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Abstract

Directed graphs and their higher-rank analogues provide an intuitive frame-
work to study a class of C*-algebras which we call graph algebras. The
theory of graph algebras has been developed by a number of researchers
and also influenced other branches of mathematics: Leavitt path algebras

and Cohn path algebras, to name just two.

Leavitt path algebras for directed graphs were developed independently
by two groups of mathematicians using different approaches. One group,
which consists of Ara, Goodear]l and Pardo, was motivated to give an alge-
braic framework of graph algebras. Meanwhile, the motivation of the other
group, which consists of Abrams and Aranda Pino, is to generalise Leav-
itt’s algebras, in which the name Leavitt comes from. Later, Abrams and
now with Mesyan introduced the notion of Cohn path algebras for directed
graphs. Interestingly, both Leavitt path algebras and Cohn path algebras
for directed graphs can be viewed as algebraic analogues of C*-algebras of

directed graphs.
In 2013, Aranda Pino, J. Clark, an Huef and Raeburn introduced a higher-

rank version of Leavitt path algebras which we call Kumjian-Pask algebras.
At their first appearance, Kumjian-Pask algebras were only defined for row-
finite higher-rank graphs with no sources. Clark, Flynn and an Huef later
extended the coverage by also considering locally convex row-finite higher-
rank graphs. On the other hand, Cohn path algebras for higher rank graphs

still remained a mystery.

This thesis has two main goals. The first aim is to introduce Kumjian-Pask
algebras for a class of higher-rank graphs called finitely-aligned higher-rank
graphs. This type of higher-rank graph covers both row-finite higher-rank

11



graphs with no sources and locally convex row-finite higher-rank graphs.
Therefore, we give a generalisation of the existing Kumjian-Pask algebras.
We also establish the graded uniqueness theorem and the Cuntz-Krieger
uniqueness theorem for Kumjian-Pask algebras of finitely-aligned higher-

rank graphs.

The second aim is to introduce a higher-rank analogue of Cohn path alge-
bras. We then study the relationship between Kumjian-Pask algebras and
Cohn path algebras and use this to investigate properties of Cohn path al-

gebras. Finally, we establish a uniqueness theorem for Cohn path algebras.
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Chapter 1

Introduction

Leavitt path algebras have received a great deal of interest in recent years, and can be
approached from many different points of view [3, 10, [I5]. Graph C*-algebras have a
special place in the study of Leavitt path algebras because many results about Leavitt
path algebras were motivated by previous results of graph C*-algebras. This includes

how to generalise Leavitt path algebras to a bigger class of graphs.

Meanwhile, Cohn path algebras were introduced in [0} [§]. Since Cohn path algebras
are obtained from the Leavitt path algebras by omitting one of the so-called Cuntz-
Krieger relations, these algebras can be viewed as an algebraic analogue of Toeplitz

algebras of directed graphs.

Since the theory of graph C*-algebras and Toeplitz algebras have been success-
fully extended to higher-rank graphs [29] [39], mathematicians have started wondering
about higher-rank versions of Leavitt path algebras, called Kumjian-Pask algebras, and
higher-rank versions of Cohn path algebras. These are the motivations of this thesis.
We extend the definition of Kumjian-Pask algebras of [I1][16] to finitely aligned higher-
rank graphs. We also introduce Cohn path algebras of higher-rank graphs. We then
study the properties of both algebras, especially related to uniqueness theorems, and

the relationship between the algebras.

We begin with a brief history of the development of the theory of graph C*-alegbras
(Section [1.1] and Section and Leavitt path algebras (Section [1.3| and Section [I.4)).

We give more details about uniqueness theorems because one of our aims is to establish

uniqueness theorems for our new Kumjian-Pask algebras and Cohn path algebras.
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1.1 (*-algebras and Toeplitz algebras for graphs

A directed graph E = (E°, E',r, s) consists of countable sets of vertices E°, edges E*
and functions r, s : £ — E° which map edges to their range and source, respectively.
C*-algebras of directed graphs, also known as graph algebras, were introduced in [31]
to extend the Cuntz-Krieger algebras of {0, 1}-matrices of [21]. In [31], Kumjian, Pask,
Raeburn and Renault used a groupoid approach to study C*-algebras of locally finite
graphs in which both =1 (v) and s7! (v) are finite and nonempty for all v € E°.

In [30], for a locally finite graph E, Kumjian, Pask and Raeburn introduced a
Cuntz-Krieger E-family to be a family which consists of projections {P, : v € E°} and
partial isometries {S, : e € E'} in a C*-algebra B satisfying S S. = Py for all e € E*

and the Cuntz-Krieger relation:

(1.1.1) P, = Z S.S* for all v € E.

ecr—1(v)
They then defined the graph C*-algebra C* (F) to be the C*-algebra generated by the
universal Cuntz-Krieger E-family {s., p,}.

In [12], Bates, Pask, Raeburn and Szymanski extended the coverage of C*-algebras
of directed graphs by introducing row-finite graphs and their C*-algebras. A graph
E is row-finitdl] if r=! (v) is finite for all v € E% so s~!(v) may be infinite for some
v € EY and then F is not locally finite and also might have sources; that is, vertices
which do not receive any edges. In general, the generalisation from locally finite to
row-finite graphs required no modification in relations, except is that we do not impose
(1.1.1) when v is a source.

For a row-finite graph E, the path space E* consists of all paths A\ = ejes...¢€,
where |A| :=n € N, and e; € E' satisfies s(e;_1) = r(e;) for all 2 < i < n. For
A =erey...e, € E* we write s, to denote s, Se, - - - Se,, and write s () for s(e,). A
path A = ejeq...e, € E¥isa cycle if |\| > 1, 7 (X) = s()\) and s (e;) # s (e;) for i # j.
An edge e is an entrance to the cycle \ if there exists ¢ such that r(e) = r(e;) and

e # e;. The authors of [I2] then showed that for every row-finite graph E,
C*(E) =span {s)s), : A, p€ E*, s (A) = s ()}

Write T := {2z € C:|z|] =1}. Then for every z € T, the family {zs.,p,} is also a
Cuntz-Krieger E-family which generates C* (E), and hence, the universal property
of C* (FE) gives a homomorphism =, : C* (F) — C*(FE) such that ~, (s.) = zs. and

1We use the paths convention of [43] because we view the collection of paths as a category.
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Y. (py) = py for all e € E' and v € E°. Furthermore, they showed that v, € Aut C* (E)
for all z € T and then 7 is a strongly continuous action of T on C* (E), called the gauge
action. The next theorem is a generalisation of the gauge-invariant uniqueness theorem

for the Cuntz-Krieger algebras of {0, 1}-matrices [28, Theorem 2.3].

Theorem 1.1.1 ([12, Theorem 2.1]: The gauge-invariant uniqueness theorem). Sup-
pose that E is a row-finite graph, that {S.,P,:e € E',v € E°} is a Cuntz-Krieger
E-family in a C*-algebra B, and that ngp : C*(E) — B is the homomorphism
such that wsp(s.) = Se and wsp(p,) = P, for all e € E' and v € E°. Suppose
that each P, is nonzero and that there is a strongly continuous action 3 of T on
C* ({Se, P, : e € E' v € E°}) such that B, o mgp = Tsp o, for = € T. Then wsp
15 faithful.

The authors of [12] also introduced another uniqueness theorem, called the Cuntz-
Krieger uniqueness theorem. Unlike Theorem [1.1.1] which applies to any row-finite
graphs, the Cuntz-Krieger uniqueness theorem only applies to row-finite graphs which
satisfy Condition (L): every cycle has an entrance. Now we state the uniqueness

theorem as follows:

Theorem 1.1.2 ([12, Theorem 3.1]: The Cuntz-Krieger uniqueness theorem). Suppose
that E is a row-finite graph satisfying Condition (L) and that {S.,P, : e € E',v €
E°} and {T.,Q, : e € E',v € E°} are two Cuntz-Krieger E-families in which all the
projections P, and Q, are nonzero. Then there is an isomorphism ¢ of C*({S., P, : e €
E' v e E}) onto C* ({T.,Q, : e € E',v € E'}) such that ¢ (S.) = T, and ¢ (P,) = Q,
for alle € E' and v € E°.

When we consider graphs that are not row finite, we need to modify the the definiti-
ion of a Cuntz-Krieger E-family: for when |r~* (v)| = oo, the right hand side of
is an infinite sum. The solution to this problem was offered by Fowler and Raeburn
in [25]. To see how the problem was overcome, we recall Toeplitz algebras of Hilbert
bimodules of [25], which cover Toeplitz algebras of arbitrary graphs. For a directed
graph E, a Toeplitz-Cuntz-Krieger E-family consists of projections {Q, : v € E°} and
partial isometries {7, : e € E'} in a C*-algebra B satisfying T,'T. = Q) for all e € E*

and

(1.1.2) Q. > Y T.T7 for all v € E® and finite F C v (v)

ecl

2For a,b in a C*-algebra B, we say a > b if a — b = c*c for some ¢ € B, see [30].

For (1.1.2), we choose a = Q,, b=} pTcT; and c = Qy — > cp TT7.
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Meanwhile, the Toeplitz algebra TC* (E) is the C*-algebra generated by the universal
Toeplitz-Cuntz-Krieger E-family {t., q,}. Every Cuntz-Krieger E-family is a Toeplitz-
Cuntz-Krieger E-family.

Like graph algebras, Toeplitz algebras also have a uniqueness theorem.

Theorem 1.1.3 ([25, Theorem 4.1]: The uniqueness theorem for Toeplitz algebras).
Suppose that E is an arbitrary graph and that {T.,Q, : e € E',v € E} is a Toeplitz-
Cuntz-Krieger E-family. Suppose that ¢rq is a representation of TC* (E) such that
drq (te) = T. and ¢rq (q,) = Q, for alle € E' and v € E°. Suppose that each Q. is

nonzero and

Q. # ZTGTG* for allv € E° and finite F C r~' (v).

ecF

Then ¢rq is faithful.

Fowler, Laca and Raeburn [23] introduced C*-algebras for arbitrary graphs by mo-

difying (1.1.1)) into

(1.1.3) P, > Z S.S* for all v € E° and finite F C r~! (v), and
eckF
P, = Z SeSz when 0 < |r™" (v)| < oo.
ecr—1(v)

They also generalised the gauge-invariant uniqueness thoerem (Theorem and the
Cuntz-Krieger uniqueness theorem (Theorem to arbitrary graphs.

There are interesting relationship between graph algebras and Toeplitz algebras for
arbitrary graphs. We have mentioned that every Cuntz-Krieger E-family is a Toeplitz-
Cuntz-Krieger E-family. In fact, C* (F) is the quotient of TC* (E) by the ideal I
generated by

{tv - Z Gq" v € E° where r™* (v) is ﬁnite}

ecr—1(v)
where {t., ¢,} is the universal Toeplitz-Cuntz-Krieger E-family. Furthermore, if g de-
notes the quotient map of T7C* (E) onto TC* (E) /I = C* (E), then the family {S., P, }
defined by
S,:=q(t.) and P, := q(q,) forallv € E° and e € E'

is isomorphic to the universal Cuntz-Krieger E-family. Another interesting result is
that for every arbitrary graph F, there exists a graph TE (denoted Ey in [35]) such
that the Toeplitz algebra of E is isomorphic to the Cuntz-Krieger algebra of TE [35)],
Theorem 3.7].



1.2 (*-algebras and Toeplitz algebras for higher-
rank graphs

In [29], Kumjian and Pask introduced higher-rank graphs or k-graphs and their C*-
algebras. They generalise the higher-rank Cuntz-Krieger algebras of Robertson and
Steger [47] in the same way that graph algebras generalise the Cuntz-Krieger algebras
of [21].

For a positive integer k, a k-graph A = (A°, A, r,s) is a countable small category A
with a functor d : A — N*, called the degree map, satisfying the factorisation property:
for every A € A and m,n € N*¥ with d (\) = m + n, there are unique elements p,v € A
such that A = pv and d (1) = m, d (v) = n. For m,n € N¥_ the expression mVn denotes
their coordinate-wise maximum and m A n their coordinate-wise minimum. We write
A™ for the set d™1 (n) of paths with degree n. The degree is the higher-rank analogue
of the length n of a path e, ...e, in a directed graph E. We also regard elements of A°
as vertices. For v € A° A € A and F C A, we define vF := {u € F :r(u) =v}. For
detailed discussion, see Section [2.2]

For a directed graph FE, the path space E* is a 1-graph. It satisfies the factorisation
property since, for A = e;...e, € E* and 0 < m < n, the paths p = e;...e, and
V= €mny1.---.6, are the only paths such that A = pv and d (u) =m, d(v) =n —m.

A k-graph A is row-finite if for every v € A® and n € N* the set vA" is finite. A
vertex v € A is a source if there exists n € N*¥ such that vA™ = (). For a row-finite
higher-rank graph A with no sources, a family {7 : A € A} of partial isometries in a

C*-algebra B is a Cuntz-Krieger A-family if it satisfies:
(i) {T, : v € A%} is a set of mutually orthogonal projections;
(ii) 75T}, = Ty, whenever s (\) =7 (u);
(iii) TXTy = Ty for all A € A; and
(iv) Ty =Y yconn TnT5 for all v € A° and n € N¥.

Condition (iv) is called the Cuntz-Krieger relation and as for directed graphs,
C* (A) is defined to be the C*-algebra generated by a universal Cuntz-Krieger A-family
{tx : A € A}. Kumjian and Pask showed that C* (A) is the closed span of elements in
the form #,t}, where s(A\) = s (1) [29, Lemma 3.1] and proved that C*(A) carries a
strongly continuous gauge action v of T*. Using this gauge action, they generalised
Theorem [L.1.1] as follows:



Theorem 1.2.1 (|29, Theorem 3.4]: The gauge-invariant uniqueness theorem). Sup-
pose that A is a row-finite k-graph with no sources. Suppose that m: C* (A) — B is a
homomorphism and that 3 : T* — Aut B is an action such that mo v, = (3, o« for all
z € TF. Then 7 (t,) # 0 for all v € A° if and only if 7 is faithful.

Inspired by the analysis of graph algebras in [31], which uses a groupoid approach,
Kumjian and Pask also used groupoids to investigate C*-algebras for k-graphs. They
established a higher-rank analogue of Condition (L) and Theorem [I.1.2] To state their
result, we need some notation. For k € N and n € (NU{oo})", the category

Qi = {(p,q) e N* x N*: p < ¢ <n}

is a k-graph with objects {m eENF:p< n}, range map 7 (p,q) = p, source map
s(p,q) = q, and degree map d (p, q) = ¢ — p [40, Example 2.2]. Kumjian and Pask then
defined

A® = {2 : Qo — A : 2z is a degree preseving functor}

and for n € N, wrote 0" : A>° — A for the shift map determined by o" (x (m)) =
x (n 4+ m). Their analogue Condition (L) says that a k-graph A satisfies Condition (A)
if for every v € A°, there exists x € vA® such that ¢™ (z) # o™ (x) for all m # n € N
[29, Definition 3.1]. They then generalised Theorem as follows:

Theorem 1.2.2 ([29, Theorem 4.6]: The Cuntz-Krieger uniqueness theorem). Suppose
that A is a row-finite graph with no sources. Suppose that A satisfies Condition (A)
and that = : C* (A) — B is a homomorphism. Then 7 (t,) # 0 for all v € A° if and
only if w is faithful.

In [40] Raeburn, Sims and Yeend expanded the theory of C*-algebras of higher-rank
graphs by considering “locally convex” row-finite higher-rank graphs. A k-graph A is
locally conver if for all v € A°, 4,5 € {1,...,k} with i # j, A € vA% and p € vA%,
both s (A) A% and s (u) A% are non-empty. Every row-finite higher-rank graph with no
sources is locally convex; but locally convex row-finite higher-rank graphs may have

sources. For example, the 2-graph

() g1 V4

° < )

1 1

1 1

1 1

1 1

1 1

1 1

1 1
fi '

1 1

1 1

1 1

1 1

: :
U1 g2 U3



is locally convex even though vy, vy, v3 and vy are all sources.

For locally convex k-graphs, one only has to make a minor adjustment to the Cuntz-
Krieger relation (see [40, Proposition 3.11]). Even for row-finite k-graphs, if they are
not locally convex, it is difficult to see what an appropriate Cuntz-Krieger relation (iv)

might be. For example, the 2-graph

<
N

=

S oA
A
°

g2 U3

is problematic (see [40, Example A.1]).

In [39] Raeburn and Sims found a new Cuntz-Krieger relation which works for
finitely aligned higher-rank graphs; that is, higher-rank graphs such that for all A\, u €
A, the set

(1.2.1) A (N ) = {(p,7) EAXA: Ap=pr,d(\p) =d(\) Vd(u)}

is finite (possibly empty). The finitely aligned higher-rank graphs include the row-finite
higher rank graphs and also some graphs that fail to be row-finite.

For a finitely aligned higher-rank graph A, a family of partial isometries {@Q) : A € A}
in a C*-algebra B is a Toeplitz-Cuntz-Krieger A-family if it satisfies

(TCK1) {Q, : v € A%} is a collection of mutually orthogonal projections;
(TCK2) Q2\Qu = Q», whenever s () =7 (u);
(TCK3) Q Q= Z(p,T)EAmin(/\,u) Q,Q% for all A, u € A; and

(1.2.2) Qu > ) QxQ; for all v € A%, n € N*, and finite F' C vA™.
\EF
The Toeplitz algebra TC* (A) is defined to be the C*-algebra generated by a univer-
sal Toeplitz-Cuntz-Krieger A-family {g) : A € A}. As we can see, (TCK1) and (TCK2)

are same as Condition (i) and (ii), respectively. Meanwhile, (TCK3) generalises Con-

dition (iii); and (:2:2)) generalises (T.1.2)) for the directed graph setting]

3By 1, Lemma 2.7 (iii)], any family of partial isometries satisfying (TCK1-3) holds (1.2.2]). Hence
(1.2.2)) can be omitted to define a Toeplitz-Cuntz-Krieger A-family.
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The main result of [39] was a higher-rank version of Theorem [1.1.3] [39, Theorem
8.1]. We restate the uniqueness theorem as follows. For a discussion about how we get
the following theorem from the original version of [39, Theorem 8.1], see [37, Remark
2.3].

Theorem 1.2.3 (The uniqueness theorem for Toeplitz algebras). Suppose that A is a
finitely aligned k-graph. Suppose that ¢ : TC* (A) — B is a homomorphism such that
for all v € A° and finite sets F; C vA%,

f[(qs(%)— > d(@)o(d)) 20

i=1 A\EF;

(where this includes ¢ (q,) = 0 if vA = {v}). Then ¢ : TC* (A) — B is injective.

Theorem|1.2.3|indicates how to define the Cuntz-Krieger algebra of a finitely aligned
k-graph. The solution was then implemented by Raeburn, Sims and now with Yeend
in [41]. They said that a set E C vA is ezhaustive if for every pu € vA, there exists
A € E such that A™0 (X, u) # 0. Then a Cuntz-Krieger A-family for finitely aligned
higher-rank graphs is a family of partial isometries {7y : A € A} in a C*-algebra B
satisfying (TCK1-3) and

(CK) H (T, — Ty\Ty) = 0 for all v € A” and finite exhaustive F C vA.
AEE

Condition (CK) is the Cuntz-Krieger relation. In Appendix B of [41], Raeburn, Sims
and Yeend showed that in directed graphs, (CK) is equivalent to (L.1.1), and (CK) is
the Cuntz-Krieger relation for locally convex higher-rank graphs. Raeburn, Sims and
Yeend also generalised the gauge-invariant uniqueness theorem and the Cuntz-Krieger
uniqueness theorem to finitely aligned k-graphs (Theorem 4.2 and Theorem 4.5 of [41],
respectively).

As for directed graphs, higher-rank graph C*-algebras and higher-rank graph Toeplitz
algebras also have an interesting relationship. For example, every finitely aligned
higher-rank graph A, C* (A) is a quotient of its Toeplitz algebra TC* (A). Recently, we
showed that for every row-finite higher-rank graph A, there is a higher-rank graph T'A
such that the Toeplitz algebra of A is the C*-algebra of T'A [37, Theorem 4.1]. This
generalises Muhly and Tomforde’s [35, Theorem 3.7] and Sims’s [51, Lemma 3.5] for
directed graphs. Proposition 3.4 of [37] shows that the k-graph T'A is always aperiodic
in the sense of [33], and the Cuntz-Krieger uniqueness theorem of [33] always applies

to T'A. This helps explain why no hypothesis on A is required in Theorem [1.2.3

8



1.3 Leavitt path algebras and Cohn path algebras
for graphs

Leavitt path algebras for graphs were developed independently by two groups of math-
ematicians. The first group, which consists of Ara, Goodearl and Pardo, was motivated
by the K-theory of graph algebras [42]. They introduced Leavitt path algebras [10]
in order to answer analogous K-theoretic questions about the algebraic Cuntz-Krieger
algebras of [7]. On the other hand, Abrams and Aranda Pino introduced Leavitt path
algebras in [3] to generalise Leavitt’s algebras, specifically the algebras L (1,n) of [32].
Both groups defined Leavitt path algebra Ly (E) for a row-finite graph E and a field
K.

For e € E', we call e* a ghost path (e* is a formal symbol) and we define (E*)
{e* 1 e € E'}. We also extend r and s to be defined on (E')" by r (e*) := s(e) and
s(e*) := r(e). For a row-finite graph E and field K, Li (F) is the associative K-
algebra generated by the set {p, : v € E°} and {s., s.- : ¢ € E'} subject to the following

*

relations:

(V) popw = 8ywpy for all v,w € E°,

(E1) Sepsie) = Pre)Se = e for all e € E,

(E2) py(e)Ser = SexPr(e) = Sex for all e € E*,
(CK1) Sexsp = 0e ppse) for all e, f € E,

(CK2) p, = Zeer‘l(v) SeSex for every v € E° which is not a source.

At a glance, we can see the above conditions are algebraic version of the definition
of Cuntz-Krieger F-families and so (CK1-2) are the Cuntz-Krieger relations. The only
difference is that Leavitt path algebras are K-algebras and not C*-algebras; and hence
elements need not have adjoints. Abrams and Aranda Pino showed that Lk (E) is a
Z-graded algebra, with grading induced by
Ly (E), = spang{s., ... Se, Se: Se Pt q>0,6, € E' el e (EY . p—q=n}

P i1

for n # 0. The definition of Leavitt path algebras was later expanded by Abrams and
Aranda Pino to arbitrary graphs [4]. As for graph algebras, the modification imposes
(CK2) only for v € E° where r~! (v) is finite and nonempty.
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In [54], Tomforde showed that the Leavitt path algebra of [4] is the algebra gener-
ated by the universal family satisfying (V), (E1), (E2), (CK1) and (CK2). Tomforde
then showed that every Leavitt path algebra is a Z-graded algebra, and formulated a

uniqueness theorem as follows:

Theorem 1.3.1 ([54, Theorem 4.8]: The graded uniqueness theorem). Suppose that
E is a graph and that K is a field. Suppose that Ly (E) is the associated Leavitt path
algebra with the usual Z-grading. If A is a Z-graded ring and 7 : Lk (F) — A is a
graded ring homomorphism with 7 (p,) # 0 for all v € E°, then 7 is injective.

An interesting consequence of this uniqueness theorem is that for K = C, the Leav-
itt path algebra L¢ (F) sits densely inside the graph algebra C* (E) [54, Theorem 7.3].
Furthemore, this theorem is an algebraic analogue of the gauge-invariant uniqueness
theorem for graph algebras.

As for graph algebras, there is a Cuntz-Krieger uniqueness theorem for the Leavitt

path algebras of graphs which satisfy Condition (L) [54].

Theorem 1.3.2 ([54, Theorem 6.8]: The Cuntz-Krieger uniqueness theorem). Sup-
pose that E is a graph which satisfies Condition (L) and that K is a field. Suppose
that Ly (F) is the associated Leavitt path algebra. If w: Ly (E) — A is a ring homo-
morphism with 7 (p,) # 0 for all v € E°, then 7 is injective.

Tomforde then improved his result in [55] by replacing a field K with a commuta-
tive ring R with 1. His Leavitt path algebras over rings also have universal property,
a graded uniqueness theorem [55, Theorem 5.3] and a Cuntz-Krieger uniqueness theo-
rem [55, Theorem 6.5].

For a graph E and a field K, the Cohn path algebra Cg (F) was defined and
investigated in [6] and [§], generalising the algebras U, studied by Cohn in [20].
The algebra Ck (E) is the associative K-algebra generated by the set {t,:v € E°}
and {qe, ¢~ : € € E'} satisfying (V), (E1),(E2) and (CK1). The Leavitt path algebra
Lk (E) is the quotient of Ck (E) by the ideal generated by

{tv - Z GeQe- 2 v € EY where 71 (v) is ﬁnite}.
ecr—1(v)

Furthermore, for every graph E, the graph TFE (denoted E (X) in [2]), which satisfies
TC*(F) = C*(TE), also satisfies Cx (E) = Lk (TE) [2, Theorem 1.5.18]. However,
mathematicians did not study the universal property or the uniqueness theorem for

Cohn path algebras.
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Up to this point, the properties of both Leavitt path algebras and Cohn path
algebras have mirrored graph algebras and Toeplitz algebras, respectively. So it is
natural to say that Leavitt path algebras and Cohn path algebras are algebraic versions

of graph algebras and Toeplitz algebras, respectively.

1.4 Kumjian-Pask algebras for higher-rank graphs

Aranda Pino, J. Clark, an Huef and Raeburn defined and studied a higher-rank ana-
logue of Leavitt path algebras, which they called Kumjian-Pask algebras [I1]. They
focused on row-finite k-graphs with no sources. They first introduced ghost paths \*
for A € A (with v* := v for v € A?), and defined G (A) := {\*: A € A}. As for Leavitt
path algebras, they also extended the range and source maps r and s to be defined on
G (A) by r (A*) :== s (A\) and s (\*) :=r (\). For a row-finite k-graph A with no sources
and commutative ring R with 1, a Kumgjian-Pask A-family {Sy, S, : \,u € A} in an
R-algebra A consists of S : AUG (Aﬂ]) — A such that:

(i) {S, :v € A%} is a collection of mutually orthogonal idempotents;

(ii) for A\, p € A with s(X) =7 (), we have S\S, = Sy, and S,+Sx- = S\
(iii) Sx+S, = 0S5 for all A, € A with d(\) = d (p); and
(iv) Sy =3 sconn SaSx+ for all v € A and n € N*.

The Kumgjian-Pask algebra KPg (A) is the R-algebra generated by the universal
Kumjian-Pask A-family and there is a Z*-grading on KPy (A) satisfying

KPg (A), :=spang{sis, : A\, p € Aand d (\) —d () =n}
[1T, Theorem 3.4]. The authors of [11] then formulated a uniqueness theorem as follows:

Theorem 1.4.1 ([I1, Theorem 4.1]: The graded uniqueness theorem). Suppose that A
is a row-finite graph with no sources, that R is a commutative ring with 1 and that A
is a ZF-graded ring. If m : KPg (A) — A is a Z*-graded ring homomorphism such that
7 (rs,) # 0 for allv € A° and r € R\ {0}, then  is injective.

As for Leavitt path algebras, the graded uniqueness theorem for R = C implies
that the Kumjian-Pask algebra KP¢ (A) is isomorphic to a dense subset of C* (A).
Apart from the graded uniqueness theorem, we also have a Cuntz-Krieger unique-

ness theorem for Kumjian-Pask algebras. To state this uniqueness theorem, the authors
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of [I1] used an aperiodicity condition which is equivalent to our previous Conditon (A)
[46, Lemma 3.2].

Theorem 1.4.2 ([I1], Theorem 4.7]: The Cuntz-Krieger uniqueness theorem). Suppose
that A is a row-finite graph with no sources which satisfies Condition (A), and that R is
a commutative ring with 1 and A a ring. If 7 : KPg (A) — A is a ring homomorphism
such that 7 (rs,) # 0 for allv € A° and r € R\ {0}, then 7 is injective.

As for higher-rank graph C*-algebras, Kumjian-Pask algebras were defined for lo-
cally convex row-finite k-graphs by Clark, Flynn and an Huef in [I6]] They also showed
the universal property and proved uniqueness theorems for their Kumjian-Pask alge-

bras.

1.5 Main results of this thesis

The main results of this thesis extend the definition of Kumjian-Pask algebras to finitely
aligned k-graphs over a commutative ring with 1 (Chapter|3)), and introduce Cohn path
algebras for k-graphs over a commutative ring with 1 (Chapter [4)). These results are
taken from joint work with my supervisor Clark [I8, [19)].

By exploiting the similarity between Cuntz-Krieger algebras and Leavitt path alge-
bras (and their generalisation), we arrive at a candidate for the Kumjian-Pask algebras
of finitely aligned k-graphs. We then need to show that this candidate has a graded
uniqueness theorem and a Cuntz-Krieger uniqueness theorem. This is the first main
innovation of this thesis.

For our graded uniqueness theorem (Theorem , we use an algebraic version of
the C*-algebra proof of the gauge-invariant uniqueness theorem for finitely aligned k-
graph C*-algebras [41l, Theorem 4.2]. However, this method does not work to show the
Cuntz-Krieger uniqueness theorem and so we use a groupoid model. We first introduce
the boundary-path groupoid G, of A (see Example . Then using the graded
uniqueness theorem, we show that the Kumjian-Pask algebra KPg (A) is isomorphic
to the Steinberg algebra Ar(Gx) (Proposition . We then use this isomorphism to
apply results about Steinberg algebras to Kumjian-Pask algebras.

In Section [3.5| and Section [3.6], we study the relationship between properties of A
and properties of G5. In Proposition |3.5.1 we show that a finitely aligned higher-rank

4The graded uniqueness theorem and the Cuntz-Krieger uniqueness theorem of [16] required the
homomorphism 7 to be an R-algebra homomorphism. However, this hypothesis can be relaxed to be

a ring homomorphism and no changes in the proofs are required.
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graph A is aperiodic if and only if the boundary-path groupoid G, is effective. In
Proposition [3.6.1, we show that a higher-rank graph A is cofinal if and only if G, is
manimal.

In Section 3.7, we use the Cuntz-Krieger theorem for Steinberg algebras [14, The-
orem 3.2] to prove the Cuntz-Krieger uniqueness theorem for Kumjian-Pask algebras
(Theorem . Since the Cuntz-Krieger theorem for Steinberg algebras only applies
to effective groupoids, the aperiodicity condition of A ensures that we can apply the
uniqueness theorem.

In Section we give necessary and sufficient conditions for KPg (A) to be basically
simple in Theorem [3.8.3] and simple in Theorem [3.8.4, We show these results by
applying the characterisation of basic simplicity and simplicity of the Steinberg algebra
Apr (Ga) (see Theorem 4.1 and Corollary 4.6 of [14]).

Note that our proofs of the uniqueness theorems for Kumjian-Pask algebras are
different from those used for Kumjian-Pask algebras for row-finite k-graphs with no
sources [11] and locally convex row-finite k-graphs [16]. Hence this thesis gives new
proofs of the uniqueness theorems in [I1], [16].

We then turn our attention to row-finite k-graphs with no sources. On this class of
k-graphs, we introduce a Cohn path A-family and study its properties in Section [4.1]

The next main achievement of this thesis is to establish a uniqueness theorem for
Cohn path algebras (Theorem [4.2.1). Our strategy is to follow the analysis of [37].
In that paper, the author shows that for every row-finite higher-rank graph A, there
exists a higher-rank graph T'A such that the Toeplitz algebra of A is isomorphic to the
C*-algebra of TA. Here we show that the Cohn path algebra of A is isomorphic to the
Kumjian-Pask algebra of T'A (Theorem [4.2.16{(a)). We then apply the Cuntz-Krieger
uniqueness theorem for Kumjian-Pask algebras (Theorem to prove Theorem
.20 Another consequence of this isomorphism is that every Cohn path algebra is
ZF-graded (Theorem [4.2.16(b)).

Finally, we discuss examples and applications in Section We explicitly demon-
strate the relationship between Cohn path algebras and Toeplitz algebras (Proposition
4.3.1)), and show that our Cohn algebras can be realised as Steinberg algebras (Propo-

sition |4.3.4)).
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Chapter 2
Preliminaries

In this chapter, we give a more detailed discussion of k-graphs, graded rings and
groupoids. We also give examples in order to help readers to get a better under-
standing.

A directed graph E consists of a countable vertex set EY, a countable edge set E!,
and range and source maps 7, s : B! — EY which indicate the direction of the edges.

For a positive integer k, we view N as an additive semigroup with identity 0. For
n € N* we write n = (ny,...,ng). For m,n € NF, we write m < n to mean m; < n,
for 1 <1¢ < k, and we use the expression m V n for their coordinate-wise maximum,
and m A n for their coordinate-wise minimum. We also write e; for the usual basis

elements in N¥.

2.1 Basics of categories

A k-graph and a groupoid are defined in terms of category theory, so in this section,
we establish basic notations and definitions of categories. We use the definitions of [34]
Chapter 1] and [43, Chapter 10].

For our purposes, a categorif]] C consists of two sets C° and C*, two functions 7, s :

C* — CY, a partially defined product (a, b) — ab from
{(a,b) €eC* xC*:s(a)=71(b)}
to C*, and distinguished elements {¢, € C* : v € C°} such that

e 7 (ab) =r(a) and s (ab) = s (b) for all a,b € C*;

In category-theory books, our notion of category is called a small category.
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e (ab)c=a(bc) when s (a) =7 (b) and s (b) = r (c) for all a,b,c € C*;
e (1) =v=r(t,) and t,a = a,bt, = b when r (a) = v and s (b) = v.

We call the elements of C° the objects of the category; and the elements of C* the
morphisms of C. For a € C*, we call r (a) and s(a) the codomain and domain of a,
respectively. The function (a,b) — ab is called composition, and for v € C°, 1, is called
the identity morphism on the object v. We also say that a category C is countable if
C* is countable.

For example, we can view the semigroup (N*, +) as a category with a single object
o0, morphisms N*, r(n) = 0 = s(n) for all n € N*¥ 1, = 0 and operation (m,n)
m + n [49, Example 2.1.2].

Given categories C and B, a functmﬂ T : C — B consists of two functions (both
denoted T): T : C° — BY and T : C* — B* which satisfy:

e s(T(a)) =T (s(a)) and r (T (a)) =T (r (a)) for all a € C*;
o T (1) =ty for all v € C%
e T'(a)T (b) =T (ab) for all a,b € C* with s(a) =r(b).

The motivating example is:

Ezample 2.1.1. Let E = (E°, E',r, s) be a directed graph. For a positive integer n, we
set

E" = {piprapn :n €N, s € B v (pig1) = s () for all i <n — 1}
and define , s : E™ — E° by

s (1) = s (pa) and 7 () =7 (11)

for = ppo - - - p, € E". We define composition as follows: for pq -« pin, 71+ Ym € E*
with s (1) =7 (1),

(= oy Y1+ Ym) 7 i B

(r (pa) s pua e i) = oo o and (g« i, 8 (Hn)) &> pa =+
Finally, for v € EY, let v be its identity morphism. Then E* := Unen E7 is a category
with the set of objects E° and the set of morphisms E*. The map d : E* — (N, +)
which satisfies d (v) = 0 for v € EY C E* and d (uy - - - i) = m for pq - - p,, € E*\ E°,

is a functor, called the degree functor.

2 As for Footnote our notion of functor is a covariant functor.
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2.2 Basic definitions of higher-rank graphs

A higher-rank graph or k-graph A is a countable category A with a functor d from A
to N¥ = (N* +), called the degree map, which satisfies the factorisation property:

for every morphism A and m,n € N¥ with d (\) = m + n, there are

unique morphisms p, v such that A = pv and d (p) = m,d (v) = n.

We then write A (0,m) for p and X\ (m, m + n) for v. For every morphism A, we have
d()\) € N* and call that ) is a finite path. We discuss infinite paths in Section [2.5|
To simplify the notation, from now on, we write A for the set A* of morphisms of

A and identify the objects with the identity morphism.
Erample 2.2.1 ([0, Example 2.2(ii)]). Let k € N and n € (NU {oo})*. We define

szn::{pENk:pgn},
Q= {(p,q) eEN*xN':p < g <},

5(p,q) == q, 7 (p,q) :=p, and 1, := (p,p) .

Then €, is a countable category. We define d (p, q) = ¢ — p, and then 2, becomes
a k-graph.

Since d is a functor and N* is a category with one object O, then for v € A°,
we have d(1,) = 0. Take v € A” and A € A with d(\) = 0 and r(\) = v. Since
d (\) =0+ 0, then by the factorisation property, there exist unique p, v € A such that
d(p) =d(v) =0and uv = \. Then (i, v) is either (A, ¢,) or (4, A); and the uniqueness

of factorisations ensures A = ¢,. So
(2.2.1) AeA:d(N) =0} ={u,:veA}.
Now for n € N¥, we write
A" :={ e A:d(\) =n}

and so we call its elements paths with degree n. This is consistent notation when n = 0
(2.2.1). In particular, we call elements of A® vertices. We also use the term edge to
denote a path e € A% where 1 < i < k, and write

A= A

1<i<k

17



for the set of edges. For A € A, we call s(\) and 7 (\) the source and range of A,
respectively. For v € A, A € A and E C A, we define

vE={pe E:r(un) =v},
MNE ={dpeN:peEr(p)=s\)},
EX:={pr e A:pec E s(u)=r(N\}.

When k = 1, for every directed graph E = (EY, E' r,s), the category E* as in
Example is a 1-graph.

2.3 Visualising higher-rank graphs using skeletons

To study a k-graph, it is helpful to depict it in terms of its skeleton, which is the graph
with vertex set A, edge set Ule A%, range and source maps inherited from A, and
with the edges of different degrees distinguished using k different colours. Note that

skeletons are k-coloured graphs [26].

Let Fy be the free semigroup on k-generators {ci,...,cx}. A k-coloured graph is
a graph E together with a map ¢ : E* — {cy,..., ¢}, which we extend to a functor
c: E* — F{ by setting

c(pr- - pn) ==c(pa) -+ c(un) and ¢ (v) :=0

for all py -+ u, € E*\ E° and v € E°.

The following example describes a k-coloured graph which will be used to study
k-graphs. In this example, m + w; is a formal symbol to denote an edge of colour ¢;

pointing from m + e; to m.

Erample 2.3.1 ([26, Example 3.1]). For n € (NU{oo})*, we define a coloured graph
Ek:,n by

E,Sm = {mENk:mSn},E,i’n = {m+wi:m,m+e¢€E,g,n}v

r(m+w;) :=m, s(m+w;) =m+e; and ¢ (m+ w;) = ¢.
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For example, we draw Ej (1 2):

1

—~
—_
~—

(1,0) (1,0) + we (1,1) + wy (.1,2)

A

(071) +w1 (072) +w1

@d---mm e

—_
A

(0,0)  (0,0) +wy (0, 0,1) +wy  (0,2)

A graph morphism ¢ from a graph E to a graph F is a pair of maps ¢° : B0 — F©
and o' : E' — F! such that 7 (¢! (e)) = ¢°(r(e)) and s (o' (e)) = ¢°(s(e)) for all
e € E'. To simplify the notation, we write ¢ for each ©° and p!. A coloured-graph
morphism is a graph morphism which preserves colour.

Now suppose that E is a k-coloured graph. For distinct i,7 € {1,...,k}, an {i,7}-
square (or just a square) in a k-coloured graph F is a coloured-graph morphism ¢ :
Eyeive; = E. If ¢ @ B, — E is a coloured-graph morphism and ¢ is a square in
E, then ¢ occurs in ¢ if there exists m € NF such that ¢ (z) = ¢ (z+m) for all
T € Epeire;-

A complete collection of squares is a collection C of squares in E such that for each
fg € E* with ¢(f) = ¢;, ¢(g9) = ¢; and i # j, there exists a unique ¢ € C such that
¢ (w;) = f and ¢ (e; +w;) = g. We then write ¢ (w;) ¢ (€; +w;) ~ ¢ (w;) ¢ (e; + w;).
So for every c;c;-coloured path x € E*, there is a unique c;jc;-coloured path y € E* such
that x ~ y. We also say a complete collection of squares C is associative if for every
path fgh in E such that f, g, h are edges of distinct colour, the edges f1, f2, g1, g2, h1, ha
and f1, 2, ¢', g%, h', h? determined by

T it ) I e
fg~ g fl flho B and gt~ R2g7 g L0 v
1 g \ 9
gh ~ hig1, fhi ~ haofi, and fig1 ~ gafo ! .Zzi.:'_ _f": .z_h_:_‘::f_;;;-:

satisfy f? = fy,9°> = go and h? = hy. If C is a complete and associative collection of
squares in F/, we say that a coloured-graph morphism ¢ : Ej,, — E is C-compatible if
every square occuring in ¢ belongs to C.

Now we construct a k-graph from a k-coloured graph as follows:
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Notation 2.3.2 (]26, Notation 4.3]). Let E be a k-coloured graph and let C be a
complete collection of squares in E that is associative. For each n € N* we write

A?E,C) for the set of all C-compatible coloured-graph morphisms Fj, — E. Let

Aoy = | Mue.

neNk

Let d : Ay — NF and r,s : Agey — AEOE{C) be as defined in Example [2.3.1f For
v € E° we define ¢, : Erg — F by ¢,(0) = v; and for 1 < i < k and f € E!
with ¢(f) = ¢;, we define ¢y : Ep., — E by ¢f(0) = r(f), ¢r(e;) = s(f) and
o (0+w;) = f.

Theorem 1.9 of [52] says that for a k-coloured graph E and a complete collection of
squares C in F, there is a unique k-graph A = A(ge) such that A% = ¢! (¢;) for every
¢ and

fg=¢f in Aifand only if fg~ ¢ f in E
for every fg € A%*% with distinet 4,5 € {1,...,k}. We then call E the skeleton
of A. For further discussion about the construction of the reverse direction, which is
constructing the skeleton from a k-graph, see [26, Definition 4.1].

An interesting consequence of [52] Theorem 1.9] is that the factorisation property
of paths in A% for all distinct 4,5 € {1,...,k} determines the factorisation property
of all paths in A. Hence, to depict a k-graph, it suffices to give its skeleton and its

complete collection of squares that is associative.
For example, the skeleton of the 2-graph {25 (1 9y as in Example is the 2-coloured

graph Es (19) as in Example where
(m+4w) (m+e; +wy) = (M + ws) (M + eg + wy)

for m € {(0,0),(0,1)}.

2.4 Row-finite and finitely aligned higher-rank graphs

We briefly introduced higher-rank graphs in Section[I.2] In this section, we give further
discussion and examples to help readers get better understanding.

Let A be a k-graph and A\, u € A. Then 7 € A is a minimal common extension of
A and p if

d(r)=d(\)Vd(g), 7(0,d(\) =\ and 7(0,d (1)) = p.
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Let MCE (A, ) denote the set of all minimal common extensions of A and p. The map
(p,T) = Ap is a bijection of the set A™" (X, 1) of (1.2.1]) onto MCE (\, i), with inverse
given by Ap — (5, (Ap) (d (1) ,d (Ap)).
For £ C A and A € A, we write
Ext (3 E) = | {p: (p.7) € A" (0, )}
ner

FExample 2.4.1. Consider the 2-graph A with skeleton

V2
¢ 92
. \
! )
1
1 91 Wa \
! 1
[ .
' WL s fy
1 N Y
: f‘~ \\
\é N
® < °
U1 g U3

where fg; = gf; for all positive integers i, dashed edges have degree (1,0) and solid
edges have degree (0,1). Then

MCE (f,g) = {fgi : i € N\{0}} and A™ (f,g9) = {(g:, fi) : i € N\ {0}}.

We also have

Ext (f; {f}) = {v2}, Ext (f:{g}) = {gi : 7 € N\ {0}}, and Ext (f:{gf1}) = {a1}-

Now recall from page [§| that a set £ C vA is ezhaustive if for every A € vA, there
exists u € E such that A™® (X, ) # (. Alternatively, we also could say that £ C vA
is exhaustive if for every A € vA, Ext (\; E) # 0.

Next we define

FE(A) = U {E C vA\ {v} : E is finite and exhaustive}.
veAO

For E € FE (A), we write r (E) for the vertex v which satisfies £ C vA.
FExample 2.4.2. Consider the 2-graph A which has skeleton

(%) g1 V4
o <« [ ]
1 1
1 1
1 1
1 1
1 1
1 1
fit ' fa
1 1
1 1
1 1
1 1
/3 Y v
V5@==mmmmmm === >0 < [}
U1 g2 U3

[\
—



where f1g1 = gofo, dashed edges have degree (1,0) and solid edges have degree (0, 1).
First note that since A™" (), f3) # 0 for all X € v;A\ {vy, f3}, then for every F €
v FE (A), E must contain f3. Furthermore, since A™™ (A, 1) # 0 for all A € v, A\ {f3}
and p € {f1, g2, f191}, then for every E € vy FE (A), E also must contain at least one
of f1,92, fig1. Then

v FE (A) :{ {f1,f3}7{92,f3}7{f1,92,f3}7{f191,f3},} }’

{1, fign, f3) 492, fign, £33 51,92, fign, f3
v FE(A) = {{g1}}, v3FE(A) = {{f2}}, and v, FE (A) = 0.

We say that A is finitely aligned if MCE (A, p) is finite (possibly empty) for all
A\ € A. Since there is a bijection between A™™ (X, 1) and MCE (), i), then we
also could say that A is finitely aligned if A™" (X, ) is finite (possibly empty) for all
A e A

For a directed graph E and paths A, u € E*, we have

{AY A0, d () = p,
MCE (A, pr) = 4 {u} if p(0,d (V) = A,

0 otherwise;

and so |MCE (A, )| is either 0 or 1. Therefore, every 1-graph is finitely aligned.
Recall from page |5| that a k-graph A is row-finite if vA™ is finite for all v € A° and
n € NF. For all A\, u € A, we have

A" (X, )| = [MCE (A, )] < | (A) ATOV409)].

Hence every row-finite k-graph A is finitely aligned. On the other hand, a finitely

aligned k-graph A is not necessarily row-finite.

FExample 2.4.3. Consider the 2-graph A with skeleton
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and fg; = g;f for all positive integers ¢, the dashed edge has degree (1,0) and solid
edges have degree (0,1). The 2-graph A has infinitely many edges g;. It is not row-finite
because [vA(*Y]| = co. On the other hand, for A, € A, |A™™ (X, u)] is either 0 or 1,

and hence A is finitely aligned.

Following [29] Definition 1.4], a k-graph A has no sources if vA™ is nonempty for
every v € A° and n € N*.

Now consider the 2-graph A in Example 2.4.2] Since v; does not receive edges of
degree (0,1), vs is a source of A. Furthermore, A fails to be locally-convex (see page @
since e3 € vy A0 fo € v AOD but s (e3) ALY = . On the other hand, A is row-finite
and hence is finitely aligned.

Next consider the 2-graph A as Example Since |Amin (e, f )‘ = 00, A is not
finitely aligned.

To summarise, finitely aligned k-graphs generalise both row-finite k-graphs with no

sources and locally convex row-finite k-graphs, but not every k-graph is finitely aligned.

2.5 The boundary-path space and the path space

Throughout this section, we suppose that A is a finitely aligned k-graph. For a positive
integer k and n € (NU{oo})*, we consider the k-graph €, of Example [2.2.1]
We define

Wy = U {z : Q. — Az is a degree preseving functor}
ne(Nufoo})*
and call Wy the path space of A. For any finite path A € A, we can view \ as an
element of W, by viewing it as a degree preserving functor from € 40») to A. This
map is well-defined by the unique factorisation property. Thus W, contains all finite
and inifinite paths of A.

For example, for the k-graph A of Example 2.4.2] W, = A® U A® U A“*¢2 where
we identify elements of W, with their image in A, and then W, is the set of all finite
paths of A. For the k-graph A of Example 2.4.3] W} also contains infinite paths, such
asefifafs .

Finite paths and infinite paths are fundamentally different objects and so, it is not

obvious to compose them. Webster showed how to compose finite and infinite paths.

Proposition 2.5.1 ([56, Proposition 3.0.11]). Suppose that A is a k-graph. Suppose
X € A and x € Wy, satisfiesr (x) = s (X). Then there exists a unique k-graph morphism
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AT 1 Qg any+d@) — A such that (Ax) (0,d (M) = X and (Ax) (d(X),d(X) +n) =x(0,n)
for alln < d(x).

Now suppose * € Wy. For n € N*¥ and n < d(z), the path 0"z is defined by
oz (0,m) = x(n,n+m) for all m < d(z) —n. We also write z (n) for the vertex

x (n,n). Then the range of the path z is the vertex r (z) := z (0).

FExample 2.5.2. Consider the 2-graph A which has skeleton

where fg = gf, the dashed edge has degree (1,0) and the solid edge has degree (0, 1).
Choose the path z = fgfg..., then

o®0(x) = gggfgfg... and o () = fgfg. ...
As in [40, Definition 3.1], for n € N¥ we define
(2.5.1) A" :={A € A:d(\) <nandd()\), <n; imply s (\) A% = 0}

Note that vA=S" # () for all v € A° and n € N¥. This is because v is contained in vAS"
whenever vAS" has no non-trivial paths of degree less than or equal to n. If A has no
sources, then for n € N¥, we have AS" = A". However, in general, we have A" C AS"
and the two can be different, see the following example.

Consider the k-graph A in Example 2.4.2] Because there is no path with degree
(2,0), then A9 =, ASCO = AL and hence A0 C A=) Here ASMD = AMLD),

Following [24] Definition 5.10], we say that x € W), is a boundary path of A if for
every m € N¥ with m < d(x) and E € x (m)FE (A), there exists A\ € E such that
z(m,m+d(N) = A We write A for the set of all boundary paths. Note that for
v € A% vOA is nonempty [24, Lemma 5.15].

Remark 2.5.3. For locally convex graphs, the set AS*® (as defined in [40, Definition
3.14]) is the same as OA [57, Proposition 2.12]. However, more generally, AS>® C JA,
and the two can be different (see [57, Example 2.11] as follows).
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Ezxample 2.5.4 ([57, Example 2.11]). Suppose that A is the 2-graph with the skeleton
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[ ) [ )

where f;h; = g;fi+1 for all positive integers ¢, dashed edges have degree (1,0) and solid
edges have degree (0,1). Consider the path x = g1g2---. We claim that x € OA.
Fix a positive integer m and E € v, FE(A). We have to show that there exists
A € E such that x (m,m + d (X)) = A. Since E is exhaustive, for each n > m, there
exists \, € E such that MCE(\,, g+ gn_1Jn) # 0. Since E is finite, it can not
contain gy, - - - gn—1Jn for every n > m, so it must contain g,, - - - g, for some p € N. So

z((0,m), (0,p)) = gm - g, belongs to E and x € JA. On the other hand, = ¢ A=>
(see [57, Example 2.11]).

Take x € OA. For n € N¥ and n < d(z), the path o™z belongs to A [24, Lemma
5.13(1)]. Meanwhile, for A € Az (0), we also have Az € A [24, Lemma 5.13(2)].

2.6 Aperiodic higher-rank graphs

The aperiodic k-graphs form a class of k-graphs for which the Cuntz-Krieger uniqueness
theorems for Cuntz-Krieger algebras and Kumjian-Pask algebras hold (see Chapter [1)).
There are several versions of the aperiodicity condition that appear in the literature.
In this section, we discuss the aperiodicity condition that we use in this thesis. We

also give some equivalent formulations of this condition (Proposition [2.6.3)).

For a directed graph F, the aperiodicity condition is also called Condition (L) and

says that every cycle has an entrance (see page [3)).
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FEzxample 2.6.1. Consider the following graph E:

»/\ €4

€1

€5

2e

e1, €3, €3eo and e; are cycles; ezeqe; and esejese; are closed paths but are not cycles,
because they visit v twice. Every cycle eses, eses and e has an entrance; for example,
ey is an entry to eses; and es is an entry to e;. However, the cycle e; has no entrance;
so E does not satisfy Condition (L).

However, the following graph

€3

€1

(

€2

satisfies Condition (L).

For more general k-graphs, we use Condition (B’) of [24] as the aperiodicity condi-

tion in this thesis. Now we state the definition.

Definition 2.6.2. Let A be a finitely aligned k-graph. We say that A is aperiodic if
for all v € A°, there is # € vOA such that A\, u € Av and \ # p imply \x # .

In the literature, there are several equivalent formulations of the aperiodicity condi-
tion. So in the following proposition, we state alternative formulations of aperiodicity

that we use in this thesis. See also the discussion in Remark [2.6.4l

Proposition 2.6.3. Let A be a finitely aligned k-graph. Then the following statements

are equivalent:
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(a) A is aperiodic in the sense of Definition[2.6.9
(b) A satisfies Condition (A) of [24)].

(¢) For every pair of distinct paths A\, jn € A with s (\) = s (u), there existsn € s(\) A
such that MCE (An, un) # 0.

(d) A has no local periodicity; that is, for every v € A° and every n # m € N¥ there
exists x € vOA such that either d (z) # nV m or o™z # oc™x.

Proof. Shotwell showed that (a) and (b) are equivalent [48, Proposition 2.11]. On the
other hand, Lewin and Sims proved that (b) is equivalent to both (c) and (d) [33]
Proposition 3.6]. O

Remark 2.6.4. For row-finite k-graphs with no sources, Condition (A) in Proposition
2.6.3(b) is Kumjian and Pask’s Condition (A), referred to on page 6]

2.7 Graded rings

Suppose that G is an additive abelian group. A ring A is G-graded if there are additive
subgroups {A, : g € G} satisfying:

(2.7.1) A= jecA, and for g, h € G, AjA, C Ay,

We call {A,: g€ G} a G-grading of A, and elements of the subgroup A, are called
homogenous elements of degree g. For every a € A\ {0}, there exist unique {a,}
such that each a;, € A\ {0} and a =} . ay.
For example, consider the Laurent polynomial ring A := K [z, 27!] over a field K.
For n € Z, we define A,, := {ka™ : k € K}, and then {4, : n € Z} is a Z-grading of A.
Let A be a G-graded ring. An ideal I of A is G-graded if {INA, : g € G} is a
grading of . In other words, if a € I and a = )

geG

gec Gg With every a; € Ay, then every
ag also belongs to I.
Finally, if A and B are GG-graded rings, we say that a homomorphism 7 : A — B is

G-graded if 7 (A,) C B, for all g € G.

2.8 Groupoids

A groupoid G is a small category in which every morphism has an inverse. We write

GO called the unit space, to denote the set of objects G°. We also write and G for
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set of morphisms G*. We then call the codomain and domain functions r and s as

the range and source maps, respectively. We also write G for the set of elements
(a,b) € G x G with s(a) =r(b). For A, B C G we write

AB = {ab:aEA,bEB,(a,b) 69(2)}.

For example, every group G is a groupoid with one object. Its elements are the
morphisms.

We say that G is a topological groupoid if G is endowed with a topology such that
composition and inversion on G are continuous. A groupoid G is étale if G is a topolog-
ical groupoid and the source map s is a local homeomorphism. In this case, r is also a
local homeomorphism. An open set U C G is an open bisectionﬁ if s and r restricted
to U are homeomorphisms into G, Finally, G is ampl if G has a basis of compact

open bisections.

Ezxample 2.8.1. For a finitely aligned k-graph A, the path groupoid TG, from [58,
Definition 3.4] is defined as follows. Write

Asg Ai={( A\, pn) e AxA:s(\)=s(u)}

and recall the path space W) from Section 2.5l The objects of TG, are

The morphisms are

TG :={( A2, d(\) —d(p),puz) € Wa x ZF x Wy :
(A, ) € Axg Az € s(\)Wa}
= {(z,m,y) € Wy x ZF x W, : there exists p,q € N* such that

p<d(z),q<d(y),p—q=mand o’z = o'y}

The range and source maps are given by 7 (z,m,y) := z and s (x,m,y) := y, composi-

tion is defined by

(($17 mhyl) ) <y17m27y2)) = (xh my + m?)yQ) )

and inversion is given by (z,m,y) — (y, —m, x).

30pen bisections are sometimes referred to as either slices or open G-sets, see for example [22].
41f G is ample, then G is locally compact and étale. In fact, G is Hausdorff ample if and only if G is

locally compact, Hausdorff and étale with totally disconnected unit space (see [22 Proposition 4.1]).
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Next we show how to realise TG, as a topological groupoid. For each pair (\, p) €
A %5 A and finite subset G of s (\) A, we write

TZx (A) := AW,

TZy (N G) = T2y O\ (U T2 () ),

ve@G

TZy (A5 p) =={(z,d(N) —d (), y) € TGr:x € TZx(N),y € TZy (1)

and 0z = gy}

and

TZx (N p\ G) := TZp (N *g )\ ( U TZp (A *g ,uy)).
veG

Theorem 3.16 of [58] says that the sets T'Z) (A *; p\ G) form a basis of compact open
bisections for a second-countable Hausdorff topology on 7G, under which it is an
ample groupoid. Further, the sets TZ, (A\ G) form a basis of compact open sets for
76 |58, Lemma 3.8].

Remark 2.8.2. We think of TQ?\ = Wy as a subset of TG, under the correspondence
xz— (z,0,2).

Ezxample 2.8.3 ([58, Definition 4.8]). Let A be a finitely aligned k-graph, let TG, be
the path groupoid of A as in Example 2.8.1] and let OA be the boundary-path space
as in Section . The set OA is nonempty [58, Proposition 4.3], closed in TQX)) [58,

Proposition 4.4], and an invariant subset of TQE\O) [58, Proposition 4.7]. Hence

Ga :=TGalon

is a closed subgroupoid, called the boundary-path groupoid of A. The groupoid G, is
second-countable Hausdorff because 7 G, is second-countable Hausdorff.
For (A, 1) € A #, A and finite subset G C s(\) A, we write

ZA<)\\G) = TZA()\\G) ﬂgA and ZA()\ *g /L\G) = TZA()\ *g IU\G) ﬁQA.

Since the sets TZy (A x5 1\ G) of Example form a basis of compact open bisections
for TG, and since G, is a closed subset of TGy, the sets Z, (A x5 pu\ G) also form a
basis of compact open bisections for Gy. Thus G, is also ample. The sets Z (A\ G)

also form a basis of compact open sets for ggo).

Remark 2.8.4. A number of notes relating to this example:
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(i) We think of g,(\o) = OA as a subset of Gy under the correspondence = — (x,0, x).

(ii) In Section2.5, we define Zy (A\ G) and Z, (X #, p\ G) where G is finite. However,
if G is exhaustive, then Z, (A\ G) and Z, (A *; p\ G) are empty sets. Thus our
definitions make sure that both Zx (A\\ G) and Z, (A *4 1\ G) are non-empty.

(iii) Gy is also étale (see Footnote [2.8)).

2.9 Steinberg algebras

Steinberg algebras were introduced in [53], and are algebraic analogues of groupoid
C*-algebras of [44]. Various mathematicians have studied the relationship between
Steinberg algebras and Leavitt path algebras, see for example [15] [17]. We give a brief
introduction to Steinberg algebras.

Suppose that G is a Hausdorff ample groupoid and R is a commutative ring with

1. As in [14] Section 2.2], the Steinberg algebraﬂ associated to G is
Ar(G):={f:G — R: f is locally constant and has compact support};

addition and scalar multiplication are defined pointwise, and multiplication is given to

be the convolution

(fxg)(a):= ) f()g(b ).
)

r(a)=r(b
For compact open bisections U and V, the characteristic function 1y belongs to Ag(G),

and
lyx 1y = lyy
(see [53] Proposition 4.3]).
Let I' be a discrete group with identity e, and suppose that ¢ : G —I" is a continuous
cocycle: c(a)c(b) = c(ab) for a,b € G. For n € T, we write G,, := ¢! (n). Then
Proposition 3.6 of [15] says that the subsets

Ar(G)n == 1{f € Ar(G) : supp (f) C G}

form a I'-grading of Ag(G).

°In [53, Definition 4.1], Steinberg writes RG to denote Ar(G). In some references, for example [15],
Steinberg algebras are defined on locally compact, Hausdorff, étale groupoids with totally disconnected

space. However, this kind of groupoids is equivalent to Hausdorff ample groupoids [15, Lemma 2.1].
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We say that a subset S C G is n-graded if S is also a subset of G,,. For n € ', we
write B (G) for the collection of all n-graded compact open bisections of G. We also

write

B2 (G) = B2 (©).

nel’

The following proposition explains how an element of Az(G) can be written in terms

of a sum of elements of B (G).

Proposition 2.9.1 ([I4, Lemma 2.2]). Suppose that G is a Hausdorff ample groupoid,

that T is a discrete group and that ¢ : G —I" is a continuous cocycle. Then every

f € Agr(G) has the form
f= Z aplp
where each ap € R and F' is a finite set of mutually disjoint elements of B (G).

2.10 Effective groupoids

There is a powerful uniqueness theorem for Steinberg algebras, called the Cuntz-Krieger
uniqueness theorem (see Theorem [2.10.2)). It was proved in [I5] for Steinberg algebras
over the complex numbers, and generalised by Clark and Edie-Michell to Steinberg
algebras over commutative ring with 1 [14]. This uniqueness theorem only holds for
effective groupoids, so this class of groupoids is an analogue of the class of aperiodic
k-graphs. In fact, there is a relationship between aperiodic k-graphs and effective
groupoids, see Proposition and Remark

Let G be a locally compact Hausdorff étale groupoid. We define the isotropy
groupoid of G by

Iso(G) ={a€G:s(a)=r(a)}.

We say that G is effective if the interior of Iso (G) is G”). This definition is from [I3|

Lemma 3.1] which states several equivalent characterisations of effective groupoids.

Remark 2.10.1. Renault showed that for second countable groupoids, G is effective if
and only if G is topologically principal in that the set of units with trivial isotropy is
dense in G [44, Proposition 3.6]. Since for every finitely aligned k-graph A, the
groupoids 7Gx and G, are also second-countable, the notions of effective and to-

pogically principal are interchangeable in this setting. For other notions of effective
groupoids, see Remark [3.5.3|

We state the Cuntz-Krieger uniqueness theorem for Steinberg algebras as follows.
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Theorem 2.10.2 ([I4, Theorem 3.2]). Suppose that G is an effective Hausdorff ample
groupoid and that R is a commutative ring with 1. Suppose that ¢ : Ar(G) — A is

an R-algebra homomorphism such that ker (¢) # 0. Then there is a nonempty compact
open subset K C G and r € R\ {0} such that ¢ (rlg) = 0.
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Chapter 3
Kumjian-Pask algebras

Suppose that A is a finitely aligned higher-rank graph and that R is a commutative
ring with 1. In this chapter, we introduce Kumjian-Pask A-families and study their
properties. We also establish the graded uniqueness theorem (Theorem and the
Cuntz-Krieger uniqueness theorem for Kumjian-Pask algebras (Theorem .

In general, the material in this chapter is taken from a joint paper with my super-
visor Clark in [I§]. However, we give more background and details in Section than
in the paper [I8] Section 4].

3.1 Kumjian-Pask A-families

In this section, we define Kumjian-Pask A-families for finitely aligned higher-rank

graphs. These include the Kumjian-Pask A-families of [I1], [16] (see Section [1.4)).
Suppose that A is a finitely aligned k-graph and R is a commutative ring with

identity 1. For A € A, we call \* a ghost path (A\* is a formal symbol). We write

G(A) ={ " AeA}.
For v € A% we define v* := v. We extend r and s to be defined on G (A) by
r(A*) :=s(\) and s(\*) =71 (\).

We define composition on G (A) by setting \*p* = (pA)* for \,u € A, and write
G (Aﬂ)) for the set of ghost paths that are not vertices. Note that the factorisation

property of A induces a similar factorisation property on G (A).

Definition 3.1.1. A Kumjian-Pask A-family {S\, S, : \,u € A} in an R-algebra A
consists of a function S: AUG (Aﬂ)) — A such that:
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(KP1) {S,:v € A’} are mutually orthogonal idempotents;
(KP2) for A, u € A with s(A\) = r(u), we have S\S, = Sy, and S,+Sx- = S

(KP3) S-S, =3, ) SpSp for all A,y € A; and

pyT)EARIR (X 1y

(KP4) [Tiep (Sem) — SaSx+) =0 for all E € FE(A).
Remark 3.1.2. A number of aspects of these relations are worth commenting on:

(i) In previous references about Leavitt path algebras and Kumjian-Pask algebras,
people usually distinguish the vertex idempotents as “P,” (for example, see [T, 3,
4, [10, [111, [16], 541, 55]). We do not follow this convention because we do not want

to make additional unnecessary cases in proofs.

(ii) (KP2) in [11, [16] has more relations to check. However, using our notational

convention, those relations are equivalent to our (KP2).

(iii) The restriction to finitely aligned k-graphs is necessary for the sum in (KP3) to

make sense (see [39]).

(iv) In (KP3), we interpret the empty sum as 0, so Sy-S, = 0 whenever A™" (\, ) =
(). On the other hand, by taking A = p1, we get S)-S\ = Sy(»).

(v) (KP3-4) have been changed from those in [I1, Definition 3.1] and [16, Definition
3.1] to take into consideration k-graphs that are not locally convex. For further

discussion, see Appendix A of [41].

The following lemma establishes some useful properties of families satisfying (KP1-
3).

Proposition 3.1.3 ([I8, Proposition 3.3]). Suppose that A is a finitely aligned k-graph,
that R is a commutative ring with 1, and that {Sy, S, : \,u € A} is a family satisfying
(KP1-3) in an R-algebra A.

(a) We have S\Sx-SuSu = 3\ semcr SO0 for A i€ A; and {SySx- : A € A}

18 a commuting famaily.
(b) The subalgebra generated by {Sx, Sy~ : A\, u € A} is
spanp{S\S, : A, u € A,s(\) =s(u)}.
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(c) Forn € N¥ and \, n € AS™ (see , we have Sy=S, = dx 190\ -
(d) Suppose that rS, # 0 for all v € R\ {0}, that v € A° and that \,u € A with
s(A)=s(u). Ifr € R\{0} and G C s(\) A is finite non-exhaustive, then

r$y # 0 and rSy (T (Sa = $05.4) ) S £ 0.

veG

Proof. To show (a), we take A\, u € A and then

SAS€SpSyr = S/\( Z SPST*>SM* - Z SxpS (ur)*
(p,T)EA™IN (A L) (p,T)EA™I (A1)
= Z SxpS )t = Z SxoS(rp)*
(va)EAmin(/\v/") APEMCE(\,p)
- Z SprS(ury = SpSusSaSxe.
uTeMCE (1)

Next we show (b). For A\,u € A, we have S\S,» = S)xSs(2)Ss(u)Su by (KP2), and
by (KP1), SxS,« # 0 implies s (\) = s (u). On the other hand, for A, u1, Ay, us € A,
we have

(S08) (S08i) = S X S8 ) S (by (KP3))

(pm)EA™ (11, A2)

= Z S/\lpS(MzT)* (by (KP2))

(p,m)EA™M (11, A1)
To show (c), we take A\, u € A=". Suppose that S)-S,, # 0. By (KP3), there exists
(p,7) € A™ (X ) such that \p = u7 and d(A\p) < n. Since A\, u € AS", we have
= s(A) =7, and hence \ = p.
Finally, we show (d). Take r € R\ {0} and A € A. Suppose for contradiction that
rSy = 0. Then
0= S\ (rS)) = 1S=Sx = 1S5,

which contradicts with 7S, # 0 for all r € R\ {0} and v € A°. Hence rS) # 0.
Now take r € R\ {0}, \,u € A with s(\) = s(u) and finite non-exhaustive G C
s (A) A. Suppose for contradiction that
rSy(TT (S = Su80-) ) Sy = 0
veG
Since G is non-exhaustive, then there exists v € s(A\) A such that A™" (v,~v) = () for
every v € G. By (KP3), we get S-S5, = 0 for v € G. Therefore

0= (S5 (TT (Son = 5050e) ) S ) Su

ve@G
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= T’S)\< H (SS(A) - SVSV*) >Sv

veG

= TS)\S,Y = TSAW,
which contradicts 7Sy, # 0. Hence TS,\<HV€G (Ss(,\) — SVS,,*) )Su* #0. ]

Remark 3.1.4. Since {S)\S\+ : A € A} is a commuting family, Proposition [3.1.3(a) im-

plies that for all A € A and G C r (\) A, the order of multiplication does not matter and

[Ticc (SaSx = S,S,) is well-defined. In particular, [T, (Ssx) — S»S,+) of Proposi-

tion [3.1.3|(d) is also well-defined.

Remark 3.1.5. For n € N*, we have A" C AS". Hence Proposition m(c) also implies

that for n € N¥ and \, u € A", we have SxeSpu = 0x 1 Ss(n)-

Remark 3.1.6. Suppose that 7S, # 0 for all r € R\ {0}, v € A® and that A\, u € A have

s (X\) = s (u). The contrapositive of Proposition B.1.3|(d) says: if r € R, G C s(\) A is

finite, and TS)\(HyeG (Ss(,\) - SZ,S,,*) )Su* = 0, then either » = 0 or G is exhaustive.
Now we give an example of a Kumjian-Pask A-family in an algebra of endomor-

phisms.

Proposition 3.1.7 ([18, Proposition 3.6]). Suppose that A is a finitely aligned k-graph
and that R is a commutative ring with 1. Suppose that Fg (OA) is the free module with
basis the boundary path space. Then for every v € A and X\, € A\ A°, there exist
endomorphisms Sy, Sx, Sy+ : Fr (OA) — Fr (OA) such that for x € OA,

5, (x) = x ifr(x)=v

0 otherwise,

A ifs(A) =r(x
50— N =r@

0 otherwise,

o)z if (0, (u)) = p
Sur (z) =

0 otherwise.
The set {Sx, Sy« : A\, u € A} is a Kumgjian-Pask A-family in the R-algebra End (Fg (OA))
with rS, # 0 for allr € R\ {0} and v € A°.

Proof. Take v € A° and A\, u € A\ A°. Note that for z € A and m < d(z), we have
o™z € OA. Define functions f,,, fy, and f,- : OA — Fr (OA) by

z ifr(x)=wv
fula) = @

0 otherwise,
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h(x

- Az if s(A) =71 (2)

0  otherwise,

oWy if 2(0,d =
fo (1) = (0.d(p) = p

0 otherwise.

The universal property of free modules gives endomorphisms
Sv, Sx, Sy Fr(OA) — Fgr (OA)

extending f,, f, and f,-.

We claim that {Sy, S, : A\, u € A} is a Kumjian-Pask A-family. To see (KP1), take
v e A and z € OA. Then S%(z) =z = S, (z) if r(z) = v, and S%(z) =0 = S, (x)
otherwise. Hence S? = S,. Now take v,w € A° with v # w and z € 9A. Since
xr € woA implies x ¢ vOA, we have S, S, (x) =0 for x € OA and 5,5, = 0.

To show (KP2), take A\, u € A with s(\) = r (). Then for x € s(u) A, we have
pr € s(A)OA. Then S\S, (x) = Mz = Sy, (z) if © € s(u) OA, and Sy, (z) =0 =
Sxu (z) otherwise. Hence S35, = Sy,. Meanwhile, for € r (A\) OA with = (0,d (An)) =
A, we have d (\p) < d(x) and 0%z € s(u) OA. Furthermore, x (0,d (Au)) = Ap
also implies that x (0,d (\)) = A, and then d () < d(z) and 0™ € s(\) OA. Hence

S, Sxe (7) = S0 WMV = VT g — Iy — Sow (o)

if #(0,d (M) = A, and S,-Sx- (1) = 0 = Spy» (7) otherwise. Therefore S,-Sy. =

Sty
To see (KP3), we take A, u € A. If r (\) # r (u), then S\+S,, = 0 and A™™ (X, p) = 0,
as required. Suppose r (A) = r (u). We have

28, (1) = (ux) (d(N) ,d (ux)) if x € s () OA and (uz) (0,d (N)) = A

0 otherwise.

Take z € s(u) OA. Note that s (u) = r (1) for (p,7) € A™" (), u). First suppose that
(42) (0,d (\)) # A Then for (p, 7) € A™™ (A, ),

(nx) (0,d (Ap)) # Ap and (uz) (0,d (u1)) # pr.
Hence z (0,d (7)) # 7 and 5,5+ () = S, (0) = 0, so that

> 8,5 (z)=0.

(p,m)EAMIN (A1)
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So suppose that (ux) (0,d () = A. Since (ux) (0,d (M) = X and (uz) (0,d (1)) = w,
there exists 7 € s (u) A such that (p,7) € A™® (), u) and (pz) (0,d (u7)) = pr. Then
x(0,d (7)) = 7. The factorisation property implies that there is only one such 7. Hence
for (p/,7') € A™™ (X, p) with (o', 7') # (p,7), we have S, S~ (x) = 0. Since we also

have z (0,d (7)) = 7, we can conclude:

)
= p[(pz) (d(pr) . d(pz))]
= p[(ux) (d(Ap),d(uz))] (since pr = Ap)
= (uz) (d (), d (pz))

and
Do 5Se (@) = 8,50 (1) = () (A (V) d () = S5 (),
(P, ) €A (A1)
as required.
Finally, we show (KP4). Take £ € FE (A) and z € r (F) OA. Since E € x (0) FE (A)
and x is a boundary path, there exists A € F such that z (0,d (\)) = A. Then

(Srm) = SSxe) (@) = Sy (@) = S35+ (@)
=x =S (z(d(}),d(2)))

=z —x=0.

Hence

(H (SwEy — SxSi) ) (z) =0

AeE
for z € r (E)OA, and [[cp (Sem) — SaSx+) = 0.
Thus {S), S, : A,u € A} is a Kumjian-Pask A-family, as claimed. Since each vdA
is nonempty, we have rS, # 0 for all » € R\ {0} and v € A°. O

Using a different construction of a Kumjian-Pask A-family, we show that there is

an R-algebra which is universal for Kumjian-Pask A-families.

Theorem 3.1.8 ([I8, Theorem 3.7]). Suppose that A is a finitely aligned k-graph and

that R is a commutative ring with 1.

(a) There is a universal R-algebra KPg (A) generated by a Kumgjian-Pask A-family
{sa, 8= = A\,u € A} such that: whenever {Sy, S, : \,u € A} is a Kumjian-
Pask A-family in an R-algebra A, there ezists a unique Ting homomorphism
g : KPg (A) = A such that wg (sy) = S\ and s (s,+) = Sy~ for A\, € A.
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(b) We have rs, # 0 for allr € R\ {0} and v € A°.
(c) The subsets
KP (A), = spang {sxsue Ao € A, d (V) — d (1) = n}
forms a Zk-grading of KPg (A).

Proof. We use an argument similar to [I1, Theorem 3.4] and [16, Theorem 3.7]. To show
(a), we use the free algebra Fp (w (X)) on the set w (X)) of words on X := AUG (A7?).
Let I be the ideal of Fg (w (X)) generated by the elements:

(i) {vw — dyv : v, w € A},

(i) {\—pv, \* —v*u* : A\ p,v € A and A = pv},
(iii) {A*p - Z(p,’]’)EAmin(}\7M) pT* i A € A}, and
(1) {Taes (r (B) = AX) : E € FE (A)},

We define KPg (A) :=Fg (w (X)) /I and write ¢ : Fg (w (X)) = Fg (w (X)) /I for
the quotient map. Define sy := ¢ () for A € A, and s,« := ¢ (p*) for p* € G (A#O).
Then {sy, s, : A € A, pu* € G (A#?)} is a Kumjian-Pask A-family in KPg (A).

To show the universal property, suppose that {S), S, : A,u € A} is a Kumjian-
Pask A-family in an R-algebra A. Define f : X — A by f(\) := S, for A € A,
and f (") := S, for p* € G(A??). The universal property of Fr(w (X)) gives
an unique R-algebra homomorphism ¢ : Fgr (w (X)) — A such that ¢|x = f. Since
{8y, Sy : A, u € A} is a Kumjian-Pask A-family, then I C ker (¢). Thus there exists an
R-algebra homomorphism 7g : KPg (A) — A such that mgoq = ¢. The homomorphism
Tg is unique since the elements in X generate Fg (w (X)) as an algebra. We also have
s (sx) = Sy for A € A and 7 (s,+) = Sy for p* € G (A7), as required.

To show (b), let {Sx, S, : A\, u € A} be the Kumjian-Pask A-family of Proposi-
tion m Then rS, # 0 for v € A°. Since 7g (rs,) =S, # 0 for all r € R\ {0} and
v € A% we have rs, # 0 for all r € R\ {0} and v € A°.

Next we show (c). We first extend the degree map to w (X) by d (w) := Z@l d ((w;))
for w € w (X). By [I1, Proposition 2.7], Fg (w (X)) is Z*-graded by the subgroups

Fr(w(X)), = { Z TwW : Ty 7# 0 implies d (w) = n}

wew(X)
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We claim that the ideal I defined in (a) is a graded ideal. It suffices to show
that I is generated by elements in Fp (w (X)), for some n € Z*. Since d (v) = 0 for
v € A% then the generators in (i) belong to Fg (w (X)),. If A = pv in A, then X\ — pv
belongs to Fr (w (X))y,) and A" — v*p* belongs to Fr (w (X))_y). For A, € A and
(p,7) € A™™ (), 1), we have

d(p) —d(r) = (dN) Vd(u) = dN) = (dN) Vd(p) —d(p) =—dX) +d(n)

and then the generators in (iii) belong to Fr (w (X)) _y)1q(,- Finally, a word AX" has
degree 0 and then the generators in (iv) belong to Fg (w (X)),. Thus I is a graded

ideal.
Since [ is graded, KPgr (A) = Fg (w (X)) /I is graded by the subgroups

(Fr (w (X)) /1), == spang {q (w) : w € w(X),d(w) = n}.

By Proposition [3.1.3(b), we have KPr (A) = spang {sxs,- : A\, u € A, s(\) =s(p)}.
We have to show that

KPg (A), :=spang {sas,« : A,u € A,d(\) —d(p) =n} = (Fp(w(X))/I),.

Take X\, u € A with d(A\)—d () = n. Then sys,» = q(A) ¢ (1*) = ¢ (A\p*) and d (A\p*) =
d(A) —d(p) =n. Hence sys,+ € (Fr(w (X)) /I),, and KPg(A), C (Fr(w (X)) /I),.
Before proving that (Fg (w (X)) /1), € KPg(A),, we establish the following claim:

Claim 3.1.9. Let X := AUG (A*") and q : Fr(w (X)) — KPg (A) be the quotient
map. Then for w € w(X), we have q (w) € KPg (A) -

Proof of Claim[3.1.9. We modify the proof of [II, Lemma 3.5] and [16, Lemma 3.8]
using our version of (KP3). We prove the claim by induction on |w|. For |w| = 0, we
have w € A°. Then ¢ (w) = s, = 5,5, and d (v) — d (v) = 0, s0 g (w) € KPR (A) -
For |w| = 1, we have two possibilities. If w = X for A € A, then ¢ (w) = s, =
$xsso s d(A) —d(s(N) = d(N), and g (w) € KPg(A) . If w=A"for A € A, then
q(w) = sy = ss0n8a0; d(s(A) —d(N) = —=d(A) = d(\), and g (w) € KPR (A),

For |w

w)*

= 2, we have four possibilities: w = Au*, w = Ay, w = p*A\*, or w = \*p.

For the first three possibilities, we have
q(A") = saspe and d (A) —d (p) = d (M),
q (M) = xS and d (M) —d (s (p)) =
q (LX) = sy soyr and d (s () — d ((An)") = d (L"\7),

&
>
=
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as required. So suppose that w = A\*u. By (KP3), we have

q(A"p) = saxs, = Z SpSye.
(pm)EA™ (A1)
For (p,7) € A™" (\, i), we have \p = pu7 and d (w) = d (u) —d(\) = d (p) — d (p), so
q(w) € KPgr (A)y
Now suppose that n > 2 and ¢ (y) € KPr (A),,, for every word y with [y[ < n. Let

w)*

w be a word with |w| =n+ 1 and ¢ (w) # 0. If w contains a subword w;w;+1 = Au,
then A and p are composable in A since otherwise ¢ (Au) = 0. Now let w’ be the word

obtained from w by replacing w;w; 1 with the single path Au, and then

— _ o /
q (U)) = Swy " Sw_1IASpS w0 Swni1 = Swi 7 Swim1 SApSwigeSwppr = 4 (w ) :

Since |w'| = n and d(w’') = d(w), the inductive hypothesis implies that ¢ (w) €
KPp (A)gq)- A similar argument shows ¢ (w) € KPg (A)y,,, whenever w contains a
subword w;w;11 = A,

So suppose that w contains no subword of the form A or p*A*. Since |w| > 3,
either wywy or wows has the form \p. By (KP3), we write ¢ (w) as a sum of terms
q(y") with |y = n+ 1 and d(y*) = d(w). Since |w| > 3, each nonzero summand
q (y") contains a factor of the form s,s, or one of the form s,+s,-. Then the previous
argument shows that every ¢ (y') € KPg (A) gy and g (w) € KPg (A) g, as required.

O Claim B.1.9

Every element of (Fg (w (X)) /I),, has the form ¢ (w) withw € w (X) and d (w) = n,
which belongs to KPg(A), by the claim. Thus (Fg(w (X)) /I), € KPr(A),, as
required. O]

Definition 3.1.10. Suppose that {S), S, : A,u € A} is the Kumjian-Pask A-family
in the R-algebra End (Fg (OA)) of Proposition We call the R-algebra homomor-
phism 75 : KPg (A) — End (Fg (0A)) obtained from Theorem [3.1.8|(a) the boundary
path representation of KPg (A).

We say more about the boundary path representation of KPg (A) in Section

3.2 The graded uniqueness theorem

Throughout this section, A is a finitely aligned k-graph and R is a commutative ring

with identity 1.
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Both [11] and [16] contain two uniqueness theorems for Kumjian-Pask algebras (see
Section [1.4). The graded-uniqueness theorem has no hypothesis on the graph, and is
an analogue of the gauge-invariant uniqueness theorem for k-graph C*-algebras [41],
Theorem 4.2]. The Cuntz-Krieger uniqueness theorem only applies to “aperiodic” k-
graphs. As the name suggests, this is an analogue to the Cuntz-Krieger uniqueness
theorem for k-graph C*-algebras [41, Theorem 4.5]. For an overview of the uniqueness
theorems for k-graph C*-algebras, see Section [1.2

In this section, we establish a graded-uniqueness theorem for Kumjian-Pask alge-
bras of finitely aligned k-graphs (Theorem . We shall discuss a Cuntz Krieger

uniqueness theorem in Section [3.7]

Theorem 3.2.1 ([I8, Theorem 4.1]: The graded uniqueness theorem). Suppose that A
is a finitely aligned k-graph, that R is a commutative ring with 1, and that A is a Z*-
graded R-algebra. Suppose that ™ : KPg (A) — A is a Z*-graded ring homomorphism

such that 7 (rs,) # 0 for allr € R\ {0} and v € A°. Then 7 is injective.

Our proof of Theorem [3.2.1]is based on the proof of the gauge-invariant uniqueness
theorem for C*-algebras [41, Theorem 4.2]. Although the argument is rather technical,
the work in [49] for C*-algebras carry over to the algebraic setting without change as
the ring elements will not feature. We check the details below. However, we omit the

proofs of the graph theoretic results as they follow exactly as in [39] 41 [49].

Remark 3.2.2. The work in [49] is for Toeplitz-Cuntz-Krieger families. So the result
also applies to Cuntz-Krieger families.We do not change the arguments when carrying

over to the algebraic setting.

We divide the arguments into four subsections. We establish some preliminary

notation and results in Subsection We then introduce a subalgebra M[j, which
nE
Ao
(Subsection [3.2.3]). In Lemma |3.2.21] we show that the homomorphism 7 of Theorem

NE.
A

is closed under multiplication (Subsection [3.2.2]) and identify its matrix units © (s)

3.2.1| is injective on each matrix unit © (s) and so also on each subalgebra M7y.

We then prove the graded uniqueness theorem.

3.2.1 Orthogonalising range projection

We introduce a set E that is closed under taking minimal common extensions (see
Proposition |3.2.6)) and establish preliminary results related to such a set. This is an

algebraic version of Section 3.3 of [49] and hence we follow the arguments there.
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Definition 3.2.3. Suppose that A is a finitely aligned k-graph, that FE is a finite subset
of A, and that R is a commutative ring with 1. Suppose that {S), S, : A\,u € A} is a
Kumjian-Pask A-family in an R-algebra A. For A € E, we define
Q(S)f = S)\SA* H (S)\SA* — S)\VS()\,/)*) .
AveE

d(v)#0
Remark 3.2.4. Note that by Remark|3.1.4, Q (S)} is well-defined for A € E. For A € E,

we have
(Q(9)F) =Q(S)f and Q(S)f (35x) = Q(9)F = ($x5x) Q ()}

Remark 3.2.5. Our Q (S)f is an algebraic analogue of |49 Definition 3.3.1]. In general,
Q(S)¥ of [9] is different from Raeburn and Sims’ @ (S)¥ of [39]. However, both

Q (S )f share the same properties as we shall see in this subsection.

The main aim of this subsection is to prove the following proposition, which is an

algebraic analogue of [49, Proposition 3.3.3].

Proposition 3.2.6. Suppose that A is a finitely aligned k-graph and that R is a com-
mutative ring with 1. Suppose that {S\, S, : \,u € A} is a Kumjian-Pask A-family
i an R-algebra A. Suppose that E C A is finite and non-empty and that E is closed

under taking minimal common extensions in the sense that
(3.2.1) ANp€FE =MCE(\pu) CE.

Then {Q (S)¥ : X\ € EY} is a collection of mutually orthogonal (possibly zero) idempo-
tents such that for all v € 7 (F),
(3.2.2) (sv IT (s, - SASA*)> + Y Q)Y =5,
AEVE AEvE
To prove Proposition |3.2.6| we first consider the case when E consists of paths with
fixed range v € A%, for some vertex v in E, as stated in the following lemma. This is

an algebraic analogue of Lemma 3.3.4 of [49].

Lemma 3.2.7. Suppose that A is a finitely aligned k-graph and that R is a commutative
ring with 1. Suppose that v € A° and that E is a finite subset of vA containing

v. Suppose that E satisfies (3.2.1) and that {Sy, S, : \,u € A} is a Kumgian-Pask A-
family in an R-algebra A. Then {Q (S)f : A € E'} is a collection of mutually orthogonal
(possibly zero) idempotents such that

> QS)y =5..

AEE
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In the rest of this subsection, we prove Lemma [3.2.7 and then use the lemma to
deduce Proposition [3.2.6|

We prove Lemma by induction on the cardinality of E. The problem is that
when we remove a path A from a set E satisfying , the new set E\ {\} may not
satisfy . Therefore instead of working on any finite set £ C A, we work on a set
V E which contains F and satisfies . Now we construct VE as follows:

Definition 3.2.8 (|39, Definition 8.3]). Suppose that A is a finitely aligned k-graph
and that £ C A is finite. We then define

MCE (E) := {AeA:d()\) = \/ d(p) and A(0,d () = pu for all € E}

peE

and
VE := | J MCE(G).

GCE

Lemma 3.2.9 ([39, Lemma 8.4]). Suppose that A is a finitely aligned k-graph. Suppose
that v € A° and that E C vA is a finite set which contains v. Then

(a) EC VE;

(b) VE is finite;

(¢) F CVE implies MCE (F) C VE; and
(d) A € VE implies d(N) <\ ,cpd ().

Remark 3.2.10. If E C A already satisfies (3.2.1)), then an induction on |G| shows that
G C F implies MCE (G) C E, and then VE C E. Hence by Lemma m(a), we have
VE =FE.

Now we establish two lemmas that are needed in the proof of Lemma [3.2.7]

Lemma 3.2.11 ([39, Lemma 8.7]). Suppose that A is a finitely aligned k-graph and
that v € A°. Suppose that E C vA is a finite set which contains v and that X\ € E\ {v}.
Let F := E\{A}. Then for every v € VE\ V F, there ezists a unique ji, € VE such
that

(i) d(v) = d(py) and v (0,d (1)) = py; and
(it) if p € VF and v (0,d (n)) = p, then d(p) < d(py) and p, (0,d (1)) = p.
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Furthermore, for all v € VE\V F, v € MCE (p, A).

Lemma 3.2.12. Suppose that A is a finitely aligned k-graph, that v € A°, and that
R is a commutative ring with 1. Suppose that E C vA is a finite set which contains
v, and that A\ € E\{v}. Set F':= E\ {\}. Suppose also that {Sx, S, : A\,u € A} is a
Kumgian-Pask A-family in an R-algebra A, that v € VE\V F and that ., € VF is the
path of Lemma|3.2.11. Then

(a) Q(9))" =Q (9,1 Q(9))";
(b) If yv € VE with d(v) #0, then Q (), S1,S()+ = 0; and
(c) Q(S))" =Q(S),! 5,5,

Proof. We follow the C*-algebraic argument of [39, Lemma 8.8]. First we show part
(a). Since v (0,d (u,)) = p1y, then by Proposition |3.1.3(a), S,5,+S,, Sy = 5,5,+ and

Q(S)ZfQ(S)xE <SMSH§ H (SMSH# o SHwVS(#vV)*) )Q(S)\W/E

uAVEVE
d(v)#0
= (S#WS#TY H (Sﬂwsﬂfy - SH'VVS(N"/V)*) ) (SVS’Y*) Q (S)»\y/E
uAVEVE
d(v)#0
(since (S,S5,-)" = 5,8, and then 5,5,-Q (S)1" = Q (5)!")
= ((Sﬂwsﬂf,S'YS’Y*) H (SMS% o SMVS(W)*> >Q <S)XE
prVEVEF
d(v)#0
(by Proposition [3.1.3((a))
= S’YS’Y*< H (SMS% - Suws(uw)*) )Q (S)xE
uyVEVE
d(v)#0
since Sy Sy Sy, Sur = S,5,+. Hence it suffices to show that
(3.2.3) S8 (S Sus = SuwSny) Q (9)2F = Q(9)4*
for all p,v € G with d(v) # 0.
Take p,v € VF with d (v) # 0 and note that
(324) S»ysry* (SN’YS,“—’; - S,U,-YI/S(M—YV)*) = S’YS’Y* - Z S’YTS(VT)*

YTEMCE(y,uyv)

(by Proposition [3.1.3(a))
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= H <5757* - S’YTS(’YT)*>'

YTEMCE(7,14v)

We claim that for v7 € MCE (v, p1,v), we have y7 € VE and d (1) # 0. Take y7 €

MCE (v, pyv). Then (y7) (0,d (pyv)) = pyv € VF and by Lemma [3.2.11)(ii), d (fy,) >
d (pyv) > d (f1y) (the last inequality holds because d (v) # 0). If y7 = ~, then iy, = 1

and d () = d(p,), which contradicts d (py-) > d(py). So y7 # v and d (1) # 0.
Since p v € (VFNVE) and v € VE, Lemma [3.2.9(c) gives v7 € MCE (v, u,v) C VE

as claimed.

Thus each factor in (3.2.4) is a factor in @ (S)\W/E, and then we have (3.2.3)), as

required.
Now we show part (b). Take yv € VE with d(v) # 0. We have to show
QS )Zf Sy Sy = 0. Suppose for contradiction that fi,, = 1. Then

d(yv) =d(\)Vd(uy) (since yv € MCE (4., A) by Lemma
ANV d () (since i, = i)
d(7) (since v € MCE (g, ) by Lemma[3.2.11)

which contradicts d (v) # 0. So iy, # . Since (yv) (0,d (1)) = 7 (0,d (1)) = 1y €

VF, Lemma [3.2.11|(ii) gives d (ft1,) > d (j1,); since fiy,, # piy, we have i, = p,7 for
some 7 with d (7) # 0. Since ., € VF, then

(3.2.5)
Q () SwStowy
= (85 TT (Si5u5 = SunvStunr) ) Sy
pyVEVE
d(v)#0

- SuwS%( H (SMS% = S S(u)) ) (SMS% = Sy S(u)) Sty
pyv€ VE\{uyT}
d(v)#0

= SMS%( H (SMS#; - Suws(uw)*) ) (S/MS% - Suwsu;) SWS(W)*

v VE{jiy )
d(v)#0

since fi,, = p,7. Since (yv) (0,d (i) = py and (yv) (0,d (pty)) = fiyn, Proposition
3.1.3((a) gives

(SMS#: - SuwSu:y) SywS(wy* = SyuSiwy =SSy =0

and ($3.2.5) becomes @) (S )Zf Sy Sy = 0, as required.
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Finally we show part (c). Note that

(3.2.6) Q9" =Q (9,1 Q(S))" (by part (a))

(S>Zf Sy Sy H (S’YS’Y* - SWS(”/V)*)
YweVE
d(v)#0

=0 (S>,\f (S’YS’Y* - SWS(W)*)

YEVE

d(v)#0
since v (0,d (i) = py. Thus Sy, Spx S, S, = S5, and Q (S)Zf S8y =@ (S)L/f By

part (b), (3.2.6) becomes @ (S)XE =Q (S)Zf S, S+, as required. ]

Q
Q

Now we are ready to prove Lemma [3.2.

Proof of Lemma[3.2.7]. Since E satisfies (3.2.1), Remark [3.2.10] gives VE = E. So it

suffices to show that if F is a finite subset of vA such that v € E, then Q (S)E\/E Q (S)ZE =

@ (S)XE and ZAE\/EQ(S)XE = S,. Note that if A = pu, then we already have
2

(Q (S)XE> =Q(S)}" from Remark [3.2.4]

So take A\, u € VE with A # p and we have to show Q(S)XEQ ()" = 0. First

o
suppose that d (\) = d (u). Note that by Remark [3.2.4]
(3:2.7) Q ()" ($x8x) = Q(5)," and Q (8),," (S.8u) = Q(S),." .

Then by Proposition [3.1.3(a),
Q (92" Q(S)," (SxSxSuSue) = Q (9)X" Q(S),”

and by Remark 3.1.5] S)Sx+S,,S,» = 0 (using d (A\) = d (11)). Hence @ (S)XE Q(9)F =

m

0, as required.

Next suppose that d(\) # d (u). Then d () V d(p) is strictly larger that at least
one of d (\) and d (u). Without loss of generality, we assume that d (\) Vd () > d (N).
Then v € MCE (A, ) implies that v = Av with d (v) # 0 and v € VE (since A\, u € VE

and Lemma [3.2.9(c)). Now from (3.2.7) and Proposition [3.1.3(a), we have

Q)Y Q9" = (5.8 Q (5" Q (9"
= (5,5, Sx5x+) ( H (SxSx= — SxSiuy) )Q (S)ZE

ok
= ( > SApSup)*)( [T (xS = SnSou) )Q (9),"
APEMCE(\, 1) AEVE

d(v)#£0

47



by Proposition [3.1.3(a). Now note that for all A\p € MCE (\, i), we have
SxpS(ap)* (SAS/\* - S/\PS(/\p)*) = Sy = S =0

and then
S)\pS()\p)* H (S/\S)\* - S)\VS(AV)*) =0

AveVvE
d(v)#0

because A\p € VE and d (p) # 0. So implies Q (5)}” Q (S):E = 0.

Next we show that Z/\@EQ(S)XE = S,. We prove this by induction on |E|.
First suppose |E| = 1. Since v € E by assumption, then VE = E = {v} and
SCrevr @SN =Q(9)," = 5.

Now suppose that ), ., @ (S)XG = S, for all |G| < n—1 for some n > 2. Suppose
|E| = n and we have to show 3°,.,, @ (S)y" = S,. Since |E| > 2, then there exists
A € E\ {v}. Define F := E\{v}. For v € VF, we have

329) Q9 =58 ] (55— SwSewy)

YyeEVE
d(v)#£0
= 5,5 H (SWSW* - S’YVS('YV)*) H (Svsv* - S’YTS(’YT)*) :
YVEVF YyTEVE\VF
d(v)#0 d(7)#0

We claim that for y7 € VE\V F with p1,, # ~, the factor S,S,- — 5,75, from (3.2.9)
can be deleted without changing the result of the product. Take v7 € VE\ V F with
[iyr # 7. Since v € VF and (y7) (0,d (7)) = v, then by Lemma B.2.11{ii), pyr = vp
for some p with d(p) > 0. Since yp = p, € VF, then S, S« — S, S, is a factor in

Q (S);/E Now from Lemma [3.2.11{(i)) and Proposition [3.1.3(a), we have

(5,8, — SMWSM%) (5,83 = Sy:Smy%) = S9Sy — 837540y
since (y7) (0,d (t44+)) = pt-. Hence
(SWSW* - SWTS(’YT)*) Q (S)\W/E =Q (S);/E

and we can delete the factors S,.9,« — 5,5+ from (3.2.9), as claimed. Therefore we
can rewrite (3.2.9) as

(3210) Q)Y =550 J] (55 = SwSew) [ (S48 — SvSemy)

YVEVF YTEVE\VF
d(u);éO Hyr="Y
VF
=" T (58 = SrSemy) -
YTEVE\VF
My =7
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Now note that for y7 € VE\ V F, we have y7 € MCE (¢y,,A) by Lemma [3.2.11]
So for y7 € VE\ V F with p,, = 7, we have y7 € MCE (7, A) and then d (y7) =
d(y)Vd(A). Soif y7,v7" € VE\ V F such that p,, = v = iy, then d (py.) = d(pty)
and so

SyrS(yry SyrS(yrrys = 07215575 ()
by Remark |3.1.5. Hence

H (S’YS’Y* - S’YTS(W')*) =55y — Z SyrS(ymys

yTEVE\VF NTEVE\VF
HyT=7 My =7

and we can rewrite (3.2.10)) as
Q (S)iE =Q (S)»\Y/F <SVS’Y* - Z S’YTS(WT)*)'

YTEVE\VF
Hyr=7%

This holds for all v € VF, and hence

DQWEF=Y QW+ Y Q©9)”

TEVE YEVF veEVE\VF
- Y s (s Sye— >SS ) Y Q)"
YEVF YTEVE\VF veVE\VF
H~yT=7%
Yol (5 Y Ssu)e Y Y
YEVF YTEVE\VF YeEVF ve VE\VF
HyT=7% Hv="7

since for v € VE\ V F, there exists a unique p, € VF (see Lemma (3.2.11]). Hence

> Q=3 (QENT (S8 - X SuSer)+ 3 Q)T

TeEVE YEVFE YTEVE\VF uevE\vF
Hyr =7
CY (@ (55— X SeSr)t X Qras)
YEVF YTEVE\VF veEVE\VF
My =7 My ="

by Lemma [3.2.12(c). Furthermore,

S Qe =3 QN (85— X SuSem)+ Y S5)

TEVE YEVF YTEVE\VF VEVE\VF

HyT =7 Hv="%
=> Q)yr

YEVF

Z QS VF (by Remark (3 -

YyeEVF

by the inductive hypothesis. O
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Proof of Proposition[3.2.6, We follow the argument Proposition 3.5 of [41]. By Remark
2

3.2.4) we already have (Q (S)XE> = Q(9))". So it suffices to show

Q (9" Q(9)," =0 for A # p,

and (3.2.2). Take A\,u € E with A # p. If r(X) # r(u), then S,3)Syu = 0
and so Q(S)XEQ(S)ZE = 0. On the other hand, if r(\) = r(u), we also have
Q9" Q (S)ZE = 0 by Lemma |3.2.7] as required.

To establish ([3.2.2)), we claim that for v € r (F),

(3.2.11) E satisfies (3.2.1)) if and only if EU {v} satisfies (3.2.1]).

First suppose that E satisfies . For every A € E, we have either MCE (\,v) =
{A} (if A € vE) or MCE (\,v) = 0 (if A ¢ vE), so E U {v} also satisfies (3.2.1). On
the other hand, if F'U {v} satisfies (3.2.1), then F also satisfies since there are
no paths \, 4 € E\ {v} which satisfy MCE (), ) = {v}. Thus we have (3.2.11).

Now fix v € r(FE). To prove (3.2.2]), we consider two cases where v € E and
v¢ B Ifve K, then [ .5 (S, — SxSx+) = 0 and the left hand side of is
Y reor @ (S)Y where E satisfies (3.2.1) and v € E.

On the other hand, suppose v ¢ E. We define F' := E'U{v} and by claim (3.2.11)),
F also satisfies . We also have

Q9 =Q ()P = Q(9)Y for all A € vE,

and

Q(S)y = I (S — SxSx).

AevE

So

(5 TT Se=$80) ) + 2 QT =) + 3 QS = 3 Q9)f.

AEVE AEVE AEVE AEVF

Hence the left hand side of (3.2.2)) is Z/\@FQ(S)f, where F' satisfies (3.2.1) and

contains v.

Therefore it suffices to show that

> QSN =5

AevE
where E satisfies (3.2.1) and v € E. However, this is true by Lemma [3.2.7, The
conclusion follows. O
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A direct consequence of Proposition [3.2.6] is:

Corollary 3.2.13. Suppose that A is a finitely aligned k-graph and that R is a commu-
tative ring with 1. Suppose that E C A is a finite set which satisfies . Suppose
that {Sy, Sy : \,u € A} is a Kumjian-Pask A-family in an R-algebra A. Then for each
w e E, we have

SpSur = Z Q (S)fy'

prekl
Proof. Proposition tells us that
(3.2.12) SuSue = SuSue (( TI (S —$35x) ) + QS)Y).
rer(p)E rer(p)E

For all v with uv € E, we have

SHS#*Q (S)fu = SuSu* S#VS#V* H (SWS(W)* - Suws(uzry)*)

puvyeE
d(7)#0
=SS H (S, Sy — SunSqury)  (by Proposition B.1.3(a))
puryeklE
d(v)#0

E
= Q (S)uu :
So by , it suffices to show that
(a) 5,5, HAET(M)E (Sy(u) — SxSx+) =0, and
(b) S,8,+Q (S)Y =0 for all A € E\ pA.

First we show part (a). Since p € r () E then

SpSps H (ST(H) - SAS/\*) = SuSyur (ST(H) - Susu*) H (Sr(u) - S/\S/\*)

Aer(p)E Aer(u)EN{u}
= (SuSpur — SuSus) H (ST(M) - S/\SA*)
Aer(p) EN{p}
=0,

as required.
Next we show (b). Take A € E\ puA. If MCE (p, A) = 0, then 5,5, S,Sx- = 0 (by
Proposition [3.1.3(a)) and

S“S#*Q (S)f — S}LS,LL*S)\SA* H (S)\S)\* — S)\VS()\V)*) = 0

A\veE
d(v)#0
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So suppose MCE (p, A) # (). Then by Proposition [3.1.3|a),

SuSueQ(S)y = Y <5Ap5<xp>* 11 (SASA*—SAVS(M*))-
APEMCE(\ 1) d/\(l;)efo

Take \p € MCE (A, ). Since A\, u € F and E satisfies (3.2.1), then \p € E. Further-
more, since A ¢ pA, then d(p) # 0 and

S)\pS(/\p)* H (S/\SA*_S)\VS(AV)*)

AEE
d(v)#0
= S3S0m (S3Sx = SnSo) T (SaS = SwSou))
Ave E\{\p}
d(v)#0
= (SwSaw = SwSow)  I1 (S3Sn = SnSiwy)
Ave E\{\p}
d(v)#0
(by Proposition3.1.3(a))
which equals 0. The conclusion follows. O

3.2.2 Subalgebras of the core

For a finite set £ C A, we want to identify a finite set IIF containing E such
that span {S\S,« : A, u € IIE, d(\) =d(p)} is closed under multiplication for every
Kumjian-Pask A-family {S,S,-: A\,u € A} in an R-algebra A (Proposition |3.2.18]).
We follow the C*-algebraic argument of |41}, Section 3].

Lemma 3.2.14 ([41, Lemma 3.2]). Suppose that A is a finitely aligned k-graph and
that E C A is finite. Then there exists a finite set F C A which contains E and

satisfies
(3.2.13) A\ p,0 € F withd(N\) =d(p) and s(A) = s(u) implies NExt (u;{c}) C F.
Remark 3.2.15. Condition (3.2.13)) is equivalent to

A, p,T €F, d(X) =d(pn), d(p) =d (1), s(A) =s(n), and s (p) = s (7)
imply {Aa, 781 (a, 8) € A™™ (p,p)} C F
which is Condition (3.1) of [41].

Now note that for a family of sets satisfying (13.2.13)), their intersection also satisfies
(13.2.13), so we make the following definition.
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Definition 3.2.16. Suppose that A is a finitely aligned k-graph. For every finite set
E C A, we define IIE to be the smallest set containing E and satisfying (3.2.13)); that

1S

NE :=({F CA:ECF and F satisfies (3.2.13)}.
We also write ILE x4 (I1E for the set {(A\, ) € IIE x [IE : d(X\) =d (1) ,s (A) = s (p)}-

Remark 3.2.17. A number of aspects of these sets are worth commenting on:
(i) TIE is finite.

(i) IIE satisfies (3.2.13). If we choose A = p, Condition ([3.2.13)) becomes “\, o € IIE
implies MCE (A, o) C TIE”. Hence I1E also satisfies (3.2.1)) and Vv (IIE) = I1E.

(iii) Suppose that (A, p) € IIE x4 IIE. If v € s(\) A such that pv € IIE, then set
o = pv in (3.2.13) and we get \v € [IE. By symmetry, A\v € IIE also implies
pv € IIE. Hence for v € s(\) A,

awellF & uvellb.

Now we state the main result of this subsection as follows:

Proposition 3.2.18. Suppose that A is a finitely aligned k-graph and that R is a
commutative ring with 1. Suppose that {Sy, Sy~ : A\, u € A} is a Kumjian-Pask A-family
in an R-algebra A. For every finite set E C A, the set

M5y = spang {S\S,- : (\, 1) € IE x4, 11E}
15 closed under multiplication.

Proof. Take (A, p), (p,7) € IIE x4 IIE. Then

915,05, 8, = SA( 3 SVSV*>ST* (by (KP3))

(vyy)EA™IR (1, p)

= Z SxwS(ry)*-

(vyy)EA™In(p,p)

Suppose (v,7v) € A™" (u, p). Then

d(pv) (since d(A) = d (p))

=d(py) (since (v,7) € A™ (, p))

d (1) (since d(p) =d(1)).

By Remark |3.2.17((iii), both Av and 7+ belong to IIE, and so Sx,S(-)* € M§ . Hence
S\S,+S,S,+ belongs to My, as required. n
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3.2.3 Identifying matrix units

In this subsection, for a finite set £ C A, we identify a collection of nonzero matrix
units for My, and investigate their properties.

Suppose that E' C A is finite and {S), S, : \,u € A} is a Kumjian-Pask A-family
in an R-algebra A. For (A, pu) € IIE x4, IIE, we define

O (S)ay. = Q (93 Sr5e

The aim of this subsection is to show that the © (S )f\“i are matrix units for Mg,

as stated in the following proposition.

Lemma 3.2.19. Suppose that A is a finitely aligned k-graph and that R is a commu-

tative ring with 1. Suppose that {Sx, Sy~ : A\, u € A} is a Kumjian-Pask A-family in an

R-algebra A. Suppose that E C A is finite. For (A, u), (p,7) € IIE x4 I1E, we have
(a) ©(S)r, ©(5),7 = 0,,0 (S)y7, and

p,T
(b) S)\SM* = Z)\VEHE @ (S)gyE,;u/
The subalgebra M3y is spanned by the set {© (S)?ﬁ (A ) € IIE x4 IIE}.
To prove Lemma [3.2.19 we need to prove the following lemma, first.

Lemma 3.2.20. Suppose that A is a finitely aligned k-graph, and that R is a commu-
tative ring with 1. Suppose that {Sx, Sy~ : A\, u € A} is a Kumjian-Pask A-family in an
R-algebra A. Suppose that E C A is finite. For (\, p) € ILE X 44 IIE, we have

O (S, = SA( IT (i =S50 )Su* = 5:8.:Q(9)," .
W40

Proof. We adapt some ideas from [41, Lemma 3.10]. Take (A, ) € IIE x4 IIE. Then

(3.2.14) O (S)yr = Q ()3 SrS,
=530 (T (539x = SwSouy) ) SaSu

AEITE
d(v)#0

=538 (T (38x = 51880 3) ) xS

AvellE
d(v)#0

= 53Sn (T (S (Sin = $050-) ) ) Sy

MeEllE
d(v)#0
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Since Sy« Sx = Ss(x) and Sy (SS(A) — SZ,S,,*) = S50y — SuS,- for all v € s(A) A, so all

Sy«S) which occur between terms in (3.2.14]) can be deleted and we have

© (S)?ﬁ = SASA*SA( H (S50 — SuSur) )SA*S)\Sy*
o

= S/\( H (Ss()\) - SVSV*) )Su*)
MEllE
d(v)#0

which proves the left equation. A similar argument gives
35w Q S =S\ TT (Su = $u501) ) Sy
AveEllE

d(v)#£0

as required.

]

Proof of Lemma[3.2.19. Take (A, i), (p,7) € IIE x4, I1E. Then by Lemma [3.2.20] we

have

O (S)yy ©(9))7 = S1S,-Q (), 7 O ()7

)\”u, pT

= S\ Q (), Q(S))" 5,5+ (by the definition of © (S);”

= 0p0 SASQ (S)EE S,,S-+ (by Proposition
= 010 Q(S)VF 525,+5,5,- (by Lemma

= G0 Q (5)3" 5SS Sr-

= 0o Q(S)3" SxSr (since s (A) = s (1))

= 0,p© (S))\ T

which proves (a).

Next we show part (b) using an argument like that of [41, Lemma 3.11]. Note that

= SAS Z Q () (by Corollary [3.2.13)

prellE

= SxOp Z (SWS(W)* H (SMVS(NV)*_SMVWS(HV’Y)*)>

prellE pry€ellE
d(v)#0

= SxSpr Z <SWS(W)* H (SWS(W)* — Sy SySy S(W)*) )
prellE pry€ellE
d(v)#0

= S\Su Z <SWS(/W)* H (SW (SS(W) - S’YS’Y*) S(W)*) >
prellE pry€ellE
d(v)#0
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Since Sy Suy = Ss(uv), then we rewite as
(3.2.16)  SxSux = SHSp Z (S;WS(,W ( 1/( H (Ss(ur) = 5555+) )S(W)*)>

prellE pvy€ellE
d(v)#0
= SASpr Z (S/W< H (SS(/W) - S%%*) )S(W)*>
prellE pvy€EllE
d(7)#0

(since S(,u)* S = Ss(u))

= > (38w Su( TT (Sstwr = 555+) ) Stur)

s
= Z <S)\S,LL*S,MSV< H (Ss(;,w) - S’YS'V*) >S(NV)*>
uvellE vy ellE
d(v)#0
- Z <SAV< H (Ssgu) = 555 )S(#v)*>
prellls pvy€NE
d(v)#0

since S+ Sy, = Sy()- By Lemma|3.2.20} the last line of (3.2.16) equals }_ ey © (S)\F

Av,uv?

and we get the desired result.

Since MJp is generated by elements in the form S)S,~ where (X, ) € IIE x4, I1E,

e
Av,puv?

set {© (S)y, : (A, p) € IE x4, TIE}. O

and since each S35+ can be written as the sum of © () Mg§, is spanned by the

3.2.4 Proof of the graded uniqueness theorem

Now we establish the last technical results before proving Theorem [3.2.1] The key
ingredient is to prove the injectivity on Mg, (Lemma and on KPg(A), =
spanp {sxs,- : d(A) = d(p)} (Theorem [3.2.23).

First recall from Remark [3.2.17(iii) that for a finite set £ C A and (X, p) € I1E x4,
IIE and v € s (A\) A, A\v € I1E if and only if uv € TIE. Hence

{fresNA:dv)#0, wellE}={ves(A)A:d(v)#0,uv € lIE}.

We denote this set by 7" (\). Note that since AT (\) C IIE and IIE is finite (Remark
3.2.17(i)), then T'(X) is also finite.

Lemma 3.2.21 ([I8, Lemma 4.3]). Suppose that A is a finitely aligned k-graph, that R
is a commutative ring with 1 and that E C A is finite. Suppose that m: KPgr (A) — A
is a ring homomorphism such that 7 (rs,) # 0 for all r € R\ {0} and v € A°. Let
(A, 1) € IIE x4 IIE. Then the following conditions are equivalent:
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(c) T (\) is ezhaustive.
Furthermore, for r € R\ {0} we have
(3.2.17) W(T@ (3)?5) = 0 if and only if r© (s)f\lf =0
and T is injective on M.
Proof. To show the three equivalent conditions, we first prove the following claim.
Claim 3.2.22. Suppose that ¢ : KPgr(A) — A is a ring homomorphism such that

¢ (rs,) #0 for allr € R\ {0} and v € A°. Then for (\,p) € IE X4, I1E,

(b(@ (S)HE> =0 if and only if T (\) is exhaustive.

Al

Proof of Claim[3.2.23. We modify the argument of Proposition 3.13 of [4I]. Suppose
that T () is non-exhaustive. We have to show qb(@ (5)?5) is nonzero. Since T'(\) is
non-exhaustive, we choose £ € s(A) A such that A™™ (&, ) = () for all p € T(N). It

suffices to show that

(3.2.18) qb(S)\gS()\g)*@ (s)?f sus,\*) = ¢<8,\§S(A§)*>
since the right hand side is nonzero (by the hypothsesis and Proposition [3.1.3|(d) with
G =10). Then
(3.2.19)
52e8(0¢) O (s)i“i SuSxe = Sx¢S(ne)* (Q ()" S)\Su*>8u$,\* (by the definition of © (5)1;5)
= 5x¢50e) @ (S)EE SxSx+ (since $,+5, = Ss(u))

= SxeS(ae)* (3,\3,\* H (5)\3)\* - S/\I/S(/\V)*) )8,\8,\*
veT(N)

(by the definition of @ (s)}")

= S)\§S()\£)* <S)\S>\*S,\S)\* H (SAS)\* — S)\VS()\I/)*) )
veT(X)

since {sys)+ : A € A} is a commuting family (Proposition[3.1.3|(a)). Proposition[3.1.3{a)
says (S,\S)\*)z = sx8x- and SxeS(ne)r = SxSa-SxeS(ag)*- Then we rewrite (3.2.19) as

535070 () susxe = saespe || (sasae = sxwsou)) -
veT(N)
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Now note that for v € T (\), we have A™" (£, 1) = @ and A™™ (X, A\w) = 0. By
Proposition m(a), we have spe*sn, = 0 and sxeS(ag)*SavSow) = 0. This implies
B2.19).

Next we suppose that T'(\) is exhaustive, and show that qb(@ (s)?f) = 0. Note
that 7" () is also finite and belongs to FE (A), so

(3.2.20) H (SS()\) — S,,S,/*) =0.

veT(N)

On the other hand, by Lemma |3.2.20, we have

¢<@ (S)Eﬁ) = ¢(3A< H (Ss(r) — SuS0+) )Sm>,

veT(N)
which equals 0 by (3.2.20]), as required. [ Claim B.2.22]

By Claim with ¢ the identity homomorphism, we get (b)<(c). Meanwhile,
choose ¢ = 7 and the claim also gives us (a)<(c). Hence (a), (b) and (c) are three
equivalent conditions.

Now take (A, u) € IIE x44 IIE and r € R\ {0}. We have to show (3.2.17). If
rO (s)f\[]i = 0, we trivially have 7T<7“@ (s)i”i) = 0. So suppose 7T<7“@ (3)1;5) = 0. By
Remark |3.1.6] 71'(7“@ (s)?f) = 0 implies that 7" () is exhaustive (since r # 0). Since
T (A) is exhaustive, © (s)?ﬁ =0 by (¢)=(b). So r© (S)Ei = 0, as required.

Next we show that 7 is injective on M. Take a € Mf, such that 7 (a) = 0. We
have to show a = 0. Since a € My, and the M, are matrix units (Lemma [3.2.19)),
we write a =Y\ jepTau® (3)135 where F' CIIE x4, I1E, ry, € R and © (3)1;5 # 0.
If T'(\) is exhaustive for some (A, ) € F, then by (c)=(b), @(s)f\ui = 0, which
contradicts © (s)i”i # 0. So T'()) is non-exhaustive for all (A, ) € F. Since 7 (a) = 0,
then for (p,7) € F, we have

0= W(@ (S)Ef >7r (a) 7T<@ (s)?f)
= 7T<@ (S)Ef >7T< Z SWS) (s)g\lf )71’(@ (s)?f)

By Remark [3.1.6, r, 0 (7 (s))gf = 0 implies that r,, = 0 (since T'(p) is non-

exhaustive). Therefore @ = 0 and 7 is injective on M. O

A direct consequence of Lemma |3.2.21] is:
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Theorem 3.2.23 ([I8, Theorem 4.4]). Suppose that A is a finitely aligned k-graph
and that R is a commutative ring with 1. Suppose that m : KPg(A) — A is a ring
homomorphism such that 7 (rs,) # 0 for allr € R\ {0} andv € A°. Then 7 is injective
on KPg (A),.

Proof. Take a € KPg (A), such that 7 (a) = 0. We have to show a = 0. Write a =
dovmer Tausasus with d(A) = d(p) for (A, p) € F. Define £ := {A, pu: (A, p) € F}
and then a € M. Since 7 is injective on M, by Lemma [3.2.21] a = 0. ]

We need one final lemma for the proof of Theorem [3.2.1]

Lemma 3.2.24 ([I8, Lemma 4.5]). Suppose that A is a finitely aligned k-graph and
that R is a commutative ring with 1. Suppose that I is a graded ideal of KPgr (A). Then
I is generated as an ideal by the set Iy := 1 NKPg(A),.

Proof. We generalise the argument of [55, Lemma 5.1]. Take n € Z* and write n =
n1 — ng such that ny,ny € N*¥ and |n1 4+ no| as minimum as possible. We show that
I, == INKPg (A), is contained in KPg (A), I)KPg(A),,. Now take a € I, and write
a =0 er Musrsu-. Note that d(A) —d(p) = n for (A, ) € F. Since n = n; — n»
with ni,n, € N¥ and |n; + ns| as minimum as possible, then for every (\,u) € F,
d(\) > ny and d(p) > ng, so by the factorisation property, there exist Aj, Ao, i1, o
such that

A=Ay, b= pu1fia, d(>\1) = ni, d(/h) = ny, and d(/\2) = d<ﬂ2) .

Hence

a = E , Tx1 A2, u1p250 (5)\23#§) Spy-
(A pm)eF

Take (o, ) € F and write & = ajay and f = (15;. Note that for v,y € A with
d(v) = d(v), Remark gives s,-5, = 0 for v # . Then

SqraSg = Z T X1 Ao o (Sa’{SAl) (3/\23/6) (Sufsﬁl)
(ApEer

= E TaiXa,B1p2SxeSpb
{0\ w)EF: N =a1,u1=Pp1}

since d (o) =ny =d (A1) and d (1) = ng = d(uy) for (A, u) € F. Since a € I, we have
sazasg, € I. Since d () = d(u2) for (a)e, Biita) € F', we have sorasg, € KPg(A),.
Hence

Z Tarda,BrpzShaSuy = Sazasp, € lo

{(p)EF: M =a1,u1=PF1}
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and

Z TaiXo,BipaSardeS(Biu2)* = Saq <5a1‘a$51> Sy € KPR (A>n1 [OKPR (A)n2 .
{(Ap)eF: =ar,p1=p1}
Therefore
a = Z a1 A2,p1 2 SA1 A2 S (a2 )
(Ap)eF

= Z ( Z Taide,Bruz 30&1/\23(51%)*)

{ler,1):(ap)eF}t  {(Ap)eF:Mi=a1,m=Pb1}

also belongs to KPr (M), IoKPg(A),, , and I, € KPR (A), KPR (A)
Now since [ is a graded ideal and I = @,
ideal by Ij. O]

ng’

I,,, we have that I is generated as an

Proof of Theorem |[3.2.1. Because 7 is graded, ker 7 is a graded ideal. By Lemma|3.2.24]
the ideal ker 7 is generated by the set ker m N KPp (A),. Thus it suffices to show that
Tlkpr(n), : KPR (A)y — A is injective. This follows from Theorem |3.2.23 O

3.3 Relationship with higher-rank graph algebras

We recall from page [§| that for a finitely aligned k-graph A, a Cuntz-Krieger A-family
is a collection {T) : A € A} of partial isometries in a C*-algebra B satisfying (TCK1-
3) and (CK). There exists a universal C*-algebra C* (A) generated by the universal
Cuntz-Krieger A-family {t, : A € A}.

The main result of this section generalises Proposition 7.3 of [11] as follows.

Proposition 3.3.1 ([I8, Proposition 4.6]). Suppose that A is a finitely aligned k-graph.
Suppose that {sy, s, : A\,u € A} is the universal Kumjian-Pask A-family over C and
that {ty : A € A} is the universal Cuntz-Krieger A-family. Define

A = spang {t,\tz t A\ pEA}.

Then there is an isomorphism m; : KPc (A) — A such that 7 (sy) = tx and 7, (s,) = 1,

for \,u € A. In particular, KPc (A) is isomorphic to a dense subalgebra of C* (A).

We shall use the graded uniqueness theorem to prove Proposition [3.3.1] So the first
step is to look for a candidate for the ZF-grading of spang {t,\tz A\ € A} as stated

in the following lemma.
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Lemma 3.3.2. The subspaces
A, = spanc {trth : A, p € A, d(N) —d(u) =n}
form a ZF-grading of spanc {t,\tz A\ U E A}.
The proof of this lemma uses the gauge action from page [5

Proof of Lemma[3.3.3. We generalise the argument of [11, Lemma 7.4]. First we show
A A, C A, for m,n € ZF. Take m,n € Z*. Note that for A\, pu,p,7 € A with
d(N) —d(p) =nand d(p) —d (1) =m, (TCK3) gives

tatit s = tA< > t#/tz,)ti
(W ,p") €A™ (1, p)

= > bt

(W sp") €A™ ()

For (1, p') € A™" (u, p), we have

d(M) —d(rp") =d(N) +d () —d(r) = d(p)
=d(A) +(d(p) Vd(p) —d(p)

(1) = (d () Vd(p) = d(p))
( (

Hence It tls € Apim, and A, A, C A,

Next we show that A = € ,,czxA,. Since each spanning element tt;, belongs to
Ad(n)-d(u)> every element a of A can be written as a finite sum ) a, with a, € A,,. To
see that the A, are independent, we suppose that a,, € A, and > a, = 0. We have

to show a, = 0 for all n € Z*. Now recall that

1 ifm=1
(3.3.1) / 2"dz =
Tk 0 otherwise.

Hence for m € Z*, we have

(3.3.2)
/ My () dz = / 2y () s () dz = / (A0 (-0 s
Tk Th y
= /Ek z_m—i-d()\)—d(u) (t)\t;';) dz = t)‘tlt /Tk Z_m+d()\)_d(u)dz
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taty, if m=d(\) —d(u)
0 otherwise.

Each a,, can be written as Z(/\’H)GF cn,,wt,\t;, where F' is finite. We also have ¢, , € C
and d (\) —d (u) = n for each (\, u) € F. So

(3.3.3)
/ Z*mfyz (an) dz = / ( Z Cn)\ut)\t )
™ (Aw)EF

— / z‘m< Z Co )z (t,\t;) )dz (since 7, is linear)
™ (Ap)EF

= Z Cn«\u(/ 27", (tAtZ) dz) (since the integral is linear)

(MREF ™

B douwer Caaplaly,  ifm=d(A) —d(un)

0 otherwise

a, ifm=n

0  otherwise.

/c /

The conclusion follows. O]

Proof of Proposition[3.3.1. Since {t, : A € A} satisfies (TCK1-3) and (CK), the family
{t,\, : A, 1w € A} also satisfies (KP1-4) and is a Kumjian-Pask A-family in C* (A).
Thus the universal property of KP¢ (A) gives a homomorphism 7; from KP¢ (A) onto
the dense subalgebra A of C* (A).

Next we show the injectivity of 7;. By Theorem [3.2.1], it suffices to show that m; is
a ZF-graded ring homomorphism. However, this follows from Lemma m O

3.4 The boundary-path groupoid and its Steinberg
algebra

In [I7], Clark and Sims show that the Leavitt path algebra of an arbitrary 1-graph E is

isomorphic to a Steinberg algebra. In this section, we generalise their result by showing
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that for the Kumjian-Pask algebra of a finitely aligned k-graph A is isomorphic to a
Steinberg algebra (Proposition .

Recall the boundary-path groupoid G, of a finitely aligned k-graph A from Example
2.8.3] We generalise [15, Proposition 4.3] as follows:

Proposition 3.4.1 ([I8, Proposition 5.4]). Suppose that A is a finitely aligned k-graph
and that Gy is its boundary-path groupoid as defined in Example[2.8.3. Suppose that R
is a commutative ring with 1. Then there is an isomorphism mr : KPg (A) — Ag (Ga)

such that wr (sx) = 1z, wes(n) 0nd T (Su=) = Lz, (s(uyxop) Jor A, u € AL

To show the surjectivity of mp in Proposition [3.4.1], we establish the following two
lemmas, which show that the characteristic function of a compact open set in G, can

be written as a sum of elements in the form 1z, (\«na)-

Lemma 3.4.2 ([I8, Lemma 5.5]). Suppose that A is a finitely aligned k-graph. Sup-
pose that (A, p), (N, i) € A*xs A, G C s(A\)A, and that G' C s(N)A. Define
F =A™ (O N) N A™® (4 14'). Then

(*)

Zn(Axa p\G) N Za (N s i\ G') = | | Za My o iy \ [Bxt (;G) UExt (v; &) .

(y)EF

Proof. We generalise the argument of [17, Example 3.2] for 1-graphs. First we show
that the collection

{Zn (Ay 5 1/ \ [Ext (v; G) UExt (v G)]) = (v.9") € I}

is disjoint. It suffices to show that the collection

{Za My *s 'Y') = (,7') € F}

is disjoint. Suppose for contradiction that there exist (v,7'), (v",7”) € F such that

(v,7) # (Y, 7") and V := Zx ( Ay % /'y )N Zp (XY %5 1/4™) # (). Note that if v = 4",
then

Nq' = My (since (7,7) € A™™ (), X))
= \y" (since v = ~")
— A/’}/”/ (Since (,71/’71//) c Amin ()\’ )\/))

"

and ' = +"” by the factorisation property, which contradicts (v,v") # (v”,+"). The

same argument shows that 7 = ~"” implies v = 4”. Hence v # " and v # ~".
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Meanwhile, since (v,7), (7",7") € F, then d(v) = d(v") and d (v') = d (y"). Take
(x,m,y) € V. Then z € ZA (Ay) and = € Z) (NY'). Since d(y) = d(v"), then
d(Xy) = d (M) and v = 2 (d(A),d (Ay)) = = (d(N),d(

v # +". Hence the collection {Zx (A\y *s /') : (7,7') € F'} is disjoint, and so is

AY")) =", which contradicts

{25 (Ay s p'y\ [Ext (; G) UExt (0 &)]) = (7,7) € F}
Now we show the right inclusion of (*). Write
U:=7) ()\ *g IU,\G) N Zp (/\/ *g ,u/\ G/)

and take (x,m,y) € U. We show (z,m,y) € Zx (N %5 1/v'\ [Ext (v; G) U Ext (7/; G")])
for some (,7') € F. Because € Z, (\) and = € Z, (XN), then d(x) > d(\) vV d(N)
and there exists (,7/) € A™™ (X, ') such that

(3.4.1) x € Zp(N\Y).
Using a similar argument, there exists (v”,~"”) € A™" (u, i') such that

(3.4.2) y € Zy(u").

We claim that v = +” and 7/ = 4"". To see this, note that m = d(\) — d(u) =
d(N)—d(u) and

d(y) =d(N)Vd(XN)—=dQ)=(d(p)+m)V(d)+m)—(d(u)+m)
= (d (@) Vd))+m—(d(p)+m)=dp)Vvdp)—dp=d?r").

Since (x,m,y) € Zy (A, p\ G), then 0¥z = gy and

v = (0"2) (0,d (7)) = (") (0,d (/) ="

Using a similar argument, we also get v = +" proving the claim.

Next we show that (z,m,y) € Zx (Ay %5 1'v'). By and (3.4.2)), we have = €
Zx (Ny) and y € Zy (ny"). Since y =", 7' =", (¥",7") € A™™ (u, /), then pry” =
py = 'y and y € Zx (1//9') . On the other hand, since (z,m,y) € Zx (A %5 p\ G), then
oM g = gy and

M)y — Ud(w)y — Ud(u’v’)y

since py = p'y. Since m = d(\) —d(p) = d(Ny) — d(@'v'), then (z,m,y) €
Zn (Ay s p'v'), as required.
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Finally we show that (z,m,y) ¢ Zx (AMyv *, p'~'v) for all v € Ext (v; G)UExt (v/; G).
Suppose for a contradiction that there exists v € Ext (v;G) U Ext (7/; G') such that
(x,m,y) € Zx(Ayv*, p/v'v). Without loss of generality, suppose v € Ext(v;G).
Then there exists 1/ € G such that yv € Z, (V). Since x € Zy (M), y € Zp (Wy'v) =
Zn (pyv), and yv € Zy (V'), then x € Zy (M) and y € Z, (u') where v/ € G. This
contradicts (z,m,y) € Zx (A *s p\ G). Hence

(z,m,y) € Zn (Ay*s '\ [Ext (v; G) U Ext (v; G')])

and
UC || 2Za (s Y\ [Ext (;G) UExt (v; G')]).

(y)EF

Now we show the left inclusion of (*). Take (v,+") € F and
(3.4.3) (,m,y) € Zy (Ay*s 17\ [Ext (1; &) UExt (v;G)]).

We show (x,m, y) belongs to both Zy (A *, u\ G) and Zy (N *, p/\ G"). Without loss of
generality, it suffices to show (z,m,y) € Zx (A *, p\ G). First we show that (z,m,y) €
Zn (A *s ). Note that we have py = /v and m = d (\y) —d (@'v') = d(A) —d (u). On
the other hand, (z,m,y) € Zx (\y s 1/') also implies z € Z, (A\y) and y € Z) (1'v') =
Za (py). Furthermore,

oW =[z(d(N),d (W) [0"7a]
=7 [J(M):c] (since x (d(N),d(M\y)) =)
— 7[0(“/7l)y] (since oMz = a(’”/)y)
= [y (d (), d(py)] [0¥Vy] (since y (d (1) ,d (7)) = 7)

= [y (d (1) ,d ()] [0*y] (since py = p'v')
_ (u)y

and then (x,m,y) € Zx (X %4 ), as required.

To complete the proof, we have to show (z,m,y) ¢ Zn (Av*spuv) for all v € G.
Suppose for contradiction that there exists v € G such that (z,m,y) € Zx (A\v x4 pv).
In particular, z € Z, (Av). Since x € Z, (\y) and x € Z, (Av), then there exists
V' € Ext (v;{v}) such that x € Z, (AMy/'). Hence

Y

o)y = gy (since oMy = a(“)y)

= oy (since py = 1),
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(3.4.4) (c™y) (0,d (")) = (6Wa) (0,d (/) (since oWV z = oWy)
=z (d(N),d (M)
=~/ (since z € Zy (M),

and

y (0,d(u'v'v")) =y (0,d (pyr)) (since py = p'y')
= py' (by (3.4.4))

! )

= pWy'v' (since pry = p'y').

Furthermore,
d (M) —d(p'y'V) = d(Ny) —d (1)
=d (M) —d(py) (since py = p'y')
=d(A) —d(p)=m

Hence (z,m,y) € Zy (M x5 (/4'V') for some ' € Ext (v;{v}) C Ext(y;G), which
contradicts (3.4.3). The conclusion follows. O

Lemma 3.4.3 ([I8, Lemma 5.6]). Suppose that A is a finitely aligned k-graph. Sup-
pose that for i € {1,...,n}, (N, ) € A*s A and G; C s(N\)A. Suppose that
{Zn (N *s i\ Gi) Yy is a finite collection of compact open bisection sets and

n

U= Zx (X i\ G) .

=1
Then
1y € spanp {1ZA()\*SM\G) : (/\,,u) eANx, A\,G C S()\)A} .

Proof. The lemma is trivial for n = 1. Now let n = 2 and F := A™" (A, \y) N
A (g o) . I F = (), then
Ly = 1z, \@1) T 120 (oxena\Ga) -

Otherwise, Proposition [3.4.2] gives
Iy = 1z, (0seun\G1) T 120 Oorepn\G2) — Z 12, s
(r172)€F

where Z,, ., = Zx (M1 *s 272\ Ext (71; G1) U Ext (72; G2)). For n > 3, by using
the inclusion-exclusion principle and de Morgan’s law, 1y can be written as a sum of

elements in the form 1z, (xn6)- O
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Proof of Proposition [3.4.1 Define Ty := 1z, (x,s(n)) and Ty = 1z, (s(uyxsp) for A, pp € A
Then by [24, Theorem 6.13] (or [58, Example 7.1]), {7\ : A, u € A} satisfies (TCK1-3)
and (CK). Thus {T),T; : \,u € A} is a Kumjian-Pask A-family in Ag (Gy). Hence
there exists a homomorphism 7y : KPr(A) — Ag (Ga) such that 77 (s)) = Ty and
Ty (su+) = T); for A, pp € A by Theorem (a).

To see that 7 is injective, first we show that 7mr is graded. Take A, € A. Then
sxsu» € KPp (A)d()\)_d(u) and

Tr (SxSp+) = 12, 0vep) = L{(@d(0)—d().0): \mernshzes(nony € Ar (Ga) gy —agu) -

Since for every n € ZF, KPg (A),, is spanned by elements in the form sys,« (Theorem
3.1.8(c)), then for n € ZF, 77 (KPg(A),) € Agr(Ga), and 77 is graded. Since 7r is
graded and 77 (rs,) = 71z, () # 0 for all r € R\ {0} and v € A° Theorem
implies that 7r is injective.

Finally we show the surjectivity of mp. Take f € Ag(Ga). By Proposition , f
can be written as ;- ayly where ay € R, each U is in the form [}, Zy (Ai %5 i\ G;)
for some n € N, and F' is a finite set of mutually disjoint open sets. Hence to show
f € im (77), it suffices to show

1y € im (77)
where U := J_; Zx (i *5 ;)\ G;) for some n € N and collection {Zx (\; *s ;'\ Gi) iy

By Lemma , 1y can be written as the sum of elements of the form 1z, (x.,,nq). On
the other hand, for (A, u) € A x4 A and finite G C s (\) A, we have

(3.4.5)
TA( 11 Ty - T1) >T o = 12,0 (| L] (1zats0s00) = 1za(wear) )1ZA(s(u>*su>
veG veG

= 1z, (sap\@)

since s(A\) = s(u). Hence 1z, (x, @) belongs to im (77), and then so does 1y, as

required. Therefore 7 is surjective and is an isomorphism. O

Remark 3.4.4. Finitely aligned k-graphs include 1-graphs and row-finite k-graphs with
no sources (see Section. In these cases, the boundary path groupoid G, of Example
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coincides with Gg of [17] and G, of [15]. Thus we have generalised Example 3.2 of
[17] and Proposition 4.3 of [15]. For locally convex row-finite k-graphs, our construction

gives a Steinberg algebra model of the Kumjian-Pask algebras of [16].

3.5 Relation between aperiodic higher-rank graphs

and effective groupoids

In this section and Section [3.6] we investigate the relationship between a k-graph A and
the boundary-path groupoid G, constructed in Example [2.8.3] We expect the Cuntz-
Krieger uniqueness theorem (Theorem to apply only to aperiodic finitely aligned
k-graphs. On the other hand, effective groupoids (definition below) are needed in the
hypothesis of the Cuntz-Krieger uniqueness theorem for Steinberg algebras (Theorem
B.7.2). In this section, our main result is Proposition which says that a finitely
aligned k-graph A is aperiodic if and only if the boundary-path groupoid G, is effective.

Recall from Definition that a boundary path x is aperiodic if for all A\, u €
Ar(z), A # p implies Az # px. We then say a finitely aligned k-graph A is aperiodic
if for each v € A°, there exists an aperiodic boundary path x with 7 (z) = v.

Next let G be a topological groupoid. Recall from Section that G is effective if
the interior of

Iso(G) :={a€G:s(a) =r(a)}

is GO See [13, Lemma 3.1] for some equivalent characterisations.

Proposition 3.5.1 ([I8, Proposition 6.3]). Suppose that A is a finitely aligned k-graph.
Then A is aperiodic if and only if the boundary-path groupoid G is effective.

Proof. First suppose that A is aperiodic. We trivially have that g(A“) is contained in
the interior of Iso (Gy). Now we show the reverse inclusion. Take an interior point a
of Iso (Gp). Then there exits Zj (A *s u\ G) such that Zy (A x5 u\ G) C Iso (Gy) and
a € Zp (A #*gu\ G). We show \ = p.

Note that since a € Zy (A% u\ G), Zpn (A *s p\ G) is not empty, and G is not
exhaustive (see Remark[2.8.4(ii)). Hence there exists v € s (\) A such that A™® (1, ) =
() for v € G. Because A is aperiodic, there exists a aperiodic boundary path z €
s (v) OA.

We claim that the boundary path vz is also aperiodic. Suppose for contradiction

that there exist X',y € Ar (vz) such that N # u/ and

(3.5.1) N (vze) =y (ve).
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Since X, i/, v € A, by uniqueness in the factorisation property, A # u' implies N'v #
w'v. Now because x is aperiodic, N'v # p/v implies Nvr # p/ve, which contradicts
(13.5.1). Hence vz is aperiodic, as claimed.

Since Avz € Zy (A)\ Za (A\y) and pva € Zy (1)\ Za (uy) for v € G, we have
()\l/l’,d()\) _d<:u)7lujx) S ZA(A*SIJ’\G)

Thus Za (A s p\ G) C Iso (Ga), and hence A\vx = pvz. Since va is aperiodic, we have
A (vz) = p(vz) which implies A = . Therefore G, is effective.
Now suppose that A is not aperiodic. Then there exists v € A° such that for all

boundary paths z € vOA, x is not aperiodic.

Claim 3.5.2. For x € vOA, we have xGyx # {z}.

Proof of Claim[3.5.2 Take x € vOA. Since x is not aperiodic, there exist A\, u € Ar (z)
such that A # p and A\x = px. If d(\) = d (u), then

A= (Az) (0,d(N)) = (ux) (0,d (1) = p,

which contradicts A # p.
So suppose d (A) # d (p). Note that for 1 < i < k such that d (\), # d(u);, we have

d(x), = oo (since Ax = px). Hence
(X)) Vd(p) =dW)V({(d(N)Vd(p) —d(p) <d(@).

Write p:= (d(A\) Vd(p)) —d(N) and ¢ := (d(\) Vd(u)) —d(u), and note that p # q.

Since \r = ux,

oPr = oP (Ud(/\) (/\m)) — AN vd(p) (/\@
— gdN)Vd(w) (uz)
= o1 (Ud(u) (uw)) — olr.
This implies that (z,p — q,x) € G\ gz(XO) and 2Gaz # (). O Claim BE

Since xGpx # {x} for all z € vOA,
Zn(0)N{z e G : 2Gpz = {z}} =0

and {z € QI(XO) : 2Gaz = {z}} is not dense in g(AO). Since G, is locally compact, second-
countable, Hausdorff and étale (see Remark [2.8.4{(iii)), [44, Proposition 3.6(b)] implies

that G, is not effective, as required. n
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Remark 3.5.3. For a finitely aligned k-graph A, the following five conditions are equiv-

alent:

(a) Gy is effective;

(b) G is topologically principal: the set of units with trivial isotropy is dense in G(©);
(c) Ga satisfies Condition (1) of Theorem 5.1 of [45];

(d) A has no local periodicity as defined in [48];

(e) A is aperiodic.

In [44], Proposition 3.6], Renault shows that for a locally compact, second-countable,
Hausdorff, étale G, G is effective if and only if it is topologically principal. Since the
boundary-path groupoid G, is locally compact, second-countable, Hausdorff and étale,
we have (a)<(b). In [58, Theorem 5.2], Yeend proves (b)<(c). (Note that Yeend uses
“essentially free” to mean “topologically principal”.) Lemma 5.6 of [45] gives (c)<(d).
Finally, (d)<(e) follows from [48, Proposition 2.11].

3.6 Relation between cofinal higher-rank graphs and
minimal groupoids

In this section, we show that a finitely aligned k-graph A is cofinal if and only if the
boundary-path groupoid G, is minimal (Proposition [3.6.1]). We use this to study the
simplicity of Kumjian-Pask algebras in Section [3.8]

Recall from [50, Definition 8.4] that a k-graph A is cofinal if for all v € A° and
x € JA, there exists n < d () such that vAz (n) # 0.

In a groupoid G, a subset U C G is invariant if s (a) € U implies r (a) € U for
all @ € G. Note that U is invariant if and only if GO\U is invariant. A topological
groupoid G is minimal if G has no nontrivial open invariant subsets. Equivalently,
G is minimal if for each z € G, the orbit [x] := s (xG) is dense in GO,

Proposition 3.6.1 ([I8, Proposition 7.1]). Suppose that A is a finitely aligned k-graph.
Then A is cofinal if and only if the boundary-path groupoid Ga is minimal.

Proof. Suppose that A is cofinal. Take = € g}f’). We have to show that [z] is dense in
Q/(\O). Take a nonempty open set Z, (A\ G) and we claim that Z, (A\\ G)N[z] # 0. Since
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Zn (A\ G) is nonempty, G is not exhaustive (see Remark [2.8.4(i)). Then there exists
v € s(A\) A such that A™" (v,~) = ) for v € G. Now consider the vertex s (Av) and the
boundary path z. Since A is cofinal, there exists n < d (z) such that s (Av) Az (n) # 0.

Take p € s (A\v) Az (n). Because z is a boundary path, so is o™z. Hence
Y= Avp[o"x]

is also a boundary path and y € Z, (). Since A™" (v,v) = () for v € G, we have
y & Zx (M\y) for v € G. Hence y € Zy (A\ G).

On the other hand, since y = Avulo"z], we have (x,n —d (Avp),y) € Gy and
y € [x]. Therefore Zy (A\\ G) N [z] # 0. Thus [z] is dense in gﬁo) and G, is minimal.

Suppose that A is not cofinal. Then there exist v € A° and z € A such that
for all n < d(x), we have vAz (n) = 0. We claim Z, (v) N [z] = 0. Suppose for
contradiction that Z, (v) N [z] # 0. Take y € Zy (v) N [z]. Because y € [z], there
exists p,q € N¥ such that (x,p — q,y) € Ga. This implies 0Pz = o9y. Thus r (y) = v
and oPx = oy imply that y (0, ¢) belongs to vAz (p), which contradict vAz (p) = 0.
Therefore Zy (v) N [z] = 0, as claimed, and [z] is not dense in Q/(\O). Thus Gy, is not

minimal. O

3.7 The Cuntz-Krieger uniqueness theorem

Throughout this section, A is a finitely aligned k-graph and R is a commutative ring
with identity 1.

Theorem 3.7.1 ([I8, Theorem 8.1]: The Cuntz-Krieger uniqueness theorem). Suppose
that A is an aperiodic finitely aligned k-graph and that R is a commutative ring with
1. Suppose that w : KPr(A) — A is a ring homomorphism such that 7 (rs,) # 0 for
all 7 € R\ {0} and v € A°. Then 7 is injective.

We show Theorem [3.7.1] using the Cuntz-Krieger uniqueness theorem for Steinberg
algebras Theorem [2.10.2, First we verify an alternative formulation of the Cuntz-

Krieger uniqueness theorem for Steinberg algebras.

Theorem 3.7.2 ([18, Theorem 8.2]). Suppose that G is an effective Hausdorff ample
groupoid and that R is a commutative ring with 1. Suppose that B is a basis of compact
open bisections for the topology on G. Suppose that ¢ : Ar(G) — A is a ring homo-
morphism such that ker (¢) # {0}. Then there exist r € R\ {0} and B € B such that
B C G and ¢ (rlp) = 0.
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Proof. Since ker (¢) # 0, then by [14] Theorem 3.2], there exist » € R\ {0} and a
nonempty compact open subset K C G© such that ¢ (rlx) = 0. Since K is open,
there exists B € B such that B C K. Hence B C G and

0=29¢(rlx)¢(1p) = ¢ (rlxp) = ¢ (rlkns) = ¢ (rlp).
O

Proof of Theorem |[3.7.1. First note that G, is a Hausdorff and ample groupoid, and
is effective by Proposition [3.5.1] Thus it satisfies the hypothesis of Theorem [3.7.2
Now recall the isomorphism 77 : KPgr(A) — Ag(Ga) of Proposition 3.4.1 Then
77 (5)) = 12, 0wes(n) A 77 (Sur) = Lz, (s(upeep) for A,u € A. Define ¢ := 7o 77" To
show the injectivity of 7, it suffices to show that ¢ is injective. Suppose for contradiction
that ¢ is not injective. By Theorem [3.7.2] there exist 7 € R\ {0} and Z, (A\\ G)
such that ¢ (rlz,(ne) = 0. Since 1z,(xe) = Lz, (xnc) (Remark 2.8.4(1)), then the
argument of gives
) (rlZA()\\G)) = 7T<7“S>\< H (ss()\) — sysy*) >s/\*>7

ve@G

and then

(3.7.1) W(Ts)\( H (SS(,\) - sl,sl,*) )s,\*> =0.

veG

On the other hand, since 7 (rs,) # 0 for all r € R\ {0} and v € A°, and G is finite
non-exhaustive, then Proposition [3.1.3(d) implies that

w<r8A< H (5500 — Susur) )5/\*> £0,

veG
which contradicts (3.7.1)). The conclusion follows. O

One application of Theorem [3.7.1] is:

Corollary 3.7.3 ([18, Corollary 8.3]). Suppose that A is a finitely aligned k-graph and
that R is a commutative ring with 1. Then A is aperiodic if and only if the boundary-

path representation g : KPg (A) — End (Fg (OA)) is injective.

To show Corollary [3.7.3] we establish some results and notation.

Following [48, Definition 2.3], for a finitely aligned k-graph A, we say A that has
no local periodicity if for every v € A° and every n # m € N¥, there exists x € vOA
such that either d (z) # nV m or 0"z # o™xz. If no local aperiodicity fails at v € A°,
then there are n # m € N* such that 0”2 = o™z for all € vOA. In this case, we say

A has local periodicity n,m at v € A°.

72



Lemma 3.7.4 ([48, Lemma 2.9]). Suppose that A is a finitely aligned k-graph which
has local periodicity n,m at v € A°. Then d(x) > nV m and oc"x = o™z for every
r € vOA. Fiz x € vOA and set p =z (0,m), a = x(m,mVn), and v = (ua) (0,n).
Then pay = vay for every y € s () OA.

Proof. Take y € s (a) OA and define z := pay. Because A has local periodicity n, m at

v € A% then 0"z = 0™z. Now note that

z2(0,n) = (pay) (0,n)
= (pa) (0,n) (since n < d(pa))

=v
and z = v [o"z]. Since d (u) = m, we deduce that
0"z =0"z= (pay) (0,m) = ay,

and

poy =z =vlo"z] = vay,
as required. N

Proof of Corollary[3.7.3 Suppose that A is aperiodic. By Proposition [3.1.7, we have
s (rs,) # 0 for all € R\ {0} and v € A°. Since A is aperiodic, Theorem [3.7.1] implies
that mg is injective.

Next suppose that A is not aperiodic. We follow the argument of [11, Lemma 5.9].
Since A is not aperiodic, by [48, Proposition 2.11] (see also Proposition [2.6.3)), there
exist v € AY and n # m € N* such that A has local periodicity n,m at v € A°. Let
i, v, be as in Lemma and define a 1= $,05(u0)* — SvaS(ua)*- We claim that
a € ker (mg)\ {0}.

First we show that a # 0. Suppose for contradiction that a = 0. Then s,45(a)* =
SvaS(ua)*- Note that d (SuaS(ue)r) = d (pa) — d (pe) = 0 and

d (SvaSuay) =dva) —d(pa) =d(v) + d(a) —d(p) — d (o) =n —m #0.

Hence s,08(ua)* = SvaS(ua)* = 0. Thus 0 = 5(,4)* (sws(w)*) Spa = Si(m) = Ss(ua)
which contradicts Theorem [3.1.8(b). Hence a # 0.

Now we show that a € ker (mg). We take y € JA, and have to show 7g (a) (y) = 0.
Recall that mg (sy) = S\ and mg (s,+) = S, where

A s\ =r O‘d(“) if d _
Sx(y) = Y A =r() and S, (y) = y ify(0,d(p)=mp

0  otherwise, 0 otherwise.
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First suppose y (0, d (ua)) # po. Then Sg,q)« (y) = 0 and 75 (a) (y) = SuaSua) () —
SvaSiuay* (y) = 0. Suppose ¥y (0,d (pua)) = po. Then

75 (@) (9) = (Sua = Sva) (70 Vy) .

Since y € OA, then 0¥y € s (o) OA and Lemma/3.7.4|gives par (c¥®y) = va (o¥e)y).
Hence 7s (a) (y) = 0. Thus a € ker (7g)\ {0}, as claimed, and 7g is not injective. [

3.8 Basic simplicity and simplicity

As in [55], an ideal I in KPg (A) is basic if whenever r € R\ {0}, v € A°, and rs, € T
imply s, € I. We say KPg (A) is basically simple if its only basic ideals are {0} and
KPg (7).

In this section, we investigate necessary and sufficient conditions for KPg (A) to be
basically simple (Theorem and to be simple (Theorem [3.8.4). We show that both
results follow from characterisations of basic simplicity and simplicity for Steinberg
algebras (see Theorem and Theorem [3.8.2)). Therefore we state necessary and
sufficient conditions for the Steinberg algebra Ay (G) to be basically simple and to be

simple in the following two theorems.

Theorem 3.8.1 ([14, Theorem 4.1]). Suppose that G is a Hausdorff ample groupoid
and that R is a commutative ring with 1. Then Ag (G) is basically simple if and only

if G s effective and minimal.

Theorem 3.8.2 ([14, Corollary 4.6]). Suppose that G is a Hausdorff ample groupoid
and that R is a commutative ring with 1. Then Ag (G) is simple if and only if R is a

field and G is effective and minimal.
Now we are ready to prove our results.

Theorem 3.8.3 ([I8, Theorem 9.3]). Suppose that A is a finitely aligned k-graph and
that R is a commutative ring with 1. Then KPg (A) is basically simple if and only if

A is aperiodic and cofinal.

Proof. First suppose that KPg (A) is basically simple. By Proposition [3.4.1, Ag (Ga)
is also basically simple and then by Theorem [3.8.1] G, is effective and minimal. On
the other hand, G, is effective implies that A is aperiodic (Proposition , and Gy
is minimal implies that A is cofinal (Proposition . The conclusion follows.
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Next suppose that A is aperiodic and cofinal. By Proposition [3.5.1 and Proposition
3.6.1, G is effective and minimal and then Theorem implies that Ag (Gy) is
basically simple. Since Ag (Ga) is isomorphic to KPg (A) (Proposition [3.4.1)), KPg (A)

is also basically simple, as required. O

Theorem 3.8.4 ([I8, Theorem 9.4]). Suppose that A is a finitely aligned k-graph and
that R is a commutative ring with 1. Then KPg (A) is simple if and only if R is a field

and A is aperiodic and cofinal.

Proof. First suppose that KPg (A) is simple. Then KPg (A) is also basically simple,
and Theorem implies that A is aperiodic and cofinal. On the other hand, since
KPp (A) is simple, then by Proposition [3.4.1, Ap (Ga) is also simple, and Theorem
implies that R is a field, as required.

Next suppose that R is a field and A is aperiodic and cofinal. By Proposition [3.5.1
and Proposition Gy is effective and minimal. Hence Theorem [3.8.2] implies that
Ap (Ga) is simple and by Proposition [3.4.1] so is KPg (A). O
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Chapter 4
Cohn path algebras

Suppose that A is a row-finite higher-rank graph with no sources and that R is a
commutative ring with 1. In this chapter, we introduce a Cohn path A-family for row-
finite higher-rank graphs with no sources and study its properties. We show there is a
universal Cohn path algebra Cp (A) (Proposition[t.1.5). We also establish a uniqueness
theorem for Cohn path algebras (Theorem [£.2.1)), and then give examples of Cohn path
algebras in Section [4.3]

The material in this chapter is taken from a joint work with my supervisor Clark
in [19].

4.1 Cohn A-families

Throughout this section, suppose that A is a row-finite k-graph with no sources and
that R is a commutative ring with 1. Recall from Chapter [3] that for A € A, \* is a
ghost path, and v* := v for v € A°. We also write G (A) for the set of ghost paths and
define r and s on G (A) by

r(N):=s(\) and s (\*) :=r(N).

We also define composition in G (A) by setting A\*u* = (uA\)* for A, u € A with s(u) =
r(A), we write G (A7) := {A*: X € A\ A°}. We also recall from Chapter [ that A'
denotes the set of edges of A.

Definition 4.1.1. A Cohn A-family {T\,T,~ : A\, € A} in an R-algebra A consists of
a function T : AU G (A7°) — A such that:

(CP1) {T, : v € A%} is a collection of mutually orthogonal idempotents;
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(CP2) for A\, € A with s (X) = r (1), we have T\T),, = Ty, and T),- T+ = Tiy,*;

Remark 4.1.2. (i) In a l-graph E, people usually write {v,e,e*:v € E° e € E'}
instead of {1, T~ : A\, € E*} (see [1, 13, [5, 6, [9]). We do not use this notation
because we want to distinguish between the paths in £ and the corresponding

elements of the algebra A.

(i) Since A is row-finite, |A™™ (X, p)| is finite and the sum in (CP3) makes sense. We

also interpret any empty sums as 0, and hence A™" (\, ) = @) implies T)-T), = 0.

Since (CP1-3) are the same as (KP1-3) of Chapter 3| Proposition also applies

to Cohn A-families as follows.

Proposition 4.1.3 ([19, Proposition 3.3]). Suppose that A is a row-finite k-graph with
no sources, that R is a commutative ring with 1, and that {Tx, T, : \,p € A} is a
Cohn A-family in an R-algebra A. Then

(a) T\I-T,T,» = ZAVGMCE(/\’H) TTpwy for \p € A, and {I\T\-: A€ A} is a

commuting family.

(b) The subalgebra generated by {Tx, Ty : A\, € A} is

spanp{Th\T) : A, p € A, s (\) = s(p)}.

Now we give an example of a Cohn A-family. We use this example later to study
properties of “the universal Cohn A-family” (Theorem {4.1.5). Here W, denotes the
path space of a k-graph A (see Section .

Proposition 4.1.4 ([19, Proposition 3.4]). Suppose that A is a row-finite k-graph with
no sources and that R is a commutative ring with 1. Suppose that Fr (Wy) is the free
R-module with basis Wy. Then there exists a Cohn A-family {Tx, T, : X\, € A} in the
R-algebra End (Fr (Wy)) such that for v € A°, A\, € A and x € Wy, we have

T, (2) = r ifr(x)=w
0 otherwise,
T () = A if s(\) =71 (x)

0 otherwise,
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oW if x(0,d () = p

0 otherwise.
Further, we have rT, # 0 and r [[,cop1 (T — T.T7) # 0 for allr € R\ {0} and v € A°.

Proof. We modify the construction of the infinite-path representation in [I1]. Take
v e A and A\, u € A\ AY. Define functions f,, f, and f,+ : Wy — Fg (Wa) by

x ifr(zx)=v

fo(z) =

0 otherwise,

Az if s(A) =71 (2)
(z) =

0  otherwise,

Wz if 2 (0,d (1)) = p
fur () =

0 otherwise.

By the universal property of free modules, there exist nonzero endomorphisms S,, Sy, S+
of Fr (Wa) extending f,, f, and f-.

We claim that {T),7),~ : \,u € A} is a Cohn A-family. First we show (CP1). Take
v € A% Then T? (z) = x = T, (z) if r (z) = v, and T?(z) = 0 = T, (x) otherwise.
Hence T? = T,. Now take v,w € A with v # w. Then x € wW, implies x ¢ vWj,.
Thus T, T, (x) = 0 for every x € Wy, and T,,T,, = 0.

Next we show (CP2). Take A\, pp € A with s(\) = r(u). Then T)\T), (x) = A\uz =
Ty, (z) if © € s () Wy, and T\T), () = 0 = T}, (z) otherwise. Hence T)\T}, = T),. On
the other hand, if = (0,d (Au)) = Ay, we have

T, Ty () = Tppe 0™y = g N Ty = 5O = Ty e (2)

otherwise T+ Tx- (x) = 0 = T{,* (x). Therefore T),- T = T{y,*-
Next we show (CP3). Take A\, € A. If (X)) # r(p), then T\-T,, = 0 and
A™ (X 1) = 0, as required. Suppose r (\) =7 (u). We have

TyT, () = éﬂx) (d(N),d(px)) ifﬂm1 € s(,u) Wy and (pz) (0,d(N) = A

Take x € s(u) Wy. Note that s(u) = r(y) for (v,y) € A™® (X, ). First suppose
(uz) (0,d () # A. Then for (v,7) € A™™ (X, p),

(nx) (0,d (Av)) # Av and (pz) (0,d (ny)) # -
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Hence z (0,d (7)) # v and T, T+ (x) = T, (0) = 0. Therefore

> LT (x)=0.

(vy)EA™R (A, p)

Next suppose (ux) (0,d (X)) = A. Since (ux) (0,d (X)) = X and (ux) (0,d (@) = p, then
there is v € s (u) A such that (v,7) € A™™ (X, u) and (uz) (0,d (7)) = py. Therefore
z(0,d(vy)) = 7. Hence for (¢/,9') € A™" (X, ) such that (v/,7") # (v,7), we have
T, Ty~ () = 0. Since = (0,d (7)) = 7, then

T,Ty (x) =T, (x(d(v),d(2))) = vz (d(y),d(z))]

and
S DT (@) = Ty (2) = (52) (d(N) ,d (52)) = ToT, ().
(V,"W)eAmin()‘n“‘)

as required. Thus {7\, T~ : \,u € A} is a Cohn A-family, as claimed.

Finally we take r € R\ {0} and v € A” and show that r [, .. (T, — T.TF) # 0
and 7T, # 0. Then v € W,. Hence 7T, (v) = rv and rT, # 0. On the other hand, for
e € vA', we have T (v) = 0 and then

r I[ (T - T.T7) (v) = 7T, (v) = ro.

ecvAl

Hence 7 [[.copr (1o — TeT7) # 0, as required. O
Next we show that there is an R-algebra which is universal for Cohn A-families.

Theorem 4.1.5 ([19, Theorem 3.5]). Suppose that A is a row-finite k-graph with no

sources and that R is a commutative ring with 1.

(a) There is a universal R-algebra Cg(A) generated by a Cohn A-family {ty,t,~ :
A o€ A} such that if {T\, T, : A\, € A} is a Cohn A-family in an R-algebra A,
then there exists a unique R-algebra homomorphism ¢ : Cr (A) — A such that
o7 (ta) =Ty and ¢p (ty) = T for A\, p € A.

(b) For all r € R\{0} and v e A°, we have rt, # 0 and r [ c a1 (to — tet?) # 0.
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Proof. Let X := AUG (A7) and Fr (w (X)) be the free algebra on the set w (X) of
words on X. Let I be the ideal of Fg (w (X)) generated by elements of the following

sets:
(1) {vw — dyv : v,w € A},
(i) {N—p, X —v*u* A p,v € Aand A = pr} and
(i) {A"p = 3o yenmingry VY"1 A 1€ A}

Set Cr(A) := Fg(w (X)) /I and write ¢ : Fr(w (X)) — Fgr(w (X)) /I for the
quotient map. Define ¢, := ¢ (\) for A € A, and ¢, := ¢ (p*) for p* € G (Aﬂ). Then
{ta,tu : A, € A} is a Cohn A-family in Cg (A).

Now suppose that {73, T}« : \,u € A} is a Cohn A-family in an R-algebra A. Define
f X = Aby f(A) =T for X € A, and f(u*) := T)» for p* € G (A?°). By
the universal property of Fr (w (X)), there exists a unique R-algebra homomorphism
7 :Fr(w (X)) — A such that 7|x = f. Since {T), T~ : A\,u € A} is a Cohn A-family,
then I C ker (7). Thus there exists an R-algebra homomorphism ¢ : Cg(A) — A
such that ¢r o ¢ = m. The homomorphism ¢ is unique since the element in X
generate Fp (w (X)) as an algebra, and we have ¢r (t)) = ¢ (¢(N)) = 7 (A) = Ty and
o7 (ty) =T, for A\, u € A, as required.

For (b), suppose that {T,7),~ : \,u € A} is the Cohn A-family as in Proposition
4.1.4, Taker € R\ {0} and v € A°. We have rT, # 0 and r<He€vA1 (T, — TeTe*)) #0.
Since ¢r (rt,) = T, # 0 and

o(r IT o —tt) ) =r [T @712 #0.

ecvAl ecvAl

then rt, # 0 and r Heeml (t, — tet?) # 0. O

4.2 The uniqueness theorem for Cohn path alge-

bras

In this section, we establish a uniqueness theorem for Cohn path algebras (Theorem
. This uniqueness theorem can be viewed as an algebraic analogue of the unique-
ness theorem for Toeplitz algebras (Theorem . Our uniqueness theorem for Cohn
path algebras does not require any hypothesis on the k-graph and thus applies gener-
ally.
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Theorem 4.2.1 ([19, Theorem 4.1]: The uniqueness theorem for Cohn path algebras).
Suppose that A is a row-finite k-graph with no sources and that R is a commutative

ring with 1. Suppose that ¢ : Cg (A) — A is a ring homomorphism such that

6 (rt) #0 and (v T (b —teter) ) #0

ecvAl

for all v € R\ {0} and v € A°. Then ¢ is injective.

The rest of this section is devoted to proving Theorem [£.2.1] To help readers follow
our proofs, we divide the arguments into three subsections. In Subsection [4.2.1] we
recall the Kumjian-Pask A-families of Chapter [3] and study some of their properties.
In Subsection [4.2.2] we recall the k-graph TA of [37] and investigate the Kumjian-
Pask algebra of TA. Finally, in Subsection [£.2.3, we show that every Cohn path
algebra is isomorphic to the Kumjian-Pask algebra (Theorem . Once we have
this isomorphism, we show that Theorem [4.2.1]is a consequence of the Cuntz-Krieger
uniqueness theorem for Kumjian-Pask algebras (Theorem .

4.2.1 Kumjian-Pask algebras

Suppose that A is a row-finite k-graph. Recall from Chapter [3| that a Kumgjian-Pask
A-family {Sx, S, : A\, p € A} in an R-algebra A is a family which satisfies (CP1-3) and

(KP) [Licr (So — SaSx+) =0 for all v € A? and finite exhaustive £ C vA.

Remark 4.2.2. We are careful not to say that a Kumjian-Pask A-family is a Cohn A-
family which satisfies (KP). This is because in Definition , we define Cohn A-family
of row-finite k-graphs with no sources; however, the above definition of Kumjian-Pask
A-family allows for more general row-finite k-graphs (in particular, to k-graphs with

sources). We will need this level of generality later on.
The following proposition establishes the relationship between the Kumjian-Pask

algebra KPp (A) and the Cohn path algebra Cg (A).

Proposition 4.2.3. Suppose that A is a row-finite k-graph with no sources and that
R is a commutative ring with 1. Then KPg (A) is a nontrivial quotient of Cg (A), and
Cr (A) 1s not simple.

Proof. Tt suffices to show that the set vA® is finite exhaustive for all v € A" and
1 < i < k. To prove this, we use the argument of |41, Lemma B.2]. Note that each
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vA% is finite (since A is row-finite) and nonempty (since A has no sources). Take
v e AN and 1 <i <k Take A € vA. If A = v, then for every e € vA%, we have
A™ (X e) # (). Otherwise, suppose A € vA\ {v}. Since A has no sources, there exists
e € s(A)A%. Thus (\e) (0,d(e)) € vA% and A™™ (X, (Xe) (0,d(e))) # 0. Therefore

vA% is exhaustive. The conclusion follows. O]

The following proposition will be useful to simplify calculations in Kumjian-Pask

algebras. It essentially gives an alternate formulation of (KP).

Proposition 4.2.4 ([I9, Proposition 4.7]). Suppose that A is a row-finite k-graph and
that R is a commutative ring with 1. Suppose that {Sx,S,» : A\, € A} is a Cohn A-
family in an R-algebra A. Then

{S)\, Su* : )\,,LL c A}

18 a Kumgian-Pask A-family if and only if

TS —8:8.) =0

ecE

for all v € A° and ezhaustive E C vA*.
Before proving Proposition [4.2.4] we establish the following helper lemma.

Lemma 4.2.5 ([19, Lemma 4.8]). Suppose that A is a row-finite k-graph and that R
is a commutative ring with 1. Suppose that {Sx, S~ : A\, € A} is a Cohn A-family
in an R-algebra A. Suppose v € A°, X\ € vA and E C s(\) A is finite and satisfies
HueE (Ss()\) — S,,Sl,*) =0. Then

Sy =SS = ] (80 — SwSouy) -

veFlk

Proof. We follow the C*-algebraic argument of |41, Lemma C.7]. For v € s(\) A, we
have
(Sv - S)\SA*) (SU - SAVS(/\I/)*) =5, — S)\S)\*;

SO

(Sy = SaSx) T (8o = SrwSiawy) = So — SaSae.

veE

On the other hand,

(Sv — S)\S)\*) H (S'u - S)\VS(/\V)*)

veE
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= S H S)\V /\1/)*) - S)\S)\* H (Sv - S)\VS()\V)*)

velE veE
= H (Sv - S)\VS()\V)*> - H (S/\S)\* - S)\VS()\V)*)
veEE veE
= 1 (So = SnwSouy) = Sa(T] (Ssy = S8 ) ) S
veEER veE
- H S)\l/ )
veE
since [[,cp (Ss(,\) — SZ,SV*) = 0 by the hypothesis. The conclusion follows. O

Proof of Proposition[{.2.4, We use a similar argument to the C*-algebraic version in
[41l, Proposition C.3]. If {S), S, : A, u € A} is a Kumjian-Pask A-family, then it
satisfies [,z (S — SeSe) = 0 for all v € A and exhaustive set E C vA'. Now we
show the reverse implication. First for £ C A, we write

I(E):=|J{r(0,e): A€ E,d()); >0} and L(E) :=> maxd()),.

- AeE
=1

We have to show that [, 5 (S, — SxSx) = 0 for all v € A” and exhaustive set E C vA.
We show this by induction on L (E). If L (E) =1, then E C vA® for some v € A° and
[L.cg (So — SeSex) = 0 by assumption.

Now fix [ > 1 and suppose that [], . (S, — SxSx+) = O for all v € A? and exhaustive
sets F C vA with L(F) < [. Take v € A” and an exhaustive set E C vA with
L(E)=1+1. Ifve E, then [[,cp (S, —SaSx+) = 0. So suppose v ¢ E. Note that
I (E) C vA'. Since E is exhaustive, then by [41, Lemma C.6], I (E) is also exhaustive.
S0

(4.2.1) I (E) C vA' is exhaustive.

Take e € I (F) and by [41l Lemma C.5], Ext (e; E) is exhaustive. By [4I, Lemma
C.8], L(Ext(e; F)) < L(E) =1+ 1 and then L (Ext(e; E)) < [. So by the inductive

hypothesis, HyeExt(e;E) (Ss(e) — S,,S,,*) = 0 and then by Lemma , we get

(4.2.2) Sy =SS = [ (o= SeStenyr) -

veExt(e;E)

Now note that for v € Ext (e; E), there exists A € E with ev = AN, and then

(Sv - S)\S)\*) (Sv - Sel/S(eu)*) = Sy — SxaSx«-
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Hence

[ =)= (IT o= IT  TI (8 = SaSwn))

ACE ACE c€I(E) veExt(e;E)
= ( H (Sv - SAS}\*) )( H (Sv - SeSe*)) (by "
AEE e€l(E)
= ( H (Sy — 5xSx+) ) (0) (by (#.2.1) and the inductive hypothesis)
AEE
as required. O

4.2.2 The k-graph TA and Kumjian-Pask T'A-families

Suppose that A is a row-finite k-graph. In this subsection, we recall the k-graph T'A
of [37, Proposition 3.1]. Interestingly, the k-graph T'A is always aperiodic (Proposition

. We also study the properties of a Kumjian-Pask T'A-family (Lemma .
Proposition 4.2.6 ([37, Proposition 3.1]). Suppose that A = (A, d,r,s) is a row-finite
k-graph. Then define sets TA? and TA as follows:
TA? :={a():ve A’} U{B(v) :vA" # 0},
TA:={a(A): A€ AYU{BN):AeA s(A\)A #0}.
Define functions r,s : TA\TA® — TA° by

(r,s are the identity on TA®). We also define a partially defined product (1, w) — Tw
from
{(ry,w) eTAXTA:s(1)=r(w)}
to TA, where
(@ (), a(p) —a(iu)
(@(A), 8 (1) = B (Au)

and a function d : TA — N* where

Then (T'A,d) is a k-graph.

85



Proof. We prove that T'A is a countable category. Note that T'A is countable since A
is countable.

Take n, 7,w in TA where s (n) =r(7) and s (7) = r (w). We have to show s (Tw) =
s(w), r(tw) =7 (1), and (nT)w = n(Tw). If one of 7,w is a vertex then we are done.
So assume otherwise, and we have n = a(\), 7 = a (1), and w is either a (v) or S (v)
for some paths A, u, v in A. In both cases, we always have s (\) =7 (u), s(u) = r (v),
and (Ap)v = X (uv). If w =« (v), we have

s(rw) = s (a(w) a (v) = s (o (u)
— a(s () = als () = s (@ (V) = s ().

r(tw) =r(a(p)a(v)) =r(a(uw))
= a(r () = a(r (1) = (@ () = (1),

and
(nm)w = (a (N ap))a ) =a@u)a@)=a(()v)
=aA () =aNa(w)=a)(a(@a@)) =mn(rw).
On the other hand, if w = 5 (v), then

s(tw) = s (a(p) B (V) = s (6 (u))
=B(s(u)) =B(s(v) =s(Bv)) =s(W),

and
(nm)w = (e a ()8 () =au) B @) =B((A)v)
=B (A (w)) =«

Thus T'A is a countable category.
We show that d is a functor. Both TA and N* are categories. First take an object
x € TA®, then d(z) = 0 is an object in category N¥. For morphisms 7,w € TA with

s(7) =r(w), a cases analysis gives
d(tw) =d (1) +d(w).
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Hence d is a functor.

To show that d satisfies the factorisation property, take w € TA and m,n € NF
such that d(w) = m 4+ n. By definition, w is either «(\) or §(A) for some path A
in A. In both cases, there exist paths p, v in A such that A\ = uv, d(u) = m, and
d(v) = n. Then, we have d(a(n)) = m, d(a(v)) = d(B(v)) = n, and w is either

equal to a (p) a (v) or ae(u) B (v). Therefore there is a factorisation.

Now we show that the factorisation is unique. Supposew = a (p) o (v) = a (p') a (V')
where d (a (p)) = d(a (i) and d(a(v)) = d(a(v')). We consider paths A = pv and
N = p'v'. Since a(\) = w = a(N), then A = N. This implies p = ¢/ and v = 1/
based on the uniquness of factorisation in A. Then a () = a (¢') and a (v) = a (V).
For the case w = a (u) 5 (v), we get the same result by using the same argument. The

conclusion follows. O

Remark 4.2.7. For a directed graph F (that is, for £ = 1), the graph TE was con-
structed by Muhly and Tomforde [35, Definition 3.6] (denoted Ey ), and by Sims [51]
Section 3] (denoted E). Our notation follows that of Sims because we want to distin-
guish between paths in TA (denoted « (\) and 8 (\)) and those in A (denoted \).

Remark 4.2.8. Every vertex [ (v) satisfies 3 (v) TA' = (). If A has a vertex v which
receives edges e, f with d(e) # d(f), then there is no edge g € 3(s(e)) TAY) (or

g € a(s(e)TAYN) if s(e) A = (), and hence TA is not locally convex.

Fxample 4.2.9. Consider the 2-graph A which has skeleton

_____

where f;g; = g;f; for all i,j € {1,2}, dashed edges have degree (1,0) and solid edges
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have degree (0,1). Then the 2-graph T'A has skeleton

a(g2) 5@2)
@ 5(91)
0= G
Caliy 3 2
Oé(fz) 6(f2)

where o (f) a(g;) = a (g a (f;) and a () 5 (g;) = a(g:) 8 (f;) for all i,j € {1,2},
dashed edges have degree (1,0) and solid edges have degree (0, 1).

The following lemma gives some properties of the k-graph TA.

Proposition 4.2.10 ([37, Proposition 3.5]). Let A be a row-finite k-graph and TA be
the k-graph as in Proposition[4.2.6. Then,

(a) TA is row-finite.
(b) TA is aperiodic.

Proof. To show part (a), take x € TA. If z = 3 (v) for some v € A°, then zTA' = ()
by Remark Suppose © = a (v) for some v € A°. If vA! = (), then 2TA' = 0.
Otherwise, for 1 < < k such that vA% # (), we have

|z T A%

< 2|vA%

Y

which is finite.

Next we show part (b). Take 7,w € TA such that 7 # w and s(7) = s(w).
Proposition says that it suffices to show that there exists 7 € s(7) A such that
MCE (tn,wn) # 0. If s(r) = B (v) for some v € A° then choose n = 3(v) and
MCE (7n,wn) = 0. So suppose s (7) = a (v) for some v € A°. If vA! = (), then choose
n = a(v) and MCE (tn,wn) = 0. Suppose vA! # (. Take e € vAl. If s(e) A! = 0,
then choose n = a (e) and MCE (77, wn) = 0. Otherwise, we have s (¢) A' # (). Then
choose n = (3 (e) and MCE (77n,wn) = 0. Hence TA is aperiodic. O

Remark 4.2.11. Since T'A is row-finite, T'A is also finitely aligned.

The next proposition characterises exhaustive sets of T'A.
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Proposition 4.2.12 ([19, Proposition 4.9]). Suppose that A is a row-finite k-graph
with no sources. Then for every a(v) € TA®, the only erhaustive set contained in

a(v) TAY is a (v) TA itself.

Proof. Fix an exhaustive set £ C a(v)TA'. We have to show F = «(v)TA.
Since E is exhaustive, for 3(e) € a(v) TA', there exists an edge 7. € F such that
TA™™ (B (e),7.) # 0. Since s(B8(e)) TA = {s(5(e))}, then MCE (8 (e),7.) = {8 (e)}.
Hence 7. = f (e) because both 7, and 3 (e) are edges. Thus §(e) € F and E contains
5 (uAD)

Now we claim a (vA') C E. Suppose for a contradiction that there exist 1 <1i < k
and e € vA% such that a(e) ¢ E. Since A has no sources, there exists an edge
f € s(e)A%. Now consider the path 7 = «a/(e) 5 (f). This is a path with degree
2e; whose range at « (v) and s(7)TA = {B(s(f))}. Since E is exhaustive, there
exists w € E such that TA™" (1,w) # (. Since 7 is a path with length 2e; and
s(t)TA = {B(s(f))}, then w is either equal to 7 or a(e). Since a(e) ¢ E, then

T =w € F, which contradicts that £ only contains edges. The conclusion follows. [
A consequence of Proposition [4.2.12]is the following:

Lemma 4.2.13 ([19, Lemma 4.10]). Let A be a row-finite k-graph with no sources
and R be a commutative ring with 1. Suppose that {S;, S+ : T,w € TA} is a Cohn
TA-family in an R-algebra A. Then the collection is a Kumjian-Pask T A-family if and
only if for every o (v) € TA?,
I (Saw) = SsSe) =0.
g€a(v)TAL

Proof. If x = p(v), then g (v)TA = {5 (v)} and there is no exhaustive set con-
tained in #T'A'. On the other hand, if z = a(v), by Proposition the only
exhaustive set contained in a (v) TA! is a (v) TA'. Therefore by Proposition 4.2.4]
{S., S : T,w € TA} is a Kumjian-Pask T'A-family if and only if for every a (v) € TAY,
we have HgEa(v)TAl (Sa(v) — SgSg*) = 0, as required. ]

4.2.3 Relationship between Cohn A-families and Kumjian-Pask
T A-families

In this subsection, we start out by investigating the relationship between Cohn A-
families and Kumjian-Pask T'A-families (Theorem |4.2.16)). Once we have this, we are
then ready to prove Theorem [4.2.1}
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First we establish some stepping stone results (Lemma [4.2.14] and Lemma [4.2.15]).

Lemma 4.2.14 ([19, Lemma 4.11]). Suppose that {Tx, T, : A, € A} is a Cohn A-
family in an R-algebra A. For v € A°, define

Fr,=T,— [[ (T. - T.T..).

ecvAl

Then
(a) For v e A%, we have

Fr,=F}, and T, — Fr, = (T, — Fr,)".

(b) For every v,w € A with v # w, we have

FT,wFT,v =0= FT,UFT,w and TwFT,v =0= FT’va.

(¢) Forv e A° and \ € vA\ {v}, we have
TvFT,v == FT,’U == FT,vTv;
FTva)\ = T)\ and T)\* FT,U = T/\* .

(d) Furthermore, Fr, # 0 for allm € R\ {0} and v € A° if and only if T, # 0 for all
r € R\ {0} and v € A°.

Proof. First we show (a). Take v € A°. Note that (T, — T,T}-)* = (T, — T,T.-) for

e € vA'. Hence

(T, - Fr.)* = [[ @ -1.1.)*= ] (7. - T.Tw) =T, — Fr,

ecvAl ecvAl

and
2
F%’” - (TU o H <TW - TeTe*)) =T, — H (Tv - TeTe*) = FT,v-

ecvAl ecvAl
To show (b), we take v,w € A° with v # w. Then T,,T, = 0 and T,, T, = 0 for all

e € vAl. Hence

TwFT,v = Tw <Tv - H (Tv - TeTe*)> =0

ecvAl

and by using a similar argument, we also get Fr,T,, = 0, as required. On the other

hand, we also have

FroPry = (To— I] @ -1770) ) (- [] @0 -T10) ) =0

fewAl ecvAl
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and a similar argument also applies to get Fr, ., = 0.
Next we show (c). We take v € A°. Then

TUFT,U - Tv <Tv - H (Tv - TeTe*>) - Tv - H (Tv - TeTe*) - FT,v
ecvAl ecvAl
and since T, = T+, then by using a similar argument, we also get Fr, T, = Fr,.
Take A\ € vA\ {v}. Then there exists f € vA' such that ff’ = X. This implies
Tf*T)\ == Tf/ and

(T, — TyTy) Ty = Ty — TyTp-Ty = Ty — Ty Ty = Ty — Ty = 0.

Hence

( I @ - TeTe*)>TA =0

ecvAl

and

FroTo= (T, = T] (T, = TTe) )T = T

ecuAl
By a similar argument, we get Th«Frp, = T)«.
To show (d). First suppose that there exists r € R\ {0} and v € A° with »T;, = 0.
Then rT, = rT,T, = O for alle € vA', and then rFr,, = rT,—r [Leonr (T, = T.T,-) = 0.
For the reverse implication, suppose that there exists r € R\ {0} and v € A° with
rFr, =0. Take f € vA'. Then

(4.2.3) Ty Ty (T, — TyTy-) = TyTye — Ty (T5-Ty) Tye = TyTy- — Ty Ty = 0.
Since r (f) = v, (4.2.3) gives

YTfTy- = 1TfTy T, = 1 TyTy (Fro + [] (T - TLT) )

ecvAl
=rTyTy [ (T, - T.T.) = 0.
ecvAl
Therefore
TTf = TTfTs(f) = ’I“Tf (Tf*Tf) = (’I”Tfo*) Tf = (O) Tf = 0
and then
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Lemma 4.2.15 ([19, Lemma 4.12]). Suppose that A is a row-finite k-graph with no
sources and that R is a commutative ring with 1. Suppose that {T\, T, : A, € A} is
a Cohn A-family in an R-algebra A. For T,w € TA, define

S .: TAFT,S(A) Zf T = Oé(/\)
. Ty (Topy — Frsey) of T=8(N),
g . { Fr ) e if w=a(p)
(TS(N) - FT:S(M)) T if w=pB(n).

Then
(a) {Sr,Su : T,w € TA} is a Kumgian-Pask T A-family.

(b) Suppose that T, # 0 and r[[.copr (Ty = TTF) # 0 for all r € R\ {0} and
v € A Suppose that wg : KPr (TA) — A is the R-algebra homomorphism such
that ms (s;) = S, and mg (S ) = S+ for T,w € TA. Then mg is injective.

Proof. Now we show (a). First we show that {S;, S, :7,w € TA} satisfies (CP1).
Take z € TA®. We have to show S, = S,- = S7. Note that S, = Fr,, if = o (v); and
Sy =T, — Fr,, otherwise. In both cases, by Lemma (a), we have S, = S« = 52,
as required.

Take x,y € TA® with o # 3. We have to show SzSy = 0. Since S, is either Fr, or
T, — Fr,, and S, is either Fp, or T,, — Fr,, then Lemma (b) tells that = #£ y
implies S, S, = 0. Therefore {S;, S,» : 7,w € T'A} satisfies (CP1).

We show that {S;, S« : 7,w € TA} satisfies (CP2). Take 7,w € T'A where s (1) =
r(w). We have to show S-S, = Sy, and S,+Sr+ = Sy+. Each 7 and w is either in
the form a (\) or B (u). So we give a separate argument for each case.

First suppose that 7 = 5 (\). Since s(7)TA = B (s(\)) and s(7) = r(w), then
w=s(B(N)). Hence

(4.2.4) S Ssee) = (Tr (Toy) = Frsw)) (Tsy — Frsey)
=T (Tuy — FTsm)z—TA (T<> Frs») = Saoy

Next suppose that 7 = a(A) and w = B (u). Then p € s(N) A\ {s(\)} since
s (1) = r(w), and Lemma {4.2.14{c) gives Fr 47T, = T,. Hence

(4.25)  SaSsw = (DFrsw) (Tn (Tewy = Frsw)) = DT (Tso — Frsow)
= Dy (Tsovy = Frosow) = Ssoun-
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Finally suppose 7 = o (A) and w = a (). Then Sp(s(a))Sa(sr)) = 0, s0

SanSatm) = (S8 Sas0)) (Sats()Sa(w) = 0,
and

(4.2.6)
SaSaw = (Sa + S50) (Satw) + S5) — SaySa — S0 Satn) — s Ssw)
=T\T), — Sa)Sa) — Ss()Sa)

If on = S()\), then Sa()\)Sﬁ(“) = (Sa()\)s )Sﬁ(s(k) = 0 because Sa(s()\ Sﬁ ) = 0

and by (24), (E2.6) becomes

Sa()Sa(s(n) = ITh — Spn) = San)-

On the other hand, if p # s(X), then SgSp) = (S/B()\)Sﬁ(s()\))) (ST(ﬁ Sﬁ(u) =0
(since B (s (N)) # 7 (8 (p))and Sssr)Srs)) = 0) and by (4.2.5)), (4.2.6) becomes

SaOa(u) = T — Sam) = Sa(w)-

Therefore S5, = S;, and a similar argument gives S«S7+ = S(r,)+. Thus the family
{S;, S : T,w € TA} satisfies (CP2).

We show that {S;, S, : 7,w € TA} satisfies (CP3). Take 7,w € TA. We have to
show S-S, = Z(p,g)eTAmin(T,w) S,S¢+. Note that each 7 and w is either in the form
a(A) or (). We argue by cases.

First suppose that 7 = B(\). Since s(7)TA = S (s()\)), then TA™" (1,w) # ()
implies MCE (7,w) = {7}. Hence if TA™" (1,w) # ), then we have 7 = wf (v) for

some v € A and
Sr+Su = Sp0) S S = Sp) Sstw) = Spr = D SeSee
(p,¢)ETAMIN (7 0)

We suppose TA™ (7,w) = () and have to show that S-S, = 0. First note that
regardless of whether w is a (u) or 8 (1), Sr+S,, has the form (Sg(,)+7},) b. So it suffices
to show that Sg\)+T), = 0. We have

427 Sson T = (Tupy — Prag) Ty = (Tuy — Proy) >, Tl

(v y)EA™ (A, 1)
If A™™ (X, ) = 0, then Sg\<T,, = 0, as required. So suppose A™™ (X, u) # 0. Since
TA™ (1,w) = @ and A™ (\, i) # (), then A ¢ MCE (\, u). Hence for every (v,7) €
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A™ (X p), we have v € s(A)A\{s(\)} and by Lemma [4.2.14(c), Fr T, = T,.
Hence we can rewrite (4.2.7)) as

SsooTu= Y. (T,-T,)T =0.

(vy)EA™R(Ap)

Next suppose 7 = a(\) and w = (). A similar argument to that for the case
T =B () gives Sa s = 2o(pc)eraminan) b)) Op5c

Finally suppose 7 = a(A) and w = a(u). We give a separate argument for whether
a(A) or a(u) belongs to MCE (ar (M), (p)). Suppose that at least one of « (A) and
a (p) belongs to MCE (a (M), (). Without loss of generality, we suppose a (\) €
MCE (a (X)), (u)). (A similar argument applies when a (p) € MCE (a (A), o ()).)
Then a () = a (uv) for some v € A and

Sa*Sa(w) = Saw)* Sa()*Sa(p) = Saw)* = >, SpSce
(P QETA™ (a(A) (k)

as required.

So suppose that a (A), « (1) ¢ MCE (a (A),a (p)). Hence A\, i ¢ MCE (A, pt). Then
for every (v,7) € A™™ (X, i), we have v € s (A\) A\ {s (\)} and v € s (u) A\ {s (u)}, and
by Lemma (c), FrsnT, =T, and T\« Frp 4 = T, Therefore

(4.2.8)  SapnSaw = (FrsowTh) (TuFrsq) = FT,S(A)< Z TVT“/*>FT7S(/~L)

(1) EA™IR (A 1)
- Z (FT75(>\)TV) (T’V* FT,S(M)) - Z TZIT’}/* .
() €A™ (A) (V) EA™IN (A 1)

Since s (v) = s () for every (v,7) € A™® (), u), then by Lemma [4.2.14]a),

Sa(*Sa(u)
= Y. ((TFraw) (FrawTy) + T, (Tuw) = Fraw) (T = Fram) Tr:)
(vy)EA™IR(A, 1)
= Z (SQ(V)Sa(v)* + SB(V)SB(W)*) = Z SpScxs
(vyy)eAmin ) pu) (p,Q)ETA™™ (a(N), (1))
as required. Therefore S.+S, = Z( p,C)ET AR (7.4) S,S¢+ for all 7,w € TA. Thus the
collection {S;, Sy~ : 7,w € T'A} satisfies (CP3).
Lemma says that to show that {S;, S+ : 7,w € TA} is a Kumjian-Pask T'A-
family, it suffices to show that [ ., 7 (Sa() — S¢Sg+) = 0 for a(v) € TA. Take
a(v) € TA®. Then

429) [T (Saw — SsSy)

g€a(v)TAL
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= I (Saw) = SaSa*) (Saw) — Sse)Ss))

ecvAl

= [I (ToPro— TP} T ) (T = T (T = Froge)* To- )
ecvAl

= H (TvFT,v - TEFT,s(e)Te*> (TUFT,U - Te (TS(E) - FT,s(e)) TE*)
ecvAl

(by Lemma 4.2.14(a))
= H (FT,U - TeTe*)

ecvAl

by Lemma [£.2.14{(a,c). So
I (Saw = 56Se) = [[ (Fro—T.T)

gea(v)TAL ecvAl

:FT,U<T1)_FT'U) FT'UT FTv

= Fr, — Fr, (by Lemma {.2.14(a,c))
= 0.

Then {S;, S, : T,w € TA} is a Kumjian-Pask T'A-family, as required.

Next we show (b). Suppose that rT;, # 0 and 7 [[ o a1 (T — TeT7) # 0 for all v €
A° and 75 : KPR (TA) — A is the R-algebra homomorphism such that g (s,) = S,
and 7g (8,+) = S+ for T,w € TA. We have to show 7g is injective. Since 7T, # 0 for
all 7 € R\ {0} and v € A°, then by Lemma [4.2.14(d), rFr, # 0 for all r € R\ {0} and
v € A°. Therefore for all r € R\ {0} and v € AY,

rSaw) = 11Ty Fry =1Fr, #0

and
rSpw = 1T, (T, — Fro) =7 (T, — Pry) =7 [[ (T, - T.T.:) # 0.
ecvAl
Hence S, # 0 for all € R\ {0} and = € TA°. Since TA is aperiodic, then by
Theorem [3.7.1] 7g is injective. O

One immediate application of Lemma [4.2.15]is

Theorem 4.2.16 ([19, Theorem 4.13]). Suppose that A is a row-finite k-graph with no
sources and that R is a commutative ring with 1. Suppose that {ty,t,~ : \,p € A} is
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the universal Cohn A-family and {s., s, : T,w € TA} is the universal Kumjian-Pask
TA-family. For T,w € TA, define

{ IAEy s if T=a(A)
t (tsoy — Frsony) if 7=8(),

S = { st if w=alu)
(tsgy — Frsg) tpe if w=05(n).

Then

(a) There exists an R-algebra homomorphism m : KPr(TA) — Cgr(A) such that

7 (s:) = Sy and w(8,+) = Sy for T,w € TA. Furthermore, 7 is an isomorphism.
(b) The subsets
Cr(A), =spang {trt,- - A\, p € A, d(\) —d () =n}
form a ZF-grading of Cg (A).

Proof. First we show part (a). By Lemmal[d.2.15(a), {S;, S+ : 7,w € T'A} is a Kumjian-
Pask T'A-family and by the universal property of Kumjian-Pask T'A-family [18, The-
orem 3.7(a)], there exists an R-algebra homomorphism 7 : KPg (T'A) — Cg (A) such
that 7 (s;) = S; and 7 (s,+) = Sy« for 7,w € T'A. On the other hand, Theorem |4.1.5(b)
says that rt, # 0 and r [, a1 (to — tets) # 0 for all 7 € R\ {0} and v € A°. Hence by

Lemma [4.2.15(b), 7 is injective.

Now we show the surjectivity of 7. Since
Cr (A) =spang{tit,- : L, ue A, s(\) =s(n)}

(Proposition [£.1.3(b)), it suffices to show that for A, u € A, both ¢, and ¢+ belong to
the image of w. Take A\, u € A. Then

(4.2.10) th = tkts(A) =1, F; () + t)\tso\) — t)\F} ()
= taFre) + 6 (ta) = Frso) = 7 (8a0) + 7 (8500))

and

(4.2.11) b = sty = Fts(u) R IM Fts( yu
= Fyagutpe + (tsqu) — Ft,s(m) tyr =m0 (Saw) + 7 (s -

Therefore 7 is an isomorphism.
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For part (b), we recall from [3.1.8(c) that the subsets
KPp (TA), = spang (5,5 : 7.0 € TA d (r) — d () = n}

forms a ZF-grading of KPg (A). For every v € A%, d (tso) — Fisn) = 0 = d (Fisn)-
Hence regardless of whether 7 and w are in the form a (\) or 8 (u), we have d (1) —
d(w) =d (N —d(p) and s;s,+ € Cg(A),, which implies 7 (s,s,-) € KPr (T'A),,. Since

7 is an isomorphism, the Cg (A),, form a grading for Cg (A), as required. O

Remark 4.2.17. Our Theorem [4.2.16|generalises results about Cohn path algebras asso-
ciated to 1-graphs. In particular, Theorem [4.2.16{(a) generalises [, Theorem 5| (which
is also stated in [2| Theorem 1.5.18]), and Theorem {4.2.16{b) generalises [2, Corollary
2.1.5(ii))].

Proof of Theorem[4.2.1. Since the family {¢,¢,« : A\, u € A} is a Cohn A-family, then
sois {¢ (tr), & (tys) : A, p € A}. For 7,w € TA, define

— { ¢ (Zf)\) Fd)(t),s()\) if T = ()\)

' ¢ (1) (6 (tso) = Fomsn) if 7=8(N),
.. { Fo(e),s¢ (tur) if w=a(u)
(0 (tsw) = Fowystw) @ (tpe) i w=p5(p).

Lemma [4.2.15](a) says that {S,, S, : 7,w € TA} is a Kumjian-Pask T'A-family, and by
the universal property of Kumjian-Pask T'A-family, there exists an R-algebra homo-
morphism 7g : KPg (A) — A such that 7g (s;) = S and mg (s,+) = S+ for 7,w € TA.
On the other hand, since ¢ (rt,) # 0 and ¢ (r [T c, a1 (t — tety)) # 0 for all r € R\ {0}
and v € A°, Lemma [4.2.15(b) implies that mg is injective.

Theorem [1.2.16|(a) says that 7 : KPp (TA) — Cg (A) is an isomorphism with

7 (s,) =

IaFy o) if 7=a());
by (tsoy — Frsy) if =8,

™ (s >={ Fosgtyr i w=a(u);
(tsw) = Frsw) tur i w =5 (n).

For A\, € A, we have t\, = (sa()\)) + 7 (35()\)) and t,» = (sa(u)*) + 7 (Sﬁ(u)*) (see

(4.2.10) and (4.2.11))). Hence

(rsom™) (t) = (ms o m™") (7 (sa) + 7 (s50))) = 75 (San) + s (Sa(y)
= Sa) + Samy = ¢ (1) Fowy,son + @ (02) (¢ (tsn) — Faseysn)
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= ¢ (1))

and

(rsom™") (tue) = (ms 0 7™") (7 (Sagr) + 7 (3807)) = 75 (Saqw) + 75 (Spa)°)
= Saw + Sa(® = For),s000 (tr) + (8 (tsw) — Fowysm) ¢ (tur)
:Qb(tu*)'

These imply ¢ = mg o m ! since Cp(A) = spang{tat,- : \u € A;s(\) = s(u)}
(Proposition [£.1.3(b)). The injectivity of 7~! and g imply that ¢ is injective. O

Remark 4.2.18. The Cohn A-family {73, 7),- : \,u € A} as constructed in Proposition
4.1.4) satisfies 715, # 0 and 7 [[.coar (T = TeTY) # 0 for all » € R\ {0} and v €
A°. Hence Theorem tells that the R-algebra homomorphism ¢ : Cr(A) —
End (Fgr (W))) such that ¢r (t\) = Ty and ¢p (t,+) = T}« for A\, p € A, is injective.

Remark 4.2.19. When A is a 1-graph, that is, when k£ = 1, then A is the path category
of a directed graph E. One consequence of Theorem [4.1.5|and Theorem [3.7.1]is that the
universal Cohn algebra Cr(A) that we have constructed is isomorphic to the Cohn path
algebra associated to E as defined in [2, Definition 1.5.1]. Since [2, Definition 1.5.1]
only considers the situation where R is a field, our construction gives a generalisation
of the Cohn path algebra to the setting where R is an arbitrary commutative ring with
1.

4.3 Examples and Applications

4.3.1 Higher-rank graph Toeplitz algebras.

As mentioned in the introduction to Section 4.2} the uniqueness theorem for Cohn path
algebras (Theorem is an analogue of the uniqueness theorem for Toeplitz algebras
(Theorem . We show that if A is a row-finite k-graph with no sources, then its
Cohn path algebra over the complex numbers is isomorphic to a dense *-subalgebra of
the Toeplitz algebra associated to A (Proposition .

Recall from page [7] and Footnote that a Toeplitz-Cuntz-Krieger A-family is a
collection of partial isometries {@, : A € A} in a C*-algebra B satisfying (TCK1-3).
For a row-finite k-graph A, the Toeplitz algebra of A is the C*-algebra generated by a
universal Toeplitz-Cuntz-Krieger A-family {qy : A € A}. Furthermore, for v € A°, we
have ¢, # 0 and [[ . a1 (@ — qeq}) # 0 [49, Corollary 3.7.7].
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Proposition 4.3.1 ([19, Proposition 5.2]). Suppose that A is a row-finite k-graph with
no sources. Suppose that {qx : X\ € A} is the universal Toeplitz-Cuntz-Krieger A-family
and {tx,t,~ 1 A\, u € A} is the universal (complex) Cohn A-family. Then there is an
1somorphism
¢q : Cc (A) — span{gaq, : A\, € A}

such that ¢4 (tx) = qx and ¢, () = q; for \,u € A. In particular, Cc (A) is isomorphic
to a dense subalgebra of TC* (A).

Proof. Since {qx : A € A} satisfies (TCK1-3), then with g, := ¢}, {qx, qu= : A\, pp € A}
is a Cohn A-family in 7C* (A). Thus the universal property of C¢ (A) gives a homo-

morphism ¢, from C¢ (A) onto the dense subalgebra
A= spanc{qrq, : A\, p € A} CTC™ (A).

On the other hand, for all » € C\ {0} and v € A%, we have 1¢, (rt,) = ¢, # 0 and

%qﬁq(r IT @ —tete*)) = I (@ —aq) #0.

ecvAl ecvAl
So ¢, (rt,) # 0 and ¢, <7’ [Tocon: (to — tete*)> # 0 for all r € C\ {0} and v € A°. Then
Theorem implies that ¢, is injective. O]

Remark 4.3.2. For k = 1, Proposition tells that the Cohn path algebra of 1-graph
F is isomorphic to a dense subalgebra of TC* (E).

4.3.2 Groupoids and Steinberg algebras.

In Proposition [3.4.1] we show that each Kumjian-Pask algebra is isomorphic to a
Steinberg algebra. Thus Theorem [4.2.16| implies that the Cohn path algebra of A is
also isomorphic to a Steinberg algebra associated to T'A. However, this is somewhat
obscure because one has to go through T'A. We improve this result by showing that
there exists a groupoid associated to A such that its Steinberg algebra is isomorphic
to the Cohn path algebra of A (Proposition .

Recall the path groupoid 7G, of a row-finite k-graph A with no sources from
Example [2.8.1

Proposition 4.3.3 ([19, Proposition 5.6]). Suppose that A is a row-finite k-graph with

no sources. Then the path groupoid TGy is effective, in the sense that the interior of
Iso(TGr) :={a€TGr:s(a)=r(a)}
is TGV,
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Proof. For x € Tg‘AO), we have (x,0,x) € Iso(7GA) and then TQE?) belongs to the
interior of Iso (7GA). Now we show the reverse inclusion. Take an interior point a
of Iso (TGy). Then there exists TZy (A *, p\ G) such that a € TZy (A *s u\G) C
Iso (TGx). We have to show A = p. Since a € TZ) (X *s p\ G), then TZy (X %, p\ G)
is not empty. Thus s (\) ¢ G. Hence (A, d(\) —d (p),p) € TZp (A x5 p\ G), and since
TZn (X *s u\ G) C Iso (TGy), this implies A = p. Therefore TGy is effective. O

Proposition 4.3.4 ([19, Proposition 5.8]). Suppose that A is a row-finite k-graph with
no sources, that TGy is its path groupoid and that R is a commutative ring with 1.
Then there is an isomorphism ¢q : Cr (A) = Ag (Ga) such that ¢g (tx) = Loz, (aes(h)
and ¢g (tu=) = 1oz, (s(uyssp) fOr A u € A.

Before proving Proposition [4.3.4] we first note that the argument of Lemma |3.4.3

also applies to the path groupoid 7G, and we get the following result.

Lemma 4.3.5 ([19, Lemma 5.9]). Suppose that A is a row-finite k-graph with no
sources. Suppose that {TZx (N *s w;\ G;)}i_y is a finite collection of compact open

bisection sets and that

U= JTZx (X% i\ Gi) .

i=1
Then
1y € spang {177, (v : (A ) € Axg A, G C s (M)A},

Proof of Proposition [{.5.4 Define @, := 172, wes(n)) ad Qs = 1z, (s(uyeop) fOT A, 1 €
A. By [24, Theorem 6.9] and [58, Example 7.1], {Q\: A € A} is a Toeplitz-Cuntz-
Krieger A-family. Then {Qx, Q.- : A\,u € A} is a Cohn A-family in A (7G,). Hence
there exists a homomorphism ¢¢g : Cr (A) — Ag (TGa) such that ¢g (tn) = @\ and
dq (tyr) = Qu~ for A\, € A.

We show that ¢g is injective. For all r € R\ {0} and v € A°, we have

ng (rtv) = TQU = r]-TZA(v*Sv) 7£ 0

and
% (7“ H (to — tete*)) = H (Qv— QeQer) =7 H (1TZA(’U*sv) - 1TZA(6*se))
ecvAl ecvAl ecvAl

=T H 1TZA(U*5’U\{€}) = TlHeeuAl TZp(vxsv\{e})

ecvAl

= T]-TZA(’U*S’U\’UAl) 7é 0.
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Hence Theorem implies that ¢¢ is injective, as required.

To see the surjectivity of ¢q, we take f € Ar(TGa). By Proposition , we
write f as Y cpauly where ay € R, each U is in the form (J;_; TZy (i *s 11\ G;)
for some n € N, and F is finite set of mutually disjoint elements. Hence to show that

f €im(¢q), it suffices to show that each 1y € im (¢q) where

i=1
for some positive integer n and collection {T'Zy (\; ;s p1;\ Gi)},—,. By Lemma m,
1y can be written as the sum of elements in the form 17z, (a« @) On the other hand,

by following the argument of [I8, Equation 5.5, we have

Lz, (@) = @ ( H (Qsny) — @0Qu) ) Q.

ve@G

for all (A, 1) € Ax,A and finite G C s (\) A. Hence every 17z, (x,nc) belongs to im (¢g)

and so does 1y, as required. Hence ¢ is surjective, and is an isomorphism. O

Remark 4.3.6. Proposition [3.4.1| shows that the Kumjian-Pask algebra of T'A is iso-
morphic to the Steinberg algebra associated to the boundary-path groupoid Grp of
[58]. We could have shown that the path groupoid 7G, of Example is topologi-
cally isomorphic to the boundary-path groupoid Gz, and deduced Proposition [£.3.4]

However, the direct argument above takes about the same amount of effort.
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