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47 Abstract 

48 We have successfully reproduced the Ozone ENSO Index (OEI) in the Goddard Earth 

49 Observing System (GEOS) chemistry-climate model (CCM) forced by observed sea surface 

50 temperatures over a 25-year period. The vertical ozone response to ENSO is consistent 

51 with changes in the Walker circulation. We derive the sensitivity of simulated ozone to 

52 ENSO variations using linear regression analysis. The western Pacific and Indian Ocean 

53 region shows similar positive ozone sensitivities from the surface to the upper 

54 troposphere, in response to positive anomalies in the Nino 3.4 Index. The eastern and 

55 central Pacific region shows negative sensitivities with the largest sensitivity in the upper 

56 troposphere. This vertical response compares well with that derived from SHADOZ 

57 ozonesondes in each region. The OEI reveals a response of tropospheric ozone to 

58 circulation change that is nearly independent of changes in emissions and thus it is 

59 potentially useful in chemistry-climate model evaluation. 

60 

61 Introduction 

62 The EI Nino-Southern Oscillation (EN SO) is the dominant mode oftropical 

63 variability on interannual timescales [Philander, 1989]. EN SO has been long known to 

64 cause significant perturbations to the coupled oceanic and atmospheric circulations 

65 [8jerknes, 1969; Enfield, 1989]. Changes in sea surface temperatures in the Pacific Ocean 

66 can notably impact the Walker Circulation, displacing areas of convective activity, and have 

67 also been shown to dominate the interannual variability of the Hadley cell [Quan, 2004]. 

68 These changes cause changes in temperature and moisture fields across 

in 
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70 et al., 1998; 2002; 2009; Sudo and Takahashi, 2001; Ziemke et al., 2003; Zeng and Pyle, 

71 2005; Doherty et al., 2006; Lee et al., 2010; Randel and Thompson, 2011] and in the 

72 stratosphere [Randel and Cobb, 1994]. 

73 Ziemke et al. [2010] used tropospheric column ozone (TCO) measurements to show 

74 that the ENSO related response of tropospheric ozone over the western and eastern Pacific 

75 dominated interannual variability. The EN SO impact is so clearly seen in tropospheric 

76 ozone columns that an Ozone ENSO Index (OEI) that largely mimics the Nino 3.4 Index is 

77 formed by subtracting the eastern and central tropical Pacific region TCO (lS0S-lsoN, 

78 110oW-1800W) from the western tropical Pacific-Indian Ocean region (lS0S-lsoN, 70oE-

79 1400E), removing the seasonal cycle and smoothing with a 3-month running average. 

80 Ziemke et al. [2010] suggested that chemistry-climate models forced with observed sea 

81 surface temperatures should reproduce this observed pattern in tropospheric ozone. Here 

82 we will show that in the GEOS CCM tropical tropospheric ozone responds to the 

83 perturbation in atmospheric dynamics that is due to the ENSO signature in tropical SSTs. 

84 In addition, we use the Southern Hemisphere Additional Ozonesondes (SHADOZ) 

85 measurements to evaluate the vertical structure of the simulated response to ENSO. 

86 

87 Model Simulation and Measurements 

88 We examine the response of simulated tropospheric ozone to the observed sea 

89 surface temperature changes using the Goddard Earth Observing System (GEOS) version 5 

90 general circulation model [Rienecker et al., 2008] coupled to the comprehensive Global 

Initiative (GMI) stratosphere-troposphere chemical mechanism [Duncan et al., 

2007; et GMI 
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93 mechanism includes 117 species, 322 chemical reactions, and 81 photolysis reactions. 

94 Integration of the chemical mass balance equations use the SMVGEAR II algorithm 

95 described in jacobson (1995). The mechanism includes a detailed description of 03-NOx-

96 hydrocarbon chemistry necessary for the troposphere (Bey et al., 2001), with more recent 

97 updates described in Duncan et al. (2007). The simulation used in this study was forced 

98 with observed sea surface temperatures and sea ice concentrations from 1985 to 2009 

99 (Rayner et al., 2003, updated on a monthly basis), but the seasonally-varying mixing ratio 

100 boundary conditions and emissions for trace gases are for 2005 conditions. The simulation 

101 produces the variability in constituent distributions due to sea surface temperature 

102 changes that we evaluate here. 

103 A record of Teo for the 2005 - 2010 period was derived from the combination of 

104 NASA's Aura satellite Ozone Monitoring Instrument (aMI) and the Microwave Limb 

105 Sounder (MLS) using the method described in Ziemke et al. [2006]. These Teo values 

106 extend the time series developed using Nimbus 7 TOMS, Earth Probe TOMS and NOAA 

107 SBUV. The Teo measurements for 2005 - 2010 are used in Figure la. A complete 

108 description of the methods used to construct the OEI can be found in Ziemke et al. [2010]. 

109 Here we use the index derived from TeO measurements for 1985 - 2009 to match the 

110 simulation. The a EI time series begins in 1979 and is updated periodically. The data can 

111 be obtained from the Goddard tropospheric ozone website at http://toms.gsfc.nasa.gov. 

112 We use ozone sonde measurements from five SHADOZ stations [Thompson et al., 

113 2003] (http:/croc.gsfc.nasa.gov/shadoz): two in the western region (Java and Kuala 

114 

11 

and eastern region (American Samoa, Hila, and San Cristobal). 

Java 1 
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116 Pago, American Samoa (14.2°S, 170.6°W), and Hilo, Hawaii (19.4 oN, 1SS.00W) cover the 

117 1998 to 2009 time period, whereas the San Cristobal (0.9°S, 89.6°W) record is slightly 

118 shorter, covering 1998 to 2008. 

119 We used the ENSO index based on the Nino 3.4 region and available from the NOAA 

120 sea-surface temperature website (http://www.cpc.ncep.noaa.gov /data/indices/), also 

121 used by Ziemke et al. [2010]. 

122 

123 Results and Discussion 

124 Ziemke et al. [2010] used a combination of satellite observations and simulations to 

125 show that the observed tropical longitudinal structure in total column ozone was due 

126 almost entirely to structure in the TCO. They identified a dipole in tropical TCO between 

127 the western Pacific-Indian Ocean region and eastern and central Pacific region (1S0S-1soN, 

128 700E-1400E, and 1soS-1soN, 1100W-1800W, respectively). The difference between the 

129 mean TCO in these two regions, shown as black rectangles on Figure 1, is called the Ozone 

130 ENSO Index (OEI). Also shown in Figure 1 is the TCO response to the Nino 3.4 Index 

131 computed using linear regression analysis for both measurements and the GEOS chemistry-

132 climate model (CCM) simulation. Regression of the TCO against Nino 3.4 Index yields a 

133 sensitivity coefficient or slope (DU /K) that represents the TCO change congruent with a 1K 

134 increase in the Nino 3.4 Index. For reference, a typical EI Nino/La Nina cycle represents 

135 about a 3K range with about a SK range for a more extreme cycle. OMI/MLS derived TCO 

136 measurements [Ziemke et al., 2006] for the 6 years covering 2005 to 2010 are used to 

1 
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139 sensitivities over the eastern region. Shaded regions show sensitivities that are not 

140 significant at the 95% level taking into account any autocorrelation of the residual. Figure 

141 lb shows a similar 6-year period (in this case 2004 to 2009) from GEOS CCM simulated 

142 TCO. The overall pattern is similar to that derived from OMI/MLS TCO with a slightly 

143 negative offset in the simulation. Over the Indonesian region, the meridional extent of the 

144 positive anomalies is smaller in Figure lb than la, which could partially be due to the short 

145 record. Also, shown (Figure lc) is the sensitivity calculated using 25 years of the 

146 simulation (from 1985 to 2009). Another significant feature that appears in both 

147 measurements and simulation is positive TCO sensitivities in the central Pacific Ocean near 

148 30o S. 

149 The OEI is the difference between the western region average monthly TCO and that 

150 computed for the eastern region. The deseasonalized time series of OEI, smoothed with a 3-

151 month running average, is shown in Figure 2 for the measurements (black curve) and 

152 simulation (red curve). The Nino 3.4 Index multiplied by 3 is shown as the blue curve. 

153 There is excellent agreement between all three times series: The correlation of the 

154 measurement derived OEI with ENSO is 0.84 and that of the simulation derived OEI with 

155 ENSO is 0.86. During El Nino, the positive phase of ENSO, the OEI anomaly is positive, 

156 corresponding to increased ozone over the western region and decreased ozone over the 

157 eastern region. This can be most clearly seen during the very strong 1997 -1998 EI Nino 

158 with an anomaly of9 DU for OEI obtained from simulated tropospheric ozone columns 

159 

160 

61 

compared with 11 DU from observations. 

The of observed and simulated OEI prompted us to 

structure the ozone changes simulated with the 

the 
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162 again using linear regression analysis. Regression of the simulated tropical ozone field 

163 against the Nino 3.4 Index yields a sensitivity coefficient in ppbv jK. We average tropical 

164 tropospheric ozone between 15°S and 15°N and regress the deseasonalized ozone field 

165 with Nino 3.4 Index at each longitude and pressure level to construct Figure 3a. Since ENSO 

166 is known to produce a significant change in the Walker circulation, we overlay the anomaly 

167 in the streamfunction obtained by regressing the zonal wind and vertical velocity against 

168 the Nino 3.4 Index. The ozone and circulation anomalies generally have inflection points 

169 just to the west of the international date line, with lower ozone values and anomalous 

170 upwelling to the east and higher ozone values and anomalous downwelling to the west. The 

171 Walker circulation response is seen clearly in the streamfunction anomaly, which 

172 corresponds very well to the pattern of ozone sensitivity. Figure 3a shows that the 

173 simulated sensitivity of ozone to the Nino 3.4 Index in the western region as defined by 

174 Ziemke et al. [2010] is -1 to 2 ppbvjK from the surface to the tropopause with relative 

175 maxima in the upper troposphere around 600E and in the mid-troposphere around 1300E. 

176 Negative values of ozone sensitivity in the eastern region are largest in the upper 

177 troposphere approaching -15 ppbv jK near the tropopause. 

178 We also examine the latitude dependence of the ozone and circulation response in 

179 the two key regions identified by Ziemke et al. [2010]. The sensitivity coefficients (ppbv jK) 

180 formed from linearly regressing deseasonalized average ozone in the eastern region 

181 (1800W-ll00W) and western region (700E-1400E) against the Nino 3.4 Index for each 

182 latitude and altitude are given in Figures 3b and 3c respectively. Again we overlay the 

1 anomalous by the this by 

184 wind and Nino dashed black curve 
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shows the mean model tropopause in each region. In the eastern region a stronger mean 

ascending branch of Walker circulation is seen near the equator. This simulated eastern 

region response of the circulation is consistent with the observed rawinsonde station data 

analyzed by Dort and Yienger [1996] and produces a corresponding tropospheric ozone 

response. The region of decreased ozone generally broadens in latitude as altitude 

increases with values from -3 ppbv jK in the equatorial mid-troposphere to -15 ppbv jK 

near the tropical tropopause. The positive ozone anomalies with increased tropical SSTs in 

the midlatitudes of Figure 3b could be consistent with increased stratosphere-troposphere 

exchange of ozone. Zeng and Pyle [2005] also found an increase in the stratosphere­

troposphere exchange of ozone in their CCM simulation of the impact of ENSO. Other 

studies suggested observational evidence for this impact in observations above Colorado 

[Langford et ai., 1998; Langford, 1999]. The recent analysis of Voulgarakis et al. [2011] has 

also simulated enhanced stratosphere-troposphere exchange of ozone following the strong 

1997-1998 EI Nino event. 

Chandra et al. [1998] found that downward motion, suppressed convection, and a 

drier troposphere contribute to the ozone increase over the tropical western Pacific and 

Indonesian region. The combination of downward motion and suppressed convection 

bring ozone produced in the upper troposphere down [Sudo and Takahashi, 2001], and 

reduce the upward transport oflow ozone air over ocean surfaces, increasing ozone values 

in the low to mid troposphere. Additionally, the drier troposphere increases the chemical 

lifetime of ozone, which also acts to increase tropospheric ozone concentrations [Kley et al., 

1996]. These results are consistent with the GEOS CCM simulation are shown in Figure 

downward component 
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208 We evaluate the simulated vertical ozone response to ENSO using data collected by 

209 the SHADOZ network [Thompson et al., 2003]. There are SHADOZ stations in and around 

210 the two key regions shown in Ziemke et al. [2010]. In Figure 4 we compare the simulated 

211 ENSO related vertical ozone sensitivity to that obtained using observations from two 

212 western region SHADOZ locations (Java and Kuala Lumpur) and three eastern region 

213 SHADOZ locations (American Samoa, Hilo, and San Cristobal) for 1998-2009. Although in 

214 the eastern region only American Samoa is within the box defined by Ziemke et al. [2010], 

215 the other two locations are just north (Hilo) and east (San Cristobal) of the region and still 

216 located in the area significantly correlated with ENSO. We deseasonalized each 

217 ozonesonde record prior to averaging them within each region and then regress the 

218 resulting values against the Nino 3.4 Index. In the western region (red diamonds), values 

219 are nearly all statistically significant and positive (2 standard deviation interval shown 

220 from regression). In the eastern region (blue diamonds) SHADOZ reveals significant large 

221 negative values in the upper troposphere similar to those simulated. In the low to mid 

222 troposphere ozone anomalies are generally not significantly different from zero. Also, 

223 plotted on Figure 4 are the ozone sensitivities from the GEOS CCM simulation (solid curves) 

224 sampled at the same locations as the SHADOZ stations. In the western region the GEOS CCM 

225 simulation underestimates the magnitude of the positive anomalies, while in the upper 

226 troposphere of the eastern region the negative anomalies are larger than those derived 

227 from SHADOZ stations. Overall these patterns in SHADOZ regional composites are similar 

228 to those obtained by Lee et al. [2010] for two individual stations (Kuala Lumpur and San 

Cristobal), and more recently for several stations used Randel and Thompson [201 . 
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231 Conclusions 

232 We have demonstrated that the relationship between tropical SST anomalies and 

233 the response of tropical tropospheric ozone is clearly reproduced in the GEOS CCM 

234 simulation forced with time varying observed SSTs. Such agreement requires both a 

235 realistic response of the circulation to the SST and realistic simulated horizontal and 

236 vertical ozone gradients. The OEI represents an essential physical relationship that coupled 

237 chemistry-climate models should reproduce and is potentially useful in future chemistry-

238 climate model evaluations. Tropical tropospheric ozone changes appear to be congruent 

239 with anomalous changes to the Walker circulation cell. 

240 The impact of changes in biomass burning is not considered in this simulation. 

241 Although, previous work (e.g., Thompson et al., 2001) has shown its importance in ozone 

242 production, time-dependent emissions are not critical for reproducing the OEI. Ziemke et 

243 af. [2009] used emissions appropriate for the 2006 EI Nino event; their results suggest that 

244 the change in emissions accounts for no more than 20% of the OEI response. Simulations 

245 indicate that ozone anomalies produced from interannual variability in biomass burning 

246 are transported throughout the tropics over the 3 month averaging period that is used in 

247 constructing the OEI. Only a strong local increase in one region but not the other will 

248 impact the 0 El. 

249 This analysis demonstrates that ENSO-related changes in the circulation, thermal 

250 structure and composition drive tropical ozone variability. Future work will include a 

251 detailed budget analysis to determine the relative contributions of dynamical, chemical, 

to sensitivity ozone and related species to ENSO. 
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353 

354 Figure Captions 

355 Figure 1. Comparison of the tropospheric column ozone sensitivity (DU /K) to the Nino 3.4 

356 Index for a) 6 years of MLS/OMI measurements, b) 6 years of GEOS CCM simulation, c) 25 

357 years of GEOS CCM simulation. Shaded regions are not significant at the 95% level. The 

358 black rectangles show two regions used in calculating the Ozone ENSO Index. 

359 

360 Figure 2. Comparison of GEOS CCM simulation and Ziemke et al. [2010] measurement 

361 derived Ozone ENSO Index (OEl) with Nino 3.4 Index (multiplied by 3) for the 1985 to 

362 2009 time period. 

363 

364 Figure 3. Sensitivity coefficient (ppbv /K) formed from linearly regressing deseasonalized 

365 tropical (15°S-15°N, a), eastern region (180 0 W-110oW, b), and western region (70oE-

366 140oE, c) average ozone against Nino 3.4 Index. Overlaid is the anomalous circulation 

367 shown by the streamfunction obtained by regressing the zonal wind and vertical velocity 

368 (a), or meridional wind and vertical velocity (b,c) against Nino 3.4 Index. The dashed black 

369 curve on all panels shows the mean model tropopause. 

370 

371 Figure 4. Vertical structure of ozone sensitivity (ppbv /K) to Nino 3.4 Index derived from 

372 SHADOZ ozonesondes over the western (red diamonds) and eastern (blue diamonds) 

373 regions of the tropical Pacific. GEOS CCM sensitivities sampled for the SHADOZ locations 

are shown as curves. 
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376 

377 Figures 

a) OMI/MLS TCO vs. ENSO Sensitivity (DU/K) 6 years 
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c) GEOS CCM TCO vs. ENSO Sensitivity (DU/K) 25 years 
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378 
379 Figure 1. Comparison of the tropospheric column ozone sensitivity (DUjK) to the Nino 3.4 
380 Index for a) 6 years ofMLSjOMI measurements, b) 6 years ofGEOS CCM simulation, c) 25 
381 years of GEOS CeM simulation. Shaded regions are not significant at the 95% leveL The 
382 black rectangles show two regions used in calculating ENSO Index. 
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Figure 3. Sensitivity coefficient (ppbv jK) formed from linearly regressing deseasonalized 
tropical (1soS-1soN, a), eastern region (180 0 W-ll0oW, b), and western region (70oE-
140oE, c) average ozone against Nino 3.4 Index. Overlaid is the anomalous circulation 
shown by the streamfunction obtained by regressing the zonal wind and vertical velocity 
(a), or meridional wind and vertical velocity (b/c) against Niiio 3.4 Index. The dashed black 
curve on panels shows the mean tropopause. 
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410 Figure 4. Vertical structure of ozone sensitivity (ppbv jK) to Nino 3.4 Index derived from 
411 SHADOZ ozonesondes over the western (red diamonds) and eastern (blue diamonds) 
412 regions of the tropical Pacific. GEOS CCM sensitivities sampled for the SHADOZ locations 
413 are shown as the solid curves. 
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