤) be a partially ordered set. Any finite subset {xi : 1 ≤ i ≤
n} ⊆ X has an element xj that is minimal in the sense that xi ≤ xj implies xi = xj.

Proof. We will prove this lemma by induction on the size of the subset n. For

n = 1 the sole element x1 is trivially minimal as x1 ≤ x1 and x1 = x1.

Suppose that the result is true for n = k. Now consider n = k + 1 and the subset

{x1, . . . , xk+1}. The k-element subset {x1, . . . , xk} has a minimal element xj by our

induction hypothesis. Now we can compare the element xk+1 to xj. There are 3

possibilities: xj ≤ xk+1, xk+1 ≤ xj, or xj and xk+1 are not comparable.

If xj ≤ xk+1 and xj 6= xk+1 then xj is still minimal for the subset {x1, . . . , xk, xk+1}.
If xk+1 ≤ xj and xj 6= xk+1 then we claim xk+1 is minimal. To prove this claim

suppose that there is some element xl such that xl ≤ xk+1. Transitivity of the partial

order implies that xl ≤ xj. But xj is minimal for {x1, . . . , xk} and hence xj = xl and

we have a contradiction.

If xj and xk+1 are not comparable then xj is still minimal.

Thus the subset {x1, . . . , xk, xk+1} has a minimal element. By the principle of

mathematical induction, every finite subset has a minimal element. �

2.2. Examples of doubly quasi-lattice ordered groups

With some notable exceptions most standard examples of quasi-lattice ordered

groups that appear in the literature are also doubly quasi-lattice ordered. We outline

these examples and give several methods for constructing new doubly quasi-lattice

ordered groups by combining known examples. We end this section by proving that
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(QoQ∗+,NoN×) is doubly quasi-lattice ordered and that the left and right orders are

significantly different in an interesting way.

Examples. (1). For all abelian groups Gop = G and hence any abelian quasi-

lattice ordered group is also doubly quasi-lattice ordered with the two partial orders

coinciding.

(2). For any doubly quasi-lattice ordered group (G,P ) its opposite group (Gop, P op)

is also a doubly quasi-lattice ordered group.

(3). (Z,N) is doubly quasi-lattice ordered with both left and right orders given by

the usual order on Z. For m,n ∈ Z we have m ∨l n = m ∨r n = max{m,n, 0}. (We

include the 0 to ensure that the maximum is in N.)

(4). For all n ∈ N the partially ordered group (Zn,Nn) is doubly quasi-lattice or-

dered. Both left and right partial orders are given by (x1, x2, . . . , xn) ≤ (x1, x2, . . . , xn)

if xi ≤ yi for all 1 ≤ i ≤ n. Every pair x, y ∈ Zn has a common upper bound in Nn

and x ∨ y = (max{x1, y1, 0},max{x2, y2, 0}, . . . ,max{xn, yn, 0}).
(5). Consider the group of additive rationals Q and its subsemigroup Q+ = Q ∩

[0,∞). Then (Q,Q+) is doubly quasi-lattice ordered (in fact totally ordered). Since Q
is dense in R, for all a ∈ Q+\{0} the set Ia := {x ∈ Q+ : x ≤ a} is countably infinite.

For most other standard examples of doubly quasi-lattice ordered groups, (G,P ), the

set Ia := {x ∈ P : x ≤r a} is finite for all a ∈ P . Sets of the form Ia will become useful

later when defining examples of partial isometric representations. It is useful to have a

straightforward example where these sets are infinite, as a reality check of hypotheses.

(6). Let Fn be the free group with n generators {ai : 1 ≤ i ≤ n} and let F+
n be the

semigroup generated by {ai : 1 ≤ i ≤ n} ∪ {e}. To see that (Fn,F+
n ) is a quasi-lattice

ordered group we use Lemma 2.3(4). Every z ∈ F+
n (F+

n )−1 has unique reduced word

z = ai1ai2 . . . aima
−1
jn
. . . a−1

j2
a−1
j1

such that aim 6= ajn . Suppose p, q ∈ F+
n such that z = pq−1. Since the reduced word

is unique we must have ai1ai2 . . . aim ≤l p and aj1aj2 . . . ajn ≤l q. Thus, by Lemma

2.3(4), (Fn,F+
n ) is quasi-lattice ordered. By symmetry the same argument shows that

(Fop
n , (F+

n )op) is quasi-lattice ordered and hence (Fn,F+
n ) is doubly quasi-lattice ordered.

Let t ∈ F+
n and write t = an1an2an3 . . . ank . If x ∈ F+

n and x ≤l t then the word of

x must be an initial segment of t. Thus the set {x ∈ F+
n : x ≤l t} can be rewritten as

{e �l an1 �l an1an2 �l . . . �l an1an2an3 . . . ank−1
�l an1an2 . . . ank−1

ank = t}.
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Thus {x ∈ F+
n : x ≤l t} is totally ordered. For all x, y ∈ F+

n , if x ∨l y <∞ then either

x ≤l y or y ≤l x. Similarly, for all x, y ∈ F+
n , if x ∨r y < ∞ then either x ≤r y or

y ≤r x.

(7). An n×n matrix M = (mij) is a Coxeter matrix if mij = mji ∈ {2, 3, . . .}∪{∞}
for i 6= j and mii = 1. Let 〈aiaj〉mij denote the word aiajai . . . with alternating ai and

aj of length mij. The Artin group AM associated to M is the group on n generators

{ai : 1 ≤ i ≤ n} with presentation

〈{ai : 1 ≤ i ≤ n}|〈aiaj〉mij = 〈ajai〉mji〉

If mij = ∞ then we impose no relation on ai and aj. So, for example, 〈ab〉5 = 〈ba〉5

means ababa = babab. We say an Artin group is right-angled if all the mij are either 2

or ∞. (In other words each pair of generators either commutes or has no relation.)

Let AM be a right-angled Artin group and let A+
M be the subsemigroup of AM

generated by {ai : 1 ≤ i ≤ n}. Then (AM , A
+
M) is quasi-lattice ordered by [5, §5]. The

opposite group Aop
M is also a right-angled Artin group and hence (Aop

M , (A
+
M)op) is also

quasi-lattice ordered. Thus (AM , A
+
M) is doubly quasi-lattice ordered.

(8). Let c, d ∈ N\{0}. The Baumslag-Solitar group is the groups BS(c, d) with

presentation

BS(c, d) = 〈{x, t} : txc = xdt〉.

Let BS(c, d)+ be the subsemigroup of BS(c, d) generated by {x, t}. Spielberg showed

in [21, Theorem 2.11] that (BS(c, d),BS(c, d)+) is quasi-lattice ordered. Note that

BS(c, d)op = 〈{x, t} : t ·op x
c = xd ·op t〉 = 〈{x, t} : xct = txd〉 = BS(d, c).

Thus (BS(c, d)op, (BS(c, d)+)op) is quasi-lattice ordered and (BS(c, d),BS(c, d)+) is dou-

bly quasi-lattice ordered.

(9). Spielberg also considered Baumslag-Solitar groups with negative coefficients.

In [21, Theorem 2.12] he showed that (BS(c,−d),BS(c,−d)+) is quasi-lattice ordered

if and only if c = 1. This result gives us a class of quasi-lattice ordered groups that

are not doubly quasi-lattice ordered. Suppose d is positive and not equal to 1. Then

(BS(1,−d),BS(1,−d)+) is quasi-lattice ordered. However,

BS(1,−d)op = BS(−d, 1) = BS(d,−1),

and by assumption d 6= 1. Thus (BS(1,−d)op, (BS(1,−d)+)op) is not quasi-lattice

ordered.
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There are several methods of constructing new doubly quasi-lattice ordered groups

out of the known examples. The doubly quasi-lattice ordered properties are preserved

under direct products, free products and semidirect products.

Examples. (1). Suppose (G,P ) and (K,Q) are doubly quasi-lattice ordered groups.

The direct product (G×K,P ×Q) is also a doubly quasi-lattice ordered group.

(g1, k1) ≤l (g2, k2)⇔ g1 ≤l g2 and k1 ≤l k2

(g1, k1) ≤r (g2, k2)⇔ g1 ≤r g2 and k1 ≤r k2.

Two elements (g1, k1), (g2, k2) ∈ G ×K have a common left upper bound in P × Q if

and only if g1∨l g2 <∞ and k1∨l k2 <∞. Then (g1, k1)∨l (g2, k2) = (g1∨l g2, k1∨l k2).

Similarly, if g1∨r g2 <∞ and k1∨r k2 <∞ then (g1, k1)∨r (g2, k2) = (g1∨r g2, k1∨r k2).

For example, (Zn,Nn) is the direct product of n copies of (Z,N),

(Zn,Nn) = (
n∏
i=1

Z,
n∏
i=1

N).

(2). Let {(Gi, Pi) : i ∈ I} be a family of doubly quasi-lattice ordered groups.

Let G∗ = ∗i∈IGi be the free product of the Gi and let P ∗ = ∗i∈IPi. Then (G∗, P ∗)

is a doubly quasi-lattice ordered group. The elements of P ∗ have reduced form x =

x1,i1x2,i2 . . . xm,im where xk,ik ∈ Pik and ik 6= ik+1 for all k ≤ m. For any two elements

x, y ∈ P ∗ we write

x = x1,i1x2,i2 . . . xm,im

y = y1,j1y2,j2 . . . yn,jn .

We have x ≤l y if and only if m ≤ n, xk,ik = yk,jk for k < m, im = jm and xm,im ≤l
ym,jm .

Consider an element z ∈ PP−1 of the form z = x1,i1x2,i2 . . . xm,imy
−1
n,jn

. . . y−1
1,j1

where

xk,ik ∈ Pik and yl,jl ∈ Pjl . After initial cancellations z can be reduced to the form

z = x1,i1x2,i2 . . . xk,iky
−1
l,jl
. . . y−1

1,j1
for some k ≤ m and l ≤ n. If ik 6= jl then no further

cancellation is possible and we have a unique reduced form. It is then easy to see

that if z = pq−1 then x1,i1x2,i2 . . . xk,ik ≤l p and y1,j1 . . . yl,jl ≤l q. If ik = jl then

xk,iky
−1
l,jl
∈ PikP

−1
ik

. By Lemma 2.3(4), there exist left-minimal a, b ∈ Pik such that

ab−1 = xk,iky
−1
l,jl

. If z = pq−1, then x1,i1x2,i2 . . . xk,ik−1
a ≤l p and y1,j1 . . . yl,jl−1

b ≤l q.
Thus (G∗, P ∗) is a quasi-lattice ordered group. By a symmetric argument we see that

((G∗)op, (P ∗)op) is also quasi-lattice ordered.

We can now describe the least upper bounds. Let x, y ∈ P ∗ and write x =

x1,i1x2,i2 . . . xm,im and y = y1,j1y2,j2 . . . yn,jn . Suppose that x ∨l y < ∞. Suppose,
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without loss of generality, that m ≤ n. Write x ∨l y = z = z1,l1 . . . zn,ln . Since y ≤l z
we see that yk,jk = zk,lk for k < n and yn,jn ≤l zn,ln . Similarly x ≤l z we see that

xk,ik = zk,lk for k < m and xm,im ≤l zm,lm .If m < n, then x ≤l y. If m = n then zm,lm

is a common upper bound for xm,im and ym,jm so zm,lm = xm,im ∨l ym,jm .

Similarly, Let x, y ∈ P ∗ and write x = x1,i1x2,i2 . . . xm,im and y = y1,j1y2,j2 . . . yn,jn .

Suppose that x ∨r y < ∞. Suppose, without loss of generality, that m ≤ n. Either

x ≤r y and x ∨r y = y or m = n and xk,ik = yk,ik for k > 1 and

x ∨r y = (x1,i1 ∨r y1,j1)x2,i2x3,i3 . . . xm,im .

(3). Let (G,P ) and (K,Q) be doubly quasi-lattice ordered groups and let α : K →
Aut(G) be a homomorphism such that, for all k ∈ K, the automorphism αk fixes P .

Then the semidirect product (G oα K,P × Q) is doubly quasi-lattice ordered. Note

that for r, s ∈ G and x, y ∈ K we have

(r, x)−1(s, y) = (αx−1(r−1), x−1)(s, y)

= (αx−1(r−1)αx−1(s), x−1y)

= (αx−1(r−1s), x−1y).

Since α fixes P it follows that (αx−1(r−1s), x−1y) ∈ P ×Q if and only if r−1s ∈ P and

x−1y ∈ Q. Thus (r, x) ≤l (s, y) if and only if r ≤l s and x ≤l y. Since it inherits

the same left order as (G×K,P ×Q) it follows that (Goα K,P ×Q) is quasi-lattice

ordered. Since the left order is preserved for any (p1, q1), (p2, q2) ∈ P × Q we have

(p1, q1)∧l (p2, q2) = (p1 ∧l p2, q1 ∧l q2). Thus, by Lemma 2.4(5) ((GoαK)op, (P ×Q)op)

is quasi-lattice ordered. We can write down the right partial order,

(r, x) ≤r (t, z)⇔ (t, z)(r, x)−1 ∈ P ×Q

⇔ (tαzx−1(r−1), zx−1) ∈ P ×Q

⇔ αzx−1(r) ≤r t and x ≤r z

⇔ αx−1(r) ≤r αz−1(t) and x ≤r z

If (r, x), (s, y) ∈ G oα K, then (r, x) ∨r (s, y) < ∞ if and only if x ∨r y < ∞ and

αx−1(r) ∨r αy−1(s) <∞. Further,

(r, x) ∨r (s, y) = (αx∨ry(αx−1(r) ∨r αy−1(s)), x ∨r y).

Thus, while the left order is preserved, the right order is twisted by α.

One of the more interesting examples of a doubly quasi-lattice ordered group is the

affine semigroup over the natural numbers that we define below. As we will see, the
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left and right partial orders have very different structures. Under the right order every

pair of elements has a least upper bound whereas under the left order many pairs have

no common upper bound.

Definition 2.9. Let QoQ∗+ denote the semidirect product of the additive rationals

Q and the positive multiplicative rationals Q∗ with operations defined by

(r, x)(s, y) = (r + xs, xy) for r, s ∈ Q and x, y ∈ Q∗+

and

(r, x)−1 = (−x−1r, x−1) for r ∈ Q and x ∈ Q∗+.

Laca and Raeburn proved in [12, Proposition 2.2] that (Q o Q∗+,N o N×) is a

quasi-lattice ordered group with left partial order:

(r, x) ≤l (s, y)⇔ (r, x)−1(s, y) ∈ No N×

⇔ (−x−1r + x−1s, x−1y) ∈ No N×.

(Note that in this case, the automorphism does not fix N so we cannot apply example

(3) above.) To prove that (QoQ∗+,NoN×) is doubly quasi-lattice ordered we will now

show that ((QoQ∗+)op, (NoN×)op) is also quasi-lattice ordered. The partial ordering

on ((QoQ∗+)op, (No N×)op) is given by:

(r, x) ≤r (s, y)⇔ (r, x)−1 ·op (s, y) ∈ (No N×)op

⇔ (s− yx−1r, yx−1) ∈ (No N×)op(2.1)

Proposition 2.10. The pair ((Q o Q∗+)op, (N o N×)op) is a quasi-lattice ordered

group.

Proof. By Lemma 2.3(3) it suffices to show that every element (r, x) ∈ (QoQ∗+)op

with an upper bound in (NoN×)op has a least upper bound in (NoN×)op. In fact we

can show more: that every (r, x) ∈ (QoQ∗+)op has a least upper bound in (NoN×)op.

Let (r, x) ∈ (QoQ∗+)op. Write r = p
q

with p ∈ Z, q ∈ N× and p, q coprime. Write

x = a
b

with a, b ∈ N and a, b coprime. Let m = max
{

0, bp
gcd(q,b)

}
. We claim that(

m, aq
gcd(q,b)

)
is an upper bound for (r, x) in (NoN×)op and further it is the least such.

First, let us demonstrate that
(
m, aq

gcd(q,b)

)
is an upper bound for (r, x). By (2.1) we

must show m− aq
gcd(q,b)

x−1r ∈ N and aq
gcd(q,b)

x−1 ∈ N×. Compute:

m− aq

gcd(q, b)
x−1r = m− aq

gcd(q, b)

b

a

p

q
= m− bp

gcd(q, b)
=

0 if m = bp
gcd(q,b)

− bp
gcd(q,b)

if m = 0.
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Note that if m = 0 then p ≤ 0 and hence − bp
gcd(q,b)

∈ N. In either case m− bp
gcd(q,b)

∈ N.

Also compute:

aq

gcd(q, b)
x−1 =

aq

gcd(q, b)

b

a
=

bq

gcd(q, b)
∈ N×.

Thus
(
m, aq

gcd(q,b)

)
is an upper bound for (r, x).

Second we show that
(
m, aq

gcd(q,b)

)
is the least upper bound in (NoN×)op. Let (k, c) ∈

(NoN×)op be an upper bound for (r, x). We must show that (m, aq
gcd(q,b)

)
≤r (k, c) i.e.

that k − c(gcd(q,b)
aq

)m and cgcd(q,b)
aq
∈ N×.

Consider k− c(gcd(q,b)
aq

)m. If m = 0 then k− c(gcd(q,b)
aq

)m = k ∈ N. If m = bp
gcd(q,b)

> 0

then

k − c
(

gcd(q, b)

aq

)
m = k − c

(
gcd(q, b)

aq

)
bp

gcd(q, b)
= k − c b

a

p

q
= k − cx−1r.

But (r, x) ≤r (k, c) and so, by (2.1), we have k−cx−1r ∈ N. Hence k−c(gcd(q,b)
aq

)m ∈ N.

To prove that cgcd(q,b)
aq

∈ N× we must know more about c. We claim that c is a

multiple of aq
gcd(q,b)

and hence that cgcd(q,b)
aq
∈ N×. Since cx−1 = cb

a
∈ N× it follows c is a

multiple of a. Thus we may write c = γa with γ ∈ N.

Since k − cx−1r ∈ N and k ∈ N it follows that cx−1r ∈ Z. Now consider

cx−1r = γa
b

a

p

q
=
γbp

q
=
γbp

q
·

1
gcd(q,b)

1
gcd(q,b)

=
γ b

gcd(q,b)
p

q
gcd(q,b)

∈ Z.

We know that p and q are coprime and that b
gcd(q,b)

and q
gcd(q,b)

are coprime. Thus γ

must be a multiple of q
gcd(q,b)

and so c is a multiple of aq
gcd(q,b)

. We have shown that

cgcd(q,b)
aq

∈ N× and hence that
(
m, aq

gcd(q,b)

)
≤r (k, c). Hence

(
m, aq

gcd(q,b)

)
is the least

upper bound for (r, x) in (No N×)op.

Thus ((QoQ∗+)op, (No N×)op) is a quasi-lattice ordered group. �

Remark. We have shown that ((QoQ∗+)op, (NoN×)op) is a quasi-lattice ordered

group but we can go further. Since every element of (Q o Q∗+)op has a least common

upper bound it follows that every pair (m, a), (n, b) ∈ (No N×)op has a least common

right upper bound in (No N×)op, namely

(m, a) ∨r (n, b) =
(
lcm(a, b) max{a−1m, b−1n}, lcm(a, b)

)
.

The observation that every pair of elements (m, a), (n, b) ∈ (N o N×)op has a least

common upper bound stands in sharp contrast to the behaviour of the partial order

on (QoQ∗+,NoN×). By [12, Remark 2.3], a pair of elements (m, a), (n, b) ∈ NoN×
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has a least common upper bound if and only if (m + aN) ∩ (n + bN) is nonempty. In

particular

(m, a) ∨l (n, b) =

∞ if (m+ aN) ∩ (n+ bN) = ∅(
l, lcm(a, b)

)
if (m+ aN) ∩ (n+ bN) 6= ∅

where l is the minimum element in (m+ aN) ∩ (n+ bN).

This example demonstrates that the two partial orders of a doubly quasi-lattice

ordered group may be very different and that we are getting new information by con-

sidering both partial orders.

2.3. Covariant partial isometric representations

Let T be a bounded operator on a Hilbert space H. Then T is a partial isometry

if ‖Th‖ = ‖h‖ for all h ∈ (kerT )⊥. Equivalently, T is a partial isometry if and only

if TT ∗T = T . Then T ∗T is the orthogonal projection onto (kerT )⊥, and TT ∗ is the

orthogonal projection onto the range of T . In an arbitrary C∗-algebra we say a ∈ A
is a partial isometry if aa∗a = a, i.e. if the representation of a on a Hilbert space is a

partial isometry. (This definition also holds on a ∗-algebra.)

Definition 2.11. Let A be a unital C∗-algebra and let (G,P ) be a doubly quasi-

lattice ordered group. A representation of P by partial isometries is a map W : P → A

such that Wp is a partial isometry for all p ∈ P , We = 1 where e is the identity of G

and WxWy = Wxy for x, y ∈ P . A representation is covariant if it satisfies

WxW
∗
xWyW

∗
y =

Wx∨lyW
∗
x∨ly if x ∨l y <∞.

0 otherwise.
(2.2)

W ∗
xWxW

∗
yWy =

W ∗
x∨ryWx∨ry if x ∨r y <∞.

0 otherwise.
(2.3)

From here on we will refer to these representations as covariant partial isometric rep-

resentations.

Let W be a covariant partial isometric representation. Let x, y ∈ P . The covariance

conditions (2.2) and (2.3) ensure that the range projections WxW
∗
x and WyW

∗
y commute

as do the source projections W ∗
xWx and W ∗

yWy. Given two partial isometries S and T

[6, Lemma 2] states that their composition ST is a partial isometry if and only if S∗S

and TT ∗ commute. The product WxWy = Wxy is a partial isometry and hence, W ∗
xWx

and WyW
∗
y commute. Therefore, for any covariant partial isometric representation
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W : P → A, the set {WxW
∗
x : x ∈ P} ∪ {W ∗

yWy : y ∈ P} is a family of commuting

projections.

Since we write x ∨ y = ∞ if the least upper bound x ∨ y does not exist, we will

use the convention W∞ = 0. Thus we can always write WxW
∗
xWyW

∗
y = Wx∨lyW

∗
x∨ly

and W ∗
xWxW

∗
yWy = W ∗

x∨ryWx∨ry. With this convention we can simplify our covariance

relations into an equivalent form better suited for calculations. Note that Wy is a

partial isometry so Wy = WyW
∗
yWy. We compute:

W ∗
xWy = (W ∗

xWxW
∗
x )(WyW

∗
yWy)

= W ∗
xWx∨lyW

∗
x∨lyWy (by (2.2))

= W ∗
xWxWx−1(x∨ly)W

∗
x−1(x∨ly)W

∗
xWy

= Wx−1(x∨ly)W
∗
x−1(x∨ly)W

∗
xWxW

∗
xWy (projections commute)

= Wx−1(x∨ly)W
∗
x−1(x∨ly)W

∗
xWy

= Wx−1(x∨ly)W
∗
x∨lyWy.

Thus we have

(2.4) W ∗
xWy = Wx−1(x∨ly)W

∗
x∨lyWy.

A similar argument using (2.3) shows that

(2.5) WxW
∗
y = WxW

∗
x∨ryW(x∨ry)y−1 .

Notation. In (2.4) and(2.5) there is an abuse of notation, namely that if x∨ly =∞
then the product x−1(x ∨l y) = x−1∞ is undefined. This does not cause problems: if

x ∨l y =∞ then W ∗
xWx∨lyW

∗
x∨lyWy = 0 and hence in (2.4) W ∗

xWy = 0. We impose the

convention that if x ∨l y = ∞ then for all g ∈ G we write g(x ∨l y) = ∞ = (x ∨l y)g

and Wg(x∨ly) = 0. Similarly for the right order: we let g(x ∨r y) =∞ = (x ∨r y)g and

Wg(x∨ry) = 0 whenever x ∨r y =∞.

We now have two equivalent covariance conditions. We use them interchangeably:

(2.2) and (2.3) are easier to check and give a clearer picture of what is going on, while

(2.4) and (2.5) are easier to use in calculations.

2.4. Examples of covariant partial isometric representations

Examples. (1). Consider (Z,N). Let T be a partial isometry on a Hilbert space

H such that, for all n ∈ N, T n is a partial isometry. We say T is a power partial

isometry. The map W : N → B(H) defined by Wn = T n and W0 = T 0 = 1, is
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a covariant partial isometric representation of N. A simple calculation shows that

WmWn = TmT n = Tm+n = Wm+n. Also we have covariance:

WmW
∗
mWnW

∗
n = TmT ∗mT nT ∗n

=

TmT ∗m−nT ∗nT nT ∗n if m ≥ n

TmT ∗mTmT n−mT ∗n if n > m

=

TmT ∗m−nT ∗n if m ≥ n

TmT n−mT ∗n if n > m

=

TmT ∗m if m ≥ n

T nT ∗n if n > m

= Tmax{m,n}T ∗max{m,n}

= Wmax{m,n}W
∗
max{m,n}.

Similarly, W ∗
mWmW

∗
nWn = W ∗

max{m,n}Wmax{m,n}. Thus W is covariant.

Let T be the truncated shift on Cn such that

T (x1, x2, . . . , xn−1, xn) = (0, x1, x2, . . . , xn−1).

Written in terms of the usual basis elements {ei : 1 ≤ i ≤ n} for Cn we see that

Tei =

ei+1 if i < n

0 otherwise.

The truncated shift T is a power partial isometry and is one of the standard exam-

ples. Halmos and Wallen proved [6, Theorem 1] that every power partial isometry is

composed of a direct sum of a unitary and copies of the unilateral shift, the backwards

unilateral shift and copies of the truncated shifts on Cn for all n ∈ N.

(2). Let T1, T2 be a pair of star-commuting power partial isometries on a Hilbert

space H, that is T1T2 = T2T1 and T ∗1 T2 = T2T
∗
1 . The map W : N2 → B(H) given

by W(m,n) = Tm1 T
n
2 is a covariant partial isometric representation of N2. Since T1, T2

star-commute their composition is also a power partial isometry. To see W is covariant

compute:

W(m,n)W
∗
(m,n)W(p,q)W

∗
(p,q) = Tm1 T

n
2 T
∗n
2 T ∗m1 T p1 T

q
2T
∗q
2 T ∗p1

= Tm1 T
∗m
1 T p1 T

∗p
1 T n2 T

∗n
2 T q2T

∗q
2

= T
max{m,p}
1 T

∗max{m,p}
1 T

max{n,q}
2 T

∗max{n,q}
2
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= T
max{m,p}
1 T

max{n,q}
2 T

∗max{m,p}
1 T

∗max{n,q}
2

= W(m,n)∨l(p,q)W
∗
(m,n)∨l(p,q).

The two partial orders are the same, hence we also have

W ∗
(m,n)W(m,n)W

∗
(p,q)W(p,q) = W ∗

(m,n)∨r(p,q)W(m,n)∨r(p,q)

and (2.3) holds.

(3). Our definition of covariance and Nica’s original definition in [16] (see (1.1))

for isometric representations are very similar. In general Nica’s covariant isometric

representations are not covariant in our sense. An isometric representation of P cannot

be covariant (in the sense of Definition 2.11) unless p ∨r q < ∞ for all p, q ∈ P . As

a counterexample suppose that W : P → A is an isometric representation and that

p, q ∈ P such that p ∨r q = ∞. Since Wp,Wq are isometries we have W ∗
pWpW

∗
qWq =

1 6= 0. So W is not covariant in the sense of (2.3).

Since the truncated shift on Cn is so central to the study of power partial isometries

it makes sense for us to attempt to find an analogous example for general doubly quasi-

lattice ordered groups:

Lemma 2.12. Let (G,P ) be a doubly quasi-lattice ordered group. Fix a ∈ P and

define Ia := {x ∈ P : x ≤r a}. The map Ja : P → B(`2(Ia)) defined by

Jap δx =

δpx if px ∈ Ia
0 otherwise

is a covariant partial isometric representation.

Proof. Observe that Jap is isometric on span{δx : px ∈ Ia} and 0 otherwise. Thus

Jap is a partial isometry for all p ∈ P . To show that Ja is a representation of P we

must show that Jae = 1 and JapJ
a
q = Japq.

Fix x ∈ Ia. Compute Jae δx = δex = δx. Thus Jae = 1.

Second, let p, q ∈ P and compute:

JapJ
a
q δx =

Jap δqx if qx ∈ Ia
0 otherwise

=

δpqx if qx ∈ Ia and pqx ∈ Ia
0 otherwise.
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However pqx ∈ Ia implies pqx ≤r a which implies a(pqx)−1 ∈ P . Then a(pqx)−1p =

a(qx)−1 ∈ P , so qx ≤r a. Thus pqx ∈ Ia implies qx ∈ Ia. Therefore:

JapJ
a
q δx =

δpqx if pqx ∈ Ia
0 otherwise.

= Japqδx.

We claim that the adjoint Ja∗p satisfies

Ja∗p δx =

δp−1x if p ≤l x

0 otherwise.

Let y ∈ Ia. Then consider the inner product:

(Jap δx | δy) =

(δpx | δy) if px ∈ Ia
0 otherwise

=

1 if y = px

0 otherwise

=

1 if p−1y = x

0 otherwise

=

(δx | δp−1y) if p−1y ∈ Ia
0 otherwise.

Now it follows that Ja∗p δx = δp−1x if p−1x ∈ Ia. Note that for all x ∈ Ia and p ∈ P ,

p−1x ≤r a. Thus p−1x ∈ Ia if and only if p ≤l x. We have thus proved our claim.

To show Ja is a covariant representation we start by computing the range and

source projections:

Jaq J
a∗
q δx =

Jaq δq−1x = δx if q ≤l x

0 otherwise

Ja∗q J
a
q δx =

Ja∗q δqx = δx if qx ≤r a

0 otherwise.

Using the above projections, compute:

JapJ
a∗
p J

a
q J

a∗
q δx =

JapJa∗p δx if q ≤l x

0 otherwise
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=

δx if q ≤l x and p ≤l x

0 otherwise.

If q ≤l x and p ≤l x, then x is an upper bound for p and q and so p ∨l q exists and

p ∨l q ≤ x. Conversely, if p ∨l q ≤ x then p, q ≤l x. Thus:

JapJ
a∗
p J

a
q J

a∗
q δx =

δx if p ∨l q ≤l x

0 otherwise

= Jap∨lqJ
a∗
p∨lqδx.

Similarly,

Ja∗p J
a
pJ

a∗
q J

a
q δx =

Ja∗p Jap δx if qx ≤r a

0 otherwise

=

δx if px ≤r a and qx ≤r a

0 otherwise

By right-invariance px ≤r a⇔ p ≤r ax−1 and qx ≤r a⇔ q ≤r ax−1. Thus:

Ja∗p J
a
pJ

a∗
q J

a
q δx =

δx if p ≤r ax−1 and q ≤r ax−1

0 otherwise

Since x ≤r a, we know ax−1 ∈ P . If p ≤r ax−1 and q ≤r ax−1, then ax−1 is a right

upper bound for p and q. Hence p ∨r q exists and p ∨r q ≤r ax−1. Conversely, if

p ∨r q ≤r ax−1, then p ≤r ax−1 and q ≤r ax−1. Thus:

Ja∗p J
a
pJ

a∗
q J

a
q δx =

δx if p ∨r q ≤r ax−1

0 otherwise

= Ja∗p∨rqJ
a
p∨rqδx

Thus Ja is a covariant partial isometric representation of P . �

We will show later, in Lemma 2.16, that the family of partial isometric representa-

tions {Ja : P → B(`2(Ia)) : a ∈ P} of Lemma 2.12 is well behaved and has very useful

properties.
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2.5. Properties of covariant partial isometric representations

The covariance conditions, (2.4) and (2.5), are extremely powerful and allow us to

simplify any product of {Wp} ∪ {W ∗
p } into a product of just three terms and to write

down a formula for the multiplication of these terms.

Lemma 2.13. Let (G,P ) be a doubly quasi-lattice ordered group and let W : P → A

be a covariant partial isometric representation. Any product of the form Wn1W
∗
n2
Wn3W

∗
n4
. . .Wnm

where ni ∈ P , is either 0 or of the form WpW
∗
qWr for some p, q, r ∈ P satisfying p ≤r q

and r ≤l q.

Proof. We will prove this lemma by induction on the length of the product m. By

adding We and W ∗
e to the product we may assume that m ≥ 3. We begin by proving

that the result holds for m = 3.

Fix a, b, c ∈ P . Now compute:

WaW
∗
bWc = WaW

∗
a∨rbW(a∨rb)b−1Wc by (2.5)

= WaW
∗
a∨rbW(a∨rb)b−1c

Recall that by convention, if a ∨r b = ∞, then W ∗
a∨rb = 0. To prevent the equation

from becoming unreadable let x = a ∨r b and y = (a ∨r b)b−1c. Then:

WaW
∗
bWc = WaW

∗
xWy

= WaWx−1(x∨ly)W
∗
(x∨ly)Wy by (2.4)

= Wax−1(x∨ly)W
∗
(x∨ly)Wy

So we take p = ax−1(x ∨l y), q = (x ∨l y) and r = y. Examining the indices we see

immediately that r ≤l q. To see p ≤r q we compute:

qp−1 = (x ∨l y)[ax−1(x ∨l y)]−1 = (x ∨l y)(x ∨l y)−1xa−1 = xa−1 = (a ∨r b)a−1

Thus qp−1 = (a ∨r b)a−1 ∈ P and hence p ≤r q. Thus any product WaW
∗
bWc is either

zero or can be written as WpW
∗
qWr with p ≤r q and r ≤l q and the result holds for

m = 3. Now suppose that the result holds for m = k and consider m = k+ 1. We have

two cases to consider: if k + 1 is odd or even which determines whether the product

ends in an adjoint.

If k + 1 is odd, then the product ends in Wnk+1
. By assumption Wn1 . . .W

∗
nk
Wnk+1

is either zero or may be simplified to WpW
∗
qWrWnk+1

by our assumption. We may then

simplify again to see WpW
∗
qWrWnk+1

= WpW
∗
qWrnk+1

. We have a product of length 3

which may be simplified to the desired form as above.
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If k + 1 is even, then the product ends in W ∗
nk+1

. We simplify the first k terms

Wn1W
∗
n2
Wn3W

∗
n4
. . .W ∗

nk
which gives 0 or WpW

∗
qWr. Then consider WpW

∗
qWrW

∗
nk+1

.

Compute:

WpW
∗
qWrW

∗
nk+1

= WpW
∗
qWrW

∗
r∨rnk+1

W(r∨rnk+1)nk+1
−1 . (by (2.5))

= WpW
∗
r−1q(W

∗
rWrW

∗
r )W ∗

(r∨rnk+1)r−1W(r∨rnk+1)nk+1
−1

= WpW
∗
r−1qW

∗
rW

∗
(r∨rnk+1)r−1W(r∨rnk+1)nk+1

−1 (W ∗
rWrW

∗
r = W ∗

r )

= WpW
∗
(r∨rnk+1)r−1qW(r∨rnk+1)nk+1

−1 .

So we have reduced the product to one of length 3 which we can put into the desired

form. By induction the proof is complete. �

Lemma 2.14. Let (G,P ) be a doubly quasi-lattice ordered group. Let W : P → A

be a covariant partial isometric representation. Let a, b, c, p, q, r ∈ P such that a ≤r b,
c ≤l b, p ≤r q and r ≤l q. Then

(1) (WaW
∗
bWc)(WpW

∗
qWr) = Wab−1(b∨lcp)W

∗
(cp∨rq)(cp)−1(b∨lcp)W(cp∨rq)q−1r

(2) r−1q ≤r q, qp−1 ≤l q and (WpW
∗
qWr)

∗ = Wr−1qW
∗
qWqp−1.

Proof. (1). Compute:

(WaW
∗
bWc)(WpW

∗
qWr) = WaW

∗
b (WcpW

∗
q )Wr

= WaW
∗
b (WcpW

∗
(cp∨rq)W(cp∨rq)q−1)Wr (by (2.5))

= Wa(W
∗
bWcp)W

∗
(cp∨rq)W(cp∨rq)q−1r

= Wa(Wb−1(b∨lcp)W
∗
(b∨lcp)Wcp)W

∗
(cp∨rq)W(cp∨rq)q−1r (by (2.4))

= Wab−1(b∨lcp)W
∗
(cp)−1(b∨lcp)(W

∗
cpWcpW

∗
cp)W

∗
(cp∨rq)(cp)−1W(cp∨rq)q−1r

= Wab−1(b∨lcp)W
∗
(cp)−1(b∨lcp)W

∗
cpW

∗
(cp∨rq)(cp)−1W(cp∨rq)q−1r

= Wab−1(b∨lcp)W
∗
(cp∨rq)(cp)−1(b∨lcp)W(cp∨rq)q−1r.

(2) Compute:

(WpW
∗
qWr)

∗ = W ∗
rWqW

∗
p

= Wr−1(r∨lq)W
∗
r∨lqWqW

∗
p by (2.4)

= Wr−1qW
∗
qWqW

∗
p (r ∨l q = q)

= Wr−1qW
∗
qWqW

∗
q∨rpW(q∨rp)p−1 by (2.5)

= Wr−1qW
∗
qWqW

∗
qWqp−1 (q ∨r p = q)

= Wr−1qW
∗
qWqp−1 �
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Since q(r−1q)−1 = qq−1r = r ∈ P we have r−1q ≤r q. Similarly, qp−1 ≤l q because

(qp−1)−1q = pq−1q = p ∈ P .

In the previous two lemmas we have established the standard form for products of

covariant partial isometric representations and how these triple product multiply. In

Lemma 2.16 we will show that there is a partial isometric representation J of P such

that the set {JpJ∗q Jr : p ≤r q, r ≤l q} is linearly independent. This fact is crucial in

our construction of the universal algebra in the next chapter.

Definition 2.15. Let (G,P ) be a doubly quasi-lattice ordered group. Define J :

P → B(
⊕

a∈P `
2(Ia)) by Jp :=

⊕
a∈P J

a
p . Define the C∗-algebra C∗ts(G,P, P

op) to be

the C∗-subalgebra of B(
⊕

a∈P `
2(Ia)) generated by {Jp : p ∈ P}.

We choose the notation C∗ts(G,P, P
op) advisedly. When we construct our universal

algebra in Chapter 3, we will call it C∗(G,P, P op) to stay consistent with Nica’s notation

of C∗(G,P ) for the universal algebra generated by isometric representations in [16].

We have added P op to distinguish the two algebras and to emphasise that we have two

partial orders and are dealing with partial isometries. The C∗-algebra C∗ts(G,P, P
op)

is a concretely defined C∗-algebra of operators on a particular Hilbert space, and we

regard it as a “reduced algebra”. In our proofs C∗ts(G,P, P
op) takes a similar role to

C∗r (G) ⊆ B(`2(G)) for group algebras. Here the subscript ts stands for truncated shift,

as the Jap were constructed to generalise the properties of the truncated shift on Cn. In

fact for (Z,N), C∗ts(Z,N,Nop) and C∗(Z,N,Nop) are both isomorphic to the C∗-algebra

C∗(J) studied by Hancock and Raeburn in [7, Theorem 1.3].

Lemma 2.16. Let (G,P ) be a doubly quasi-lattice ordered group. The set

S := {JpJ∗q Jr : p, q, r ∈ P, p ≤r q, r ≤l q}

is linearly independent and spanS is a dense unital ∗-subalgebra of C∗ts(G,P, P
op).

Proof. Suppose, aiming for a contradiction, that S is linearly dependent. Then

there exists a set of nonzero complex numbers {λi : 1 ≤ i ≤ n} and a set of distinct

triples {(pi, qi, ri) : 1 ≤ i ≤ n, pi ≤r qi, ri ≤l qi} with (pi, qi, ri) 6= (pj, qj, rj) for i 6= j,

such that
n∑
i=1

λiJpiJ
∗
qi
Jri = 0.

Since Jp =
⊕

a∈P J
a
p it follows that

∑n
i=1 λiJ

a
pi
Ja∗qi J

a
ri

= 0 for all a ∈ P . We will

select a particular a ∈ P where a contradiction will fall out nicely. By Lemma 2.8

every partially ordered finite set has a minimal element. Thus the set {ri : 1 ≤ i ≤ n}
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must have some element rk that is right-minimal in the following sense: if rj ≤r rk
then rj = rk. In the set {qi : 1 ≤ i ≤ n, ri = rk} there exists some element qh that

is left-minimal in the following sense: if qj ≤l qh then qj = qh. We will show that

choosing a = qh gives a contradiction.

Consider
∑n

i=1 λiJpiJ
∗
qi
Jri acting on `2(Iqh). Since rk = rh ≤l qh it follows that

r−1
k qh ∈ Iqh so we can focus on the unit vector δr−1

k qh
.

Now we compute Jqhpi J
qh∗
qi
Jqhri δr−1

k qh
. We have

Jqhri δr−1
k qh

=

δrir−1
k qh

if rir
−1
k qh ≤r qh ⇔ qhq

−1
h rkr

−1
i ∈ P ⇔ rkr

−1
i ∈ P

0 otherwise.

But rkr
−1
i ∈ P implies that ri ≤r rk, which only occurs if ri = rk due to the minimality

of rk. Thus we have

Jqhpi J
qh∗
qi
Jqhri δr−1

k qh
=

Jqhpi Jqh∗qi
δrir−1

k qh
if ri = rk

0 otherwise

=

Jqhpi Jqh∗qi
δqh if ri = rk

0 otherwise.

Now we consider Jqh∗qi
δqh . We have Jqh∗qi

δqh = δq−1
i qh

if qi ≤l qh and zero otherwise. But

qh is left-minimal so qi ≤l qh if and only if qi = qh. Hence we have

Jqhpi J
qh∗
qi
Jqhri δr−1

k qh
=

Jqhpi δq−1
i qh

if ri = rk and qi = qh

0 otherwise

=

Jqhpi δe if ri = rk and qi = qh

0 otherwise

=

δpi if ri = rk and qi = qh

0 otherwise.

Now we compute:

n∑
i=1

λiJ
qh
pi
Jqh∗qi

Jqhri δr−1
k qh

=
∑

i∈{i:ri=rk,qi=qh}

λiδpi = 0.

By our initial assumption the triples (pi, qi, ri) are distinct. Hence all the pi such that

ri = rk and qi = qh must be distinct. Since the unit vectors δx are linearly independent

it follows that λi = 0 for all i such that ri = rk and qi = qh, contradicting our
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assumption that the λi are nonzero. Thus S = {JpJ∗q Jr : p, q, r ∈ P, p ≤r q, r ≤l q} is

linearly independent.

Since C∗ts(G,P, P
op) is generated by {Jp : p ∈ P}, span{Jn1J

∗
n2
Jn3J

∗
n4
. . . : n ∈ P} is

a dense unital ∗-subalgebra of C∗ts(G,P, P
op). By Lemma 2.13, any product of the form

Jn1J
∗
n2
Jn3J

∗
n4
. . . may be written as JpJ

∗
q Jr where p ≤r q and r ≤l q. Thus the spanS

is equal to span{Jn1J
∗
n2
Jn3J

∗
n4
. . . : ni ∈ P} and hence is a dense unital ∗-subalgebra of

C∗ts(G,P, P
op). �
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CHAPTER 3

Constructing a universal C∗-algebra

In this chapter we construct a C∗-algebra which is universal for covariant partial

isometric representations.

Theorem 3.1. Let (G,P ) be a doubly quasi-lattice ordered group. Then there is a

unital C∗-algebra C∗(G,P, P op) generated by partial isometries {vp : p ∈ P} such that

v : p 7→ vp is a covariant partial isometric representation of P and that C∗(G,P, P op)

has the following universal property: for every covariant partial isometric representa-

tion W : P → A there is a unital homomorphism φW : C∗(G,P, P op) → A such that

φW (vp) = Wp.

The pair (C∗(G,P, P op), {vp}) is unique up to isomorphism: for every pair (C, {wp})
satisfying this universal property there exists an isomorphism φw : C∗(G,P, P op)→ C

such that φw(vp) = wp.

In other words, C∗(G,P, P op) is universal for covariant partial isometric represen-

tations. As mentioned in the previous chapter we use the notation C∗(G,P, P op) to

stay consistent with Nica’s use of C∗(G,P ) while adding the P op to emphasise that we

are working with two quasi-lattice orders.

To construct the C∗-algebra C∗(G,P, P op) of Theorem 3.1, we construct a normed

∗-algebra generated by partial isometries, and then complete it.

Our candidate for such a normed ∗-algebra A is the vector space over C with basis

{vp,q,r : q ∈ P, e ≤r p ≤r q, e ≤l r ≤l q}.

Recall that an element a of a ∗-algebra is a partial isometry if aa∗a = a. Using

this we can define a covariant partial isometric representation into a ∗-algebra. Let

B be a unital ∗-algebra. A partial isometric representation into a ∗-algebra is a map

w : P → B such that wp is a partial isometry for all p ∈ P , we = 1 where e is the

identity of G and wxwy = wxy for x, y ∈ P . A representation is covariant if it satisfies

wxw
∗
xwyw

∗
y =

wx∨lyw∗x∨ly if x ∨l y <∞.

0 otherwise.
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w∗xwxw
∗
ywy =

w∗x∨rywx∨ry if x ∨r y <∞.

0 otherwise.

Lemma 3.2. Define a multiplication on A by

va,b,cvp,q,r =

vab−1(b∨lcp),(cp∨rq)(cp)−1(b∨lcp),(cp∨rq)q−1r if cp ∨r q <∞ and b ∨l cp <∞.

0 otherwise.

This multiplication is associative.

This multiplication is constructed to mimic the multiplication of covariant partial

isometric representations as shown in Lemma 2.14. (Here vp,q,r corresponds toWpW
∗
qWr

for some covariant partial isometric representation W .)

Proof. We apply Van der Waerden’s method: consider the map Ψ : A → C∗ts(G,P, P
op)

defined by Ψ(
∑
cp,q,rvp,q,r) =

∑
cp,q,rJpJ

∗
q Jr. We will show that Ψ is injective and

Ψ(α)Ψ(β) = Ψ(αβ) for all α, β ∈ A. Then we can borrow the associativity of

C∗ts(G,P, P
op) to prove the multiplication defined on A is associative.

Suppose that Ψ(
∑
cp,q,rvp,q,r) = Ψ(

∑
dp,q,rvp,q,r). Computing, we see that∑

cp,q,rJpJ
∗
q Jr =

∑
dp,q,rJpJ

∗
q Jr.

By Lemma 2.16, the set {JpJ∗q Jr} is linearly independent and hence cp,q,r = dp,q,r for

each triple p, q, r. Thus
∑
cp,q,rvp,q,r =

∑
dp,q,rvp,q,r and Ψ is injective. By Lemma 2.14

we have:

Ψ(va,b,c)Ψ(vp,q,r) = (JaJ
∗
b Jc)(JpJ

∗
q Jr)

=

(Jab−1(b∨lcp)J
∗
(cp∨rq)(cp)−1(b∨lcp)J(cp∨rq)q−1r) if cp ∨r q, b ∨l cp <∞.

0 otherwise.

=

Ψ(vab−1(b∨lcp),(cp∨rq)(cp)−1(b∨lcp),(cp∨rq)q−1r) if cp ∨r q, b ∨l cp <∞.

0 otherwise.

= Ψ(va,b,cvp,q,r).

It follows immediately that Ψ(α)Ψ(β) = Ψ(αβ) for all α, β ∈ A. Therefore Ψ is

injective and preserves multiplication. Now we can use Ψ to prove that multiplication

on A is associative.

Fix α, β, γ ∈ A and consider (αβ)γ. Now:

Ψ((αβ)γ) = Ψ(αβ)Ψ(γ)
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= (Ψ(α)Ψ(β))Ψ(γ).

Multiplication in C∗ts(G,P, P
op) is associative so:

(Ψ(α)Ψ(β))Ψ(γ) = Ψ(α)(Ψ(β)Ψ(γ))

= Ψ(α)Ψ(βγ)

= Ψ(α(βγ)).

Thus Ψ((αβ)γ) = Ψ(α(βγ)). By the injectivity of Ψ, we have (αβ)γ = α(βγ). There-

fore multiplication in A is associative. �

Define a map a 7→ a∗ by

(
∑

e≤rp≤rq
e≤lr≤lq

cp,q,rvp,q,r)
∗ =

∑
e≤rp≤rq
e≤lr≤lq

cp,q,rvr−1q,q,qp−1 .

In particular, (vp,q,r)
∗ = vr−1q,q,qp−1 . This again mimics the adjoints of partial isometric

representations as shown in Lemma 2.14. The map a 7→ a∗ is conjugate linear and is

an involution since

((vp,q,r)
∗)∗ = (vr−1q,q,qp−1)∗ = vpq−1q,q,qq−1r = vp,q,r.

Thus A is a ∗-algebra.

We claim that v : P → A defined vp = vp,p,p is a covariant partial isometric

representation into a ∗-algebra. To see that ve = ve,e,e is the identity forA fix p, q, r ∈ P
with p ≤r q and r ≤l q. Compute:

ve,e,evp,q,r = vee−1(e∨lep),(ep∨rq)(ep)−1(e∨lep),(ep∨rq)q−1r = vp,qp−1p,qq−1r = vp,q,r

and similarly vp,q,rve,e,e = vp,q,r. Thus ve,e,e is the identity.

Fix p, q ∈ P . We have p ≤l pq and q ≤r pq thus p ∨l pq = pq and q ∨r pq = pq. So

we can compute:

vpvq = vp,p,pvq,q,q

= vpp−1(p∨lpq),(pq∨rq)(pq)−1(p∨lpq),(pq∨rq)q−1q

= vpp−1pq,pq(pq)−1pq,pqq−1q (p ≤l pq and q ≤r pq)

= vpq,pq,pq

= vpq.
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Thus vpvq = vpq and v preserves the semigroup multiplication. To see that vp is a

partial isometry:

vpv
∗
pvp = vp,p,p(vp,p,p)

∗vp,p,p

= vp,p,pve,p,evp,p,p

= vpp−1(p∨lpe),(pe∨rp)(pe)−1(p∨lpe),(pe∨rp)p−1evp,p,p

= vp,(p∨rp),(p∨rp)p−1vp,p,p

= vp,p,evp,p,p

= vpp−1(p∨lep),(ep∨rp)(ep)−1(p∨lep),(ep∨rp)p−1p

= vp,p,p

= vp.

Thus vp is a partial isometry for all p ∈ P . To prove covariance, observe that vpv
∗
p =

vpv
∗
pve = vp,p,e and similarly v∗pvp = ve,p,p. We compute:

vpv
∗
pvqv

∗
q = vp,p,evq,q,e

= vpp−1(p∨leq),(eq∨rq)q−1e−1(p∨leq),(eq∨rq)q−1e

= v(p∨lq),qq−1(p∨lq),qq−1

= v(p∨lq),(p∨lq),e

= v(p∨lq)v
∗
(p∨lq).

By a similar argument

v∗pvpv
∗
qvq = ve,p,pve,q,q = ve,(p∨rq),(p∨rq) = v∗(p∨rq)v(p∨rq).

We claim that {vp = vp,p,p : p ∈ P} generates A as a ∗-algebra. From our definition

of A as a vector space we see that A = span{vp,q,r : p, q, r ∈ P, p ≤r q, r ≤l q}. Thus it

will suffice to show that vp,q,r = vpv
∗
qvr = vp,p,p(vq,q,q)

∗vr,r,r. Fix p, q, r ∈ P with p ≤r q
and r ≤l q. We compute:

vpv
∗
qvr = vp,p,p(vq,q,q)

∗vr,r,r

= vp,p,pve,q,evr,r,r

= vpp−1(p∨lpe),(pe∨rq)(pe)−1(p∨lpe),(pe∨rq)q−1evr,r,r

= vp,(p∨rq),(p∨rq)q−1vr,r,r

= vp,q,evr,r,r

= vpq−1(q∨ler),(er∨rr)(er)−1(q∨ler),(er∨rr)r−1r
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= vp,q,r

Thus A is generated by {vp,p,p : p ∈ P}. For ease of reading we will write vp,p,p = vp,

and then vp,q,r = vpv
∗
qvr.

Next, we want to define a norm on A using representations of A. We need to know

that appropriate representations exist.

Lemma 3.3. Let (G,P ) be a doubly quasi-lattice ordered group and let v : p 7→ vp

be the covariant partial isometric representation constructed in Section 3.

(1) Let π be a unital ∗-representation of A on a Hilbert space H. Then π(vp) is a

partial isometry and there exists a covariant partial isometric representation

W : P → B(H) such that Wp = π(vp).

(2) Let W be a covariant partial isometric representation W : P → B(H). Then

there exists a unital ∗-representation πW : A → B(H) such that πW (vp) = Wp.

Proof. (1). Suppose π is a unital representation of A on a Hilbert space H. We

showed above that for all p, q ∈ P , vp is a partial isometry, ve = 1, vpvq = vpq and

v : P → A is covariant. Thus the map W : P → B(H) defined by Wp = π(vp) is a

covariant partial isometric representation.

(2). Suppose W is a covariant partial isometric representation W : P → B(H).

Define a map πW : A → B(H) by

πW

 ∑
e≤rp≤rq
e≤lr≤lq

cp,q,rvp,q,r

 =
∑

e≤rp≤rq
e≤lr≤lq

cp,q,rWpW
∗
qWr.

Then πW preserves addition and scalar multiplication. Multiplication and involu-

tion in A were defined to mimic the multiplication and adjoint of partial isometric

representations, thus πW also preserves multiplication and involution. In particular

πW (vp) = πW (vp,p,p) = WpW
∗
pWp = Wp and πW (ve) = We = 1. Hence πW is a unital

∗-representation. �

Now we have the representations to define a norm on A. For all a ∈ A define

‖a‖ := sup{‖π(a)‖ : π is a unital ∗-representation of A on a Hilbert space H}.

To see that this candidate for the norm is finite, fix a unital ∗-representation π of A
on a Hilbert space H. Observe that π(vp,q,r) = WpW

∗
qWr for some partial isometric

representation W . All partial isometries have norm less than or equal to 1, and thus
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‖WpW
∗
qWr‖ ≤ 1. Hence∥∥∥π(∑ cp,q,rvp,q,r

)∥∥∥ =
∥∥∥∑ cp,q,rWpW

∗
qWr

∥∥∥ ≤∑ |cp,q,r|
∥∥∥WpW

∗
qWr

∥∥∥ ≤∑ |cp,q,r|.

So
∑
|cp,q,r| is an upper bound for the norm of

∑
cp,q,rvp,q,r and so our candidate for

the norm is well defined. Note that there is no issue taking the supremum over this

collection as the {‖π(a)‖} ⊂ R. Apart from showing ‖a‖ = 0 ⇒ a = 0 verifying the

norm axioms is straightforward, and we omit it.

Suppose ‖a‖ = 0. Then ‖π(a)‖ = 0 for all π and hence π(a) = 0 for all π. Let

J : P → B(
⊕

a∈P `
2(Ia)) be the covariant partial isometric representation of Definition

2.15. By Lemma 3.3(2) there is a unital ∗-representation πJ such that πJ(vp) = Jp for

all p ∈ P . Write a =
∑

e≤rp≤rq
e≤lr≤lq

cp,q,rvp,q,r. Then

0 = πJ(a) =
∑

e≤rp≤rq
e≤lr≤lq

cp,q,rJpJ
∗
q Jr.

Since {JpJ∗q Jr : p, q, r ∈ P, p ≤r q, r ≤l q} is linearly independent by Lemma 2.16,

each cp,q,r = 0 and hence a = 0. Thus ‖a‖ = 0 implies a = 0. Hence A is a normed

∗-algebra and we may complete A with respect to that norm to obtain a C∗-algebra

C∗(G,P, P op) generated by partial isometries {vp : p ∈ P}.

Proof of Theorem 3.1. Take C∗(G,P, P op) to be the C∗-algebra constructed

above. Then C∗(G,P, P op) is generated by the partial isometries {vp : p ∈ P}. Suppose

that A is a unital C∗-algebra and that W : P → A is a covariant partial isometric

representation. Choose a faithful unital representation π : A → B(H). Now define

V : P → B(H) by Vp := π(Wp). Then V is a covariant partial isometric representation

of P .

By Lemma 3.3 there is a unital representation πV : A → B(H) such that πV (vp) =

Vp. For all a ∈ A,

‖πV (a)‖ ≤ sup{‖π(a)‖ : π is a unital ∗-representation of A} = ‖a‖.

so πV is bounded and extends to a representation of C∗(G,P, P op). With an abuse of

notation we continue to use πV for the representation of C∗(G,P, P op) on H.

Now let φW := π−1 ◦ πV . This is a well-defined homomorphism from C∗(G,P, P op)

to A since π is faithful and rangeπV ⊆ rangeπ. In particular

φW (vp) = π−1 ◦ πV (vp) = π−1(Vp) = π−1(π(Wp)) = Wp.

Thus φW has the required properties.
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To prove uniqueness, suppose that C is a unital C∗-algebra generated by a set of

partial isometries {wp : p ∈ P} such that w : p 7→ wp is a covariant partial isomet-

ric representation, and that the pair (C, {wp}) has the universal property. Then the

universal property of (C, {wp}) gives a homomorphism ψv : C → C∗(G,P, P op) such

that ψv(wp) = vp. However, the w : P → C is a covariant partial isometric representa-

tion so the universal property of C∗(G,P, P op) means that there is a homomorphism

φw : C∗(G,P, P op) → C such that φw(vp) = wp. Further, φw is an inverse for ψv

and hence φw is an isomorphism. Thus the pair (C∗(G,P, P op), {vp}) is unique up to

isomorphism. �

Remark. It is important to note that C∗(G,P, P op) is not the same as C∗(G,P )

that Nica constructed in [16, §4.2]. (See §1.2.3.) As we mentioned in §2.4, covariant

isometric representations are not in general covariant partial isometric representations.

When they are, i.e. when every pair in P has a common right upper bound in P , then

C∗(G,P ) is a quotient of C∗(G,P, P op). For example, (Z,N) is lattice ordered in both

left and right orders. Therefore the universal covariant isometric representation of w :

N→ C∗(Z,N) is a covariant isometric representation. Thus there is a homomorphism

φw : C∗(Z,N,Nop)→ C∗(Z,N). This φw is a surjection, however, it is not faithful. As

shown in Lemma 2.16 v∗1v1 − v∗2v2 6= 0 however,

φw(v∗1v1 − v∗2v2) = w∗1w1 − w∗2w2 = 1− 1 = 0.

Thus C∗(G,P, P op)is a new, larger algebra associated to a given doubly quasi-lattice

ordered group.

3.1. Universal algebra of (Gop, P op)

As we noted in Chapter 2, for any doubly quasi-lattice ordered group (G,P ), its

opposite group (Gop, P op) is also doubly quasi-lattice ordered. Therefore our construc-

tion of the universal algebra for (G,P ) also applies to (Gop, P op). For Nica’s covariant

isometric representations, the two universal algebras C∗(G,P ) and C∗(Gop, P op) are

distinct (for a discussion of the isometric case see [3, Remark 7.5]). However, this

distinction occurs because C∗(G,P ) only captures the left least upper bound structure

and C∗(Gop, P op) only captures the right least upper bound structure. As we showed

in Lemma 2.10 the left and right least upper bound structure of a doubly quasi-lattice

ordered group can be very different.

When we look at C∗(G,P, P op) we have already included all the information from

the two partial orders and so the switch to (Gop, P op) is just a switch of labelling. As
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we show in Lemma 3.4, every covariant partial isometric representation of P op is the

adjoint of a covariant representation of P .

Notation. Let (G,P ) be a doubly quasi-lattice ordered group. Then (Gop, P op)

must also be a doubly quasi-lattice ordered group. We need new notation for the left

and right orders on (Gop, P op). Let ≤l,op be the left-invariant partial order on (Gop, P op)

and let ≤r,op be the right-invariant partial order. It is easy to see that these “new”

orders are just the right and left orders respectively on (G,P ):

x ≤l,op y ⇔ x−1 ·op y ∈ P ⇔ yx−1 ∈ P ⇔ x ≤r y

x ≤r,op y ⇔ y ·op x
−1 ∈ P ⇔ x−1y ∈ P ⇔ x ≤l y

Similarly, (Gop, P op) reverses the least upper bound structure: for all x, y ∈ P we

have x ∨l,op y = x ∨r y and x ∨r,op y = x ∨l y.

Lemma 3.4. Let (G,P ) be a doubly quasi-lattice ordered group and let A be a unital

C∗-algebra. Let W : P → A be a map and define a map RW : P op → A by RW
p := W ∗

p .

The map W is a covariant partial isometric representation of P if and only if RW is a

covariant partial isometric representation of P op.

Proof. Suppose that W is a covariant partial isometric representation of P . Since

Wp is a partial isometry for all p ∈ P , so is W ∗
p . It follows that RW

p = W ∗
p is a partial

isometry for all p ∈ P op. We have RW
e = W ∗

e = 1. Fix p, q ∈ P op and compute:

RW
p R

W
q = W ∗

pW
∗
q = (WqWp)

∗ = W ∗
qp = RW

qp = RW
p·opq.

Thus RW preserves the semigroup multiplication in P op and hence is a partial isometric

representation. To show that RW is covariant, we compute:

RW
p R

W∗
p RW

q R
W∗
q = W ∗

pWpW
∗
qWq = W ∗

p∨rqWp∨rq = RW
p∨rqR

W∗
p∨rq = RW

p∨l,opqR
W∗
p∨l,opq

RW∗
p RW

p R
W∗
q RW

q = WpW
∗
pWqW

∗
q = Wp∨lqW

∗
p∨lq = RW∗

p∨lqR
W
p∨lq = RW∗

p∨r,opqR
W
p∨r,opq.

Thus RW : P op → A is covariant partial isometric representation of P op.

To prove the reverse implication we use a symmetric argument. Suppose that

RW : P op → A defined by RW
p := W ∗

p is a covariant partial isometric representation

of P op. By the proof of the first part we know that RRW : (P op)op → A defined by

RRW

p = (RW
p )∗ is a covariant partial isometric representation of (P op)op. However,

(P op)op = P and, for all p ∈ P , we have RRW

p = (RW
p )∗ = (W ∗

p )∗ = Wp. Thus

RRW = W and so W is a covariant partial isometric representation of P . �

Corollary 3.5. Let (G,P ) be a doubly quasi-lattice ordered group.
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(1) There exists a unital C∗-algebra C∗(Gop, P op, P ) generated by partial isome-

tries {wp : p ∈ P op} such that w : p 7→ wp is a covariant partial isomet-

ric representation that has the following property: for every covariant par-

tial isometric representation W : P op → A there is a unital homomorphism

φW : C∗(Gop, P op, P )→ A such that φW (wp) = Wp.

(2) There is an isomorphism Φop : C∗(G,P, P op) → C∗(Gop, P op, P ) such that

Φ(vp) = w∗p.

Proof. (1). (Gop, P op) is a doubly quasi-lattice ordered group and hence (1) fol-

lows immediately from Theorem 3.1.

(2). The map w : P op → C∗(Gop, P op, P ) is a covariant partial isometric represen-

tation of P op. Hence, by Lemma 3.4, Rw : P → C∗(Gop, P op, P ) defined Rw
p = w∗p is a

covariant partial isometric representation of (P op)op = P . By Theorem 3.1, there is a

unital homomorphism

Φop : C∗(G,P, P op)→ C∗(Gop, P op, P )

such that Φop(vp) = w∗p. To show that Φop is an isomorphism we construct its inverse.

By Lemma 3.4, map Rv : P op → C∗(G,P, P op) defined Rv
P = v∗p is a covariant partial

isometric representation of P op. Hence, by part (1), there is a unital homomorphism

φv : C∗(Gop, P op, P )→ C∗(G,P, P op)

such that φv(wp) = v∗p. Then φv◦Φop(vp) = φv(w
∗
p) = (v∗p)

∗ = vp and Φop◦φv(wp) = wp.

Thus φv is the inverse of Φop. Hence Φop is an isomorphism. �
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CHAPTER 4

Faithful representations of C∗(G,P, P op)

In this chapter we seek to answer the question: given a doubly quasi-lattice ordered

group (G,P ) and a covariant partial isometric representation W : P → A, when is the

corresponding homomorphism πW : C∗(G,P, P op)→ A of Theorem 3.1 faithful?

Let (G,P ) be a doubly quasi-lattice ordered group. Then (G × Gop, P × P op) is

quasi-lattice ordered. In particular, (G×Gop, P × P op) has a partial order defined by

(x1, x2) ≤ (y1, y2) if x1 ≤l y1 and x2 ≤r y2. Further, if x1 ∨l y1 <∞ and x2 ∨r y2 <∞
then (x1, x2) ∨ (y1, y2) = (x1 ∨l y1, x2 ∨r y2). (Note that we are only considering one

partial order on (G×Gop, P × P op), and so we use it without subscript.) For a finite

subset K ⊂ P × P op, let ∨K be the least common upper bound of K in P × P op.

Lemma 4.1. Let (G,P ) be a doubly quasi-lattice ordered group and let W : P → A

be a covariant partial isometric representation. Then

{LW(x1,x2) := Wx1W
∗
x1
W ∗
x2
Wx2 : (x1, x2) ∈ P × P op}

is a family of projections satisfying LW(e,e) = 1 where e is the identity of G and LWx L
W
y =

LWx∨y for x, y ∈ P × P op.

Proof. Since W is a covariant partial isometric representation the projections

Wx1W
∗
x1

and W ∗
x2
Wx2 commute and hence each of the LWx is a projection. As with

covariant representations, we use the convention LW∞ = 0. We have

LW(e,e) = WeW
∗
eW

∗
eWe = 1.

Fix x, y ∈ P × P op where x = (x1, x2) and y = (y1, y2), and compute:

LWx L
W
y = Wx1W

∗
x1
W ∗
x2
Wx2Wy1W

∗
y1
W ∗
y2
Wy2

= Wx1W
∗
x1
Wy1W

∗
y1
W ∗
x2
Wx2W

∗
y2
Wy2

= Wx1∨ly1W
∗
x1∨ly1W

∗
x2∨ry2Wx2∨ry2

= LWx∨y. �

Definition 4.2. Let (G,P ) be a doubly quasi-lattice ordered group. A function

L : P ×P op → A sees all projections if L(x) is a projection for all x ∈ P ×P op and for
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every finite set F ⊂ P × P op and x 6∈ F such that x is a lower bound for F , we have∏
y∈F (L(x)− L(y)) 6= 0.

A covariant partial isometric representation W : P → A sees all projections

if the map LW : ×P op → A defined by LW ((x1, x2)) = LW(x1,x2) where LW(x1,x2) =

Wx1W
∗
x1
W ∗
x2
Wx2 sees all projections.

In the next lemma we show that “W sees all projections” is a necessary condition

for πW to be faithful.

Lemma 4.3. Let (G,P ) be a doubly quasi-lattice ordered group.

(1) Let J : P → B(
⊕

a∈P `
2(Ia)) be the covariant partial isometric representation

of Definition 2.15. Then J sees all projections.

(2) Let v : P → C∗(G,P, P op) be the universal covariant partial isometric repre-

sentation. Then v sees all projections.

(3) Let π : C∗(G,P, P op) → A be a faithful homomorphism. Then W : P → A

such that Wp = π(vp) sees all projections.

Proof. (1). Let F ⊂ P ×P op be a finite set with lower bound x 6∈ F . We see that∏
y∈F

(LJx − LJy ) = LJx +
∑

K∈P(F )

(−1)|K|
∏
y∈K

LJy

= LJx +
∑

K∈P(F )

(−1)|K|LJ∨K .

Since x is a lower bound for F , ∨K 6= x for all K ⊆ F . Therefore we have a linear

combination of distinct projections of the form LJz = Jz1J
∗
z2z1

Jz2 . By Lemma 2.16 the

set {JpJ∗q Jr : p ≤r q, r ≤l q} is linearly independent. So
∏

y∈F (LJx − LJy ) cannot be 0.

Thus J sees all projections.

(2). By the universal property of C∗(G,P, P op) there is a representation πJ :

C∗(G,P, P op) → C∗ts(G,P, P
op) such that πJ(vp) = Jp. From part (1) J sees all pro-

jections. Therefore v must also see all projections.

(3). We proved in (2) that v : P → C∗(G,P, P op) sees all projections. Thus, for

every finite set F ⊂ P × P op and x ∈ P × P op\F such that x is a lower bound for F ,

we have
∏

y∈F (Lvx − Lvy) 6= 0. Since π is faithful we see that

∏
y∈F

(LWx − LWy ) = π

(∏
y∈F

(Lvx − Lvy)

)
6= 0.

Thus W sees all projections. �
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From Lemma 4.3(3) it follows that W seeing all projections is a necessary condition

for the corresponding representation πW to be faithful. However, we need another

condition to complete the statement of our theorem. We take a moment to define a

conditional expectation on our universal algebra. This will allow us to define a property

of doubly quasi-lattice ordered groups that we shall call amenability. We will justify

our use of this term after we have defined it.

Definition 4.4. Let A a be a unital C∗-algebra and let B be a subalgebra of A. A

completely positive norm-decreasing linear map E : A→ B is a conditional expectation

if, for all a ∈ A and b, c ∈ B, E(bac) = bE(a)c. A conditional expectation is faithful

for positive elements if E(a∗a) = 0 for a ∈ C∗(G,P, P op) implies a = 0.

We quote a theorem of Tomiyama which gives a more useful equivalent condition.

Theorem 4.5 ([23, Theorem 1][1, Theorem II.6.10.2]). Let A be a unital C∗-algebra

and let B be a subalgebra of A. Suppose that E : A → B is a norm-decreasing linear

map. Then E is a conditional expectation if and only if E is an idempotent with norm

1.

Proposition 4.6. Let (G,P ) be a doubly quasi-lattice ordered group. Then there

is a unique norm-decreasing linear map E : C∗(G,P, P op)→ C∗(G,P, P op) such that

E

(
n∑
i=1

λivpiv
∗
qi
vri

)
=
∑
qi=ripi

λivpiv
∗
qi
vri

and E is a conditional expectation onto span{vpv∗rpvr : p, r ∈ P}.

We require several lemmas for the proof of Proposition 4.6 and so we will defer

the proof until Section 4.2. We can now define a concept of amenability for doubly

quasi-lattice ordered groups and state the theorem that motivates this chapter.

Definition 4.7. We say a doubly quasi-lattice ordered group (G,P ) is amenable

if E : C∗(G,P, P op) → C∗(G,P, P op) as described in Proposition 4.6, is faithful for

positive elements.

Theorem 4.8. Let (G,P ) be an amenable doubly quasi-lattice ordered group and

let W : P → A be a covariant partial isometric representation. Further, let πW be the

corresponding homomorphism of C∗(G,P, P op). If W sees all projections then πW is

faithful.
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Remark. We justify our use of the term “amenable” on several fronts. First, it

follows the precedent set by Nica in [16, §4.2] for an analogous property of quasi-

lattice ordered groups (for example [11, Definition 3.4] and [5, Definition 15]). Second,

we will prove in Theorem 6.2 that amenability is a necessary and sufficient condition

for the universal C∗-algebra C∗(G,P, P op) to be isomorphic to the reduced C∗-algebra

C∗ts(G,P, P
op). Third, we will prove in Proposition 6.6 if (G,P ) is a doubly quasi-lattice

ordered group and G is amenable as a group, then (G,P ) is amenable as a doubly quasi-

lattice ordered group. Fourth, the expectation E is analogous to the canonical trace τ

on the universal group C∗-algebra C∗(G), which is faithful for positive elements if and

only if G is amenable as a group (see Lemma 5.14).

The rest of this chapter is devoted to the proof of Theorem 4.8. We divide the work

into two sections. The first section examines the diagonal subalgebra of C∗(G,P, P op)

generated by the projections Lvx. This diagonal subalgebra is also the range of E. The

second section covers the proof of Proposition 4.6.

4.1. The projections of C∗(G,P, P op)

In this section we examine the diagonal subalgebra span{vpv∗rpvr : p, r} generated

by the range and source projections vpv
∗
rpvr = Lv(p,r). We will show in Proposition 4.10

that πW is faithful when restricted to span{vpv∗rpvr : p, r} if and only if W sees all

projections. We start by proving a restatement of [11, Lemma 1.4] which allows us to

write down the norm of a linear combination of projections.

Lemma 4.9. [11, Lemma 1.4] Let (G,P ) be a doubly quasi-lattice ordered group

and W : P → A be a covariant partial isometric representation. Suppose that W sees

all projections. Then for every finite set K ⊆ P × P op we have∥∥∥∑
x∈K

λxL
W
x

∥∥∥ = max
{∣∣∣ ∑

x∈K,x≤y

λx

∣∣∣ : y ∈ P × P op
}
.

Proof. Fix a finite set K ⊆ P × P op. We begin by decomposing the identity into

a linear combination of the LWx . We have

1 =
∏
x∈K

(LWx + (1− LWx )) =
∑
B⊆K

(∏
x∈B

LWx
∏

y∈K\B

(1− LWy )
)

=
∑
B⊆K

LW∨B
∏

y∈K\B

(1− LWy )

=
∑
B⊆K

∏
y∈K\B

(LW∨B − LWy∨B).
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We will now show that we can write
∑

x∈K λxL
W
x as a finite linear combination of

mutually orthogonal projections. We have∑
x∈K

λxL
W
x =

∑
x∈K

λxL
W
x

( ∑
B⊆K

∏
y∈K\B

(LW∨B − LWy∨B)
)

=
∑
x∈K

( ∑
B⊆K

λx
∏

y∈K\B

LWx (LW∨B − LWy∨B)
)

=
∑
x∈K

( ∑
B⊆K

λx
∏

y∈K\B

(LWx∨B − LWx∨y∨B)
)
.(4.1)

The term
∏

y∈K\B(LWx∨B − LWx∨y∨B) is zero if x 6∈ B because then x ∈ K\B and

LWx∨B − LWx∨x∨B = 0. If x ∈ B then x ≤ ∨B so LWx∨B − LWx∨y∨B = LW∨B − LWy∨B for

all y ∈ K\B. Thus we may reverse the order of summation in (4.1) to get:∑
x∈K

λxL
W
x =

∑
B⊆K

∑
x∈B

λx
∏

y∈K\B

(LW∨B − LWy∨B)

We claim that the {QB :=
∏

y∈K\B(LW∨B − LWy∨B) : B ⊆ K} are mutually orthogonal.

Suppose that B,C ⊆ K and B 6= C. Without loss of generality assume that there

exists z ∈ C\B (otherwise use B\C). Then

QBQC = QB(LW∨B − LWz∨B)LW∨CQC

= QB(LWB∨C − LWz∨B∨C)QC

= QB(LWB∨C − LWB∨C)QC

= 0.

Thus {QB =
∏

y∈K\B(LW∨B − LWy∨B) : B ⊆ K} are mutually orthogonal projections.

Therefore we have written
∑

x∈K λxL
W
x as a finite linear combination of mutually or-

thogonal projections∑
x∈K

λxL
W
x =

∑
B⊆K

(∑
x∈B

λx

) ∏
y∈K\B

(LW∨B − LWy∨B).

Thus ∥∥∥∑
x∈K

λxL
W
x

∥∥∥ = max
{∣∣∣∑

x∈B

λx

∣∣∣ : B ⊆ K and QB 6= 0
}
.

We claim QB 6= 0 if and only if there is a y ∈ P ×P op such that B = {x ∈ K : x ≤
y}. First, suppose that B = {x ∈ K : x ≤ y} for some y ∈ P × P op. Then B has a

common upper bound so ∨B <∞ and F = {z∨B : z ∈ K\B} is a finite set with ∨B 6∈
F and ∨B is a lower bound for F . Thus

∏
y∈K\B(LW∨B−LWy∨B) =

∏
z∈F (LW∨B−LWz ) 6= 0

by our assumption that W sees all projections.
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Second, suppose that there is no y ∈ P × P op such that B = {x ∈ K : x ≤ y}.
There are two subcases: either B has no common upper bound, in which case ∨B =∞
and LW∨B = 0. Hence LW∨B − LWy∨B for all y ∈ K\B since LWy∨B ≤ LW∨B. Or the second

subcase: B has an upper bound in P×P op but there exists x ∈ K\B such that x ≤ ∨B.

Then LW∨B − LWx∨B = LW∨B − LW∨B = 0. Thus we have proved our claim that QB 6= 0 if

and only if there is a y ∈ P × P op such that B = {x ∈ K : x ≤ y}.
Therefore

{B ⊆ K : QB 6= 0} = {B ⊆ K : y ∈ P × P op and B = {x ∈ K : x ≤ y}}.

Now applying this to the norm we calculated above

‖
∑
x∈K

λxL
W
x ‖ = max{|

∑
x∈B

λx| : B ⊆ K and QB 6= 0}

= max{|
∑
x∈B

λx| : y ∈ P × P op and B = {x ∈ K : x ≤ y}}

= max{|
∑

x∈K,x≤y

λx| : y ∈ P × P op}.

Since K is finite, there are at most |P(K)| possible values for |
∑

x∈K,x≤y λx| and hence

the maximum is well-defined. Thus∥∥∥∑
x∈K

λxL
W
x

∥∥∥ = max
{∣∣∣ ∑

x∈K,x≤y

λx

∣∣∣ : y ∈ P × P op
}
. �

Lemma 4.10. Let (G,P ) be a doubly quasi-lattice ordered group and let W : P → A

be a covariant partial isometric representation. Then πW : C∗(G,P, P op) → A is

faithful on span{vpv∗rpvr : p, r ∈ P} if and only if W sees all projections.

Proof. First, suppose that πW is faithful on span{vpv∗rpvr : p, r ∈ P}. We will

show that W sees all projections. Fix a finite set F ⊂ P × P op and x 6∈ F such that x

is a lower bound for F . By Lemma 4.3, v : P → C∗(G,P, P op) sees all projections so

we have
∏

y∈F (Lvx − Lvy) 6= 0. Further,∏
y∈F

(Lvx − Lvy) ∈ span{vpv∗rpvr : p, r ∈ P}.

Since πW is faithful on span{vpv∗rpvr : p, r ∈ P} we have

0 6= πW

(∏
y∈F

(Lvx − Lvy)

)
=
∏
y∈F

(LWx − LWy ).

Thus W sees all projections.
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Second, suppose that W sees all projections. We will show that πW is isometric on

span{vpv∗rpvr : p, r ∈ P}. Observe that vpv
∗
rpvr = Lv(p,r) and hence

span{vpv∗rpvr : p, r ∈ P} = span{Lvx : x ∈ P × P op}.

Let K be a finite set in P × P op. Since v and W see all projections we can apply

Lemma 4.9 to see that

‖
∑
x∈K

λxL
v
x‖ = max{|

∑
x∈K,x≤y

λx| : y ∈ P × P op} = ‖
∑
x∈K

λxL
W
x ‖.

Hence

‖πW (
∑
x∈K

λxL
v
x)‖ = ‖

∑
x∈K

λxL
W
x ‖ = ‖

∑
x∈K

λxL
v
x‖.

Thus πW is isometric on span{vpv∗rpvr : p, r ∈ P} which is dense in span{vpv∗rpvr : p, r ∈
P}. Hence πW is faithful on span{vpv∗rpvr : p, r ∈ P}. �

4.2. Construction of E and proof of Proposition 4.6

In this section we put together the three lemmas we need to prove Proposition 4.6.

We first show how the projections LWx interact with Wp and W ∗
p .

Lemma 4.11. Let (G,P ) be a doubly quasi-lattice ordered group and let W : P → A

be a covariant partial isometric representation.

(1) For all p ∈ P we have

WpL
W
(x1,x2) = LW(px1,(p∨rx2)p−1)Wp and LW(x1,x2)Wp = WpL

W
(p−1(p∨lx1),x2p)

.

(2) For all p ∈ P we have

W ∗
pL

W
(x1,x2) = LW(p−1(p∨lx1),x2p)

W ∗
p and LW(x1,x2)W

∗
p = W ∗

pL
W
(px1,(p∨rx2)p−1).

Proof. (1). Fix p ∈ P and x = (x1, x2) ∈ P × P op. To compute WpL
W
x we use

the partial isometry identity to rewrite Wp as WpW
∗
pWp and perform the computation

using Lemma 2.14(1). Compute:

WpL
W
x = WpW

∗
pWpWx1W

∗
x2x1

Wx2

= Wpp−1(p∨lpx1)W
∗
(x2x1∨rpx1)(px1)−1(p∨lpx1)W(x2x1∨rpx1)(x2x1)−1x2

Observe that p ≤l px1 so p∨l px1 = px1. By Lemma 2.7(2) (x2x1∨r px1) = (x2∨r p)x1.

Thus we simplify:

WpL
W
x = Wpx1W

∗
(x2∨rp)p−1px1

Wx2∨rp
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Since p ≤r x2 ∨r p we can write W(x2∨rp) = W(x2∨rp)p−1Wp. Thus:

WpL
W
x = Wpx1W

∗
(x2∨rp)p−1px1

W(x2∨rp)p−1Wp

= LW(px1,(p∨rx2)p−1)Wp.

To prove the second relation we compute:

LWx Wp = Wx1W
∗
x2x1

Wx2WpW
∗
pWp

= W(x1(x2x1)−1(x2x1∨lx2p)W
∗
(p∨rx2p)(x2p)−1(x2x1∨lx2p)W(p∨rx2p)p−1p

= W(x1∨lp)W
∗
x2pp−1(x1∨lp)Wx2p

= WpWp−1(x1∨lp)W
∗
x2pp−1(x1∨lp)Wx2p

= WpL
W
(p−1(p∨lx1),x2p)

.

Thus the proof of (1) is complete.

(2). We prove (2) by passing to the adjoint and applying (1):

W ∗
pL

W
(x1,x2) = (LW(x1,x2)Wp)

∗ = (WpL
W
(p−1(p∨lx1),x2p)

)∗ = LW(p−1(p∨lx1),x2p)
W ∗
p

LW(x1,x2)W
∗
p = (WpL

W
(x1,x2))

∗ = (LW(px1,(p∨rx2)p−1)Wp)
∗ = W ∗

pL
W
(px1,(p∨rx2)p−1).

Thus the proof is complete. �

Lemma 4.12. Let (G,P ) be a doubly quasi-lattice ordered group and let W : P → A

be a covariant partial isometric representation that sees all projections. Let
∑n

i=1 λiWpiW
∗
qi
Wri

be a fixed finite sum such that pi ≤r qi and ri ≤l qi. For all y ∈ P × P op there exists a

nonzero projection Qy that satisfies

Qy(
n∑
i=1

λiWpiW
∗
qi
Wri)Qy =

( ∑
qi=ripi

(pi,ri)≤y

λi

)
Qy.

Proof. Let
∑n

i=1 λiWpiW
∗
qi
Wri be a fixed finite sum and fix y = (y1, y2) ∈ P×P op.

We can write down our candidate for Qy. For each i such that ripi 6= qi let

ai := ((pi ∨l piq−1
i riy1), (qip

−1
i ∨r y2r

−1
i qip

−1
i ))

bi := ((r−1
i qi ∨l r−1

i qip
−1
i y1), (ri ∨r y2piq

−1
i ri)).

It is not guaranteed that these upper bounds exist, however the proof still works if the

ai or bi are ∞. Now we define

(4.2) di :=

ai if ai 6≤ y

bi if ai ≤ y.
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Then write

Qy = LWy (
∏

qi=ripi,(pi,ri)6≤y

(LWy − LWy∨(pi,ri)
))(

∏
qi 6=ripi

(LWy − LWy∨di)).

(We are not worried if the y∨(pi, ri) =∞ or y∨di =∞ because LW∞ = 0 by convention.

In that case LWy − LW∞ = LWy .)

We claim di 6≤ y for all i such that qi 6= ripi. There are two cases to consider: either

ai 6≤ y or ai ≤ y. If ai 6≤ y then di = ai and di 6≤ y. Now suppose ai ≤ y. Then di = bi

and we suppose, aiming for a contradiction, that bi ≤ y. Since ai, bi ≤ y we must have

(r−1
i qi ∨l r−1

i qip
−1
i y1) ≤l y1 and (pi ∨l piq−1

i riy1) ≤l y1.

Thus r−1
i qip

−1
i y1 ≤l y1 and piq

−1
i riy1 ≤l y1. By left-invariance we see

r−1
i qip

−1
i y1 ≤l y1 ⇔ y1 ≤l piq−1

i riy1.

Hence y1 = piq
−1
i riy1 and so qi = ripi, giving a contradiction. Thus di 6≤ y.

We need to show Qy is nonzero. The set

F = {y ∨ (pi, ri) : qi = ripi, (pi, ri) 6≤ y} ∪ {y ∨ di : qi 6= ripi}

is finite, y is a lower bound for F and y 6∈ F . We can write Qy =
∏

z∈F (LWy − LWz ).

Since W sees all projections, Qy is nonzero.

We now want to see how Qy interacts with a single WpiW
∗
qi
Wri so we fix an i. There

are three cases: (1) qi = ripi and (pi, ri) ≤ y; (2) qi = ripi and (pi, ri) 6≤ y; (3) qi 6= ripi.

(1). Suppose qi = ripi and (pi, ri) ≤ y. Then

WpiW
∗
qi
Wri = WpiW

∗
ripi
Wri = LW(pi,ri)

and so

QyWpiW
∗
qi
WriQy = QyL

W
y WpiW

∗
qi
WriQy = QyL

W
y L

W
(pi,ri)

Qy = QyL
W
y Qy = Qy.

(2). Suppose qi = ripi and (pi, ri) 6≤ y. Then WpiW
∗
qi
Wri = LW(pi,ri) and

QyWpiW
∗
qi
WriQy = Qy(L

W
y − LWy∨(pi,ri)

)WpiW
∗
qi
WriQy

= Qy(L
W
y − LWy∨(pi,ri)

)LW(pi,ri)Qy

= Qy(L
W
y∨(pi,ri)

− LWy∨(pi,ri)
)Qy

= 0

51



(3). Suppose that qi 6= ripi. There are two subcases for the two values of di, either

di = ai or di = bi. First, suppose that di = ai. Then we can compute, using Lemma

4.11(1) and (2):

WpiW
∗
qi
WriL

W
y = WpiW

∗
qi
LW

(riy1,(ri∨ry2)r−1
i )
Wri

= WpiW
∗
qi
LW

(riy1,(e∨ry2r−1
i ))

Wri

= WpiL
W
(q−1
i (qi∨lriy1),(e∨ry2r−1

i )qi)
W ∗
qi
Wri

= WpiL
W
(q−1
i (qi∨lriy1),(qi∨ry2r−1

i qi))
W ∗
qi
Wri

= LW
(piq

−1
i (qi∨lriy1),(pi∨r(qi∨ry2r−1

i qi))p
−1
i )
WpiW

∗
qi
Wri

= LW
((pi∨lpiq−1

i riy1),(qi∨ry2r−1
i qi)p

−1
i )
WpiW

∗
qi
Wri (pi ≤r qi)

= LW
((pi∨lpiq−1

i riy1),(qip
−1
i ∨ry2r

−1
i qip

−1
i ))

WpiW
∗
qi
Wri

= LWdiWpiW
∗
qi
Wri .

Then

QyWpiW
∗
qi
WriQy = Qy(L

W
y − LWy∨di)WpiW

∗
qi
WriL

W
y Qy

= Qy(L
W
y − LWy∨di)L

W
di
WpiW

∗
qi
WriQy

= Qy(L
W
y∨di − L

W
y∨di)WpiW

∗
qi
WriQy = 0.

Second, suppose that di = bi. Then we compute:

LWy WpiW
∗
qi
Wri = WpiL

W
(p−1
i (pi∨ly1),y2pi)

W ∗
qi
Wri

= WpiW
∗
qi
LW

(qip
−1
i (pi∨ly1),(qi∨ry2pi)q−1

i
Wri

= WpiW
∗
qi
LW

((qi∨lqip−1
i y1),(e∨ry2piq−1

i )
Wri

= WpiW
∗
qi
WriL

W
(r−1
i (ri∨lqi∨lqip−1

i y1),(e∨ry2piq−1
i )ri

= WpiW
∗
qi
WriL

W
((r−1

i qi∨lr−1
i qip

−1
i y1),(ri∨ry2piq−1

i ri)
(ri ≤l qi)

= WpiW
∗
qi
WriL

W
di
.

Then

QyWpiW
∗
qi
WriQy = QyL

W
y WpiW

∗
qi
Wri(L

W
y − LWy∨di)Qy

= QyWpiW
∗
qi
WriL

W
di

(LWy − LWy∨di)Qy

= QyWpiW
∗
qi
Wri(L

W
y∨di − L

W
y∨di)Qy = 0.
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Thus we see that

QyWpiW
∗
qi
WriQy =

Qy if qi = ripi and (pi, ri) ≤ y

0 otherwise.

Hence

Qy(
n∑
i=1

λiWpiW
∗
q1
Wri)Qy =

( ∑
qi=ripi

(pi,ri)≤y

λi

)
Qy

and the proof is complete. �

Lemma 4.13. Let (G,P ) be a doubly quasi-lattice ordered group and let W : P → A

be a covariant partial isometric representation. If W sees all projections then, for

pi ≤r qi and ri ≤l qi,

‖
n∑
i=1

λiWpiW
∗
qi
Wri‖ ≥ ‖

∑
ripi=qi

λiWpiW
∗
qi
Wri‖.

Proof. First observe that∑
ripi=qi

λiWpiW
∗
qi
Wri =

∑
ripi=qi

λiL
W
(pi,ri)

.

Since W sees all projections, we can apply Lemma 4.9, to see

‖
∑
ripi=qi

λiL
W
(pi,ri)
‖ = max{|

∑
qi=ripi

(pi,ri)≤z

λi| : z ∈ P × P op}.

Let y be an element of P × P op that attains this maximum i.e.

|
∑

(pi,ri)≤y

λi| = max{|
∑
qi=ripi

(pi,ri)≤z

λi| : z ∈ P × P op}.

(This element y is not necessarily unique.) By Lemma 4.12 there exists a nonzero

projection Qy such that

(4.3) Qy(
n∑
i=1

λiWpiW
∗
qi
Wri)Qy =

( ∑
qi=ripi

(pi,ri)≤y

λi

)
Qy

Since projections have norm ≤ 1 we observe:

‖
n∑
i=1

λiWpiW
∗
qi
Wri‖ ≥ ‖Qy(

n∑
i=1

λiWpiW
∗
qi
Wri)Qy‖

= ‖
( ∑

qi=ripi
(pi,ri)≤y

λi

)
Qy‖
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= |
∑
qi=ripi

(pi,ri)≤y

λi|

By our choice of y we have |
∑

(pi,ri)≤y λi| = max{|
∑

qi=ripi
(pi,ri)≤z

λi| : z ∈ P × P op}. So:

‖
n∑
i=1

λiWpiW
∗
qi
Wri‖ ≥ max{|

∑
qi=ripi

(pi,ri)≤z

λi| : z ∈ P × P op}

= ‖
∑
ripi=qi

λiL
W
(pi,ri)
‖

= ‖
∑
ripi=qi

λiWpiW
∗
qi
Wri‖.

Thus ‖
∑n

i=1 λiWpiW
∗
qi
Wri‖ ≥ ‖

∑
ripi=qi

λiWpiW
∗
qi
Wri‖ and the proof is complete. �

We can now prove Proposition 4.6 using Lemma 4.13.

Proof of Proposition 4.6. Define a map E on span{vpv∗qvr : p ≤r q, r ≤l q}
by

E(
n∑
i=1

λivpiv
∗
qi
vri) =

∑
qi=ripi

λivpiv
∗
qi
vri .

By Lemma 4.3(2) v sees all projections and hence we can apply Lemma 4.13 to see

‖
n∑
i=1

λivpiv
∗
qi
vri‖ ≥ ‖

∑
qi=ripi

λivpiv
∗
qi
vri‖ = ‖E(

n∑
i=1

λivpiv
∗
qi
vri)‖.

Hence E is norm-decreasing. The ∗-subalgebra span{vpv∗qvr : p ≤r q, r ≤l q} is

dense in C∗(G,P, P op), so we may extend E to a norm-decreasing linear map E on

C∗(G,P, P op). It is clear that E is onto span{vpv∗rpvr : p, r ∈ P} and hence, by conti-

nuity, onto span{vpv∗rpvr : p, r ∈ P}.
To show that E is a conditional expectation it suffices, by Theorem 4.5, to show that

E is an idempotent. Fix a ∈ span{vpv∗rpvr : p, r ∈ P} and write a =
∑n

i=1 λivpiv
∗
qi
vri .

We compute:

E(E(a)) = E(E(
n∑
i=1

λivpiv
∗
qi
vri)) = E(

∑
qi=ripi

λivpiv
∗
qi
vri) =

∑
qi=ripi

λivpiv
∗
qi
vri .

So E(E(a)) = E(a). By continuity this relation extends to all b ∈ C∗(G,P, P op). Thus

E is an idempotent and hence is a conditional expectation by Theorem 4.5.
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To prove E is unique, suppose that there is another bounded, linear map F on

C∗(G,P, P op) such that

F (
n∑
i=1

λivpiv
∗
qi
vri) =

∑
qi=ripi

λivpiv
∗
qi
vri .

As we noted above, the ∗-subalgebra span{vpv∗qvr : p ≤r q, r ≤l q} is dense in

C∗(G,P, P op). For all a ∈ span{vpv∗qvr : p ≤r q, r ≤l q} we have E(a) = F (a).

So E and F are bounded linear maps that agree on a dense subalgebra and hence

E = F . So E is indeed unique. �

We can now prove Theorem 4.8.

Proof of Theorem 4.8. Let a ∈ C∗(G,P, P op) such that πW (a) = 0. To show

πW is faithful we will prove that a = 0.

We claim that, for all b ∈ C∗(G,P, P op), we have ‖πW (E(b))‖ ≤ ‖πW (b)‖. By

continuity, it will suffice to prove this for b ∈ span{vpv∗qvr : p ≤r q, r ≤l q}. Compute

‖πW (E(
n∑
i=1

λivpiv
∗
qi
vri))‖ = ‖πW (

∑
qi=ripi

λivpiv
∗
qi
vri)‖

= ‖
∑
qi=ripi

λiWpiW
∗
qi
Wri‖

≤ ‖
n∑
i=1

λiWpiW
∗
qi
Wri‖ (by Lemma 4.13)

= ‖πW (
n∑
i=1

λivpiv
∗
qi
vri)‖.

Thus for all b ∈ C∗(G,P, P op), we have ‖πW (E(b))‖ ≤ ‖πW (b)‖.
Since πW (a) = 0 it follows that πW (a∗a) = 0. So ‖πW (E(a∗a))‖ ≤ ‖πW (a∗a)‖ = 0,

and hence πW (E(a∗a)) = 0. We know that E(a∗a) ∈ span{vpv∗rpvr : p, r ∈ P}. Further,

by Lemma 4.10, πW is faithful on span{vpv∗rpvr : p, r ∈ P}. Thus

(4.4) πW (E(a∗a)) = 0⇒ E(a∗a) = 0.

By assumption, (G,P ) is amenable, that is, E is faithful for positive elements. Hence

E(a∗a) = 0 implies a = 0. Thus πW is faithful. �
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CHAPTER 5

Necessary background and constructing conditional

expectations

The main results of this chapter are Lemma 5.18 and Lemma 5.15 which detail

two methods for constructing conditional expectations. Given the central role that

conditional expectations play in our definition of amenability these are central to proofs

in the next two chapters. These constructions require considerable set up, most of which

we will use again anyway. In particular, we need results about tensor products, group

algebras and amenable groups. Rather than constantly referring to results printed

elsewhere, we take a moment and dedicate the first three sections of this chapter to

going over the constructions and quoting the relevant results so we can refer back.

5.1. Tensor products of C∗-algebras

We will be using tensor products of C∗-algebras extensively, so we will take a

moment to go over the key points we will use. We start by defining the tensor product

of vector spaces. These results are taken from [20, Appendix B].

Let U, V be vector spaces. The tensor product of U and V is the vector space U�V
together with a bilinear map T : (u, v) 7→ u ⊗ v such that, for any bilinear map B :

U×V → Z there is a unique linear map L : U�V → Z satisfying L◦T (u, v) = B(u, v).

One can also think of U � V as the vector space spanned by {u ⊗ v : u ∈ U, v ∈ V }
where the addition of the u⊗ v is bilinear, for example:

λ1(u1 ⊗ v) + λ2(u2 ⊗ v) = (λ1u1 + λ2u2)⊗ v

and

λ(u⊗ v) = (λu)⊗ v = u⊗ (λv).

If U and V are Hilbert spaces then, by [20, Lemma 2.59], there is a natural inner

product on U � V satisfying

(u1 ⊗ v1 | u2 ⊗ v2) = (u1 | u2)(v1 | v2).

We can complete U � V in the norm induced by this inner product to get a Hilbert

space U ⊗ V . For Hilbert spaces there is a natural choice of norm, this is not the
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case for C∗-algebras. (We use � for purely algebraic tensor products and ⊗ for tensor

products that have been completed in some norm.)

Let A and B be C∗-algebras. Taking the algebraic tensor product of A and B there

is, by [20, Lemma B.1], a unique ∗-algebra structure on A�B given by

(a⊗ b)(c⊗ d) = (ac⊗ bd) and (a⊗ b)∗ = a∗ ⊗ b∗.

To get a C∗-algebra we need to apply a norm to A�B and complete it. There is,

in general, no unique norm on A � B. However, there are two particular norms that

are useful in different situations: the spatial norm and the maximal norm.

5.1.1. The spatial norm. The spatial norm is defined by representing A�B on

the tensor product of Hilbert spaces. Suppose that H and K are Hilbert spaces and

that S ∈ B(H) and T ∈ B(K). By [20, Lemma B.2] there is a unique bounded operator

S⊗̂T on H ⊗K such that S⊗̂T (h⊗ k) = Sh⊗Tk and ‖S⊗̂T‖ = ‖S‖‖T‖. Further, by

[20, Lemma B.3], there is an injective ∗-homomorphism ι : B(H)�B(K)→ B(H⊗K)

such that ι(S ⊗ T )(h ⊗ k) = S⊗̂T (h ⊗ k). So we can identify B(H) � B(K) with a

subalgebra of B(H ⊗K) and take B(H)⊗c B(K) to be the closure of B(H)�B(K).

So suppose that A and B are arbitrary C∗-algebras. Let π : A → B(Hπ) and

η : B → B(Hη) be faithful nondegenerate representations. The map (a, b) 7→ π(a) ⊗
η(b) ∈ B(Hπ⊗Hη) is bilinear. Hence, by the universal property of the algebraic tensor

product, there exists a linear map π ⊗ η : A � B → B(Hπ ⊗ Hη) characterized by

π ⊗ η(a ⊗ b) = π(a) ⊗ η(b). Since π and η are faithful, the map π ⊗ η is injective on

A�B. We now have a norm on A�B: for t ∈ A�B let ‖t‖π,η = ‖π⊗η(t)‖B(Hπ⊗Hη). By

[20, Remark B.4] the completion of A�B in this norm is isomorphic to π(A)⊗c η(B).

By [20, Theorem B.9], the norm ‖ · ‖π,η does not depend on our choice of π and η and

so we write ‖ · ‖π,η = ‖ · ‖min.

Definition 5.1. If A and B are C∗-algebras, then the norm ‖ · ‖min is called the

minimal norm (or spatial norm) on A � B. The completion of A � B with respect

to ‖ · ‖min is denoted, A⊗min B, and is called the minimal tensor product. (Or spatial

tensor product.)

We call ‖ · ‖min the minimal norm because for all C∗-norms ‖ · ‖α on A � B we

have ‖a⊗ b‖ = ‖a‖‖b‖ and ‖t‖α ≥ ‖t‖min for all t ∈ A�B. (See [20, Theorem B.38]).

The main result we use going forward regarding the minimal tensor is that it preserves

injective homomorphisms and representations:
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Proposition 5.2 ([20, Proposition B.13]). Suppose that φ : A→ C and ψ : B →
D are homomorphisms between C∗-algebras. Then there is a unique homomorphism

φ⊗ ψ : A⊗min B → C ⊗min D such that φ⊗ ψ(a⊗ b) = φ(a)⊗ ψ(b) for all a ∈ A and

b ∈ B. If φ and ψ are injective, then so is φ⊗ ψ.

5.1.2. The maximal tensor product. There is also a biggest norm on A � B,

the maximal norm. This is the norm defined by taking the supremum over all other

C∗-norms on A�B.

‖t‖max = sup{‖t‖γ : ‖ · ‖γ is a C∗-norm on A�B}.

This supremum is well-defined by [20, Proposition B.25].

Definition 5.3. The completion of A � B in ‖ · ‖max is C∗-algebra called the

maximal tensor product of A and B, and denoted by A⊗max B.

The maximal tensor product, A ⊗max B, is universal for representations of A and

B with commuting ranges.

Theorem 5.4 ([20, Theorem B.27]). Suppose A and B are unital C∗-algebras.

Then there are unital homomorphisms iA : A → A ⊗max B and iB : B → A ⊗max B

such that

(1) iA(a)iB(b) = iB(b)iA(a) = a⊗ b for a ∈ A, b ∈ B;

(2) if φ and ψ are representations of A and B with commuting ranges, then there

is a representation φ⊗max ψ of A⊗max B such that

φ⊗max ψ(iA(a)iB(b)) = φ(a)ψ(b) for a ∈ A, b ∈ B.

(3) A⊗max B = span{iA(a)iB(b) : a ∈ A and b ∈ B}.

In this thesis, we only consider unital C∗-algebras and so we don’t need to consider

the multiplier algebra M(A ⊗max B), that appear in the more general statement of

Theorem 5.4. The maximal tensor product has an analogue of Proposition 5.2, however,

the maximal tensor product does not necessarily preserve injectivity.

Lemma 5.5 ([20, Lemma B.31]). Suppose that φ : A → C and ψ : B → D are

homomorphisms between C∗-algebras. Then there is a unique homomorphism φ ⊗ ψ :

A ⊗max B → C ⊗max D such that φ ⊗max ψ(a ⊗ b) = φ(a) ⊗ ψ(b) for all a ∈ A and

b ∈ B.
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5.1.3. Nuclear C∗-algebras. We have two different completions of A � B with

properties that are useful in different situations (as well as many intermediate com-

pletions). Obviously we would like to be able to use both sets of results. Fortunately,

there is a large class of C∗-algebras where the two norms are the same.

Definition 5.6. We say that a C∗-algebra A is nuclear if, for every C∗-algebra B,

A�B has only one C∗-norm. In particular ‖ · ‖min = ‖ · ‖max.

When we prove nuclearity in Chapter 7 we will use an equivalent condition: A is

nuclear if and only if the canonical homomorphism from A⊗maxB to A⊗minB is injective

for every C∗-algebra B. Fortunately, it suffices to check only unital C∗-algebras B (see

[20, Lemma B.42]).

Examples. • All commutative C∗-algebras are nuclear. [20, Proposition

B.43]

• Let H be a Hilbert space with countable orthonormal basis. Then K(H) the

set of compact operators on H is a nuclear C∗-algebra.

5.2. States and tensor products

We will construct conditional expectations from states on tensor products, so we

collect the results we use. We prove two that we were unable to find a suitable reference

for. These results do not feature, beyond the construction of conditional expectations.

Proposition 5.7 ([20, Proposition A.5]). For every state τ on a C∗-algebra A,

the GNS-construction gives a nondegenerate representation πτ of A on a Hilbert space

Hτ .

Proposition 5.8 ([20, Proposition A.6]). If ρ is a state on a C∗-algebra A, then

there is a unit vector hρ in Hρ which is cyclic for πρ and satisfies ρ(a) = (πρ(a)hρ | hρ)
for all a ∈ A. Conversely, if h is a unit cyclic vector for a representation π : A →
B(Hπ), then τ : a 7→ (π(a)h | h) is a state on A, and the map a 7→ π(a)h induces a

unitary isomorphism U of Hτ onto Hπ such that π(a) = Uπτ (a)U∗ for all a ∈ A.

Lemma 5.9. Let A and B be unital C∗-algebras and let f : A→ C and g : B → C
be states.

(1) Then there exists a norm decreasing linear map id ⊗ g : A ⊗min B → A such

that id⊗ g(a⊗ b) = g(b)a.

(2) Then there exists a norm decreasing linear map f ⊗ id : A ⊗min B → B such

that f ⊗ id(a⊗ b) = f(a)b.
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Proof. We prove (1) and then (2) follows a symmetrical argument. (1). The map

from A×B to A defined by (a, b) 7→ g(b)a is bilinear. Thus by the universal property

of the algebraic tensor product there exists a unique linear map id ⊗ g : A � B → A

such that id⊗ g(a⊗ b) = g(b)a. We wish to extend this map to the complete minimal

tensor product. To do this it will suffice to show that id⊗ g is bounded in the spatial

norm.

Choose a faithful representation πA of A on a Hilbert space K. By Proposition 5.8

there exist a representation πg of B on a Hilbert space Hg and a cyclic unit vector

hg ∈ Hg such that g(b) = (πg(b)hg|hg) for all b ∈ B. By Proposition 5.2, there is a

unique representation πA ⊗ πg : A ⊗min B → B(K ⊗ Hg) satisfying πA ⊗ πg(a ⊗ b) =

πA(a)⊗ πg(b). To show id⊗ g is norm-decreasing we will prove that for all c ∈ A�B
πA(id⊗ g(c)) is a bounded operator on K with ‖πA(id⊗ g(c))‖ ≤ ‖c‖.

Write c ∈ A�B as c =
∑n

i=1 ai ⊗ bi. Consider the map βc : K ×K → C given by

βc(j, k) := (πA(id⊗ g(c))j|k).

We claim βc is a bounded sesquilinear form.

Fix j, k ∈ K. Compute:

βc(j, k) =
(
πA

(
id⊗ g

( n∑
i=1

ai ⊗ bi
))
j
∣∣∣k) =

n∑
i=1

g(bi)(πA(ai)j|k)

The inner product is sesquilinear and the πA(ai) are bounded linear operators on K.

Hence βc is sesquilinear. To show βc is bounded, compute:

|βc(j, k)| =
∣∣∣ n∑
i=1

g(bi)(πA(ai)j|k)
∣∣∣

=
∣∣∣ n∑
i=1

(πg(bi)hg|hg)(πA(ai)j|k)
∣∣∣

|βc(j, k)| =
∣∣∣(πA ⊗ πg( n∑

i=1

ai ⊗ bi
)

(j ⊗ hg)|k ⊗ hg
)∣∣∣

≤
∥∥∥πA ⊗ πg( n∑

i=1

ai ⊗ bi
)∥∥∥‖j ⊗ hg‖‖k ⊗ hg‖

Note that ‖hg‖ = 1, therefore ‖j ⊗ hg‖ = ‖j‖ and ‖k ⊗ hg‖ = ‖k‖.

|βc(j, k)| ≤
∥∥∥c∥∥∥‖j‖‖k‖

Thus βc is bounded. Hence there exists, by [9, Theorem 3.8-4], a bounded operator

Tc on K such that βc(j, k) = (Tcj|k) and ‖Tc‖ ≤ ‖c‖. In particular note that Tc =
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πA(id⊗ g(c)) and, ‖πA(id⊗ g(c))‖ = ‖Tc‖ ≤ ‖c‖. Thus id⊗ g is bounded in the spatial

norm and hence may be extended to the complete minimal tensor product A⊗minB. �

Lemma 5.10 ([20, Corollary B.12]). Let A and B be unital C∗-algebras and let

f : A→ C and g : B → C be states. There exists a unique state f ⊗ g : A⊗min B → C
such that f ⊗ g(a⊗ b) = f(a)g(b).

Lemma 5.11. Let A and B be unital C∗-algebras and let f : A→ C and g : B → C
be states. Then f ◦ (id⊗ g) = f ⊗ g = g ◦ (f ⊗ id).

Proof. We will show the first equality and the second will follow by symmetry.

Both f and id ⊗ g are bounded and linear and hence their composition is likewise

bounded and linear. The state f ⊗g is also bounded. Hence it will suffice to show that

these two functions agree on the dense subspace spanned by elementary tensors. Let

a ∈ A and b ∈ B. Then

f ◦ (id⊗ g)(a⊗ b) = f(g(b)a) = f(a)g(b) = f ⊗ g(a⊗ b). �

5.3. Group algebras and amenable groups

For a group G, a unitary representation of G into a unital C∗-algebra A is a map

U : G → A such that U preserves the group structure in the following sense: for

g, h ∈ G we have UgUh = Ugh, Ue = 1 where e is the identity of G, and U∗g = Ug−1 . The

group algebra of a group representation U : G→ A is the C∗-subalgebra of A generated

by {Ug : g ∈ G}. There are two specific group algebras that we are interested in: the

reduced algebra and the universal algebra.

The reduced group algebra C∗r (G) is concretely defined. Let {εh : h ∈ G} be the

usual orthonormal basis for `2(G). Then λ : G → B(`2(G)) defined by λgεh = εgh

is a group representation. Let C∗r (G) be the C∗-subalgebra of B(`2(G)) generated by

{λg : g ∈ G}.
The universal algebra of G is characterized abstractly:

Theorem ([18, §7.1.5]). Let G be a discrete group. There exists a C∗-algebra

C∗(G) generated by unitaries {ug : g ∈ G} such that u : g 7→ ug is a unitary rep-

resentation of G, which is universal for unitary representations of G in the following

sense: for any unitary representation U : G→ A there exists a unital homomorphism

πU : C∗(G) → A such that φU(ug) = Ug. Further the pair (C∗(G), {ug}) is unique up

to isomorphism.
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By the universal property of C∗(G) there is a homomorphism πr : C∗(G)→ C∗r (G)

such that πr(ug) = λg. We call πr the left regular representation of G on `2(G).

Let G be a group and consider `∞(G). We write 1G ∈ `∞(G) for the indicator

function in G. For f ∈ `∞(G) and g ∈ G, let g · f be defined by (g · f)(h) = f(g−1h)

for all h ∈ G.

Definition 5.12. A discrete group G is amenable if G admits a left-invariant mean:

that is, there exists a bounded linear functional µ : `∞(G)→ R, such that µ(1G) = 1,

and µ(f) = µ(g · f) for all f ∈ `∞(G) and g ∈ G.1

This definition is not particularly useful for our purposes. So we state three equiv-

alent conditions that are more illuminating. (These will also serve as a model for the

properties we would like our amenable doubly quasi-lattice ordered groups to have.)

Theorem 5.13. Let G be a discrete group. The following are equivalent:

(1) G is amenable.

(2) πr : C∗(G)→ C∗r (G) is faithful.

(3) C∗(G) is nuclear.

(4) The canonical trace τ : C∗(G)→ C is faithful for positive elements: if τ(a∗a) =

0 then a = 0.

(1) ⇔ (2) is due to Hulanicki [8] (see also [18, Theorem 7.3.9]). (1) ⇔ (3) is due

to Paterson [17, Theorem 2]. We have been unable to find a suitable reference for

(1)⇔ (4) but it is a known result. We prove it below:

Lemma 5.14. Let C∗r (G) be the reduced group algebra of G, let πr : C∗(G)→ C∗r (G)

be the corresponding homomorphism of the universal group algebra C∗(G) and let e be

the identity of G. Then τ : C∗(G) → C defined by τ(a) := (πr(a)εe | εe) is a tracial

state. In particular, G is amenable if and only if τ is faithful for positive elements.

Proof. To show that τ is a state we must show that it is a positive linear functional

and that it has norm 1. By the linearity of πr and the first coordinate of the inner

product, we have that τ is linear. To show that τ is positive, fix a ∈ C∗(G). Compute

τ(a∗a) = (πr(a
∗a)εe | εe) = (πr(a)εe | πr(a)εe) = ‖πr(a)εe‖2 ≥ 0.

To see that τ is bounded with ‖τ‖ ≤ 1 we note

|τ(a)| = |(πr(a)εe | εe) |≤ ‖πr(a)‖‖εe‖2 ≤ ‖a‖.
1I am required by longstanding tradition to mention that the word “amenable” was introduced

by Mahlon M. Day as a pun: a group is a-mean-able if you can put a mean on it.
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Further τ(ue) = 1 and hence τ has norm 1. Thus τ is a state.

Now we must show that τ has the tracial property: τ(ab) = τ(ba). We will show

this by considering the dense subspace span{ug : g ∈ G}. Fix g, h ∈ G. Then

τ(uguh) = τ(ugh) = (πr(ugh)εe | εe) = (λghεe | εe) = (εgh | εe) =

1 if g = h−1

0 otherwise.

Similarly

τ(uhug) =

1 if g = h−1

0 otherwise.

Thus we see, by linearity that for all a, b in the dense subspace span{ug : g ∈ G}
τ(ab) = τ(ba). This relation then extends to the entire C∗-algebra. Thus τ is a tracial

state.

Now we can show that G is amenable if and only if τ is faithful for positive elements.

First, suppose G is an amenable group. Let b ∈ C∗(G) such that τ(b∗b) = 0. By the

tracial property τ(b∗b) = τ(b∗bugu
∗
g) = τ(u∗gb

∗bug) for all g ∈ G. Then 0 = τ(b∗b) =

‖πr(bug)εe‖2. Thus

0 = ‖πr(bug)εe‖ = ‖πr(b)λgεe‖ = ‖πr(b)εg‖.

Hence πr(b) = 0. Since G is amenable πr is faithful and hence b = 0. Thus τ is faithful

for positive elements.

Second, aiming for a contradiction, suppose that G is not amenable. Then πr is

not faithful and there must exist b ∈ C∗(G) such that b 6= 0 and πr(b) = 0. Then

τ(b∗b) = (πr(b
∗b)εe | εe) = (0 | εe) = 0. Thus τ is not faithful for positive elements and

we have proved the contrapositive. So G is amenable if and only if τ is faithful for

positive elements. �

5.4. Coactions and conditional expectations

We defined amenability of a doubly quasi-lattice ordered group (G,P ) in terms of

a conditional expectation on C∗(G,P, P op). Thus when proving that a given (G,P )

is amenable we need ways to construct conditional expectations that are known to be

faithful. There are two methods for constructing conditional expectations depending

on whether we are working with concrete or abstract C∗-algebras. We first work with

concrete C∗-algebras:
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5.4.1. Concrete C∗-algebras. The next lemma is proved in full generality as we

will use it several times in different situations.

Lemma 5.15. Let H and K be Hilbert spaces. Suppose that I is some index set

and {ei : i ∈ I} is an orthonormal basis for K. Then there exists a faithful conditional

expectation ∆ : B(H ⊗K) → B(H ⊗K) such that, for all T ∈ B(H ⊗K), h, h′ ∈ H
and i ∈ I, we have

(∆(T )(h⊗ ei) | h′ ⊗ ei) = (T (h⊗ ei) | h′ ⊗ ei).

Proof. Let T ∈ B(H ⊗K). For each i ∈ I consider the form

BT
i (h, h′) = (T (h⊗ ei) | h′ ⊗ ei).

The form BT
i is bounded by ‖T‖ and is sesquilinear by the sesquilinearity of the inner

product. Therefore by [9, Theorem 3.8-4] there exists a bounded operator F T
i : H → H

such that (F T
i (h) | h′) = (T (h⊗ ei) | h′ ⊗ ei) and ‖F T

i ‖ ≤ ‖T‖.
For all i ∈ I let 1i be the projection onto span{ei}. The map F T

i ⊗ 1i is a bounded

operator on H ⊗ span{ei}. So we define

∆(T ) := ⊕i∈IF T
i ⊗ 1i.

Then ∆(T ) is a bounded operator on ⊕i∈IH ⊗ span{ei} = H ⊗K with norm

‖∆(T )‖ = sup{‖F T
i ⊗ 1i‖ : i ∈ I} ≤ ‖T‖.

In addition, we can compute:

(∆(T )(h⊗ ei) | h′ ⊗ ei) = (⊕j∈IF T
j ⊗ 1j(h⊗ ei) | h′ ⊗ ei)

= (F T
i ⊗ 1i(h⊗ ei) | h′ ⊗ ei)

= (F T
i h | h′)(ei | ei)

= (F T
i h | h′)

= (T (h⊗ ei) | h′ ⊗ ei).

It is now left to show that ∆ is a conditional expectation and that ∆ is faithful for

positive elements.

To prove that ∆ is a conditional expectation, it suffices, by Theorem 4.5, to show

that ∆ is an idempotent with norm 1. We know ∆ is norm-decreasing and ∆(1) = 1,

hence we have ‖∆‖ = 1. To show ∆ is an idempotent we fix T ∈ B(H ⊗ K). We
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must show ∆(∆(T )) = ∆(T ). By construction ∆(T ) := ⊕i∈IF T
i ⊗ 1i so we only need

to show that F T
i = F

∆(T )
i . We compute:

B
∆(T )
i (h, h′) = (⊕j∈IF T

j ⊗ 1j(h⊗ ei) | h′⊗ ei) = (F T
i ⊗ 1i(h⊗ ei) | h′⊗ ei) = (F T

i h | h′).

This B
∆(T )
i is a bounded sesquilinear form and hence there exists a unique bounded

operator F
∆(T )
i such that (F

∆(T )
i h | h′) = B

∆(T )
i (h, h′). However, (F

∆(T )
i h | h′) =

(F T
i h | h′). By uniqueness F

∆(T )
i = F T

i and ∆(∆(T )) = ∆(T ).

To see ∆ is faithful for positive elements we suppose there exists S ∈ B(H ⊗ K)

such that ∆(S∗S) = 0. Then for all h ∈ H and i ∈ I

(∆(S∗S)(h⊗ ei) | h⊗ ei) = (S∗S(h⊗ ei) | h⊗ ei)

= (S(h⊗ ei) | S(h⊗ ei))

= ‖S(h⊗ ei)‖2 = 0.

Hence S(h⊗ ei) = 0 for all h ∈ H and i ∈ I. Therefore S = 0 and hence ∆ is faithful

for positive elements. Hence ∆ is a faithful conditional expectation. �

5.4.2. Abstract algebras. If we are working with an abstract C∗-algebra and do

not have an appropriate orthonormal basis we can construct a conditional expectation

on an arbitrary C∗-algebra A using a coaction of a group G on A.

Definition 5.16. Let G be a discrete group and let A be a unital C∗-algebra. Let

δG : C∗(G)→ C∗(G)⊗min C
∗(G)

be the comultiplication characterised by δG(ug) = ug ⊗ ug for all g ∈ G. A coaction of

G on A is a homomorphism δ : A→ A⊗min C
∗(G) such that

(δ ⊗ id) ◦ δ = (id⊗ δG) ◦ δ.

The fixed-point algebra of δ is the subalgebra Aδ := {a ∈ A : δ(a) = a ⊗ 1} of A. We

say that δ is nondegenerate if δ is unital (i.e. a nondegenerate homomorphism) and

δ(A)(1⊗ C∗(G)) = A⊗min C
∗(G).

We will use an injective coaction δ to construct a conditional expectation

Ψδ := (id⊗ τ) ◦ δ.

However, we need two relations for the proof:
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Lemma 5.17. Let A be a unital C∗-algebra, let G be a discrete group, let

δG : C∗(G)→ C∗(G)⊗min C
∗(G)

be the comultiplication of G, let τ be the trace on C∗(G) and let δ be a coaction of G

on A. Then, for all x ∈ A⊗min C
∗(G), we have

(5.1) (idA⊗minC∗(G) ⊗ τ) ◦ (id⊗ δG)(x) = (id⊗ τ(x))⊗ 1

(5.2) δ ◦ (id⊗ τ)(x) = idA⊗minC∗(G) ⊗ τ ◦ (δ ⊗ id)(x).

Proof. (1). The set span{ug : g ∈ G} is dense in C∗(G). Hence

span{c⊗ ug : c ∈ A, g ∈ G}

is dense in A⊗min C
∗(G). So it will suffice, by linearity and continuity, to show that

(idA⊗minC∗(G) ⊗ τ) ◦ (id⊗ δG)(c⊗ ug) = (id⊗ τ(c⊗ ug))⊗ 1.

Fix c ∈ A and g ∈ G and compute:

(idA⊗minC∗(G) ⊗ τ) ◦ (id⊗ δG)(c⊗ ug) = (idA⊗minC∗(G) ⊗ τ)(c⊗ δG(ug))

= (idA⊗minC∗(G) ⊗ τ)(c⊗ (ug ⊗ ug))

= τ(ug)(c⊗ ug).

For g ∈ G, the trace τ(ug) = 0 unless g = e. Also ue is the identity in C∗(G) and

τ(ue) = 1. Thus:

(idA⊗minC∗(G) ⊗ τ) ◦ (id⊗ δG)(c⊗ ug) =

c⊗ 1 if g = e

0 otherwise

= (τ(ug)c)⊗ 1

= (id⊗ τ(c⊗ ug))⊗ 1.

Now (5.1) follows.

(2). To prove (5.2), it suffices to prove the relation for elementary tensors. Fix

c ∈ A, d ∈ C∗(G) and compute:

δ ◦ (id⊗ τ)(c⊗ d) = τ(d)δ(c)

= (idA⊗minC∗(G) ⊗ τ)(δ(c)⊗ d)

= (idA⊗minC∗(G) ⊗ τ) ◦ (δ ⊗ id)(c⊗ d).

Now (5.2) follows. �
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Now we can apply (5.1) and (5.2) to construct a conditional expectation for a given

injective coaction.

Lemma 5.18. Let A be a unital C∗-algebra and let G be a discrete group. Let

δ : A→ A⊗min C
∗(G) be an injective, unital coaction and let τ be the trace of Lemma

5.14. Then

Ψ := (id⊗ τ) ◦ δ

is a conditional expectation of A onto Aδ. If G is an amenable group then Ψ is faithful.

Proof. Both id⊗τ and δ are linear and norm decreasing, and thus Ψ is also linear

and norm decreasing.

We first show that range Ψ = Aδ. Fix a ∈ Aδ. Since Aδ is the fixed-point algebra

of δ, we have δ(a) = a⊗ 1. Now compute:

(5.3) Ψ(a) = (id⊗ τ) ◦ δ(a) = id⊗ τ(a⊗ 1) = τ(1)a = a.

Thus Ψ(a) = a and so Aδ ⊆ range Ψδ.

To show the reverse inclusion, range Ψ ⊆ Aδ, we fix b ∈ A and prove that δ(Ψ(b)) =

Ψ(b)⊗ 1. Compute:

δ(Ψ(b)) = δ ◦ (id⊗ τ) ◦ δ(b)

= (idA⊗minC∗(G) ⊗ τ) ◦ (δ ⊗ id) ◦ δ(b). (by (5.2))

The coaction identity gives

δ(Ψ(b)) = (idA⊗minC∗(G) ⊗ τ) ◦ (id⊗ δG) ◦ δ(b)

= id⊗ τ(δ(b))⊗ 1 (by (5.1))

= Ψ(b)⊗ 1.

Hence Ψ(b) ∈ Aδ and range Ψ = Aδ.

To show Ψ is a conditional expectation it suffices, by Theorem 4.5, to show that

Ψ is an idempotent with norm 1. As we showed in (5.3), Ψ(a) = a for all a ∈ Aδ.

Further, range Ψ = Aδ and so Ψ(Ψ(b)) = Ψ(b) for all b ∈ A. Thus Ψ is an idempotent.

We know that Ψ is norm-decreasing and hence ‖Ψ‖op ≤ 1. Compute:

Ψ(1) = id⊗ τ(δ(1)) = id⊗ τ(1⊗ 1) = 1,

and it follows that ‖Ψ‖op = 1. Thus Ψ is a conditional expectation.
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Now suppose that G is an amenable group. We will prove Ψ is faithful in the sense

that Ψ(b∗b) = 0 implies b = 0. Suppose b ∈ A satisfies Ψ(b∗b) = 0. Let f be an

arbitrary state on A. Then, applying Lemma 5.11, we see

0 = f(Ψ(b∗b))

= f ◦ (id⊗ τ) ◦ δ(b∗b)

= (f ⊗ τ) ◦ δ(b∗b) (by Lemma 5.11)

= τ ◦ (f ⊗ id) ◦ δ(b∗b)

By Lemma 5.14, τ is faithful for positive elements because G is amenable. Hence

(f ⊗ id) ◦ δ(b∗b) = 0. This in turn implies that for all states f on A and states g on

C∗(G),

g ◦ (f ⊗ id) ◦ δ(b∗b) = (f ⊗ g) ◦ δ(b∗b) = 0.

To see that δ(b∗b) = 0, let π1 : A → H1 and π2 : C∗(G) → H2 be faithful represen-

tations. By Proposition 5.2 π1 ⊗ π2 is a faithful representation of A ⊗min C
∗(G) on

B(H1⊗H2). For every pair of unit vectors h ∈ H1, k ∈ H2 there exists a state fh⊗ fk
on A⊗min C

∗(G) defined by

fh ⊗ fk(a) = (π1 ⊗ π2(a)(h⊗ k) | h⊗ k).

Thus, for every pair of unit vectors h ∈ H1, k ∈ H2,

0 = fh ⊗ fk(δ(b∗b))

= (π1 ⊗ π2(δ(b∗b))(h⊗ k) | h⊗ k)

= (π1 ⊗ π2(δ(b))(h⊗ k) | π1 ⊗ π2(δ(b))h⊗ k)

= ‖π1 ⊗ π2(δ(b))(h⊗ k)‖2

Hence π1 ⊗ π2(δ(b∗b)) = 0. Since π1 ⊗ π2 is faithful, δ(b∗b)) = 0. The injectivity of δ

implies b = 0. Hence Ψ is faithful for positive elements. �
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CHAPTER 6

Recognition theorems for amenable doubly quasi-lattice

ordered groups

In this chapter we will outline several recognition theorems for amenable doubly

quasi-lattice groups. These are not the most powerful theorems available, and we will

prove a more complete recognition theorem in the next chapter. However, these results

give useful insights into the nature of amenability.

In Theorem 6.2, we prove that (G,P ) is amenable if and only if the representation

πJ : C∗(G,P, P op)→ C∗ts(G,P, P
op) is faithful.

In Proposition 6.4, we first prove that the universal algebra generated by (G,P )

is determined by the semigroup P , and second, that amenability is a property of P

preserved under semigroup isomorphism.

Third, we prove Theorem 6.6, which states that if (G,P ) is a doubly quasi-lattice

ordered group and G is an amenable group, then (G,P ) is amenable in the doubly

quasi-lattice ordered sense.

6.1. Amenability and C∗ts(G,P, P
op)

As we proved in Lemma 4.3(1), J sees all projections. Therefore, Theorem 4.8

implies that if (G,P ) is amenable, then πJ : C∗(G,P, P op)→ C∗ts(G,P, P
op) is faithful.

We will now show that the converse is true. To do this we will construct a faithful

conditional expectation on C∗ts(G,P, P
op) using Lemma 5.15.

Lemma 6.1. There is a faithful conditional expectation ∆ on C∗ts(G,P, P
op) such

that

∆(JpJ
∗
q Jr) =

JpJ∗q Jr if q = rp

0 otherwise.

Proof. For b ∈ P let {εa : a ∈ P, a ≤r b} be the usual orthonormal basis for `2(Ib).

Let εa,b denote the orthonormal basis element εa ∈ `2(Ib) viewed in
⊕

b∈P `
2(Ib). Then

{εa,b : a, b ∈ P, a ≤r b} is an orthonormal basis for
⊕

b∈P `
2(Ib). We now apply Lemma

5.15 with H = C and K = ⊕b∈P `2(Ib) to get a faithful conditional expectation ∆ such
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that

(∆(T )(εa,b)|εa,b) = (T (εa,b)|εa,b)

for all T ∈ B(⊕b∈P `2(Ib)). To see that

∆(JpJ
∗
q Jr) =

JpJ∗q Jr if q = rp

0 otherwise

we compute:

(∆(JpJ
∗
q Jr)(εa,b)|εa,b) = (JpJ

∗
q Jr(εa,b)|εa,b)

=

(εpq−1ra,b|εa,b) if ra ≤r b and q ≤l ra

0 otherwise.

=

1 if rp = q and ra ≤r b and q ≤l ra

0 otherwise.

=

(JpJ
∗
q Jr(εa,b)|εa,b) if rp = q

0 otherwise.

Thus

∆(JpJ
∗
q Jr) =

JpJ∗q Jr if q = rp

0 otherwise.

�

Theorem 6.2. Let (G,P ) be a doubly quasi-lattice ordered group. Then

πJ : C∗(G,P, P op)→ C∗ts(G,P, P
op)

is faithful if and only if (G,P ) is amenable.

Proof. First, suppose that (G,P ) is amenable. We know J sees all projections,

by Lemma 4.3(1). Thus we may apply Theorem 4.8 to see that πJ is faithful.

Second, we suppose that πJ : C∗(G,P, P op)→ C∗ts(G,P, P
op) is faithful. By Lemma

6.1, there exists a faithful conditional expectation ∆ on C∗ts(G,P, P
op) such that

∆(JpJ
∗
q Jr) =

JpJ∗q Jr if q = rp

0 otherwise.

72



Recall that E is the conditional expectation on C∗(G,P, P op) of Proposition 4.6. We

claim that πJ ◦ E = ∆ ◦ πJ . Fix p, q, r ∈ P such that p ≤r q and r ≤l q. Compute:

πJ ◦ E(vpv
∗
qvr) =

πJ(vpv
∗
qvr) if q = rp

0 otherwise.

=

JpJ∗q Jr if q = rp

0 otherwise.

= ∆(JpJ
∗
q Jr)

= ∆ ◦ πJ(vpv
∗
qvr).

By linearity and continuity this relation extends to the whole of C∗(G,P, P op) and

hence πJ ◦ E = ∆ ◦ πJ .

Now suppose that a ∈ C∗(G,P, P op) such that E(a∗a) = 0. Then

0 = πJ ◦ E(a∗a) = ∆ ◦ πJ(a∗a).

However, ∆ is faithful for positive elements and hence πJ(a) = 0. By assumption, πJ

is faithful and hence a = 0. Thus E is faithful for positive elements and (G,P ) is

amenable. �

6.2. Amenability is a property of semigroups

One observation that is perhaps obscured by our notation is that the universal

algebra C∗(G,P, P op) associated to a doubly quasi-lattice ordered group is uniquely

determined by the semigroup P and does not depend on the group G. Similarly, the

amenability of (G,P ) is determined by P . (Our constructions make use of the group

properties of G so it is still important that P is imbedded in a group.)

We first prove that a semigroup isomorphism is automatically order preserving and

preserves the least upper bound structure.

Lemma 6.3. Let (G,P ) and (K,Q) be doubly quasi-lattice ordered groups. Suppose

there is a semigroup isomorphism φ : P → Q. Then φ is left and right order preserving.

In particular, for x, y ∈ P ,

(1) x ∨l y < ∞ if and only if φ(x) ∨l φ(y) < ∞. If x ∨l y < ∞ then φ(x ∨l y) =

φ(x) ∨l φ(y);

(2) x ∨r y <∞ if and only if φ(x) ∨r φ(y) <∞. If x ∨r y <∞ then φ(x ∨r y) =

φ(x) ∨r φ(y).
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Proof. We first show that φ is left and right order preserving. Suppose that x, y ∈
P and x ≤l y. Then x−1y ∈ P and φ(x−1y) ∈ Q. We claim that φ(x)−1φ(y) = φ(x−1y)

and hence that φ(x) ≤l φ(y). To prove our claim compute:

φ(y) = φ(xx−1y) = φ(x)φ(x−1y).

Since φ(x) ∈ Q ⊂ K, there exists an inverse φ(x)−1 ∈ K. Then

φ(x)−1φ(y) = φ(x)−1φ(x)φ(x−1y) = φ(x−1y).

Thus φ(x)−1φ(y) ∈ Q. So x ≤l y implies φ(x) ≤l φ(y) and φ preserves the left order.

A similar argument shows that φ preserves the right order.

To show that φ preserves the least upper bound structure, suppose that x, y ∈ P and

x∨l y <∞. We will show that φ(x)∨l φ(y) exists. Since φ is order preserving it follows

that φ(x), φ(y) ≤l φ(x∨l y). Thus φ(x), φ(y) have a common upper bound in Q. Hence

φ(x) ∨l φ(y) exists and φ(x) ∨l φ(y) ≤l φ(x ∨l y). To show the other direction suppose

that φ(x)∨lφ(y) <∞. Observe that φ−1 : Q→ P is also a semigroup isomorphism and

hence also order preserving. Thus φ−1(φ(x)∨lφ(y)) is an upper bound for x = φ−1(φ(x))

and y = φ−1(φ(y)). Hence x ∨l y exists and x ∨l y ≤l φ−1(φ(x) ∨l φ(y)). Thus

φ(x ∨l y) ≤l φ(φ−1(φ(x) ∨l φ(y))) = φ(x) ∨l φ(y).

Hence x∨l y <∞ if and only if φ(x)∨lφ(y) <∞ and φ(x∨l y) = φ(x)∨lφ(y) whenever

x ∨l y <∞. A similar argument holds for the right order. �

Proposition 6.4. Let (G,P ) and (K,Q) be doubly quasi-lattice ordered groups.

Let {vp : p ∈ P} and {wq : q ∈ Q} be the generating elements of C∗(G,P, P op) and

C∗(K,Q,Qop) respectively. Suppose there is a semigroup isomorphism φ : P → Q.

Then:

(1) There exists an isomorphism πφ : C∗(G,P, P op) → C∗(K,Q,Qop) such that

πφ(vp) = wφ(p).

(2) (G,P ) is amenable if and only if (K,Q) is amenable.

Proof. (1). We will first use the universal property of C∗(G,P, P op) to get a

candidate for πφ and then prove that it is an isomorphism. We claim that T : P →
C∗(K,Q,Qop) defined by Tp = wφ(p) is a covariant partial isometric representation of

P . Fix p, q ∈ P . Since φ is a semigroup isomorphism we have

TpTq = wφ(p)wφ(q) = wφ(pq) = Tpq
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and Te = wφ(eG) = weQ = 1. Hence T is a partial isometric representation. To show

that T is covariant we use Lemma 6.3(1) which states that x ∨l y < ∞ if and only if

φ(x) ∨l φ(y) <∞ and φ(x ∨l y) = φ(x) ∨l φ(y) whenever x ∨l y <∞. Thus

TpT
∗
p TqT

∗
q = wφ(p)w

∗
φ(p)wφ(q)w

∗
φ(q)

=

wφ(p)∨lφ(q)w
∗
φ(p)∨lφ(q) if φ(p) ∨l φ(q) <∞

0 otherwise.

=

wφ(p∨lq)w
∗
φ(p∨lq) if p ∨l q <∞

0 otherwise.

=

Tp∨lqT ∗p∨lq if p ∨l q <∞

0 otherwise.

Similarly,

T ∗p TpT
∗
q Tq =

T ∗p∨rqTp∨rq if p ∨r q <∞

0 otherwise.

Hence T is covariant. Thus, by Theorem 3.1 there exists a homomorphism πφ :

C∗(G,P, P op) → C∗(K,Q,Qop) such that πφ(vp) = Tp = wφ(p). Now we must prove

that this πφ is an isomorphism.

Since φ−1 : Q→ P is an isomorphism the argument above gives a homomorphism

πφ−1 : C∗(K,Q,Qop)→ C∗(G,P, P op) such that πφ−1(wq) = vφ−1(q). In particular πφ−1

is an inverse for πφ since

πφ−1(πφ(vp)) = πφ−1(wφ(p)) = vφ−1(φ(p)) = vp

and

πφ(πφ−1(wq)) = πφ(vφ−1(q)) = wq.

Thus πφ is an isomorphism from C∗(G,P, P op) to C∗(K,Q,Qop).

(2) By symmetry it suffices to show that if (K,Q) is amenable then (G,P ) is

amenable. Let EQ and EP be the conditional expectations of Proposition 4.6 on

C∗(K,Q,Qop) and C∗(G,P, P op), respectively. We claim that

EP = π−1
φ ◦ EQ ◦ πφ.

Computing on spanning elements we see:

π−1
φ ◦ EQ ◦ πφ(vpv

∗
qvr) = π−1

φ ◦ EQ(wφ(p)w
∗
φ(q)wφ(r))
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=

π−1
φ (wφ(p)w

∗
φ(q)wφ(r)) if φ(rp) = φ(q)

0 otherwise

=

π−1
φ (wφ(p)w

∗
φ(q)wφ(r)) if rp = q

0 otherwise

=

vpv∗qvr if rp = q

0 otherwise

= EP (vpv
∗
qvr).

Since (K,Q) is amenable, EQ is faithful for positive elements. Since π−1
φ and πφ are

faithful, it follows that EP must also be faithful for positive elements. Thus (G,P ) is

amenable. So we have shown that (G,P ) is amenable if and only if (K,Q) is amenable

and the proof is complete. �

6.3. Amenable groups

In this section we will justify our use of the term amenable by showing that if G

is an amenable group, then (G,P ) is amenable as a doubly quasi-lattice group. The

converse is not true. As we will show in the next chapter there are many non-amenable

groups that have amenable doubly quasi-lattice ordered groups.

We will construct an injective coaction, then we can apply Lemma 7.2 to construct

a faithful conditional expectation that matches up with the conditional expectation E

of Proposition 4.6.

Lemma 6.5. Let (G,P ) be a doubly quasi-lattice ordered group. There is an injec-

tive, nondegenerate coaction δ : C∗(G,P, P op) → C∗(G,P, P op) ⊗min C
∗(G) such that

δ(vp) = vp ⊗ up.

Proof. First let us construct a candidate for δ. We claim that W : P →
C∗(G,P, P op)⊗minC

∗(G), defined by Wp = vp⊗up, is a covariant partial isometric rep-

resentation. Unitaries are partial isometries and hence each Wp is a partial isometry.

Observe We = ve⊗ue = 1⊗1 and for p, q ∈ P we have WpWq = vpvq⊗upuq = vpq⊗upq.
To prove W is covariant, fix x, y ∈ P and compute:

WxW
∗
xWyW

∗
y = vxv

∗
xvyv

∗
y ⊗ uxu∗xuyu∗y

= vx∨lyv
∗
x∨ly ⊗ 1
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=

vx∨lyv∗x∨ly ⊗ ux∨lyu∗x∨ly if x ∨l y <∞

0⊗ 1 otherwise

=

Wx∨lyW
∗
x∨ly if x ∨l y <∞

0⊗ 1 otherwise.

Thus WxW
∗
xWyW

∗
y = Wx∨lyW

∗
x∨ly. Similarly, W ∗

xWxW
∗
yWy = W ∗

x∨ryWx∨ry. Thus W is

a covariant partial isometric representation of P . Hence, by Theorem 3.1, there exists a

homomorphism δ : C∗(G,P, P op)→ C∗(G,P, P op)⊗minC
∗(G) such that δ(vp) = vp⊗up.

We must now show that δ is coassociative, injective and non-degenerate. We will

show that δ is coassociative by considering the generators vp. Fix p ∈ P . Compute:

(δ ⊗ id) ◦ δ(vp) = (δ ⊗ id)(vp ⊗ up)

= δ(vp)⊗ up

= vp ⊗ up ⊗ up

= vp ⊗ δG(up)

= (id⊗ δG) ◦ δ(vp).

Since (δ ⊗ id) ◦ δ and (id ⊗ δG) ◦ δ are continuous homomorphisms which agree on

generators, δ is coassociative.

To show that δ is injective we will show that a faithful representation π may be

written as a composition of δ and another representation. Choose a faithful represen-

tation π : C∗(G,P, P op)→ B(H) and let ε be the trivial representation on C such that

ε(ug) = 1 for all g ∈ G. By Proposition 5.2 there exists a homomorphism

π ⊗ ε : C∗(G,P, P op)⊗min C
∗(G)→ B(H)⊗ C = B(H).

We claim π = π ⊗ ε ◦ δ. Again we need compute only on the generators vp. Compute:

(π ⊗ ε) ◦ δ(vp) = (π ⊗ ε)(vp ⊗ up) = π(vp).

Now suppose δ(a) = 0 for some a ∈ C∗(G,P, P op). Then (π ⊗ ε) ◦ δ(a) = 0 = π(a),

and thus a = 0 since π is faithful. Hence δ is injective.

To prove that δ is nondegenerate we must show that

δ(C∗(G,P, P op))(1⊗ C∗(G)) = C∗(G,P, P op)⊗min C
∗(G).

It suffices to show that we can produce the spanning elements vpv
∗
qvr ⊗ ug. Compute

δ(vpv
∗
qvr)(1⊗ u(pq−1r)−1g) = vpv

∗
qvr ⊗ upq−1r(1⊗ u(pq−1r)−1g) = vpv

∗
qvr ⊗ ug.

77



Thus δ is nondegenerate.

We claim that δ has fixed-point algebra C∗(G,P, P op)δ = span{vpv∗qvr : rp = q}.
Fix p, q, r ∈ P such that p ≤r q and r ≤l q. Then consider

δ(vpv
∗
qvr) = vpv

∗
qvr ⊗ upu∗qur = vpv

∗
qvr ⊗ upq−1r.

Then δ(vpv
∗
qvr) = vpv

∗
qvr ⊗ 1 if and only if rp = q. Thus

C∗(G,P, P op)δ = span{vpv∗qvr : rp = q}. �

Proposition 6.6. Let (G,P ) be a doubly quasi-lattice ordered group. If G is an

amenable group then (G,P ) is amenable.

Proof. By Lemma 6.5 there is a coaction δ : C∗(G,P, P op) → C∗(G,P, P op) ⊗
C∗(G) characterised by δ(vp) = vp ⊗ up. By Lemma 5.18 there exists a conditional

expectation

Ψδ = (id⊗ τ) ◦ δ : C∗(G,P, P op)→ C∗(G,P, P op)δ.

Since G is amenable Ψδ is faithful for positive elements. Now we can compute:

Ψδ(vpv
∗
qvr) = (id⊗ τ) ◦ δ(vpv∗qvr)

= (id⊗ τ)(vpv
∗
qvr ⊗ upq−1r)

=

vpv∗qvr if q = rp

0 otherwise.

In particular Ψδ agrees with the conditional expectation E of Proposition 4.6 on the

dense subspace span{vpv∗qvr : p ≤r q, r ≤l q}. Thus Ψδ is the conditional expectation

E is faithful for positive elements. So (G,P ) is amenable. �

Remark. We will see in the next chapter that Proposition 6.6 appears as a special

case of Theorem 7.7. However, Proposition 6.6 is an important point in its own right

and is much easier to prove.
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CHAPTER 7

Amenability of (G,P ) and the Nuclearity of C∗(G,P, P op)

In this chapter we aim to prove a much stronger recognition theorem for amenable

doubly quasi-lattice ordered groups. We do this by setting up a group homomorphism

with certain properties from one doubly quasi-lattice ordered group (G,P ) to another

(K,Q) where K is an amenable group. Doubly quasi-lattice ordered groups with such

a homomorphism are amenable and give nuclear C∗-algebras.

7.1. Conditional expectations on tensor products

To prove nuclearity we will consider the tensor products A⊗max C
∗(G,P, P op) and

A⊗minC
∗
ts(G,P, P

op). We begin by constructing conditional expectations on these ten-

sor products. We will use Lemma 5.18 to construct a conditional expectation on A⊗max

C∗(G,P, P op). We must first construct a suitable coaction on A⊗max C
∗(G,P, P op).

Lemma 7.1. Let (G,P ) be a doubly quasi-lattice ordered group and let A be a unital

C∗-algebra. Suppose that there exists a group K and a homomorphism φ : G → K.

Then there exists an injective nondegenerate coaction

δφ : A⊗max C
∗(G,P, P op)→ A⊗max (C∗(G,P, P op)⊗min C

∗(K))

characterised by δφ(a⊗ vp) = a⊗ vp ⊗ uφ(p) for all a ∈ A and p ∈ P .

Proof. We will construct a homomorphism

πK : C∗(G,P, P op)→ C∗(G,P, P op)⊗min C
∗(K),

and then show that δφ := id⊗ πK is well-defined and has the properties we want. We

claim there exists a homomorphism πK such that πK(vp) = vp ⊗ uφ(p). To see this, we

will show that W : P → C∗(G,P, P op) ⊗min C
∗(K), defined by Wp = vp ⊗ uφ(p), is a

covariant partial isometric representation and then use the properties of the universal

algebra to get πK . Unitaries are partial isometries and hence W is partial isometric.

Observe that

We = ve ⊗ uφ(e) = 1⊗ 1,

WpWq = vpvq ⊗ uφ(p)uφ(q) = vpq ⊗ uφ(pq) for all p, q ∈ P .
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To prove W is covariant, fix x, y ∈ P and compute:

WxW
∗
xWyW

∗
y = vxv

∗
xvyv

∗
y ⊗ uφ(x)u

∗
φ(x)uφ(y)u

∗
φ(y)

=

vx∨lyv∗x∨ly ⊗ 1 if x ∨l y <∞

0⊗ 1 otherwise

=

vx∨lyv∗x∨ly ⊗ vφ(x∨ly)v
∗
φ(x∨ly) if x ∨l y <∞

0 otherwise

= Wx∨lyW
∗
x∨ly.

Similarly W ∗
xWxW

∗
yWy = W ∗

x∨ryWx∨ry. Thus W is a covariant partial isometric repre-

sentation of P . Hence, by Theorem 3.1, there exists a homomorphism

πK : C∗(G,P, P op)→ C∗(G,P, P op)⊗max C
∗(K)

such that πK(vp) = vp ⊗ uφ(p).

Since id : A → A and πK : C∗(G,P, P op) → C∗(G,P, P op) ⊗min C
∗(K) are both

homomorphisms, Lemma 5.5 states that there exists a unique homomorphism

id⊗ πK : A⊗max C
∗(G,P, P op)→ A⊗max (C∗(G,P, P op)⊗min C

∗(K))

which acts on the generators of A⊗max C
∗(G,P, P op) as

id⊗ πK(a⊗ vpv∗qvr) = a⊗ vpv∗qvr ⊗ uφ(pq−1r).

Let δφ := id ⊗ πK . Since δφ is unital it is nondegenerate as a homomorphism. To

complete the proof we must show that δφ is injective, satisfies the comultiplicative

property and is nondegenerate.

To show that δφ is injective we will show that a faithful representation π may be

written as a composition of δφ and another representation. Choose a faithful repre-

sentation π : A ⊗max C
∗(G,P, P op) → B(H) and let ε : C∗(K) → C be the trivial

representation on C such that ε(uk) = 1 for all k ∈ K. By Proposition 5.2 there exists

a homomorphism

π ⊗ ε : A⊗max C
∗(G,P, P op)⊗min C

∗(G)→ B(H)⊗ C = B(H).

By Theorem 5.4 there exists a homomorphism

λ : A⊗max (C∗(G,P, P op)⊗min C
∗(K))→ (A⊗max C

∗(G,P, P op))⊗min C
∗(K)
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such that λ(a⊗vp⊗uk) = a⊗vp⊗uk. We claim π = (π⊗ ε)◦λ◦ δφ. We need compute

only on the generators a⊗ vp. Compute:

(π⊗ ε) ◦λ ◦ δφ(a⊗ vp) = (π⊗ ε) ◦λ(a⊗ vp⊗uφ(p)) = (π⊗ ε)(a⊗ vp⊗uφ(p)) = π(a⊗ vp).

Now suppose δφ(a) = 0 for some a ∈ A⊗max C
∗(G,P, P op). Then (π⊗ ε) ◦ δφ(a) = 0 =

π(a) thus a = 0 since π is faithful. Hence δφ is injective.

To prove that δφ is nondegenerate we must show that

δφ(A⊗max C
∗(G,P, P op))(1⊗ C∗(K)) = (A⊗max C

∗(G,P, P op))⊗min C
∗(K).

It suffices to show that we can produce the spanning elements a⊗vpv∗qvr⊗uk. Compute:

δφ(a⊗vpv∗qvr)(1⊗uφ(pq−1r)−1k) = a⊗vpv∗qvr⊗uφ(pq−1r)(1⊗uφ(pq−1r)−1k) = a⊗vpv∗qvr⊗uk.

Thus δφ is nondegenerate.

To prove comultiplicativity we must show that

(δφ ⊗ idC∗(K)) ◦ (δφ) = idA⊗C∗(G,P,P op) ⊗ δK ◦ δφ.

Again it suffices to calculate on the generators:

(δφ ⊗ idC∗(K)) ◦ (δφ)(a⊗ vpv∗qvr) = ((δφ)⊗ idC∗(K))(a⊗ vpv∗qvr ⊗ uφ(pq−1r))

= δφ(a⊗ vpv∗qvr)⊗ idC∗(K)(uφ(pq−1r))

= a⊗ vpv∗qvr ⊗ uφ(pq−1r) ⊗ uφ(pq−1r)

= a⊗ vpv∗qvr ⊗ δK(uφ(pq−1r))

= id⊗ δK(a⊗ vpv∗qvr ⊗ uφ(pq−1r))

= (idA⊗C∗(G,P,P op) ⊗ δK) ◦ (δφ)(a⊗ vpv∗qvr).

Hence ((δφ) ⊗ idC∗(K)) ◦ (δφ) = (idA⊗C∗(G,P,P op) ⊗ δK) ◦ (δφ) and so comultiplicativity

holds. Hence δφ is a coaction. �

We can now construct a conditional expectation ΨK on A⊗maxC
∗(G,P, P op) using

Lemma 7.1.

Lemma 7.2. Let (G,P ) be a doubly quasi-lattice ordered group and let A be a unital

C∗-algebra. Suppose that K is a group and that there is a homomorphism φ : G→ K.

Then there exists a conditional expectation

ΨK : A⊗max C
∗(G,P, P op)→ span{a⊗ vpv∗qvr : a ∈ A, φ(q) = φ(rp)}
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such that

ΨK(a⊗ vpv∗qvr) =

a⊗ vpv∗qvr if φ(q) = φ(rp)

0 otherwise.

If K is amenable then ΨK is faithful.

Proof. By Lemma 7.1, there exists a faithful coaction

δφ : A⊗max C
∗(G,P, P op)→ A⊗max (C∗(G,P, P op)⊗ C∗(K)).

Let τ be the trace on C∗(K) of Lemma 5.14. By Lemma 5.18, the map ΨK :=

(idA⊗C∗(G,P,P op))⊗ τ ◦ (δφ) is a conditional expectation. In particular,

ΨK(a⊗ vpv∗qvr) = (idA⊗C∗(G,P,P op))⊗ τ ◦ (δφ)(a⊗ vpv∗qvr)

= (idA⊗C∗(G,P,P op))⊗ τ(a⊗ vpv∗qvr ⊗ uφ(pq−1r))

=

a⊗ vpv∗qvr if φ(q) = φ(rp)

0 otherwise.

We claim that

range ΨK = (A⊗max C
∗(G,P, P op))δφ = span{a⊗ vpv∗qvr : φ(q) = φ(rp)}.

We see that span{a⊗vpv∗qvr : φ(q) = φ(rp)} ⊆ range ΨK . To show the reverse inclusion,

fix b ∈ range ΨK and ε > 0. We can approximate b as a linear combination of a⊗vpv∗qvr,
i.e. there exists

∑n
i=1 ai⊗ vpiv∗qivri such that ‖b−

∑n
i=1 ai⊗ vpiv∗qivri‖ < ε. Since ΨK is

linear and norm-decreasing, we have

ε >

∥∥∥∥∥ΨK

(
b−

n∑
i=1

ai ⊗ vpiv∗qivri

)∥∥∥∥∥
≥

∥∥∥∥∥ΨK(b)−ΨK

(
n∑
i=1

ai ⊗ vpiv∗qivri

)∥∥∥∥∥
≥

∥∥∥∥∥∥b−
∑

{i:µ(ripi)=µ(qi)}

ai ⊗ vpiv∗qivri

∥∥∥∥∥∥
Thus b ∈ span{a ⊗ vpv∗qvr : φ(q) = φ(rp)}. So range ΨK = span{a ⊗ vpv∗qvr : φ(q) =

φ(rp)} as claimed. Thus ΨK has the desired form. Further, if K is an amenable group

then Lemma 5.18 states that ΨK is faithful. �

We construct a faithful conditional expectation on A ⊗min C
∗
ts(G,P, P

op) using

Lemma 5.15.
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Lemma 7.3. Let A be a unital C∗-algebra and let (G,P ) be a doubly quasi-lattice

ordered group. There is a faithful conditional expectation ∆ on A ⊗min C
∗
ts(G,P, P

op)

such that

∆(a⊗ JpJ∗q Jr) =

a⊗ JpJ∗q Jr if q = rp

0 otherwise.

Proof. Let η be a faithful representation of A on a Hilbert space H. We can

embed A ⊗min C
∗
ts(G,P, P

op) faithfully as bounded operators on H ⊗ (⊕b∈P `2(Ib)) by

Proposition 5.2. Let {εa,b : a, b ∈ P, a ≤r b} be the usual orthonormal basis for

⊕b∈P `2(Ib). We apply Lemma 5.15 to get a faithful conditional expectation ∆ such

that

(∆(T )(h⊗ εa,b)|h′ ⊗ εa,b) = (T (h⊗ εa,b)|h′ ⊗ εa,b)

for all T ∈ B(H ⊗ (⊕b∈P `2(Ib))), all h, h′ ∈ H and a, b ∈ P with a ≤r b.
It remains to show that ∆ has the property

∆(a⊗ JpJ∗q Jr) =

a⊗ JpJ∗q Jr if q = rp

0 otherwise.

We compute:

(∆(a⊗ JpJ∗q Jr)(h⊗ εa,b)|h′ ⊗ εa,b) = (a⊗ JpJ∗q Jr(h⊗ εa,b)|h′ ⊗ εa,b)

= (ah|h′)(JpJ∗q Jrεa,b|εa,b)

=

(ah|h′)(εpq−1ra,b|εa,b) if ra ≤r b and q ≤l ra

0 otherwise.

=

(ah|h′) if rp = q, ra ≤r b and q ≤l ra

0 otherwise.

=

(ah|h′)(JpJ∗q Jrεa,b|εa,b) if rp = q

0 otherwise.

=

(a⊗ JpJ∗q Jr(h⊗ εa,b)|h′ ⊗ εa,b) if rp = q

0 otherwise.

Thus ∆(a⊗JpJ∗q Jr) =

a⊗ JpJ∗q Jr if q = rp

0 otherwise.
The conditional expectation on A⊗min

C∗ts(G,P, P
op) is the restriction of ∆ to A⊗min C

∗
ts(G,P, P

op). �
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7.2. Controlled maps of doubly quasi-lattice ordered groups

We have adapted our definition of a “controlled map” in Definition 7.4 from [11,

Proposition 6.6].

Definition 7.4. Suppose that (G,P ) and (K,Q) are doubly quasi-lattice ordered

groups. A controlled map φ : (G,P ) → (K,Q) is a group homomorphism φ : G → K

such that:

(1) φ(P ) ⊆ Q

(2) for all x, y ∈ P satisfying x ∨l y < ∞ we have φ(x) ∨l φ(y) = φ(x ∨l y), and

φ(x) = φ(y)⇒ x = y

(3) for all x, y ∈ P satisfying x ∨r y < ∞ we have φ(x) ∨r φ(y) = φ(x ∨r y), and

φ(x) = φ(y)⇒ x = y.

Condition (1) implies that a controlled map is order preserving for both left and

right orders: if x ≤l y then x−1y ∈ P so φ(x)−1φ(y) = φ(x−1y) ∈ Q and hence

φ(x) ≤l φ(y). Similarly x ≤r y implies φ(x) ≤r φ(y).

Conditions (2) and (3) are stronger than order preserving. Consider (Z2,N2) and the

homomorphism φ : (Z2,N2)→ (Z,N) defined by φ((m,n)) = m+n for all (m,n) ∈ Z2.

This homomorphism satisfies φ(N2) ⊆ N and is order preserving, however it does not

satisfy φ(x)∨lφ(y) = φ(x∨ly). Consider (1, 0) and (0, 1). We have (1, 0)∨l(0, 1) = (1, 1)

but φ(1, 0) ∨l φ(0, 1) = 1 ∨l 1 = 1 and φ((1, 0) ∨l (0, 1)) = φ(1, 1) = 2.

The notion of a controlled map for quasi-lattice ordered groups was introduced by

Laca and Raeburn [11, Proposition 6.6]1 (see also Crisp and Laca in [5, Proposition

16]). Li adapted Laca-Raeburn’s proof in [14, Corollary 8.2] to show that if (G,P )

has a controlled map into an amenable group, then the universal algebra generated by

covariant isometric representations of (G,P ) is nuclear.

In this section we will prove that if there exists a doubly quasi-lattice ordered group

(k,Q) with K an amenable group and a controlled map φ : (G,P ) → (K,Q), then

(G,P ) is amenable and C∗(G,P, P op) is nuclear. The proofs that (G,P ) is amenable

and that C∗(G,P, P op) is nuclear are very similar in structure so we shall prove them

both via Proposition 7.5. This approach follows the method of Li in [14, Corollary

8.2].

Let A be a unital C∗-algebra. There exist homomorphisms id : A → A ⊗min

C∗ts(G,P, P
op) such that id(a) = a⊗ 1 for all a ∈ A and π⊗J : C∗(G,P, P op) → A⊗min

1Note that there is a mistake in the statement of [11, Proposition 6.6]: the final line should read

“If G is amenable then (G,P ) is amenable”.
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C∗ts(G,P, P
op) such that π⊗J (vp) = 1⊗Jp. By Theorem 5.4 there exists a homomorphism

id⊗πJ : A⊗maxC
∗(G,P, P op)→ A⊗minC

∗
ts(G,P, P

op) such that id⊗πJ(a⊗vp) = a⊗Jp.

Proposition 7.5. Let (G,P ) be a doubly quasi-lattice ordered group and let A be

a unital C∗-algebra.

(1) There exists a conditional expectation Ψ on A⊗max C
∗(G,P, P op) such that

Ψ(a⊗ vpv∗qvr) =

a⊗ vpv∗qvr if q = rp

0 otherwise.

(2) Suppose there exists a doubly quasi-lattice ordered group (K,Q) with K an

amenable group and a controlled map φ : (G,P )→ (K,Q). Then:

(a) The conditional expectation Ψ is faithful for positive elements.

(b) The homomorphism id⊗πJ : A⊗maxC
∗(G,P, P op)→ A⊗minC

∗
ts(G,P, P

op)

is an isomorphism.

Remark. Note that we have defined id⊗ πJ from the maximal tensor product to

the minimal tensor product. This will become important when we want to prove that

the canonical homomorphism A⊗max C
∗(G,P, P op)→ A⊗min C

∗(G,P, P op) is faithful

and hence that C∗(G,P, P op) is nuclear.

The proof of Proposition 7.5 requires Lemma 7.6. The proof of Lemma 7.6 is quite

involved so we will state the result here and defer the proof to Section 7.3.

Lemma 7.6. Let (G,P ) be a doubly quasi-lattice ordered group. Suppose that (K,Q)

is a doubly quasi-lattice ordered group with a controlled map φ : (G,P )→ (K,Q). Then

id ⊗ πJ : A ⊗max C
∗(G,P, P op) → A ⊗min C

∗
ts(G,P, P

op) is faithful when restricted to

span{a⊗ vpv∗qvr : a ∈ A, φ(q) = φ(rp)}.

We now apply Lemma 7.6 to the proof of Proposition 7.5.

Proof of Proposition 7.5. (1). Consider the identity homomorphism, id :

G→ G. By Lemma 7.2, there exists a conditional expectation

Ψ = ΨG : A⊗max C
∗(G,P, P op)→ span{a⊗ vpv∗qvr : a ∈ A, q = rp}

such that

Ψ(a⊗ vpv∗qvr) =

a⊗ vpv∗qvr if q = rp

0 otherwise.

(2a). Suppose that φ : (G,P ) → (K,Q) is a controlled map and that K is an

amenable group. We must show that the conditional expectation Ψ is faithful for
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positive elements. By Lemma 7.2, there is a faithful conditional expectation ΨK such

that

ΨK(a⊗ vpv∗qvr) =

a⊗ vpv∗qvr if φ(q) = φ(rp)

0 otherwise.

We claim that Ψ = Ψ ◦ΨK . To prove our claim we calculate on the spanning elements

to see:

Ψ ◦ΨK(a⊗ vpv∗qvr) =

Ψ(a⊗ vpv∗qvr) if φ(q) = φ(rp)

0 otherwise.

=

a⊗ vpv∗qvr if q = rp and φ(q) = φ(rp)

0 otherwise.

=

a⊗ vpv∗qvr if q = rp

0 otherwise.

= Ψ(a⊗ vpv∗qvr).

So we have proved our claim. Since ΨK is faithful for positive elements, and conditional

expectations are positive maps, and Ψ = Ψ ◦ ΨK it suffices to show that Ψ is faithful

when restricted to

range ΨK = span{a⊗ vpv∗qvr : a ∈ A, φ(q) = φ(rp)}.

By Lemma 7.3 there is a faithful conditional expectation ∆ on A⊗minC
∗
ts(G,P, P

op)

such that

∆(a⊗ JpJ∗q Jr) =

a⊗ JpJ∗q Jr if q = rp

0 otherwise.

We claim that ∆ ◦ id ⊗ πJ = id ⊗ πJ ◦ Ψ. Fix a ∈ A and p, q, r ∈ P such that p ≤r q
and r ≤l q and compute:

id⊗ πJ ◦Ψ(a⊗ vpv∗qvr) =

id⊗ πJ(a⊗ vpv∗qvr) if rp = q

0 otherwise

=

a⊗ JpJ∗q Jr if rp = q

0 otherwise

= ∆(a⊗ JpJ∗q Jr)

= ∆ ◦ id⊗ πJ(a⊗ vpv∗qvr).
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Thus ∆ ◦ id ⊗ πJ = id ⊗ πJ ◦ Ψ. By Lemma 7.6 id ⊗ πJ is faithful when restricted

to span{a ⊗ vpv∗qvr : φ(rp) = φ(q)}. It follows that ∆ ◦ id ⊗ πJ is faithful for positive

elements in span{a⊗ vpv∗qvr : φ(rp) = φ(q)}. Thus Ψ must also be faithful for positive

elements when restricted to span{a ⊗ vpv
∗
qvr : a ∈ A, φ(q) = φ(rp)}. Hence Ψ is a

faithful conditional expectation of A⊗maxC
∗(G,P, P op) onto span{a⊗vpv∗qvr : q = rp}

and our proof of (2a) is complete.

(2b). Now we can prove that id⊗πJ : A⊗maxC
∗(G,P, P op)→ A⊗minC

∗
ts(G,P, P

op)

is faithful. Suppose that b ∈ A ⊗max C
∗(G,P, P op) and id ⊗ πJ(b) = 0. Then id ⊗

πJ(b∗b) = 0 and so ∆ ◦ id⊗ πJ(b∗b) = 0. Now we see that id⊗ πJ ◦Ψ(b∗b) = 0. Since

id⊗ πJ is faithful on span{a⊗ vpv∗qvr : φ(rp) = φ(q)} which contains the range of Ψ, it

follows that Ψ(b∗b) = 0. But Ψ is faithful for positive elements, so b = 0. Thus id⊗ πJ
is faithful. �

Remark. It is interesting that the properties of the controlled map φ : (G,P ) →
(K,Q) have two independent roles in the proof of Proposition 7.5(2). First, in the

construction of ΨK in Lemma 7.2 we use that φ is a homomorphism and that ΨK

is faithful if K is amenable. The construction still works if K is not associated to a

doubly quasi-lattice ordered group. Second, Lemma 7.6 states that id⊗ πJ is faithful

when restricted to span{a ⊗ vpv
∗
qvr : φ(q) = φ(rp), a ∈ A} and relies only on the

properties of φ as a controlled map. Thus the restriction of id ⊗ πJ is faithful even if

K is not amenable. This split is analogous to the roles that “W sees all projections”

and “(G,P ) is amenable” play in the proofs in Chapter 4.

Now that we have completed our proof of Proposition 7.5 it is easy to state and

prove the theorem that motivates this chapter:

Theorem 7.7. Let (G,P ) be a doubly quasi-lattice ordered group. Suppose that

(K,Q) is a doubly quasi-lattice ordered group with a controlled map φ : (G,P ) →
(K,Q). If K is an amenable group then (G,P ) is amenable and C∗(G,P, P op) is

nuclear.

Proof. To prove that (G,P ) is amenable we apply Proposition 7.5 with A =

C. Then Ψ as described in Proposition 7.5(1) is the conditional expectation E of

Proposition 4.6 and, by Proposition 7.5(2a), Ψ is faithful for positive elements. Thus

(G,P ) is amenable.

To show C∗(G,P, P op) is nuclear, we fix a unital C∗-algebra A, and show that

the canonical homomorphism from A⊗max C
∗(G,P, P op) to A⊗min C

∗(G,P, P op) is an

isomorphism. Since (G,P ) is amenable, Theorem 6.2 states that πJ : C∗(G,P, P op)→
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C∗ts(G,P, P
op) is an isomorphism. It follows that π−1

J exists and is also an isomorphism.

Hence, by Proposition 5.2,

id⊗ π−1
J : A⊗min C

∗
ts(G,P, P

op)→ A⊗min C
∗(G,P, P op)

exists and is faithful. Since π−1
J is surjective, id ⊗ π−1

J is surjective and hence is an

isomorphism. In addition, by Proposition 7.5(2b), id⊗ πJ from A⊗max C
∗(G,P, P op)

to A⊗min C
∗
ts(G,P, P

op) is an isomorphism. Hence

id⊗ π−1
J ◦ id⊗ πJ : A⊗max C

∗(G,P, P op)→ A⊗min C
∗(G,P, P op)

is the composition of two isomorphisms. Computing on generators we see that

id⊗ π−1
J ◦ id⊗ πJ(a⊗ vpv∗qvr) = id⊗ π−1

J (a⊗ JpJ∗q Jr) = a⊗ vpv∗qvr.

Thus id⊗ π−1
J ◦ id⊗ πJ is the canonical homomorphism from A⊗max C

∗(G,P, P op) to

A⊗min C
∗(G,P, P op). Hence C∗(G,P, P op) is nuclear. �

We devote the next section to the proof of Lemma 7.6. In the final section of this

chapter we give examples of amenable doubly quasi-lattice ordered groups with nuclear

C∗-algebras.

7.3. Proof of Lemma 7.6

In this section we prove Lemma 7.6, which states that id ⊗ πJ is faithful when

restricted to span{a ⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A}. The proofs in this section rely

on the order preserving properties of the controlled map and not on the amenability

of K. We first prove some basic properties of the controlled map.

Lemma 7.8. Let (G,P ) be a doubly quasi-lattice ordered group. Suppose that (K,Q)

is a doubly quasi-lattice ordered group with a controlled map φ : (G,P )→ (K,Q). For

all x, y ∈ G:

(1) If x ∨l y <∞ then φ(x) ≤l φ(y)⇒ x ≤l y.

(2) If x ∨r y <∞ then φ(x) ≤r φ(y)⇒ x ≤r y.

Proof. (1). Let x, y ∈ G such that x∨l y <∞. Suppose that φ(x) ≤l φ(y). Then

φ(x) ∨l φ(y) = φ(y). By the definition of a controlled map φ(x ∨l y) = φ(x) ∨l φ(y).

Therefore φ(y−1(x ∨l y)) = φ(y)−1φ(x ∨l y) = eK . Since y−1(x ∨l y) ∈ P we have

eG ∨l y−1(x ∨l y) = y−1(x ∨l y). Thus, since φ(eG) = eK = φ(y−1(x ∨l y)), we have

eG = y−1(x∨l y) by the properties of the controlled map. Hence y = x∨l y and x ≤l y.

The proof of (2) follows from (1) by symmetry. �
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We need to break span{a⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A} down into more manage-

able chunks. We will partition span{a⊗vpv∗qvr : φ(q) = φ(rp), a ∈ A} into subalgebras,

and prove that id⊗ πJ is isometric when restricted to these subalgebras. We can then

show that id ⊗ πJ is isometric on the direct limit of these smaller subalgebras. Since

we have many variables we will build our subalgebras slowly. We use this direct limit

procedure twice: in Lemma 7.10 and again in Lemma 7.12. We then finally prove

Lemma 7.6.

We start with our smallest subalgebra: let q ∈ P and (s, t) ∈ Q × Qop such that

ts = φ(q). Define

Dq(s,t) := span{a⊗ vpv∗qvr : a ∈ A, (φ(p), φ(r)) = (s, t)}.

Let {εa,b : a, b ∈ P, a ≤r b} be the usual orthonormal basis for ⊕b∈P `2(Ib). Let P q
(s,t)

denote the projection onto

Hq
(s,t) = span{εa,q : a ≤r q, φ(a) = s}.

Lemma 7.9. Let (G,P ) be a doubly quasi-lattice ordered group and let A be a unital

C∗-algebra. Suppose that (K,Q) is a doubly quasi-lattice ordered group with a controlled

map φ : (G,P ) → (K,Q). Let q ∈ P and (s, t) ∈ Q × Qop such that ts = φ(q). Then

Dq(s,t) is a subalgebra and id ⊗ πJ is isometric on Dq(s,t). In particular, for x ∈ Dq(s,t),
the map

x 7→ 1⊗ P q
(s,t)(id⊗ πJ)(x)1⊗ P q

(s,t)

is an isomorphism of Dq(s,t) onto A⊗K(Hq
(s,t)).

Proof. This result relies on the properties of the truncated shift J so we will prove

it as a result on C∗(G,P, P op) and then extend it using the properties of the tensor

product to a result about A⊗max C
∗(G,P, P op). Let q ∈ P and (s, t) ∈ Q×Qop. Let

J q
(s,t) := span{vpv∗qvr : (φ(p), φ(r)) = (s, t)}.

We first prove that J q
(s,t) is a subalgebra, and then show that A ⊗ J q

(s,t) = Dq(s,t).
Since A is a C∗-algebra it then follows immediately that Dq(s,t) is a subalgebra. So we

will show that J q
(s,t) is closed under multiplication and adjoints. Let p, , r, x, , z ∈ P

such that (φ(p), φ(r)) = (φ(x), φ(z)) = (s, t). Now consider

(7.1) (vpv
∗
qvr)(vxv

∗
qvz) = vpq−1(q∨lrx)v

∗
(q∨rrx)(rx)−1(q∨lrx)v(q∨rrx)q−1z.

If either of the upper bounds, q ∨l rx or q ∨r rx don’t exist then (7.1) is zero. So we

suppose q ∨l rx and q ∨r rx both exist. Since φ(q) = ts = φ(rx) the properties of the

controlled map imply that q = rx. Thus we can rewrite (7.1) as
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(vpv
∗
qvr)(vxv

∗
qvz) =

vpv∗qvz if r−1q = x

0 otherwise.

Thus J q
(s,t) is closed under multiplication.

To show that J q
(s,t) is closed under adjoints consider (vpv

∗
qvr)

∗ = vr−1qv
∗
qvqp−1 . Then

φ(r−1q) = φ(r)−1φ(q) = t−1ts = s. Similarly φ(qp−1) = t. Thus J q
(s,t) is closed under

adjoints and is a subalgebra.

To see that A⊗J q
(s,t) = Dq(s,t), observe that for every generating element a⊗ vpv∗qvr

with (φ(p), φ(r)) = (s, t) we have a ⊗ vpv
∗
qvr ∈ A ⊗ J q

(s,t). Thus Dq(s,t) ⊆ A ⊗ J q
(s,t).

Similarly, A ⊗ J q
(s,t) ⊆ D

q
(s,t) and so A ⊗ J q

(s,t) = Dq(s,t). It then follows that Dq(s,t) is a

subalgebra.

We claim that for j ∈ J q
(s,t) the map χ : j 7→ P q

(s,t)πJ(j)P q
(s,t) is an isomorphism

between J q
(s,t) and the compact operators K(Hq

(s,t)) on Hq
(s,t). First we will show that

the spanning elements of πJ(J q
(s,t)) are rank-one operators on Hq

(s,t). Let p, r, a, b ∈ P
such that, a ≤r b φ(p) = s and φ(r) = t. Compute:

P q
(s,t)πJ(vpv

∗
qvr)P

q
(s,t)εa,b =

P
q
(s,t)JpJ

∗
q Jrεa,q if b=q

0 otherwise
(7.2)

=

P
q
(s,t)εpq−1ra,q if ra ≤r q and q ≤l ra and b = q.

0 otherwise.
(7.3)

By assumption φ(q) = ts = φ(ra). If ra ≤r q, then ra ∨r q = q. So φ(q) = φ(ra)

implies that q = ra. It then follows that εpq−1ra,q = εp,q. Further P q
(s,t)εp,q = ε(p,q). Thus

we may rewrite (7.2) as

P q
(s,t)πJ(vpv

∗
qvr)P

q
(s,t)εa,b =

εp,q if b = q and a = r−1q.

0 otherwise.

So P q
(s,t)πJ(vpv

∗
qvr)P

q
(s,t) is the rank one operator (· | εr−1q,q)εp,q.

Second we show that the spanning elements of J q
(s,t) behave as matrix units on

Hq
(s,t). Let vpv

∗
qvr, vxv

∗
qvz ∈ J

q
(s,t). From above we have:

(vpv
∗
qvr)(vxv

∗
qvz) =

vpv∗qvz if x = r−1q

0 otherwise.
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Thus vpv
∗
qvr and vxv

∗
qvz behave as the matrix units Ep,r−1q and Ex,z−1q respectively in

the sense that

(vpv
∗
qvr)(vxv

∗
qvz) = Ep,r−1qEx,z−1q = δr−1q,xEp,z−1q = δr−1q,xvpv

∗
qvz.

Hence χ gives a correspondence between the system of matrix units in J q
(s,t) and

the system of matrix units associated with the canonical orthonormal basis in Hq
(s,t).

To see that χ preserves multiplication observe that

P q
(s,t)πJ(vxv

∗
qvz)P

q
(s,t)πJ(vpv

∗
qvr)P

q
(s,t)εa,b =

=

P
q
(s,t)πJ(vxv

∗
qvz)P

q
(s,t)εp,q if b = q and a = r−1q.

0 otherwise.

=

εx,q if b = q, a = r−1q and p = z−1q.

0 otherwise.

=

P
q
(s,t)πJ(vxv

∗
qvr)P

q
(s,t)εa,b if b = q, a = r−1q and p = z−1q.

0 otherwise.

= P q
(s,t)πJ(vxv

∗
qvzvpv

∗
qvr)P

q
(s,t)εa,b

As a consequence the map j 7→ P q
(s,t)πJ(vpv

∗
qvr)P

q
(s,t) is an isomorphism between J q

(s,t)

and K(Hq
(s,t)) the compact operators on Hq

(s,t).

Since J q
(s,t) is isomorphic to the compact operators on a separable Hilbert space it

is nuclear. Thus A⊗max J q
(s,t) = A⊗min J q

(s,t). Define

Both id : A→ A and χ : J q
(s,t) → C∗ts(G,P, P

op) are injective, and hence Proposition

5.2 states that there exists a unique injective homomorphism id ⊗ χ : A ⊗ J q
(s,t) →

A⊗min C
∗
ts(G,P, P

op). Further, we have A⊗ J q
(s,t) = Dq(s,t). In particular, id⊗ χ(x) =

1⊗ P q
(s,t)(id⊗ πJ)(x)1⊗ P q

(s,t). Thus the map x 7→ 1⊗ P q
(s,t)(id⊗ πJ)(x)1⊗ P q

(s,t) is an

isomorphism of Dq(s,t) onto A⊗K(Hq
(s,t)). �

Now we work up to a larger subalgebra: let (s, t) ∈ Q×Qop. Define

D(s,t) := span{a⊗ vpv∗qvr : a ∈ A, (φ(p), φ(r)) = (s, t), φ(q) = φ(rp)}.

Let {εa,b : a, b ∈ P, a ≤r b} be the usual orthonormal basis for ⊕b∈P `2(Ib). For each

(s, t) ∈ Q×Qop, let P(s,t) denote the projection onto

H(s,t) = span{εa,b : a, b ∈ P, a ≤r b, φ(a) = s, φ(b) = ts}.
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Let I(s,t) denote the collection of all finite subsets I ⊂ φ−1({ts}) ∩ P . For each

I ∈ I(s,t) let DI(s,t) be

(7.4) DI(s,t) = span{a⊗ vpv∗qvr : a ∈ A, (φ(p), φ(r)) = (s, t), q ∈ I}.

In particular, each DI(s,t) is the finite span of Dq(s,t) such that q ∈ I.

Lemma 7.10. Let (G,P ) be a doubly quasi-lattice ordered group and let A be a C∗-

algebra. Suppose that (K,Q) is a doubly quasi-lattice ordered group with a controlled

map φ : (G,P ) → (K,Q). For each (s, t) ∈ Q × Qop the set I(s,t) is directed, ordered

by inclusion. Further, for each I ∈ I, the set DI(s,t) is a C∗-subalgebra of A ⊗max

C∗(G,P, P op) and {DI(s,t) : I ∈ I(s,t)} is an inductive system with limit

∪I∈I(s,t)DI(s,t) = D(s,t).

Proof. Fix (s, t) ∈ Q×Qop. For any I1, I2 ∈ I(s,t) we have I1 ∪ I2 ∈ I(s,t). Hence

I(s,t) is directed, ordered by inclusion. Now we fix I ∈ I(s,t). We first prove that

DI(s,t) is a subalgebra. Since A is a C∗-algebra it will suffice to show that span{vpv∗qvr :

(φ(p), φ(r)) = (s, t), q ∈ I} is closed under multiplication and adjoints. Let p, q, r, x, y, z ∈
P such that q, y ∈ I and (φ(p), φ(r)) = (φ(x), φ(z)) = (s, t). Now consider

(7.5) (vpv
∗
qvr)(vxv

∗
yvz) = vpq−1(q∨lrx)v

∗
(y∨rrx)(rx)−1(q∨lrx)v(y∨rrx)y−1z.

If either of the upper bounds, q ∨l rx or y ∨r rx don’t exist then (7.5) is zero. So we

suppose q ∨l rx and y ∨r rx both exist. Since φ(q) = φ(y) = ts = φ(rx) the properties

of the controlled map imply that q = rx and y = rx. Thus we can rewrite (7.5) as

(vpv
∗
qvr)(vxv

∗
yvz) =

vpv∗qvz if q = y and r−1q = x

0 otherwise.

Thus DI(s,t) is closed under multiplication.

To show that DI(s,t) is closed under adjoints consider (vpv
∗
qvr)

∗ = vr−1qv
∗
qvqp−1 . Then

φ(r−1q) = φ(r)−1φ(q) = t−1ts = s. Similarly φ(qp−1) = t. Thus DI(s,t) is closed under

adjoints and is a subalgebra.

We now show that ∪I∈I(s,t)DI(s,t) = D(s,t). For all I ∈ I(s,t) we have DI(s,t) ⊆ D(s,t).

Since D(s,t) is closed we have

∪I∈I(s,t)DI(s,t) ⊆ D(s,t).
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To show the reverse inclusion fix T ∈ span{a ⊗ vpv
∗
qvr : (φ(p), φ(r)) = (s, t), φ(q) =

φ(rp), a ∈ A}. Then write T as a limit of finite sums of the form

Tn =
ln∑
i=1

λi,nai,n ⊗ vpi,nv∗qi,nvri,n ,

where, for all i, (φ(pi,n), φ(ri,n)) = (s, t) and φ(qi,n) = φ(ri,npi,n). For each n we can

construct a finite set In := {qi,n : 1 ≤ i ≤ ln} ∈ I(s,t). Thus each Tn ∈ ∪I∈I(s,t)DI(s,t). It

follows that the limit T ∈ ∪I∈I(s,t)DI(s,t) and hence ∪I∈I(s,t)DI(s,t) = D(s,t). �

Lemma 7.11. Let (G,P ) be a doubly quasi-lattice ordered group and let A be a C∗-

algebra. Suppose that (K,Q) is a doubly quasi-lattice ordered group with a controlled

map φ : (G,P ) → (K,Q). Let (s, t) ∈ Q × Qop. Then id ⊗ πJ is isometric on D(s,t).

Further, for all T ∈ D(s,t),

‖id⊗ πJ(T )1⊗ P(s,t)‖ = ‖T‖.

Proof. By Lemma 7.12 ∪I∈I(s,t)DI(s,t) = D(s,t). So, to prove that id⊗πJ is isometric

on D(s,t), it suffices to prove that id⊗ πJ is isometric on DI(s,t) for each I ∈ I(s,t).

Fix I ∈ I(s,t). Suppose there exists T ∈ DI(s,t) such that id ⊗ πJ(T ) = 0. We will

consider DI(s,t) as the span of all subspaces Dq(s,t) such that q ∈ I. For each q ∈ I and

each n ∈ N let Tq,n ∈ Dq(s,t) and write T as the limit of a sequence of finite sums:

(7.6) T = lim
n→∞

∑
q∈I

Tq,n.

Let q0 ∈ I and consider the projection 1⊗ P q0
(s,t).

We claim that

(7.7)

∥∥∥∥∥id⊗ πJ

(∑
q∈I

Tq,n

)
1⊗ P q0

(s,t)

∥∥∥∥∥ = ‖Tq0,n‖.

To prove our claim we will examine the behaviour of the πJ(vpv
∗
qvr) = JpJ

∗
q Jr on

rangeP q0
(s,t) = Hq0

(s,t). Fix p, q, r ∈ P such that q ∈ I, (φ(p), φ(r)) = (s, t). Fix a ∈ P
such that a ≤r q0 and φ(a) = s. Compute

JpJ
∗
q Jrεa,q0 =

εpq−1ra,q0 if ra ≤r q0 and q ≤l ra.

0 otherwise.

If ra ≤r q0 and q ≤l ra then ra ∨l q0 = q0 and q ∨r ra = ra. Since φ(q) = φ(ra)

and φ(q0) = φ(ra) the properties of the controlled map imply that q = q0 = ra. Thus
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JpJ
∗
q JrP

q0
(s,t) = 0 unless q = q0. Thus∥∥∥∥∥id⊗ πJ

(∑
q∈I

Tq,n

)
1⊗ P q0

(s,t)

∥∥∥∥∥ = ‖id⊗ πJ(Tq0,n)1⊗ P q0
(s,t)‖.

Further, in Lemma 7.9, we proved that id ⊗ πJ is an isomorphism between Dq0(s,t) and

A ⊗ K(Hq0
(s,t)). Since rangeP q0

(s,t) = Hq0
(s,t) we have ‖id ⊗ πJ(Tq0,n)1 ⊗ P q0

(s,t)‖ = ‖Tq0,n‖.
Thus we have proved our claim.

By our earlier assumption, id⊗ πJ(T ) = 0 and so as n→∞∥∥∥∥∥id⊗ πJ

(∑
q∈I

Tq,n

)
1⊗ P q0

(s,t)

∥∥∥∥∥→ 0.

By our claim in (7.7), ∥∥∥∥∥id⊗ πJ

(∑
q∈I

Tq,n

)
1⊗ P q0

(s,t)

∥∥∥∥∥ = ‖Tq0,n‖

and hence ‖Tq0,n‖ → 0 as n→∞. Thus, for all q ∈ I, we have ‖Tq,n‖ → 0. Since I is

finite we see that

T = lim
n→∞

∑
q∈I\{q0}

Tq,n = 0.

Thus id ⊗ πJ is isometric on DI(s,t) for all I ∈ I(s,t). Thus id ⊗ πJ is isometric on the

direct limit ∪I∈I(s,t)DI(s,t) = D(s,t).

We now show that ‖id⊗ πJ(T )1⊗P(s,t)‖ = ‖T‖ for all T ∈ D(s,t). We will consider

the action of πJ(vpv
∗
qvr) on H(s,t). Let p, q, r, a, b ∈ P such that φ(p) = φ(a) = s,

φ(r) = t and φ(q) = φ(b) = ts. Then εa,b ∈ H(s,t). Compute:

πJ(vpv
∗
qvr)εa,b = JpJ

∗
q Jrεa,b =

εpq−1ra,b if ra ≤r b and q ≤l ra.

0 otherwise.
(7.8)

If ra ≤r b then ra ∨r b = b. We know that φ(b) = φ(ra) and so, by the properties of

the controlled map, b = ra. Similarly, if q ≤l ra then φ(ra) = φ(q) implies that q = ra.

Rearranging gives a = r−1q. Thus we may rewrite (7.8) as

JpJ
∗
q Jrεa,b =

εp,q if a = r−1q and q = b.

0 otherwise.

So πJ(vpv
∗
qvr) = JpJ

∗
q Jr is the rank one operator (· | εr−1q,q)εp,q on H(s,t). Therefore the

restriction of id⊗ πJ(T ) to range 1⊗H(s,t) is isometric. Hence

‖id⊗ πJ(T )1⊗ P(s,t)‖ = ‖id⊗ πJ(T )‖.
94



We already showed that id⊗πJ is isometric on D(s,t). Thus ‖id⊗πJ(T )1⊗P(s,t)‖ = ‖T‖
for all T ∈ D(s,t) as desired.

�

We will now repeat this process once more to build span{a ⊗ vpv
∗
qvr : φ(q) =

φ(rp), a ∈ A} out of finite unions of D(s,t). Let F denote the collection of all finite

subsets F ⊂ Q×Qop such that x∨ y ∈ F whenever x, y ∈ F and x∨ y <∞. For each

F ∈ F let DF be

(7.9) DF = span{a⊗ vpv∗qvr : a ∈ A, (φ(p), φ(r)) ∈ F, φ(q) = φ(rp)}.

Lemma 7.12. Let (G,P ) be a doubly quasi-lattice ordered group and let A be a C∗-

algebra. Suppose that (K,Q) is a doubly quasi-lattice ordered group with a controlled

map φ : (G,P )→ (K,Q). Then the set F is directed, ordered by inclusion. Further, for

each F ∈ F , the set DF is a C∗-subalgebra of A⊗max C
∗(G,P, P op) and {DF : F ∈ F}

is an inductive system with limit

∪F∈FDF = span{a⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A}.

Proof. We first prove that DF is a subalgebra. Since A is a C∗-algebra it will

suffice to show that span{vpv∗qvr : (φ(p), φ(r)) ∈ F, φ(q) = φ(rp)} is closed under

multiplication and adjoints. Let p, q, r, x, y, z ∈ P such that φ(rp) = φ(q), φ(zx) = φ(y)

and (φ(p), φ(r)), (φ(x), φ(z)) ∈ F . Now consider

(7.10) (vpv
∗
qvr)(vxv

∗
yvz) = vpq−1(q∨lrx)v

∗
(y∨rrx)(rx)−1(q∨lrx)v(y∨rrx)y−1z.

If either of the upper bounds q ∨l rx or y ∨r rx don’t exist, then (7.10) is zero. So we

suppose that q ∨l rx and y ∨r rx both exist. We must show that

φ((y ∨r rx)y−1zpq−1(q ∨l rx)) = φ((y ∨r rx)(rx)−1(q ∨l rx))

and that

(φ(pq−1(q ∨l rx)), φ((y ∨r rx)y−1z)) ∈ F.

We know φ(y−1z) = φ(x)−1 and φ(pq−1) = φ(r)−1, hence we can compute:

φ((y ∨r rx)y−1zpq−1(q ∨l rx)) = φ((y ∨r rx)x−1r−1(q ∨l rx))

= φ((y ∨r rx)(rx)−1(q ∨l rx)).

We must show that (φ(pq−1(q ∨l rx)), φ((y ∨r rx)y−1z)) ∈ F . We compute:

φ(pq−1(q ∨l rx)) = φ(p)φ(q)−1φ(q ∨l rx)

= φ(p)φ(q)−1[φ(q) ∨l φ(rx)]
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= φ(p)φ(rp)−1[φ(rp) ∨l φ(rx)] (φ(q) = φ(rp))

= φ(r)−1[φ(rp) ∨l φ(rx)]

= [φ(r)−1φ(rp) ∨l φ(r)−1φ(rx)]

= φ(p) ∨l φ(x)

Similarly, φ((y ∨r rx)y−1z) = φ(z) ∨r φ(r). Since F is closed under ∨ it follows that

(φ(p), φ(r)) ∨ (φ(x), φ(z)) = (φ(p) ∨l φ(x), φ(r) ∨r φ(z)) ∈ F . Thus DF is closed under

multiplication.

To show that DF is closed under adjoints consider (vpv
∗
qvr)

∗ = vr−1qv
∗
qvqp−1 . Then

φ(r−1q) = φ(r)−1φ(q) = φ(r)−1φ(rp) = φ(p). Similarly φ(qp−1) = φ(r). Hence

(φ(r−1q), φ(qp−1)) = (φ(p), φ(r)).

In addition φ(qp−1)φ(r−1q) = φ(rp) = φ(q). Thus DF is closed under adjoints and is a

subalgebra.

To prove that ∪F∈FDF = span{a ⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A} observe that for

all F ∈ F we have DF ⊆ span{a ⊗ vpv
∗
qvr : φ(q) = φ(rp), a ∈ A} and hence, since

span{a⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A} is closed we have

∪F∈FDF ⊆ span{a⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A}.

To show the reverse inclusion fix T ∈ span{a ⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A}. Then

write T as a limit of finite sums of the form

Tn =
ln∑
i=1

λi,nai,n ⊗ vpi,nv∗qi,nvri,n

where, for all i, φ(ri,npi,n) = φ(qi,n). For each n we can construct a finite set by taking

the closure under ∨ of {(φ(pi,n), φ(ri,n)) : 1 ≤ i ≤ ln} to get a finite ∨-closed set

Fn ∈ F . Thus each Tn ∈ ∪F∈FDF . It follows that the limit T ∈ ∪F∈FDF . Hence

span{a⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A} ⊆ ∪F∈FDF .

�

We finally have all the pieces to prove Lemma 7.6 and complete the proof of Propo-

sition 7.2.

Proof of Lemma 7.6. We must prove that id⊗πJ is faithful on span{a⊗vpv∗qvr :

φ(q) = φ(rp), a ∈ A}. By Lemma 7.12

span{a⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A} = ∪F∈FDF .
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So it suffices to prove that id⊗ πJ is isometric on DF for each F ∈ F .

Let F ∈ F . Suppose there exists T ∈ DF such that id⊗πJ(T ) = 0. We will consider

DF as the closed span of all subspaces D(s,t) such that (s, t) ∈ F . Let T(s,t),n ∈ D(s,t)

for each n ∈ N and write T as the limit of a sequence of finite sums:

(7.11) T = lim
n→∞

∑
(s,t)∈F

T(s,t),n.

We will show that for each (s, t) ∈ F the sequence T(s,t),n → 0. Since F is finite,

by Lemma 2.8, it has a minimal element (s0, t0). Without loss of generality we may

assume there exists p, r ∈ P such that (φ(p), φ(r)) = (s0, t0). (If there is not then

D(s0,t0) is empty. Hence DF = DF\{(s0,t0)} and we may discard (s0, t0) and move to the

next minimal element.) Consider the projection 1⊗ P(s0,t0) on A⊗min C
∗
ts(G,P, P

op).

Claim: We claim that

(7.12)

∥∥∥∥∥id⊗ πJ

( ∑
(s,t)∈F

T(s,t),n

)
1⊗ P(s0,t0)

∥∥∥∥∥ = ‖T(s0,t0),n‖.

We will prove the claim of (7.12) at the end of the proof. So assume (7.12). By our

earlier assumption, id⊗ πJ(T ) = 0 and so as n→∞∥∥∥∥∥id⊗ πJ

( ∑
(s,t)∈F

T(s,t),n

)
1⊗ P(s0,t0)

∥∥∥∥∥→ 0.

However, by our claim in (7.12),∥∥∥∥∥id⊗ πJ

( ∑
(s,t)∈F

T(s,t),n

)
1⊗ P(s0,t0)

∥∥∥∥∥ = ‖T(s0,t0),n‖

and hence ‖T(s0,t0),n‖ → 0 as n→∞.

So we may remove {T(s0,t0),n} from the sum without changing the limit. Thus

T = lim
n→∞

∑
(s,t)∈F\{(s0,t0)}

T(s,t),n.

We know that F is finite. So we can repeat the above argument at most |F | times

to see that T is 0. Thus id ⊗ πJ is isometric on DF for all F ∈ F . Thus id ⊗ πJ

is isometric on the direct limit ∪F∈FDF . Hence id ⊗ πJ is faithful when restricted to

span{a⊗ vpv∗qvr : φ(q) = φ(rp), a ∈ A}.
Proof of Claim: To complete the proof we must prove the claim of (7.12). We

must show that 1⊗P(s0,t0) sends all the T(s,t),n to zero unless q = q0, s = s0 and t = t0.

We will examine the behaviour of the JpJ
∗
q Jr = πJ(vpv

∗
qvr) on rangeP(s0,t0) = H(s0,t0).
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Fix (s, t) ∈ F and p, q, r ∈ P such that φ(q) = ts, φ(p) = s and φ(r) = t. Fix a ∈ P
such that a ≤r q0 and φ(a) = s0. Compute

JpJ
∗
q Jrεa,q0 =

εpq−1ra,q0 if ra ≤r q0 and q ≤l ra

0 otherwise.

We break this into two subcases: (1) s 6= s0, (2) s = s0 and t 6= t0.

(1). Suppose that s 6= s0. Then, since s0 is minimal, it follows that s 6≤l s0.

Then φ(p) 6≤l φ(a) which implies that φ(rp) 6≤l φ(ra) by left-invariance. We then have

φ(rp) = φ(q) 6≤l φ(ra) and hence q 6≤l ra. So s 6≤l s0 implies q 6≤l ra and hence

JpJ
∗
q Jrεa,q0 = 0. Thus id⊗ πJ(vpv

∗
qvr)1⊗ P(s0,t0) = 0 if s 6= s0.

(2). Suppose s = s0 and t 6= t0. Then t 6≤r t0 and hence ts0 6≤r t0s0 = φ(q0) by

right-invariance. Then φ(ra) 6≤r φ(q0) and hence ra 6≤r q0. So JpJ
∗
q Jrεa,q0 = 0. Thus

id⊗ πJ(vpv
∗
qvr)1⊗ P(s0,t0) = 0 if s = s0 and t 6= t0.

Thus we have shown that∥∥∥∥∥id⊗ πJ

( ∑
(s,t)∈F

T(s,t),n

)
1⊗ P(s0,t0)

∥∥∥∥∥ = ‖id⊗ πJ(T(s0,t0),n)1⊗ P(s0,t0)‖.

By Lemma 7.11 id⊗ πJ is isometric on D(s0,t0) and for all T(s0,t0),n ∈ D(s0,t0) we have

‖id⊗ πJ(T(s0,t0),n)1⊗ P(s0,t0)‖ = ‖T(s0,t0),n‖.

Thus we have proved our claim and the proof of Lemma 7.6 is complete. �

7.4. Examples of amenable doubly quasi-lattice ordered groups

In this section we will give examples of amenable doubly quasi-lattice ordered

groups. To do this we will construct controlled maps into amenable groups and apply

Theorem 7.7.

Examples. (1). Suppose (G,P ) is a doubly quasi-lattice ordered group and G is an

amenable group. The identity homomorphism ι : G→ G is a controlled map. By The-

orem 7.7 (G,P ) is an amenable doubly quasi-lattice ordered group and C∗(G,P, P op)

is nuclear. This example shows that Theorem 6.6 is actually a special case of Theo-

rem 7.7.

(2). For all n ∈ N the additive group Zn is abelian and hence amenable. Thus

(Zn,Nn) is an amenable doubly quasi-lattice ordered group and C∗(Zn,Nn,Nnop) is

nuclear.

(3). The semidirect product QoQ∗ of Proposition 2.10 is an amenable group. Thus

(QoQ∗+,No N×) is amenable and C∗(QoQ∗+,No N×, (No N×)op) is nuclear.
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For examples without an amenable underlying group the proofs get more involved.

We begin by proving that the free group on n generators (Fn,F+
n ) is an amenable

doubly quasi-lattice ordered group. This is a useful example because there are multiple

straightforward controlled maps into different amenable groups. We will focus of the

abelianization map ψ : Fn → Zn and the length map θ : Fn → Z.

Lemma 7.13. Let Fn be the free group on n generators {ai : 1 ≤ i ≤ n}, and let F+
n

be the subsemigroup generated by {ai : 1 ≤ i ≤ n} ∪ {e}. Then

(1) The length map θ : Fn → Z defined by θ(ai) = 1 for each i ≤ n is a controlled

map θ : (Fn,F+
n )→ (Z,N);

(2) Let {ei : 1 ≤ i ≤} be the usual generators of the additive group Zn. The

abelianization map ψ : Fn → Zn defined by ψ(ai) = ei for each i ≤ n is a

controlled map ψ : (Fn,F+
n )→ (Zn,Nn) ;

(3) (Fn,F+
n ) is amenable and C∗(Fn,F+

n , (F+
n )op) is nuclear.

Proof. (1). The map θ is a homomorphism. For every x ∈ F+
n , we can write x as a

sequence of generators ai with positive powers, or the identity. Thus we have θ(x) ∈ N
and hence θ is order preserving. We must show that θ is a controlled map. Suppose

that x, y ∈ F+
n and x∨l y <∞. Recall from Section 2.2 that if x∨l y <∞, then x, y are

comparable. So we may assume, without loss of generality, that x ≤l y and x∨l y = y.

Since θ is order preserving we have θ(x) ≤l θ(y). Thus θ(y)∨l θ(x) = θ(y) = θ(x∨l y).

Suppose that x∨l y <∞ and θ(x) = θ(y). Then x and y have the same length and

are comparable. Thus x = y. The arguments for ∨r follow by symmetry. Thus θ is a

controlled map.

(2). The abelianization map ψ : Fn → Zn is a homomorphism and effectively counts

how many of each generator ai appear in a word of Fn. For every x ∈ F+
n we write x as

a sequence of generators with positive power or the identity so we have ψ(x) ∈ N. Since

any pair x, y has a common upper bound in either the left or right order if and only

if they are comparable, the same argument from (1) follows. Hence ψ is a controlled

map.

(3). From (1) and (2) we see that (Fn,F+
n ) has two natural controlled maps into

amenable groups. Thus Theorem 7.7 implies that (Fn,F+
n ) is an amenable doubly

quasi-lattice ordered group and C∗(Fn,F+
n , (F+

n )op) is nuclear. �

Lemma 7.14. Let (G1, P1), (G2, P2), (G3, P3) be doubly quasi-lattice ordered groups.

Suppose that φ1 : (G1, P1)→ (G2, P2) and φ2 : (G2, P2)→ (G3, P3) are controlled maps.

Then φ2 ◦ φ1 : (G1, P1)→ (G3, P3) is a controlled map.
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Proof. We can immediately see that φ2 ◦φ1(P1) ⊆ φ2(P2) ⊆ P3, and hence φ2 ◦φ1

is order preserving. Suppose that x, y ∈ P and x ∨l y < ∞. By the properties of the

controlled map we see

φ2 ◦ φ1(x ∨l y) = φ2(φ1(x) ∨l φ1(y)) = φ2 ◦ φ1(x) ∨l φ2 ◦ φ1(y).

If φ2 ◦ φ1(x) = φ2 ◦ φ1(y) then we have φ1(x) = φ1(y) and hence x = y. A symmetric

argument shows that x ∨r y < ∞ then φ2 ◦ φ1(∨ry) = φ2 ◦ φ1(x) ∨r φ2 ◦ φ1(y) and

φ2 ◦ φ1(x) = φ2 ◦ φ1(y) implies x = y. �

Proposition 7.15. Let I be an index set. Let {(Gi, Pi) : i ∈ I} and {(Ki, Qi) : i ∈
I} be families of doubly quasi-lattice ordered groups. Suppose that for each i ∈ I the

group Ki is amenable and there exists a controlled map φi : (Gi, Pi)→ (Ki, Qi).

(1) Let G× =
∏

i∈I Gi and P× =
∏

i∈I Pi. Then (G×, P×) is an amenable doubly

quasi-lattice ordered group and C∗(G×, P×, (P×)op) is nuclear.

(2) Let G∗ = ∗i∈IGi and P ∗ = ∗i∈IPi. Then (G∗, P ∗) is an amenable doubly

quasi-lattice ordered group and C∗(G∗, P ∗, (P ∗)op) is nuclear.

Proof. (1). Let K× =
∏

i∈I Ki and let Q× =
∏

i∈I Qi. Consider the homomor-

phism φ from G× =
∏

i∈I Gi to K× =
∏

i∈I Ki defined by φ(x)i = φi(xi). Each of the

φi is a controlled map, hence φ(P×) ⊆ Q×. Thus φ is order preserving. Suppose that

x, y ∈ P and x∨l y <∞. Then, by the properties of the direct product, for each i ∈ I
we have xi∨l yi <∞ and (x∨l y)i = xi∨l yi. Since each φi is a controlled map we have

φ(x ∨l y)i = φi(xi ∨l yi) = φi(xi) ∨l φi(yi) = φ(x)i ∨l φ(y)i.

Therefore φ(x ∨l y) = φ(x) ∨l φ(y).

Suppose that x∨l y <∞ and φ(x) = φ(y). For each i ∈ I we have xi∨l yi <∞ and

φi(xi) = φ(x)i = φ(y)i = φi(yi). By the properties of the controlled map φi(xi) = φi(yi)

implies that xi = yi for all i and hence x = y. A symmetric argument shows that if

x ∨r y <∞ then φ(x ∨r y) = φ(x) ∨r φ(y) and φ(x) = φ(y) implies x = y. Therefore φ

is a controlled map. The direct product of amenable groups is amenable, so it follows

that K× is amenable. We may apply Theorem 7.7 to see that (G×, P×) is an amenable

doubly quasi-lattice ordered group and C∗(G×, P×, (P×)op) is nuclear.

(2). Consider the homomorphism ψ from G∗ = ∗i∈I Gi to G× =
∏

i∈I Gi that takes

each x ∈ Gik in the free product to the same x in the direct product. We will show

that ψ is a controlled map. Note that G× is not in general amenable. However, we

can then compose ψ with the controlled map φ of (1) to get an appropriate controlled
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map into an amenable group. It is straightforward to see that ψ(P ∗) ⊆ P× and hence

that ψ is order preserving.

Suppose that x, y ∈ P ∗ and x ∨l y <∞. Write

x = x1,i1x2,i2x3,i3 . . . xm,im

y = y1,j1y2,j2 . . . yn,jn .

Without loss of generality, suppose that m ≤ n. If m < n then x �l y in which case

ψ(x) �l ψ(y) and ψ(x ∨l y) = ψ(y) = ψ(x) ∨l ψ(y). If m = n then xk,ik = yk,jk for

k < m, im = jm and xm,im ∨l ym,im <∞. Then

x ∨l y = x1,i1x2,i2 . . . xm−1,im−1(xm,im ∨l ym,jm).

Since xm,im , ym,jm ∈ Pim we have ψ(xm,im ∨l ym,jm) = ψ(xm,im)∨l ψ(ym,jm) ∈ Pim . Thus

we can compute:

ψ(x ∨l y) = ψ(x1,i1x2,i2 . . . xm−1,im−1(xm,im ∨l ym,jm))

= ψ(x1,i1x2,i2 . . . xm−1,im−1)(ψ(xm,im) ∨l ψ(ym,jm))

= ψ(x1,i1x2,i2 . . . xm−1,im−1)ψ(xm,im) ∨l ψ(x1,i1x2,i2 . . . xm−1,im−1)ψ(ym,jm)

= ψ(x) ∨l ψ(y).

Suppose that x∨l y <∞ and ψ(x) = ψ(y). Then m = n. Since xk,ik = yk,jk for k < m,

it follows by left cancellation that ψ(xm,im) = ψ(ym,jm). Since xm,im , ym,jm ∈ Pim we

have xm,im = ym,jm . Thus x = y. By a symmetric argument we see that if x ∨r y <∞
then ψ(x ∨r y) = ψ(x) ∨r ψ(y) and ψ(x) = ψ(y) implies x = y. Thus ψ is a controlled

map.

Now let φ : (G×, P×) → (K×, P×) be the controlled map of (1) and consider

φ ◦ ψ : (G∗, P ∗)→ (K×, P×). By Lemma 7.14 the composition of two controlled maps

is a controlled map. Thus φ ◦ ψ is a controlled map into an amenable group. We may

apply Theorem 7.7 to see that (G∗, P ∗) is an amenable doubly quasi-lattice ordered

group and C∗(G∗, P ∗, (P ∗)op) is nuclear. �
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