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Abstract

Directed graphs and their higher-rank analogues provide an intuitive frame-

work to study a class of C∗-algebras which we call graph algebras. The

theory of graph algebras has been developed by a number of researchers

and also influenced other branches of mathematics: Leavitt path algebras

and Cohn path algebras, to name just two.

Leavitt path algebras for directed graphs were developed independently

by two groups of mathematicians using different approaches. One group,

which consists of Ara, Goodearl and Pardo, was motivated to give an alge-

braic framework of graph algebras. Meanwhile, the motivation of the other

group, which consists of Abrams and Aranda Pino, is to generalise Leav-

itt’s algebras, in which the name Leavitt comes from. Later, Abrams and

now with Mesyan introduced the notion of Cohn path algebras for directed

graphs. Interestingly, both Leavitt path algebras and Cohn path algebras

for directed graphs can be viewed as algebraic analogues of C∗-algebras of

directed graphs.

In 2013, Aranda Pino, J. Clark, an Huef and Raeburn introduced a higher-

rank version of Leavitt path algebras which we call Kumjian-Pask algebras.

At their first appearance, Kumjian-Pask algebras were only defined for row-

finite higher-rank graphs with no sources. Clark, Flynn and an Huef later

extended the coverage by also considering locally convex row-finite higher-

rank graphs. On the other hand, Cohn path algebras for higher rank graphs

still remained a mystery.

This thesis has two main goals. The first aim is to introduce Kumjian-Pask

algebras for a class of higher-rank graphs called finitely-aligned higher-rank

graphs. This type of higher-rank graph covers both row-finite higher-rank
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graphs with no sources and locally convex row-finite higher-rank graphs.

Therefore, we give a generalisation of the existing Kumjian-Pask algebras.

We also establish the graded uniqueness theorem and the Cuntz-Krieger

uniqueness theorem for Kumjian-Pask algebras of finitely-aligned higher-

rank graphs.

The second aim is to introduce a higher-rank analogue of Cohn path alge-

bras. We then study the relationship between Kumjian-Pask algebras and

Cohn path algebras and use this to investigate properties of Cohn path al-

gebras. Finally, we establish a uniqueness theorem for Cohn path algebras.
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Chapter 1

Introduction

Leavitt path algebras have received a great deal of interest in recent years, and can be

approached from many different points of view [3, 10, 15]. Graph C∗-algebras have a

special place in the study of Leavitt path algebras because many results about Leavitt

path algebras were motivated by previous results of graph C∗-algebras. This includes

how to generalise Leavitt path algebras to a bigger class of graphs.

Meanwhile, Cohn path algebras were introduced in [6, 8]. Since Cohn path algebras

are obtained from the Leavitt path algebras by omitting one of the so-called Cuntz-

Krieger relations, these algebras can be viewed as an algebraic analogue of Toeplitz

algebras of directed graphs.

Since the theory of graph C∗-algebras and Toeplitz algebras have been success-

fully extended to higher-rank graphs [29, 39], mathematicians have started wondering

about higher-rank versions of Leavitt path algebras, called Kumjian-Pask algebras, and

higher-rank versions of Cohn path algebras. These are the motivations of this thesis.

We extend the definition of Kumjian-Pask algebras of [11, 16] to finitely aligned higher-

rank graphs. We also introduce Cohn path algebras of higher-rank graphs. We then

study the properties of both algebras, especially related to uniqueness theorems, and

the relationship between the algebras.

We begin with a brief history of the development of the theory of graph C∗-alegbras

(Section 1.1 and Section 1.2) and Leavitt path algebras (Section 1.3 and Section 1.4).

We give more details about uniqueness theorems because one of our aims is to establish

uniqueness theorems for our new Kumjian-Pask algebras and Cohn path algebras.
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1.1 C∗-algebras and Toeplitz algebras for graphs

A directed graph E = (E0, E1, r, s) consists of countable sets of vertices E0, edges E1

and functions r, s : E1 → E0, which map edges to their range and source, respectively.

C∗-algebras of directed graphs, also known as graph algebras, were introduced in [31]

to extend the Cuntz-Krieger algebras of {0, 1}-matrices of [21]. In [31], Kumjian, Pask,

Raeburn and Renault used a groupoid approach to study C∗-algebras of locally finite

graphs in which both r−1 (v) and s−1 (v) are finite and nonempty for all v ∈ E0.

In [30], for a locally finite graph E, Kumjian, Pask and Raeburn introduced a

Cuntz-Krieger E-family to be a family which consists of projections {Pv : v ∈ E0} and

partial isometries {Se : e ∈ E1} in a C∗-algebra B satisfying S∗eSe = Ps(e) for all e ∈ E1

and the Cuntz-Krieger relation:

(1.1.1) Pv =
∑

e∈r−1(v)

SeS
∗
e for all v ∈ E0.

They then defined the graph C∗-algebra C∗ (E) to be the C∗-algebra generated by the

universal Cuntz-Krieger E-family {se, pv}.
In [12], Bates, Pask, Raeburn and Szymański extended the coverage of C∗-algebras

of directed graphs by introducing row-finite graphs and their C∗-algebras. A graph

E is row-finite1 if r−1 (v) is finite for all v ∈ E0; so s−1 (v) may be infinite for some

v ∈ E0, and then E is not locally finite and also might have sources ; that is, vertices

which do not receive any edges. In general, the generalisation from locally finite to

row-finite graphs required no modification in relations, except is that we do not impose

(1.1.1) when v is a source.

For a row-finite graph E, the path space E∗ consists of all paths λ = e1e2 . . . en

where |λ| := n ∈ N, and ei ∈ E1 satisfies s (ei−1) = r (ei) for all 2 ≤ i ≤ n. For

λ = e1e2 . . . en ∈ E∗, we write sλ to denote se1se2 · · · sen , and write s (λ) for s (en). A

path λ = e1e2 . . . en ∈ E∗ is a cycle if |λ| ≥ 1, r (λ) = s (λ) and s (ei) 6= s (ej) for i 6= j.

An edge e is an entrance to the cycle λ if there exists i such that r (e) = r (ei) and

e 6= ei. The authors of [12] then showed that for every row-finite graph E,

C∗ (E) = span
{
sλs
∗
µ : λ, µ ∈ E∗, s (λ) = s (µ)

}
.

Write T := {z ∈ C : |z| = 1}. Then for every z ∈ T, the family {zse, pv} is also a

Cuntz-Krieger E-family which generates C∗ (E), and hence, the universal property

of C∗ (E) gives a homomorphism γz : C∗ (E) → C∗ (E) such that γz (se) = zse and

1We use the paths convention of [43] because we view the collection of paths as a category.
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γz (pv) = pv for all e ∈ E1 and v ∈ E0. Furthermore, they showed that γz ∈ AutC∗ (E)

for all z ∈ T and then γ is a strongly continuous action of T on C∗ (E), called the gauge

action. The next theorem is a generalisation of the gauge-invariant uniqueness theorem

for the Cuntz-Krieger algebras of {0, 1}-matrices [28, Theorem 2.3].

Theorem 1.1.1 ([12, Theorem 2.1]: The gauge-invariant uniqueness theorem). Sup-

pose that E is a row-finite graph, that {Se, Pv : e ∈ E1, v ∈ E0} is a Cuntz-Krieger

E-family in a C∗-algebra B, and that πS,P : C∗ (E) → B is the homomorphism

such that πS,P (se) = Se and πS,P (pv) = Pv for all e ∈ E1 and v ∈ E0. Suppose

that each Pv is nonzero and that there is a strongly continuous action β of T on

C∗ ({Se, Pv : e ∈ E1, v ∈ E0}) such that βz ◦ πS,P = πS,P ◦ γz for z ∈ T. Then πS,P

is faithful.

The authors of [12] also introduced another uniqueness theorem, called the Cuntz-

Krieger uniqueness theorem. Unlike Theorem 1.1.1, which applies to any row-finite

graphs, the Cuntz-Krieger uniqueness theorem only applies to row-finite graphs which

satisfy Condition (L): every cycle has an entrance. Now we state the uniqueness

theorem as follows:

Theorem 1.1.2 ([12, Theorem 3.1]: The Cuntz-Krieger uniqueness theorem). Suppose

that E is a row-finite graph satisfying Condition (L) and that {Se, Pv : e ∈ E1, v ∈
E0} and {Te, Qv : e ∈ E1, v ∈ E0} are two Cuntz-Krieger E-families in which all the

projections Pv and Qv are nonzero. Then there is an isomorphism φ of C∗({Se, Pv : e ∈
E1, v ∈ E0}) onto C∗ ({Te, Qv : e ∈ E1, v ∈ E0}) such that φ (Se) = Te and φ (Pv) = Qv

for all e ∈ E1 and v ∈ E0.

When we consider graphs that are not row finite, we need to modify the the definiti-

ion of a Cuntz-Krieger E-family: for when |r−1 (v)| =∞, the right hand side of (1.1.1)

is an infinite sum. The solution to this problem was offered by Fowler and Raeburn

in [25]. To see how the problem was overcome, we recall Toeplitz algebras of Hilbert

bimodules of [25], which cover Toeplitz algebras of arbitrary graphs. For a directed

graph E, a Toeplitz-Cuntz-Krieger E-family consists of projections {Qv : v ∈ E0} and

partial isometries {Te : e ∈ E1} in a C∗-algebra B satisfying T ∗e Te = Qs(e) for all e ∈ E1

and

(1.1.2) Qv ≥
∑
e∈F

TeT
∗
e for all v ∈ E0 and finite F ⊆ r−1 (v) .2

2For a, b in a C∗-algebra B, we say a ≥ b if a− b = c∗c for some c ∈ B, see [36].

For (1.1.2), we choose a = Qv, b =
∑

e∈F TeT
∗
e and c = Qv −

∑
e∈F TeT

∗
e .
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Meanwhile, the Toeplitz algebra TC∗ (E) is the C∗-algebra generated by the universal

Toeplitz-Cuntz-Krieger E-family {te, qv}. Every Cuntz-Krieger E-family is a Toeplitz-

Cuntz-Krieger E-family.

Like graph algebras, Toeplitz algebras also have a uniqueness theorem.

Theorem 1.1.3 ([25, Theorem 4.1]: The uniqueness theorem for Toeplitz algebras).

Suppose that E is an arbitrary graph and that {Te, Qv : e ∈ E1, v ∈ E0} is a Toeplitz-

Cuntz-Krieger E-family. Suppose that φT,Q is a representation of TC∗ (E) such that

φT,Q (te) = Te and φT,Q (qv) = Qv for all e ∈ E1 and v ∈ E0. Suppose that each Qv is

nonzero and

Qv 6=
∑
e∈F

TeT
∗
e for all v ∈ E0 and finite F ⊆ r−1 (v) .

Then φT,Q is faithful.

Fowler, Laca and Raeburn [23] introduced C∗-algebras for arbitrary graphs by mo-

difying (1.1.1) into

Pv ≥
∑
e∈F

SeS
∗
e for all v ∈ E0 and finite F ⊆ r−1 (v) , and(1.1.3)

Pv =
∑

e∈r−1(v)

SeS
∗
e when 0 <

∣∣r−1 (v)
∣∣ <∞.

They also generalised the gauge-invariant uniqueness thoerem (Theorem 1.1.1) and the

Cuntz-Krieger uniqueness theorem (Theorem 1.1.2) to arbitrary graphs.

There are interesting relationship between graph algebras and Toeplitz algebras for

arbitrary graphs. We have mentioned that every Cuntz-Krieger E-family is a Toeplitz-

Cuntz-Krieger E-family. In fact, C∗ (E) is the quotient of TC∗ (E) by the ideal I

generated by {
tv −

∑
e∈r−1(v)

qeq
∗
e : v ∈ E0 where r−1 (v) is finite

}
where {te, qv} is the universal Toeplitz-Cuntz-Krieger E-family. Furthermore, if q de-

notes the quotient map of TC∗ (E) onto TC∗ (E) /I = C∗ (E), then the family {Se, Pv}
defined by

Se := q (te) and Pv := q (qv) for all v ∈ E0 and e ∈ E1

is isomorphic to the universal Cuntz-Krieger E-family. Another interesting result is

that for every arbitrary graph E, there exists a graph TE (denoted EV in [35]) such

that the Toeplitz algebra of E is isomorphic to the Cuntz-Krieger algebra of TE [35,

Theorem 3.7].
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1.2 C∗-algebras and Toeplitz algebras for higher-

rank graphs

In [29], Kumjian and Pask introduced higher-rank graphs or k-graphs and their C∗-

algebras. They generalise the higher-rank Cuntz-Krieger algebras of Robertson and

Steger [47] in the same way that graph algebras generalise the Cuntz-Krieger algebras

of [21].

For a positive integer k, a k-graph Λ = (Λ0,Λ, r, s) is a countable small category Λ

with a functor d : Λ→ Nk, called the degree map, satisfying the factorisation property :

for every λ ∈ Λ and m,n ∈ Nk with d (λ) = m+ n, there are unique elements µ, ν ∈ Λ

such that λ = µυ and d (µ) = m, d (ν) = n. For m,n ∈ Nk, the expression m∨n denotes

their coordinate-wise maximum and m ∧ n their coordinate-wise minimum. We write

Λn for the set d−1 (n) of paths with degree n. The degree is the higher-rank analogue

of the length n of a path e1 . . . en in a directed graph E. We also regard elements of Λ0

as vertices. For v ∈ Λ0, λ ∈ Λ and F ⊆ Λ, we define vF := {µ ∈ F : r (µ) = v} . For

detailed discussion, see Section 2.2.

For a directed graph E, the path space E∗ is a 1-graph. It satisfies the factorisation

property since, for λ = e1 . . . en ∈ E∗ and 0 < m < n, the paths µ = e1 . . . em and

ν = em+1 . . . en are the only paths such that λ = µυ and d (µ) = m, d (ν) = n−m.

A k-graph Λ is row-finite if for every v ∈ Λ0 and n ∈ Nk, the set vΛn is finite. A

vertex v ∈ Λ0 is a source if there exists n ∈ Nk such that vΛn = ∅. For a row-finite

higher-rank graph Λ with no sources, a family {Tλ : λ ∈ Λ} of partial isometries in a

C∗-algebra B is a Cuntz-Krieger Λ-family if it satisfies:

(i) {Tv : v ∈ Λ0} is a set of mutually orthogonal projections;

(ii) TλTµ = Tλµ whenever s (λ) = r (µ);

(iii) T ∗λTλ = Ts(λ) for all λ ∈ Λ; and

(iv) Tv =
∑

λ∈vΛn TλT
∗
λ for all v ∈ Λ0 and n ∈ Nk.

Condition (iv) is called the Cuntz-Krieger relation and as for directed graphs,

C∗ (Λ) is defined to be the C∗-algebra generated by a universal Cuntz-Krieger Λ-family

{tλ : λ ∈ Λ}. Kumjian and Pask showed that C∗ (Λ) is the closed span of elements in

the form tλt
∗
µ where s (λ) = s (µ) [29, Lemma 3.1] and proved that C∗ (Λ) carries a

strongly continuous gauge action γ of Tk. Using this gauge action, they generalised

Theorem 1.1.1 as follows:
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Theorem 1.2.1 ([29, Theorem 3.4]: The gauge-invariant uniqueness theorem). Sup-

pose that Λ is a row-finite k-graph with no sources. Suppose that π : C∗ (Λ)→ B is a

homomorphism and that β : Tk → AutB is an action such that π◦ γz = βz ◦ π for all

z ∈ Tk. Then π (tv) 6= 0 for all v ∈ Λ0 if and only if π is faithful.

Inspired by the analysis of graph algebras in [31], which uses a groupoid approach,

Kumjian and Pask also used groupoids to investigate C∗-algebras for k-graphs. They

established a higher-rank analogue of Condition (L) and Theorem 1.1.2. To state their

result, we need some notation. For k ∈ N and n ∈ (N∪{∞})k, the category

Ωk,n :=
{

(p, q) ∈ Nk × Nk : p ≤ q ≤ n
}

is a k-graph with objects
{
m ∈ Nk : p ≤ n

}
, range map r (p, q) = p, source map

s (p, q) = q, and degree map d (p, q) = q−p [40, Example 2.2]. Kumjian and Pask then

defined

Λ∞ := {x : Ωk,∞ → Λ : x is a degree preseving functor}

and for n ∈ Nk, wrote σn : Λ∞ → Λ∞ for the shift map determined by σn (x (m)) =

x (n+m). Their analogue Condition (L) says that a k-graph Λ satisfies Condition (A)

if for every v ∈ Λ0, there exists x ∈ vΛ∞ such that σm (x) 6= σn (x) for all m 6= n ∈ Nk

[29, Definition 3.1]. They then generalised Theorem 1.1.2 as follows:

Theorem 1.2.2 ([29, Theorem 4.6]: The Cuntz-Krieger uniqueness theorem). Suppose

that Λ is a row-finite graph with no sources. Suppose that Λ satisfies Condition (A)

and that π : C∗ (Λ) → B is a homomorphism. Then π (tv) 6= 0 for all v ∈ Λ0 if and

only if π is faithful.

In [40] Raeburn, Sims and Yeend expanded the theory of C∗-algebras of higher-rank

graphs by considering “locally convex” row-finite higher-rank graphs. A k-graph Λ is

locally convex if for all v ∈ Λ0, i, j ∈ {1, . . . , k} with i 6= j, λ ∈ vΛei and µ ∈ vΛej ,

both s (λ) Λej and s (µ) Λei are non-empty. Every row-finite higher-rank graph with no

sources is locally convex; but locally convex row-finite higher-rank graphs may have

sources. For example, the 2-graph

•
v1

•
v2

•
v3

•
v4

f1

g1

f2

g2
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is locally convex even though v1, v2, v3 and v4 are all sources.

For locally convex k-graphs, one only has to make a minor adjustment to the Cuntz-

Krieger relation (see [40, Proposition 3.11]). Even for row-finite k-graphs, if they are

not locally convex, it is difficult to see what an appropriate Cuntz-Krieger relation (iv)

might be. For example, the 2-graph

•
v1

•
v2

•
v3

f1

g2

is problematic (see [40, Example A.1]).

In [39] Raeburn and Sims found a new Cuntz-Krieger relation which works for

finitely aligned higher-rank graphs; that is, higher-rank graphs such that for all λ, µ ∈
Λ, the set

(1.2.1) Λmin (λ, µ) := {(ρ, τ) ∈ Λ× Λ : λρ = µτ, d (λρ) = d (λ) ∨ d (µ)}

is finite (possibly empty). The finitely aligned higher-rank graphs include the row-finite

higher rank graphs and also some graphs that fail to be row-finite.

For a finitely aligned higher-rank graph Λ, a family of partial isometries {Qλ : λ ∈ Λ}
in a C∗-algebra B is a Toeplitz-Cuntz-Krieger Λ-family if it satisfies

(TCK1) {Qv : v ∈ Λ0} is a collection of mutually orthogonal projections;

(TCK2) QλQµ = Qλµ whenever s (λ) = r (µ);

(TCK3) Q∗λQµ =
∑

(ρ,τ)∈Λmin(λ,µ) QρQ
∗
τ for all λ, µ ∈ Λ; and

(1.2.2) Qv ≥
∑
λ∈F

QλQ
∗
λ for all v ∈ Λ0, n ∈ Nk, and finite F ⊆ vΛn.

The Toeplitz algebra TC∗ (Λ) is defined to be the C∗-algebra generated by a univer-

sal Toeplitz-Cuntz-Krieger Λ-family {qλ : λ ∈ Λ}. As we can see, (TCK1) and (TCK2)

are same as Condition (i) and (ii), respectively. Meanwhile, (TCK3) generalises Con-

dition (iii); and (1.2.2) generalises (1.1.2) for the directed graph setting3.

3By [41, Lemma 2.7 (iii)], any family of partial isometries satisfying (TCK1-3) holds (1.2.2). Hence

(1.2.2) can be omitted to define a Toeplitz-Cuntz-Krieger Λ-family.
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The main result of [39] was a higher-rank version of Theorem 1.1.3 [39, Theorem

8.1]. We restate the uniqueness theorem as follows. For a discussion about how we get

the following theorem from the original version of [39, Theorem 8.1], see [37, Remark

2.3].

Theorem 1.2.3 (The uniqueness theorem for Toeplitz algebras). Suppose that Λ is a

finitely aligned k-graph. Suppose that φ : TC∗ (Λ) → B is a homomorphism such that

for all v ∈ Λ0 and finite sets Fi ⊆ vΛei,

k∏
i=1

(
φ (qv)−

∑
λ∈Fi

φ (qλ)φ (q∗λ)
)
	 0

(where this includes φ (qv) 	 0 if vΛ = {v}). Then φ : TC∗ (Λ)→ B is injective.

Theorem 1.2.3 indicates how to define the Cuntz-Krieger algebra of a finitely aligned

k-graph. The solution was then implemented by Raeburn, Sims and now with Yeend

in [41]. They said that a set E ⊆ vΛ is exhaustive if for every µ ∈ vΛ, there exists

λ ∈ E such that Λmin (λ, µ) 6= ∅. Then a Cuntz-Krieger Λ-family for finitely aligned

higher-rank graphs is a family of partial isometries {Tλ : λ ∈ Λ} in a C∗-algebra B

satisfying (TCK1-3) and

(CK)
∏
λ∈E

(Tv − TλT ∗λ ) = 0 for all v ∈ Λ0 and finite exhaustive E ⊆ vΛ.

Condition (CK) is the Cuntz-Krieger relation. In Appendix B of [41], Raeburn, Sims

and Yeend showed that in directed graphs, (CK) is equivalent to (1.1.1), and (CK) is

the Cuntz-Krieger relation for locally convex higher-rank graphs. Raeburn, Sims and

Yeend also generalised the gauge-invariant uniqueness theorem and the Cuntz-Krieger

uniqueness theorem to finitely aligned k-graphs (Theorem 4.2 and Theorem 4.5 of [41],

respectively).

As for directed graphs, higher-rank graph C∗-algebras and higher-rank graph Toeplitz

algebras also have an interesting relationship. For example, every finitely aligned

higher-rank graph Λ, C∗ (Λ) is a quotient of its Toeplitz algebra TC∗ (Λ). Recently, we

showed that for every row-finite higher-rank graph Λ, there is a higher-rank graph TΛ

such that the Toeplitz algebra of Λ is the C∗-algebra of TΛ [37, Theorem 4.1]. This

generalises Muhly and Tomforde’s [35, Theorem 3.7] and Sims’s [51, Lemma 3.5] for

directed graphs. Proposition 3.4 of [37] shows that the k-graph TΛ is always aperiodic

in the sense of [33], and the Cuntz-Krieger uniqueness theorem of [33] always applies

to TΛ. This helps explain why no hypothesis on Λ is required in Theorem 1.2.3.
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1.3 Leavitt path algebras and Cohn path algebras

for graphs

Leavitt path algebras for graphs were developed independently by two groups of math-

ematicians. The first group, which consists of Ara, Goodearl and Pardo, was motivated

by the K-theory of graph algebras [42]. They introduced Leavitt path algebras [10]

in order to answer analogous K-theoretic questions about the algebraic Cuntz-Krieger

algebras of [7]. On the other hand, Abrams and Aranda Pino introduced Leavitt path

algebras in [3] to generalise Leavitt’s algebras, specifically the algebras LK (1, n) of [32].

Both groups defined Leavitt path algebra LK (E) for a row-finite graph E and a field

K.

For e ∈ E1, we call e∗ a ghost path (e∗ is a formal symbol) and we define (E1)
∗

:=

{e∗ : e ∈ E1}. We also extend r and s to be defined on (E1)
∗

by r (e∗) := s (e) and

s (e∗) := r (e). For a row-finite graph E and field K, LK (E) is the associative K-

algebra generated by the set {pv : v ∈ E0} and {se, se∗ : e ∈ E1} subject to the following

relations:

(V) pvpw = δv,wpv for all v, w ∈ E0,

(E1) seps(e) = pr(e)se = se for all e ∈ E1,

(E2) ps(e)se∗ = se∗pr(e) = se∗ for all e ∈ E1,

(CK1) se∗sf = δe,fps(e) for all e, f ∈ E1,

(CK2) pv =
∑

e∈r−1(v) sese∗ for every v ∈ E0 which is not a source.

At a glance, we can see the above conditions are algebraic version of the definition

of Cuntz-Krieger E-families and so (CK1-2) are the Cuntz-Krieger relations. The only

difference is that Leavitt path algebras are K-algebras and not C∗-algebras; and hence

elements need not have adjoints. Abrams and Aranda Pino showed that LK (E) is a

Z-graded algebra, with grading induced by

LK (E)n := spanK{sei1 . . . seipse∗j1 . . . se∗jq : p+ q > 0, eis ∈ E1, e∗jt ∈
(
E1
)∗
, p− q = n}

for n 6= 0. The definition of Leavitt path algebras was later expanded by Abrams and

Aranda Pino to arbitrary graphs [4]. As for graph algebras, the modification imposes

(CK2) only for v ∈ E0 where r−1 (v) is finite and nonempty.
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In [54], Tomforde showed that the Leavitt path algebra of [4] is the algebra gener-

ated by the universal family satisfying (V), (E1), (E2), (CK1) and (CK2). Tomforde

then showed that every Leavitt path algebra is a Z-graded algebra, and formulated a

uniqueness theorem as follows:

Theorem 1.3.1 ([54, Theorem 4.8]: The graded uniqueness theorem). Suppose that

E is a graph and that K is a field. Suppose that LK (E) is the associated Leavitt path

algebra with the usual Z-grading. If A is a Z-graded ring and π : LK (E) → A is a

graded ring homomorphism with π (pv) 6= 0 for all v ∈ E0, then π is injective.

An interesting consequence of this uniqueness theorem is that for K = C, the Leav-

itt path algebra LC (E) sits densely inside the graph algebra C∗ (E) [54, Theorem 7.3].

Furthemore, this theorem is an algebraic analogue of the gauge-invariant uniqueness

theorem for graph algebras.

As for graph algebras, there is a Cuntz-Krieger uniqueness theorem for the Leavitt

path algebras of graphs which satisfy Condition (L) [54].

Theorem 1.3.2 ([54, Theorem 6.8]: The Cuntz-Krieger uniqueness theorem). Sup-

pose that E is a graph which satisfies Condition (L) and that K is a field. Suppose

that LK (E) is the associated Leavitt path algebra. If π : LK (E) → A is a ring homo-

morphism with π (pv) 6= 0 for all v ∈ E0, then π is injective.

Tomforde then improved his result in [55] by replacing a field K with a commuta-

tive ring R with 1. His Leavitt path algebras over rings also have universal property,

a graded uniqueness theorem [55, Theorem 5.3] and a Cuntz-Krieger uniqueness theo-

rem [55, Theorem 6.5].

For a graph E and a field K, the Cohn path algebra CK (E) was defined and

investigated in [6] and [8], generalising the algebras U1,n studied by Cohn in [20].

The algebra CK (E) is the associative K-algebra generated by the set {tv : v ∈ E0}
and {qe, qe∗ : e ∈ E1} satisfying (V), (E1),(E2) and (CK1). The Leavitt path algebra

LK (E) is the quotient of CK (E) by the ideal generated by{
tv −

∑
e∈r−1(v)

qeqe∗ : v ∈ E0 where r−1 (v) is finite
}

.

Furthermore, for every graph E, the graph TE (denoted E (X) in [2]), which satisfies

TC∗ (E) ∼= C∗ (TE), also satisfies CK (E) ∼= LK (TE) [2, Theorem 1.5.18]. However,

mathematicians did not study the universal property or the uniqueness theorem for

Cohn path algebras.
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Up to this point, the properties of both Leavitt path algebras and Cohn path

algebras have mirrored graph algebras and Toeplitz algebras, respectively. So it is

natural to say that Leavitt path algebras and Cohn path algebras are algebraic versions

of graph algebras and Toeplitz algebras, respectively.

1.4 Kumjian-Pask algebras for higher-rank graphs

Aranda Pino, J. Clark, an Huef and Raeburn defined and studied a higher-rank ana-

logue of Leavitt path algebras, which they called Kumjian-Pask algebras [11]. They

focused on row-finite k-graphs with no sources. They first introduced ghost paths λ∗

for λ ∈ Λ (with v∗ := v for v ∈ Λ0), and defined G (Λ) := {λ∗ : λ ∈ Λ}. As for Leavitt

path algebras, they also extended the range and source maps r and s to be defined on

G (Λ) by r (λ∗) := s (λ) and s (λ∗) := r (λ). For a row-finite k-graph Λ with no sources

and commutative ring R with 1, a Kumjian-Pask Λ-family {Sλ, Sµ∗ : λ, u ∈ Λ} in an

R-algebra A consists of S : Λ ∪G
(
Λ 6=0

)
→ A such that:

(i) {Sv : v ∈ Λ0} is a collection of mutually orthogonal idempotents;

(ii) for λ, µ ∈ Λ with s (λ) = r (µ), we have SλSµ = Sλµ and Sµ∗Sλ∗ = S(λµ)∗ ;

(iii) Sλ∗Sµ = δλ,µSs(λ) for all λ, µ ∈ Λ with d (λ) = d (µ); and

(iv) Sv =
∑

λ∈vΛn SλSλ∗ for all v ∈ Λ0 and n ∈ Nk.

The Kumjian-Pask algebra KPR (Λ) is the R-algebra generated by the universal

Kumjian-Pask Λ-family and there is a Zk-grading on KPR (Λ) satisfying

KPR (Λ)n := spanR{sλsµ∗ : λ, µ ∈ Λ and d (λ)− d (µ) = n}

[11, Theorem 3.4]. The authors of [11] then formulated a uniqueness theorem as follows:

Theorem 1.4.1 ([11, Theorem 4.1]: The graded uniqueness theorem). Suppose that Λ

is a row-finite graph with no sources, that R is a commutative ring with 1 and that A

is a Zk-graded ring. If π : KPR (Λ)→ A is a Zk-graded ring homomorphism such that

π (rsv) 6= 0 for all v ∈ Λ0 and r ∈ R\ {0}, then π is injective.

As for Leavitt path algebras, the graded uniqueness theorem for R = C implies

that the Kumjian-Pask algebra KPC (Λ) is isomorphic to a dense subset of C∗ (Λ).

Apart from the graded uniqueness theorem, we also have a Cuntz-Krieger unique-

ness theorem for Kumjian-Pask algebras. To state this uniqueness theorem, the authors
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of [11] used an aperiodicity condition which is equivalent to our previous Conditon (A)

[46, Lemma 3.2].

Theorem 1.4.2 ([11, Theorem 4.7]: The Cuntz-Krieger uniqueness theorem). Suppose

that Λ is a row-finite graph with no sources which satisfies Condition (A), and that R is

a commutative ring with 1 and A a ring. If π : KPR (Λ)→ A is a ring homomorphism

such that π (rsv) 6= 0 for all v ∈ Λ0 and r ∈ R\ {0}, then π is injective.

As for higher-rank graph C∗-algebras, Kumjian-Pask algebras were defined for lo-

cally convex row-finite k-graphs by Clark, Flynn and an Huef in [16]4. They also showed

the universal property and proved uniqueness theorems for their Kumjian-Pask alge-

bras.

1.5 Main results of this thesis

The main results of this thesis extend the definition of Kumjian-Pask algebras to finitely

aligned k-graphs over a commutative ring with 1 (Chapter 3), and introduce Cohn path

algebras for k-graphs over a commutative ring with 1 (Chapter 4). These results are

taken from joint work with my supervisor Clark [18, 19].

By exploiting the similarity between Cuntz-Krieger algebras and Leavitt path alge-

bras (and their generalisation), we arrive at a candidate for the Kumjian-Pask algebras

of finitely aligned k-graphs. We then need to show that this candidate has a graded

uniqueness theorem and a Cuntz-Krieger uniqueness theorem. This is the first main

innovation of this thesis.

For our graded uniqueness theorem (Theorem 3.2.1), we use an algebraic version of

the C∗-algebra proof of the gauge-invariant uniqueness theorem for finitely aligned k-

graph C∗-algebras [41, Theorem 4.2]. However, this method does not work to show the

Cuntz-Krieger uniqueness theorem and so we use a groupoid model. We first introduce

the boundary-path groupoid GΛ of Λ (see Example 2.8.3). Then using the graded

uniqueness theorem, we show that the Kumjian-Pask algebra KPR (Λ) is isomorphic

to the Steinberg algebra AR(GΛ) (Proposition 3.4.1). We then use this isomorphism to

apply results about Steinberg algebras to Kumjian-Pask algebras.

In Section 3.5 and Section 3.6, we study the relationship between properties of Λ

and properties of GΛ. In Proposition 3.5.1, we show that a finitely aligned higher-rank

4The graded uniqueness theorem and the Cuntz-Krieger uniqueness theorem of [16] required the

homomorphism π to be an R-algebra homomorphism. However, this hypothesis can be relaxed to be

a ring homomorphism and no changes in the proofs are required.
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graph Λ is aperiodic if and only if the boundary-path groupoid GΛ is effective. In

Proposition 3.6.1, we show that a higher-rank graph Λ is cofinal if and only if GΛ is

minimal.

In Section 3.7, we use the Cuntz-Krieger theorem for Steinberg algebras [14, The-

orem 3.2] to prove the Cuntz-Krieger uniqueness theorem for Kumjian-Pask algebras

(Theorem 3.7.1). Since the Cuntz-Krieger theorem for Steinberg algebras only applies

to effective groupoids, the aperiodicity condition of Λ ensures that we can apply the

uniqueness theorem.

In Section 3.8, we give necessary and sufficient conditions for KPR (Λ) to be basically

simple in Theorem 3.8.3 and simple in Theorem 3.8.4. We show these results by

applying the characterisation of basic simplicity and simplicity of the Steinberg algebra

AR (GΛ) (see Theorem 4.1 and Corollary 4.6 of [14]).

Note that our proofs of the uniqueness theorems for Kumjian-Pask algebras are

different from those used for Kumjian-Pask algebras for row-finite k-graphs with no

sources [11] and locally convex row-finite k-graphs [16]. Hence this thesis gives new

proofs of the uniqueness theorems in [11, 16].

We then turn our attention to row-finite k-graphs with no sources. On this class of

k-graphs, we introduce a Cohn path Λ-family and study its properties in Section 4.1.

The next main achievement of this thesis is to establish a uniqueness theorem for

Cohn path algebras (Theorem 4.2.1). Our strategy is to follow the analysis of [37].

In that paper, the author shows that for every row-finite higher-rank graph Λ, there

exists a higher-rank graph TΛ such that the Toeplitz algebra of Λ is isomorphic to the

C∗-algebra of TΛ. Here we show that the Cohn path algebra of Λ is isomorphic to the

Kumjian-Pask algebra of TΛ (Theorem 4.2.16(a)). We then apply the Cuntz-Krieger

uniqueness theorem for Kumjian-Pask algebras (Theorem 3.7.1) to prove Theorem

4.2.1. Another consequence of this isomorphism is that every Cohn path algebra is

Zk-graded (Theorem 4.2.16(b)).

Finally, we discuss examples and applications in Section 4.3. We explicitly demon-

strate the relationship between Cohn path algebras and Toeplitz algebras (Proposition

4.3.1), and show that our Cohn algebras can be realised as Steinberg algebras (Propo-

sition 4.3.4).
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Chapter 2

Preliminaries

In this chapter, we give a more detailed discussion of k-graphs, graded rings and

groupoids. We also give examples in order to help readers to get a better under-

standing.

A directed graph E consists of a countable vertex set E0, a countable edge set E1,

and range and source maps r, s : E1 → E0 which indicate the direction of the edges.

For a positive integer k, we view Nk as an additive semigroup with identity 0. For

n ∈ Nk, we write n = (n1, . . . , nk). For m,n ∈ Nk, we write m ≤ n to mean mi ≤ ni

for 1 ≤ i ≤ k, and we use the expression m ∨ n for their coordinate-wise maximum,

and m ∧ n for their coordinate-wise minimum. We also write ei for the usual basis

elements in Nk.

2.1 Basics of categories

A k-graph and a groupoid are defined in terms of category theory, so in this section,

we establish basic notations and definitions of categories. We use the definitions of [34,

Chapter 1] and [43, Chapter 10].

For our purposes, a category1 C consists of two sets C0 and C∗, two functions r, s :

C∗ → C0, a partially defined product (a, b) 7→ ab from

{(a, b) ∈ C∗ × C∗ : s (a) = r (b)}

to C∗, and distinguished elements {ιv ∈ C∗ : v ∈ C0} such that

• r (ab) = r (a) and s (ab) = s (b) for all a, b ∈ C∗;
1In category-theory books, our notion of category is called a small category.
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• (ab) c = a (bc) when s (a) = r (b) and s (b) = r (c) for all a, b, c ∈ C∗;

• r (ιv) = v = r (ιv) and ιva = a, bιv = b when r (a) = v and s (b) = v.

We call the elements of C0 the objects of the category; and the elements of C∗ the

morphisms of C. For a ∈ C∗, we call r (a) and s (a) the codomain and domain of a,

respectively. The function (a, b) 7→ ab is called composition, and for v ∈ C0, ιv is called

the identity morphism on the object v. We also say that a category C is countable if

C∗ is countable.

For example, we can view the semigroup (Nk,+) as a category with a single object

o, morphisms Nk, r (n) = o = s (n) for all n ∈ Nk, ιo = 0 and operation (m,n) 7→
m+ n [49, Example 2.1.2].

Given categories C and B, a functor 2 T : C → B consists of two functions (both

denoted T ): T : C0 → B0 and T : C∗ → B∗ which satisfy:

• s (T (a)) = T (s (a)) and r (T (a)) = T (r (a)) for all a ∈ C∗;

• T (ιv) = ιT (v) for all v ∈ C0;

• T (a)T (b) = T (ab) for all a, b ∈ C∗ with s (a) = r (b).

The motivating example is:

Example 2.1.1. Let E = (E0, E1, r, s) be a directed graph. For a positive integer n, we

set

En := {µ1µ2 · · ·µn : n ∈ N, µi ∈ E1, r (µi+1) = s (µi) for all i ≤ n− 1}

and define r, s : En → E0 by

s (µ) = s (µn) and r (µ) = r (µ1)

for µ = µ1µ2 · · ·µn ∈ En. We define composition as follows: for µ1 · · ·µn, γ1 · · · γm ∈ E∗

with s (µn) = r (γ1),

(µ1 · · ·µn, γ1 · · · γm) 7→ µ1 · · ·µnγ1 · · · γm

(r (µ1) , µ1 · · ·µn) 7→ µ1 · · ·µn and (µ1 · · ·µn, s (µn)) 7→ µ1 · · ·µn.

Finally, for v ∈ E0, let v be its identity morphism. Then E∗ :=
⋃
n∈NE

n is a category

with the set of objects E0 and the set of morphisms E∗. The map d : E∗ → (N,+)

which satisfies d (v) = 0 for v ∈ E0 ⊆ E∗ and d (µ1 · · ·µn) = n for µ1 · · ·µn ∈ E∗\E0,

is a functor, called the degree functor.
2As for Footnote 2.1, our notion of functor is a covariant functor.

16



2.2 Basic definitions of higher-rank graphs

A higher-rank graph or k-graph Λ is a countable category Λ with a functor d from Λ

to Nk = (Nk,+), called the degree map, which satisfies the factorisation property :

for every morphism λ and m,n ∈ Nk with d (λ) = m+ n, there are

unique morphisms µ, ν such that λ = µυ and d (µ) = m, d (ν) = n.

We then write λ (0,m) for µ and λ (m,m+ n) for ν. For every morphism λ, we have

d (λ) ∈ Nk and call that λ is a finite path. We discuss infinite paths in Section 2.5.

To simplify the notation, from now on, we write Λ for the set Λ∗ of morphisms of

Λ and identify the objects with the identity morphism.

Example 2.2.1 ([40, Example 2.2(ii)]). Let k ∈ N and n ∈ (N∪{∞})k. We define

Ω0
k,n :=

{
p ∈ Nk : p ≤ n

}
,

Ωk,n :=
{

(p, q) ∈ Nk × Nk : p ≤ q ≤ n
}

,

s (p, q) := q, r (p, q) := p, and ιp := (p, p) .

Then Ωk,n is a countable category. We define d (p, q) = q − p, and then Ωk,n becomes

a k-graph.

Since d is a functor and Nk is a category with one object O, then for v ∈ Λ0,

we have d (ιv) = 0. Take v ∈ Λ0 and λ ∈ Λ with d (λ) = 0 and r (λ) = v. Since

d (λ) = 0 + 0, then by the factorisation property, there exist unique µ, ν ∈ Λ such that

d (µ) = d (ν) = 0 and µν = λ. Then (µ, ν) is either (λ, ιv) or (ιv, λ); and the uniqueness

of factorisations ensures λ = ιv. So

(2.2.1) {λ ∈ Λ : d (λ) = 0} =
{
ιv : v ∈ Λ0

}
.

Now for n ∈ Nk, we write

Λn := {λ ∈ Λ : d (λ) = n}

and so we call its elements paths with degree n. This is consistent notation when n = 0

(2.2.1). In particular, we call elements of Λ0 vertices. We also use the term edge to

denote a path e ∈ Λei where 1 ≤ i ≤ k, and write

Λ1 :=
⋃

1≤i≤k

Λei
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for the set of edges. For λ ∈ Λ, we call s (λ) and r (λ) the source and range of λ,

respectively. For v ∈ Λ0, λ ∈ Λ and E ⊆ Λ, we define

vE := {µ ∈ E : r (µ) = v} ,

λE := {λµ ∈ Λ : µ ∈ E, r (µ) = s (λ)} ,

Eλ := {µλ ∈ Λ : µ ∈ E, s (µ) = r (λ)} .

When k = 1, for every directed graph E = (E0, E1, r, s), the category E∗ as in

Example 2.1.1 is a 1-graph.

2.3 Visualising higher-rank graphs using skeletons

To study a k-graph, it is helpful to depict it in terms of its skeleton, which is the graph

with vertex set Λ0, edge set
⋃k
i=1 Λei , range and source maps inherited from Λ, and

with the edges of different degrees distinguished using k different colours. Note that

skeletons are k-coloured graphs [26].

Let Fk be the free semigroup on k-generators {c1, . . . , ck}. A k-coloured graph is

a graph E together with a map c : E1 → {c1, . . . , ck}, which we extend to a functor

c : E∗ → F+
k by setting

c (µ1 · · ·µn) := c (µ1) · · · c (µn) and c (v) := 0

for all µ1 · · ·µn ∈ E∗\E0 and v ∈ E0.

The following example describes a k-coloured graph which will be used to study

k-graphs. In this example, m + wi is a formal symbol to denote an edge of colour ci

pointing from m+ ei to m.

Example 2.3.1 ([26, Example 3.1]). For n ∈ (N∪{∞})k, we define a coloured graph

Ek,n by

E0
k,n :=

{
m ∈ Nk : m ≤ n

}
, E1

k,n :=
{
m+ wi : m,m+ ei ∈ E0

k,n

}
,

r (m+ wi) := m, s (m+ wi) = m+ ei and c (m+ wi) = ci.
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For example, we draw E2,(1,2):

•
(0, 0)

•
(1, 0)

•
(0, 1)

•
(1, 1)

•
(0, 2)

•
(1, 2)

(0, 0) + w1

(1, 0) + w2

(0, 1) + w1

(0, 0) + w2

(0, 2) + w1

(0, 1) + w2

(1, 1) + w2

A graph morphism ϕ from a graph E to a graph F is a pair of maps ϕ0 : E0 → F 0

and ϕ1 : E1 → F 1 such that r (ϕ1 (e)) = ϕ0 (r (e)) and s (ϕ1 (e)) = ϕ0 (s (e)) for all

e ∈ E1. To simplify the notation, we write ϕ for each ϕ0 and ϕ1. A coloured-graph

morphism is a graph morphism which preserves colour.

Now suppose that E is a k-coloured graph. For distinct i, j ∈ {1, . . . , k}, an {i, j}-
square (or just a square) in a k-coloured graph E is a coloured-graph morphism ϕ :

Ek,ei+ej → E. If ϕ : Ek,n → E is a coloured-graph morphism and φ is a square in

E, then φ occurs in ϕ if there exists m ∈ Nk such that φ (x) = ϕ (x+m) for all

x ∈ Ek,ei+ej .
A complete collection of squares is a collection C of squares in E such that for each

fg ∈ E∗ with c (f) = ci, c (g) = cj and i 6= j, there exists a unique ϕ ∈ C such that

ϕ (wi) = f and ϕ (ei + wj) = g. We then write ϕ (wi)ϕ (ei + wj) ∼ ϕ (wj)ϕ (ej + wi).

So for every cicj-coloured path x ∈ E∗, there is a unique cjci-coloured path y ∈ E∗ such

that x ∼ y. We also say a complete collection of squares C is associative if for every

path fgh in E such that f, g, h are edges of distinct colour, the edges f1, f2, g1, g2, h1, h2

and f 1, f 2, g1, g2, h1, h2 determined by

fg ∼ g1f 1, f 1h ∼ h1f 2, and g1h1 ∼ h2g2

gh ∼ h1g1, fh1 ∼ h2f1, and f1g1 ∼ g2f2

g1 g

g2

h2

h1 h

f

f1

f2

f

f1

f2

g1

g

g2

h2 h1

h

satisfy f 2 = f2, g
2 = g2 and h2 = h2. If C is a complete and associative collection of

squares in E, we say that a coloured-graph morphism ϕ : Ek,n → E is C-compatible if

every square occuring in ϕ belongs to C.
Now we construct a k-graph from a k-coloured graph as follows:
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Notation 2.3.2 ([26, Notation 4.3]). Let E be a k-coloured graph and let C be a

complete collection of squares in E that is associative. For each n ∈ Nk, we write

Λn
(E,C) for the set of all C-compatible coloured-graph morphisms Ek,n → E. Let

Λ(E,C) :=
⋃
n∈Nk

Λn
(E,C).

Let d : Λ(E,C) → Nk and r, s : Λ(E,C) → Λ
(0)
(E,C) be as defined in Example 2.3.1. For

v ∈ E0, we define ϕv : Ek,0 → E by ϕv (0) = v; and for 1 ≤ i ≤ k and f ∈ E1

with c (f) = ci, we define ϕf : Ek,ei → E by ϕf (0) = r (f), ϕf (ei) = s (f) and

ϕf (0 + wi) = f .

Theorem 1.9 of [52] says that for a k-coloured graph E and a complete collection of

squares C in E, there is a unique k-graph Λ = Λ(E,C) such that Λei = c−1 (ci) for every

i and

fg = g′f ′ in Λ if and only if fg ∼ g′f ′ in E

for every fg ∈ Λei+ej with distinct i, j ∈ {1, . . . , k}. We then call E the skeleton

of Λ. For further discussion about the construction of the reverse direction, which is

constructing the skeleton from a k-graph, see [26, Definition 4.1].

An interesting consequence of [52, Theorem 1.9] is that the factorisation property

of paths in Λei+ej for all distinct i, j ∈ {1, . . . , k} determines the factorisation property

of all paths in Λ. Hence, to depict a k-graph, it suffices to give its skeleton and its

complete collection of squares that is associative.

For example, the skeleton of the 2-graph Ω2,(1,2) as in Example 2.2.1 is the 2-coloured

graph E2,(1,2) as in Example 2.3.1 where

(m+ w1) (m+ e1 + w2) = (m+ w2) (m+ e2 + w1)

for m ∈ {(0, 0) , (0, 1)}.

2.4 Row-finite and finitely aligned higher-rank graphs

We briefly introduced higher-rank graphs in Section 1.2. In this section, we give further

discussion and examples to help readers get better understanding.

Let Λ be a k-graph and λ, µ ∈ Λ. Then τ ∈ Λ is a minimal common extension of

λ and µ if

d (τ) = d (λ) ∨ d (µ) , τ (0, d (λ)) = λ and τ (0, d (µ)) = µ.
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Let MCE (λ, µ) denote the set of all minimal common extensions of λ and µ. The map

(ρ, τ) 7→ λρ is a bijection of the set Λmin (λ, µ) of (1.2.1) onto MCE (λ, µ), with inverse

given by λρ 7→ (ρ, (λρ) (d (µ) , d (λρ))).

For E ⊆ Λ and λ ∈ Λ, we write

Ext (λ;E) :=
⋃
µ∈E

{
ρ : (ρ, τ) ∈ Λmin (λ, µ)

}
.

Example 2.4.1. Consider the 2-graph Λ with skeleton

•
v1

•
v2

•
v3

•
w1

•
w2

···

f

g

f1

g1

g2

f2

where fgi = gfi for all positive integers i, dashed edges have degree (1, 0) and solid

edges have degree (0, 1). Then

MCE (f, g) = {fgi : i ∈ N\ {0}} and Λmin (f, g) = {(gi, fi) : i ∈ N\ {0}} .

We also have

Ext (f ; {f}) = {v2} , Ext (f ; {g}) = {gi : i ∈ N\ {0}}, and Ext (f ; {gf1}) = {g1} .

Now recall from page 8 that a set E ⊆ vΛ is exhaustive if for every λ ∈ vΛ, there

exists µ ∈ E such that Λmin (λ, µ) 6= ∅. Alternatively, we also could say that E ⊆ vΛ

is exhaustive if for every λ ∈ vΛ, Ext (λ;E) 6= ∅.
Next we define

FE (Λ) :=
⋃
v∈Λ0

{
E ⊆ vΛ\ {v} : E is finite and exhaustive

}
.

For E ∈ FE (Λ), we write r (E) for the vertex v which satisfies E ⊆ vΛ.

Example 2.4.2. Consider the 2-graph Λ which has skeleton

•
v1

•
v2

•
v3

•
v4

•v5

f1

g1

f2

g2

f3
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where f1g1 = g2f2, dashed edges have degree (1, 0) and solid edges have degree (0, 1).

First note that since Λmin (λ, f3) 6= ∅ for all λ ∈ v1Λ\ {v1, f3}, then for every E ∈
v1 FE (Λ), E must contain f3. Furthermore, since Λmin (λ, µ) 6= ∅ for all λ ∈ v1Λ\ {f3}
and µ ∈ {f1, g2, f1g1}, then for every E ∈ v1 FE (Λ), E also must contain at least one

of f1, g2, f1g1. Then

v1 FE (Λ) =
{ {f1, f3} , {g2, f3} , {f1, g2, f3} , {f1g1, f3} ,
{f1, f1g1, f3} , {g2, f1g1, f3} , {f1,g2, f1g1, f3}

}
,

v2 FE (Λ) = {{g1}} , v3 FE (Λ) = {{f2}} , and v4 FE (Λ) = ∅.

We say that Λ is finitely aligned if MCE (λ, µ) is finite (possibly empty) for all

λ, µ ∈ Λ. Since there is a bijection between Λmin (λ, µ) and MCE (λ, µ), then we

also could say that Λ is finitely aligned if Λmin (λ, µ) is finite (possibly empty) for all

λ, µ ∈ Λ.

For a directed graph E and paths λ, µ ∈ E∗, we have

MCE (λ, µ) =


{λ} if λ (0, d (µ)) = µ,

{µ} if µ (0, d (λ)) = λ,

∅ otherwise;

and so |MCE (λ, µ)| is either 0 or 1. Therefore, every 1-graph is finitely aligned.

Recall from page 5 that a k-graph Λ is row-finite if vΛn is finite for all v ∈ Λ0 and

n ∈ Nk. For all λ, µ ∈ Λ, we have∣∣Λmin (λ, µ)
∣∣ = |MCE (λ, µ)| ≤

∣∣r (λ) Λd(λ)∨d(µ)
∣∣ .

Hence every row-finite k-graph Λ is finitely aligned. On the other hand, a finitely

aligned k-graph Λ is not necessarily row-finite.

Example 2.4.3. Consider the 2-graph Λ with skeleton

•
v

f

g1

g2

...
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and fgi = gif for all positive integers i, the dashed edge has degree (1, 0) and solid

edges have degree (0, 1). The 2-graph Λ has infinitely many edges gi. It is not row-finite

because |vΛ(0,1)| = ∞. On the other hand, for λ, µ ∈ Λ,
∣∣Λmin (λ, µ)

∣∣ is either 0 or 1,

and hence Λ is finitely aligned.

Following [29, Definition 1.4], a k-graph Λ has no sources if vΛn is nonempty for

every v ∈ Λ0 and n ∈ Nk.
Now consider the 2-graph Λ in Example 2.4.2. Since v5 does not receive edges of

degree (0, 1), v5 is a source of Λ. Furthermore, Λ fails to be locally-convex (see page 6)

since e3 ∈ v1Λ(1,0), f2 ∈ v1Λ(0,1) but s (e3) Λ(0,1) = ∅. On the other hand, Λ is row-finite

and hence is finitely aligned.

Next consider the 2-graph Λ as Example 2.4.1. Since
∣∣Λmin (e, f)

∣∣ = ∞, Λ is not

finitely aligned.

To summarise, finitely aligned k-graphs generalise both row-finite k-graphs with no

sources and locally convex row-finite k-graphs, but not every k-graph is finitely aligned.

2.5 The boundary-path space and the path space

Throughout this section, we suppose that Λ is a finitely aligned k-graph. For a positive

integer k and n ∈ (N∪{∞})k, we consider the k-graph Ωk,n of Example 2.2.1.

We define

WΛ :=
⋃

n∈(N∪{∞})k
{x : Ωk,n → Λ : x is a degree preseving functor}

and call WΛ the path space of Λ. For any finite path λ ∈ Λ, we can view λ as an

element of WΛ by viewing it as a degree preserving functor from Ωk,d(λ) to Λ. This

map is well-defined by the unique factorisation property. Thus WΛ contains all finite

and inifinite paths of Λ.

For example, for the k-graph Λ of Example 2.4.2, WΛ = Λe1 ∪ Λe2 ∪ Λe1+e2 where

we identify elements of WΛ with their image in Λ, and then WΛ is the set of all finite

paths of Λ. For the k-graph Λ of Example 2.4.3, WΛ also contains infinite paths, such

as ef1f2f3 · · · .
Finite paths and infinite paths are fundamentally different objects and so, it is not

obvious to compose them. Webster showed how to compose finite and infinite paths.

Proposition 2.5.1 ([56, Proposition 3.0.11]). Suppose that Λ is a k-graph. Suppose

λ ∈ Λ and x ∈ WΛ satisfies r (x) = s (λ). Then there exists a unique k-graph morphism
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λx : Ωk,d(λ)+d(x) → Λ such that (λx) (0, d (λ)) = λ and (λx) (d (λ) , d (λ) + n) = x (0, n)

for all n ≤ d (x).

Now suppose x ∈ WΛ. For n ∈ Nk and n ≤ d (x), the path σnx is defined by

σnx (0,m) = x (n, n+m) for all m ≤ d (x) − n. We also write x (n) for the vertex

x (n, n). Then the range of the path x is the vertex r (x) := x (0).

Example 2.5.2. Consider the 2-graph Λ which has skeleton

•
v

f

g

where fg = gf , the dashed edge has degree (1, 0) and the solid edge has degree (0, 1).

Choose the path x = fgfg . . ., then

σ(3,0) (x) = gggfgfg . . . and σ(1,1) (x) = fgfg . . . .

As in [40, Definition 3.1], for n ∈ Nk we define

(2.5.1) Λ≤n := {λ ∈ Λ : d (λ) ≤ n and d (λ)i < ni imply s (λ) Λei = ∅}.

Note that vΛ≤n 6= ∅ for all v ∈ Λ0 and n ∈ Nk. This is because v is contained in vΛ≤n

whenever vΛ≤n has no non-trivial paths of degree less than or equal to n. If Λ has no

sources, then for n ∈ Nk, we have Λ≤n = Λn. However, in general, we have Λn ⊆ Λ≤n

and the two can be different, see the following example.

Consider the k-graph Λ in Example 2.4.2. Because there is no path with degree

(2, 0), then Λ(2,0) = ∅, Λ≤(2,0) = Λ(1,0) and hence Λ(2,0) ⊆ Λ≤(2,0). Here Λ≤(1,1) = Λ(1,1).

Following [24, Definition 5.10], we say that x ∈ WΛ is a boundary path of Λ if for

every m ∈ Nk with m ≤ d (x) and E ∈ x (m) FE (Λ), there exists λ ∈ E such that

x (m,m+ d (λ)) = λ. We write ∂Λ for the set of all boundary paths. Note that for

v ∈ Λ0, v∂Λ is nonempty [24, Lemma 5.15].

Remark 2.5.3. For locally convex graphs, the set Λ≤∞ (as defined in [40, Definition

3.14]) is the same as ∂Λ [57, Proposition 2.12]. However, more generally, Λ≤∞ ⊆ ∂Λ,

and the two can be different (see [57, Example 2.11] as follows).
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Example 2.5.4 ([57, Example 2.11]). Suppose that Λ is the 2-graph with the skeleton

•

•
v1

•

•

•
v2

•

•

•
v3

•

•

•
v4

•

h1

g1

j1

f1

h2

g2

j2

f2

h3

g3

j3

f3 f3
. . .

. . .

j4

where fihi = gifi+1 for all positive integers i, dashed edges have degree (1, 0) and solid

edges have degree (0, 1). Consider the path x = g1g2 · · · . We claim that x ∈ ∂Λ.

Fix a positive integer m and E ∈ vm FE(Λ). We have to show that there exists

λ ∈ E such that x (m,m+ d (λ)) = λ. Since E is exhaustive, for each n ≥ m, there

exists λn ∈ E such that MCE(λn, gm · · · gn−1jn) 6= ∅. Since E is finite, it can not

contain gm · · · gn−1jn for every n ≥ m, so it must contain gm · · · gp for some p ∈ N. So

x((0,m), (0, p)) = gm · · · gp belongs to E and x ∈ ∂Λ. On the other hand, x /∈ Λ≤∞

(see [57, Example 2.11]).

Take x ∈ ∂Λ. For n ∈ Nk and n ≤ d (x), the path σnx belongs to ∂Λ [24, Lemma

5.13(1)]. Meanwhile, for λ ∈ Λx (0), we also have λx ∈ ∂Λ [24, Lemma 5.13(2)].

2.6 Aperiodic higher-rank graphs

The aperiodic k-graphs form a class of k-graphs for which the Cuntz-Krieger uniqueness

theorems for Cuntz-Krieger algebras and Kumjian-Pask algebras hold (see Chapter 1).

There are several versions of the aperiodicity condition that appear in the literature.

In this section, we discuss the aperiodicity condition that we use in this thesis. We

also give some equivalent formulations of this condition (Proposition 2.6.3).

For a directed graph E, the aperiodicity condition is also called Condition (L) and

says that every cycle has an entrance (see page 3).
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Example 2.6.1. Consider the following graph E:

•
v

•
w

•
x

e3

e2

e4
e5e1

e1, e2e3, e3e2 and e5 are cycles; e3e2e1 and e2e1e2e1 are closed paths but are not cycles,

because they visit v twice. Every cycle e2e3, e3e2 and e1 has an entrance; for example,

e1 is an entry to e3e2; and e3 is an entry to e1. However, the cycle e5 has no entrance;

so E does not satisfy Condition (L).

However, the following graph

•
v

•
w

e3

e2

e1

satisfies Condition (L).

For more general k-graphs, we use Condition (B′) of [24] as the aperiodicity condi-

tion in this thesis. Now we state the definition.

Definition 2.6.2. Let Λ be a finitely aligned k-graph. We say that Λ is aperiodic if

for all v ∈ Λ0, there is x ∈ v∂Λ such that λ, µ ∈ Λv and λ 6= µ imply λx 6= µx.

In the literature, there are several equivalent formulations of the aperiodicity condi-

tion. So in the following proposition, we state alternative formulations of aperiodicity

that we use in this thesis. See also the discussion in Remark 2.6.4.

Proposition 2.6.3. Let Λ be a finitely aligned k-graph. Then the following statements

are equivalent:
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(a) Λ is aperiodic in the sense of Definition 2.6.2.

(b) Λ satisfies Condition (A) of [24].

(c) For every pair of distinct paths λ, µ ∈ Λ with s (λ) = s (µ), there exists η ∈ s (λ) Λ

such that MCE (λη, µη) 6= ∅.

(d) Λ has no local periodicity; that is, for every v ∈ Λ0 and every n 6= m ∈ Nk, there

exists x ∈ v∂Λ such that either d (x) � n ∨m or σnx 6= σmx.

Proof. Shotwell showed that (a) and (b) are equivalent [48, Proposition 2.11]. On the

other hand, Lewin and Sims proved that (b) is equivalent to both (c) and (d) [33,

Proposition 3.6].

Remark 2.6.4. For row-finite k-graphs with no sources, Condition (A) in Proposition

2.6.3(b) is Kumjian and Pask’s Condition (A), referred to on page 6.

2.7 Graded rings

Suppose that G is an additive abelian group. A ring A is G-graded if there are additive

subgroups {Ag : g ∈ G} satisfying:

(2.7.1) A =
⊕

g∈GAg and for g, h ∈ G, AgAh ⊆ Ag+h.

We call {Ag : g ∈ G} a G-grading of A, and elements of the subgroup Ag are called

homogenous elements of degree g. For every a ∈ A\ {0}, there exist unique {ag}g∈G
such that each ag ∈ Ag\ {0} and a =

∑
g∈G ag.

For example, consider the Laurent polynomial ring A := K [x, x−1] over a field K.

For n ∈ Z, we define An := {kxn : k ∈ K}, and then {An : n ∈ Z} is a Z-grading of A.

Let A be a G-graded ring. An ideal I of A is G-graded if {I ∩ Ag : g ∈ G} is a

grading of I. In other words, if a ∈ I and a =
∑

g∈G ag with every ag ∈ Ag, then every

ag also belongs to I.

Finally, if A and B are G-graded rings, we say that a homomorphism π : A→ B is

G-graded if π (Ag) ⊆ Bg for all g ∈ G.

2.8 Groupoids

A groupoid G is a small category in which every morphism has an inverse. We write

G(0), called the unit space, to denote the set of objects G0. We also write and G for
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set of morphisms G∗. We then call the codomain and domain functions r and s as

the range and source maps, respectively. We also write G(2) for the set of elements

(a, b) ∈ G × G with s (a) = r (b). For A,B ⊆ G we write

AB :=
{
ab : a ∈ A, b ∈ B, (a, b) ∈ G(2)

}
.

For example, every group G is a groupoid with one object. Its elements are the

morphisms.

We say that G is a topological groupoid if G is endowed with a topology such that

composition and inversion on G are continuous. A groupoid G is étale if G is a topolog-

ical groupoid and the source map s is a local homeomorphism. In this case, r is also a

local homeomorphism. An open set U ⊆ G is an open bisection3 if s and r restricted

to U are homeomorphisms into G(0). Finally, G is ample4 if G has a basis of compact

open bisections.

Example 2.8.1. For a finitely aligned k-graph Λ, the path groupoid T GΛ from [58,

Definition 3.4] is defined as follows. Write

Λ ∗s Λ := {(λ, µ) ∈ Λ× Λ : s (λ) = s (µ)}

and recall the path space WΛ from Section 2.5. The objects of T GΛ are

T G(0)
Λ := WΛ.

The morphisms are

T GΛ := {(λz, d (λ)− d (µ) , µz) ∈ WΛ × Zk ×WΛ :

(λ, µ) ∈ Λ ∗s Λ, z ∈ s (λ)WΛ}

= {(x,m, y) ∈ WΛ × Zk ×WΛ : there exists p, q ∈ Nk such that

p ≤ d (x) , q ≤ d (y) , p− q = m and σpx = σqy}.

The range and source maps are given by r (x,m, y) := x and s (x,m, y) := y, composi-

tion is defined by

((x1,m1, y1) , (y1,m2, y2)) 7→ (x1,m1 +m2, y2) ,

and inversion is given by (x,m, y) 7→ (y,−m,x).

3Open bisections are sometimes referred to as either slices or open G-sets, see for example [22].
4If G is ample, then G is locally compact and étale. In fact, G is Hausdorff ample if and only if G is

locally compact, Hausdorff and étale with totally disconnected unit space (see [22, Proposition 4.1]).
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Next we show how to realise T GΛ as a topological groupoid. For each pair (λ, µ) ∈
Λ ∗s Λ and finite subset G of s (λ) Λ, we write

TZΛ (λ) := λWΛ,

TZΛ (λ\G) := TZΛ (λ)\
( ⋃
ν∈G

TZΛ (λν)
)

,

TZΛ (λ ∗s µ) := {(x, d (λ)− d (µ) , y) ∈ T GΛ : x ∈ TZΛ (λ) , y ∈ TZΛ (µ)

and σd(λ)x = σd(µ)y},

and

TZΛ (λ ∗s µ\G) := TZΛ (λ ∗s µ)\
( ⋃
ν∈G

TZΛ (λν ∗s µν)
)
.

Theorem 3.16 of [58] says that the sets TZΛ (λ ∗s µ\G) form a basis of compact open

bisections for a second-countable Hausdorff topology on T GΛ under which it is an

ample groupoid. Further, the sets TZΛ (λ\G) form a basis of compact open sets for

T G(0)
Λ [58, Lemma 3.8].

Remark 2.8.2. We think of T G0
Λ = WΛ as a subset of T GΛ under the correspondence

x 7→ (x, 0, x).

Example 2.8.3 ([58, Definition 4.8]). Let Λ be a finitely aligned k-graph, let T GΛ be

the path groupoid of Λ as in Example 2.8.1, and let ∂Λ be the boundary-path space

as in Section 2.5. The set ∂Λ is nonempty [58, Proposition 4.3], closed in T G(0)
Λ [58,

Proposition 4.4], and an invariant subset of T G(0)
Λ [58, Proposition 4.7]. Hence

GΛ := T GΛ|∂Λ

is a closed subgroupoid, called the boundary-path groupoid of Λ. The groupoid GΛ is

second-countable Hausdorff because T GΛ is second-countable Hausdorff.

For (λ, µ) ∈ Λ ∗s Λ and finite subset G ⊆ s (λ) Λ, we write

ZΛ (λ\G) := TZΛ (λ\G) ∩ GΛ and ZΛ (λ ∗s µ\G) := TZΛ (λ ∗s µ\G) ∩ GΛ.

Since the sets TZΛ (λ ∗s µ\G) of Example 2.8.1 form a basis of compact open bisections

for T GΛ, and since GΛ is a closed subset of T GΛ, the sets ZΛ (λ ∗s µ\G) also form a

basis of compact open bisections for GΛ. Thus GΛ is also ample. The sets ZΛ (λ\G)

also form a basis of compact open sets for G(0)
Λ .

Remark 2.8.4. A number of notes relating to this example:
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(i) We think of G(0)
Λ = ∂Λ as a subset of GΛ under the correspondence x 7→ (x, 0, x).

(ii) In Section 2.5, we define ZΛ (λ\G) and ZΛ (λ ∗s µ\G) where G is finite. However,

if G is exhaustive, then ZΛ (λ\G) and ZΛ (λ ∗s µ\G) are empty sets. Thus our

definitions make sure that both ZΛ (λ\G) and ZΛ (λ ∗s µ\G) are non-empty.

(iii) GΛ is also étale (see Footnote 2.8).

2.9 Steinberg algebras

Steinberg algebras were introduced in [53], and are algebraic analogues of groupoid

C∗-algebras of [44]. Various mathematicians have studied the relationship between

Steinberg algebras and Leavitt path algebras, see for example [15, 17]. We give a brief

introduction to Steinberg algebras.

Suppose that G is a Hausdorff ample groupoid and R is a commutative ring with

1. As in [14, Section 2.2], the Steinberg algebra5 associated to G is

AR (G) := {f : G → R : f is locally constant and has compact support};

addition and scalar multiplication are defined pointwise, and multiplication is given to

be the convolution

(f ? g) (a) :=
∑

r(a)=r(b)

f (b) g
(
b−1a

)
.

For compact open bisections U and V , the characteristic function 1U belongs to AR(G),

and

1U ? 1V = 1UV

(see [53, Proposition 4.3]).

Let Γ be a discrete group with identity e, and suppose that c : G →Γ is a continuous

cocycle: c (a) c (b) = c (ab) for a, b ∈ G. For n ∈ Γ, we write Gn := c−1 (n). Then

Proposition 3.6 of [15] says that the subsets

AR(G)n := {f ∈ AR(G) : supp (f) ⊆ Gn}

form a Γ-grading of AR(G).

5In [53, Definition 4.1], Steinberg writes RG to denote AR(G). In some references, for example [15],

Steinberg algebras are defined on locally compact, Hausdorff, étale groupoids with totally disconnected

space. However, this kind of groupoids is equivalent to Hausdorff ample groupoids [15, Lemma 2.1].
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We say that a subset S ⊆ G is n-graded if S is also a subset of Gn. For n ∈ Γ, we

write Bco
n (G) for the collection of all n-graded compact open bisections of G. We also

write

Bco
∗ (G) :=

⋃
n∈Γ

Bco
n (G) .

The following proposition explains how an element of AR(G) can be written in terms

of a sum of elements of Bco
∗ (G).

Proposition 2.9.1 ([14, Lemma 2.2]). Suppose that G is a Hausdorff ample groupoid,

that Γ is a discrete group and that c : G →Γ is a continuous cocycle. Then every

f ∈ AR(G) has the form

f =
∑
B∈F

aB1B

where each aB ∈ R and F is a finite set of mutually disjoint elements of Bco
∗ (G).

2.10 Effective groupoids

There is a powerful uniqueness theorem for Steinberg algebras, called the Cuntz-Krieger

uniqueness theorem (see Theorem 2.10.2). It was proved in [15] for Steinberg algebras

over the complex numbers, and generalised by Clark and Edie-Michell to Steinberg

algebras over commutative ring with 1 [14]. This uniqueness theorem only holds for

effective groupoids, so this class of groupoids is an analogue of the class of aperiodic

k-graphs. In fact, there is a relationship between aperiodic k-graphs and effective

groupoids, see Proposition 3.5.1 and Remark 3.5.3.

Let G be a locally compact Hausdorff étale groupoid. We define the isotropy

groupoid of G by

Iso (G) := {a ∈ G : s (a) = r (a)} .

We say that G is effective if the interior of Iso (G) is G(0). This definition is from [13,

Lemma 3.1] which states several equivalent characterisations of effective groupoids.

Remark 2.10.1. Renault showed that for second countable groupoids, G is effective if

and only if G is topologically principal in that the set of units with trivial isotropy is

dense in G(0) [44, Proposition 3.6]. Since for every finitely aligned k-graph Λ, the

groupoids T GΛ and GΛ are also second-countable, the notions of effective and to-

pogically principal are interchangeable in this setting. For other notions of effective

groupoids, see Remark 3.5.3.

We state the Cuntz-Krieger uniqueness theorem for Steinberg algebras as follows.
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Theorem 2.10.2 ([14, Theorem 3.2]). Suppose that G is an effective Hausdorff ample

groupoid and that R is a commutative ring with 1. Suppose that φ : AR (G) → A is

an R-algebra homomorphism such that ker (φ) 6= 0. Then there is a nonempty compact

open subset K ⊆ G(0) and r ∈ R\ {0} such that φ (r1K) = 0.
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Chapter 3

Kumjian-Pask algebras

Suppose that Λ is a finitely aligned higher-rank graph and that R is a commutative

ring with 1. In this chapter, we introduce Kumjian-Pask Λ-families and study their

properties. We also establish the graded uniqueness theorem (Theorem 3.2.1) and the

Cuntz-Krieger uniqueness theorem for Kumjian-Pask algebras (Theorem 3.7.1).

In general, the material in this chapter is taken from a joint paper with my super-

visor Clark in [18]. However, we give more background and details in Section 3.2 than

in the paper [18, Section 4].

3.1 Kumjian-Pask Λ-families

In this section, we define Kumjian-Pask Λ-families for finitely aligned higher-rank

graphs. These include the Kumjian-Pask Λ-families of [11, 16] (see Section 1.4).

Suppose that Λ is a finitely aligned k-graph and R is a commutative ring with

identity 1. For λ ∈ Λ, we call λ∗ a ghost path (λ∗ is a formal symbol). We write

G (Λ) := {λ∗ : λ ∈ Λ} .

For v ∈ Λ0, we define v∗ := v. We extend r and s to be defined on G (Λ) by

r (λ∗) := s (λ) and s (λ∗) := r (λ) .

We define composition on G (Λ) by setting λ∗µ∗ = (µλ)∗ for λ, µ ∈ Λ, and write

G
(
Λ 6=0

)
for the set of ghost paths that are not vertices. Note that the factorisation

property of Λ induces a similar factorisation property on G (Λ).

Definition 3.1.1. A Kumjian-Pask Λ-family {Sλ, Sµ∗ : λ, u ∈ Λ} in an R-algebra A

consists of a function S : Λ ∪G
(
Λ 6=0

)
→ A such that:
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(KP1) {Sv : v ∈ Λ0} are mutually orthogonal idempotents;

(KP2) for λ, µ ∈ Λ with s (λ) = r (µ), we have SλSµ = Sλµ and Sµ∗Sλ∗ = S(λµ)∗ ;

(KP3) Sλ∗Sµ =
∑

(ρ,τ)∈Λmin(λ,µ) SρSτ∗ for all λ, µ ∈ Λ; and

(KP4)
∏

λ∈E
(
Sr(E) − SλSλ∗

)
= 0 for all E ∈ FE (Λ).

Remark 3.1.2. A number of aspects of these relations are worth commenting on:

(i) In previous references about Leavitt path algebras and Kumjian-Pask algebras,

people usually distinguish the vertex idempotents as “Pv” (for example, see [1, 3,

4, 10, 11, 16, 54, 55]). We do not follow this convention because we do not want

to make additional unnecessary cases in proofs.

(ii) (KP2) in [11, 16] has more relations to check. However, using our notational

convention, those relations are equivalent to our (KP2).

(iii) The restriction to finitely aligned k-graphs is necessary for the sum in (KP3) to

make sense (see [39]).

(iv) In (KP3), we interpret the empty sum as 0, so Sλ∗Sµ = 0 whenever Λmin (λ, µ) =

∅. On the other hand, by taking λ = µ, we get Sλ∗Sλ = Ss(λ).

(v) (KP3-4) have been changed from those in [11, Definition 3.1] and [16, Definition

3.1] to take into consideration k-graphs that are not locally convex. For further

discussion, see Appendix A of [41].

The following lemma establishes some useful properties of families satisfying (KP1-

3).

Proposition 3.1.3 ([18, Proposition 3.3]). Suppose that Λ is a finitely aligned k-graph,

that R is a commutative ring with 1, and that {Sλ, Sµ∗ : λ, u ∈ Λ} is a family satisfying

(KP1-3) in an R-algebra A.

(a) We have SλSλ∗SµSµ∗ =
∑

λρ∈MCE(λ,µ) SλρS(λρ)∗ for λ, µ ∈ Λ; and {SλSλ∗ : λ ∈ Λ}
is a commuting family.

(b) The subalgebra generated by {Sλ, Sµ∗ : λ, u ∈ Λ} is

spanR{SλSµ∗ : λ, u ∈ Λ, s (λ) = s (µ)}.
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(c) For n ∈ Nk and λ, µ ∈ Λ≤n (see 2.5.1), we have Sλ∗Sµ = δλ,µSs(λ).

(d) Suppose that rSv 6= 0 for all r ∈ R\ {0}, that v ∈ Λ0 and that λ, µ ∈ Λ with

s (λ) = s (µ). If r ∈ R\ {0} and G ⊆ s (λ) Λ is finite non-exhaustive, then

rSλ 6= 0 and rSλ

(∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sµ∗ 6= 0.

Proof. To show (a), we take λ, µ ∈ Λ and then

SλSλ∗SµSµ∗ = Sλ

( ∑
(ρ,τ)∈Λmin(λ,µ)

SρSτ∗
)
Sµ∗ =

∑
(ρ,τ)∈Λmin(λ,µ)

SλρS(µτ)∗

=
∑

(ρ,τ)∈Λmin(λ,µ)

SλρS(λρ)∗ =
∑

λρ∈MCE(λ,µ)

SλρS(λρ)∗

=
∑

µτ∈MCE(λ,µ)

SµτS(µτ)∗ = SµSµ∗SλSλ∗ .

Next we show (b). For λ, u ∈ Λ, we have SλSµ∗ = SλSs(λ)Ss(µ)Sµ∗ by (KP2), and

by (KP1), SλSµ∗ 6= 0 implies s (λ) = s (µ). On the other hand, for λ1, u1, λ2, u2 ∈ Λ,

we have (
Sλ1Sµ∗1

) (
Sλ2Sµ∗2

)
= Sλ1

( ∑
(ρ,τ)∈Λmin(µ1,λ2)

SρSτ∗
)
Sµ∗2 (by (KP3))

=
∑

(ρ,τ)∈Λmin(µ1,λ1)

Sλ1ρS(µ2τ)∗ (by (KP2)).

To show (c), we take λ, µ ∈ Λ≤n. Suppose that Sλ∗Sµ 6= 0. By (KP3), there exists

(ρ, τ) ∈ Λmin (λ, µ) such that λρ = µτ and d (λρ) ≤ n. Since λ, µ ∈ Λ≤n, we have

ρ = s (λ) = τ , and hence λ = µ.

Finally, we show (d). Take r ∈ R\ {0} and λ ∈ Λ. Suppose for contradiction that

rSλ = 0. Then

0 = Sλ∗ (rSλ) = rSλ∗Sλ = rSs(λ),

which contradicts with rSv 6= 0 for all r ∈ R\ {0} and v ∈ Λ0. Hence rSλ 6= 0.

Now take r ∈ R\ {0}, λ, µ ∈ Λ with s (λ) = s (µ) and finite non-exhaustive G ⊆
s (λ) Λ. Suppose for contradiction that

rSλ

(∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sµ∗ = 0.

Since G is non-exhaustive, then there exists γ ∈ s (λ) Λ such that Λmin (ν, γ) = ∅ for

every ν ∈ G. By (KP3), we get Sν∗Sγ = 0 for ν ∈ G. Therefore

0 =
(
rSλ

(∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sµ∗
)
Sµγ
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= rSλ

(∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sγ

= rSλSγ = rSλγ,

which contradicts rSλγ 6= 0. Hence rSλ

(∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sµ∗ 6= 0.

Remark 3.1.4. Since {SλSλ∗ : λ ∈ Λ} is a commuting family, Proposition 3.1.3(a) im-

plies that for all λ ∈ Λ and G ⊆ r (λ) Λ, the order of multiplication does not matter and∏
µ∈G (SλSλ∗ − SµSµ∗) is well-defined. In particular,

∏
ν∈G

(
Ss(λ) − SνSν∗

)
of Proposi-

tion 3.1.3(d) is also well-defined.

Remark 3.1.5. For n ∈ Nk, we have Λn ⊆ Λ≤n. Hence Proposition 3.1.3(c) also implies

that for n ∈ Nk and λ, µ ∈ Λn, we have Sλ∗Sµ = δλ,µSs(λ).

Remark 3.1.6. Suppose that rSv 6= 0 for all r ∈ R\ {0}, v ∈ Λ0 and that λ, µ ∈ Λ have

s (λ) = s (µ). The contrapositive of Proposition 3.1.3(d) says: if r ∈ R, G ⊆ s (λ) Λ is

finite, and rSλ

(∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sµ∗ = 0, then either r = 0 or G is exhaustive.

Now we give an example of a Kumjian-Pask Λ-family in an algebra of endomor-

phisms.

Proposition 3.1.7 ([18, Proposition 3.6]). Suppose that Λ is a finitely aligned k-graph

and that R is a commutative ring with 1. Suppose that FR (∂Λ) is the free module with

basis the boundary path space. Then for every v ∈ Λ0 and λ, µ ∈ Λ\Λ0, there exist

endomorphisms Sv, Sλ, Sµ∗ : FR (∂Λ)→ FR (∂Λ) such that for x ∈ ∂Λ,

Sv (x) =

x if r (x) = v

0 otherwise,

Sλ (x) =

λx if s (λ) = r (x)

0 otherwise,

Sµ∗ (x) =

σd(µ)x if x (0, d (µ)) = µ

0 otherwise.

The set {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family in the R-algebra End (FR (∂Λ))

with rSv 6= 0 for all r ∈ R\ {0} and v ∈ Λ0.

Proof. Take v ∈ Λ0 and λ, µ ∈ Λ\Λ0. Note that for x ∈ ∂Λ and m ≤ d (x), we have

σmx ∈ ∂Λ. Define functions fv, fλ, and fµ∗ : ∂Λ→ FR (∂Λ) by

fv (x) =

x if r (x) = v

0 otherwise,
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fλ (x) =

λx if s (λ) = r (x)

0 otherwise,

fµ∗ (x) =

σd(µ)x if x (0, d (µ)) = µ

0 otherwise.

The universal property of free modules gives endomorphisms

Sv, Sλ, Sµ∗ : FR (∂Λ)→ FR (∂Λ)

extending fv, fλ, and fµ∗ .

We claim that {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family. To see (KP1), take

v ∈ Λ0 and x ∈ ∂Λ. Then S2
v (x) = x = Sv (x) if r (x) = v, and S2

v (x) = 0 = Sv (x)

otherwise. Hence S2
v = Sv. Now take v, w ∈ Λ0 with v 6= w and x ∈ ∂Λ. Since

x ∈ w∂Λ implies x /∈ v∂Λ, we have SvSw (x) = 0 for x ∈ ∂Λ and SvSw = 0.

To show (KP2), take λ, µ ∈ Λ with s (λ) = r (µ). Then for x ∈ s (µ) ∂Λ, we have

µx ∈ s (λ) ∂Λ. Then SλSµ (x) = λµx = Sλµ (x) if x ∈ s (µ) ∂Λ, and SλSµ (x) = 0 =

Sλµ (x) otherwise. Hence SλSµ = Sλµ. Meanwhile, for x ∈ r (λ) ∂Λ with x (0, d (λµ)) =

λµ, we have d (λµ) ≤ d (x) and σd(λµ)x ∈ s (µ) ∂Λ. Furthermore, x (0, d (λµ)) = λµ

also implies that x (0, d (λ)) = λ, and then d (λ) ≤ d (x) and σd(λ)x ∈ s (λ) ∂Λ. Hence

Sµ∗Sλ∗ (x) = Sµ∗σ
d(λ)x = σd(λ)+d(µ)x = σd(λµ)x = S(λµ)∗ (x)

if x (0, d (λµ)) = λµ, and Sµ∗Sλ∗ (x) = 0 = S(λµ)∗ (x) otherwise. Therefore Sµ∗Sλ∗ =

S(λµ)∗ .

To see (KP3), we take λ, µ ∈ Λ. If r (λ) 6= r (µ), then Sλ∗Sµ = 0 and Λmin (λ, µ) = ∅,
as required. Suppose r (λ) = r (µ). We have

Sλ∗Sµ (x) =

(µx) (d (λ) , d (µx)) if x ∈ s (µ) ∂Λ and (µx) (0, d (λ)) = λ

0 otherwise.

Take x ∈ s (µ) ∂Λ. Note that s (µ) = r (τ) for (ρ, τ) ∈ Λmin (λ, µ). First suppose that

(µx) (0, d (λ)) 6= λ. Then for (ρ, τ) ∈ Λmin (λ, µ),

(µx) (0, d (λρ)) 6= λρ and (µx) (0, d (µτ)) 6= µτ .

Hence x (0, d (τ)) 6= τ and SρSτ∗ (x) = Sρ (0) = 0, so that∑
(ρ,τ)∈Λmin(λ,µ)

SρSτ∗ (x) = 0.
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So suppose that (µx) (0, d (λ)) = λ. Since (µx) (0, d (λ)) = λ and (µx) (0, d (µ)) = µ,

there exists τ ∈ s (µ) Λ such that (ρ, τ) ∈ Λmin (λ, µ) and (µx) (0, d (µτ)) = µτ . Then

x (0, d (τ)) = τ . The factorisation property implies that there is only one such τ . Hence

for (ρ′, τ ′) ∈ Λmin (λ, µ) with (ρ′, τ ′) 6= (ρ, τ), we have Sρ′Sτ ′∗ (x) = 0. Since we also

have x (0, d (τ)) = τ , we can conclude:

SρSτ∗ (x) = Sρ (x (d (τ) , d (x))) = ρ [x (d (τ) , d (x))]

= ρ [(µx) (d (µτ) , d (µx))]

= ρ [(µx) (d (λρ) , d (µx))] (since µτ = λρ)

= (µx) (d (λ) , d (µx))

and ∑
(ρ′,τ ′)∈Λmin(λ,µ)

SρSτ∗ (x) = SρSτ∗ (x) = (µx) (d (λ) , d (µx)) = Sλ∗Sµ (x) ,

as required.

Finally, we show (KP4). Take E ∈ FE (Λ) and x ∈ r (E) ∂Λ. Since E ∈ x (0) FE (Λ)

and x is a boundary path, there exists λ ∈ E such that x (0, d (λ)) = λ. Then(
Sr(E) − SλSλ∗

)
(x) = Sr(E) (x)− SλSλ∗ (x)

= x− Sλ (x (d (λ) , d (x)))

= x− x = 0.

Hence (∏
λ∈E

(
Sr(E) − SλSλ∗

) )
(x) = 0

for x ∈ r (E) ∂Λ, and
∏

λ∈E
(
Sr(E) − SλSλ∗

)
= 0.

Thus {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family, as claimed. Since each v∂Λ

is nonempty, we have rSv 6= 0 for all r ∈ R\ {0} and v ∈ Λ0.

Using a different construction of a Kumjian-Pask Λ-family, we show that there is

an R-algebra which is universal for Kumjian-Pask Λ-families.

Theorem 3.1.8 ([18, Theorem 3.7]). Suppose that Λ is a finitely aligned k-graph and

that R is a commutative ring with 1.

(a) There is a universal R-algebra KPR (Λ) generated by a Kumjian-Pask Λ-family

{sλ, sµ∗ : λ, u ∈ Λ} such that: whenever {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-

Pask Λ-family in an R-algebra A, there exists a unique ring homomorphism

πS : KPR (Λ)→ A such that πS (sλ) = Sλ and πS (sµ∗) = Sµ∗ for λ, µ ∈ Λ.
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(b) We have rsv 6= 0 for all r ∈ R\ {0} and v ∈ Λ0.

(c) The subsets

KPR (Λ)n := spanR {sλsµ∗ : λ, µ ∈ Λ, d (λ)− d (µ) = n}

forms a Zk-grading of KPR (Λ).

Proof. We use an argument similar to [11, Theorem 3.4] and [16, Theorem 3.7]. To show

(a), we use the free algebra FR (w (X)) on the set w (X) of words on X := Λ∪G
(
Λ 6=0

)
.

Let I be the ideal of FR (w (X)) generated by the elements:

(i) {vw − δv,wv : v, w ∈ Λ0},

(ii) {λ− µν, λ∗ − ν∗µ∗ : λ, µ, ν ∈ Λ and λ = µν},

(iii) {λ∗µ−
∑

(ρ,τ)∈Λmin(λ,µ) ρτ
∗ : λ, µ ∈ Λ}, and

(iv) {
∏

λ∈E (r (E)− λλ∗) : E ∈ FE (Λ)}.

We define KPR (Λ) := FR (w (X)) /I and write q : FR (w (X))→ FR (w (X)) /I for

the quotient map. Define sλ := q (λ) for λ ∈ Λ, and sµ∗ := q (µ∗) for µ∗ ∈ G
(
Λ 6=0

)
.

Then {sλ, sµ∗ : λ ∈ Λ, µ∗ ∈ G
(
Λ 6=0

)
} is a Kumjian-Pask Λ-family in KPR (Λ).

To show the universal property, suppose that {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-

Pask Λ-family in an R-algebra A. Define f : X → A by f (λ) := Sλ for λ ∈ Λ,

and f (µ∗) := Sµ∗ for µ∗ ∈ G
(
Λ 6=0

)
. The universal property of FR (w (X)) gives

an unique R-algebra homomorphism φ : FR (w (X)) → A such that φ|X = f . Since

{Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family, then I ⊆ ker (φ). Thus there exists an

R-algebra homomorphism πS : KPR (Λ)→ A such that πS◦q = φ. The homomorphism

πS is unique since the elements in X generate FR (w (X)) as an algebra. We also have

πS (sλ) = Sλ for λ ∈ Λ and πS (sµ∗) = Sµ∗ for µ∗ ∈ G
(
Λ 6=0

)
, as required.

To show (b), let {Sλ, Sµ∗ : λ, u ∈ Λ} be the Kumjian-Pask Λ-family of Proposi-

tion 3.1.7. Then rSv 6= 0 for v ∈ Λ0. Since πS (rsv) = rSv 6= 0 for all r ∈ R\ {0} and

v ∈ Λ0, we have rsv 6= 0 for all r ∈ R\ {0} and v ∈ Λ0.

Next we show (c). We first extend the degree map to w (X) by d (w) :=
∑|w|

i=1 d ((wi))

for w ∈ w (X). By [11, Proposition 2.7], FR (w (X)) is Zk-graded by the subgroups

FR (w (X))n :=
{ ∑
w∈w(X)

rww : rw 6= 0 implies d (w) = n
}

.
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We claim that the ideal I defined in (a) is a graded ideal. It suffices to show

that I is generated by elements in FR (w (X))n for some n ∈ Zk. Since d (v) = 0 for

v ∈ Λ0, then the generators in (i) belong to FR (w (X))0. If λ = µν in Λ, then λ− µν
belongs to FR (w (X))d(λ) and λ∗ − ν∗µ∗ belongs to FR (w (X))−d(λ). For λ, µ ∈ Λ and

(ρ, τ) ∈ Λmin (λ, µ), we have

d (ρ)− d (τ) = (d (λ) ∨ d (µ)− d (λ))− (d (λ) ∨ d (µ)− d (µ)) = −d (λ) + d (µ)

and then the generators in (iii) belong to FR (w (X))−d(λ)+d(µ). Finally, a word λλ∗ has

degree 0 and then the generators in (iv) belong to FR (w (X))0. Thus I is a graded

ideal.

Since I is graded, KPR (Λ) = FR (w (X)) /I is graded by the subgroups

(FR (w (X)) /I)n := spanR {q (w) : w ∈ w (X) , d (w) = n} .

By Proposition 3.1.3(b), we have KPR (Λ) = spanR {sλsµ∗ : λ, u ∈ Λ, s (λ) = s (µ)}.
We have to show that

KPR (Λ)n := spanR {sλsµ∗ : λ, u ∈ Λ, d (λ)− d (µ) = n} = (FR (w (X)) /I)n .

Take λ, u ∈ Λ with d (λ)−d (µ) = n. Then sλsµ∗ = q (λ) q (µ∗) = q (λµ∗) and d (λµ∗) =

d (λ)− d (µ) = n. Hence sλsµ∗ ∈ (FR (w (X)) /I)n, and KPR (Λ)n ⊆ (FR (w (X)) /I)n.

Before proving that (FR (w (X)) /I)n ⊆ KPR (Λ)n, we establish the following claim:

Claim 3.1.9. Let X := Λ ∪ G
(
Λ 6=0

)
and q : FR (w (X)) → KPR (Λ) be the quotient

map. Then for w ∈ w (X), we have q (w) ∈ KPR (Λ)d(w).

Proof of Claim 3.1.9. We modify the proof of [11, Lemma 3.5] and [16, Lemma 3.8]

using our version of (KP3). We prove the claim by induction on |w|. For |w| = 0, we

have w ∈ Λ0. Then q (w) = sv = svsv∗ and d (v)− d (v) = 0, so q (w) ∈ KPR (Λ)d(w).

For |w| = 1, we have two possibilities. If w = λ for λ ∈ Λ, then q (w) = sλ =

sλss(λ)∗ , d (λ) − d (s (λ)) = d (λ), and q (w) ∈ KPR (Λ)d(w). If w = λ∗ for λ ∈ Λ, then

q (w) = sλ∗ = ss(λ)sλ∗ , d (s (λ))− d (λ) = −d (λ) = d (λ∗), and q (w) ∈ KPR (Λ)d(w).

For |w| = 2, we have four possibilities: w = λµ∗, w = λµ, w = µ∗λ∗, or w = λ∗µ.

For the first three possibilities, we have

q (λµ∗) = sλsµ∗ and d (λ)− d (µ) = d (λµ∗) ,

q (λµ) = sλµss(µ)∗ and d (λµ)− d (s (µ)) = d (λµ) ,

q (µ∗λ∗) = ss(µ)s(λµ)∗ and d (s (µ))− d ((λµ)∗) = d (µ∗λ∗) ,

40



as required. So suppose that w = λ∗µ. By (KP3), we have

q (λ∗µ) = sλ∗sµ =
∑

(ρ,τ)∈Λmin(λ,µ)

sρsτ∗ .

For (ρ, τ) ∈ Λmin (λ, µ), we have λρ = µτ and d (w) = d (µ) − d (λ) = d (ρ) − d (ρ), so

q (w) ∈ KPR (Λ)d(w).

Now suppose that n ≥ 2 and q (y) ∈ KPR (Λ)d(y) for every word y with |y| ≤ n. Let

w be a word with |w| = n + 1 and q (w) 6= 0. If w contains a subword wiwi+1 = λµ,

then λ and µ are composable in Λ since otherwise q (λµ) = 0. Now let w′ be the word

obtained from w by replacing wiwi+1 with the single path λµ, and then

q (w) = sw1 · · · swi−1
sλsµswi+2

swn+1 = sw1 · · · swi−1
sλµswi+2

swn+1 = q (w′) .

Since |w′| = n and d (w′) = d (w), the inductive hypothesis implies that q (w) ∈
KPR (Λ)d(w). A similar argument shows q (w) ∈ KPR (Λ)d(w) whenever w contains a

subword wiwi+1 = µ∗λ∗.

So suppose that w contains no subword of the form λµ or µ∗λ∗. Since |w| ≥ 3,

either w1w2 or w2w3 has the form λ∗µ. By (KP3), we write q (w) as a sum of terms

q (yi) with |yi| = n + 1 and d (yi) = d (w). Since |w| ≥ 3, each nonzero summand

q (yi) contains a factor of the form sγsρ or one of the form sτ∗sγ∗ . Then the previous

argument shows that every q (yi) ∈ KPR (Λ)d(w) and q (w) ∈ KPR (Λ)d(w), as required.

Claim 3.1.9

Every element of (FR (w (X)) /I)n has the form q (w) with w ∈ w (X) and d (w) = n,

which belongs to KPR (Λ)n by the claim. Thus (FR (w (X)) /I)n ⊆ KPR (Λ)n, as

required.

Definition 3.1.10. Suppose that {Sλ, Sµ∗ : λ, u ∈ Λ} is the Kumjian-Pask Λ-family

in the R-algebra End (FR (∂Λ)) of Proposition 3.1.7. We call the R-algebra homomor-

phism πS : KPR (Λ) → End (FR (∂Λ)) obtained from Theorem 3.1.8(a) the boundary

path representation of KPR (Λ).

We say more about the boundary path representation of KPR (Λ) in Section 3.7.

3.2 The graded uniqueness theorem

Throughout this section, Λ is a finitely aligned k-graph and R is a commutative ring

with identity 1.
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Both [11] and [16] contain two uniqueness theorems for Kumjian-Pask algebras (see

Section 1.4). The graded-uniqueness theorem has no hypothesis on the graph, and is

an analogue of the gauge-invariant uniqueness theorem for k-graph C∗-algebras [41,

Theorem 4.2]. The Cuntz-Krieger uniqueness theorem only applies to “aperiodic” k-

graphs. As the name suggests, this is an analogue to the Cuntz-Krieger uniqueness

theorem for k-graph C∗-algebras [41, Theorem 4.5]. For an overview of the uniqueness

theorems for k-graph C∗-algebras, see Section 1.2.

In this section, we establish a graded-uniqueness theorem for Kumjian-Pask alge-

bras of finitely aligned k-graphs (Theorem 3.2.1). We shall discuss a Cuntz Krieger

uniqueness theorem in Section 3.7.

Theorem 3.2.1 ([18, Theorem 4.1]: The graded uniqueness theorem). Suppose that Λ

is a finitely aligned k-graph, that R is a commutative ring with 1, and that A is a Zk-

graded R-algebra. Suppose that π : KPR (Λ) → A is a Zk-graded ring homomorphism

such that π (rsv) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0. Then π is injective.

Our proof of Theorem 3.2.1 is based on the proof of the gauge-invariant uniqueness

theorem for C∗-algebras [41, Theorem 4.2]. Although the argument is rather technical,

the work in [49] for C∗-algebras carry over to the algebraic setting without change as

the ring elements will not feature. We check the details below. However, we omit the

proofs of the graph theoretic results as they follow exactly as in [39, 41, 49].

Remark 3.2.2. The work in [49] is for Toeplitz-Cuntz-Krieger families. So the result

also applies to Cuntz-Krieger families.We do not change the arguments when carrying

over to the algebraic setting.

We divide the arguments into four subsections. We establish some preliminary

notation and results in Subsection 3.2.1. We then introduce a subalgebra M s
ΠE which

is closed under multiplication (Subsection 3.2.2) and identify its matrix units Θ (s)ΠE
λ,µ

(Subsection 3.2.3). In Lemma 3.2.21, we show that the homomorphism π of Theorem

3.2.1 is injective on each matrix unit Θ (s)ΠE
λ,µ ; and so also on each subalgebra M s

ΠE.

We then prove the graded uniqueness theorem.

3.2.1 Orthogonalising range projection

We introduce a set E that is closed under taking minimal common extensions (see

Proposition 3.2.6) and establish preliminary results related to such a set. This is an

algebraic version of Section 3.3 of [49] and hence we follow the arguments there.
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Definition 3.2.3. Suppose that Λ is a finitely aligned k-graph, that E is a finite subset

of Λ, and that R is a commutative ring with 1. Suppose that {Sλ, Sµ∗ : λ, u ∈ Λ} is a

Kumjian-Pask Λ-family in an R-algebra A. For λ ∈ E, we define

Q (S)Eλ := SλSλ∗
∏
λν∈E
d(ν) 6=0

(
SλSλ∗ − SλνS(λν)∗

)
.

Remark 3.2.4. Note that by Remark 3.1.4, Q (S)Eλ is well-defined for λ ∈ E. For λ ∈ E,

we have(
Q (S)Eλ

)2

= Q (S)Eλ and Q (S)Eλ (SλSλ∗) = Q (S)Eλ = (SλSλ∗)Q (S)Eλ .

Remark 3.2.5. Our Q (S)Eλ is an algebraic analogue of [49, Definition 3.3.1]. In general,

Q (S)Eλ of [49] is different from Raeburn and Sims’ Q (S)Eλ of [39]. However, both

Q (S)Eλ share the same properties as we shall see in this subsection.

The main aim of this subsection is to prove the following proposition, which is an

algebraic analogue of [49, Proposition 3.3.3].

Proposition 3.2.6. Suppose that Λ is a finitely aligned k-graph and that R is a com-

mutative ring with 1. Suppose that {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family

in an R-algebra A. Suppose that E ⊆ Λ is finite and non-empty and that E is closed

under taking minimal common extensions in the sense that

(3.2.1) λ, µ ∈ E ⇒ MCE (λ, µ) ⊆ E.

Then {Q (S)Eλ : λ ∈ E} is a collection of mutually orthogonal (possibly zero) idempo-

tents such that for all v ∈ r (E),

(3.2.2)
(
Sv
∏
λ∈vE

(Sv − SλSλ∗)
)

+
∑
λ∈vE

Q (S)Eλ = Sv.

To prove Proposition 3.2.6, we first consider the case when E consists of paths with

fixed range v ∈ Λ0, for some vertex v in E, as stated in the following lemma. This is

an algebraic analogue of Lemma 3.3.4 of [49].

Lemma 3.2.7. Suppose that Λ is a finitely aligned k-graph and that R is a commutative

ring with 1. Suppose that v ∈ Λ0 and that E is a finite subset of vΛ containing

v. Suppose that E satisfies (3.2.1) and that {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-

family in an R-algebra A. Then {Q (S)Eλ : λ ∈ E} is a collection of mutually orthogonal

(possibly zero) idempotents such that∑
λ∈E

Q (S)Eλ = Sv.
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In the rest of this subsection, we prove Lemma 3.2.7, and then use the lemma to

deduce Proposition 3.2.6.

We prove Lemma 3.2.7 by induction on the cardinality of E. The problem is that

when we remove a path λ from a set E satisfying (3.2.1), the new set E\ {λ} may not

satisfy (3.2.1). Therefore instead of working on any finite set E ⊆ Λ, we work on a set

∨E which contains E and satisfies (3.2.1). Now we construct ∨E as follows:

Definition 3.2.8 ([39, Definition 8.3]). Suppose that Λ is a finitely aligned k-graph

and that E ⊆ Λ is finite. We then define

MCE (E) :=
{
λ ∈ Λ : d (λ) =

∨
µ∈E

d (µ) and λ (0, d (µ)) = µ for all µ ∈ E
}

and

∨E :=
⋃
G⊆E

MCE (G) .

Lemma 3.2.9 ([39, Lemma 8.4]). Suppose that Λ is a finitely aligned k-graph. Suppose

that v ∈ Λ0 and that E ⊆ vΛ is a finite set which contains v. Then

(a) E ⊆ ∨E;

(b) ∨E is finite;

(c) F ⊆ ∨E implies MCE (F ) ⊆ ∨E; and

(d) λ ∈ ∨E implies d (λ) ≤
∨
µ∈E d (µ).

Remark 3.2.10. If E ⊆ Λ already satisfies (3.2.1), then an induction on |G| shows that

G ⊆ E implies MCE (G) ⊆ E, and then ∨E ⊆ E. Hence by Lemma 3.2.9(a), we have

∨E = E.

Now we establish two lemmas that are needed in the proof of Lemma 3.2.7.

Lemma 3.2.11 ([39, Lemma 8.7]). Suppose that Λ is a finitely aligned k-graph and

that v ∈ Λ0. Suppose that E ⊆ vΛ is a finite set which contains v and that λ ∈ E\ {v}.
Let F := E\ {λ}. Then for every γ ∈ ∨E\ ∨ F , there exists a unique µγ ∈ ∨F such

that

(i) d (γ) ≥ d (µγ) and γ (0, d (µγ)) = µγ; and

(ii) if µ ∈ ∨F and γ (0, d (µ)) = µ, then d (µ) ≤ d (µγ) and µγ (0, d (µ)) = µ.
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Furthermore, for all γ ∈ ∨E\ ∨ F , γ ∈ MCE (µγ, λ).

Lemma 3.2.12. Suppose that Λ is a finitely aligned k-graph, that v ∈ Λ0, and that

R is a commutative ring with 1. Suppose that E ⊆ vΛ is a finite set which contains

v, and that λ ∈ E\ {v}. Set F := E\ {λ}. Suppose also that {Sλ, Sµ∗ : λ, u ∈ Λ} is a

Kumjian-Pask Λ-family in an R-algebra A, that γ ∈ ∨E\∨F and that µγ ∈ ∨F is the

path of Lemma 3.2.11. Then

(a) Q (S)∨Eγ = Q (S)∨Fµγ Q (S)∨Eγ ;

(b) If γν ∈ ∨E with d (ν) 6= 0, then Q (S)∨Fµγ SγνS(γν)∗ = 0; and

(c) Q (S)∨Eγ = Q (S)∨Fµγ SγSγ∗.

Proof. We follow the C∗-algebraic argument of [39, Lemma 8.8]. First we show part

(a). Since γ (0, d (µγ)) = µγ, then by Proposition 3.1.3(a), SγSγ∗SµγSµ∗γ = SγSγ∗ and

Q (S)∨Fµγ Q (S)∨Eγ =
(
SµγSµ∗γ

∏
µγν∈∨F
d(ν)6=0

(
SµγSµ∗γ − SµγνS(µγν)∗

) )
Q (S)∨Eγ

=
(
SµγSµ∗γ

∏
µγν∈∨F
d(ν)6=0

(
SµγSµ∗γ − SµγνS(µγν)∗

) )
(SγSγ∗)Q (S)∨Eγ

(since (SγSγ∗)
2 = SγSγ∗ and then SγSγ∗Q (S)∨Eγ = Q (S)∨Eγ )

=
( (
SµγSµ∗γSγSγ∗

) ∏
µγν∈∨F
d(ν)6=0

(
SµγSµ∗γ − SµγνS(µγν)∗

) )
Q (S)∨Eγ

(by Proposition 3.1.3(a))

= SγSγ∗
( ∏
µγν∈∨F
d(ν)6=0

(
SµγSµ∗γ − SµγνS(µγν)∗

) )
Q (S)∨Eγ

since SγSγ∗SµγSµ∗γ = SγSγ∗ . Hence it suffices to show that

(3.2.3) SγSγ∗
(
SµγSµ∗γ − SµγνS(µγν)∗

)
Q (S)∨Eγ = Q (S)∨Eγ

for all µγν ∈ G with d (ν) 6= 0.

Take µγν ∈ ∨F with d (ν) 6= 0 and note that

SγSγ∗
(
SµγSµ∗γ − SµγνS(µγν)∗

)
= SγSγ∗ −

∑
γτ∈MCE(γ,µγν)

SγτS(γτ)∗(3.2.4)

(by Proposition 3.1.3(a))
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=
∏

γτ∈MCE(γ,µγν)

(
SγSγ∗ − SγτS(γτ)∗

)
.

We claim that for γτ ∈ MCE (γ, µγν), we have γτ ∈ ∨E and d (τ) 6= 0. Take γτ ∈
MCE (γ, µγν). Then (γτ) (0, d (µγν)) = µγν ∈ ∨F and by Lemma 3.2.11(ii), d (µγτ ) ≥
d (µγν) > d (µγ) (the last inequality holds because d (ν) 6= 0). If γτ = γ, then µγτ = µγ

and d (µγτ ) = d (µγ), which contradicts d (µγτ ) > d (µγ). So γτ 6= γ and d (τ) 6= 0.

Since µγν ∈ (∨F ∩ ∨E) and γ ∈ ∨E, Lemma 3.2.9(c) gives γτ ∈ MCE (γ, µγν) ⊆ ∨E
as claimed.

Thus each factor in (3.2.4) is a factor in Q (S)∨Eγ , and then we have (3.2.3), as

required.

Now we show part (b). Take γν ∈ ∨E with d (ν) 6= 0. We have to show

Q (S)∨Gµγ SγνS(γν)∗ = 0. Suppose for contradiction that µγν = µγ. Then

d (γν) = d (λ) ∨ d (µγν) (since γν ∈ MCE (µγν , λ) by Lemma 3.2.11)

= d (λ) ∨ d (µγ) (since µγν = µγ)

= d (γ) (since γ ∈ MCE (µγ, λ) by Lemma 3.2.11)

which contradicts d (ν) 6= 0. So µγν 6= µγ. Since (γν) (0, d (µγ)) = γ (0, d (µγ)) = µγ ∈
∨F , Lemma 3.2.11(ii) gives d (µγν) ≥ d (µγ); since µγν 6= µγ, we have µγν = µγτ for

some τ with d (τ) 6= 0. Since µγν ∈ ∨F , then

Q (S)∨Fµγ SγνS(γν)∗

(3.2.5)

=
(
SµγSµ∗γ

∏
µγν∈∨F
d(ν)6=0

(
SµγSµ∗γ − SµγνS(µγν)∗

) )
SγνS(γν)∗

= SµγSµ∗γ

( ∏
µγν∈∨F\{µγτ}

d(ν)6=0

(
SµγSµ∗γ − SµγνS(µγν)∗

) ) (
SµγSµ∗γ − SµγτS(µγτ)∗

)
SγνS(γν)∗

= SµγSµ∗γ

( ∏
µγν∈∨F\{µγτ}

d(ν)6=0

(
SµγSµ∗γ − SµγνS(µγν)∗

) ) (
SµγSµ∗γ − SµγνSµ∗γν

)
SγνS(γν)∗

since µγν = µγτ . Since (γν) (0, d (µγ)) = µγ and (γν) (0, d (µγν)) = µγν , Proposition

3.1.3(a) gives (
SµγSµ∗γ − SµγνSµ∗γν

)
SγνS(γν)∗ = SγνS(γν)∗ − SγνS(γν)∗ = 0

and (3.2.5) becomes Q (S)∨Fµγ SγνS(γν)∗ = 0, as required.
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Finally we show part (c). Note that

Q (S)∨Eγ = Q (S)∨Fµγ Q (S)∨Eγ (by part (a))(3.2.6)

= Q (S)∨Fµγ SγSγ∗
∏

γν∈∨E
d(ν)6=0

(
SγSγ∗ − SγνS(γν)∗

)
= Q (S)∨Fµγ

∏
γν∈∨E
d(ν)6=0

(
SγSγ∗ − SγνS(γν)∗

)

since γ (0, d (µγ)) = µγ. Thus SµγSµ∗γSγSγ∗ = SγSγ∗ and Q (S)∨Fµγ SγSγ∗ = Q (S)∨Fµγ . By

part (b), (3.2.6) becomes Q (S)∨Eγ = Q (S)∨Fµγ SγSγ∗ , as required.

Now we are ready to prove Lemma 3.2.7.

Proof of Lemma 3.2.7. Since E satisfies (3.2.1), Remark 3.2.10 gives ∨E = E. So it

suffices to show that if E is a finite subset of vΛ such that v ∈ E, thenQ (S)∨Eλ Q (S)∨Eµ =

δλ,µQ (S)∨Eλ and
∑

λ∈∨E Q (S)∨Eλ = Sv. Note that if λ = µ, then we already have(
Q (S)∨Eλ

)2

= Q (S)∨Eλ from Remark 3.2.4.

So take λ, µ ∈ ∨E with λ 6= µ and we have to show Q (S)∨Eλ Q (S)∨Eµ = 0. First

suppose that d (λ) = d (µ). Note that by Remark 3.2.4,

(3.2.7) Q (S)∨Eλ (SλSλ∗) = Q (S)∨Eλ and Q (S)∨Eµ (SµSµ∗) = Q (S)∨Eµ .

Then by Proposition 3.1.3(a),

Q (S)∨Eλ Q (S)∨Eµ (SλSλ∗SµSµ∗) = Q (S)∨Eλ Q (S)∨Eµ

and by Remark 3.1.5, SλSλ∗SµSµ∗ = 0 (using d (λ) = d (µ)). Hence Q (S)∨Eλ Q (S)∨Eµ =

0, as required.

Next suppose that d (λ) 6= d (µ). Then d (λ) ∨ d (µ) is strictly larger that at least

one of d (λ) and d (µ). Without loss of generality, we assume that d (λ)∨ d (µ) > d (λ).

Then γ ∈ MCE (λ, µ) implies that γ = λν with d (ν) 6= 0 and γ ∈ ∨E (since λ, µ ∈ ∨E
and Lemma 3.2.9(c)). Now from (3.2.7) and Proposition 3.1.3(a), we have

Q (S)∨Eλ Q (S)∨Eµ = (SµSµ∗)Q (S)∨Eλ Q (S)∨Eµ

(3.2.8)

= (SµSµ∗SλSλ∗)
( ∏
λν∈∨E
d(ν) 6=0

(
SλSλ∗ − SλνS(λν)∗

) )
Q (S)∨Eµ

=
( ∑
λρ∈MCE(λ,µ)

SλρS(λρ)∗

)( ∏
λν∈∨E
d(ν) 6=0

(
SλSλ∗ − SλνS(λν)∗

) )
Q (S)∨Eµ
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by Proposition 3.1.3(a). Now note that for all λρ ∈ MCE (λ, µ), we have

SλρS(λρ)∗
(
SλSλ∗ − SλρS(λρ)∗

)
= SλρS(λρ)∗ − SλρS(λρ)∗ = 0

and then

SλρS(λρ)∗
∏

λν∈∨E
d(ν)6=0

(
SλSλ∗ − SλνS(λν)∗

)
= 0

because λρ ∈ ∨E and d (ρ) 6= 0. So (3.2.8) implies Q (S)∨Eλ Q (S)∨Eµ = 0.

Next we show that
∑

λ∈∨E Q (S)∨Eλ = Sv. We prove this by induction on |E|.
First suppose |E| = 1. Since v ∈ E by assumption, then ∨E = E = {v} and∑

λ∈∨E Q (S)∨Eλ = Q (S){v}v = Sv.

Now suppose that
∑

λ∈∨GQ (S)∨Gλ = Sv for all |G| ≤ n−1 for some n ≥ 2. Suppose

|E| = n and we have to show
∑

λ∈∨E Q (S)∨Eλ = Sv. Since |E| ≥ 2, then there exists

λ ∈ E\ {v}. Define F := E\ {v}. For γ ∈ ∨F , we have

Q (S)∨Eγ = SγSγ∗
∏

γν∈∨E
d(ν)6=0

(
SγSγ∗ − SγνS(γν)∗

)
(3.2.9)

= SγSγ∗
∏

γν∈∨F
d(ν)6=0

(
SγSγ∗ − SγνS(γν)∗

) ∏
γτ∈∨E\∨F
d(τ)6=0

(
SγSγ∗ − SγτS(γτ)∗

)
.

We claim that for γτ ∈ ∨E\∨F with µγτ 6= γ, the factor SγSγ∗−SγτS(γτ)∗ from (3.2.9)

can be deleted without changing the result of the product. Take γτ ∈ ∨E\ ∨ F with

µγτ 6= γ. Since γ ∈ ∨F and (γτ) (0, d (γ)) = γ, then by Lemma 3.2.11(ii), µγτ = γρ

for some ρ with d (ρ) > 0. Since γρ = µγτ ∈ ∨F , then SγSγ∗ − SµγτSµ∗γτ is a factor in

Q (S)∨Eγ . Now from Lemma 3.2.11(i)) and Proposition 3.1.3(a), we have(
SγSγ∗ − SµγτSµ∗γτ

) (
SγSγ∗ − SγτS(γτ)∗

)
= SγSγ∗ − SγτS(γτ)∗

since (γτ) (0, d (µγτ )) = µγτ . Hence(
SγSγ∗ − SγτS(γτ)∗

)
Q (S)∨Eγ = Q (S)∨Eγ

and we can delete the factors SγSγ∗ − SγτS(γτ)∗ from (3.2.9), as claimed. Therefore we

can rewrite (3.2.9) as

Q (S)∨Eγ = SγSγ∗
∏

γν∈∨F
d(ν)6=0

(
SγSγ∗ − SγνS(γν)∗

) ∏
γτ∈∨E\∨F
µγτ=γ

(
SγSγ∗ − SγτS(γτ)∗

)
(3.2.10)

= Q (S)∨Fγ
∏

γτ∈∨E\∨F
µγτ=γ

(
SγSγ∗ − SγτS(γτ)∗

)
.
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Now note that for γτ ∈ ∨E\ ∨ F , we have γτ ∈ MCE (µγτ , λ) by Lemma 3.2.11.

So for γτ ∈ ∨E\ ∨ F with µγτ = γ, we have γτ ∈ MCE (γ, λ) and then d (γτ) =

d (γ) ∨ d (λ). So if γτ, γτ ′ ∈ ∨E\ ∨ F such that µγτ = γ = µγτ ′ , then d (µγτ ) = d(µγτ ′)

and so

SγτS(γτ)∗Sγτ ′S(γτ ′)∗ = δτ,τ ′SγτS(γτ)∗

by Remark 3.1.5. Hence∏
γτ∈∨E\∨F
µγτ=γ

(
SγSγ∗ − SγτS(γτ)∗

)
= SγSγ∗ −

∑
γτ∈∨E\∨F
µγτ=γ

SγτS(γτ)∗ ,

and we can rewrite (3.2.10) as

Q (S)∨Eγ = Q (S)∨Fγ

(
SγSγ∗ −

∑
γτ∈∨E\∨F
µγτ=γ

SγτS(γτ)∗

)
.

This holds for all γ ∈ ∨F , and hence∑
τ∈∨E

Q (S)∨Eτ =
∑
γ∈∨F

Q (S)∨Eγ +
∑

ν∈∨E\∨F

Q (S)∨Eν

=
∑
γ∈∨F

Q (S)∨Fγ

(
SγSγ∗ −

∑
γτ∈∨E\∨F
µγτ=γ

SγτS(γτ)∗

)
+

∑
ν∈∨E\∨F

Q (S)∨Eν

=
∑
γ∈∨F

Q (S)∨Fγ

(
SγSγ∗ −

∑
γτ∈∨E\∨F
µγτ=γ

SγτS(γτ)∗

)
+
∑
γ∈∨F

∑
ν∈∨E\∨F
µν=γ

Q (S)∨Eν ,

since for ν ∈ ∨E\ ∨ F , there exists a unique µγ ∈ ∨F (see Lemma 3.2.11). Hence∑
τ∈∨E

Q (S)∨Eτ =
∑
γ∈∨F

(
Q (S)∨Fγ

(
SγSγ∗ −

∑
γτ∈∨E\∨F
µγτ=γ

SγτS(γτ)∗

)
+

∑
ν∈∨E\∨F
µν=γ

Q (S)∨Eν

)
=
∑
γ∈∨F

(
Q (S)∨Fγ

(
SγSγ∗ −

∑
γτ∈∨E\∨F
µγτ=γ

SγτS(γτ)∗

)
+

∑
ν∈∨E\∨F
µν=γ

Q (S)∨Fµν SνSν∗
)

by Lemma 3.2.12(c). Furthermore,∑
τ∈∨E

Q (S)∨Eτ =
∑
γ∈∨F

Q (S)∨Fγ

((
SγSγ∗ −

∑
γτ∈∨E\∨F
µγτ=γ

SγτS(γτ)∗

)
+

∑
ν∈∨E\∨F
µν=γ

SνSν∗
)

=
∑
γ∈∨F

Q (S)∨Fγ SγSγ∗

=
∑
γ∈∨F

Q (S)∨Fγ (by Remark 3.2.4)

= Sv

by the inductive hypothesis.
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Proof of Proposition 3.2.6. We follow the argument Proposition 3.5 of [41]. By Remark

3.2.4, we already have
(
Q (S)∨Eλ

)2

= Q (S)∨Eλ . So it suffices to show

Q (S)∨Eλ Q (S)∨Eµ = 0 for λ 6= µ,

and (3.2.2). Take λ, µ ∈ E with λ 6= µ. If r (λ) 6= r (µ), then Sr(λ)Sr(µ) = 0

and so Q (S)∨Eλ Q (S)∨Eµ = 0. On the other hand, if r (λ) = r (µ), we also have

Q (S)∨Eλ Q (S)∨Eµ = 0 by Lemma 3.2.7, as required.

To establish (3.2.2), we claim that for v ∈ r (E),

(3.2.11) E satisfies (3.2.1) if and only if E ∪ {v} satisfies (3.2.1).

First suppose that E satisfies (3.2.1). For every λ ∈ E, we have either MCE (λ, v) =

{λ} (if λ ∈ vE) or MCE (λ, v) = ∅ (if λ /∈ vE), so E ∪ {v} also satisfies (3.2.1). On

the other hand, if E ∪ {v} satisfies (3.2.1), then E also satisfies (3.2.1) since there are

no paths λ, µ ∈ E\ {v} which satisfy MCE (λ, µ) = {v}. Thus we have (3.2.11).

Now fix v ∈ r (E). To prove (3.2.2), we consider two cases where v ∈ E and

v /∈ E. If v ∈ E, then
∏

λ∈vE (Sv − SλSλ∗) = 0 and the left hand side of (3.2.2) is∑
λ∈vE Q (S)Eλ where E satisfies (3.2.1) and v ∈ E.

On the other hand, suppose v /∈ E. We define F := E ∪ {v} and by claim (3.2.11),

F also satisfies (3.2.1). We also have

Q (S)Fλ = Q (S)
E∪{v}
λ = Q (S)Eλ for all λ ∈ vE,

and

Q (S)Fv =
∏
λ∈vE

(Sv − SλSλ∗) .

So (
Sv
∏
λ∈vE

(Sv − SλSλ∗)
)

+
∑
λ∈vE

Q (S)Eλ = Q (S)Fv +
∑
λ∈vE

Q (S)Fλ =
∑
λ∈vF

Q (S)Fλ .

Hence the left hand side of (3.2.2) is
∑

λ∈vF Q (S)Fλ , where F satisfies (3.2.1) and

contains v.

Therefore it suffices to show that∑
λ∈vE

Q (S)Eλ = Sv

where E satisfies (3.2.1) and v ∈ E. However, this is true by Lemma 3.2.7. The

conclusion follows.
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A direct consequence of Proposition 3.2.6 is:

Corollary 3.2.13. Suppose that Λ is a finitely aligned k-graph and that R is a commu-

tative ring with 1. Suppose that E ⊆ Λ is a finite set which satisfies (3.2.1). Suppose

that {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family in an R-algebra A. Then for each

µ ∈ E, we have

SµSµ∗ =
∑
µν∈E

Q (S)Eµν .

Proof. Proposition 3.2.6 tells us that

(3.2.12) SµSµ∗ = SµSµ∗
(( ∏

λ∈r(µ)E

(
Sr(µ) − SλSλ∗

) )
+

∑
λ∈r(µ)E

Q (S)Eλ

)
.

For all ν with µν ∈ E, we have

SµSµ∗Q (S)Eµν = SµSµ∗SµνSµν∗
∏

µνγ∈E
d(γ)6=0

(
SµνS(µν)∗ − SµνγS(µνγ)∗

)
= SµνSµν∗

∏
µνγ∈E
d(γ)6=0

(
SµνS(µν)∗ − SµνγS(µνγ)∗

)
(by Proposition 3.1.3(a))

= Q (S)Eµν .

So by (3.2.12), it suffices to show that

(a) SµSµ∗
∏

λ∈r(µ)E

(
Sr(µ) − SλSλ∗

)
= 0, and

(b) SµSµ∗Q (S)Eλ = 0 for all λ ∈ E\µΛ.

First we show part (a). Since µ ∈ r (µ)E then

SµSµ∗
∏

λ∈r(µ)E

(
Sr(µ) − SλSλ∗

)
= SµSµ∗

(
Sr(µ) − SµSµ∗

) ∏
λ∈ r(µ)E\{µ}

(
Sr(µ) − SλSλ∗

)
= (SµSµ∗ − SµSµ∗)

∏
λ∈ r(µ)E\{µ}

(
Sr(µ) − SλSλ∗

)
= 0,

as required.

Next we show (b). Take λ ∈ E\µΛ. If MCE (µ, λ) = ∅, then SµSµ∗SλSλ∗ = 0 (by

Proposition 3.1.3(a)) and

SµSµ∗Q (S)Eλ = SµSµ∗SλSλ∗
∏
λν∈E
d(ν)6=0

(
SλSλ∗ − SλνS(λν)∗

)
= 0.
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So suppose MCE (µ, λ) 6= ∅. Then by Proposition 3.1.3(a),

SµSµ∗Q (S)Eλ =
∑

λρ∈MCE(λ,µ)

(
SλρS(λρ)∗

∏
λν∈E
d(ν) 6=0

(
SλSλ∗ − SλνS(λν)∗

) )
.

Take λρ ∈ MCE (λ, µ). Since λ, µ ∈ E and E satisfies (3.2.1), then λρ ∈ E. Further-

more, since λ /∈ µΛ, then d (ρ) 6= 0 and

SλρS(λρ)∗
∏
λν∈E
d(ν)6=0

(
SλSλ∗ − SλνS(λν)∗

)
= SλρS(λρ)∗

(
SλSλ∗ − SλρS(λρ)∗

) ∏
λν∈E\{λρ}
d(ν)6=0

(
SλSλ∗ − SλνS(λν)∗

)
=
(
SλρS(λρ)∗ − SλρS(λρ)∗

) ∏
λν∈E\{λρ}
d(ν)6=0

(
SλSλ∗ − SλνS(λν)∗

)
(by Proposition3.1.3(a))

which equals 0. The conclusion follows.

3.2.2 Subalgebras of the core

For a finite set E ⊆ Λ, we want to identify a finite set ΠE containing E such

that span {SλSµ∗ : λ, µ ∈ ΠE, d (λ) = d (µ)} is closed under multiplication for every

Kumjian-Pask Λ-family {Sλ, Sµ∗ : λ, u ∈ Λ} in an R-algebra A (Proposition 3.2.18).

We follow the C∗-algebraic argument of [41, Section 3].

Lemma 3.2.14 ([41, Lemma 3.2]). Suppose that Λ is a finitely aligned k-graph and

that E ⊆ Λ is finite. Then there exists a finite set F ⊆ Λ which contains E and

satisfies

(3.2.13) λ, µ, σ ∈ F with d (λ) = d (µ) and s (λ) = s (µ) implies λExt (µ; {σ}) ⊆ F .

Remark 3.2.15. Condition (3.2.13) is equivalent to

λ, µ, ρ, τ ∈F , d (λ) = d (µ) , d (ρ) = d (τ) , s (λ) = s (µ) , and s (ρ) = s (τ)

imply
{
λα, τβ : (α, β) ∈ Λmin (µ, ρ)

}
⊆ F

which is Condition (3.1) of [41].

Now note that for a family of sets satisfying (3.2.13), their intersection also satisfies

(3.2.13), so we make the following definition.
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Definition 3.2.16. Suppose that Λ is a finitely aligned k-graph. For every finite set

E ⊆ Λ, we define ΠE to be the smallest set containing E and satisfying (3.2.13); that

is

ΠE :=
⋂
{F ⊆ Λ : E ⊆ F and F satisfies (3.2.13)}.

We also write ΠE×d,sΠE for the set {(λ, µ) ∈ ΠE × ΠE : d (λ) = d (µ) , s (λ) = s (µ)}.

Remark 3.2.17. A number of aspects of these sets are worth commenting on:

(i) ΠE is finite.

(ii) ΠE satisfies (3.2.13). If we choose λ = µ, Condition (3.2.13) becomes “λ, σ ∈ ΠE

implies MCE (λ, σ) ⊆ ΠE”. Hence ΠE also satisfies (3.2.1) and ∨ (ΠE) = ΠE.

(iii) Suppose that (λ, µ) ∈ ΠE ×d,s ΠE. If ν ∈ s (λ) Λ such that µν ∈ ΠE, then set

σ = µν in (3.2.13) and we get λν ∈ ΠE. By symmetry, λν ∈ ΠE also implies

µν ∈ ΠE. Hence for ν ∈ s (λ) Λ,

λν ∈ ΠE ⇔ µν ∈ ΠE.

Now we state the main result of this subsection as follows:

Proposition 3.2.18. Suppose that Λ is a finitely aligned k-graph and that R is a

commutative ring with 1. Suppose that {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family

in an R-algebra A. For every finite set E ⊆ Λ, the set

MS
ΠE := spanR {SλSµ∗ : (λ, µ) ∈ ΠE ×d,s ΠE}

is closed under multiplication.

Proof. Take (λ, µ) , (ρ, τ) ∈ ΠE ×d,s ΠE. Then

SλSµ∗SρSτ∗ = Sλ

( ∑
(ν,γ)∈Λmin(µ,ρ)

SνSγ∗
)
Sτ∗ (by (KP3))

=
∑

(ν,γ)∈Λmin(µ,ρ)

SλνS(τγ)∗ .

Suppose (ν, γ) ∈ Λmin (µ, ρ). Then

d (λν) = d (µν) (since d (λ) = d (µ) )

= d (ργ) (since (ν, γ) ∈ Λmin (µ, ρ) )

= d (τγ) (since d (ρ) = d (τ) ).

By Remark 3.2.17(iii), both λν and τγ belong to ΠE, and so SλνS(τγ)∗ ∈MS
ΠE. Hence

SλSµ∗SρSτ∗ belongs to MS
ΠE, as required.
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3.2.3 Identifying matrix units

In this subsection, for a finite set E ⊆ Λ, we identify a collection of nonzero matrix

units for MS
ΠE, and investigate their properties.

Suppose that E ⊆ Λ is finite and {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family

in an R-algebra A. For (λ, µ) ∈ ΠE ×d,s ΠE, we define

Θ (S)ΠE
λ,µ := Q (S)ΠE

λ SλSµ∗ .

The aim of this subsection is to show that the Θ (S)ΠE
λ,µ are matrix units for MS

ΠE,

as stated in the following proposition.

Lemma 3.2.19. Suppose that Λ is a finitely aligned k-graph and that R is a commu-

tative ring with 1. Suppose that {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family in an

R-algebra A. Suppose that E ⊆ Λ is finite. For (λ, µ) , (ρ, τ) ∈ ΠE ×d,s ΠE, we have

(a) Θ (S)ΠE
λ,µ Θ (S)ΠE

ρ,τ = δµ,ρΘ (S)ΠE
λ,τ , and

(b) SλSµ∗ =
∑

λν∈ΠE Θ (S)ΠE
λν,µν.

The subalgebra MS
ΠE is spanned by the set {Θ (S)ΠE

λ,µ : (λ, µ) ∈ ΠE ×d,s ΠE}.

To prove Lemma 3.2.19, we need to prove the following lemma first.

Lemma 3.2.20. Suppose that Λ is a finitely aligned k-graph, and that R is a commu-

tative ring with 1. Suppose that {Sλ, Sµ∗ : λ, u ∈ Λ} is a Kumjian-Pask Λ-family in an

R-algebra A. Suppose that E ⊆ Λ is finite. For (λ, µ) ∈ ΠE ×d,s ΠE, we have

Θ (S)ΠE
λ,µ = Sλ

( ∏
λν∈ΠE
d(ν) 6=0

(
Ss(λ) − SνSν∗

) )
Sµ∗ = SλSµ∗Q (S)ΠE

µ .

Proof. We adapt some ideas from [41, Lemma 3.10]. Take (λ, µ) ∈ ΠE ×d,s ΠE. Then

Θ (S)ΠE
λ,µ = Q (S)ΠE

λ SλSµ∗(3.2.14)

= SλSλ∗
( ∏
λν∈ΠE
d(ν)6=0

(
SλSλ∗ − SλνS(λν)∗

) )
SλSµ∗

= SλSλ∗
( ∏
λν∈ΠE
d(ν)6=0

(SλSλ∗ − SλSνSν∗Sλ∗)
)
SλSµ∗

= SλSλ∗
( ∏
λν∈ΠE
d(ν)6=0

(
Sλ
(
Ss(λ) − SνSν∗

)
Sλ∗
) )
SλSµ∗ .
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Since Sλ∗Sλ = Ss(λ) and Ss(λ)

(
Ss(λ) − SνSν∗

)
= Ss(λ) − SνSν∗ for all ν ∈ s (λ) Λ, so all

Sλ∗Sλ which occur between terms in (3.2.14) can be deleted and we have

Θ (S)ΠE
λ,µ = SλSλ∗Sλ

( ∏
λν∈ΠE
d(ν)6=0

(
Ss(λ) − SνSν∗

) )
Sλ∗SλSµ∗

= Sλ

( ∏
λν∈ΠE
d(ν) 6=0

(
Ss(λ) − SνSν∗

) )
Sµ∗ ,

which proves the left equation. A similar argument gives

SλSµ∗Q (S)ΠE
µ = Sλ

( ∏
λν∈ΠE
d(ν)6=0

(
Ss(λ) − SνSν∗

) )
Sµ∗ ,

as required.

Proof of Lemma 3.2.19. Take (λ, µ) , (ρ, τ) ∈ ΠE ×d,s ΠE. Then by Lemma 3.2.20, we

have

Θ (S)ΠE
λ,µ Θ (S)ΠE

ρ,τ = SλSµ∗Q (S)ΠE
µ Θ (S)ΠE

ρ,τ

= SλSµ∗Q (S)ΠE
µ Q (S)ΠE

ρ SρSτ∗ (by the definition of Θ (S)ΠE
ρ,τ )

= δµ,σ SλSµ∗Q (S)ΠE
µ SµSτ∗ (by Proposition 3.2.6)

= δµ,σ Q (S)ΠE
λ SλSµ∗SµSτ∗ (by Lemma 3.2.20)

= δµ,σ Q (S)ΠE
λ SλSs(µ)Sτ∗

= δµ,σ Q (S)ΠE
λ SλSτ∗ (since s (λ) = s (µ) )

= δµ,ρΘ (S)ΠE
λ,τ ,

which proves (a).

Next we show part (b) using an argument like that of [41, Lemma 3.11]. Note that

SλSµ∗ = SλSµ∗SµSµ∗(3.2.15)

= SλSµ∗
∑

µν∈ΠE

Q (S)ΠE
µν (by Corollary 3.2.13)

= SλSµ∗
∑

µν∈ΠE

(
SµνS(µν)∗

∏
µνγ∈ΠE
d(γ)6=0

(
SµνS(µν)∗ − SµνγS(µνγ)∗

) )

= SλSµ∗
∑

µν∈ΠE

(
SµνS(µν)∗

∏
µνγ∈ΠE
d(γ)6=0

(
SµνS(µν)∗ − SµνSγSγ∗S(µν)∗

) )

= SλSµ∗
∑

µν∈ΠE

(
SµνS(µν)∗

∏
µνγ∈ΠE
d(γ)6=0

(
Sµν

(
Ss(µν) − SγSγ∗

)
S(µν)∗

) )
.
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Since S(µν)∗Sµν = Ss(µν), then we rewite (3.2.15) as

SλSµ∗ = SλSµ∗
∑

µν∈ΠE

(
SµνS(µν)∗

(
Sµν

( ∏
µνγ∈ΠE
d(γ)6=0

(
Ss(µν) − SγSγ∗

) )
S(µν)∗

))
(3.2.16)

= SλSµ∗
∑

µν∈ΠE

(
Sµν

( ∏
µνγ∈ΠE
d(γ)6=0

(
Ss(µν) − SγSγ∗

) )
S(µν)∗

)

(since S(µν)∗Sµν = Ss(µν))

=
∑

µν∈ΠE

(
SλSµ∗Sµν

( ∏
µνγ∈ΠE
d(γ)6=0

(
Ss(µν) − SγSγ∗

) )
S(µν)∗

)

=
∑

µν∈ΠE

(
SλSµ∗SµSν

( ∏
µνγ∈ΠE
d(γ)6=0

(
Ss(µν) − SγSγ∗

) )
S(µν)∗

)

=
∑

µν∈ΠE

(
Sλν

( ∏
µνγ∈ΠE
d(γ)6=0

(
Ss(µν) − SγSγ∗

) )
S(µν)∗

)

since Sµ∗Sµ = Ss(µ). By Lemma 3.2.20, the last line of (3.2.16) equals
∑

µν∈ΠE Θ (S)ΠE
λν,µν ,

and we get the desired result.

Since MS
ΠE is generated by elements in the form SλSµ∗ where (λ, µ) ∈ ΠE ×d,s ΠE,

and since each SλSµ∗ can be written as the sum of Θ (S)ΠE
λν,µν , M

S
ΠE is spanned by the

set {Θ (S)ΠE
λ,µ : (λ, µ) ∈ ΠE ×d,s ΠE}.

3.2.4 Proof of the graded uniqueness theorem

Now we establish the last technical results before proving Theorem 3.2.1. The key

ingredient is to prove the injectivity on MS
ΠE (Lemma 3.2.21) and on KPR (Λ)0 :=

spanR {sλsµ∗ : d (λ) = d (µ)} (Theorem 3.2.23).

First recall from Remark 3.2.17(iii) that for a finite set E ⊆ Λ and (λ, µ) ∈ ΠE×d,s
ΠE and ν ∈ s (λ) Λ, λν ∈ ΠE if and only if µν ∈ ΠE. Hence

{ν ∈ s (λ) Λ : d (ν) 6= 0, λν ∈ ΠE} = {ν ∈ s (λ) Λ : d (ν) 6= 0, µν ∈ ΠE} .

We denote this set by T (λ). Note that since λT (λ) ⊆ ΠE and ΠE is finite (Remark

3.2.17(i)), then T (λ) is also finite.

Lemma 3.2.21 ([18, Lemma 4.3]). Suppose that Λ is a finitely aligned k-graph, that R

is a commutative ring with 1 and that E ⊆ Λ is finite. Suppose that π : KPR (Λ)→ A

is a ring homomorphism such that π (rsv) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0. Let

(λ, µ) ∈ ΠE ×d,s ΠE. Then the following conditions are equivalent:
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(a) π
(

Θ (s)ΠE
λ,µ

)
= 0.

(b) Θ (s)ΠE
λ,µ = 0.

(c) T (λ) is exhaustive.

Furthermore, for r ∈ R\ {0} we have

(3.2.17) π
(
rΘ (s)ΠE

λ,µ

)
= 0 if and only if rΘ (s)ΠE

λ,µ = 0

and π is injective on M s
ΠE.

Proof. To show the three equivalent conditions, we first prove the following claim.

Claim 3.2.22. Suppose that φ : KPR (Λ) → A is a ring homomorphism such that

φ (rsv) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0. Then for (λ, µ) ∈ ΠE ×d,s ΠE,

φ
(

Θ (s)ΠE
λ,µ

)
= 0 if and only if T (λ) is exhaustive.

Proof of Claim 3.2.22. We modify the argument of Proposition 3.13 of [41]. Suppose

that T (λ) is non-exhaustive. We have to show φ
(

Θ (s)ΠE
λ,µ

)
is nonzero. Since T (λ) is

non-exhaustive, we choose ξ ∈ s (λ) Λ such that Λmin (ξ, µ) = ∅ for all µ ∈ T (λ). It

suffices to show that

(3.2.18) φ
(
sλξs(λξ)∗Θ (s)ΠE

λ,µ sµsλ∗
)

= φ
(
sλξs(λξ)∗

)
since the right hand side is nonzero (by the hypothsesis and Proposition 3.1.3(d) with

G = ∅). Then

sλξs(λξ)∗Θ (s)ΠE
λ,µ sµsλ∗ = sλξs(λξ)∗

(
Q (s)ΠE

λ sλsµ∗
)
sµsλ∗ (by the definition of Θ (s)ΠE

λ,µ )

(3.2.19)

= sλξs(λξ)∗Q (s)ΠE
λ sλsλ∗ (since sµ∗sµ = ss(µ))

= sλξs(λξ)∗

(
sλsλ∗

∏
ν∈T (λ)

(
sλsλ∗ − sλνs(λν)∗

) )
sλsλ∗

(by the definition of Q (s)ΠE
λ )

= sλξs(λξ)∗

(
sλsλ∗sλsλ∗

∏
ν∈T (λ)

(
sλsλ∗ − sλνs(λν)∗

) )
since {sλsλ∗ : λ ∈ Λ} is a commuting family (Proposition 3.1.3(a)). Proposition 3.1.3(a)

says (sλsλ∗)
2 = sλsλ∗ and sλξs(λξ)∗ = sλsλ∗sλξs(λξ)∗ . Then we rewrite (3.2.19) as

sλξs(λξ)∗Θ (s)ΠE
λ,µ sµsλ∗ = sλξs(λξ)∗

∏
ν∈T (λ)

(
sλsλ∗ − sλνs(λν)∗

)
.
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Now note that for ν ∈ T (λ), we have Λmin (ξ, µ) = ∅ and Λmin (λξ, λµ) = ∅. By

Proposition 3.1.3(a), we have s(λξ)∗sλν = 0 and sλξs(λξ)∗sλνs(λν)∗ = 0. This implies

(3.2.18).

Next we suppose that T (λ) is exhaustive, and show that φ
(

Θ (s)ΠE
λ,µ

)
= 0. Note

that T (λ) is also finite and belongs to FE (Λ), so

(3.2.20)
∏

ν∈T (λ)

(
ss(λ) − sνsν∗

)
= 0.

On the other hand, by Lemma 3.2.20, we have

φ
(

Θ (s)ΠE
λ,µ

)
= φ

(
sλ

( ∏
ν∈T (λ)

(
ss(λ) − sνsν∗

) )
sµ∗
)

,

which equals 0 by (3.2.20), as required. Claim 3.2.22

By Claim 3.2.22 with φ the identity homomorphism, we get (b)⇔(c). Meanwhile,

choose φ = π and the claim also gives us (a)⇔(c). Hence (a), (b) and (c) are three

equivalent conditions.

Now take (λ, µ) ∈ ΠE ×d,s ΠE and r ∈ R\ {0}. We have to show (3.2.17). If

rΘ (s)ΠE
λ,µ = 0, we trivially have π

(
rΘ (s)ΠE

λ,µ

)
= 0. So suppose π

(
rΘ (s)ΠE

λ,µ

)
= 0. By

Remark 3.1.6, π
(
rΘ (s)ΠE

λ,µ

)
= 0 implies that T (λ) is exhaustive (since r 6= 0). Since

T (λ) is exhaustive, Θ (s)ΠE
λ,µ = 0 by (c)⇒(b). So rΘ (s)ΠE

λ,µ = 0, as required.

Next we show that π is injective on M s
ΠE. Take a ∈ M s

ΠE such that π (a) = 0. We

have to show a = 0. Since a ∈ M s
ΠE and the M s

ΠE are matrix units (Lemma 3.2.19),

we write a =
∑

(λ,µ)∈F rλ,µΘ (s)ΠE
λ,µ where F ⊆ ΠE ×d,s ΠE, rλ,µ ∈ R and Θ (s)ΠE

λ,µ 6= 0.

If T (λ) is exhaustive for some (λ, µ) ∈ F , then by (c)⇒(b), Θ (s)ΠE
λ,µ = 0, which

contradicts Θ (s)ΠE
λ,µ 6= 0. So T (λ) is non-exhaustive for all (λ, µ) ∈ F . Since π (a) = 0,

then for (ρ, τ) ∈ F , we have

0 = π
(

Θ (s)ΠE
ρ,ρ

)
π (a) π

(
Θ (s)ΠE

τ,τ

)
= π

(
Θ (s)ΠE

ρ,ρ

)
π
( ∑

(λ,µ)∈F

rλ,µΘ (s)ΠE
λ,µ

)
π
(

Θ (s)ΠE
τ,τ

)
= rρ,τπ

(
Θ (s)ΠE

ρ,τ

)
= rρ,τΘ (π (s))ΠE

ρ,τ (by Lemma 3.2.19).

By Remark 3.1.6, rρ,τΘ (π (s))ΠE
ρ,τ = 0 implies that rρ,τ = 0 (since T (ρ) is non-

exhaustive). Therefore a = 0 and π is injective on M s
ΠE.

A direct consequence of Lemma 3.2.21 is:
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Theorem 3.2.23 ([18, Theorem 4.4]). Suppose that Λ is a finitely aligned k-graph

and that R is a commutative ring with 1. Suppose that π : KPR (Λ) → A is a ring

homomorphism such that π (rsv) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0. Then π is injective

on KPR (Λ)0.

Proof. Take a ∈ KPR (Λ)0 such that π (a) = 0. We have to show a = 0. Write a =∑
(λ,µ)∈F rλ,µsλsµ∗ with d (λ) = d (µ) for (λ, µ) ∈ F . Define E := {λ, µ : (λ, µ) ∈ F}

and then a ∈M s
ΠE. Since π is injective on M s

ΠE by Lemma 3.2.21, a = 0.

We need one final lemma for the proof of Theorem 3.2.1.

Lemma 3.2.24 ([18, Lemma 4.5]). Suppose that Λ is a finitely aligned k-graph and

that R is a commutative ring with 1. Suppose that I is a graded ideal of KPR (Λ). Then

I is generated as an ideal by the set I0 := I ∩KPR (Λ)0.

Proof. We generalise the argument of [55, Lemma 5.1]. Take n ∈ Zk and write n =

n1 − n2 such that n1, n2 ∈ Nk and |n1 + n2| as minimum as possible. We show that

In := I ∩KPR (Λ)n is contained in KPR (Λ)n1
I0KPR (Λ)n2

. Now take a ∈ In and write

a =
∑

(λ,µ)∈F rλ,µsλsµ∗ . Note that d (λ) − d (µ) = n for (λ, µ) ∈ F . Since n = n1 − n2

with n1, n2 ∈ Nk and |n1 + n2| as minimum as possible, then for every (λ, µ) ∈ F ,

d (λ) ≥ n1 and d (µ) ≥ n2, so by the factorisation property, there exist λ1, λ2, µ1, µ2

such that

λ = λ1λ2, µ = µ1µ2, d (λ1) = n1, d (µ1) = n2, and d (λ2) = d (µ2) .

Hence

a =
∑

(λ,µ)∈F

rλ1λ2,µ1µ2sλ1

(
sλ2sµ∗2

)
sµ∗1 .

Take (α, β) ∈ F and write α = α1α2 and β = β1β2. Note that for ν, γ ∈ Λ with

d (ν) = d (γ), Remark 3.1.5 gives sν∗sγ = 0 for ν 6= γ. Then

sα∗1asβ1 =
∑

(λ,µ)∈F

rλ1λ2,µ1µ2

(
sα∗1sλ1

) (
sλ2sµ∗2

) (
sµ∗1sβ1

)
=

∑
{(λ,µ)∈F :λ1=α1,µ1=β1}

rα1λ2,β1µ2sλ2sµ∗2

since d (α1) = n1 = d (λ1) and d (β1) = n2 = d (µ1) for (λ, µ) ∈ F . Since a ∈ I, we have

sα∗1asβ1 ∈ I. Since d (λ2) = d (µ2) for (α1λ2, β1µ2) ∈ F , we have sα∗1asβ1 ∈ KPR (Λ)0.

Hence ∑
{(λ,µ)∈F :λ1=α1,µ1=β1}

rα1λ2,β1µ2sλ2sµ∗2 = sα∗1asβ1 ∈ I0
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and ∑
{(λ,µ)∈F :λ1=α1,µ1=β1}

rα1λ2,β1µ2sα1λ2s(β1µ2)∗ = sα1

(
sα∗1asβ1

)
sβ∗1 ∈ KPR (Λ)n1

I0KPR (Λ)n2
.

Therefore

a =
∑

(λ,µ)∈F

rλ1λ2,µ1µ2sλ1λ2s(µ1µ2)∗

=
∑

{(α1,β1):(α,β)∈F}

( ∑
{(λ,µ)∈F :λ1=α1,µ1=β1}

rα1λ2,β1µ2sα1λ2s(β1µ2)∗

)
also belongs to KPR (Λ)n1

I0KPR (Λ)n2
, and In ⊆ KPR (Λ)n1

I0KPR (Λ)n2
.

Now since I is a graded ideal and I =
⊕

n∈Zk In, we have that I is generated as an

ideal by I0.

Proof of Theorem 3.2.1. Because π is graded, ker π is a graded ideal. By Lemma 3.2.24,

the ideal ker π is generated by the set kerπ ∩ KPR (Λ)0. Thus it suffices to show that

π|KPR(Λ)0
: KPR (Λ)0 → A is injective. This follows from Theorem 3.2.23.

3.3 Relationship with higher-rank graph algebras

We recall from page 8 that for a finitely aligned k-graph Λ, a Cuntz-Krieger Λ-family

is a collection {Tλ : λ ∈ Λ} of partial isometries in a C∗-algebra B satisfying (TCK1-

3) and (CK). There exists a universal C∗-algebra C∗ (Λ) generated by the universal

Cuntz-Krieger Λ-family {tλ : λ ∈ Λ}.
The main result of this section generalises Proposition 7.3 of [11] as follows.

Proposition 3.3.1 ([18, Proposition 4.6]). Suppose that Λ is a finitely aligned k-graph.

Suppose that {sλ, sµ∗ : λ, u ∈ Λ} is the universal Kumjian-Pask Λ-family over C and

that {tλ : λ ∈ Λ} is the universal Cuntz-Krieger Λ-family. Define

A := spanC
{
tλt
∗
µ : λ, µ ∈ Λ

}
.

Then there is an isomorphism πt : KPC (Λ)→ A such that πt (sλ) = tλ and πt (sµ∗) = t∗µ

for λ, u ∈ Λ. In particular, KPC (Λ) is isomorphic to a dense subalgebra of C∗ (Λ).

We shall use the graded uniqueness theorem to prove Proposition 3.3.1. So the first

step is to look for a candidate for the Zk-grading of spanC
{
tλt
∗
µ : λ, µ ∈ Λ

}
as stated

in the following lemma.
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Lemma 3.3.2. The subspaces

An := spanC
{
tλt
∗
µ : λ, µ ∈ Λ, d (λ)− d (µ) = n

}
form a Zk-grading of spanC

{
tλt
∗
µ : λ, µ ∈ Λ

}
.

The proof of this lemma uses the gauge action from page 5.

Proof of Lemma 3.3.2. We generalise the argument of [11, Lemma 7.4]. First we show

AnAm ⊆ An+m for m,n ∈ Zk. Take m,n ∈ Zk. Note that for λ, µ, ρ, τ ∈ Λ with

d (λ)− d (µ) = n and d (ρ)− d (τ) = m, (TCK3) gives

tλt
∗
µtρt

∗
τ = tλ

( ∑
(µ′,ρ′)∈Λmin(µ,ρ)

tµ′t
∗
ρ′

)
t∗τ

=
∑

(µ′,ρ′)∈Λmin(µ,ρ)

tλµ′t
∗
τρ′ .

For (µ′, ρ′) ∈ Λmin (µ, ρ), we have

d (λµ′)− d (τρ′) = d (λ) + d (µ′)− d (τ)− d (ρ′)

= d (λ) + (d (µ) ∨ d (ρ)− d (µ))

− d (τ)− (d (µ) ∨ d (ρ)− d (ρ))

= (d (λ)− d (µ))− (d (τ)− d (ρ))

= n+m.

Hence tλt
∗
µtρt

∗
τ ∈ An+m, and AnAm ⊆ An+m.

Next we show that A =
⊕

n∈ZkAn. Since each spanning element tλt
∗
µ belongs to

Ad(λ)−d(µ), every element a of A can be written as a finite sum
∑

n an with an ∈ An. To

see that the An are independent, we suppose that an ∈ An and
∑

n an = 0. We have

to show an = 0 for all n ∈ Zk. Now recall that

(3.3.1)

∫
Tk
zmdz =

1 if m = 1

0 otherwise.

Hence for m ∈ Zk, we have

∫
Tk
z−mγz

(
tλt
∗
µ

)
dz =

∫
Tk
z−mγz (tλ) γz

(
t∗µ
)
dz =

∫
Tk
z−m

(
zd(λ)tλ

) (
z−d(µ)t∗µ

)
dz

(3.3.2)

=

∫
Tk
z−m+d(λ)−d(µ)

(
tλt
∗
µ

)
dz = tλt

∗
µ

∫
Tk
z−m+d(λ)−d(µ)dz
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=

tλt∗µ if m = d (λ)− d (µ)

0 otherwise.

Each an can be written as
∑

(λ,µ)∈F cn,λ,µtλt
∗
µ, where F is finite. We also have cn,λ,µ ∈ C

and d (λ)− d (µ) = n for each (λ, µ) ∈ F . So

∫
Tk
z−mγz (an) dz =

∫
Tk
z−mγz

( ∑
(λ,µ)∈F

cn,λ,µtλt
∗
µ

)
dz

(3.3.3)

=

∫
Tk
z−m

( ∑
(λ,µ)∈F

cn,λ,µγz
(
tλt
∗
µ

) )
dz (since γz is linear)

=
∑

(λ,µ)∈F

cn,λ,µ

(∫
Tk
z−mγz

(
tλt
∗
µ

)
dz
)

(since the integral is linear)

=


∑

(λ,µ)∈F cn,λ,µtλt
∗
µ if m = d (λ)− d (µ)

0 otherwise

=

an if m = n

0 otherwise.

Since
∑

n an = 0, (3.3.3) gives

0 =

∫
Tk
z−nγz

(∑
n

an

)
dz =

∑
n

∫
Tk
z−nγz (an) dz = an.

The conclusion follows.

Proof of Proposition 3.3.1. Since {tλ : λ ∈ Λ} satisfies (TCK1-3) and (CK), the family{
tλ, t

∗
µ : λ, µ ∈ Λ

}
also satisfies (KP1-4) and is a Kumjian-Pask Λ-family in C∗ (Λ).

Thus the universal property of KPC (Λ) gives a homomorphism πt from KPC (Λ) onto

the dense subalgebra A of C∗ (Λ).

Next we show the injectivity of πt. By Theorem 3.2.1, it suffices to show that πt is

a Zk-graded ring homomorphism. However, this follows from Lemma 3.3.2.

3.4 The boundary-path groupoid and its Steinberg

algebra

In [17], Clark and Sims show that the Leavitt path algebra of an arbitrary 1-graph E is

isomorphic to a Steinberg algebra. In this section, we generalise their result by showing
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that for the Kumjian-Pask algebra of a finitely aligned k-graph Λ is isomorphic to a

Steinberg algebra (Proposition 3.4.1).

Recall the boundary-path groupoid GΛ of a finitely aligned k-graph Λ from Example

2.8.3. We generalise [15, Proposition 4.3] as follows:

Proposition 3.4.1 ([18, Proposition 5.4]). Suppose that Λ is a finitely aligned k-graph

and that GΛ is its boundary-path groupoid as defined in Example 2.8.3. Suppose that R

is a commutative ring with 1. Then there is an isomorphism πT : KPR (Λ)→ AR (GΛ)

such that πT (sλ) = 1ZΛ(λ∗ss(λ)) and πT (sµ∗) = 1ZΛ(s(µ)∗sµ) for λ, u ∈ Λ.

To show the surjectivity of πT in Proposition 3.4.1, we establish the following two

lemmas, which show that the characteristic function of a compact open set in GΛ can

be written as a sum of elements in the form 1ZΛ(λ∗sµ\G).

Lemma 3.4.2 ([18, Lemma 5.5]). Suppose that Λ is a finitely aligned k-graph. Sup-

pose that (λ, µ) , (λ′, µ′) ∈ Λ ∗s Λ, G ⊆ s (λ) Λ, and that G′ ⊆ s (λ′) Λ. Define

F := Λmin (λ, λ′) ∩ Λmin (µ, µ′). Then

(*)

ZΛ (λ ∗s µ\G) ∩ ZΛ (λ′ ∗s µ′\G′) =
⊔

(γ,γ′)∈F

ZΛ (λγ ∗s µ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) .

Proof. We generalise the argument of [17, Example 3.2] for 1-graphs. First we show

that the collection

{ZΛ (λγ ∗s µ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) : (γ, γ′) ∈ F}

is disjoint. It suffices to show that the collection

{ZΛ (λγ ∗s µ′γ′) : (γ, γ′) ∈ F}

is disjoint. Suppose for contradiction that there exist (γ, γ′), (γ′′, γ′′′) ∈ F such that

(γ, γ′) 6= (γ′′, γ′′′) and V := ZΛ (λγ ∗s µ′γ′)∩ZΛ (λγ′′ ∗s µ′γ′′′) 6= ∅. Note that if γ = γ′′,

then

λ′γ′ = λγ (since (γ, γ′) ∈ Λmin (λ, λ′) )

= λγ′′ (since γ = γ′′)

= λ′γ′′′ (since (γ′′, γ′′′) ∈ Λmin (λ, λ′) )

and γ′ = γ′′′ by the factorisation property, which contradicts (γ, γ′) 6= (γ′′, γ′′′). The

same argument shows that γ′ = γ′′′ implies γ = γ′′. Hence γ 6= γ′′ and γ′ 6= γ′′′.
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Meanwhile, since (γ, γ′), (γ′′, γ′′′) ∈ F , then d (γ) = d (γ′′) and d (γ′) = d (γ′′′). Take

(x,m, y) ∈ V . Then x ∈ ZΛ (λγ) and x ∈ ZΛ (λγ′′). Since d (γ) = d (γ′′), then

d (λγ) = d (λγ′′) and γ = x (d (λ) , d (λγ)) = x (d (λ) , d (λγ′′)) = γ′′, which contradicts

γ 6= γ′′. Hence the collection {ZΛ (λγ ∗s µ′γ′) : (γ, γ′) ∈ F} is disjoint, and so is

{ZΛ (λγ ∗s µ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) : (γ, γ′) ∈ F} .

Now we show the right inclusion of (*). Write

U := ZΛ (λ ∗s µ\G) ∩ ZΛ (λ′ ∗s µ′\G′)

and take (x,m, y) ∈ U . We show (x,m, y) ∈ ZΛ (λγ ∗s µ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)])

for some (γ, γ′) ∈ F . Because x ∈ ZΛ (λ) and x ∈ ZΛ (λ′), then d (x) ≥ d (λ) ∨ d (λ′)

and there exists (γ, γ′) ∈ Λmin (λ, λ′) such that

(3.4.1) x ∈ ZΛ (λγ) .

Using a similar argument, there exists (γ′′, γ′′′) ∈ Λmin (µ, µ′) such that

(3.4.2) y ∈ ZΛ (µγ′′) .

We claim that γ = γ′′ and γ′ = γ′′′. To see this, note that m = d (λ) − d (µ) =

d (λ′)− d (µ′) and

d (γ) = d (λ) ∨ d (λ′)− d (λ) = (d (µ) +m) ∨ (d (µ′) +m)− (d (µ) +m)

= (d (µ) ∨ d (µ′)) +m− (d (µ) +m) = d (µ) ∨ d (µ′)− d (µ) = d (γ′′) .

Since (x,m, y) ∈ ZΛ (λ ∗s µ\G), then σd(λ)x = σd(µ)y and

γ =
(
σd(λ)x

)
(0, d (γ)) =

(
σd(µ)y

)
(0, d (γ′)) = γ′′.

Using a similar argument, we also get γ′ = γ′′′ proving the claim.

Next we show that (x,m, y) ∈ ZΛ (λγ ∗s µ′γ′). By (3.4.1) and (3.4.2), we have x ∈
ZΛ (λγ) and y ∈ ZΛ (µγ′′). Since γ = γ′′, γ′ = γ′′′, (γ′′, γ′′′) ∈ Λmin (µ, µ′), then µγ′′ =

µγ = µ′γ′ and y ∈ ZΛ (µ′γ′) . On the other hand, since (x,m, y) ∈ ZΛ (λ ∗s µ\G), then

σd(λ)x = σd(µ)y and

σd(λγ)x = σd(µγ)y = σd(µ′γ′)y

since µγ = µ′γ′. Since m = d (λ) − d (µ) = d (λγ) − d (µ′γ′), then (x,m, y) ∈
ZΛ (λγ ∗s µ′γ′), as required.
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Finally we show that (x,m, y) /∈ ZΛ (λγν ∗s µ′γ′ν) for all ν ∈ Ext (γ;G)∪Ext (γ′;G′).

Suppose for a contradiction that there exists ν ∈ Ext (γ;G) ∪ Ext (γ′;G′) such that

(x,m, y) ∈ ZΛ (λγν ∗s µ′γ′ν). Without loss of generality, suppose ν ∈ Ext (γ;G).

Then there exists ν ′ ∈ G such that γν ∈ ZΛ (ν ′). Since x ∈ ZΛ (λγν), y ∈ ZΛ (µ′γ′ν) =

ZΛ (µγν), and γν ∈ ZΛ (ν ′), then x ∈ ZΛ (λν ′) and y ∈ ZΛ (µν ′) where ν ′ ∈ G. This

contradicts (x,m, y) ∈ ZΛ (λ ∗s µ\G). Hence

(x,m, y) ∈ ZΛ (λγ ∗s µ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)])

and

U ⊆
⊔

(γ,γ′)∈F

ZΛ (λγ ∗s µ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) .

Now we show the left inclusion of (*). Take (γ, γ′) ∈ F and

(3.4.3) (x,m, y) ∈ ZΛ (λγ ∗s µ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) .

We show (x,m, y) belongs to both ZΛ (λ ∗s µ\G) and ZΛ (λ′ ∗s µ′\G′). Without loss of

generality, it suffices to show (x,m, y) ∈ ZΛ (λ ∗s µ\G). First we show that (x,m, y) ∈
ZΛ (λ ∗s µ). Note that we have µγ = µ′γ′ and m = d (λγ)−d (µ′γ′) = d (λ)−d (µ). On

the other hand, (x,m, y) ∈ ZΛ (λγ ∗s µ′γ′) also implies x ∈ ZΛ (λγ) and y ∈ ZΛ (µ′γ′) =

ZΛ (µγ). Furthermore,

σ(λ)x = [x (d (λ) , d (λγ))]
[
σ(λγ)x

]
= γ

[
σ(λγ)x

]
(since x (d (λ) , d (λγ)) = γ)

= γ[σ(µ′γ′)y] (since σ(λγ)x = σ(µ′γ′)y)

= [y (d (µ) , d (µγ))] [σ(µ′γ′)y] (since y (d (µ) , d (µγ)) = γ)

= [y (d (µ) , d (µγ))] [σ(µγ)y] (since µγ = µ′γ′)

= σ(µ)y

and then (x,m, y) ∈ ZΛ (λ ∗s µ), as required.

To complete the proof, we have to show (x,m, y) /∈ ZΛ (λν ∗s µν) for all ν ∈ G.

Suppose for contradiction that there exists ν ∈ G such that (x,m, y) ∈ ZΛ (λν ∗s µν).

In particular, x ∈ ZΛ (λν). Since x ∈ ZΛ (λγ) and x ∈ ZΛ (λν), then there exists

ν ′ ∈ Ext (γ; {ν}) such that x ∈ ZΛ (λγν ′). Hence

σ(λγν′)x = σ(µγν′)y (since σ(λ)x = σ(µ)y)

= σ(µ′γ′ν′)y (since µγ = µ′γ′),
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(
σ(µ)y

)
(0, d (γν ′)) =

(
σ(λ)x

)
(0, d (γν ′)) (since σ(λ)x = σ(µ)y)(3.4.4)

= x (d (λ) , d (λγν ′))

= γν ′ (since x ∈ ZΛ (λγν ′) ),

and

y (0, d (µ′γ′ν ′)) = y (0, d (µγν ′)) (since µγ = µ′γ′)

= µγν ′ (by (3.4.4))

= µ′γ′ν ′ (since µγ = µ′γ′).

Furthermore,

d (λγν ′)− d (µ′γ′ν ′) = d (λγ)− d (µ′γ′)

= d (λγ)− d (µγ) (since µγ = µ′γ′)

= d (λ)− d (µ) = m.

Hence (x,m, y) ∈ ZΛ (λγν ′ ∗s µ′γ′ν ′) for some ν ′ ∈ Ext (γ; {ν}) ⊆ Ext (γ;G), which

contradicts (3.4.3). The conclusion follows.

Lemma 3.4.3 ([18, Lemma 5.6]). Suppose that Λ is a finitely aligned k-graph. Sup-

pose that for i ∈ {1, . . . , n}, (λi, µi) ∈ Λ ∗s Λ and Gi ⊆ s (λi) Λ. Suppose that

{ZΛ (λi ∗s µi\Gi)}ni=1 is a finite collection of compact open bisection sets and

U :=
n⋃
i=1

ZΛ (λi ∗s µi\Gi) .

Then

1U ∈ spanR
{

1ZΛ(λ∗sµ\G) : (λ, µ) ∈ Λ ∗s Λ, G ⊆ s (λ) Λ
}

.

Proof. The lemma is trivial for n = 1. Now let n = 2 and F := Λmin (λ1, λ2) ∩
Λmin (µ1, µ2) . If F = ∅, then

1U = 1ZΛ(λ1∗sµ1\G1) + 1ZΛ(λ2∗sµ2\G2).

Otherwise, Proposition 3.4.2 gives

1U = 1ZΛ(λ1∗sµ1\G1) + 1ZΛ(λ2∗sµ2\G2) −
∑

(γ1,γ2)∈F

1Zγ1,γ2

where Zγ1,γ2 := ZΛ (λ1γ1 ∗s µ2γ2\Ext (γ1;G1) ∪ Ext (γ2;G2)). For n ≥ 3, by using

the inclusion-exclusion principle and de Morgan’s law, 1U can be written as a sum of

elements in the form 1ZΛ(λ∗sµ\G).
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Proof of Proposition 3.4.1. Define Tλ := 1ZΛ(λ∗ss(λ)) and T ∗µ := 1ZΛ(s(µ)∗sµ) for λ, µ ∈ Λ.

Then by [24, Theorem 6.13] (or [58, Example 7.1]), {Tλ : λ, u ∈ Λ} satisfies (TCK1-3)

and (CK). Thus
{
Tλ, T

∗
µ : λ, u ∈ Λ

}
is a Kumjian-Pask Λ-family in AR (GΛ). Hence

there exists a homomorphism πT : KPR (Λ) → AR (GΛ) such that πT (sλ) = Tλ and

πT (sµ∗) = T ∗µ for λ, µ ∈ Λ by Theorem 3.1.8(a).

To see that πT is injective, first we show that πT is graded. Take λ, µ ∈ Λ. Then

sλsµ∗ ∈ KPR (Λ)d(λ)−d(µ) and

πT (sλsµ∗) = 1ZΛ(λ∗sµ) = 1{(x,d(λ)−d(µ),y):(λ,µ)∈Λ∗sΛ,z∈s(λ)∂Λ} ∈ AR (GΛ)d(λ)−d(µ) .

Since for every n ∈ Zk, KPR (Λ)n is spanned by elements in the form sλsµ∗ (Theorem

3.1.8(c)), then for n ∈ Zk, πT (KPR (Λ)n) ⊆ AR (GΛ)n and πT is graded. Since πT is

graded and πT (rsv) = r1ZΛ(v∗sv) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0, Theorem 3.2.1

implies that πT is injective.

Finally we show the surjectivity of πT . Take f ∈ AR (GΛ). By Proposition 2.9.1, f

can be written as
∑

U∈F aU1U where aU ∈ R, each U is in the form
⋃n
i=1 ZΛ (λi ∗s µi\Gi)

for some n ∈ N, and F is a finite set of mutually disjoint open sets. Hence to show

f ∈ im (πT ), it suffices to show

1U ∈ im (πT )

where U :=
⋃n
i=1 ZΛ (λi ∗s µi\Gi) for some n ∈ N and collection {ZΛ (λi ∗s µi\Gi)}ni=1.

By Lemma 3.4.3, 1U can be written as the sum of elements of the form 1ZΛ(λ∗sµ\G). On

the other hand, for (λ, µ) ∈ Λ ∗s Λ and finite G ⊆ s (λ) Λ, we have

Tλ

(∏
ν∈G

(
Ts(λ) − TνTν∗

) )
Tµ∗ = 1ZΛ(λ∗ss(λ))

(∏
ν∈G

(
1ZΛ(s(λ)∗ss(λ)) − 1ZΛ(ν∗sν)

) )
1ZΛ(s(µ)∗sµ)

(3.4.5)

= 1ZΛ(λ∗ss(λ))

(∏
ν∈G

(
1ZΛ( s(λ)∗ss(λ)\{ν})

) )
1ZΛ(s(µ)∗sµ)

= 1ZΛ(λ∗ss(λ))

(
1∏

ν∈G ZΛ( s(λ)∗ss(λ)\{ν})

)
1ZΛ(s(µ)∗sµ)

= 1ZΛ(λ∗ss(λ))

(
1ZΛ( s(λ)∗ss(λ)\G)

)
1ZΛ(s(µ)∗sµ)

= 1ZΛ(λ∗sµ\G)

since s (λ) = s (µ). Hence 1ZΛ(λ∗sµ\G) belongs to im (πT ), and then so does 1U , as

required. Therefore πT is surjective and is an isomorphism.

Remark 3.4.4. Finitely aligned k-graphs include 1-graphs and row-finite k-graphs with

no sources (see Section 2.4). In these cases, the boundary path groupoid GΛ of Example
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2.8.3 coincides with GE of [17] and GΛ of [15]. Thus we have generalised Example 3.2 of

[17] and Proposition 4.3 of [15]. For locally convex row-finite k-graphs, our construction

gives a Steinberg algebra model of the Kumjian-Pask algebras of [16].

3.5 Relation between aperiodic higher-rank graphs

and effective groupoids

In this section and Section 3.6, we investigate the relationship between a k-graph Λ and

the boundary-path groupoid GΛ constructed in Example 2.8.3. We expect the Cuntz-

Krieger uniqueness theorem (Theorem 3.7.1) to apply only to aperiodic finitely aligned

k-graphs. On the other hand, effective groupoids (definition below) are needed in the

hypothesis of the Cuntz-Krieger uniqueness theorem for Steinberg algebras (Theorem

3.7.2). In this section, our main result is Proposition 3.5.1 which says that a finitely

aligned k-graph Λ is aperiodic if and only if the boundary-path groupoid GΛ is effective.

Recall from Definition 2.6.2 that a boundary path x is aperiodic if for all λ, µ ∈
Λr (x), λ 6= µ implies λx 6= µx. We then say a finitely aligned k-graph Λ is aperiodic

if for each v ∈ Λ0, there exists an aperiodic boundary path x with r (x) = v.

Next let G be a topological groupoid. Recall from Section 2.10 that G is effective if

the interior of

Iso (G) := {a ∈ G : s (a) = r (a)}

is G(0). See [13, Lemma 3.1] for some equivalent characterisations.

Proposition 3.5.1 ([18, Proposition 6.3]). Suppose that Λ is a finitely aligned k-graph.

Then Λ is aperiodic if and only if the boundary-path groupoid GΛ is effective.

Proof. First suppose that Λ is aperiodic. We trivially have that G(0)
Λ is contained in

the interior of Iso (GΛ). Now we show the reverse inclusion. Take an interior point a

of Iso (GΛ). Then there exits ZΛ (λ ∗s µ\G) such that ZΛ (λ ∗s µ\G) ⊆ Iso (GΛ) and

a ∈ ZΛ (λ ∗s µ\G). We show λ = µ.

Note that since a ∈ ZΛ (λ ∗s µ\G), ZΛ (λ ∗s µ\G) is not empty, and G is not

exhaustive (see Remark 2.8.4(ii)). Hence there exists ν ∈ s (λ) Λ such that Λmin (ν, γ) =

∅ for γ ∈ G. Because Λ is aperiodic, there exists a aperiodic boundary path x ∈
s (ν) ∂Λ.

We claim that the boundary path νx is also aperiodic. Suppose for contradiction

that there exist λ′, µ′ ∈ Λr (νx) such that λ′ 6= µ′ and

(3.5.1) λ′ (νx) = µ′ (νx) .
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Since λ′, µ′, ν ∈ Λ, by uniqueness in the factorisation property, λ′ 6= µ′ implies λ′ν 6=
µ′ν. Now because x is aperiodic, λ′ν 6= µ′ν implies λ′νx 6= µ′νx, which contradicts

(3.5.1). Hence νx is aperiodic, as claimed.

Since λνx ∈ ZΛ (λ)\ZΛ (λγ) and µνx ∈ ZΛ (µ)\ZΛ (µγ) for γ ∈ G, we have

(λνx, d (λ)− d (µ) , µνx) ∈ ZΛ (λ ∗s µ\G) .

Thus ZΛ (λ ∗s µ\G) ⊆ Iso (GΛ), and hence λνx = µνx. Since νx is aperiodic, we have

λ (νx) = µ (νx) which implies λ = µ. Therefore GΛ is effective.

Now suppose that Λ is not aperiodic. Then there exists v ∈ Λ0 such that for all

boundary paths x ∈ v∂Λ, x is not aperiodic.

Claim 3.5.2. For x ∈ v∂Λ, we have xGΛx 6= {x}.

Proof of Claim 3.5.2. Take x ∈ v∂Λ. Since x is not aperiodic, there exist λ, µ ∈ Λr (x)

such that λ 6= µ and λx = µx. If d (λ) = d (µ), then

λ = (λx) (0, d (λ)) = (µx) (0, d (µ)) = µ,

which contradicts λ 6= µ.

So suppose d (λ) 6= d (µ). Note that for 1 ≤ i ≤ k such that d (λ)i 6= d (µ)i, we have

d (x)i =∞ (since λx = µx). Hence

((d (λ) ∨ d (µ))− d (λ)) ∨ ((d (λ) ∨ d (µ))− d (µ)) ≤ d (x) .

Write p := (d (λ) ∨ d (µ))− d (λ) and q := (d (λ) ∨ d (µ))− d (µ), and note that p 6= q.

Since λx = µx,

σpx = σp
(
σd(λ) (λx)

)
= σd(λ)∨d(µ) (λx)

= σd(λ)∨d(µ) (µx)

= σq
(
σd(µ) (µx)

)
= σqx.

This implies that (x, p− q, x) ∈ GΛ\ G(0)
Λ and xGΛx 6= {x}. Claim 3.5.2

Since xGΛx 6= {x} for all x ∈ v∂Λ,

ZΛ (v) ∩ {z ∈ G(0)
Λ : zGΛz = {z}} = ∅

and {z ∈ G(0)
Λ : zGΛz = {z}} is not dense in G(0)

Λ . Since GΛ is locally compact, second-

countable, Hausdorff and étale (see Remark 2.8.4(iii)), [44, Proposition 3.6(b)] implies

that GΛ is not effective, as required.
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Remark 3.5.3. For a finitely aligned k-graph Λ, the following five conditions are equiv-

alent:

(a) GΛ is effective;

(b) GΛ is topologically principal : the set of units with trivial isotropy is dense in G(0);

(c) GΛ satisfies Condition (1) of Theorem 5.1 of [45];

(d) Λ has no local periodicity as defined in [48];

(e) Λ is aperiodic.

In [44, Proposition 3.6], Renault shows that for a locally compact, second-countable,

Hausdorff, étale G, G is effective if and only if it is topologically principal. Since the

boundary-path groupoid GΛ is locally compact, second-countable, Hausdorff and étale,

we have (a)⇔(b). In [58, Theorem 5.2], Yeend proves (b)⇔(c). (Note that Yeend uses

“essentially free” to mean “topologically principal”.) Lemma 5.6 of [45] gives (c)⇔(d).

Finally, (d)⇔(e) follows from [48, Proposition 2.11].

3.6 Relation between cofinal higher-rank graphs and

minimal groupoids

In this section, we show that a finitely aligned k-graph Λ is cofinal if and only if the

boundary-path groupoid GΛ is minimal (Proposition 3.6.1). We use this to study the

simplicity of Kumjian-Pask algebras in Section 3.8.

Recall from [50, Definition 8.4] that a k-graph Λ is cofinal if for all v ∈ Λ0 and

x ∈ ∂Λ, there exists n ≤ d (x) such that vΛx (n) 6= ∅.
In a groupoid G, a subset U ⊆ G(0) is invariant if s (a) ∈ U implies r (a) ∈ U for

all a ∈ G. Note that U is invariant if and only if G(0)\U is invariant. A topological

groupoid G is minimal if G(0) has no nontrivial open invariant subsets. Equivalently,

G is minimal if for each x ∈ G(0), the orbit [x] := s (xG) is dense in G(0).

Proposition 3.6.1 ([18, Proposition 7.1]). Suppose that Λ is a finitely aligned k-graph.

Then Λ is cofinal if and only if the boundary-path groupoid GΛ is minimal.

Proof. Suppose that Λ is cofinal. Take x ∈ G(0)
Λ . We have to show that [x] is dense in

G(0)
Λ . Take a nonempty open set ZΛ (λ\G) and we claim that ZΛ (λ\G)∩[x] 6= ∅. Since
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ZΛ (λ\G) is nonempty, G is not exhaustive (see Remark 2.8.4(i)). Then there exists

ν ∈ s (λ) Λ such that Λmin (ν, γ) = ∅ for γ ∈ G. Now consider the vertex s (λν) and the

boundary path x. Since Λ is cofinal, there exists n ≤ d (x) such that s (λν) Λx (n) 6= ∅.
Take µ ∈ s (λν) Λx (n). Because x is a boundary path, so is σnx. Hence

y := λνµ [σnx]

is also a boundary path and y ∈ ZΛ (λ). Since Λmin (ν, γ) = ∅ for γ ∈ G, we have

y /∈ ZΛ (λγ) for γ ∈ G. Hence y ∈ ZΛ (λ\G).

On the other hand, since y = λνµ [σnx], we have (x, n− d (λνµ) , y) ∈ GΛ and

y ∈ [x]. Therefore ZΛ (λ\G) ∩ [x] 6= ∅. Thus [x] is dense in G(0)
Λ and GΛ is minimal.

Suppose that Λ is not cofinal. Then there exist v ∈ Λ0 and x ∈ ∂Λ such that

for all n ≤ d (x) , we have vΛx (n) = ∅. We claim ZΛ (v) ∩ [x] = ∅. Suppose for

contradiction that ZΛ (v) ∩ [x] 6= ∅. Take y ∈ ZΛ (v) ∩ [x]. Because y ∈ [x], there

exists p, q ∈ Nk such that (x, p− q, y) ∈ GΛ. This implies σpx = σqy. Thus r (y) = v

and σpx = σqy imply that y (0, q) belongs to vΛx (p), which contradict vΛx (p) = ∅.
Therefore ZΛ (v) ∩ [x] = ∅, as claimed, and [x] is not dense in G(0)

Λ . Thus GΛ is not

minimal.

3.7 The Cuntz-Krieger uniqueness theorem

Throughout this section, Λ is a finitely aligned k-graph and R is a commutative ring

with identity 1.

Theorem 3.7.1 ([18, Theorem 8.1]: The Cuntz-Krieger uniqueness theorem). Suppose

that Λ is an aperiodic finitely aligned k-graph and that R is a commutative ring with

1. Suppose that π : KPR (Λ) → A is a ring homomorphism such that π (rsv) 6= 0 for

all r ∈ R\ {0} and v ∈ Λ0. Then π is injective.

We show Theorem 3.7.1 using the Cuntz-Krieger uniqueness theorem for Steinberg

algebras Theorem 2.10.2. First we verify an alternative formulation of the Cuntz-

Krieger uniqueness theorem for Steinberg algebras.

Theorem 3.7.2 ([18, Theorem 8.2]). Suppose that G is an effective Hausdorff ample

groupoid and that R is a commutative ring with 1. Suppose that B is a basis of compact

open bisections for the topology on G. Suppose that φ : AR (G) → A is a ring homo-

morphism such that ker (φ) 6= {0}. Then there exist r ∈ R\ {0} and B ∈ B such that

B ⊆ G(0) and φ (r1B) = 0.
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Proof. Since ker (φ) 6= 0, then by [14, Theorem 3.2], there exist r ∈ R\ {0} and a

nonempty compact open subset K ⊆ G(0) such that φ (r1K) = 0. Since K is open,

there exists B ∈ B such that B ⊆ K. Hence B ⊆ G(0) and

0 = φ (r1K)φ (1B) = φ (r1KB) = φ (r1K∩B) = φ (r1B) .

Proof of Theorem 3.7.1. First note that GΛ is a Hausdorff and ample groupoid, and

is effective by Proposition 3.5.1. Thus it satisfies the hypothesis of Theorem 3.7.2.

Now recall the isomorphism πT : KPR (Λ) → AR (GΛ) of Proposition 3.4.1. Then

πT (sλ) = 1ZΛ(λ∗ss(λ)) and πT (sµ∗) = 1ZΛ(s(µ)∗sµ) for λ, u ∈ Λ. Define φ := π ◦ π−1
T . To

show the injectivity of π, it suffices to show that φ is injective. Suppose for contradiction

that φ is not injective. By Theorem 3.7.2, there exist r ∈ R\ {0} and ZΛ (λ\G)

such that φ
(
r1ZΛ(λ\G)

)
= 0. Since 1ZΛ(λ\G) = 1ZΛ(λ∗sλ\G) (Remark 2.8.4(i)), then the

argument of (3.4.5) gives

φ
(
r1ZΛ(λ\G)

)
= π

(
rsλ

(∏
ν∈G

(
ss(λ) − sνsν∗

) )
sλ∗
)

,

and then

(3.7.1) π
(
rsλ

(∏
ν∈G

(
ss(λ) − sνsν∗

) )
sλ∗
)

= 0.

On the other hand, since π (rsv) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0, and G is finite

non-exhaustive, then Proposition 3.1.3(d) implies that

π
(
rsλ

(∏
ν∈G

(
ss(λ) − sνsν∗

) )
sλ∗
)
6= 0,

which contradicts (3.7.1). The conclusion follows.

One application of Theorem 3.7.1 is:

Corollary 3.7.3 ([18, Corollary 8.3]). Suppose that Λ is a finitely aligned k-graph and

that R is a commutative ring with 1. Then Λ is aperiodic if and only if the boundary-

path representation πS : KPR (Λ)→ End (FR (∂Λ)) is injective.

To show Corollary 3.7.3, we establish some results and notation.

Following [48, Definition 2.3], for a finitely aligned k-graph Λ, we say Λ that has

no local periodicity if for every v ∈ Λ0 and every n 6= m ∈ Nk, there exists x ∈ v∂Λ

such that either d (x) � n ∨m or σnx 6= σmx. If no local aperiodicity fails at v ∈ Λ0,

then there are n 6= m ∈ Nk such that σnx = σmx for all x ∈ v∂Λ. In this case, we say

Λ has local periodicity n,m at v ∈ Λ0.
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Lemma 3.7.4 ([48, Lemma 2.9]). Suppose that Λ is a finitely aligned k-graph which

has local periodicity n,m at v ∈ Λ0. Then d (x) ≥ n ∨ m and σnx = σmx for every

x ∈ v∂Λ. Fix x ∈ v∂Λ and set µ = x (0,m), α = x (m,m ∨ n), and ν = (µα) (0, n).

Then µαy = ναy for every y ∈ s (α) ∂Λ.

Proof. Take y ∈ s (α) ∂Λ and define z := µαy. Because Λ has local periodicity n,m at

v ∈ Λ0, then σnz = σmz. Now note that

z (0, n) = (µαy) (0, n)

= (µα) (0, n) (since n ≤ d (µα) )

= ν

and z = ν [σnz]. Since d (µ) = m, we deduce that

σnz = σmz = (µαy) (0,m) = αy,

and

µαy = z = ν [σnz] = ναy,

as required.

Proof of Corollary 3.7.3. Suppose that Λ is aperiodic. By Proposition 3.1.7, we have

πS (rsv) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0. Since Λ is aperiodic, Theorem 3.7.1 implies

that πS is injective.

Next suppose that Λ is not aperiodic. We follow the argument of [11, Lemma 5.9].

Since Λ is not aperiodic, by [48, Proposition 2.11] (see also Proposition 2.6.3), there

exist v ∈ Λ0 and n 6= m ∈ Nk such that Λ has local periodicity n,m at v ∈ Λ0. Let

µ, ν, α be as in Lemma 3.7.4 and define a := sµαs(µα)∗ − sναs(µα)∗ . We claim that

a ∈ ker (πS)\ {0}.
First we show that a 6= 0. Suppose for contradiction that a = 0. Then sµαs(µα)∗ =

sναs(µα)∗ . Note that d
(
sµαs(µα)∗

)
= d (µα)− d (µα) = 0 and

d
(
sναs(µα)∗

)
= d (να)− d (µα) = d (ν) + d (α)− d (µ)− d (α) = n−m 6= 0.

Hence sµαs(µα)∗ = sναs(µα)∗ = 0. Thus 0 = s(µα)∗
(
sµαs(µα)∗

)
sµα = s2

s(µα) = ss(µα),

which contradicts Theorem 3.1.8(b). Hence a 6= 0.

Now we show that a ∈ ker (πS). We take y ∈ ∂Λ, and have to show πS (a) (y) = 0.

Recall that πS (sλ) = Sλ and πS (sµ∗) = Sµ∗ where

Sλ (y) =

λy if s (λ) = r (y)

0 otherwise,
and Sµ∗ (y) =

σd(µ)y if y (0, d (µ)) = µ

0 otherwise.
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First suppose y (0, d (µα)) 6= µα. Then S(µα)∗ (y) = 0 and πS (a) (y) = SµαS(µα)∗ (y)−
SναS(µα)∗ (y) = 0. Suppose y (0, d (µα)) = µα. Then

πS (a) (y) = (Sµα − Sνα)
(
σd(µα)y

)
.

Since y ∈ ∂Λ, then σd(µα)y ∈ s (α) ∂Λ and Lemma 3.7.4 gives µα
(
σd(µα)y

)
= να

(
σd(µα)y

)
.

Hence πS (a) (y) = 0. Thus a ∈ ker (πS)\ {0}, as claimed, and πS is not injective.

3.8 Basic simplicity and simplicity

As in [55], an ideal I in KPR (Λ) is basic if whenever r ∈ R\ {0}, v ∈ Λ0, and rsv ∈ I
imply sv ∈ I. We say KPR (Λ) is basically simple if its only basic ideals are {0} and

KPR (Λ).

In this section, we investigate necessary and sufficient conditions for KPR (Λ) to be

basically simple (Theorem 3.8.3) and to be simple (Theorem 3.8.4). We show that both

results follow from characterisations of basic simplicity and simplicity for Steinberg

algebras (see Theorem 3.8.1 and Theorem 3.8.2). Therefore we state necessary and

sufficient conditions for the Steinberg algebra AR (G) to be basically simple and to be

simple in the following two theorems.

Theorem 3.8.1 ([14, Theorem 4.1]). Suppose that G is a Hausdorff ample groupoid

and that R is a commutative ring with 1. Then AR (G) is basically simple if and only

if G is effective and minimal.

Theorem 3.8.2 ([14, Corollary 4.6]). Suppose that G is a Hausdorff ample groupoid

and that R is a commutative ring with 1. Then AR (G) is simple if and only if R is a

field and G is effective and minimal.

Now we are ready to prove our results.

Theorem 3.8.3 ([18, Theorem 9.3]). Suppose that Λ is a finitely aligned k-graph and

that R is a commutative ring with 1. Then KPR (Λ) is basically simple if and only if

Λ is aperiodic and cofinal.

Proof. First suppose that KPR (Λ) is basically simple. By Proposition 3.4.1, AR (GΛ)

is also basically simple and then by Theorem 3.8.1, GΛ is effective and minimal. On

the other hand, GΛ is effective implies that Λ is aperiodic (Proposition 3.5.1), and GΛ

is minimal implies that Λ is cofinal (Proposition 3.6.1). The conclusion follows.
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Next suppose that Λ is aperiodic and cofinal. By Proposition 3.5.1 and Proposition

3.6.1, GΛ is effective and minimal and then Theorem 3.8.1 implies that AR (GΛ) is

basically simple. Since AR (GΛ) is isomorphic to KPR (Λ) (Proposition 3.4.1), KPR (Λ)

is also basically simple, as required.

Theorem 3.8.4 ([18, Theorem 9.4]). Suppose that Λ is a finitely aligned k-graph and

that R is a commutative ring with 1. Then KPR (Λ) is simple if and only if R is a field

and Λ is aperiodic and cofinal.

Proof. First suppose that KPR (Λ) is simple. Then KPR (Λ) is also basically simple,

and Theorem 3.8.3 implies that Λ is aperiodic and cofinal. On the other hand, since

KPR (Λ) is simple, then by Proposition 3.4.1, AR (GΛ) is also simple, and Theorem

3.8.2 implies that R is a field, as required.

Next suppose that R is a field and Λ is aperiodic and cofinal. By Proposition 3.5.1

and Proposition 3.6.1, GΛ is effective and minimal. Hence Theorem 3.8.2 implies that

AR (GΛ) is simple and by Proposition 3.4.1, so is KPR (Λ).
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Chapter 4

Cohn path algebras

Suppose that Λ is a row-finite higher-rank graph with no sources and that R is a

commutative ring with 1. In this chapter, we introduce a Cohn path Λ-family for row-

finite higher-rank graphs with no sources and study its properties. We show there is a

universal Cohn path algebra CR (Λ) (Proposition 4.1.5). We also establish a uniqueness

theorem for Cohn path algebras (Theorem 4.2.1), and then give examples of Cohn path

algebras in Section 4.3.

The material in this chapter is taken from a joint work with my supervisor Clark

in [19].

4.1 Cohn Λ-families

Throughout this section, suppose that Λ is a row-finite k-graph with no sources and

that R is a commutative ring with 1. Recall from Chapter 3 that for λ ∈ Λ, λ∗ is a

ghost path, and v∗ := v for v ∈ Λ0. We also write G (Λ) for the set of ghost paths and

define r and s on G (Λ) by

r (λ∗) := s (λ) and s (λ∗) := r (λ) .

We also define composition in G (Λ) by setting λ∗µ∗ = (µλ)∗ for λ, µ ∈ Λ with s(µ) =

r(λ), we write G
(
Λ 6=0

)
:= {λ∗ : λ ∈ Λ\Λ0}. We also recall from Chapter 2 that Λ1

denotes the set of edges of Λ.

Definition 4.1.1. A Cohn Λ-family {Tλ, Tµ∗ : λ, µ ∈ Λ} in an R-algebra A consists of

a function T : Λ ∪G
(
Λ 6=0

)
→ A such that:

(CP1) {Tv : v ∈ Λ0} is a collection of mutually orthogonal idempotents;
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(CP2) for λ, µ ∈ Λ with s (λ) = r (µ), we have TλTµ = Tλµ and Tµ∗Tλ∗ = T(λµ)∗ ;

(CP3) Tλ∗Tµ =
∑

(ν,γ)∈Λmin(λ,µ) TνTγ∗ for all λ, µ ∈ Λ.

Remark 4.1.2. (i) In a 1-graph E, people usually write {v, e, e∗ : v ∈ E0, e ∈ E1}
instead of {Tλ, Tµ∗ : λ, µ ∈ E∗} (see [1, 3, 5, 6, 9]). We do not use this notation

because we want to distinguish between the paths in E and the corresponding

elements of the algebra A.

(ii) Since Λ is row-finite,
∣∣Λmin (λ, µ)

∣∣ is finite and the sum in (CP3) makes sense. We

also interpret any empty sums as 0, and hence Λmin (λ, µ) = ∅ implies Tλ∗Tµ = 0.

Since (CP1-3) are the same as (KP1-3) of Chapter 3, Proposition 3.1.3 also applies

to Cohn Λ-families as follows.

Proposition 4.1.3 ([19, Proposition 3.3]). Suppose that Λ is a row-finite k-graph with

no sources, that R is a commutative ring with 1, and that {Tλ, Tµ∗ : λ, µ ∈ Λ} is a

Cohn Λ-family in an R-algebra A. Then

(a) TλTλ∗TµTµ∗ =
∑

λν∈MCE(λ,µ) TλνT(λν)∗ for λ, µ ∈ Λ, and {TλTλ∗ : λ ∈ Λ} is a

commuting family.

(b) The subalgebra generated by {Tλ, Tµ∗ : λ, µ ∈ Λ} is

spanR{TλTµ∗ : λ, µ ∈ Λ, s (λ) = s (µ)}.

Now we give an example of a Cohn Λ-family. We use this example later to study

properties of “the universal Cohn Λ-family” (Theorem 4.1.5). Here WΛ denotes the

path space of a k-graph Λ (see Section 2.5).

Proposition 4.1.4 ([19, Proposition 3.4]). Suppose that Λ is a row-finite k-graph with

no sources and that R is a commutative ring with 1. Suppose that FR (WΛ) is the free

R-module with basis WΛ. Then there exists a Cohn Λ-family {Tλ, Tµ∗ : λ, µ ∈ Λ} in the

R-algebra End (FR (WΛ)) such that for v ∈ Λ0, λ, µ ∈ Λ and x ∈ WΛ, we have

Tv (x) =

x if r (x) = v

0 otherwise,

Tλ (x) =

λx if s (λ) = r (x)

0 otherwise,
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Tµ∗ (x) =

σd(µ)x if x (0, d (µ)) = µ

0 otherwise.

Further, we have rTv 6= 0 and r
∏

e∈vΛ1 (Tv − TeT ∗e ) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0.

Proof. We modify the construction of the infinite-path representation in [11]. Take

v ∈ Λ0 and λ, µ ∈ Λ\Λ0. Define functions fv, fλ, and fµ∗ : WΛ → FR (WΛ) by

fv (x) =

x if r (x) = v

0 otherwise,

fλ (x) =

λx if s (λ) = r (x)

0 otherwise,

fµ∗ (x) =

σd(µ)x if x (0, d (µ)) = µ

0 otherwise.

By the universal property of free modules, there exist nonzero endomorphisms Sv, Sλ, Sµ∗

of FR (WΛ) extending fv, fλ, and fµ∗ .

We claim that {Tλ, Tµ∗ : λ, u ∈ Λ} is a Cohn Λ-family. First we show (CP1). Take

v ∈ Λ0. Then T 2
v (x) = x = Tv (x) if r (x) = v, and T 2

v (x) = 0 = Tv (x) otherwise.

Hence T 2
v = Tv. Now take v, w ∈ Λ0 with v 6= w. Then x ∈ wWΛ implies x /∈ vWΛ.

Thus TvTw (x) = 0 for every x ∈ WΛ, and TvTw = 0.

Next we show (CP2). Take λ, µ ∈ Λ with s (λ) = r (µ). Then TλTµ (x) = λµx =

Tλµ (x) if x ∈ s (µ)WΛ, and TλTµ (x) = 0 = Tλµ (x) otherwise. Hence TλTµ = Tλµ. On

the other hand, if x (0, d (λµ)) = λµ, we have

Tµ∗Tλ∗ (x) = Tµ∗σ
d(λ)x = σd(λ)+d(µ)x = σd(λµ)x = T(λµ)∗ (x) ;

otherwise Tµ∗Tλ∗ (x) = 0 = T(λµ)∗ (x). Therefore Tµ∗Tλ∗ = T(λµ)∗ .

Next we show (CP3). Take λ, µ ∈ Λ. If r (λ) 6= r (µ), then Tλ∗Tµ = 0 and

Λmin (λ, µ) = ∅, as required. Suppose r (λ) = r (µ). We have

Tλ∗Tµ (x) =

(µx) (d (λ) , d (µx)) if x ∈ s (µ)WΛ and (µx) (0, d (λ)) = λ;

0 otherwise.

Take x ∈ s (µ)WΛ. Note that s (µ) = r (γ) for (ν, γ) ∈ Λmin (λ, µ). First suppose

(µx) (0, d (λ)) 6= λ. Then for (ν, γ) ∈ Λmin (λ, µ),

(µx) (0, d (λν)) 6= λν and (µx) (0, d (µγ)) 6= µγ.
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Hence x (0, d (γ)) 6= γ and TνTγ∗ (x) = Tν (0) = 0. Therefore∑
(ν,γ)∈Λmin(λ,µ)

TνTγ∗ (x) = 0.

Next suppose (µx) (0, d (λ)) = λ. Since (µx) (0, d (λ)) = λ and (µx) (0, d (µ)) = µ, then

there is γ ∈ s (µ) Λ such that (ν, γ) ∈ Λmin (λ, µ) and (µx) (0, d (µγ)) = µγ. Therefore

x (0, d (γ)) = γ. Hence for (ν ′, γ′) ∈ Λmin (λ, µ) such that (ν ′, γ′) 6= (ν, γ), we have

Tν′Tγ′∗ (x) = 0. Since x (0, d (γ)) = γ, then

TνTγ∗ (x) = Tν (x (d (γ) , d (x))) = ν [x (d (γ) , d (x))]

= ν [(µx) (d (µγ) , d (µx))]

= ν [(µx) (d (λγ) , d (µx))] (since µγ = λν)

= (µx) (d (λ) , d (µx))

and ∑
(ν′,γ;)∈Λmin(λ,µ)

Tν′Tγ′∗ (x) = TνTγ∗ (x) = (µx) (d (λ) , d (µx)) = Tλ∗Tµ (x) ,

as required. Thus {Tλ, Tµ∗ : λ, u ∈ Λ} is a Cohn Λ-family, as claimed.

Finally we take r ∈ R\ {0} and v ∈ Λ0 and show that r
∏

e∈vΛ1 (Tv − TeT ∗e ) 6= 0

and rTv 6= 0. Then v ∈ WΛ. Hence rTv (v) = rv and rTv 6= 0. On the other hand, for

e ∈ vΛ1, we have T ∗e (v) = 0 and then

r
∏
e∈vΛ1

(Tv − TeT ∗e ) (v) = rTv (v) = rv.

Hence r
∏

e∈vΛ1 (Tv − TeT ∗e ) 6= 0, as required.

Next we show that there is an R-algebra which is universal for Cohn Λ-families.

Theorem 4.1.5 ([19, Theorem 3.5]). Suppose that Λ is a row-finite k-graph with no

sources and that R is a commutative ring with 1.

(a) There is a universal R-algebra CR (Λ) generated by a Cohn Λ-family {tλ, tµ∗ :

λ, µ ∈ Λ} such that if {Tλ, Tµ∗ : λ, µ ∈ Λ} is a Cohn Λ-family in an R-algebra A,

then there exists a unique R-algebra homomorphism φT : CR (Λ) → A such that

φT (tλ) = Tλ and φT (tµ∗) = Tµ∗ for λ, µ ∈ Λ.

(b) For all r ∈ R\ {0} and v ∈ Λ0, we have rtv 6= 0 and r
∏

e∈vΛ1 (tv − tet∗e) 6= 0.
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Proof. Let X := Λ ∪ G
(
Λ 6=0

)
and FR (w (X)) be the free algebra on the set w (X) of

words on X. Let I be the ideal of FR (w (X)) generated by elements of the following

sets:

(i) {vw − δv,wv : v, w ∈ Λ0},

(ii) {λ− µν, λ∗ − ν∗µ∗ : λ, µ, ν ∈ Λ and λ = µν} and

(iii) {λ∗µ−
∑

(ν,γ)∈Λmin(λ,µ) νγ
∗ : λ, µ ∈ Λ}.

Set CR (Λ) := FR (w (X)) /I and write q : FR (w (X)) → FR (w (X)) /I for the

quotient map. Define tλ := q (λ) for λ ∈ Λ, and tµ∗ := q (µ∗) for µ∗ ∈ G
(
Λ 6=0

)
. Then

{tλ, tµ∗ : λ, µ ∈ Λ} is a Cohn Λ-family in CR (Λ).

Now suppose that {Tλ, Tµ∗ : λ, u ∈ Λ} is a Cohn Λ-family in an R-algebra A. Define

f : X → A by f (λ) := Tλ for λ ∈ Λ, and f (µ∗) := Tµ∗ for µ∗ ∈ G
(
Λ 6=0

)
. By

the universal property of FR (w (X)), there exists a unique R-algebra homomorphism

π : FR (w (X))→ A such that π|X = f . Since {Tλ, Tµ∗ : λ, u ∈ Λ} is a Cohn Λ-family,

then I ⊆ ker (π). Thus there exists an R-algebra homomorphism φT : CR (Λ) → A

such that φT ◦ q = π. The homomorphism φT is unique since the element in X

generate FR (w (X)) as an algebra, and we have φT (tλ) = φT (q (λ)) = π (λ) = Tλ and

φT (tµ∗) = Tµ∗ for λ, µ ∈ Λ, as required.

For (b), suppose that {Tλ, Tµ∗ : λ, u ∈ Λ} is the Cohn Λ-family as in Proposition

4.1.4. Take r ∈ R\ {0} and v ∈ Λ0. We have rTv 6= 0 and r
(∏

e∈vΛ1 (Tv − TeT ∗e )
)
6= 0.

Since φT (rtv) = rTv 6= 0 and

φ
(
r
∏
e∈vΛ1

(tv − tet∗e)
)

= r
∏
e∈vΛ1

(Tv − TeT ∗e ) 6= 0,

then rtv 6= 0 and r
∏

e∈vΛ1 (tv − tet∗e) 6= 0.

4.2 The uniqueness theorem for Cohn path alge-

bras

In this section, we establish a uniqueness theorem for Cohn path algebras (Theorem

4.2.1). This uniqueness theorem can be viewed as an algebraic analogue of the unique-

ness theorem for Toeplitz algebras (Theorem 1.2.3). Our uniqueness theorem for Cohn

path algebras does not require any hypothesis on the k-graph and thus applies gener-

ally.
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Theorem 4.2.1 ([19, Theorem 4.1]: The uniqueness theorem for Cohn path algebras).

Suppose that Λ is a row-finite k-graph with no sources and that R is a commutative

ring with 1. Suppose that φ : CR (Λ)→ A is a ring homomorphism such that

φ (rtv) 6= 0 and φ
(
r
∏
e∈vΛ1

(tv − tete∗)
)
6= 0

for all r ∈ R\ {0} and v ∈ Λ0. Then φ is injective.

The rest of this section is devoted to proving Theorem 4.2.1. To help readers follow

our proofs, we divide the arguments into three subsections. In Subsection 4.2.1, we

recall the Kumjian-Pask Λ-families of Chapter 3 and study some of their properties.

In Subsection 4.2.2, we recall the k-graph TΛ of [37] and investigate the Kumjian-

Pask algebra of TΛ. Finally, in Subsection 4.2.3, we show that every Cohn path

algebra is isomorphic to the Kumjian-Pask algebra (Theorem 4.2.16). Once we have

this isomorphism, we show that Theorem 4.2.1 is a consequence of the Cuntz-Krieger

uniqueness theorem for Kumjian-Pask algebras (Theorem 3.7.1).

4.2.1 Kumjian-Pask algebras

Suppose that Λ is a row-finite k-graph. Recall from Chapter 3 that a Kumjian-Pask

Λ-family {Sλ, Sµ∗ : λ, µ ∈ Λ} in an R-algebra A is a family which satisfies (CP1-3) and

(KP)
∏

λ∈E (Sv − SλSλ∗) = 0 for all v ∈ Λ0 and finite exhaustive E ⊆ vΛ.

Remark 4.2.2. We are careful not to say that a Kumjian-Pask Λ-family is a Cohn Λ-

family which satisfies (KP). This is because in Definition 4.1.1, we define Cohn Λ-family

of row-finite k-graphs with no sources; however, the above definition of Kumjian-Pask

Λ-family allows for more general row-finite k-graphs (in particular, to k-graphs with

sources). We will need this level of generality later on.

The following proposition establishes the relationship between the Kumjian-Pask

algebra KPR (Λ) and the Cohn path algebra CR (Λ).

Proposition 4.2.3. Suppose that Λ is a row-finite k-graph with no sources and that

R is a commutative ring with 1. Then KPR (Λ) is a nontrivial quotient of CR (Λ), and

CR (Λ) is not simple.

Proof. It suffices to show that the set vΛei is finite exhaustive for all v ∈ Λ0 and

1 ≤ i ≤ k. To prove this, we use the argument of [41, Lemma B.2]. Note that each
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vΛei is finite (since Λ is row-finite) and nonempty (since Λ has no sources). Take

v ∈ Λ0 and 1 ≤ i ≤ k. Take λ ∈ vΛ. If λ = v, then for every e ∈ vΛei , we have

Λmin (λ, e) 6= ∅. Otherwise, suppose λ ∈ vΛ\ {v}. Since Λ has no sources, there exists

e ∈ s (λ) Λei . Thus (λe) (0, d (e)) ∈ vΛei and Λmin (λ, (λe) (0, d (e))) 6= ∅. Therefore

vΛei is exhaustive. The conclusion follows.

The following proposition will be useful to simplify calculations in Kumjian-Pask

algebras. It essentially gives an alternate formulation of (KP).

Proposition 4.2.4 ([19, Proposition 4.7]). Suppose that Λ is a row-finite k-graph and

that R is a commutative ring with 1. Suppose that {Sλ, Sµ∗ : λ, µ ∈ Λ} is a Cohn Λ-

family in an R-algebra A. Then

{Sλ, Sµ∗ : λ, µ ∈ Λ}

is a Kumjian-Pask Λ-family if and only if∏
e∈E

(Sv − SeSe∗) = 0

for all v ∈ Λ0 and exhaustive E ⊆ vΛ1.

Before proving Proposition 4.2.4, we establish the following helper lemma.

Lemma 4.2.5 ([19, Lemma 4.8]). Suppose that Λ is a row-finite k-graph and that R

is a commutative ring with 1. Suppose that {Sλ, Sµ∗ : λ, µ ∈ Λ} is a Cohn Λ-family

in an R-algebra A. Suppose v ∈ Λ0, λ ∈ vΛ and E ⊆ s (λ) Λ is finite and satisfies∏
ν∈E

(
Ss(λ) − SνSν∗

)
= 0. Then

Sv − SλSλ∗ =
∏
ν∈E

(
Sv − SλνS(λν)∗

)
.

Proof. We follow the C∗-algebraic argument of [41, Lemma C.7]. For ν ∈ s (λ) Λ, we

have

(Sv − SλSλ∗)
(
Sv − SλνS(λν)∗

)
= Sv − SλSλ∗ ;

so

(Sv − SλSλ∗)
∏
ν∈E

(
Sv − SλνS(λν)∗

)
= Sv − SλSλ∗ .

On the other hand,

(Sv − SλSλ∗)
∏
ν∈E

(
Sv − SλνS(λν)∗

)
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= Sv
∏
ν∈E

(
Sv − SλνS(λν)∗

)
− SλSλ∗

∏
ν∈E

(
Sv − SλνS(λν)∗

)
=
∏
ν∈E

(
Sv − SλνS(λν)∗

)
−
∏
ν∈E

(
SλSλ∗ − SλνS(λν)∗

)
=
∏
ν∈E

(
Sv − SλνS(λν)∗

)
− Sλ

(∏
ν∈E

(
Ss(λ) − SνSν∗

) )
Sλ∗

=
∏
ν∈E

(
Sv − SλνS(λν)∗

)
since

∏
ν∈E

(
Ss(λ) − SνSν∗

)
= 0 by the hypothesis. The conclusion follows.

Proof of Proposition 4.2.4. We use a similar argument to the C∗-algebraic version in

[41, Proposition C.3]. If {Sλ, Sµ∗ : λ, µ ∈ Λ} is a Kumjian-Pask Λ-family, then it

satisfies
∏

e∈E (Sv − SeSe∗) = 0 for all v ∈ Λ0 and exhaustive set E ⊆ vΛ1. Now we

show the reverse implication. First for E ⊆ Λ, we write

I (E) :=
k⋃
i=1

{λ (0, ei) : λ ∈ E, d (λ)i > 0} and L (E) :=
k∑
i=1

max
λ∈E

d (λ)i .

We have to show that
∏

λ∈E (Sv − SλSλ∗) = 0 for all v ∈ Λ0 and exhaustive set E ⊆ vΛ.

We show this by induction on L (E). If L (E) = 1, then E ⊆ vΛ1 for some v ∈ Λ0 and∏
e∈E (Sv − SeSe∗) = 0 by assumption.

Now fix l ≥ 1 and suppose that
∏

λ∈F (Sv − SλSλ∗) = 0 for all v ∈ Λ0 and exhaustive

sets F ⊆ vΛ with L (F ) ≤ l. Take v ∈ Λ0 and an exhaustive set E ⊆ vΛ with

L (E) = l + 1. If v ∈ E, then
∏

λ∈E (Sv − SλSλ∗) = 0. So suppose v /∈ E. Note that

I (E) ⊆ vΛ1. Since E is exhaustive, then by [41, Lemma C.6], I (E) is also exhaustive.

So

(4.2.1) I (E) ⊆ vΛ1 is exhaustive.

Take e ∈ I (E) and by [41, Lemma C.5], Ext (e;E) is exhaustive. By [41, Lemma

C.8], L (Ext (e;E)) < L (E) = l + 1 and then L (Ext (e;E)) ≤ l. So by the inductive

hypothesis,
∏

ν∈Ext(e;E)

(
Ss(e) − SνSν∗

)
= 0 and then by Lemma 4.2.5, we get

(4.2.2) Sv − SeSe∗ =
∏

ν∈Ext(e;E)

(
Sv − SeνS(eν)∗

)
.

Now note that for ν ∈ Ext (e;E), there exists λ ∈ E with eν = λλ′, and then

(Sv − SλSλ∗)
(
Sv − SeνS(eν)∗

)
= Sv − SλSλ∗ .
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Hence∏
λ∈E

(Sv − SλSλ∗) =
(∏
λ∈E

(Sv − SλSλ∗)
)( ∏

e∈I(E)

∏
ν∈Ext(e;E)

(
Sv − SeνS(eν)∗

) )
=
(∏
λ∈E

(Sv − SλSλ∗)
)( ∏

e∈I(E)

(Sv − SeSe∗)
)

(by (4.2.2))

=
(∏
λ∈E

(Sv − SλSλ∗)
)

(0) (by (4.2.1) and the inductive hypothesis)

= 0,

as required.

4.2.2 The k-graph TΛ and Kumjian-Pask TΛ-families

Suppose that Λ is a row-finite k-graph. In this subsection, we recall the k-graph TΛ

of [37, Proposition 3.1]. Interestingly, the k-graph TΛ is always aperiodic (Proposition

4.2.10). We also study the properties of a Kumjian-Pask TΛ-family (Lemma 4.2.13).

Proposition 4.2.6 ([37, Proposition 3.1]). Suppose that Λ = (Λ, d, r, s) is a row-finite

k-graph. Then define sets TΛ0 and TΛ as follows:

TΛ0 :=
{
α (v) : v ∈ Λ0

}
∪
{
β (v) : vΛ1 6= ∅

}
,

TΛ := {α (λ) : λ ∈ Λ} ∪
{
β (λ) : λ ∈ Λ, s (λ) Λ1 6= ∅

}
.

Define functions r, s : TΛ\TΛ0 → TΛ0 by

r (α (λ)) = α (r (λ)), s (α (λ)) = α (s (λ)) ,

r (β (λ)) = α (r (λ)), s (β (λ)) = β (s (λ))

(r, s are the identity on TΛ0). We also define a partially defined product (τ, ω) 7→ τω

from

{(τ, ω) ∈ TΛ× TΛ : s (τ) = r (ω)}

to TΛ, where

(α (λ) , α (µ)) 7→ α (λµ)

(α (λ) , β (µ)) 7→ β (λµ)

and a function d : TΛ→ Nk where

d (α (λ)) = d (β (λ)) = d (λ) .

Then (TΛ, d) is a k-graph.
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Proof. We prove that TΛ is a countable category. Note that TΛ is countable since Λ

is countable.

Take η, τ, ω in TΛ where s (η) = r (τ) and s (τ) = r (ω). We have to show s (τω) =

s (ω), r (τω) = r (τ), and (ητ)ω = η (τω). If one of τ, ω is a vertex then we are done.

So assume otherwise, and we have η = α (λ), τ = α (µ), and ω is either α (ν) or β (ν)

for some paths λ, µ, ν in Λ. In both cases, we always have s (λ) = r (µ), s (µ) = r (ν),

and (λµ) ν = λ (µν). If ω = α (ν), we have

s (τω) = s (α (µ)α (ν)) = s (α (µν))

= α (s (µν)) = α (s (ν)) = s (α (ν)) = s (ω) ,

r (τω) = r (α (µ)α (ν)) = r (α (µν))

= α (r (µν)) = α (r (µ)) = r (α (µ)) = r (τ) ,

and

(ητ)ω =
(
α (λ)α (µ)

)
α (ν) = α (λµ)α (ν) = α ((λµ) ν)

= α (λ (µν)) = α (λ)α (µν) = α (λ)
(
α (µ)α (ν)

)
= η (τω) .

On the other hand, if ω = β (ν), then

s (τω) = s (α (µ) β (ν)) = s (β (µν))

= β (s (µν)) = β (s (ν)) = s (β (ν)) = s (ω) ,

r (τω) = r (α (µ) β (ν)) = r (β (µν))

= α (r (µν)) = α (r (µ)) = r (α (µ)) = r (τ) ,

and

(ητ)ω =
(
α (λ)α (µ)

)
β (ν) = α (λµ) β (ν) = β ((λµ) ν)

= β (λ (µν)) = α (λ) β (µν) = α (λ)
(
α (µ) β (ν)

)
= η (τω) .

Thus TΛ is a countable category.

We show that d is a functor. Both TΛ and Nk are categories. First take an object

x ∈ TΛ0, then d (x) = 0 is an object in category Nk. For morphisms τ, ω ∈ TΛ with

s (τ) = r (ω), a cases analysis gives

d (τω) = d (τ) + d (ω) .
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Hence d is a functor.

To show that d satisfies the factorisation property, take ω ∈ TΛ and m,n ∈ Nk

such that d (ω) = m + n. By definition, ω is either α (λ) or β (λ) for some path λ

in Λ. In both cases, there exist paths µ, ν in Λ such that λ = µν, d (µ) = m, and

d (ν) = n. Then, we have d (α (µ)) = m, d (α (ν)) = d (β (ν)) = n, and ω is either

equal to α (µ)α (ν) or α (µ) β (ν). Therefore there is a factorisation.

Now we show that the factorisation is unique. Suppose ω = α (µ)α (ν) = α (µ′)α (ν ′)

where d (α (µ)) = d (α (µ′)) and d (α (ν)) = d (α (ν ′)). We consider paths λ = µν and

λ′ = µ′ν ′. Since α (λ) = ω = α (λ′), then λ = λ′. This implies µ = µ′ and ν = ν ′

based on the uniquness of factorisation in Λ. Then α (µ) = α (µ′) and α (ν) = α (ν ′).

For the case ω = α (µ) β (ν), we get the same result by using the same argument. The

conclusion follows.

Remark 4.2.7. For a directed graph E (that is, for k = 1), the graph TE was con-

structed by Muhly and Tomforde [35, Definition 3.6] (denoted EV ), and by Sims [51,

Section 3] (denoted Ẽ). Our notation follows that of Sims because we want to distin-

guish between paths in TΛ (denoted α (λ) and β (λ)) and those in Λ (denoted λ).

Remark 4.2.8. Every vertex β (v) satisfies β (v)TΛ1 = ∅. If Λ has a vertex v which

receives edges e, f with d (e) 6= d (f), then there is no edge g ∈ β (s (e))TΛd(f) (or

g ∈ α (s (e))TΛd(f) if s (e) Λ = ∅), and hence TΛ is not locally convex.

Example 4.2.9. Consider the 2-graph Λ which has skeleton

•v

f1

f2

g1

g2

where figj = gifj for all i, j ∈ {1, 2}, dashed edges have degree (1, 0) and solid edges
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have degree (0, 1). Then the 2-graph TΛ has skeleton

•α (v) •β (v)

α (f1)

α (f2)

α (g1)

α (g2)

β (f2)

β (f1)

β (g2)

β (g1)

where α (fi)α (gj) = α (gi)α (fj) and α (fi) β (gj) = α (gi) β (fj) for all i, j ∈ {1, 2},
dashed edges have degree (1, 0) and solid edges have degree (0, 1).

The following lemma gives some properties of the k-graph TΛ.

Proposition 4.2.10 ([37, Proposition 3.5]). Let Λ be a row-finite k-graph and TΛ be

the k-graph as in Proposition 4.2.6. Then,

(a) TΛ is row-finite.

(b) TΛ is aperiodic.

Proof. To show part (a), take x ∈ TΛ0. If x = β (v) for some v ∈ Λ0, then xTΛ1 = ∅
by Remark 4.2.8. Suppose x = α (v) for some v ∈ Λ0. If vΛ1 = ∅, then xTΛ1 = ∅.
Otherwise, for 1 ≤ i ≤ k such that vΛei 6= ∅, we have

|xTΛei | ≤ 2 |vΛei | ,

which is finite.

Next we show part (b). Take τ, ω ∈ TΛ such that τ 6= ω and s (τ) = s (ω).

Proposition 2.6.3 says that it suffices to show that there exists η ∈ s (τ) Λ such that

MCE (τη, ωη) 6= ∅. If s (τ) = β (v) for some v ∈ Λ0, then choose η = β (v) and

MCE (τη, ωη) = ∅. So suppose s (τ) = α (v) for some v ∈ Λ0. If vΛ1 = ∅, then choose

η = α (v) and MCE (τη, ωη) = ∅. Suppose vΛ1 6= ∅. Take e ∈ vΛ1. If s (e) Λ1 = ∅,
then choose η = α (e) and MCE (τη, ωη) = ∅. Otherwise, we have s (e) Λ1 6= ∅. Then

choose η = β (e) and MCE (τη, ωη) = ∅. Hence TΛ is aperiodic.

Remark 4.2.11. Since TΛ is row-finite, TΛ is also finitely aligned.

The next proposition characterises exhaustive sets of TΛ.
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Proposition 4.2.12 ([19, Proposition 4.9]). Suppose that Λ is a row-finite k-graph

with no sources. Then for every α (v) ∈ TΛ0, the only exhaustive set contained in

α (v)TΛ1 is α (v)TΛ1 itself.

Proof. Fix an exhaustive set E ⊆ α (v)TΛ1. We have to show E = α (v)TΛ1.

Since E is exhaustive, for β (e) ∈ α (v)TΛ1, there exists an edge τe ∈ E such that

TΛmin (β (e) , τe) 6= ∅. Since s (β (e))TΛ = {s (β (e))}, then MCE (β (e) , τe) = {β (e)}.
Hence τe = β (e) because both τe and β (e) are edges. Thus β (e) ∈ E and E contains

β (vΛ1).

Now we claim α (vΛ1) ⊆ E. Suppose for a contradiction that there exist 1 ≤ i ≤ k

and e ∈ vΛei such that α (e) /∈ E. Since Λ has no sources, there exists an edge

f ∈ s (e) Λei . Now consider the path τ = α (e) β (f). This is a path with degree

2ei whose range at α (v) and s (τ)TΛ = {β (s (f))}. Since E is exhaustive, there

exists ω ∈ E such that TΛmin (τ, ω) 6= ∅. Since τ is a path with length 2ei and

s (τ)TΛ = {β (s (f))}, then ω is either equal to τ or α (e). Since α (e) /∈ E, then

τ = ω ∈ E, which contradicts that E only contains edges. The conclusion follows.

A consequence of Proposition 4.2.12 is the following:

Lemma 4.2.13 ([19, Lemma 4.10]). Let Λ be a row-finite k-graph with no sources

and R be a commutative ring with 1. Suppose that {Sτ , Sω∗ : τ, ω ∈ TΛ} is a Cohn

TΛ-family in an R-algebra A. Then the collection is a Kumjian-Pask TΛ-family if and

only if for every α (v) ∈ TΛ0, ∏
g∈α(v)TΛ1

(
Sα(v) − SgSg∗

)
= 0.

Proof. If x = β (v), then β (v)TΛ = {β (v)} and there is no exhaustive set con-

tained in xTΛ1. On the other hand, if x = α (v), by Proposition 4.2.12, the only

exhaustive set contained in α (v)TΛ1 is α (v)TΛ1. Therefore by Proposition 4.2.4,

{Sτ , Sω∗ : τ, ω ∈ TΛ} is a Kumjian-Pask TΛ-family if and only if for every α (v) ∈ TΛ0,

we have
∏

g∈α(v)TΛ1

(
Sα(v) − SgSg∗

)
= 0, as required.

4.2.3 Relationship between Cohn Λ-families and Kumjian-Pask

TΛ-families

In this subsection, we start out by investigating the relationship between Cohn Λ-

families and Kumjian-Pask TΛ-families (Theorem 4.2.16). Once we have this, we are

then ready to prove Theorem 4.2.1.
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First we establish some stepping stone results (Lemma 4.2.14 and Lemma 4.2.15).

Lemma 4.2.14 ([19, Lemma 4.11]). Suppose that {Tλ, Tµ∗ : λ, µ ∈ Λ} is a Cohn Λ-

family in an R-algebra A. For v ∈ Λ0, define

FT,v := Tv −
∏
e∈vΛ1

(Tv − TeTe∗) .

Then

(a) For v ∈ Λ0, we have

FT,v = F 2
T,v and Tv − FT,v = (Tv − FT,v)2 .

(b) For every v, w ∈ Λ0 with v 6= w, we have

FT,wFT,v = 0 = FT,vFT,w and TwFT,v = 0 = FT,vTw.

(c) For v ∈ Λ0 and λ ∈ vΛ\ {v}, we have

TvFT,v = FT,v = FT,vTv,

FT,vTλ = Tλ and Tλ∗FT,v = Tλ∗.

(d) Furthermore, FT,v 6= 0 for all r ∈ R\ {0} and v ∈ Λ0 if and only if Tv 6= 0 for all

r ∈ R\ {0} and v ∈ Λ0.

Proof. First we show (a). Take v ∈ Λ0. Note that (Tv − TeTe∗)2 = (Tv − TeTe∗) for

e ∈ vΛ1. Hence

(Tv − FT,v)2 =
∏
e∈vΛ1

(Tv − TeTe∗)2 =
∏
e∈vΛ1

(Tv − TeTe∗) = Tv − FT,v

and

F 2
T,v =

(
Tv −

∏
e∈vΛ1

(Tv − TeTe∗)
)2

= Tv −
∏
e∈vΛ1

(Tv − TeTe∗) = FT,v.

To show (b), we take v, w ∈ Λ0 with v 6= w. Then TwTv = 0 and TwTe = 0 for all

e ∈ vΛ1. Hence

TwFT,v = Tw

(
Tv −

∏
e∈vΛ1

(Tv − TeTe∗)
)

= 0

and by using a similar argument, we also get FT,vTw = 0, as required. On the other

hand, we also have

FT,wFT,v =
(
Tw −

∏
f∈wΛ1

(Tw − TfTf∗)
)(
Tv −

∏
e∈vΛ1

(Tv − TeTe∗)
)

= 0
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and a similar argument also applies to get FT,vFT,w = 0.

Next we show (c). We take v ∈ Λ0. Then

TvFT,v = Tv

(
Tv −

∏
e∈vΛ1

(Tv − TeTe∗)
)

= Tv −
∏
e∈vΛ1

(Tv − TeTe∗) = FT,v

and since Tv = Tv∗ , then by using a similar argument, we also get FT,vTv = FT,v.

Take λ ∈ vΛ\ {v}. Then there exists f ∈ vΛ1 such that ff ′ = λ. This implies

Tf∗Tλ = Tf ′ and

(Tv − TfTf∗)Tλ = Tλ − TfTf∗Tλ = Tλ − TfTf ′ = Tλ − Tλ = 0.

Hence ( ∏
e∈vΛ1

(Tv − TeTe∗)
)
Tλ = 0

and

FT,vTλ =
(
Tv −

∏
e∈vΛ1

(Tv − TeTe∗)
)
Tλ = Tλ.

By a similar argument, we get Tλ∗FT,v = Tλ∗ .

To show (d). First suppose that there exists r ∈ R\ {0} and v ∈ Λ0 with rTv = 0.

Then rTe = rTvTe = 0 for all e ∈ vΛ1, and then rFT,v = rTv−r
∏

e∈vΛ1 (Tv − TeTe∗) = 0.

For the reverse implication, suppose that there exists r ∈ R\ {0} and v ∈ Λ0 with

rFT,v = 0. Take f ∈ vΛ1. Then

(4.2.3) TfTf∗ (Tv − TfTf∗) = TfTf∗ − Tf (Tf∗Tf )Tf∗ = TfTf∗ − TfTf∗ = 0.

Since r (f) = v, (4.2.3) gives

rTfTf∗ = rTfTf∗Tv = rTfTf∗
(
FT,v +

∏
e∈vΛ1

(Tv − TeTe∗)
)

= rTfTf∗
∏
e∈vΛ1

(Tv − TeTe∗) = 0.

Therefore

rTf = rTfTs(f) = rTf (Tf∗Tf ) = (rTfTf∗)Tf = (0)Tf = 0

and then

rTs(f) = rTf∗Tf = Tf∗ (rTf ) = Tf∗ (0) = 0.
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Lemma 4.2.15 ([19, Lemma 4.12]). Suppose that Λ is a row-finite k-graph with no

sources and that R is a commutative ring with 1. Suppose that {Tλ, Tµ∗ : λ, µ ∈ Λ} is

a Cohn Λ-family in an R-algebra A. For τ, ω ∈ TΛ, define

Sτ :=

{
TλFT,s(λ) if τ = α (λ)

Tλ
(
Ts(λ) − FT,s(λ)

)
if τ = β (λ) ,

Sω∗ :=

{
FT,s(µ)Tµ∗ if ω = α (µ)(

Ts(µ) − FT,s(µ)

)
Tµ∗ if ω = β (µ) .

Then

(a) {Sτ , Sω∗ : τ, ω ∈ TΛ} is a Kumjian-Pask TΛ-family.

(b) Suppose that rTv 6= 0 and r
∏

e∈vΛ1 (Tv − TeT ∗e ) 6= 0 for all r ∈ R\ {0} and

v ∈ Λ0. Suppose that πS : KPR (TΛ) → A is the R-algebra homomorphism such

that πS (sτ ) = Sτ and πS (sω∗) = Sω∗ for τ, ω ∈ TΛ. Then πS is injective.

Proof. Now we show (a). First we show that {Sτ , Sω∗ : τ, ω ∈ TΛ} satisfies (CP1).

Take x ∈ TΛ0. We have to show Sx = Sx∗ = S2
x. Note that Sx = FT,v if x = α (v); and

Sx = Tv−FT,v, otherwise. In both cases, by Lemma 4.2.14(a), we have Sx = Sx∗ = S2
x,

as required.

Take x, y ∈ TΛ0 with x 6= y. We have to show SxSy = 0. Since Sx is either FT,v or

Tv − FT,v, and Sy is either FT,w or Tw − FT,w, then Lemma 4.2.14(b) tells that x 6= y

implies SxSy = 0. Therefore {Sτ , Sω∗ : τ, ω ∈ TΛ} satisfies (CP1).

We show that {Sτ , Sω∗ : τ, ω ∈ TΛ} satisfies (CP2). Take τ, ω ∈ TΛ where s (τ) =

r (ω). We have to show SτSω = Sτω and Sω∗Sτ∗ = S(τω)∗ . Each τ and ω is either in

the form α (λ) or β (µ). So we give a separate argument for each case.

First suppose that τ = β (λ). Since s (τ)TΛ = β (s (λ)) and s (τ) = r (ω), then

ω = s (β (λ)). Hence

Sβ(λ)Sβ(s(λ)) =
(
Tλ
(
Ts(λ) − FT,s(λ)

)) (
Ts(λ) − FT,s(λ)

)
(4.2.4)

= Tλ
(
Ts(λ) − FT,s(λ)

)2
= Tλ

(
Ts(λ) − FT,s(λ)

)
= Sβ(λ).

Next suppose that τ = α (λ) and ω = β (µ). Then µ ∈ s (λ) Λ\ {s (λ)} since

s (τ) = r (ω), and Lemma 4.2.14(c) gives FT,s(λ)Tµ = Tµ. Hence

Sα(λ)Sβ(µ) =
(
TλFT,s(λ)

) (
Tµ
(
Ts(µ) − FT,s(µ)

))
= TλTµ

(
Ts(λµ) − FT,s(λµ)

)
(4.2.5)

= Tλµ
(
Ts(λµ) − FT,s(λµ)

)
= Sβ(λµ).
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Finally suppose τ = α (λ) and ω = α (µ). Then Sβ(s(λ))Sα(s(λ)) = 0, so

Sβ(λ)Sα(µ) =
(
Sβ(λ)Sβ(s(λ))

) (
Sα(s(λ))Sα(µ)

)
= 0,

and

Sα(λ)Sα(µ) =
(
Sα(λ) + Sβ(λ)

) (
Sα(µ) + Sβ(µ)

)
− Sα(λ)Sβ(µ) − Sβ(λ)Sα(µ) − Sβ(λ)Sβ(µ)

(4.2.6)

= TλTµ − Sα(λ)Sβ(µ) − Sβ(λ)Sβ(µ).

If µ = s (λ), then Sα(λ)Sβ(µ) =
(
Sα(λ)Sα(s(λ))

)
Sβ(s(λ)) = 0 because Sα(s(λ))Sβ(s(λ)) = 0,

and by (4.2.4), (4.2.6) becomes

Sα(λ)Sα(s(λ)) = Tλ − Sβ(λ) = Sα(λ).

On the other hand, if µ 6= s (λ), then Sβ(λ)Sβ(µ) =
(
Sβ(λ)Sβ(s(λ))

) (
Sr(β(µ))Sβ(µ)

)
= 0

(since β (s (λ)) 6= r (β (µ))and Sβ(s(λ))Sr(β(µ)) = 0) and by (4.2.5), (4.2.6) becomes

Sα(λ)Sα(µ) = Tλµ − Sβ(λµ) = Sα(λµ).

Therefore SτSω = Sτω and a similar argument gives Sω∗Sτ∗ = S(τω)∗ . Thus the family

{Sτ , Sω∗ : τ, ω ∈ TΛ} satisfies (CP2).

We show that {Sτ , Sω∗ : τ, ω ∈ TΛ} satisfies (CP3). Take τ, ω ∈ TΛ. We have to

show Sτ∗Sω =
∑

(ρ,ζ)∈TΛmin(τ,ω) SρSζ∗ . Note that each τ and ω is either in the form

α (λ) or β (µ). We argue by cases.

First suppose that τ = β (λ). Since s (τ)TΛ = β (s (λ)), then TΛmin (τ, ω) 6= ∅
implies MCE (τ, ω) = {τ}. Hence if TΛmin (τ, ω) 6= ∅, then we have τ = ωβ (ν) for

some ν ∈ Λ and

Sτ∗Sω = Sβ(ν)∗Sω∗Sω = Sβ(ν)∗Ss(ω) = Sβ(ν)∗ =
∑

(ρ,ζ)∈TΛmin(τ,ω)

SρSζ∗ .

We suppose TΛmin (τ, ω) = ∅ and have to show that Sτ∗Sω = 0. First note that

regardless of whether ω is α (µ) or β (µ), Sτ∗Sω has the form
(
Sβ(λ)∗Tµ

)
b. So it suffices

to show that Sβ(λ)∗Tµ = 0. We have

(4.2.7) Sβ(λ)∗Tµ =
(
Ts(λ) − FT,s(λ)

)
Tλ∗Tµ =

(
Ts(λ) − FT,s(λ)

) ∑
(ν,γ)∈Λmin(λ,µ)

TνTγ∗ .

If Λmin (λ, µ) = ∅, then Sβ(λ)∗Tµ = 0, as required. So suppose Λmin (λ, µ) 6= ∅. Since

TΛmin (τ, ω) = ∅ and Λmin (λ, µ) 6= ∅, then λ /∈ MCE (λ, µ). Hence for every (ν, γ) ∈
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Λmin (λ, µ), we have ν ∈ s (λ) Λ\ {s (λ)} and by Lemma 4.2.14(c), FT,s(λ)Tν = Tν .

Hence we can rewrite (4.2.7) as

Sβ(λ)∗Tµ =
∑

(ν,γ)∈Λmin(λ,µ)

(Tν − Tν)Tγ∗ = 0.

Next suppose τ = α (λ) and ω = β (µ). A similar argument to that for the case

τ = β (λ) gives Sα(λ)∗Sβ(µ) =
∑

(ρ,ζ)∈TΛmin(α(λ),β(µ)) SρSζ∗ .

Finally suppose τ = α (λ) and ω = α (µ). We give a separate argument for whether

α (λ) or α (µ) belongs to MCE (α (λ) , α (µ)). Suppose that at least one of α (λ) and

α (µ) belongs to MCE (α (λ) , α (µ)). Without loss of generality, we suppose α (λ) ∈
MCE (α (λ) , α (µ)). (A similar argument applies when α (µ) ∈ MCE (α (λ) , α (µ)).)

Then α (λ) = α (µν) for some ν ∈ Λ and

Sα(λ)∗Sα(µ) = Sα(ν)∗Sα(µ)∗Sα(µ) = Sα(ν)∗ =
∑

(ρ,ζ)∈TΛmin(α(λ),α(µ))

SρSζ∗ ,

as required.

So suppose that α (λ) , α (µ) /∈ MCE (α (λ) , α (µ)). Hence λ, µ /∈ MCE (λ, µ). Then

for every (ν, γ) ∈ Λmin (λ, µ), we have ν ∈ s (λ) Λ\ {s (λ)} and γ ∈ s (µ) Λ\ {s (µ)}, and

by Lemma 4.2.14(c), FT,s(λ)Tν = Tν and Tγ∗FT,s(µ) = Tγ∗ . Therefore

Sα(λ)∗Sα(µ) =
(
FT,s(λ)Tλ∗

) (
TµFT,s(µ)

)
= FT,s(λ)

( ∑
(ν,γ)∈Λmin(λ,µ)

TνTγ∗
)
FT,s(µ)(4.2.8)

=
∑

(ν,γ)∈Λmin(λ,µ)

(
FT,s(λ)Tν

) (
Tγ∗FT,s(µ)

)
=

∑
(ν,γ)∈Λmin(λ,µ)

TνTγ∗ .

Since s (ν) = s (γ) for every (ν, γ) ∈ Λmin (λ, µ), then by Lemma 4.2.14(a),

Sα(λ)∗Sα(µ)

=
∑

(ν,γ)∈Λmin(λ,µ)

((
TνFT,s(ν)

) (
FT,s(γ)Tγ∗

)
+ Tν

(
Ts(ν) − FT,s(ν)

) (
Ts(γ) − FT,s(γ)

)
Tγ∗
)

=
∑

(ν,γ)∈Λmin(λ,µ)

(
Sα(ν)Sα(γ)∗ + Sβ(ν)Sβ(γ)∗

)
=

∑
(ρ,ζ)∈TΛmin(α(λ),α(µ))

SρSζ∗ ,

as required. Therefore Sτ∗Sω =
∑

(ρ,ζ)∈TΛmin(τ,ω) SρSζ∗ for all τ, ω ∈ TΛ. Thus the

collection {Sτ , Sω∗ : τ, ω ∈ TΛ} satisfies (CP3).

Lemma 4.2.13 says that to show that {Sτ , Sω∗ : τ, ω ∈ TΛ} is a Kumjian-Pask TΛ-

family, it suffices to show that
∏

g∈α(v)TΛ1

(
Sα(v) − SgSg∗

)
= 0 for α (v) ∈ TΛ0. Take

α (v) ∈ TΛ0. Then∏
g∈α(v)TΛ1

(
Sα(v) − SgSg∗

)
(4.2.9)
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=
∏
e∈vΛ1

(
Sα(v) − Sα(e)Sα(e)∗

) (
Sα(v) − Sβ(e)Sβ(e)∗

)
=
∏
e∈vΛ1

(
TvFT,v − TeF 2

T,s(e)Te∗
)(
TvFT,v − Te

(
Ts(e) − FT,s(e)

)2
Te∗
)

=
∏
e∈vΛ1

(
TvFT,v − TeFT,s(e)Te∗

)(
TvFT,v − Te

(
Ts(e) − FT,s(e)

)
Te∗
)

(by Lemma 4.2.14(a))

=
∏
e∈vΛ1

(FT,v − TeTe∗)

by Lemma 4.2.14(a,c). So∏
g∈α(v)TΛ1

(
Sα(v) − SgSg∗

)
=
∏
e∈vΛ1

(FT,v − TeTe∗)

= FT,v
∏
e∈vΛ1

(Tv − TeTe∗) (by Lemma 4.2.14(a,c))

= FT,v (Tv − FT,v) = FT,vTv − F 2
T,v

= FT,v − FT,v (by Lemma 4.2.14(a,c))

= 0.

Then {Sτ , Sω∗ : τ, ω ∈ TΛ} is a Kumjian-Pask TΛ-family, as required.

Next we show (b). Suppose that rTv 6= 0 and r
∏

e∈vΛ1 (Tv − TeT ∗e ) 6= 0 for all v ∈
Λ0, and πS : KPR (TΛ) → A is the R-algebra homomorphism such that πS (sτ ) = Sτ

and πS (sω∗) = Sω∗ for τ, ω ∈ TΛ. We have to show πS is injective. Since rTv 6= 0 for

all r ∈ R\ {0} and v ∈ Λ0, then by Lemma 4.2.14(d), rFT,v 6= 0 for all r ∈ R\ {0} and

v ∈ Λ0. Therefore for all r ∈ R\ {0} and v ∈ Λ0,

rSα(v) = rTvFT,v = rFT,v 6= 0

and

rSβ(v) = rTv (Tv − FT,v) = r (Tv − FT,v) = r
∏
e∈vΛ1

(Tv − TeTe∗) 6= 0.

Hence rSx 6= 0 for all r ∈ R\ {0} and x ∈ TΛ0. Since TΛ is aperiodic, then by

Theorem 3.7.1, πS is injective.

One immediate application of Lemma 4.2.15 is:

Theorem 4.2.16 ([19, Theorem 4.13]). Suppose that Λ is a row-finite k-graph with no

sources and that R is a commutative ring with 1. Suppose that {tλ, tµ∗ : λ, µ ∈ Λ} is
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the universal Cohn Λ-family and {sτ , sω∗ : τ, ω ∈ TΛ} is the universal Kumjian-Pask

TΛ-family. For τ, ω ∈ TΛ, define

Sτ :=

{
tλFt,s(λ) if τ = α (λ)

tλ
(
ts(λ) − Ft,s(λ)

)
if τ = β (λ) ,

Sω∗ :=

{
Ft,s(µ)tµ∗ if ω = α (µ)(

ts(µ) − Ft,s(µ)

)
tµ∗ if ω = β (µ) .

Then

(a) There exists an R-algebra homomorphism π : KPR (TΛ) → CR (Λ) such that

π (sτ ) = Sτ and π (sω∗) = Sω∗ for τ, ω ∈ TΛ. Furthermore, π is an isomorphism.

(b) The subsets

CR (Λ)n := spanR {tλtµ∗ : λ, µ ∈ Λ, d (λ)− d (µ) = n}

form a Zk-grading of CR (Λ).

Proof. First we show part (a). By Lemma 4.2.15(a), {Sτ , Sω∗ : τ, ω ∈ TΛ} is a Kumjian-

Pask TΛ-family and by the universal property of Kumjian-Pask TΛ-family [18, The-

orem 3.7(a)], there exists an R-algebra homomorphism π : KPR (TΛ) → CR (Λ) such

that π (sτ ) = Sτ and π (sω∗) = Sω∗ for τ, ω ∈ TΛ. On the other hand, Theorem 4.1.5(b)

says that rtv 6= 0 and r
∏

e∈vΛ1 (tv − tet∗e) 6= 0 for all r ∈ R\ {0} and v ∈ Λ0. Hence by

Lemma 4.2.15(b), π is injective.

Now we show the surjectivity of π. Since

CR (Λ) = spanR{tλtµ∗ : λ, u ∈ Λ, s (λ) = s (µ)}

(Proposition 4.1.3(b)), it suffices to show that for λ, µ ∈ Λ, both tλ and tµ∗ belong to

the image of π. Take λ, µ ∈ Λ. Then

tλ = tλts(λ) = tλFt,s(λ) + tλts(λ) − tλFt,s(λ)(4.2.10)

= tλFt,s(λ) + tλ
(
ts(λ) − Ft,s(λ)

)
= π

(
sα(λ)

)
+ π

(
sβ(λ)

)
,

and

tµ∗ = ts(µ)tµ∗ = Ft,s(µ)tµ∗ + ts(µ)tµ∗ − Ft,s(µ)tµ∗(4.2.11)

= Ft,s(µ)tµ∗ +
(
ts(µ) − Ft,s(µ)

)
tµ∗ = π

(
sα(µ)∗

)
+ π

(
sβ(µ)∗

)
.

Therefore π is an isomorphism.
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For part (b), we recall from 3.1.8(c) that the subsets

KPR (TΛ)n := spanR {sτsω∗ : τ, ω ∈ TΛ, d (τ)− d (ω) = n}

forms a Zk-grading of KPR (Λ). For every v ∈ Λ0, d
(
ts(λ) − Ft,s(λ)

)
= 0 = d

(
Ft,s(λ)

)
.

Hence regardless of whether τ and ω are in the form α (λ) or β (µ), we have d (τ) −
d (ω) = d (λ)−d (µ) and sτsω∗ ∈ CR (Λ)n, which implies π (sτsω∗) ∈ KPR (TΛ)n. Since

π is an isomorphism, the CR (Λ)n form a grading for CR (Λ), as required.

Remark 4.2.17. Our Theorem 4.2.16 generalises results about Cohn path algebras asso-

ciated to 1-graphs. In particular, Theorem 4.2.16(a) generalises [5, Theorem 5] (which

is also stated in [2, Theorem 1.5.18]), and Theorem 4.2.16(b) generalises [2, Corollary

2.1.5(ii)].

Proof of Theorem 4.2.1. Since the family {tλ, tµ∗ : λ, µ ∈ Λ} is a Cohn Λ-family, then

so is {φ (tλ) , φ (tµ∗) : λ, µ ∈ Λ}. For τ, ω ∈ TΛ, define

Sτ :=

{
φ (tλ)Fφ(t),s(λ) if τ = α (λ)

φ (tλ)
(
φ
(
ts(λ)

)
− Fφ(t),s(λ)

)
if τ = β (λ) ,

Sω∗ :=

{
Fφ(t),s(u)φ (tµ∗) if ω = α (µ)(

φ
(
ts(u)

)
− Fφ(t),s(u)

)
φ (tµ∗) if ω = β (µ) .

Lemma 4.2.15(a) says that {Sτ , Sω∗ : τ, ω ∈ TΛ} is a Kumjian-Pask TΛ-family, and by

the universal property of Kumjian-Pask TΛ-family, there exists an R-algebra homo-

morphism πS : KPR (Λ)→ A such that πS (sτ ) = Sτ and πS (sω∗) = Sω∗ for τ, ω ∈ TΛ.

On the other hand, since φ (rtv) 6= 0 and φ
(
r
∏

e∈vΛ1 (tv − tet∗e)
)
6= 0 for all r ∈ R\ {0}

and v ∈ Λ0, Lemma 4.2.15(b) implies that πS is injective.

Theorem 4.2.16(a) says that π : KPR (TΛ)→ CR (Λ) is an isomorphism with

π (sτ ) =

{
tλFt,s(λ) if τ = α (λ) ;

tλ
(
ts(λ) − Ft,s(λ)

)
if τ = β (λ) ,

π (sω∗) =

{
Ft,s(µ)tµ∗ if ω = α (µ) ;(

ts(µ) − Ft,s(µ)

)
tµ∗ if ω = β (µ) .

For λ, µ ∈ Λ, we have tλ = π
(
sα(λ)

)
+ π

(
sβ(λ)

)
and tµ∗ = π

(
sα(µ)∗

)
+ π

(
sβ(µ)∗

)
(see

(4.2.10) and (4.2.11)). Hence(
πS ◦ π−1

)
(tλ) =

(
πS ◦ π−1

) (
π
(
sα(λ)

)
+ π

(
sβ(λ)

))
= πS

(
sα(λ)

)
+ πS

(
sα(λ)

)
= Sα(λ) + Sα(λ) = φ (tλ)Fφ(t),s(λ) + φ (tλ)

(
φ
(
ts(λ)

)
− Fφ(t),s(λ)

)
97



= φ (tλ)

and(
πS ◦ π−1

)
(tµ∗) =

(
πS ◦ π−1

) (
π
(
sα(µ)∗

)
+ π

(
sβ(µ)∗

))
= πS

(
sα(µ)∗

)
+ πS

(
sβ(µ)∗

)
= Sα(µ)∗ + Sα(µ)∗ = Fφ(t),s(µ)φ (tµ∗) +

(
φ
(
ts(µ)

)
− Fφ(t),s(µ)

)
φ (tµ∗)

= φ (tµ∗) .

These imply φ = πS ◦ π−1 since CR (Λ) = spanR{tλtµ∗ : λ, u ∈ Λ, s (λ) = s (µ)}
(Proposition 4.1.3(b)). The injectivity of π−1 and πS imply that φ is injective.

Remark 4.2.18. The Cohn Λ-family {Tλ, Tµ∗ : λ, u ∈ Λ} as constructed in Proposition

4.1.4 satisfies rTv 6= 0 and r
∏

e∈vΛ1 (Tv − TeT ∗e ) 6= 0 for all r ∈ R\ {0} and v ∈
Λ0. Hence Theorem 4.2.1 tells that the R-algebra homomorphism φT : CR (Λ) →
End (FR (WΛ)) such that φT (tλ) = Tλ and φT (tµ∗) = Tµ∗ for λ, µ ∈ Λ, is injective.

Remark 4.2.19. When Λ is a 1-graph, that is, when k = 1, then Λ is the path category

of a directed graph E. One consequence of Theorem 4.1.5 and Theorem 3.7.1 is that the

universal Cohn algebra CR(Λ) that we have constructed is isomorphic to the Cohn path

algebra associated to E as defined in [2, Definition 1.5.1]. Since [2, Definition 1.5.1]

only considers the situation where R is a field, our construction gives a generalisation

of the Cohn path algebra to the setting where R is an arbitrary commutative ring with

1.

4.3 Examples and Applications

4.3.1 Higher-rank graph Toeplitz algebras.

As mentioned in the introduction to Section 4.2, the uniqueness theorem for Cohn path

algebras (Theorem 4.2.1) is an analogue of the uniqueness theorem for Toeplitz algebras

(Theorem 1.2.3). We show that if Λ is a row-finite k-graph with no sources, then its

Cohn path algebra over the complex numbers is isomorphic to a dense ∗-subalgebra of

the Toeplitz algebra associated to Λ (Proposition 4.3.1).

Recall from page 7 and Footnote 1.2 that a Toeplitz-Cuntz-Krieger Λ-family is a

collection of partial isometries {Qλ : λ ∈ Λ} in a C∗-algebra B satisfying (TCK1-3).

For a row-finite k-graph Λ, the Toeplitz algebra of Λ is the C∗-algebra generated by a

universal Toeplitz-Cuntz-Krieger Λ-family {qλ : λ ∈ Λ}. Furthermore, for v ∈ Λ0, we

have qv 6= 0 and
∏

e∈vΛ1 (qv − qeq∗e) 6= 0 [49, Corollary 3.7.7].
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Proposition 4.3.1 ([19, Proposition 5.2]). Suppose that Λ is a row-finite k-graph with

no sources. Suppose that {qλ : λ ∈ Λ} is the universal Toeplitz-Cuntz-Krieger Λ-family

and {tλ, tµ∗ : λ, u ∈ Λ} is the universal (complex) Cohn Λ-family. Then there is an

isomorphism

φq : CC (Λ)→ span{qλq∗µ : λ, µ ∈ Λ}

such that φq (tλ) = qλ and φq (tµ∗) = q∗µ for λ, u ∈ Λ. In particular, CC (Λ) is isomorphic

to a dense subalgebra of TC∗ (Λ).

Proof. Since {qλ : λ ∈ Λ} satisfies (TCK1-3), then with qµ∗ := q∗µ, {qλ, qµ∗ : λ, µ ∈ Λ}
is a Cohn Λ-family in TC∗ (Λ). Thus the universal property of CC (Λ) gives a homo-

morphism φq from CC (Λ) onto the dense subalgebra

A := spanC{qλq∗µ : λ, µ ∈ Λ} ⊆ TC∗ (Λ) .

On the other hand, for all r ∈ C\ {0} and v ∈ Λ0, we have 1
r
φq (rtv) = qv 6= 0 and

1

r
φq

(
r
∏
e∈vΛ1

(tv − tete∗)
)

=
∏
e∈vΛ1

(qv − qeq∗e) 6= 0.

So φq (rtv) 6= 0 and φq

(
r
∏

e∈vΛ1 (tv − tete∗)
)
6= 0 for all r ∈ C\ {0} and v ∈ Λ0. Then

Theorem 4.2.1 implies that φq is injective.

Remark 4.3.2. For k = 1, Proposition 4.3.1 tells that the Cohn path algebra of 1-graph

E is isomorphic to a dense subalgebra of TC∗ (E).

4.3.2 Groupoids and Steinberg algebras.

In Proposition 3.4.1, we show that each Kumjian-Pask algebra is isomorphic to a

Steinberg algebra. Thus Theorem 4.2.16 implies that the Cohn path algebra of Λ is

also isomorphic to a Steinberg algebra associated to TΛ. However, this is somewhat

obscure because one has to go through TΛ. We improve this result by showing that

there exists a groupoid associated to Λ such that its Steinberg algebra is isomorphic

to the Cohn path algebra of Λ (Proposition 4.3.4).

Recall the path groupoid T GΛ of a row-finite k-graph Λ with no sources from

Example 2.8.1.

Proposition 4.3.3 ([19, Proposition 5.6]). Suppose that Λ is a row-finite k-graph with

no sources. Then the path groupoid T GΛ is effective, in the sense that the interior of

Iso (T GΛ) := {a ∈ T GΛ : s (a) = r (a)}

is T G(0)
Λ .
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Proof. For x ∈ T G(0)
Λ , we have (x, 0, x) ∈ Iso (T GΛ) and then T G(0)

Λ belongs to the

interior of Iso (T GΛ). Now we show the reverse inclusion. Take an interior point a

of Iso (T GΛ). Then there exists TZΛ (λ ∗s µ\G) such that a ∈ TZΛ (λ ∗s µ\G) ⊆
Iso (T GΛ). We have to show λ = µ. Since a ∈ TZΛ (λ ∗s µ\G), then TZΛ (λ ∗s µ\G)

is not empty. Thus s (λ) /∈ G. Hence (λ, d (λ)− d (µ) , µ) ∈ TZΛ (λ ∗s µ\G), and since

TZΛ (λ ∗s µ\G) ⊆ Iso (T GΛ), this implies λ = µ. Therefore T GΛ is effective.

Proposition 4.3.4 ([19, Proposition 5.8]). Suppose that Λ is a row-finite k-graph with

no sources, that T GΛ is its path groupoid and that R is a commutative ring with 1.

Then there is an isomorphism φQ : CR (Λ)→ AR (GΛ) such that φQ (tλ) = 1TZΛ(λ∗ss(λ))

and φQ (tµ∗) = 1TZΛ(s(µ)∗sµ) for λ, u ∈ Λ.

Before proving Proposition 4.3.4, we first note that the argument of Lemma 3.4.3

also applies to the path groupoid T GΛ and we get the following result.

Lemma 4.3.5 ([19, Lemma 5.9]). Suppose that Λ is a row-finite k-graph with no

sources. Suppose that {TZΛ (λi ∗s µi\Gi)}ni=1 is a finite collection of compact open

bisection sets and that

U :=
n⋃
i=1

TZΛ (λi ∗s µi\Gi) .

Then

1U ∈ spanR
{

1TZΛ(λ∗sµ\G) : (λ, µ) ∈ Λ ∗s Λ, G ⊆ s (λ) Λ
}

.

Proof of Proposition 4.3.4. DefineQλ := 1TZΛ(λ∗ss(λ)) andQµ∗ := 1TZΛ(s(µ)∗sµ) for λ, µ ∈
Λ. By [24, Theorem 6.9] and [58, Example 7.1], {Qλ : λ ∈ Λ} is a Toeplitz-Cuntz-

Krieger Λ-family. Then {Qλ, Qµ∗ : λ, u ∈ Λ} is a Cohn Λ-family in A (T GΛ). Hence

there exists a homomorphism φQ : CR (Λ) → AR (T GΛ) such that φQ (tλ) = Qλ and

φQ (tµ∗) = Qµ∗ for λ, µ ∈ Λ.

We show that φQ is injective. For all r ∈ R\ {0} and v ∈ Λ0, we have

φQ (rtv) = rQv = r1TZΛ(v∗sv) 6= 0

and

φQ

(
r
∏
e∈vΛ1

(tv − tete∗)
)

= r
∏
e∈vΛ1

(Qv −QeQe∗) = r
∏
e∈vΛ1

(
1TZΛ(v∗sv) − 1TZΛ(e∗se)

)
= r

∏
e∈vΛ1

1TZΛ(v∗sv\{e}) = r1∏
e∈vΛ1 TZΛ(v∗sv\{e})

= r1TZΛ(v∗sv\vΛ1) 6= 0.
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Hence Theorem 4.2.1 implies that φQ is injective, as required.

To see the surjectivity of φQ, we take f ∈ AR (T GΛ). By Proposition 2.9.1, we

write f as
∑

U∈F aU1U where aU ∈ R, each U is in the form
⋃n
i=1 TZΛ (λi ∗s µi\Gi)

for some n ∈ N, and F is finite set of mutually disjoint elements. Hence to show that

f ∈ im (φQ), it suffices to show that each 1U ∈ im (φQ) where

U :=
n⋃
i=1

TZΛ (λi ∗s µi\Gi)

for some positive integer n and collection {TZΛ (λi ∗s µi\Gi)}ni=1. By Lemma 4.3.5,

1U can be written as the sum of elements in the form 1TZΛ(λ∗sµ\G). On the other hand,

by following the argument of [18, Equation 5.5], we have

1TZΛ(λ∗sµ\G) = Qλ

(∏
ν∈G

(
Qs(λ) −QνQν∗

) )
Qµ

for all (λ, µ) ∈ Λ∗sΛ and finiteG ⊆ s (λ) Λ. Hence every 1TZΛ(λ∗sµ\G) belongs to im (φQ)

and so does 1U , as required. Hence φQ is surjective, and is an isomorphism.

Remark 4.3.6. Proposition 3.4.1 shows that the Kumjian-Pask algebra of TΛ is iso-

morphic to the Steinberg algebra associated to the boundary-path groupoid GTΛ of

[58]. We could have shown that the path groupoid T GΛ of Example 2.8.1 is topologi-

cally isomorphic to the boundary-path groupoid GTΛ, and deduced Proposition 4.3.4.

However, the direct argument above takes about the same amount of effort.

101





References

[1] G. Abrams, Leavitt path algebras: the first decade, Bull. Math. Sci. 5 (2015), 59–

120.

[2] G. Abrams, P. Ara and M. Siles Molina, Leavitt Path Algebras, A Primer and

Handbook, Springer, to appear.

[3] G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra

293 (2005), 319–334.

[4] G. Abrams and G. Aranda Pino, The Leavitt path algebras of arbitrary graphs,

Houston J. Math. 34 (2008), 423–442.

[5] G. Abrams and M. Kanuni, Cohn path algebras have Invariant Basis Number,

Commun. Alg. 44 (2016), 371–380.

[6] G. Abrams and Z. Mesyan, Simple Lie algebras arising from Leavitt path algebras,

J. Pure Applied Algebra 216 (2012), 2302–2313.
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