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Abstract

This thesis develops the theory of operator algebras from the perspective
of abstract harmonic analysis, and in particular, the theory of von Neumann
algebras. Results from operator algebras are applied to the study of spaces of
coefficient functions of unitary representations of locally compact groups, and
in particular, the Fourier algebra of a locally compact group. The final result,
which requires most of the material developed in earlier sections, is that the
group von Neumann algebra of a locally compact group is in standard form.
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Chapter 1

Introduction

This thesis is intended to be an introduction to abstract harmonic analysis
from the modern viewpoint of operator algebras. This begins with a treatment
of the abstract theory of C∗-algebras and their connection to the representa-
tion theory of locally compact groups. It continues with the detailed develop-
ment of revelant portions of the theory of von Neumann algebras. It concludes
with an introduction to Fourier algebra of a general locally compact group, in-
cluding Eymard’s theorem on the spectrum, Herz’s restriction theorem, and
the fact that a group von Neumann algebra is always in standard form.

When I first began the study of abstract harmonic analysis, I soon realized
that the literature is very scattered. In order to gain sufficiency in the subject
to the point where one can read the recent research literature, one must learn
from a number of different sources, spanning distinct historical periods and
notational conventions. There is no one source that one can read for an intro-
duction to the subject, and some important results can be difficult to locate
in their most useful form. I set out to alleviate this problem and provide one
source from which one can learn the fundamentals of the subject.

This thesis presumes a good working knowledge of functional analysis,
particularly the duality theory of Banach spaces, a basic knowledge of Banach
algebras, and a passing knowledge of integration theory on locally compact
groups. However, besides these prerequisites, every argument is developed in
full, often with more details than the proofs in the original papers or in other
sources.

While this thesis is quite comprehensive in that it gives full proofs for all of
the subjects that it covers, there are many relevant topics that are not covered.
In particular, there are no serious examples of group representations, and
there is no mention of weak containment of representations. The main reason
for their exclusion is the lack of space, as this thesis is already well over the
average length of a Master’s thesis in mathematics. The type decomposition
of von Neumann algebras was also excluded on the same grounds.
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I consulted many sources in the preparation of this thesis. Besides the pa-
pers cited explicitly, I read most of the standard textbooks on the subject of
operator algebras: Dixmier’s two books [Dix69a] [Dix69b], Takesaki’s introduc-
tory textbook [Tak02], Pedersen’s book [Ped79], the book of Stratila and Zsido
[SZ79], and Davidson’s book [Dav96]. While all of the results in this thesis ap-
pear in one cited source or another, the proofs given here are often a synthesis
of the different ideas that I have learned while studying the subject as a whole,
rather than being taken directly from one particular place.

Since my goal was to give a synthetic treatment of the subject, looking back
into the past rather than developing the subject genetically, I do not discuss
the attribution of each theorem as it is proved. This is not meant to take credit
away from those who toiled to prove it, rather it is meant to provide a more
coherent narrative. Of course, there are exceptions made when a theorem is
generally referred to by the name of the person who proved it. At the end of
each section, I have written some notes on the history of the topic covered in
that section, and these notes often provide additional information about the
particular proofs that I chose to present.
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Chapter 2

Banach ∗-algebras

2.1 Definitions and Basic Properties

2.1.1 Definition. Let A be an algebra over C. An involution on A is a map
∗ :A→A such that for all a,b ∈A and λ ∈ C,

(i) (a∗)∗ = a,
(ii) (a+ b)∗ = a∗ + b∗,

(iii) (λa)∗ = λa∗,
(iv) (ab)∗ = b∗a∗.

If A is equipped with an involution, it is called a ∗-algebra. By a unital ∗-
algebra we mean a ∗-algebra with a multiplicative unit 1 such that 1 ≠ 0.

2.1.2 Examples.

(i) The complex numbers form a ∗-algebra, where the involution is conjuga-
tion.

(ii) Let X be a locally compact Hausdorff space. Then the algebras Cc(X),
C0(X), Cb(X), and C(X) of continuous functions on X are ∗-algebras,
where the involution is pointwise conjugation.

(iii) LetH be a Hilbert space. Then the algebra B(H ) of bounded linear oper-
ators onH is a ∗-algebra, where the involution is the adjoint operation.

(iv) Let G be a locally compact group, and ∆ its modular function. Then
the algebras Cc(G), L1(G), and M(G), all equipped with the convolution
product, are ∗-algebras, where the measure µ∗ is defined by∫

g(s)dµ∗(s) =
∫
G
g(s−1)dµ(s)

for f ∈ C0(G). If f ∈ L1(G) and µ is the measure defined by∫
g(s)dµ(s) =

∫
f(s)g(s)ds,

3



then ∫
g(s)dµ∗(s) =

∫
f(s)g(s−1)ds =

∫
∆(s−1)f (s−1)g(s).

Hence f∗(s) = ∆(s−1)f (s−1).

2.1.3 Definition. Let A be a ∗-algebra. If a ∈ A is such that a = a∗, we say
that a is self-adjoint. We let Asa denote the set of self-adjoint elements of
A. We say that a ∈ A is normal if aa∗ = a∗a, unitary if a is invertible and
a−1 = a∗, and a projection if a is self-adjoint and a2 = a.

2.1.4 Examples.

(i) The self-adjoint elements of the C are the real numbers. Every element
of C is normal. The unitary elements of C are the elements of norm 1.
The projections in C are 0 and 1.

(ii) Let X be a locally compact Hausdorff space. If f ∈ C0(X), then f is
always normal (as C0(X) is commutative); f is unitary if and only if
ran(f ) ⊆ {λ ∈ C : |λ| = 1}, and f is a projection if and only if ran(f ) ⊆
{0,1}, in which case f is the characteristic function of a clopen set.

(iii) Let H be a Hilbert space. The self-adjoint elements of B(H ) are the
self-adjoint or Hermitian operators, i.e. those bounded operators T such
that 〈Tξ |η〉 = 〈ξ |Tη〉 for all ξ, η ∈ H . If T ∈ B(H ), then T is normal,
unitary, or a projection if and only if it is normal, unitary, or an orthog-
onal projection in the usual meaning of those words for operators. In
particular, U ∈ B(H ) is unitary if and only if 〈Uξ |Uη〉 = 〈ξ |η〉 for all
ξ, η ∈H and U has dense range.

It is important to note that if A is a unital ∗-algebra, then the unit 1 is a
self-adjoint element ofA. This is because

1∗ = 1∗1 = (1∗1)∗ = 1∗∗ = 1.

It is clear that Asa is a real vector subspace of A. Generalizing the situation
in the preceding two examples, every element a ∈ A can be expressed as
a = a1 + ia2, where a1 and a2 are self-adjoint. Indeed, choose

a1 =
(x + x∗)

2
and a2 =

(x − x∗)
2i

.

These elements are referred to as the real and imaginary parts of a respec-
tively. IfA is the complex numbers, these agree with the usual real and imagi-
nary parts of a complex number, and ifA= C(X), these are the pointwise real
and imaginary parts of a function.

The natural maps between ∗-algebras are the algebra homomorphisms that
preserve the adjoint operation.
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2.1.5 Definition. Let A and B be ∗-algebras. We say that a homomorphism
f :A→ B is a ∗-homomorphism if f(a∗) = f(a)∗ for every a ∈A.

If ϕ : A → B is a ∗-homomorphism, then ϕ(A) is a ∗-subalgebra of B,
and ker(ϕ) is a self-adjoint ideal ofA.

If A is a ∗-algebra, then the linear functionals on A inherit some of its
involutive structure. If f : A → C is a linear functional, then we define the
adjoint of f by

f∗(a) = f(a∗).
Clearly, f is also a linear functional on A, and for linear functionals f and g
onA and λ ∈ C,

(i) f∗∗ = f ,
(ii) (f + g)∗ = f∗ + g∗,

(iii) (λf)∗ = λf∗.

We say that f is self-adjoint if f = f∗. If f is a linear functional on A, then f
can be expressed as f = f1 + if2, where f1 and f2 are linear functionals onA.
Indeed, choose

f1 =
(f + f∗)

2
and f2 =

(f − f∗)
2i

.

These elements are referred to as the real and imaginary parts of f respec-
tively.

2.1.6 Definition. Let A be a ∗-algebra. If A is also a Banach algebra that
satisfies the additional condition

(i) ‖a‖ = ‖a∗‖,

we say that A is a Banach ∗-algebra. Note that some authors only require
that involution on a Banach ∗-algebra be continuous, and not necessarily an
isometry. If, moreover,A satisfies the condition

(ii) ‖a∗a‖ = ‖a‖2,

we say thatA is a C∗-algebra.

IfA satisfies (ii), then it satisfies (i). Indeed, if a ∈A, then

‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖,

so
‖a‖ ≤ ‖a∗‖ ≤ ‖a∗∗‖ = ‖a‖.

Also note that we do not require a unital Banach ∗-algebra to satisfy ‖1‖ = 1.
This assumption sometimes makes things easier to state, but there are some
examples where the identity has norm greater than 1.
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2.1.7 Examples.

(i) The complex numbers form a C∗-algebra, where the involution is conju-
gation.

(ii) Let X be a locally compact Hausdorff space. Then the algebras Cb(X) and
C0(X) of continuous functions are C∗-algebras.

(iii) Let H be a Hilbert space. Then the Banach algebra B(H ) of bounded
linear operators onH is a C∗-algebra, where the involution is the adjoint
operation. The final condition of being a C∗-algebra holds because

‖A∗A‖ = sup
‖x‖=‖y‖=1

〈A∗Ax |y〉 = sup
‖x‖=‖y‖=1

〈Ax |Ay〉 = ‖A‖2.

It follows that every closed self-adjoint subalgebra of B(H ) is also a
C∗-algebra.

(iv) Let G be a locally compact group. Then the algebras L1(G) and M(G) are
Banach ∗-algebras.

(v) Let A be C2 equipped with the ∞-norm and pointwise multiplication.
Define an involution onA by

(a, b)∗ = (b,a).

Then A is a commutative unital Banach ∗-algebra, but A is not a C∗-
algebra. Indeed,

‖(1,0)∗(1,0)‖ = ‖(0,1) · (1,0)‖ = ‖(0,0)‖ = 0.

This example may seem a bit contrived, but it illustrates what can happen
in the absence of the C∗-algebra norm condition.

2.1.8 Proposition. Let A be a non-unital Banach algebra. Then there exists a
unital Banach algebraAI containingA a closed ideal of codimension 1. IfA is
additionally a Banach ∗-algebra, then we can takeAI to be a Banach ∗-algebra
containingA as a closed self-adjoint ideal of codimension 1.

Proof. IfA is a Banach ∗-algebra that is not unital (or even one that is unital,
since it is sometimes useful to avoid a dichotomy in the middle of a proof),
one can consider its canonical unitizationAI defined as follows. LetAI be the
vector spaceA⊕ C, with the ∗-algebra structure given by

(a, λ) · (b, µ) = (ab + µa+ λb,λµ);
(a, λ)∗ = (a∗, λ).

We will identify a ∈A with its image (a,0) inA, which makesA a self-adjoint
maximal ideal ofAI of codimension 1. There are many possible ways to put a
norm on AI that will make it a Banach ∗-algebra. The simplest is to take the
`1-direct sum ofA and C, i.e. define

‖(a, λ)‖ = ‖a‖ + |λ|.
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Then, clearly, ‖ · ‖ is a norm on AI that makes it a Banach ∗-algebra, and the
embedding a , (a,0) of A into AI is an isometry. Unfortunately, when A is
a C∗-algebra, this norm will not necessarily makeAI a C∗-algebra. In this case,
we will put a different norm onAI that does make it a C∗-algebra. �

If A is a non-unital Banach algebra or Banach ∗-algebra, we will let AI

denote the algebra constructed in the preceding proposition. If A is a unital
Banach algebra or Banach ∗-algebra, we will simply let AI denote A itself.
This is sometimes useful to avoid an unnecessary dichotomy in the middle of
a proof.

2.1.9 Proposition. LetA be a non-unital C∗-algebra. Then there exists a unital
C∗-algebraAI containingA a self-adjoint closed ideal of codimension 1.

Proof. Every a ∈A acts onA via the left multiplication operator La :A→A,
defined by Lab = ab. Clearly, since A is a Banach algebra, La is always a
bounded linear operator onA. The map (a, λ), La+λI is an injective algebra
homomorphism, and there is a natural involution on its range given by

(La + λI)∗ = La∗ + λI

that makes this map a ∗-algebra homomorphism. We define

‖(a, λ)‖ = ‖La + λI‖.

Since B(A) is a Banach algebra, this defines an Banach algebra norm on AI.
The embedding a, (a,0) ofA intoAI is isometric because

‖a‖ =
∥∥∥∥a a∗‖a‖

∥∥∥∥ ≤ ‖(a,0)‖ = sup
‖b‖≤1

‖ab‖ ≤ ‖a‖.

All that we need to show is the C∗-algebra norm condition. We have

‖(a, λ)‖2 = sup
‖b‖≤1

‖ab + λb‖2

= sup
‖b‖≤1

‖(ab + λb)∗(ab + λb)‖

= sup
‖b‖≤1

‖b∗a∗ab + λb∗a∗b + λb∗ab + |λ|2b∗b‖

≤ sup
‖b‖≤1

‖a∗ab + λa∗b + λab + |λ|2b‖

= ‖(a∗a+ λa∗ + λa, |λ|2)‖
= ‖(a, λ)∗(a, λ)‖
≤ ‖(a, λ)∗‖‖(a, λ)‖.

Hence ‖(a, λ)‖ ≤ ‖(a, λ)∗‖. By symmetry, we have that ‖(a, λ)∗‖ ≤ ‖(a, λ)‖,
so ‖(a, λ)‖ = ‖(a, λ)∗‖. Therefore, the above inequality is an equality, and
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the expression ‖(a, λ)∗(a, λ)‖ in the middle of the inequality is equal to the
first expression ‖(a, λ)‖2. This shows that AI is a C∗-algebra. In the case of a
generic Banach ∗-algebra, we will use the first of the two norms, but whenever
A is assumed to be a C∗-algebra, we will use the second norm that makes AI

a C∗-algebra. It is easy to check that these two norms are always equivalent. If
A is already unital, we will letAI denoteA itself. �

If A is a non-unital C∗-algebra, we will let AI denote the algebra con-
structed in the preceding proposition. If A is a unital C∗-algebra, we will
simply let AI denote A. While this conflicts with the notation defined for
more general Banach ∗-algebra, it will always be clear from context whether
we are using the C∗-algebra norm onAI.

2.1.10 Example. Let X be a locally compact Hausdorff space that is not com-
pact, so that C0(X) is not unital. Then C0(X)I is C(X ∪ {∞}), where X ∪ {∞} is
the one-point compactification of X.

We have not assumed that the identity of a unital Banach ∗-algebra has
norm 1, but it is sometimes useful to assume that the identity has norm 1. A
construction similar to the one used in the unitization of a C∗-algebra shows
that a unital Banach algebra can always be renormed so that the identity has
norm 1. In particular, if the identity ofA already has norm 1, this construction
shows thatA is isometrically isomorphic to a subalgebra of B(X) for a Banach
space X.

2.1.11 Proposition. LetA be a unital Banach algebra. For every a ∈A, define
La :A→A by Lab = ab. Then La is a bounded operator onA. Define Φ :A→
B(A) by Φ(a) = La. Then Φ is an injective Banach algebra homomorphism,
and

1
‖1‖‖a‖ ≤ ‖Φ(a)‖ ≤ ‖Φ‖‖a‖,

so the norm onA is equivalent to the norm Φ(A) inherits from B(A). We have
‖Φ(1)‖ = 1, and if ‖1‖ = 1 then Φ is an isometry.

Proof. It is clear that each La is bounded and that Φ is a Banach algebra
homomorphism. It is injective because La1 = a. We have

‖a‖ = ‖Φ(a)1‖ ≤ ‖Φ(a)‖‖1‖.

By dividing by ‖1‖, it follows that

1
‖1‖‖a‖ ≤ ‖Φ(a)‖ ≤ ‖Φ‖‖a‖,

so the norm on A is equivalent to the norm Φ(A) inherits from B(A). Since
Φ(1) is the identity operator, ‖Φ(1)‖ = 1. If ‖1‖ = 1, then ‖a‖ ≤ ‖Φ(a)‖. Since

‖Φ(a)b‖ ≤ ‖ab‖ ≤ ‖a‖‖b‖,
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it follows that ‖Φ(a)‖ ≤ ‖a‖ and ‖a‖ = ‖Φ(a)‖. �

Unfortunately, it is not clear how to define an involution on Φ(A). Thus, in
order to renorm a unital Banach ∗-algebra we will introduce a new variant of
this construction.

2.1.12 Definition. Let A be a Banach algebra. A double centralizer of A is a
pair of bounded linear operators (L,R) onA such that for all a,b ∈A,

(i) L(ab) = L(a)b,
(ii) R(ab) = aR(b),

(iii) aL(b) = R(a)b.

The double centralizer algebra D(A) of A is the set of double centralizers of
A equipped with pointwise linear operations and the product

(L1, R1)(L2, R2) = (L1L2, R1R2).

If A is also a Banach ∗-algebra and T : A → A is a linear map, define T∗ :
A→A by

T∗(a) = T(a∗)∗.
Then D(A) becomes a ∗-algebra when equipped with the involution

(L,R)∗ = (R∗, L∗).

It is easy to check that D(A) is actual an algebra, and also a ∗-algebra if
A is a Banach ∗-algebra. If I : A → A is the identity map, then (I, I) is an
identity for D(A). Every a ∈A defines a double centralizer (La, Ra) ofA by

Lab = ab and Rab = ba.

The map Φ :A→D(A) defined by Φ(a) = (La, Ra) is a homomorphism. If A
is a Banach ∗-algebra, then this map is a ∗-homomorphism.

We define a norm on D(A) by

‖(L,R)‖ =max(‖L‖,‖R‖),

where ‖L‖ and ‖R‖ are the operator norms of L and R, respectively. It is easy to
check that D(A) is closed in B(A)×B(A), and is thus a Banach algebra, and
that Φ :A → D(A) is a contractive Banach algebra homomorphism. If A is a
Banach ∗-algebra, then the involution on D(A) is an isometry, making D(A)
a Banach ∗-algebra, and Φ a contractive Banach ∗-algebra homomorphism.
Also, note that

‖(1,1)‖ =max(1,1) = 1.
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The double centralizer algebra is very interesting, particularly in the case
where A is not unital. However, we only introduced double centralizers to
show that a unital Banach ∗-algebra can be renormed so that the identity has
norm 1, and in this case the double centralizers are precisely the pairs (La, Ra),
where a ∈A.

2.1.13 Proposition. Let A be a unital Banach algebra. Then the map Φ :A →
D(A) defined by Φ(a) = (La, Ra) is a Banach algebra isomorphism.

Proof. We need to show that Φ is injective and surjective. If a ∈ A and
Φ(a) = 0, then

a = La1 = 0,

so a = 0. Therefore, Φ is injective. If (L,R) ∈ D(A) and a ∈A, then

L(a) = 1L(a) = R(1)a = LR(1)(a)

and
R(a) = R(a)1 = aL(1) = RL(1)(a).

Hence (L,R) = (LR(1), RL(1)). However,

L(1) = 1L(1) = R(1)1 = R(1),

so (L,R) = (La, Ra) = Φ(a). Therefore, Φ is surjective. �

Historical Notes

Particular examples of Banach algebras and Banach ∗-algebras have been stud-
ied since the genesis of abstract analysis. von Neumann defined rings of opera-
tors in [vN29], which are now known as von Neumann algebras, and they were
studied in detail by von Neumann and Murray in their “Rings of Operators”
series of papers [MvN36], [MvN37], [vN40], and [MvN43]. There were some at-
tempts to abstractly characterize rings of operators, but it was not clear at the
time that the norm was of much importance, so the focus was mainly on the
order-theoretic properties of von Neumann algebras and their closure in the
various operator topologies on B(H ).

General Banach algebras were first defined by Nagumo [Nag36], who called
them linear metric rings, and and Yosida [Yos36]. Most of the foundational
work on Banach algebras and Banach ∗-algebras was done from 1939 to 1944
by Gelfand and his collaborators in the Russian school, particularly Naimark
and Raikov. In 1939, Gelfand published a series of announcements [Gel39a],
[Gel39b], and [Gel39c], but due to the war the proofs of the announced theo-
rems did not appear in the West until later. The Russian school produced many
papers on this subject, so it is not possible to list them all, but some of the
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more important ones are Gelfand’s paper on the general theory of Banach alge-
bras [Gel41], his paper with Naimark characterizing commutative C∗-algebras
as C0(X) for a locally compact Hausdorff space X and general C∗-algebras as
norm closed ∗-subalgebras B(H ) [GN43], and his paper with Raikov on the
applications of this theory to group representations [GR43].

In the work of the Russian school, Banach algebras were called normed
rings and Banach ∗-algebras were called involutive normed rings. The termi-
nology “Banach algebra” and “Banach ∗-algebra” first appears in a paper of
Ambrose [Amb45], and is apparently due to Max Zorn. This notation is some-
what strange, given that Banach essentially had nothing to do with the theory
of Banach algebras. Several authors noted that the names “Gelfand algebra”
and “Gelfand ∗-algebra” would be more fitting, but nobody made the first leap
to use them in their papers.

What is now called a C∗-algebra was originally called a B∗-algebra by Rickart
[Ric46]. Gelfand and Naimark proved in [GN43] that a Banach ∗-algebra A is
(algebraically) ∗-isomorphic to a norm closed ∗-subalgebra of B(H ) if and
only ifA satisfies the conditions

‖a∗a‖ = ‖a‖2 and 1+ a∗a is invertible

for all a ∈ A. These algebras were called C∗-algebras by Segal [Seg47], where
the C originally meant that the algebra was closed in the norm topology on
B(H ), not that they were, as some might claim, a noncommutative analogue
of the algebras C0(X). It turned out that the assumption of the invertibility of
1 + a∗a was unnecessary, which we will prove in Section 2.3. Ironically, after
this development, the name “C∗-algebra” survived and the name “B∗-algebra”
fell into abandon.

The double centralizer construction is originally due to Hochschild [Hoc47]
in the purely algebraic case, and Johnson [Joh64] in the Banach algebraic case,
although he was apparently unaware of Hochshild’s work.

2.2 Commutative C∗-algebras

In this section we will assume familiarity with the basic Gelfand theory of
commutative Banach algebras.

2.2.1 Theorem (Gelfand-Naimark). LetA be a commutative C∗-algebra. Then
the Gelfand transform is an isometric ∗-isomorphism ofA onto C0(Â).

Proof. We will first prove the theorem under the assumption thatA is unital
and then derive the general case. Letϕ be a multiplicative linear functional on
A. We will show that ϕ(a∗) =ϕ(a). Suppose first that a = a∗ is self-adjoint.

11



Define a family of elements ofA by

ut = eita =
∞∑
n=0

(ita)n

n!
,

where t ∈ R. Each ut is unitary, since

u∗t =
∞∑
n=0

(ita)n

n!
=

∞∑
n=0

(−ita)n
n!

= e−ita = u−1
t .

Hence ‖ut‖2 = ‖u∗t ut‖ = ‖1‖ = 1. Therefore,

1 ≥ |ϕ(ut)| =

∣∣∣∣∣∣∑n≥0

itϕ(a))n

n!

∣∣∣∣∣∣ = |eitϕ(a)| = e−t Imϕ(a).

Since this holds for all real t, we deduce that ϕ(a) is real. If x ∈ A is not
necessarily self-adjoint, let x = a+bi, where a and b are the real and imaginary
parts of x respectively. Then ϕ(a) and ϕ(b) are real, so

ϕ(x∗) =ϕ(a− ib) =ϕ(a)− iϕ(b) =ϕ(a)+ iϕ(b) =ϕ(x).

Therefore, the Gelfand transform satisfies the property â∗ = â∗ and is a ∗-
isomorphism.

It now remains to be shown that the Gelfand transform is an isometry. If
a ∈A is self-adjoint, ‖a2‖ = ‖a∗a‖ = ‖a2‖, so by the Beurling spectral radius
formula,

‖â‖∞ = spr(a) = lim
n→∞

‖a2n‖1/2n = lim
n→∞

(‖a‖2n)1/2
n = ‖a‖.

If a ∈A is not necessarily self-adjoint, a∗a is self-adjoint, so we obtain

‖a‖2 = ‖a∗a‖ = ‖Åa∗a‖∞ = ‖â∗â‖∞ = ‖â‖2
∞.

Therefore, the Gelfand transform is an isometry.

The above implies that the image of A under the Gelfand transform is
a unital norm closed self-adjoint sub-algebra of C(Â) that separates points.
Hence, by the Stone-Weierstrass Theorem, the Gelfand transform is surjective
and thus a ∗-isomorphism.

We now consider the non-unital case. If A is not unital, then A is a maxi-
mal ideal of codimension one in AI, the unitization of A. Clearly, AI is also
abelian, and the spectrum X of AI is canonically homeomorphic to Â \ {ϕ0},
where ϕ0 is the multiplicative linear functional on AI with kernel A. By the
argument above, the Gelfand transform is then a ∗-isomorphism fromAI onto
C(X). The Gelfand transform then takesA onto the ideal of functions vanish-
ing at ϕ0, which can naturally be identified with C0(Â). �
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If A is a C∗-algebra and S ⊆ A, the C∗-algebra generated by S is the least
C∗-subalgebra ofA containing S, and is denoted C∗(S). IfA is unital, then the
convention is to include the identity in C∗(S), although we may occasionally
specify otherwise. In the case that S = {a}, C∗(S) is denoted by C∗(a) and is
simply the norm closure of the set of polynomials in a and a∗; if the identity
is not included in C∗(a), then it is the norm closure of the polynomials in a
and a∗ with zero constant term.

Note that if a is unitary or self-adjoint it is automatically normal, and that
a is normal if and only if C∗(a) is commutative. In this context, the preceding
theorem has an important interpretation in terms of a continuous functional
calculus for normal elements in arbitrary C∗-algebras.

2.2.2 Corollary (Continuous Functional Calculus). LetA be a C∗-algebra, and
a ∈ A be normal. Then C∗(a) is isometrically isomorphic to C0(σ(a)) via
the map that sends a to the identity function. The (not necessarily unital)
C∗-algebra generated by a and a∗, without explicitly including the identity,
is mapped onto C0(σ(a) \ {0}).

Proof. Since a is normal, C∗(a) is commutative. Therefore, we only need
to determine X = ÆC∗(a). Note that a multiplicative linear functional ϕ in X
is determined by ϕ(a) = λ, as then ϕ(p(a,a∗)) = p(λ, λ̄) for every com-
plex polynomial p(x,y). Thus the map from X into C given by ϕ , ϕ(a)
is a homeomorphism onto â(X). From the Gelfand theory, this implies that
â(X) = σ(a). Hence the Gelfand transform identifies â with the identity func-
tion, as desired. By Theorem 2.2.1, the Gelfand transform is an isometric
∗-isomorphism. When a is not invertible, i.e. when 0 ∈ σ(a), the subalgebra
generated by a and a∗, not including the identity, corresponds to the ideal of
functions vanishing at 0, which is identified with C0(σ(a) \ {0}). �

We can use this isometric ∗-isomorphism to construct a continuous func-
tional calculus for a normal element of a C∗-algebra. If a ∈ A is normal, let
Γ : C∗(a) → C0(σ(a)) denote the Gelfand transform. If f ∈ C0(σ(a)), we let

f(a) denote Γ−1(f ) ∈ C∗(a), so that Æf(a) = f . If 0 ∈ σ(a) and f(0) = 0, then
f(a) lies in the non-unital algebra generated by a and a∗. We will now state
some of the more immediate properties of this functional calculus

2.2.3 Corollary. LetA be a C∗-algebra, and a ∈A be normal. Then:

(i) if f ∈ C0(σ(a)) then σ(f(a)) = f(σ(a));
(ii) if f ∈ C0(σ(a)) and g ∈ C0(σ(f(a))) = C0(f (σ(a))), so that g ◦ f ∈

C0(σ(a)), then (g ◦ f)(a) = g(f(a));

Proof.

(i) We have that

σ(f(a)) = σ(Æf(a)) = σ(f) = f(σ(a)).
13



(ii) When p(z, z) is a polynomial, it is immediate from the fact that the func-
tional calculus is a ∗-homomorphism that p(f(a)) = (p ◦ f)(a). Ap-
proximating g by polynomials using the Stone-Weierstrass Theorem es-
tablishes the general case. �

2.2.4 Corollary. LetA be a C∗-algebra, and a ∈A be normal. Then

(i) a is self-adjoint if and only if σ(a) ⊆ R;
(ii) a is unitary if and only if σ(a) ⊆ {λ ∈ C : ‖λ‖ = 1};

(iii) a is a projection if and only if σ(a) ⊆ {0,1}.

Proof. These claims are immediate by the functional calculus and the fact
that they all hold when a ∈ C0(X) for a locally compact Hausdorff space X. �

It is often the case for a general element a of a Banach algebra that spr(a)
is strictly smaller than ‖a‖. However, they are equal whenever a is a normal
element of a C∗-algebra. We already showed this for self-adjoint a in the
proof of the Gelfand-Naimark Theorem, but it can easily be recovered via the
continuous functional calculus.

2.2.5 Corollary. Let A be a C∗-algebra, and a ∈ A be normal. Then ‖a‖ =
spr(a).

Proof. By Theorem 2.2.1 we have that

‖a‖ = ‖â‖C0(σ(a)) = ‖z‖C0(σ(a)) = spr(a). �

2.2.6 Corollary. Let A be a C∗-algebra. If a ∈ A, then ‖a‖ = ‖a∗a‖1/2 =
spr(a∗a)1/2. Therefore, the norm on a C∗-algebra is completely determined by
the algebraic structure and is unique. �

2.2.7 Corollary. Let A be a C∗-algebra. Then A is a semisimple Banach alge-
bra.

Proof. Let R be the radical of A. We would like to show that R = {0}. If
a ∈ R, then a∗a ∈ R, so a∗a is nilpotent and spr(a∗a) = 0. However, by
Corollary 2.2.5 this implies that ‖a‖2 = ‖a∗a‖ = 0, so a = 0 as desired. �

Up to this point, we have been rather liberal with the notation σ(a) when
a is an element of a C∗-algebra by not specifying the particular C∗-algebra in
which we are taking the spectrum. However, it turns out that the choice of
C∗-algebra does not matter.

14



2.2.8 Proposition. LetA and B be C∗-algebras. If B is unital andA is a unital
subalgebra of B, then σA(a) = σB(a) for every a ∈ A. If A is a general
C∗-subalgebra of B, then σA(a)∪ {0} = σB(a)∪ {0} for every a ∈A.

Proof. We can prove both claims at once by working in AI and BI. Since
σB(a) ⊆ σA(a) for every a ∈ A, we need to show that if a ∈ A is invert-
ible in BI, then this inverse is contained in AI. First, we will suppose that
a ∈ A is self-adjoint. Then, by Theorem 2.2.1, the commutative subalgebra
C = C∗({a,a−1}) of BI is ∗-isomorphic to C(X) for some compact Hausdorff
space X. Let â denote the image of a under this isomorphism. Then â is a
nonzero function on X, so 0 ∉ σC(a). Since a is self-adjoint, σC(a) is nec-
essarily a subset of the real line, so by the Stone-Weierstrass Theorem there
are polynomials pn such that pn(x) converges to x−1 on σC(a). Then, since
â−1 = limn→∞pn(â), we see that a−1 = limn→∞pn(a) ∈ C∗(a) ⊆A.

If a ∈ A is not necessarily self-adjoint and a−1 ∈ BI, then (a∗a)−1 =
a−1(a−1)∗ lies in B, and therefore by the above argument also lies inA. Thus
a−1 = (a∗a)−1a∗ belongs toA. �

Historical Notes

The results of this section are due to Gelfand and Naimark [GN43].

2.3 Positivity and Order in C∗-algebras

2.3.1 Definition. Let A be a C∗-algebra. An element a ∈ A is said to be pos-
itive if a is normal and σ(a) ⊆ [0,∞). The set of positive elements of A is
denoted byA+. If a ∈A+, we write a ≥ 0.

By Corollary 2.2.4, if a ∈A is positive then a is self-adjoint.

2.3.2 Example. Let X be a locally compact Hausdorff space. Then the positive
elements of C0(X) are the functions that take only non-negative values.

This example is very important, because most of the basic facts about posi-
tive elements of a C∗-algebra are established by using the corresponding result
for functions and applying the functional calculus.

2.3.3 Proposition. Let A be a C∗-algebra. If a ∈ A+, then there is a unique
b ∈A+ such that b2 = a.
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Proof. Let f : [0,‖a‖]→ R be the square root function. Since σ(a) ⊆ [0,‖a‖]
and f(0) = 0, we can use the continuous functional calculus to apply f to a.
Let b = f(a). Then b is normal and σ(b) = f(σ(a)) ⊆ [0,‖a‖], so b is
positive. Since f 2 = id[0,‖a‖], we have that b2 = f(a)f(a) = a.

Suppose that c is another positive square root of a. Then by the functional
calculus,

c = f(c2) = f(a) = b. �

If a ∈ A+, we let a1/2 denote the unique square root of a in Proposi-
tion 2.3.3.

2.3.4 Proposition. Let A be a C∗-algebra. If a ∈ A is self-adjoint then there
exist a+, a− ∈A+ such that a = a+ − a− and a+a− = 0.

Proof. Define f : R → R and g : R → R by f(x) = (x + |x|)/2 and g(x) =
f(−x). Both f and g are positive, and f(0) = g(0) = 0, so we can use the
functional calculus to apply them to a. Let a+ = f(a) and a− = a+−a = g(a).
Then

a+a− = f(a)g(a) = (fg)(a) = 0. �

2.3.5 Proposition. Let A be a C∗-algebra. If a ∈ Asa, then the following are
equivalent:

(i) a ≥ 0,
(ii) a = b2 for some self-adjoint b ∈A,

(iii) ‖C · 1− a‖ ≤ C for all C ≥ ‖a‖,
(iv) ‖C · 1− a‖ ≤ C for some C ≥ ‖a‖.

Proof. Throughout this proof, we will work inAI rather thanA, as the latter
two conditions require it. The implication (i) =⇒ (ii) is Proposition 2.3.3.
Suppose (ii) holds, i.e. that there exists a self-adjoint b ∈ A such that a = b2,
and fix C ≥ ‖a‖. Then a = f(b), where f ∈ C(σ(b)) is the function f(x) =
x2. Consequently, ‖f‖C(σ(b)) = ‖a‖, and thus 0 ≤ f ≤ ‖a‖ ≤ C . Therefore,
0 ≤ C − f ≤ C . Hence

‖C · 1− a‖ = ‖(C − f)(b)‖ = ‖C − f‖C(σ(b)) ≤ C,

so (iii) holds, which clearly implies (iv). Now, suppose that (iv) holds for some
C ≥ ‖A‖. Then

C ≥ ‖C · 1− a‖ = ‖(C − z)(a)‖ = ‖c − z‖C(σ(b).

Therefore, the identity function is non-negative on σ(a), i.e. σ(a) ⊆ [0,∞),
showing that a is positive. �
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2.3.6 Corollary. Let A be a C∗-algebra. Then A+ defines a closed cone in A,
i.e.A+ is a closed subset ofA, and it is closed under addition and multiplication
by positive scalars. Furthermore,A+ ∩ (−A+) = {0}.

Proof. It is clear from the definition of positivity that A+ is closed under
multiplication by positive scalars. We will first show that A+ is closed. Since
the involution on A defines an isometry, Asa is a closed subset of A. By
the equivalence of condition (iii) in Proposition 2.3.5, it is clear that A+ is a
closed subset of Asa. To show that A is closed under addition, suppose that
a,b ∈A+. By the equivalence of condition (iv) in Proposition 2.3.5, there exist
C1, C2 ∈ R such that C1 ≥ ‖a‖, C2 ≥ ‖b‖, ‖C1·1−a‖ ≤ C1, and ‖C2·1−b‖ ≤ C2.
Then

‖(C1 + C2) · 1− (a+ b)‖ ≤ ‖C1 · 1− a‖ + ‖C2 · 1− b‖ ≤ C1 + C2,

so by the equivalence of condition (iv) in Proposition 2.3.5, a+b ∈A+. Finally,
suppose that a ∈ A+ ∩ (−A+). Then σ(a) ⊆ [0,∞) and σ(−a) ⊆ [0,∞), so
σ(a) = {0} and spr(a) = 0. However, since a is positive it is self-adjoint, so
‖a‖ = spr(a) = 0 and a = 0. �

2.3.7 Proposition. LetA be a C∗-algebra. If a ∈A, then a∗a ∈A+.

Proof. Let b = a∗a. Since b is self-adjoint, by Proposition 2.3.4 there exist
b+, b− ∈ A+ such that b = b+ − b− and b+b− = 0. Let c be the positive square
root of b−, and let d = ac. Since c was defined by applying a continuous
function to a self-adjoint element b− via the functional calculus, the Stone-
Weierstrass Theorem implies that c is a limit of polynomials in b−, which can
be taken to have zero constant coefficient, as the square root function maps 0
to 0. Hence cb+ = b−b+ = 0. Then

−d∗d = −ca∗ac = −c(b+ − b−)c = cb−c = b2
−.

In particular, −d∗d is positive.

Now, let d = x + iy , where x and y are the real and imaginary parts of d.
Then

d∗d+ dd∗ = (x + iy)∗(x + iy)+ (x + iy)(x + iy)∗ = 2(x2 +y2).

This is a sum of positive elements, so by Corollary 2.3.6 it is positive. There-
fore,

dd∗ = (d∗d+ dd∗)− d∗d = (d∗d+ dd∗)+ b2
−

is a sum of positive elements, and hence is positive. It is a standard fact from
Banach algebra theory that

σ(ab)∪ {0} = σ(ba)∪ {0}
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for any two elements a,b in a Banach algebra. Thus,

σ(d∗d)∪ {0} = σ(dd∗)∪ {0}.

Since dd∗ is positive, its spectrum is contained in [0,∞), so the same holds
for d∗d and d∗d is positive. But we showed above that −d∗d is also positive.
Therefore, b2

− = −d∗d = 0. Since b− is positive it has a unique positive square
root, so this implies that b− = 0, i.e. that b is positve. �

If a ∈A, we call (a∗a)1/2 the absolute value ofA, and denote it by |a|.
The positive coneA+ allows us to put an ordering onAsa by defining a ≤ b

to mean b − a ∈A+.

2.3.8 Corollary. Let A be a C∗-algebra. If a ≤ b in Asa and x ∈ A, then
xa∗x ≤ x∗bx.

Proof. Let c be the positive square root of b − a. Then

x∗bx − x∗ax = x∗(b − a)x = (cx)∗(cx) ≥ 0. �

2.3.9 Corollary. LetA be a C∗-algebra. If 0 ≤ a ≤ b are invertible inAsa, then
b−1 ≤ a−1.

Proof. By the preceding corollary,

1− b−1/2ab−1/2 = b−1/2(b − a)b−1/2 ≥ 0.

Thus (a1/2b−1/2)∗(a1/2b−1/2) ≤ 1, so ‖a1/2b1/2‖ ≤ 1. The adjoint has the same
norm, so

1 ≥ (a1/2b−1/2)(a1/2b−1/2)∗ = a1/2b−1a−1/2.

Multiplying on both sides by a−1/2 and applying the preceding corollary yields

a−1 = a−1/21a−1/2 ≥ a−1/2(a1/2b−1a1/2)a−1/2 = b−1. �

There is one important caveat with the interaction between the ordering
on Asa and the continuous functional calculus. If a,b ∈ Asa, a ≤ b, and
f : σ(a)∪ σ(b) → R is a monotone increasing continuous function, then it is
not necessarily the case that f(a) ≤ f(b), even when f is a reasonably nice
function.

2.3.10 Example. LetA= M2(C), and let

a =
(

2 2
2 2

)
and b =

(
3 0
0 6

)
.
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It is easy to see that a,b ∈Asa, and that

b − a =
(

1 −2
−2 4

)
≥ 0,

so that a ≤ b. However, if α > 1, then aα � bα. In particular, a2 � b2.

2.3.11 Definition. Let E be a subset of R. If f : S → R, we say that f is operator
monotone (increasing) if for every C∗-algebraA and a,b ∈Asa such that a ≤ b
and σ(a)∪ σ(b) ⊆ E we have that f(a) ≤ f(b).

The assumption that α > 1 in Example 2.3.10 is necessary, as is shown by
the following proposition.

2.3.12 Proposition. Suppose that 0 < α ≤ 1. Then the function fα : [0,∞) → R
given by f(x) = xα is operator monotone.

Proof. Let
S = {a ∈ (0,∞) : fα is operator monotone}.

Then 1 ∈ S, S is a closed subset of (0,∞), and it is closed under multiplication.
By possibly replacing the ambient C∗-algebra with its unitization, without loss
of generality we may assume that the ambient C∗-algebra is unital. If we wish
to show that α ∈ S we need only show that whenever 0 ≤ a ≤ b and b is
invertible we have that aα ≤ bα. Indeed, if 0 ≤ a ≤ b and b is not necessarily
invertible, then aα ≤ (b+ε·1)α for all ε > 0, and thus aα ≤ limε→0(y+ε·1)α =
bα. We will make another observation to further reduce the claim that needs
to be proven. If a,b ≥ 0 and b is invertible, then aα ≤ bα precisely when
b−α/2aαb−α/2 ≤ 1, i.e. when

‖b−α/2aα/2‖2 = ‖b−α/2aαb−α/2‖ ≤ 1.

Finally, we again recall the fact from elementary Banach algebra theory that
whenever x and y are elements in a Banach algebra,

σ(xy)∪ {0} = σ(yx)∪ {0}.

In particular, spr(xy) = spr(yx).

We will show that if α,β ∈ S, then γ = (α+ β)/2 ∈ S. If 0 ≤ x ≤ y and y
is invertible, we have that

‖b−γ/2aγb−γ/2‖ = spr(aγb−γ)

= spr(aα/2aβ/2b−α/2b−β/2)

= spr(b−β/2aγb−α/2)

≤ ‖(b−β/2aβ/2)(aα/2b−α/2‖
≤ ‖(b−β/2aβ/2)‖‖(aα/2b−α/2‖
≤ 1.
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From these properties about S, to show that (0,1] ⊆ S it suffices to show
that 1/2 ∈ S. If 0 ≤ a ≤ b and b is invertible, then b−1/2ab−1/2 ≤ 1, so
‖b−1/2a1/2‖ ≤ 1. Hence

spr(b−1/4a1/2b−1/4) = spr(b−1/2a1/2) ≤ ‖b−1/2a1/2‖ ≤ 1,

so b−1/4a1/2b−1/4 ≤ 1, i.e. a1/2 ≤ b1/2. Therefore, 1/2 ∈ S, showing that (0,1] ⊆
S as desired. �

Historical Notes

The results of this section have an interesting history. Combining Proposi-
tion 2.3.5 and Proposition 2.3.7, we have that ifA is a C∗-algebra and a ∈Asa,
then the following are equivalent:

(i) a ≥ 0,
(ii) a = b2 for some self-adjoint b ∈A,

(iii) a = b∗b for some b ∈A,
(iv) ‖C · 1− a‖ ≤ C for some C ≥ ‖a‖.

The implication (i) =⇒ (ii) is from the continuous functional calculus, due to
Gelfand and Naimark [GN43]. The implications (ii) =⇒ (iii) is obvious, and the
equivalence of (ii) ⇐⇒ (iv) was proven by Kelley and Vaught [KV53]. The final
implication (iii) =⇒ (i) follows from a remark of Kaplansky, mentioned in a
review by Schatz [Sch54] of a paper of Fukiyama [Fuk52].

As mentioned in the historical remarks to Section 2.1, the definition of a
C∗-algebra originally included an additional axiom, that 1 + a∗a is invertible.
This statement follows from the equivalences mentioned above, so this axiom
was no longer needed in the definition of a C∗-algebra.

Corollary 2.3.6, which states that A+ ∩−A+ = {0} can be rewritten in the
more concrete terms: if a,b ∈A and a∗a+b∗b = 0, then a = b = 0. Fukiyama
[Fuk52] showed that for a Banach ∗-algebra, this property is equivalent to the
C∗-norm condition that ‖a∗a‖ = ‖a‖2 for all a ∈A.

2.4 Bounded Approximate Identities

2.4.1 Definition. Let A be a Banach algebra. A left (resp. right) bounded ap-
proximate identity for A is a bounded net (ei)i∈I such that (eia)i∈I (resp.
(aei)i∈I) converges to a for every a ∈ A. We say that (ei)i∈I is a bounded
approximate identity if it is both a left and right bounded approximate iden-
tity. In any of the above cases, if ‖ei‖ ≤ 1 for all i ∈ I, we say that (ei)i∈I is a
contractive.
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Some authors require a bounded approximate identity to be contractive,
but we do not here, as there are many interesting Banach algebras with a
bounded approximate identity but no contractive bounded approximate iden-
tity. Also, if A is a C∗-algebra, some authors require that a bounded approxi-
mate identity be an increasing net of positive elements, but we do not.

2.4.2 Example. Let X be a locally compact Hausdorff space. Then a bounded
approximate identity for C0(X) can be obtained by considering all positive
functions of norm less than one, ordered by the usual ordering on C0(X)sa.

With some effort, we can use the continuous functional calculus to make
this same method of constructing a bounded approximate identity work for
an arbitrary C∗-algebra.

2.4.3 Proposition. Let A be a C∗-algebra. Then A+ ∩ {a ∈ A : ‖a‖ < 1} is a
bounded approximate identity ofA when it is given the ordering on self-adjoint
elements ofA.

Proof. Let Λ = A+ ∩ {a ∈ A : ‖a‖ < 1}. It is not immediately clear that Λ is
even a directed set. We will show this by establishing an order isomorphism
of Λ with A+, which is clearly a directed set. When A is simply the complex
numbers, A+ = [0,∞) and Λ = [0,1). In this case, the order isomorphism
is established by the continuous functions f : [0,1) → R and g : [0,∞) → R
given by

f(t) = (1− t)−1 and g(t) = 1− (1+ t)−1.

For every t ∈ [0,1) we have

g(f(t)) = 1− (1+ f(t))−1

= 1− (1+ (1− t)−1 − 1)−1

= 1− ((1− t)−1)−1

= 1− (1− t)
= t.

Similarly, for every t ∈ [0,∞),

f(g(t)) = (1− g(t))−1 − 1

= (1− (1− (1+ t)−1))−1 − 1

= ((1+ t)−1)−1 − 1

= 1+ t − 1

= t.

Since f(0) = g(0) = 0, in AI we have f(Λ) ⊆ A and g(A+) ⊆ A. If 0 ≤ s ≤
t < 1 then f(s) ≤ f(t), and if 0 ≤ s ≤ t < ∞ then g(s) ≤ g(t). As we have
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seen by example, this does not necessarily imply the same order properties
when f and g are applied to members of Asa. However, by Corollary 2.3.9
and a few simple algebraic manipulations, if 0 ≤ a ≤ b < 1 then f(a) ≤ f(b),
and if 0 ≤ a ≤ b then g(a) ≤ g(b). Therefore, f and g establish an order
isomorphism between Λ andA+ via the continuous functional calculus.

We now show the convergence criterion making Λ an approximate identity.
If a,b ∈ Λ are such that a ≤ b and x ∈A, then inAI,

‖x − bx‖2 = ‖x∗(1− b)2x‖ ≤ ‖x∗(1− b)x‖ ≤ ‖x∗(1− a)x‖.

Similarly,
‖x − xb‖2 ≤ ‖x(1− a)x∗‖.

We will first prove the result for positive elements of A and then derive it for
arbitrary elements. If x ∈A is positive, let an = g(nx). We have that an ∈A
by the same reasoning as before. For n ∈ N define hn : [0,∞)→ R by

h(t) = t2(1− g(nt)) = t2(1+nt)−1.

Clearly, hn(t) ≤ t/n, so

‖x(1− an)x‖ = ‖h(x)‖ ≤ ‖h‖C0(σ(x)) ≤ ‖x‖/n.

Hence

lim
b∈Λ
‖x − bx‖2 ≤ lim

n→∞
sup
b∈Λ
b≥an

‖x − bx‖2

≤ lim
n→∞

‖x(1− an)x‖

= 0.

A similar argument shows that

lim
b∈Λ
‖x − xb‖2 = 0.

If x ∈A is not necessarily positive, then we have

‖x − xb‖2 = ‖(1− b)x∗x(1− b)‖ ≤ ‖x∗x − x∗xb‖,

allowing us to apply the above to the positive element x∗x, showing that

lim
b∈Λ
‖x − xb‖2 ≤ lim

b∈Λ
‖x∗x − x∗xb‖2 = 0.

Similarly,
lim
b∈Λ
‖x − bx‖2 = 0.

Therefore, Λ is a bounded approximate identity forA. �

22



Occasionally, when A is separable it is useful to have a sequence that is a
bounded approximate identity. The following corollary is an easy consequence
of the preceding theorem.

2.4.4 Corollary. Let A be a separable C∗-algebra. Then A has a contractive
bounded approximate identity that is an increasing sequence inA+. �

Another important class of Banach algebras with bounded approximate
identities is group algebras.

2.4.5 Proposition. Let G be a locally compact group. Then L1(G) has a con-
tractive approximate identity.

Proof. Let (Ui)i∈I be the directed system of all compact neighbourhoods of
the identity, ordered by reverse inclusion. For every i ∈ I let ei be a positive
function supported in Ui such that ei(s−1) = ei(s) and

∫
ei(s)ds = 1. Fix f ∈

Cc(G) supported on K and ε > 0. Then there exists a compact neighbourhood
U of the identity such that |f(ts) − f(s)| < ε whenever t ∈ U . Thus for all
i ∈ I such that Ui ⊆ U ,

‖ei ∗ f − f‖ =
∫
|(ei ∗ f)(s)− f(s)|ds

=
∫ ∫ ei(t)(f (ts)− f(s))dt ds

≤
∫∫
U
ei(t)|f(ts)− f(s)|dt ds

=
∫
U
ei(t)

∫
|f(ts)− f(s)|dx dt

≤
∫
ei(t)µ(U−1K)εdy

= µ(U−1K)ε.

Now, if f ∈ L1(G) choose f0 ∈ Cc(G) such that ‖f − f0‖ < ε/3. Then

‖ei ∗ f − f‖ ≤ ‖ei‖ · ‖f − f0‖ + ‖ei ∗ f0 − f0‖ + ‖f0 − f‖

<
2ε
3
+ ‖ei ∗ f0 − f0‖

< ε

for sufficiently large i ∈ I, showing that (eif)i∈I converges to f . The argument
showing that (fei)i∈I converges to f is similar. �

If A is a unital algebra, then every element of A trivially factors as the
product of two elements. By a remarkable theorem due to Cohen, this is also
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true for all Banach algebras with a bounded left approximate identity. Cohen’s
theorem was soon recognized (in some part by Cohen himself, as well as He-
witt) to really be a theorem about Banach modules, which is the version we
present here.

2.4.6 Definition. Let A be a Banach algebra. A left normed A-module is a
normed space together with a mapA×X → X (written a · x) such that

(i) (a+ b) · x = a · x + b · x and a · (x +y) = a · x + a ·y ;
(ii) (αa) · x = α(a · x) = a · (αx);

(iii) (ab) · x = a · (b · x);
(iv) ‖a · x‖ ≤ M · ‖a‖ · ‖x‖ for some constant M ≥ 1.

If X is complete then it is called a left BanachA-module.

If A is not unital, we can extend a left Banach A-module to a left Banach
AI-module by the action (a+α1)x = ax +αx.

2.4.7 Definition. Let A be a Banach algebra and let X be a left Banach A-
module. Then the closed linear subspace of X spanned by

AX = {a · x : a ∈A, x ∈ X}

is called the essential part of X and is denoted by Xe. If X = Xe, then X is said
to be essential.

2.4.8 Proposition. LetA be a Banach algebra with a bounded left approximate
identity (ei)i∈I , and let X be a left BanachA-module. Then

Xe =AX =
{
x ∈ X : lim

i∈I
ei · x = x

}
.

Proof. Fix x ∈ Xe. For every ε > 0, there exist a1, . . . , an ∈ A, x1, . . . , xn ∈ X
such that ∥∥∥∥∥∥x −

n∑
k=1

akxk

∥∥∥∥∥∥ < ε.
Since

lim
i∈I
ei

 n∑
k=1

akxk

 = n∑
k=1

lim
i∈I
(eiak)x =

n∑
k=1

akxk

and (ei)i∈I is bounded it follows that limeix = x. �

2.4.9 Theorem (Cohen-Hewitt Factorization Theorem). LetA be a Banach al-
gebra with a left approximate identity bounded by K ≥ 1, and let X be a left
BanachA-module. Then for every z ∈ Xe and δ > 0 there exist elements a ∈A
and y ∈ X such that z = ay , ‖a‖ ≤ K, y ∈Az, and ‖y − z‖ < δ.
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Proof. Let C > 0 be such that

0 < K <
1− C
C

.

For example, take C = 1/(K + 2). If e ∈A and ‖e‖ ≤ K define

ϕ(e) = (1− C + Ce)−1.

Then ϕ(e) is a well-defined element inAI since

1− C + Ce = (1− C)(1+ C
1− C e)

and ∥∥∥∥1− (1+ C
1− C e)

∥∥∥∥ = C
1− C ‖e‖ ≤

C
1− CK < 1.

The inequality

(1− C − CK)‖ϕ(e)‖ ≤ ‖(1− C)ϕ(e)‖ − ‖Ceϕ(e)‖
≤ ‖(1− C + Ce)ϕ(e)‖ = 1

implies that
‖ϕ(e)‖ ≤ (1− C − CK)−1

Furthermore, since

ϕ(e)x − x =ϕ(e)(x − (1− C + Ce)x) = Cϕ(e)(x − ex),

we have
‖ϕ(e)x − x‖ ≤ M(1− C − CK)−1‖ex − x‖

for every x ∈ X.

We shall inductively choose a sequence (en)n∈N in A such that ‖en‖ ≤ K.
Assuming we have such a sequence, let a1 = 1 and

an = (1− C)n +
n∑
k=1

C(1− C)k−1ek.

Then

ϕ(en+1)an+1 = (1− C)n +
n∑
k=1

C(1− C)k−1ϕ(en+1)ek,

ϕ(en+1)an+1 − an =
n∑
k=1

C(1− C)k−1(ϕ(en+1)ek − ek),

and so

‖ϕ(en+1)an+1 − an‖ ≤ M(1− C − CK)−1
n∑
k=1

‖en+1ek − ek‖.
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If a−1
n exists and the right-hand side of this inequality is sufficiently small,

then ‖ϕ(en+1)an+1 will be invertible, and thus an+1 will be invertible. Let
yn = a−1

n z. Then we have

‖yn+1 −yn‖ ≤ ‖(ϕ(en+1)an+1)−1ϕ(en1)z − a−1
n ϕ(en+1)z‖

+ ‖a−1
n ϕ(en+1)z − a−1

n z‖
≤ M‖(ϕ(en+1)an+1)−1 − a−1

n ‖‖ϕ(en+1)‖‖z‖
+M‖a−1

n ‖‖ϕ(en+1)z − z‖
≤ M(1− C − CK)−1‖z‖‖(ϕ(en+1)an+1)−1 − a−1

n ‖
+M2(1− C − CK)−1‖a−1

n ‖‖en+1z − z‖.

Thus, inductively choosing en+1 inA with ‖en+1‖ ≤ K such that ‖en+1ek − ek‖
(for 1 ≤ k ≤ n) and ‖en+1z − z‖ are sufficiently small, we can conclude that
a−1
n+1 exists inAI and

‖yn+1 −yn‖ <
δ
2n
.

Then
∞∑
n=1

‖yn+1 −yn‖ <
∞∑
n=1

δ
2n
= δ.

It follows that (yn) is a Cauchy sequence in X and thus has a limit y . We
claim that y ∈ Az. Indeed, yn = a−1

n z and a−1
n ∈ AI , so yn ∈ AIz and hence

y ∈AIz. ButAIz =Az + Cz and z ∈Az, so y ∈Az.

Define

a =
∞∑
k=1

C(1− C)k−1ek.

This series converges because ‖ek‖ ≤ K. Clearly, a ∈ A,

‖a‖ ≤
∞∑
k=1

C(1− C)k−1K = K,

and since a = liman,
z = lim

n→∞
an(a−1

n z) = ay. �

In some applications of factorization, it is necessary to be able to factor
multiple elements of the module as a product with the same element of the
algebra. The following theorem was originally proven as a special case, but it
follows readily from the general factorization theorem for Banach modules.

2.4.10 Corollary. Let A be a Banach algebra with a left approximate identity
bounded by K ≥ 1, and let X be a left Banach A-module. Then for every
sequence (zn)∞n=1 ∈ Xe converging to 0 and δ > 0 there exists an a ∈ A and
a sequence (yn)n∈N ∈ X converging to 0 such that zn = ayn, ‖a‖ ≤ K, yn ∈
Azn, and ‖yn − zn‖ < δ.
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Proof. Define a new left BanachA module

c0(X) = {(xn)∞n=1 ⊆ X : lim
n→∞

xn = 0}

with norm
‖(xn)∞n=1‖∞ = sup

n∈N
‖xn‖

and module action
a · (xn)∞n=1 = (a · xn)∞n=1.

Then the desired conclusion follows from the Factorization Theorem Theo-
rem 2.4.9 applied to c0(X). �

Historical Notes

Theorem 2.4.9 was originally proven by Cohen [Coh59] in the case of a Ba-
nach algebra acting on itself. Various generalizations to Banach modules were
achieved by many people independently, including Hewitt [Hew64] and Curtis
and Figa-Talamanca [CFT66]. The factorization theorem for null sequences,
Corollary 2.4.10, was proven by Varopoulos [Var64].

2.5 Homomorphisms, Ideals, and Quotients

One of the most important results about Banach ∗-algebras is that any ∗-
homomorphism whose codomain is a C∗-algebra is automatically continuous,
and in fact is a contraction. The proof is an easy application of the continuous
functional calculus.

2.5.1 Proposition. Let A be a Banach ∗-algebra and B a C∗-algebra. If π :
A→ B is a ∗-homomorphism, then ‖π(a)‖ ≤ ‖a‖ for all a ∈A.

Proof. By Corollary 2.2.5, ‖b‖ = spr(b) for every normal b ∈ B. For every
a ∈A we have that σB(π(a)) ⊆ σA(a), so

spr(π(x)) ≤ spr(x) ≤ a.

This implies that

‖π(a)‖2 = ‖π(a)∗π(a)‖
= ‖π(a∗a)‖
= spr(π(a∗a))
≤ ‖a∗a‖
≤ ‖a∗‖‖a‖
= ‖a‖2.

Therefore, ‖π(a)‖ ≤ ‖a‖ for all a ∈A. �
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2.5.2 Corollary. Let A and B be C∗-algebras. If π : A → B is an injective
∗-homomorphism then π is an isometry.

Proof. By the preceding proposition, π is a contraction. Suppose π is not
isometric. Then there is an a ∈A such that ‖π(a)‖ < ‖a‖. Let r = ‖π(a∗a)‖
and s = ‖a∗a‖. Then

r = ‖π(a∗a)‖ = ‖π(a)‖2 < ‖a‖2 = ‖a∗a‖ = s.

Let f ∈ C([0, s]) be such that f(t) = 0 for 0 ≤ t ≤ r and f(s) = 1. Therefore,
by the continuous functional calculus,

0 = f(π(a∗a)) = π(f(a∗a)).

Since f does not vanish on σ(a∗a), f(a∗a) ≠ 0. But this contradicts the
injectivity of π . Therefore, our assumption that π is not isometric is false. �

Whenever we speak of an ideal of a C∗-algebra, we mean a norm closed
ideal, and we will assume that all ideals are two-sided unless explicitly sated
otherwise.

2.5.3 Proposition. Every ideal of a C∗-algebra is self-adjoint.

Proof. Let A be a C∗-algebra, and J be an ideal of A. Define B = J ∩ J∗.
Then B is a C∗-subalgebra ofA, so by Proposition 2.4.3, B contains a bounded
approximate identity (ei)i∈I . If a ∈ J then aa∗ ∈ B, so

lim
i∈I
‖a∗ − a∗ei‖2 = lim

i∈I
‖(aa∗ − aa∗ei)− ei(aa∗ − aa∗ei)‖ = 0.

Since (ei)i∈I belongs to B ⊆ J , it follows that J∗ also belongs to J . �

If A is a C∗-algebra and J is an ideal of A then A/J is easily seen to be a
Banach ∗-algebra, where the involution onA/J is defined by (a+J)∗ = a∗+J ,
but it is actually also a C∗-algebra.

2.5.4 Lemma. LetA be a C∗-algebra, J be an ideal ofA, and (ei)i∈I a bounded
approximate identity for J . Then

‖a+ J‖ = lim
i∈I
‖a− aei‖.

Proof. Since aei ∈ J , ‖a+ J‖ ≤ ‖a− aei‖. Towards the reverse inequality, if
ε > 0 there is a b ∈ J such that ‖a− b‖ < ‖a+ J‖ + ε, so that inAI,

lim
i∈I
‖a− aei‖ ≤ lim

i∈I
‖(a− b)(1− ei)‖ + ‖b − bei‖

≤ ‖a− b‖
< ‖a+ J‖ + ε.

Since ε > 0 was arbitrary, the claim is established. �
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2.5.5 Proposition. Let A be a C∗-algebra and J an ideal of A. Then the quo-
tient Banach algebraA/J is a C∗-algebra.

Proof. Let (ei)i∈I be a bounded approximate identity for J . We only need to
verify the C∗-norm condition. If a ∈ A, using the lemma and working in AI,
we have that

‖(a+ J)∗(a+ J)‖ = lim
i∈I
‖a∗a(1− ei)‖

≥ lim
i∈I
‖(1− ei)a∗a(1− ei)‖

= lim
i∈I
‖a(1− ei)‖2

= ‖a+ J‖2.

Therefore, since the other direction of the equality holds in any Banach ∗-
algebra,A/J is a C∗-algebra. �

The preceding proposition allows us to show that ∗-homomorphisms be-
tween C∗-algebras have a particularly rigid structure. In particular, the im-
age of a C∗-algebra via a ∗-homomorphism is always closed, and thus a C∗-
subalgebra of the codomain, and the ∗-homomorphism factors as the compo-
sition of a quotient map and an isometry.

2.5.6 Proposition. LetA andB be C∗-algebras, and let π :A→ B be a nonzero
∗-homomorphism. Then ‖π‖ = 1, π(A) is a C∗-subalgebra of B, and π factors
as π0 ◦q, where q :A→A/ker(π) is the canonical quotient map and π0 is the
induced isometric ∗-isomorphism ofA/ker(π) onto π(A).

Proof. It is easy to verify that the described factorization exists and that π0

is a ∗-isomorphism. Since π0 is injective, it is isometric by Corollary 2.5.2. It
follows that π(A) is closed, and thus is a C∗-subalgebra of B. Since ‖π0‖ = 1
and q is a quotient map of Banach spaces, it follows that ‖π‖ = 1. �

Historical Notes

The results on the structure of ∗-homomorphisms between C∗-algebras and
the existence of quotients of C∗-algebras are due to Segal [Seg49].

2.6 Unitaries, Projections, and Partial Isometries

If A is a unital C∗-algebra, the unitary elements of A form a subgroup U(A)
ofA−1, which we will call the unitary group ofA.
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2.6.1 Proposition. Let A be a unital C∗-algebra. Then every element of A is
the linear combination of four unitary elements.

Proof. Since every element of A is the sum of its real and imaginary parts,
it suffices to show that every self-adjoint element a ∈ A is the sum of two
unitary elements. Without loss of generality, we may assume that ‖a‖ ≤ 1.
Using the continuous functional calculus, define

u = a+ i(1− a2)
1
2 .

It is easy to see that u is unitary and a = 1
2(u+u∗). �

Projections and unitaries on a Hilbert spaceH both have the property that
they define isometries when restricted to subspaces ofH .

2.6.2 Definition. Let A be a unital C∗-algebra. We say that v ∈ A is a partial
isometry if both v∗v and vv∗ are projections, in which case we call v∗v the
initial or source projection of v , and vv∗ the final or range projection of v .

2.6.3 Example. Let H be a Hilbert space and v ∈ B(H ) a partial isometry.
Then v∗v is the projection onto ker(v)⊥, and vv∗ is the projection onto vH .

2.6.4 Proposition. Let A be a unital C∗-algebra. If v ∈ A, then the following
are equivalent:

(i) v is a partial isometry;
(ii) v∗ is a partial isometry;

(iii) v∗v is a projection;
(iv) vv∗ is a projection.

Proof. Clearly, (i) and (ii) are equivalent, and (i) implies both (iii) and (iv). We
will show that (iii) =⇒ (i). Then (iv) =⇒ (i) follows by exchanging v and v∗.
Suppose that v∗v is a projection. Then we have

(vv∗)2 = v(v∗v)v∗ = v(v∗v)(v∗v)v∗ = (vv∗)3.

Since vv∗ is self-adjoint, the continuous functional calculus implies that vv∗
is a projection. �

Since the partial isometries in C are simply the complex numbers of mod-
ulus 1, every complex number α can be written uniquely as v|α|, where v is a
partial isometry. There is a similar decomposition for operators, but in order
to specify the correct uniqueness condition, we need to introduce the notion
of the support projection of an operator.
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If a ∈ B(H ), we call the projection onto ker(a)⊥ the right support pro-
jection of a and the projection onto aH the left support projection of a. We
denote the right support projection by sr(a) and the left support projection
by sl(a). It is easily checked that sr(a) is the least projection p in B(H ) such
that ap = a, and that sl(a) is the least projection p in B(H ) such that pa = p.
It follows that sr(a) = sl(a∗), and that sr(a) = sl(a) if a is self-adjoint. In this
case, we simply call this projection the support projection of a, and denote it
by s(a). It is also easy to check that sr(a) = s(a∗a) and sl(a) = s(aa∗) for all
a ∈ B(H ).

2.6.5 Proposition (Polar Decomposition). Let H be a Hilbert space. If a ∈
B(H ), then there exists a partial isometry v ∈ B(H ) such that a = v|a|,
v∗v = s(|a|) = sr(a), and vv∗ = sl(a). If a is invertible, then we may take
v to be unitary and v ∈ C∗(a). Moreover, this decomposition is unique: if
w ∈ B(H ) is a partial isometry and b ∈ B(H ) is a positive operator such that
a = wb and v∗v = s(b), then w = v and b = |a|.

Proof. Define an operator v0 on the subspace |a|H ofH by

v0(|a|ξ) = aξ.

If ξ ∈H , then

‖v0(|a|ξ)‖2 = ‖aξ‖2 = 〈a∗aξ |ξ〉 = 〈|a|2ξ |ξ〉 = ‖|a|ξ‖2,

so v0 can be extended, in a unique manner, to an isometry defined on the
subspace |a|H = s(|a|)H ofH . It is then possible to define a partial isometry
v on all ofH by

vξ =

v0ξ if ξ ∈ s(|a|)H ,
0 if ξ ∈ (s(|a|)H )⊥.

It is clear that a = v|a|,

v∗v = sr(v) = s(|a|) = sr(a) and vv∗ = sl(v) = sl(a).

If a is invertible, then so is |a| = (a∗a)1/2. Thus

v = a|a|−1 = a(a∗a)−1/2 ∈ C∗(a).

Since

v(|a|a−1) = aa−1 = 1 and (|a|a−1)v = |a|a−1a|a|−1 = 1,

v is invertible, and

v∗v = (a∗a)−1/2(a∗a)(a∗a)−1/2 = 1,

so v is unitary.
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Suppose a = wb, where w is a partial isometry such that v∗v = s(b) and
b is positive. Then

a∗a = b∗w∗wb = b∗b = b2.

By the uniqueness of square roots, |a| = (a∗a)1/2 = b. If ξ ∈H , then

w(|a|ξ) = w(bξ) = aξ = v(|a|ξ),

so w agrees with v on the subspace |a|H = s(|a|)H ofH . Therefore,

w = wsr(w) = ww∗w = ws(b) = ws(|a|) = vs(|a|) = vv∗v = vsr(v) = v,

showing the uniqueness of the decomposition a = v|a| of a. �

We call the decomposition a = v|a| in the preceding theorem the polar
decomposition of a.

2.6.6 Examples.

(i) It is necessary that we consider general partial isometries in the polar
decomposition, not only unitaries. Indeed, let H be a separable Hilbert
space with orthonormal basis (en)∞n=1. Let a ∈ B(H ) be the right shift
operator defined by aen = en+1. Then (a∗a)1/2 = 11/2 = 1, so if v ∈
B(H ) satisfies a = v|a|, we must have that v = a. However, a is not
unitary, because aa∗ ≠ 1.

(ii) IfA is a C∗-subalgebra of B(H ) and a ∈A, then

|a| = (a∗a)1/2 ∈A

by the continuous functional calculus, but if a = v|a| is the polar de-
composition of a, it is not necessarily the case that v ∈ A as well. In-
deed, consider L∞([0,1]) acting on L2([0,1]) by left multiplication. If
f ∈ L∞([0,1]) is positive, then it is easily seen that s(f ) is the character-
istic function of essential support of f , i.e. the complement of the union
of all open subsets G of [0,1] such that f vanishes almost everywhere
on G. It is easy to find continuous functions on [0,1] with an essential
support that is neither � or [0,1], but C([0,1]) does not contain any
projections besides 0 and 1.

Partial isometries are intrinsically linked to the metric structure of a C∗-
algebra. Recall that if X is a locally compact Hausdorff space, then the unit
ball of C0(X) has an extreme point if and only if X is compact, i.e. if and
only if C0(X) is unital, and that the extreme points are precisely the functions
f such that |f(x)| = 1 for all x ∈ X, which are the partial isometries (or
equivalently, unitaries) of C0(X). This characterization of when a C∗-algebra
has extreme points is true for all C∗-algebras, and all of the extreme points
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are partial isometries, but the exact description of the extreme points differs
when the algebra is noncommutative.

One direction of our characterization of when the unit ball of a C∗-algebra
is valid for all Banach algebras.

2.6.7 Proposition. Let A be a unital Banach algebra such that ‖1‖ = 1. Then
1 is an extreme point of the unit ball ofA.

Proof. By Proposition 2.1.11, there is a Banach space X such that A is iso-
metrically isomorphic to a unital subalgebra of B(X). We will simply view A
as a subalgebra of B(X). To show that 1 is an extreme point of the unit ball
of A, it suffices to show that 1 is an extreme point of the unit ball of B(X).
If ‖1 ± a‖ ≤ 1, then ‖1∗ ± a∗‖ ≤ 1 by the properties of adjoints. If f ∈ X∗,
define

f1 = (1∗ + a∗)f and f2 = (1∗ − a∗)f ,
so that f = 1/2(f1 + f2). Since X∗ is a dual space, by the Krein-Milman Theo-
rem its unit ball has an extreme point. If f is an extreme point of the unit ball
of X∗, then f = f1 = f2. Hence a∗f = 0, and so a∗ = 0 and a = 0.

Now, suppose that b, c ∈ A are such that ‖b‖ ≤ 1, ‖c‖ ≤ 1, and 1 =
1/2(b+ c). Let a = 1− b. Then 1−a = b and 1+a = 2 · 1− b = c. Therefore,
by the above, b = 1 and c = 1, showing that 1 is an extreme point of the unit
ball of X. �

While we will show that if the unit ball of a C∗-algebra has an extreme point
then the algebra is unital, this is not true for Banach algebras in general.

2.6.8 Example. Let G be an infinite compact group and consider L2(G) with
the convolution product. Since L2(G) is a dual space, by the Krein-Milman
Theorem its unit ball has many extreme points. However, L2(G) is never unital
when G is an infinite compact group.

2.6.9 Theorem. LetA be a C∗-algebra. Then the unit ball ofA has an extreme
point if and only if A is unital. Moreover, if A is unital and e and f are
projections inA, the extreme points of eAf ∩A1 are the elements v such that

(e− vv∗)A(f − v∗v) = {0},

and such a v is automatically a partial isometry.

Proof. Suppose A is unital. We showed that 1 is an extreme point of A1 in
Proposition 2.6.7. In order to show the converse that A is unital whenever
A1 has an extreme point we will first need to prove the characterization of
extreme points, working in the unitization ofA.
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Suppose v ∈ eAf ∩A1 is an extreme point but is not a partial isometry,
i.e. v∗v is not a projection. Since v ∈ eAf , we have

v∗v ∈ f∗Ae∗eAf = fAeeAf = fAf .

Let A0 be the (commutative) C∗-subalgebra of fAf generated by v∗v . By
taking elements from a bounded approximate identity of A0, there exists a
positive sequence (yn)∞n=1 of elements in the unit ball ofA0 such that

lim
n→∞

(v∗v)yn = v∗v and lim
n→∞

(v∗v)y2
n = v∗v.

Since v∗v is not a projection, the Gelfand transform of v∗v takes a nonzero
value less than 1 at some point t ∈ σ(v∗v). Therefore, by Urysohn’s lemma,
there is a positive element c ∈ A0, whose Gelfand spectrum is nonzero at
t, such that if an = yn + c and bn = yn − c, we have ‖v∗va2

n‖ ≤ 1 and
‖v∗vb2

n‖ ≤ 1. Hence van and vbn are both in eAf ∩A1. However,

lim
n→∞

‖vyn − v‖2

= lim
n→∞

‖(vyn − v)∗(vyn − v)‖

= lim
n→∞

‖(v∗v)y2
n − (v∗v)yn − (v∗v)yn + v∗v‖

=0,

so vyn → v . Thus, van → v + vc and vbn → b − bc. Since

v = (v + vc)+ (v − vc)
2

and v is an extreme point of eAf ∩A1, v = v + vc = v − vc. Hence vc = 0,
and

‖cv∗vc‖ = ‖v∗vc2‖ = 0,

contradicting the fact that the Gelfand transforms of both v∗v and c both
take nonzero values at t. Therefore, our assumption that v is not a partial
isometry is false.

We will now show that (e − vv∗)A(f − v∗v) = {0}. Suppose otherwise
that (e − vv∗)A(f − v∗v) ≠ {0}. Then there exists a nonzero a of the form
(e− vv∗)b(f − v∗v) with ‖b‖ ≤ 1. If p = vv∗ and q = v∗v , we have

‖v ± a‖ = ‖pvq ± (e− p)b(f − q)‖
= ‖(pvq ± (e− p)b(f − q))∗(pvq ± (e− p)b(f − q))‖1/2

= ‖qv∗pvq + (f − q)b∗(e− p)b(f − q)‖
≤max(‖v∗pv‖,‖b∗(e− p)b‖)
≤ 1,
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so both v + a and v − a are in eAf ∩A1. Since

v = (v + a)+ (v − a)
2

,

this contradicts the fact that v is extreme. Therefore, our assumption that
(e − vv∗)A(f − v∗v) ≠ {0} is false. We can now show that if A1 has an
extreme point, thenA is unital. Indeed, if a ∈A, then by the above,

(1− v∗v)(1− vv∗)a∗a(1− vv∗)(1− v∗v) = 0

Therefore, a(1− vv∗)(1− v∗v) = 0 for every a ∈A, which implies that

1− v∗v − vv∗ + (vv∗)(v∗v) = (1− vv∗)(1− v∗v) = 0,

or
1 = v∗v + vv∗ − (vv∗)(v∗v) ∈A,

showing thatA is unital.

Conversely, suppose v ∈ eAf is such that (e − vv∗)A(f − v∗v) = {0}.
Then, in particular,

0 = v∗(e− vv∗)v(f − v∗v) = v∗v(f − v∗v)2.

It follows easily from the continuous functional calculus that v∗v is a projec-
tion, so by Proposition 2.6.4, v is a partial isometry. let p = vv∗ and q = v∗v ,
and let v = 1/2(a+ b), with a and b in eAf ∩A1. Then

v = vq = 1
2
(aq + bq),

so

q = v∗v ≤ 1
2
(qa∗aq + qb∗bq) ≤ q.

Since qa∗aq and qb∗bq belog to the unit ball of the C∗-algebra qAq, for
which q is the unit, it follows from the continuous functional calculus that

q = qa∗aq = qb∗bq.

However,

q = v∗v = 1
4
(qa∗aq + qa∗bq + qb∗aq + qb∗bq),

so that

q = 1
2
(qa∗bq + qb∗aq).

Since q is extreme in the unit ball of qAq by Proposition 2.6.7, we conclude
that q = qa∗bq = qb∗aq. Therefore, q(a − b)∗(a − b)q = 0, and we have
aq = bq. Similarly we can show that pa = pb, and thus by the assumption on
v we have

a− b = (e− q)(a− b)(f − p) = 0,

so that b is an extreme point. �
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Historical Notes

The polar decomposition of bounded operators on a Hilbert space was de-
veloped by von Neumann [vN32]. The proof that the identity is an extreme
point in the unit ball of a Banach algebra if it has norm 1 is due to Kakutani.
The characterization of extreme points in a C∗-algebra was proven by Kadison
[Kad51]. The Theorem 2.6.9 is more general, because it characterizes the ex-
treme points of the unit ball of pAq for projections p,q ∈ A, but there is no
real change to the proof besides some bookkeeping.

2.7 Operator Topologies

There are many useful locally convex topologies on B(H ) besides the norm,
or uniform, topology. In this section we describe the basic operator topologies
and their relationship to each other.

2.7.1 Definition. Let H be a Hilbert space. The weak operator topology on
B(H ) is the locally convex topology defined by the seminorms

a, |〈aξ |η〉|,

where ξ, η ∈ H . The strong operator topology on B(H ) is the locally convex
topology defined by the seminorms

a, ‖aξ‖,

where ξ ∈ H . The strong∗ operator topology on B(H ) is the locally convex
topology defined by the seminorms

a, ‖aξ‖ and a, ‖a∗ξ‖,

or equivalently,

a, (‖aξ‖2 + ‖a∗ξ‖2)
1
2 ,

where ξ ∈H .

By the polarization identity

〈aξ |η〉 =
3∑
k=0

ik〈a(ξ + ikη) |ξ + ikη〉,

it follows that the weak operator topology is also defined by the seminorms

a, |〈aξ |ξ〉|,

where ξ ∈H .
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Often, for the sake of brevity, these topologies are referred to without the
word ‘operator’ in their names. This is only potentially confusing for the weak
operator topology, because the weak topology on a normed vector space is de-
fined as the topology induced by the bounded linear functionals on that space.
However, this topology is rarely used on B(H ), so an unqualified reference to
the weak topology on B(H ) usually means the weak operator topology.

Convergence of nets in these three topologies is related. Indeed, for a net
(ai)i∈I in B(H ), it is easy to see that ai → 0 in the strong operator topology
if and only if a∗i ai → 0 in the weak operator topology, and that ai → 0 in the
strong∗ operator topology if and only if a∗i ai+aia∗i → 0 in the weak operator
topology. If ⊇ indicates that the topology on the left is finer than the topology
on the right, then it is easy to show the relations

norm ⊇ strong∗ ⊇ strong ⊇ weak.

In fact, if H is infinite-dimensional, each of these relations is strict, i.e. none
of these topologies are equal.

2.7.2 Proposition. LetH be an infinite-dimensional Hilbert space. Then no two
of the norm, strong∗, strong, or weak operator topologies agree on B(H ).

Proof. Since these topologies have the relations

norm ⊇ strong∗ ⊇ strong ⊇ weak,

we only need to show that these relations are strict. It suffices to prove only the
case whereH is separable. Indeed, ifH is not separable, letK be a separable
subspace of H . Then B(K) embeds isometrically in B(H ) as B(K)⊕ {0K⊥},
and the topologies under discussion are the same for B(K) and its isometric
copy in B(H ).

Let (en)∞n=1 be an orthonormal basis for H . We will first show that the
weak operator topology on B(H ) is strictly coarser than the strong operator
topology. Let a be the right shift operator defined by aen = en+1. It is easy
to verify that the sequence an converges to 0 in the weak operator topology.
However, since each an is an isometry, the sequence does not converge at all
in the strong operator topology.

To see that the strong operator topology is coarser than the strong∗ oper-
ator topology, define the sequence (vn)∞n=1 by letting vnen = e1 and vnek = 0
for k ≠ n. Then vn → 0 in the strong operator topology, but (vn)∞n=1 does not
converge at all in the strong∗ operator topology.

Finally, to see that the norm topology is coarser than the strong∗ operator
topology, consider the sequence of diagonal operators dn defined by dnen =
en and dnek = 0 for k ≠ n. It is easy to see that dn → 0 in the strong∗ operator
topology, but (dn)∞n=1 does not converge at all in the norm topology. �
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If H is finite-dimensional, then each of these topologies is the same as
the norm topology, and all of the basic ∗-algebraic operations are continuous
with respect to them. Thus, for the rest of this discussion, we will assume
that H is infinite-dimensional. Addition and scalar multiplication are always
continuous for locally convex topologies, so we need only concern ourselves
with the algebra multiplication and the adjoint.

2.7.3 Proposition. LetH be an infinite-dimensional Hilbert space. Then the fol-
lowing table indicates which operations are continuous in the operator topolo-
gies:

strong∗ strong weak
separate multiplication ✓ ✓ ✓
joint multiplication × × ×
joint multiplication (both sides bounded) ✓ ✓ ×
joint multiplication (one side bounded) ✓ ✓ ×
adjoint ✓ × ✓

Proof. For all of the counterexamples to continuity, we will work with a sep-
arable Hilbert space. The examples easily extend to general Hilbert spaces
by considering a separable subspace. First, we deal with the weak operator
topology. The separate continuity of multiplication is clear from the Cauchy-
Schwarz inequality, and the adjoint is continuous because

|〈aξ |η〉| = |〈a∗η |ξ〉|.

Now, suppose thatH is separable and let (en)∞n=1 be an orthonormal basis for
H . Let a ∈ B(H ) be the right shift operator defined by aen = en+1. Then
a∗ is the left shift operator defined by aen = en−1 for n > 1 and ae1 = 0
Then an → 0 and (a∗)n → 0 in the weak operator topology, but an(a∗)n = 1,
showing that multiplication is not jointly continuous, even when one of the
sides is restricted to the unit ball.

Now, we consider the strong operator topology. The relation

abξ − a0b0ξ = a(b − b0)ξ + (a− a0)b0ξ

establishes the joint continuity of multiplication when one of the sides is re-
stricted to a bounded set, which includes the case of separate continuity of
multiplication. Now, suppose that H is separable and let (en)∞n=1 be an or-
thonormal basis for H . Define an ∈ B(H ) by anξ = 〈en |ξ〉e1. Then an → 0,
but

〈a∗ne1 |ξ〉 = 〈e1 |anξ〉 = 〈e1 | e1〉〈en |ξ〉,
showing that a∗ne1 = en, so a∗ne1 does not tend to zero. Hence the adjoint op-
eration is not continuous. The discontinuity of joint multiplication is slightly
more difficult. Let Λ denote the set of all (m,U), where m ∈ N and U is
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a strong operator topology neighbourhood of 0. Then Λ is a directed set
equipped with the ordering saying that (m,U) ≤ (n,V) whenever m ≤ n and
U ⊇ V . Let a ∈ B(H ) be the right shift operator defined by aen = en+1. Then
a∗ is the left shift operator. If λ = (mλ, Uλ) ∈ Λ and ξ ∈H , then

lim
n→∞

mλ‖(a∗)nξ‖ = 0.

Therefore, (mλ(a∗)n)∞n=1 converges to 0 in the strong operator topology. There-
fore, there exists an Nλ such that mλ(a∗)Nλ ∈ Uλ. Define

bλ =mλ(a∗)Nλ and cλ =
1
mλ
(a∗)Nλ

Then

lim
λ∈Λ
‖cλ‖ = lim

λ∈Λ

1
mλ

= 0,

so (cλ)λ∈Λ converges to 0 in the norm topology, and thus in the strong oper-
ator topology. Let U be a strong neighbourhood of 0, and define λ0 = (1, U).
Then bλ0 ∈ Uλ0 and for ebvery λ ≥ λ0, bλ ∈ Uλ ⊆ Uλ0 . Therefore, (bλ)λ∈Λ
converges to 0 in the strong operator topology. However, bλcλ = 1 for all
λ ∈ Λ, so (bλcλ)λ∈Λ converges to 1 in the strong operator topology. Therefore,
multiplication is not jointly continuous in the strong operator topology.

Finally, we consider the strong∗ operator topology. The relation

abξ − a0b0ξ = a(b − b0)ξ + (a− a0)b0ξ

again establishes the continuity of joint multiplication when one of the sides
is restricted to a bounded set, which includes the case of one-sided multipli-
cation. The adjoint operation is obviously continuous, because each of the
defining seminorms of the strong∗ operator topology is invariant under the
adjoint. The non-continuity of joint multiplication is similar to the example
with the strong operator topology. �

While the operator topologies are quite different, they all have the same
continuous linear functionals, which implies that they have the same closed
convex sets.

2.7.4 Proposition. LetH be a Hilbert space, andϕ a bounded linear functional
on B(H ). Then the following are equivalent:

(i) ϕ is continuous in the weak operator topology;
(ii) ϕ is continuous in the strong operator topology;

(iii) ϕ is continuous in the strong∗ operator topology;
(iv) there exist ξ1, . . . , ξn ∈H and η1, . . . , ηn ∈H such that

ϕ(a) =
n∑
i=1

〈aξi |ηi〉.
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Proof. The implications (i) =⇒ (ii), (ii) =⇒ (iii), and (iv) =⇒ (i) are clear,
so all that needs to be shown is that (iii) =⇒ (iv). Suppose ϕ is continuous
in the strong∗ operator topology, and let D be the open unit disc of C. Then
ϕ−1(D) is an strong∗ open neighbourhood of zero, so it contains a basic open
neighbourhood of zero, i.e. there exist ξ1, . . . , ξn ∈H such thata ∈ B(H ) :

n∑
i=1

(‖aξi‖2 + ‖a∗ξi‖2) ≤ 1


⊆{a ∈ B(H ) : (‖aξi‖2 + ‖a∗ξi‖2)

1
2 ≤ 1,1 ≤ i ≤ n}

⊆ϕ−1(D).

Therefore,

|ϕ(a)| ≤
 n∑
i=1

‖aξi‖2 + ‖a∗ξi‖2

 1
2

.

Define ψ : B(H )→H (n) by

ψ(a) = (aξ1, . . . , aξn).

We may define a bounded linear functional F on the range of ψ by F(ψ(a)) =
ϕ(a). By the Hahn-Banach Theorem, F extends to a bounded linear functional
F̃ on all ofH (n). By the Riesz-Fréchet Theorem, there exist vectors η1, . . . , ηn ∈
H such that

F̃((x1, . . . , xn)) =
n∑
i=1

〈xi |ηi〉.

In particular,

ϕ(a) = F̃(ψ(a)) =
n∑
i=1

〈aξi |ηi〉.
�

2.7.5 Corollary. Let H be a Hilbert space, and C a convex subset of B(H ).
Then the following are equivalent:

(i) C is closed in the weak operator topology;
(ii) C is closed in the strong operator topology;

(iii) C is closed in the strong∗ operator topology.

Proof. The Hahn-Banach Theorem implies that locally convex topologies with
the same continuous linear functionals have the same closed convex sets.
Hence this corollary follows from Proposition 2.7.4. �

If H is a Hilbert space and α is a cardinal, we let H (α) denote the α-fold
direct sum of H . If a ∈ B(H ), we let a(α) denote the bounded operator on
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H (α) that acts like a on each copy of H . Clearly, ‖a(α)‖ = ‖a‖. Similarly, if
S ⊆ B(H ), we let

S(∞) = {a(∞) : a ∈ S}.
We call a(∞) and S(∞) the α-fold amplification of a and S respectively. If α = ℵ0,
we will often write ∞ instead of α.

With this in mind, there is a slight deficiency in the operator topologies we
just presented. LetH be a Hilbert space, andH (∞) the direct sum of countably
many copies of H . Then the amplification map Φ : B(H ) → B(H (∞)) is not
continuous with respect to the weak operator topologies on both spaces of
operators. Indeed, let H be a separable Hilbert space with an orthonormal
basis (en)∞n=1, and define a sequence (ξn)∞n=1 by ξn = (1/n2)en. Define a linear
functional ϕ on B(H ) by

ϕ(a) = 〈Φ(a)(ξn)∞n=1 | (ξn)∞n=1〉 =
∞∑
n=1

〈aξn |ξn〉 =
1
n4

∞∑
n=1

〈aen | en〉.

It isn’t too difficult to see that there is no ξ ∈H such that

ϕ(a) = 〈aξ |ξ〉,

so ϕ is not weak operator continuous. However, it is the restriction of weak
operator continuous linear functional on B(H (∞)) to Φ(B(H )), so Φ is not
continuous with respect to the weak operator topology on B(H ) and B(H (∞)).
The same is true for the strong and strong∗ operator topologies, because they
have the same continuous linear functionals. We will now examine variants of
the operator topologies that fix this defect.

2.7.6 Definition. Let H be a Hilbert space. The σ -weak topology on B(H ) is
the locally convex topology defined by the seminorms

a,

∣∣∣∣∣∣
∞∑
n=1

〈aξn |ηn〉

∣∣∣∣∣∣ ,
where (ξn)∞n=1, (ηn)∞n=1 ∈ H (∞). The σ -strong topology on B(H ) is the locally
convex topology defined by the seminorms

a,

 ∞∑
n=1

‖aξn‖2

 1
2

where (ξn)∞n=1 ∈H (∞). The σ -strong∗ topology on B(H ) is the locally convex
topology defined by the seminorms

a,
∞∑
n=1

‖aξn‖ and
∞∑
n=1

‖a∗ξn‖,
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or equivalently,

a,

 ∞∑
n=1

(‖aξn‖2 + ‖a∗ξn‖2)

 1
2

where (ξn)∞n=1 ∈H (∞).

By the polarization identity

〈aξ |η〉 =
3∑
k=0

ik〈a(ξ + ikη) |ξ + ikη〉,

it follows that the σ -weak is also defined by the seminorms

a,

∣∣∣∣∣∣
∞∑
n=1

〈aξn |ξn〉

∣∣∣∣∣∣ ,
where (ξn)∞n=1 ∈H (∞).

If Φ : B(H ) → B(H∞) be the amplification map, then the weak (resp.
strong, strong∗) operator topology inherited by Φ(B(H )) is precisely the σ -
weak (resp. σ -strong, σ -strong∗) topology. The weak (resp. strong, strong∗)
operator topology is weaker than the σ -weak (resp. σ -strong, σ -strong∗) op-
erator topology.

Convergence of nets in these three topologies is related. Indeed, for a net
(ai)i∈I in B(H ), it is easy to see that ai → 0 σ -strongly if and only if a∗i ai → 0
σ -weakly, and that ai → 0 σ -strong∗ if and only if a∗i ai + aia∗i → 0 σ -weakly.
If ⊇ indicates that the topology on the left is finer than the topology on the
right, then it is easy to show the relations

norm ⊇ σ -strong∗ ⊇ σ -strong ⊇ σ -weak.

IfH is infinite-dimensional then each of these relations is strict.

2.7.7 Proposition. LetH be an infinite-dimensional Hilbert space. Then no two
of the norm, σ -strong∗, σ -strong, or σ -weak topologies agree on B(H ).

Proof. This is similar to Proposition 2.7.2, so we will omit the proof. �

2.7.8 Proposition. LetH be an infinite-dimensional Hilbert space. Then the fol-
lowing table indicates which operations are continuous in the operator topolo-
gies:

σ -strong∗ σ -strong σ -weak
separate multiplication ✓ ✓ ✓
joint multiplication × × ×
joint multiplication (both sides bounded) ✓ ✓ ×
joint multiplication (one side bounded) ✓ ✓ ×
adjoint ✓ × ✓
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Proof. This is similar to Proposition 2.7.3, so we will omit the proof. �

2.7.9 Proposition. LetH be a Hilbert space, andϕ a bounded linear functional
on B(H ). Then the following are equivalent:

(i) ϕ is σ -weakly continuous;
(ii) ϕ is σ -strongly continuous;

(iii) ϕ is σ -strong∗ continuous;
(iv) there exist sequences (ξn)∞n=1 and (ηn)∞n=1 inH (∞) such that

ϕ(a) =
∞∑
n=1

〈aξn |ηn〉.

Proof. The implications (i) =⇒ (ii), (ii) =⇒ (iii), and (iv) =⇒ (i) are clear,
so all that needs to be shown is that (iii) =⇒ (iv). Suppose ϕ is strong∗

continuous, and let D be the open unit disc of C. Then ϕ−1(D) is an strong∗

open neighbourhood of zero, so it contains a basic open neighbourhood of
zero, i.e. there exists a sequence (ξn)∞n=1 ∈H (∞) such thata ∈ B(H ) :

∞∑
i=1

(‖aξi‖2 + ‖a∗ξi‖2) ≤ 1

 ⊆ϕ−1(D).

Therefore,

|ϕ(a)| ≤
 ∞∑
i=1

‖aξi‖2 + ‖a∗ξi‖2

 1
2

.

Define ψ : B(H )→H (∞) by

ψ(a) = (aξ1, . . . , aξn, . . . ).

We may define a bounded linear functional F on the range of ψ by F(ψ(a)) =
ϕ(a). By the Hahn-Banach Theorem, F extends to a bounded linear functional
F̃ on all ofH (n). By the Riesz-Fréchet Theorem, there is a sequence (ηn)∞n=1 ∈
H (∞) such that

F̃((x1, . . . , xn, . . . )) =
∞∑
i=1

〈xi |ηi〉.

In particular,

ϕ(a) = F̃(ψ(a)) =
∞∑
i=1

〈aξi |ηi〉.
�

2.7.10 Corollary. Let H be a Hilbert space, and C a convex subset of B(H ).
Then the following are equivalent:

(i) C is closed in the σ -weak topology;
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(ii) C is closed in the σ -strong topology;
(iii) C is closed in the σ -strong∗ topology.

Proof. The Hahn-Banach Theorem implies that locally convex topologies with
the same continuous linear functionals have the same closed convex sets.
Hence this corollary follows from Proposition 2.7.9. �

We are now going to show that the σ -weak topology on B(H ) is the weak∗

topology from a particular predual of B(H ). LetH be a Hilbert space andH
its conjugate space, so that H∗ � H and (H )∗ � H . Let H ⊗γ H be the
Banach space projective tensor product ofH andH . We have

(H ⊗γH )∗ � B(H , (H )∗) � B(H )

via the pairing 〈 ∞∑
n=1

ξn ⊗ ηn , a
〉
=

∞∑
n=1

〈aξn |ηn〉.

2.7.11 Proposition. Let H be a Hilbert space and F the collection of finite-
dimensional subspaces of H , ordered by inclusion. For every F ∈ F , let pF be
the orthogonal projection ofH onto F . Then if t ∈H ⊗γH ,

lim
F∈F
(pF ⊗ pF)t = t.

Proof. We know from the basic theory of Hilbert spaces that

lim
F∈F

pFξ = ξ

for all ξ ∈H . Fix t ∈H⊗γH and ε > 0. Let (ξn)∞n=1 and (ηn)∞n=1 be sequences
inH such that

t =
∞∑
n=1

ξn ⊗ ηn and
∞∑
n=1

‖ξn‖‖ηn‖ < ‖t‖γ +
ε
4
.

Let k ∈ N be such that
∞∑

n=k+1

‖ξn‖‖ηn‖ <
ε
2
.

Then ∥∥∥∥∥∥t −
k∑
n=1

ξn ⊗ ηn

∥∥∥∥∥∥
γ

<
ε
2
.

Also, if F contains the span of {ξ1, . . . , ξk, η1, . . . , ηk}, then

k∑
n=1

pFξn ⊗ pFηn −
k∑
n=1

ξn ⊗ ηn = 0,
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so for a large enough F ∈ F we have

‖(pF ⊗ pF)t − t‖γ ≤ ‖pF ⊗ pF‖ ·

∥∥∥∥∥∥t −
k∑
n=1

ξn ⊗ ηn

∥∥∥∥∥∥
γ

+

∥∥∥∥∥∥
k∑
n=1

pFξn ⊗ pFηn −
k∑
n=1

ξn ⊗ ηn

∥∥∥∥∥∥
γ

+

∥∥∥∥∥∥
k∑
n=1

ξn ⊗ ηn − t

∥∥∥∥∥∥
γ

≤ ε
2
+ 0+ ε

2
= ε.

Therefore,
lim
F∈F
(pF ⊗ pF)t = t. �

2.7.12 Corollary. Let H be a Hilbert space. The finite rank operators on H
are σ(B(H ),H ⊗γH ) dense in B(H ).

Proof. Let F the family of finite-dimensional subspaces of H , ordered by
inclusion. For every F ∈ F , let pF :H →H be the orthogonal projection onto
F . If a ∈ B(H ) and t ∈H ⊗γH , then by Proposition 2.7.11,

lim
F∈F
〈pFapF , t〉 = lim

F∈F
= 〈a, (pF ⊗ pF)t〉 = 〈a, t〉,

so a is the σ(B(H ),H ⊗γH ) limit of finite rank operators. �

Fix t ∈ H ⊗γ H . Then there exist sequences (ξn)∞n=1 and (ηn)∞n=1 in H
such that

t =
∞∑
n=1

ξn ⊗ ηn and
∞∑
n=1

‖ξn‖‖ηn‖ <∞.

Define t̃ ∈ B(H ) by

t̃ξ =
 ∞∑
n=1

ξn ⊗ ηn

ξ = ∞∑
n=1

〈ξ |ηn〉ξn.

Note that t̃ is a limit of finite rank operators, so t̃ ∈ K(H ).

2.7.13 Definition. LetH be a Hilbert space. We say that x ∈ B(H ) is a trace-
class operator if x = t̃ for some t ∈H ⊗γH . The set of trace-class operators
onH is denoted by T (H ).
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We will not distinguish between an element of T (H ) and the operator in
B(H ) that it represents.

2.7.14 Proposition. LetH be a Hilbert space. Then

(i) the map t , t̃ fromH ⊗γH to T (H ) is injective;
(ii) T (H ) is a self-adjoint two-sided ideal in B(H );

(iii) if x ∈ T (H ), then |x| ∈ T (H );
(iv) T (H ) consists of the compact operators x onH such that

∞∑
n=1

µn(x) <∞,

where (µn(x))∞n=1 is the characteristic list of eigenvalues of |x|.

Proof.

(i) Suppose that t ∈ H ⊗γ H and t̃ = 0. We want to show that t = 0.
Suppose otherwise, that t ≠ 0. Let (ξn)∞n=1 and (ηn)∞n=1 be sequences in
H such that

t =
∞∑
n=1

ξn ⊗ ηn and
∞∑
n=1

‖ξn‖‖ηn‖ <∞.

By Corollary 2.7.12, the finite rank operators are σ(B(H ),H ⊗γ H )
dense in B(H ). Since the finite rank operators are the span of the rank
one operators and t ≠ 0, there exist ξ, η ∈H such that

〈t, ξ ⊗ η〉 ≠ 0.

However,

〈t̃ξ |η〉 =
〈 ∞∑

n=1

ξn ⊗ ηn

ξ
∣∣∣∣∣∣η
〉

=
∞∑
n=1

〈ξ |ηn〉〈ξn |η〉

=
∞∑
n=1

〈ηn ⊗ ξn, ξ ⊗ η〉

=
〈 ∞∑
n=1

ξn ⊗ ηn , ξ ⊗ η
〉

= 〈t, ξ ⊗ η〉
≠ 0,

contradicting the fact that t̃ = 0. Therefore, our assumption that t ≠ 0 is
false.
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(ii) Fix x ∈ T (H ) and let (ξn)∞n=1 and (ηn)∞n=1 be sequences inH such that

x =
∞∑
n=1

ξn ⊗ ηn and
∞∑
n=1

‖ξn‖‖ηn‖ <∞.

Then, for every a ∈ B(H ),

ax =
∞∑
n=1

(aξn)⊗ ηn ∈ T (H ) and xa =
∞∑
n=1

ξn ⊗ aηn ∈ T (H ).

Therefore, T (H ) is an ideal. Furthermore,

x∗ =
∞∑
n=1

ηn ⊗ ξn ∈ T (H ),

so T (H ) is self-adjoint.
(iii) Fix x ∈ T (H ), and let x = v|x| be the polar decomposition of x. Then

v∗x = v∗v|x| = s(|x|)|x| = |x|.

By (ii), T (H ) is an ideal, so |x| ∈ T (H );
(iv) The operator norm on H ⊗H , viewing tensors as finite rank operators,

is clearly a cross norm. Therefore, the operator norm on H ⊗ H is
dominated by the projective norm, which is the norm on T (H ). Since
every operator in T (H ) is the limit, in the projective norm, of finite
rank operators, it is also the limit of finite rank operators in the operator
norm. Therefore, every trace-class operator is compact. Now, suppose
that a ∈ K(H ). Then, by the Spectral Theorem for self-adjoint com-
pact operators and the polar decomposition, there exist orthonormal se-
quences (ξn)∞n=1 and (ηn)∞n=1 inH such that

aξ =
∞∑
n=1

µn(a)〈ξ |ηn〉ξn.

The desired conclusion is clear. �

We will now prove a useful criterion for determining whether an operator
is compact or trace-class.

2.7.15 Proposition. LetH be a Hilbert space. If a ∈ B(H ), then

(i) a is compact if and only if for all orthonormal sequences (en)∞n=1 and
(fn)∞n=1 inH , the sequence (〈aen |fn〉)∞n=1 belongs to c0(N);

(ii) a is trace-class if and only if for all orthonormal sequences (en)∞n=1 and
(fn)∞n=1 inH , the sequence (〈aen |fn〉)∞n=1 belongs to `1(N).
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Proof.

(i) Suppose that a is compact, and that (en)∞n=1 and (fn)∞n=1 are orthonormal
sequences in H . Since (en)∞n=1 is a weak null sequence and compact
operators are completely continuous,

lim
n→∞

‖aen‖ = 0.

By the Cauchy-Schwarz inequality, it follows that

0 ≤ lim
n→∞

|〈aen |fn〉| ≤ lim
n→∞

‖aen‖1/2‖fn‖1/2 = 0.

Therefore,
lim
n→∞
〈aen |fn〉 = 0.

Conversely, suppose that for all orthonormal sequences (en)∞n=1 and
(fn)∞n=1 in H , the sequence (〈aen |fn〉)∞n=1 belongs to c0(N). We will
show that a is approximable by finite rank operators, and is thus com-
pact. Fix ε > 0 such that ε < ‖a‖. Then there exist unit vectors ξ, η ∈H
such that |〈aξ |η〉| > ε. Consequently, the collection F of all pairs
((ξi)i∈I , (ηi)i∈I) of orthonormal families (ξi)i∈I and (ηi)i∈I in H such
that |〈aξi |ηi〉| > ε for all i ∈ I is non-empty. We can naturally put a
partial ordering on F by defining

((ξi)i∈I , (ηi)i∈I) ≤ ((ξ′j)j∈J , (η′j)j∈J)

whenever I ⊆ J and ξi = ξ′i and ηi = η′i for all i ∈ I. It is easy to see that
every chain in F has an upper bound, so by Zorn’s Lemma there exists
a maximal element of F , which we will denote by ((ei)i∈Iε , (fi)i∈Iε). By
our assumption on a, Iε must be finite. Enumerate the elements of Iε as
{i1, . . . , ik}. Define projections p and q in B(H ) by

pξ =
k∑
n=1

〈ξ | ein〉ein and qξ =
k∑
n=1

〈ξ |fin〉fin .

Both p and q have finite rank, so b = ap + qa − qap is a finite rank
operator in B(H ). We claim that ‖a− b‖ ≤ ε.

Suppose to the contrary that ‖a−b‖ > ε. Then there exist unit vectors
ξ, η ∈ H such that |〈(a− b)ξ |η〉| > ε. Let e0 = ξ − pξ and f0 = η− qη,
and observe that

e0 ∈ {ei : i ∈ Iε}⊥ and f0 ∈ {fi : i ∈ Iε}⊥.

Note that ‖e0‖ ≤ 1 and ‖f0‖ ≤ 1. Since (1− q)a(1− p) = a− b,

|〈ae0 |f0〉| = |〈a(1− p)ξ | (1− q)η〉|
= |〈(1− q)a(1− p)ξ |η〉|
= |〈(a− b)ξ |η〉|
> ε
≥ ε‖e0‖‖f0‖.
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Therefore, e0 and f0 are non-zero, and

|〈a(e0/‖e0‖) |f0/‖f0‖〉| > ε,

contradicting the maximality of Iε. Therefore, our assumption that ‖a−
b‖ > ε is false, showing that a is compact.

(ii) Suppose that a is trace-class. Then there exist orthonormal sequences
(ξn)∞n=1 and (ηn)∞n=1 inH such that

aξ =
∞∑
n=1

µn(a)〈ξ |ηn〉ξn,

where (µn(a))∞n=1 is the characteristic sequence of eigenvalues of a. By
Hölder’s inequality,

|〈aen |fn〉| ≤
∞∑
m=1

µm(a)1/2|〈en |ξm〉|µm(a)1/2|〈ηm |fn〉|

≤
 ∞∑
m=1

µm(a)|〈en |ξm〉|2
1/2 ∞∑

m=1

µm(a)|〈ηm |fn〉|2
1/2

.

Therefore,

∞∑
n=1

|〈aen |fn〉| ≤
∞∑
n=1

 ∞∑
m=1

µm(a)|〈en |ξm〉|2
1/2 ∞∑

m=1

µm(a)|〈ηm |fn〉|2
1/2

≤
 ∞∑
m,n=1

µm(a)|〈en |ξm〉|2
1/2 ∞∑

m,n=1

µm(a)|〈ηm |fn〉|2
1/2

≤
∞∑
m=1

µm(a) <∞.

Conversely, suppose that for all orthonormal sequences (en)∞n=1 and
(fn)∞n=1 inH , the sequence (〈aen |fn〉)∞n=1 belongs to `1(N). Since `1(N)
is contained in c0(N), by (a) we have that a is compact. Then, by a com-
bination of the Spectral Theorem for compact operators and the polar
decomposition, there exist orthonormal sequences (ξn)∞n=1 and (ηn)∞n=1

inH such that

aξ =
∞∑
n=1

µn(a)〈ξ |ηn〉ξn.

Since
µn(a) = 〈aξn |ηn〉,

our assumption implies that (µn)∞n=1 is summable, which by part (iii) of
Proposition 2.7.14 implies that a is trace-class. �
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If x ∈ T (H ), and (ξn)∞n=1 and (ηn)∞n=1 are sequences inH such that

x =
∞∑
n=1

ξn ⊗ ηn and
∞∑
n=1

‖ξn‖‖ηn‖ <∞,

we define the trace of x to be the sum

Tr(x) =
∞∑
n=1

〈ξn |ηn〉.

By the Cauchy-Schwarz inequality,

∞∑
n=1

|〈ξn |ηn〉|2 ≤
∞∑
n=1

‖ξn‖‖ηn‖ <∞,

so this sum is absolutely convergent. If a ∈ B(H ), then

Tr(ax) =
∞∑
n=1

〈aξn |ηn〉 = 〈ξn |a∗ηn〉 = Tr(xa),

and

〈x,a〉 =
∞∑
n=1

〈aξn |ηn〉 = Tr(ax).

Hence Tr implements the duality between T (H ) and B(H ). If H is finite
dimensional, then B(H ) = K(H ) is reflexive, so T (H ) is also isometrically
isomorphic toK(H )∗ via the same duality. It turns out that this result holds
even ifH is not finite dimensional.

2.7.16 Theorem. Let H be a Hilbert space. Then T (H ) is isometrically iso-
morphic toK(H )∗ via the pairing 〈a,x〉 = Tr(ax).

Proof. Since T (H )∗ � B(H ) isometrically via the same pairing andK(H ) ⊆
B(H ), every x ∈ T (H ) automatically defines an element K(H )∗ with norm
at most ‖x‖γ . Fix ϕ ∈ K(H )∗. If ξ, η ∈ H , then the rank one operator ξ ⊗ η
has norm ‖ξ‖‖η‖, so the sesquilinear form [·, ·] defined by

[ξ, η] =ϕ(ξ ⊗ η)

is bounded. Therefore, by the Riesz-Fréchet Theorem, there exists an x ∈
B(H ) such that

ϕ(ξ ⊗ η) = [ξ, η] = 〈xξ |η〉
for all ξ, η ∈H . By linearity, ϕ(a) = Tr(ax) for all finite rank a ∈ K(H ).

We want to show that x ∈ T (H ). Let (en)∞n=1 and (fn)∞n=1 be orthonor-
mal sequences in H . Fix a sequence (αn)∞n=1 in c0(N), and define a compact
operator

b =
∞∑
n=1

αnen ⊗ fn.
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Then
∞∑
n=1

αn〈xen |fn〉 =
∞∑
n=1

αnϕ(en ⊗ fn) =ϕ(a).

Since (αn)∞n=1 was arbitrary, the sequence (〈xen |fn〉)∞n=1 belongs to `1(N).
Therefore, by Proposition 2.7.15 (ii), x ∈ T (H ). �

2.7.17 Corollary. LetH be a Hilbert space. ThenK(H )∗∗ is isometrically iso-
morphic to B(H ), and the natural embedding ofK(H ) intoK(H )∗∗ extends
the inclusion ofK(H ) into B(H ).

Proof. Clear from Theorem 2.7.16 and duality between T (H ) and B(H ). �

2.7.18 Proposition. Let H be a Hilbert space. Then the σ -weak topology on
B(H ) coincides with the weak∗ topology from T (H ).

Proof. Recall that the σ -weak topology is generated by linear functionals of
the form

ϕ(a) =
∞∑
n=1

〈aξn |ξn〉

for some sequence (ξn)∞n=1 inH (∞). Consider such a functional. Then

∞∑
n=1

‖ξn‖2 <∞,

and

x =
∞∑
n=1

ξn ⊗ ξn

defines an element of the projective tensor product H ⊗γ H , i.e. an element
of T (H ). By the duality formulas for T (H ), we have that

〈a,x〉 = Tr(ax) =
∞∑
n=1

〈aξn |ξn〉 =ϕ(a).

Therefore, the σ -weak topology is weaker than the weak∗ topology fromT (H ).
Conversely, suppose that x ∈ T (H ). Let x = v|x| be the polar decomposi-

tion of x. Then |x| is a positive compact operator, so by the Spectral Theorem
for compact operators there is an orthonormal sequence (en)∞n=1 in H such
that

|x|ξ =
∞∑
n=1

µn(|x|)〈ξ | en〉en,

where (µn(|x|))∞n=1 is the characteristic sequence of eigenvalues of |x|. Since
|v| ∈ T (H ), by Proposition 2.7.15 (ii), we have

∑∞
n=1 µn(|x|) < ∞. Define
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ξn = µn(|x|)1/2ven and ηn = µn(|x|)1/2en. Then both (ξn)∞n=1 and (ηn)∞n=1 are
inH (∞), and

x = v|x| =
∞∑
n=1

ξn ⊗ ηn.

If a ∈ B(H ), we have

〈a,x〉 = Tr(ax) =
∞∑
n=1

〈aξn |ηn〉.

Therefore, the weak∗ topology from T (H ) is weaker than the σ -weak topol-
ogy. �

It is easy to see that the weak operator topology is generated by the rank
one operators in T (H ), which are dense in T (H ). Hence the weak operator
topology is weaker than the σ -weak topology. We will show that the weak op-
erator topology agrees with the σ -weak topology on bounded sets, and derive
similar facts for the other operator topologies.

2.7.19 Proposition. LetH be a Hilbert space. Then, if S is a bounded subset of
B(H ),

(i) the weak operator topology and the σ -weak topology agree on S;
(ii) the strong operator topology and the σ -strong topology agree on S;

(iii) the strong∗ operator topology and the σ -strong∗ topology agree on S.

Proof.

(i) Since the weak operator topology is weaker than the σ -weak topology,
the identity map on S is σ -weak to weak operator continuous. Since
the σ -weak topology is a weak∗-topology, S is σ -weakly compact by the
Banach-Alaoglu Theorem. Therefore, the identity map on S is a σ -weak
to weak operator homeomorphism.

(ii) This follows from (i) and the fact that for a net (ai)i∈I in B(H ),

ai → 0 (strong operator) ⇐⇒ a∗i ai → 0 (weak operator),
ai → 0 (σ -strongly) ⇐⇒ a∗i ai → 0 (σ -weakly).

(iii) This follows from (i) and the fact that for a net (ai)i∈I in B(H ),

ai → 0 (strong∗ operator) ⇐⇒ a∗i ai + aia∗i → 0 (weak operator),
ai → 0 (σ -strong∗) ⇐⇒ a∗i ai + aia∗i → 0 (σ -strong∗). �

2.7.20 Corollary. Let H be a Hilbert space. Then the closed unit ball of B(H )
is weak operator compact.
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Proof. By the Banach-Alaoglu Theorem, the unit ball of B(H ) is σ -weakly
compact. By Proposition 2.7.19, the weak operator topology agrees with the
σ -weak topology on the unit ball. Therefore, the unit ball is weak operator
compact. �

2.7.21 Proposition. LetH be a Hilbert space, and C ⊆ B(H ) a convex set. Let
S be the unit ball of B(calH). Then the following are equivalent:

(i) C is closed in the weak operator topology;
(ii) C is closed in the strong operator topology;

(iii) C is closed in the strong∗ operator topology;
(iv) C ∩ rS is closed in the σ -weak topology for all r > 0;
(v) C ∩ rS is closed in the σ -strong topology for all r > 0;

(vi) C ∩ rS is closed in the σ -strong∗ topology for all r > 0.

If C is a linear subspace of B(H ), then by scaling we need only consider r = 1
in the last three conditions.

Proof. By Corollary 2.7.5, the weak operator, strong operator, and strong∗

operator topologies have the same closed convex sets, proving the equivalence
of (i), (ii), and (iii). By Corollary 2.7.10, the σ -weak, σ -strong, and σ -strong∗

topologies have the same closed convex sets, proving the equivalence of (iv),
(v), and (vi). Therefore, we need only prove the equivalence of (i) and (iv).

Recall the Krein-Šmulian Theorem, which states that a convex subset C of
a dual space is weak∗ closed if and only if C ∩ rS is weak∗ closed for all
r > 0, where S is the unit ball. Applied to the σ -weak topology, it implies
that a convex subset C of B(H ) is σ -weakly closed if and only if C ∩ rS is
σ -weakly closed for all r > 0. By Proposition 2.7.19, the σ -weak topology and
weak operator topology agree on bounded subsets of B(H ). This implies the
equivalence of (i) and (iv). �

We will show in Corollary 2.8.18 that all of the topologies defined in this
section have the same closed ∗-subalgebras of B(H ).

The operator topologies rarely agree on subsets of B(H ), but there are a
few exceptions.

2.7.22 Proposition. LetH be a Hilbert space.

(i) The adjoint operation is continuous in the strong operator topology when
restricted to the set of normal operators, so the strong operator topology
and the strong∗ operator topology agree on the set of normal operators.

(ii) Similarly, the adjoint operation is continuous in the σ -strong topology
when restricted to the set of normal operators, so the σ -strong topology
and the σ -strong∗ topology agree on the set of normal operators.
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(iii) All of the operator topologies agree on the unitary group U(H ).

Proof. Clearly, (i) and (ii) follow from the following inequality for normal op-
erators a,b ∈ B(H ) and ξ ∈H :

‖(a∗ − b∗)ξ‖2 = 〈aa∗ξ |ξ〉 + 〈bb∗ξ |ξ〉 − 〈ab∗ξ |ξ〉 − 〈ba∗ξ |ξ〉
= ‖aξ‖2 − ‖bξ‖2 + 〈(bb∗ − ab∗)ξ |ξ〉 + 〈(bb∗ − ba∗)ξ |ξ〉
= ‖aξ‖2 − ‖bξ‖2 + 〈(b − a)b∗ξ |ξ〉 + 〈ξ | (b − a)b∗ξ〉
≤ ‖(a− b)ξ‖(‖aξ‖ + ‖bξ‖)+ 2‖(b − a)b∗ξ‖‖ξ‖.

By Proposition 2.7.19 and part (i), to show (iii) we need only show that the
strong operator topology and the weak operator topology agree on U(H ).
Since the weak operator topology is weaker than the strong operator topology,
we need only show that if a net of unitaries converges in the weak operator
topology, then it converges in the strong operator topology. This follows from
the following inequality for u,v ∈ U(H ) and ξ ∈H :

‖(u− v)ξ‖2 = 〈(u− v)ξ | (u− v)ξ〉
= 〈(u− v)ξ |uξ〉 − 〈(u− v)ξ |uξ〉
= 〈ξ | (u∗ − v∗)uξ〉 − 〈(u− v)ξ |vξ〉
= 〈ξ |ξ − v∗uξ〉 − 〈(u− v)ξ |vξ〉
= 〈vξ |vξ −uξ〉 − 〈(u− v)ξ |vξ〉
= 〈uξ − vξ |vξ〉 − 〈(u− v)ξ |vξ〉
= −2 Im〈(u− v)ξ |vξ〉. �

While none of the operator topologies on B(H ) are metrizable when H is
infinite-dimensional, the situation is different on the unit ball, at least when
H is separable.

2.7.23 Proposition. Let H be a separable Hilbert space. Then the unit ball of
B(H ) is metrizable with respect to each of the weak operator, strong operator,
and strong∗ operator topologies.

Proof. Let (ξn)∞n=1 be a dense sequence in the unit ball ofH . Then the metric

dw(a, b) =
∞∑
n=1

1
2n
〈(a− b)ξn |ξn〉

induces the weak operator topology on the unit ball of B(H ), the metric

ds(a, b) =
∞∑
n=1

1
2n
‖(a− b)ξn‖
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induces the strong operator topology, and the metric

ds∗(a, b) =
∞∑
n=1

1
2n
(‖(a− b)ξn‖ + ‖(a− b)∗ξn‖)

induces the strong∗ operator topology. �

The self-adjoint part of B(H ) is monotone order complete with respect to
its usual ordering. Perhaps more importantly, the supremum of a bounded
increasing net is also its strong operator limit.

2.7.24 Proposition. LetH be a Hilbert space, and (ai)i∈I a bounded increasing
net in B(H )sa. Then (ai)i∈I has a supremum, which is also its strong operator
limit.

Proof. LetM be a bound for the norms of the elements of the net (ai)i∈I . Then
for every ξ ∈ H , the net (〈aiξ |ξ〉)i∈I is an increasing net of real numbers
bounded above by 〈M1ξ |ξ〉 = M‖ξ‖2. Thus we may define a quadratic form

Λ(a) = lim
i∈I
〈aiξ |ξ〉 = sup

i∈I
〈aiξ |ξ〉.

Then, by the Riesz-Fréchet Theorem, there is an a ∈ B(H ) defined by the
polarization identity

〈aξ |η〉 = 1
4

4∑
k=1

ikΛ(ξ + ikη).

As the polarization identity is valid for each ai, it follows that

lim
i∈I
〈aiξ |η〉 = 〈aξ |η〉

for every ξ, η ∈H . Therefore, a is the weak operator topology limit of (ai)i∈I .
Since

〈aξ |ξ〉 = sup
i∈I
〈aξ |ξ〉,

it is clear that ai ≤ a for all i ∈ I, and that no lesser element of Msa has this
property. Therefore, a = supi∈I ai.

Now we will show convergence in the strong operator topology. If b ≥ 0,
define the sesquilinear form [ξ, η] = 〈bξ |η〉 on H . Then, using the Cauchy-
Schwarz inequality, we have

‖bξ‖2 = [ξ, bξ] ≤ [ξ, ξ]1/2[bξ, bξ]1/2 = 〈bξ |ξ〉1/2〈b3ξ |ξ〉1/2.
Thus for ξ ∈H , i0 ∈ I and any i ≥ i0,

‖(a− ai)ξ‖2 ≤ 〈(a− ai)ξ |ξ〉1/2〈(a− ai)3ξ |ξ〉1/2

≤ ‖a− ai0‖3‖ξ‖2〈(a− ai)ξ |ξ〉1/2.
The right side converges to 0, so (ai)i∈I converges to a in the strong operator
topology. �
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Historical Notes

The weak operator, strong operator, and σ -strong topologies were first stud-
ied by von Neumann [vN36]. The σ -weak topology was introduced by Dixmier
[Dix50a], who realized that it was the weak∗ topology induced by the trace-
class operators. In that article, Dixmier also characterized the continuous lin-
ear functionals of the weak operator and strong operator topologies. Dixmier
was able to employ the general duality theory of Banach spaces, which was
only in its infancy in the 1930s. The monotone order completeness of B(H )sa

shown in Proposition 2.7.24 is also due to Dixmier [Dix50b].

2.8 Density Theorems

2.8.1 Definition. Let H be a Hilbert space. If S ⊆ B(H ), the commutant of S
is

S′ = {b ∈ B(H ) : ab = ba for all a ∈ S}.

2.8.2 Proposition. LetH be a Hilbert space.

(i) If S ⊆ B(H ) is closed under the adjoint, then S′ is a unital ∗-subalgebra
of B(H ) that is closed in the strong operator topology.

(ii) If a = ⊕i∈Iai is a bounded operator on H = ⊕i∈IHi and b = [bij] ∈
B(H ), then b ∈ {a}′ if and only if bijaj = aibij for all i, j ∈ I.

(iii) If a ∈ B(H ) and b = [bij] ∈ B(H (n)), then b ∈ {a(n)}′ if and only if
bija = abij for i, j = 1, . . . , n.

(iv) If S ⊆ B(H ), then S(n)′′ = S′′(n).

Proof.

(i) Since the identity commutes with all operators, 1 ∈ S′. If a,b ∈ S′, then
a+ b ∈ S′ and ab ∈ S′. If a ∈ S′ and λ ∈ C, then λa ∈ S′. If a ∈ S′, then
ab = ba for all b ∈ S, so b∗a∗ = a∗b∗ for all b ∈ S. Since S is closed
under taking adjoints, this implies that a∗ ∈ S′. Finally, pointwise limits
of elements of S′ are obviously also in S′, so S′ is strong operator closed.

(ii) This is a simple restatement of the identity ab = ba for this particular
setting.

(iii) This is a special case of (ii).
(iv) By applying (iii) to every a ∈ S, we have that b = [bij] ∈ S(n)′ if and only

if each matrix entry belongs to S′. Hence an operator b = [bij] in S(n)′′
must commute with every matrix unit eij , which has 1 in the (i, j) entry
and 0 elsewhere. This forces b to be diagonal and satisfy bii = bjj for

1 ≤ i, j ≤ n. Thus, b = b(n)11 . In addition, b commutes with a(n) for every
a ∈ S′, so by (iii) b11 ∈ S′′. Therefore, S(n)′′ = S′′(n). �
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A remarkable theorem of von Neumann shows that the double commutant
of a non-degenerate self-adjoint algebra of operators is its closure in the strong
operator topology. Note that it isn’t even a priori clear that the closure of an
algebra in any of the operator topologies is also an algebra.

2.8.3 Theorem (Double Commutant Theorem). Let A be a self-adjoint subal-
gebra of B(H ) that acts nondegenerately onH , i.e. such thatAH =H . Then
A′′ is the closure ofA in the strong operator topology.

Proof. Clearly, the strong operator topology closure ofA is contained inA′′,
because A′′ is closed in the strong operator topology and contains A. Thus
we want to show that A is strong operator dense in A′′. Fix an operator
b ∈ A′′. By possibly scaling the vectors involved, an arbitrary basic strong
operator neighbourhood of b is

{a ∈ B(H ) : ‖(b − a)ξi‖ < 1 for i = 1, . . . , n}

for some vectors ξ1, . . . , ξn ∈H . It suffices to show that there exists an a ∈A
such that

n∑
i=1

‖(b − a)ξi‖2 < 1.

We will first consider the case where n = 1. Let p be the orthogonal projec-
tion onto the subspace Aξ1, where the closure is taken with the norm topol-
ogy. We claim that p ∈ A′. Since ApH ⊆ pH , we have that pap = ap for
every a ∈A. Therefore

pa = (a∗p)∗ = (pa∗p)∗ = pap = ap,

and p ∈ A′. Since A′ is a unital algebra, 1 − p ∈ A′. We now want to show
that there is an operator a ∈ A such that ‖(b − a)ξ1)‖ < 1. If η = (1 − p)ξ1,
then we have

Aη =A(1− p)ξ1 = (1− p)Aξ1 = p⊥Aξ1 = 0.

Since A acts non-degenerately on H , η = 0, i.e. ξ1 ∈ Aξ1. Since b ∈ A′′, we
have that pb = bp. Hence bξ1 ∈ Aξ1. Therefore, there is an operator a ∈ A
such that ‖(b − a)ξ1‖ < 1.

Now, consider the case where n ≥ 2. By Proposition 2.8.2 (iv), A(n)′′ =
(A′′)(n). Applying the case where n = 1 to b(n) ∈ (A′′)(n) and ξ = (ξ1, . . . , ξn)
gives an operator a ∈A such that

‖(b(n) − a(n))x‖ < 1.

Thus
‖(b(n) − a(n))x‖2 < 1,
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and
n∑
i=1

‖(b − a)xi‖2 = ‖(b(n) − a(n))x‖2 < 1,

so a lies in the given strong operator topology neighbourhood of T . �

2.8.4 Definition. Let H be a Hilbert space, and A a self-adjoint unital subal-
gebra of B(H ). We say thatA is a von Neumann algebra ifA is closed in the
strong operator topology.

If S ⊆ B(H ) is a self-adjoint set of operators, we call S′′ the von Neumann
algebra generated by S. In particular, if a ∈ B(H ), we let W∗(a) denote
{a,a∗}′′, the von Neumann algebra generated by a. Note that

{a,a∗} ⊆ C∗(a) ⊆ W∗(a),

so by the Double Commutant Theorem, W∗(a) is the strong operator topology
closure of C∗(a). If a is normal, we can simplify this definition a bit.

2.8.5 Proposition (Fuglede-Putnam). Let A be a C∗-algebra and m,n ∈ A be
normal. If a ∈A satisfies ma = an, then m∗a = an∗.

Proof. It follows from the hypotheses that mka = ank for all k ∈ N. Hence
p(m)a = ap(n) for every univariate polynomial p with complex coefficients.
For a fixed α ∈ C, exp(iαm) and exp(iαn) are limits of polynomials inm and
n respectively, so eiαma = aeiαn for all α ∈ C, or equivalently, a = e−iαmaeiαn.
Define f : C→ B(H ) by

f(α) = e−iαm∗aeiαn
∗
.

Since ex+y = exey when x and y commute, the normality of m and n implies
that

f(α) = e−iαm∗e−iαmaeiαneiαn∗ = e−i(αm∗+αm)aei(αn+αn∗).
For every α ∈ C, αm∗+αm and αn∗+αn are self-adjoint. Hence e−i(αm∗+αm)
and ei(αn+αn∗) are unitary. Therefore, ‖f(α)‖ ≤ ‖a‖. But f is a vector-valued
entire function, so by Liouville’s Theorem, f is constant. Therefore,

0 = f ′(α) = −im∗e−iαn
∗
aeiαn

∗ + ie−iαm∗an∗eiαn∗ .

Substituting 0 for α gives −im∗a+ iam∗ = 0, i.e. m∗a = an∗. �

2.8.6 Corollary. Let a ∈ B(H ) be normal. Then W∗(a) = {a}′′.

Proof. Clearly, {a,a∗}′ ⊆ {a}′. If b commutes with a, then by the Fuglede-
Putnam Theorem, b also commutes with a∗. Hence {a,a∗}′ = {a}′, and
W∗(a) = {a,a∗}′′ = {a}′′. �
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Another important example of a von Neumann algebra is L∞(X, µ), acting
on L2(X, µ) as multiplication operators, for any “reasonable” measure space
(X, µ).

2.8.7 Proposition. Let (X, µ) be a localizable measure space. Then L∞(X, µ) is
a maximal commutative von Neumann algebra, when viewed as multiplication
operators on L2(X, µ).

Proof. Since any maximal commutative subalgebra of B(H ) is a von Neu-
mann algebra, we only need to show that L∞(X, µ) is maximal commutative,
i.e. that if a ∈ B(L2(X, µ)) is nonzero and commutes with every element of
L∞(X, µ), then a ∈ L∞(X, µ).

We will first establish the case where (X, µ) is finite. The constant function
1 belongs to L2(X, µ), so we can define a function g ∈ L2(X, µ) by g = a1. We
will show that g ∈ L∞(X, µ), ‖g‖∞ ≤ ‖a‖, and a = Mg. Note that for every
f ∈ L∞(X, µ) we have

fg = Mfa1 = aMf1 = af .
Since a ≠ 0, it follows that g ≠ 0 and

‖fg‖2 ≤ ‖a‖‖f‖2.

Taking the case where f = χE for a Borel subset E of X, we have∫
E
|g|2dµ = ‖χEg‖2

2 ≤ ‖a‖2‖χE‖2
2 = ‖a‖2µ(E).

This inequality implies that |g(x)| ≤ ‖a‖ almost everywhere. Indeed, if C ≥ 0
is any number such that

E = {x ∈ X : |g(x)| > C}

has positive measure, then the above inequality implies that

C2µ(E) ≤
∫
E
|g|2 ≤ ‖a‖2µ(E),

and hence that C ≤ ‖a‖. Since ‖g‖∞ is the supremum of all such C , it follows
that g ∈ L∞(X, µ) and ‖g‖∞ ≤ ‖a‖.

Now, suppose that (X, µ) is a general localizable measure space. Then for
the purposes of considering L∞(X, µ), we may assume that (X, µ) is strictly
localizable, i.e. that there exists a partition (Ei)i∈I into measurable sets of finite
measure such that E ⊆ X is measurable if and only if E ∩ Ei is measurable for
every i ∈ I, in which case

µ(E) =
∑
i∈I
µ(E ∩ Ei).
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Let µi be the restriction of µ to E. Then L2(X, µ) decomposes as a direct sum
of Hilbert spaces

L2(X, µ) �
⊕
i∈I

L2(Ei, µi).

For every i ∈ I, the projection from L2(X, µ) onto L2(Ei, µi) is given by multi-
plication by the characteristic function of Ei, and is thus contained in L∞(X, µ).
In particular, it must commute with a, so a decomposes as a direct sum
a =

⊕
i∈I ai, where ai ∈ B(L2(E, µi)) for every i ∈ I. Since each ai must

commute with L∞(Ei, µi), it follows from the finite case done above that there
exists an fi ∈ L∞(Ei, µi) such that ai = Mfi and

‖fi‖∞ ≤ ‖ai‖ ≤ ‖a‖.

Since the fi are uniformly bounded, there is an f ∈ L∞(X, µ) such that f|Ei = fi
for every i ∈ I. It follows that a = Mf . �

2.8.8 Remark. It is the case that every commutative von Neumann algebra M
is ∗-isomorphic to L∞(X, µ) for some localizable measure space (X, µ), al-
though we will not prove this. If M is a maximal commutative subalgebra of
B(H ), then this ∗-isomorphism is implemented by a unitary operator between
H and L2(X, µ). It is also true that while L∞(X, µ) is always a C∗-algebra, it is
only a von Neumann algebra (acting as multiplication operators on L2(X, µ))
when (X, µ) is localizable.

2.8.9 Proposition. Let M ⊆ B(H ) be a von Neumann algebra. Then M is a
dual space.

Proof. Since M is closed in the strong operator topology, it is closed in the
σ -weak topology, which is the weak∗ topology from T (H ). Let M⊥ be the
preannihilator of M in T (H ). Then, by the general theory of Banach space
duality, (T (H )/M⊥)∗ is isometrically isomorphic toM. �

The Double Commutant Theorem does not remain true as stated for subal-
gebras that act nondegenerately, because the commutant of any algebra con-
tains the identity and there are many algebras closed in the strong operator
topology that do not contain the identity, e.g. the natural embedding of B(H )
into B(H ⊕H ) given by A , A ⊕ 0. In general, the strong closure of a self-
adjoint subalgebra of B(H ) is not a von Neumann algebra, but it is a von
Neumann algebra when it is restricted to the maximal subspace on which it
acts nondegenerately. This fact turns out to be very useful when studying
ideals in von Neumann algebras.

2.8.10 Corollary. Let A be a self-adjoint subalgebra of B(H ) and M the clo-
sure ofA in the strong operator topology. DefineH0 =AH . Then:
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(i) M is a unital C∗-algebra, where the identity for M is the projection onto
H0;

(ii) the restriction algebra M|H0 of operators in M restricted to H0 is a von
Neumann algebra that is ∗-isomorphic toM;

(iii) ifM′′ is the double commutant ofM, then

M′′ =M⊕ C(1− e) = {a+α1 : a ∈M, α ∈ C}.

Proof. Without the Double Commutant Theorem, which does not apply in this
case due to the possibly degeneracy of the action ofA onH , we do not know
a priori thatM is an algebra.

Let (ei)i∈I be a bounded approximate identity for A, which we can take to
be an increasing net of positive operators. Then (ei)i∈I is a bounded increasing
net in B(H )sa, so it strongly converges to its supremum e ∈ M. Since (ei)i∈I
is a bounded approximate identity, aei → ei in the norm topology for every
a ∈ A. By the separate continuity of multiplication in the strong operator
topology, aei → ae in the strong operator topology. Since norm convergence
implies strong convergence, this implies that a = ae for every a ∈ A. Simi-
larly, a = ea for every a ∈ A. Again by the separate continuity of multipli-
cation in the strong operator topology, it follows that b = be and b = eb for
every b ∈ M. In particular, e = e2. Since e is self-adjoint by construction,
e is a projection in B(H ). Since e is the strong operator limit of a bounded
approximate identity in A, the range of e must be H0. Since b = be and
b = eb for every b ∈ M, the range of every element of M is contained in H0.
Since M is strong operator topology closed it is also strong∗-operator topol-
ogy closed, so it is self-adjoint. The restriction map from M to M|H0 is then
a ∗-isomorphism, in the sense that it is a adjoint-preserving vector space iso-
morphism that also preserves multiplication when it is defined. SinceM is the
strong closure ofA,M|H0 is the strong closure of the restriction algebraA|H0

of operators in A restricted to H0. Since A|H0 acts nondegenerately on H0,
by the Double Commutant Theorem M|H0 is a von Neumann algebra. Hence
M is a unital C∗-algebra, where e is the identity element of M. This shows (i)
and (ii).

To show (iii), note that both H0 and H⊥
0 are invariant under the action of

A. Since M is the strong operator closure of A, they are also both invariant
under the action of M, i.e. both e and (1 − e) are in M′. Since M′ ⊆ (M′′)′,
both e and (1 − e) are in (M′′)′, i.e. both H0 and H⊥

0 are invariant under
the action of M′′. Clearly, the restriction algebra M|H⊥

0
is the trivial algebra

{0}, so that (M|H⊥
0
)′ = B(H⊥

0 ). If a ∈ M′′, then the restriction a|H⊥
0

lies
in (M|H⊥

0
)′′ = C · 1H⊥

0
, so that a − λ1 vanishes on H⊥

0 and belongs to M′′.
Therefore, (a− λ1)|H0 lies in

(M′′)|H0 ⊆ (M|H0)
′′ =M|H0 ,

so there exists a b ∈M such that b|H0 = (a−λ1)|H0 . Both b and a−λ1 vanish
onH⊥

0 , so that b = a− λ1. Hence a = b + λ1 as desired. �
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Since L∞(X, µ) is the prototypical example of a commutative von Neumann
algebra, it is natural to expect normal operators in a von Neumann algebra
to have a functional calculus for essentially bounded functions, analogous to
the continuous functional calculus for C∗-algebras. Unfortunately, one can
only speak of essentially bounded functions with respect to a particular Radon
measure on the spectrum, and for operators on a non-separable Hilbert space,
the question of which measure to choose becomes quite complicated. There-
fore, we will describe a functional calculus for bounded Borel functions on the
spectrum, which works without any additional complications for operators on
non-separable Hilbert spaces as well.

If X is a locally compact Hausdorff space, let Bb(X) be the Banach space
of bounded complex-valued Borel functions on X, given the supremum norm.
When equipped with pointwise operations, Bb(X) is a C∗-algebra, where the
identity is the constant function 1.

2.8.11 Theorem (Borel Functional Calculus). Let a ∈ B(H ) be a normal op-
erator, and Γ0 : C(σ(a)) → C∗(a) the inverse of the Gelfand transform. Then
there exists an extension of Γ0 to a ∗-homomorphism Γ : Bb(σ(a)) → W∗(a).
Moreover, if (fn)∞n=1 is a uniformly bounded sequence in Bb(σ(a)) converging
pointwise to f , then Γ(fn)→ Γ(f ) in the strong∗ operator topology.

Proof. For all ξ, η ∈H , define a linear functional Fξ,η on C(σ(a)) by

Fξ,η(f ) = 〈Γ(f )ξ |η〉.

Since Γ is a ∗-homomorphism, it is a contraction, so by the Cauchy-Schwarz
inequality we have ‖Fξ,η‖ ≤ ‖ξ‖‖η‖. By the Riesz Representation Theorem,
there exists a finite Radon measure µξ,η on X such that

〈Γ(f )ξ |η〉 = Fξ,η(f ) =
∫
σ(a)

f dµξ,η

and ‖µξ,η‖ ≤ ‖ξ‖‖η‖. Now, for f ∈ Bb(σ(a)) and ξ, η ∈H , define a sesquilin-
ear form Bf onH by

Bf (ξ, η) =
∫
σ(a)

f dµξ,η.

It follows that ‖Bf‖ ≤ ‖f‖‖ξ‖‖η‖. Therefore, by the Riesz-Fréchet Theorem,
there exists a bounded operator Γ(f ) onH such that

〈Γ(f )ξ |η〉 = Bf (ξ, η) =
∫
σ(a)

f dµξ,η

and ‖Γ(f )‖ ≤ ‖f‖‖ξ‖‖η‖. This defines a linear map Γ : Bb(σ(a))→ B(H ) that
extends Γ0.
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We will first show that Γ is a ∗-homomorphism. If f ∈ C(σ(a)) and ξ, η ∈
H , then ∫

σ(a)
f dµξ,η = 〈Γ0(f )ξ |η〉

= 〈Γ0(f )η |ξ〉

=
∫
σ(a)

f dµη,ξ.

Hence µξ,η = µη,ξ . In particular, µξ,ξ is a positive measure for every ξ ∈ H . It
follows by a similar computation that Γ(f ) = Γ(f )∗ for every f ∈ Bb(σ(a)). If
g ∈ C(σ(a)) and ξ, η ∈H , we have g · µξ,η = µΓ(g)ξη. Indeed, if f ∈ C(σ(a)),
then ∫

X
fg dµξ,η = 〈Γ(fg)ξ |η〉 = 〈Γ(f )Γ(g)ξ |η〉 =

∫
X
f dµΓ(g)ξη.

Similarly, if f ∈ Bb(σ(a)), then f · µξ,η = µξ,Γ(f )∗η. Indeed, if g ∈ C(σ(a)),
then ∫

X
g d(f · µξ,η) =

∫
X
gf dµξ,η

=
∫
X
f dµΓ(g)ξ,η

= 〈Γ(f )Γ(g)ξ |η〉
= 〈Γ(g)ξ | Γ(f )∗η〉

=
∫
X
g dµξ,Γ(f )∗η.

Now, if f , g ∈ Bb(σ(a)), then

〈Γ(fg)ξ |η〉 =
∫
X
fg dµξ,η

=
∫
X
g dµξ,Γ(f )∗η

= 〈Γ(g)ξ | Γ(f )∗η〉
= 〈Γ(f )Γ(g)ξ |η〉.

Therefore, Γ is a ∗-homomorphism.

We will now show that Γ takes uniformly bounded sequences converging
pointwise to sequences converging in the strong∗ operator topology. If f ∈
Bb(σ(a)), we have

‖Γ(f )ξ‖2 = 〈Γ(f )ξ | Γ(f )ξ〉
= 〈Γ(f )∗Γ(f )ξ |ξ〉
= 〈Γ(|f |2)ξ |ξ〉

=
∫
σ(a)

|f |2dµξ,ξ.

63



Without loss of generality, we can let (fn)∞n=1 be a uniformly bounded sequence
converging pointwise to 0. For every ξ ∈H we have

‖Γ(fn)ξ‖2 =
∫
σ(a)

|fn|2dµξ,ξ.

The right side converges to 0 as n → ∞ by the Lebesgue Dominated Con-
vergence Theorem, since µξ,ξ is a positive finite measure on X and |fn|2 is a
uniformly bounded sequences of positive functions converging pointwise to
zero. Therefore, Γ(fn) → 0 in the strong operator topology. Since (fn)∞n=1

is also a uniformly bounded sequence in Bb(σ(a)) converging pointwise to 0,
Γ(fn)∗ → 0 in the strong operator topology, and thus Γ(fn)→ 0 in the strong∗

operator topology.

Finally, we will show that the range of Γ is equal to W∗(a). Note that
Bb(σ(a)) naturally embeds into C(σ(a))∗∗ � M(σ(a))∗ via the dual pairing

〈µ, f 〉 =
∫
σ(a)

f dµ.

By the construction of Γ , it is clear that Γ is continuous with respect to the
inherited weak∗ topology on Bb(σ(a)) and the weak operator topology on
B(H ). By Goldstine’s Theorem, every element of C(σ(a))∗∗ is the weak∗

limit of a net in C(σ(a)). Therefore, every element in the range of Γ is the
weak operator topology limit of a net in C∗(a), which shows that the range of
Γ is contained in W∗(a). �

Just like the continuous functional calculus, we will use f(a) to denote the
image of f in the ∗-homomorphism above. The main innovation of the Borel
functional calculus compared to the continuous functional calculus is that we
now have a functional calculus that includes characteristic functions of Borel
subsets of the spectrum, which allows us to show that von Neumann algebras
have many projections. In general, a C∗-algebra need not have any nontrivial
projections.

2.8.12 Proposition. Let M be a von Neumann algebra. Then M is the norm
closed linear span of its projections.

Proof. SinceM is the linear span of its positive elements, we need only show
that every positive a ∈ M is in the norm closed span of the projections of
M. By scaling, we may assume that 0 ≤ a ≤ 1. Then, by the Borel functional
calculus, we have

a = lim
n→∞

1
n

n∑
k=1

χ(k/n,1](a).
�
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2.8.13 Proposition. Let a ∈ B(H ) be a positive operator and λ > 0 a positive
number. Then there exists a projection p ∈ W∗(a) such that

ap ≥ λp and a(1− p) ≤ λ(1− p).

Proof. Let p = χ(λ,∞)(a). Define f : R→ R by

f(t) =

0 if t ≤ λ
t − λ if t > λ.

Then

ap − λp = aχ(λ,∞)(a)− λχ(λ,∞)(a)
= (idRχ(λ,∞))(a)− (λχ(λ,∞))(a)
= ((idR − λ)χ(λ,∞))(a)
= f(a)
≥ 0,

so ap ≥ λp. Similarly, define g : R→ R by

g(t) =

λ− t if t ≤ λ
0 if t > λ.

Then

λ(1− p)− a(1− p) = λ(1− χ(λ,∞)(a))− a(1− χ(λ,∞)(a))
= (λ− λχ(λ,∞))(a)− (idR − idRχ(λ,∞))(a)
= ((λ− idR)(1− χ(λ,∞)))(a)
= g(a)
≥ 0,

so a(1− p) ≤ λ(1− p). �

If λ ∈ R is such that 0 ≤ λ ≤ 1, then λ has a unique base-2 expansion. If X
is a second countable locally compact Hausdorff space and f : X → R is a Borel
function such that 0 ≤ f ≤ 1, then the construction of a base-2 expansion of
a real number can be mimicked to give a “base-2 expansion” of f , in the sense
that

f =
∞∑
n=1

1
2n
χEn

for some sequence (En)∞n=1 of Borel subsets of X. This should be intuitively
clear, because the construction of a base-2 expansion of a real number only
uses countable operations. Using the Borel functional calculus desscribed
above, we will now show a similar fact about positive operators, which in-
cludes, as a special case, the case of Borel functions.
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2.8.14 Proposition. Let a ∈ B(H ) be such that 0 ≤ a ≤ 1. Then there exists a
sequence of projections (pn)n∈N in W∗(a) such that

a =
∞∑
n=1

1
2n
pn,

where convergence of infinite sums is taken in the norm topology.

Proof. We will define the sequence (pn)∞n=1 by induction. By Proposition 2.8.13,
there exists a projection p1 ∈ W∗(a) such that

ap1 ≥
1
2
p1 and a(1− p1) ≤

1
2
(1− p1).

Now, suppose that p1, . . . , pn have been defined so that

n∑
k=1

1
2k
pk ≤ a.

Then, again by Proposition 2.8.13, there exists a projection pn+1 ∈ W∗(a) such
that a− n∑

k=1

1
2k
pn

pn+1 ≥
1

2n+1
pn+1

and a− n∑
k=1

1
2k
pn

 (1− pn+1) ≤
1

2n+1
(1− pn+1).

Since 0 ≤ a ≤ 1, it follows by induction that

0 ≤ a−
n∑
k=1

1
2k
pk ≤

1
2n

for every n ∈ N, so that

a =
∞∑
n=1

1
2n
pn.

�

If (X,A, µ) is a measure space andA0(µ) is the collection of all µ-null sets
inA, the µ-distance onA is given by

d(E, F) =min(µ(E4 F),1) =min(µ(E \ F)+ µ(F \ E),1).

Passing to equivalences classes, it follows that A/A0(µ) is a complete metric
space and a Boolean σ -algebra, where the Boolean algebra operations are sim-
ply the usual operations on sets applied to equivalence classes. The quotient
A/A0(µ) is called the measure algebra of (X,A, µ), not to be confused with
the measure algebra M(G) of a locally compact group G. If (X,A, µ) is a local-
izable measure space, then A/A0(µ) is actually a complete Boolean algebra.
TheA/A0(µ) can be identified with the set of projections in L∞(X,A, µ), and
a similar fact holds for the projections of an arbitrary von Neumann algebra.
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2.8.15 Proposition. LetM be a von Neumann algebra. Then the projections in
M form a complete lattice, where the ordering is the usual ordering onMsa.

Proof. Suppose M ⊆ B(H ), and let (pi)i∈I be a family of projections in M.
Then

H0 =
⋂
i∈I
piH

is a closed subspace ofH . Let p be the projection ontoH0. We want to show
that p ∈ M. By the Double Commutant Theorem, M = M′′, so it suffices
to show that p commutes with every a ∈ M′. Fix a ∈ M′. For every i ∈ I,
pi ∈ M, so pi commutes a, i.e. piH is an invariant subspace for a. Thus H0,
the intersection of invariant subspaces of a, is also an invariant subspace of a,
i.e. p commutes with a. It is clear that p is the infimum of the family (pi)i∈I .
If q is the infimum of the family (1 − pi)i∈I , then 1 − q is the supremum of
(pi)i∈I . �

The Double Commutant Theorem has a slight flaw in that a convergent net
need not be bounded, so it does not imply that an element of the unit ball
of A′′ can be approximated in any of the operator topologies by an element
of the unit ball of A. Since multiplication is not jointly continuous for any
of the operator topologies, this can be problematic. The Double Commutant
Theorem also does not imply that the positive elements ofA′′ can be approxi-
mated by the positive elements ofA, or that the unitary elements ofA′′ an be
approximated by the unitary elements of A, etc. We will now show that each
of these statements is true.

2.8.16 Theorem (Kaplansky Density Theorem). Let A be a ∗-subalgebra of
B(H ) that acts nondegenerately onH , and S the unit ball of B(H ).

(i) The unit ballA∩ S ofA is strong operator dense inA′′ ∩ S.
(ii) The self-adjoint partAsa∩S of the unit ball ofA is strong operator dense

in (A′′)sa ∩ S.
(iii) The positive part A+ ∩ S of the unit ball of A is strong operator dense in

(A′′)+ ∩ S.
(iv) IfA is unital, then the unitary groupU(A) ofA is strong operator dense

in U(A′′).

Proof. We may assume that A is norm closed, because each of these state-
ments holds when A′′ is replaced with the norm closure of A. Let M = A′′.
We will prove these assertions in multiple steps. The map defined onM by

a,
1
2
(a+ a∗)

is weak operator topology continuous and has range Msa. When restricted to
A, it has rangeAsa. SinceA is weak operator dense inM, it follows thatAsa
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is weak operator dense in Msa. Thus, Asa is also strong operator dense in
Msa, because the weak operator topology and strong operator topology have
the same closed convex sets.

Fix a ∈Msa ∩ S. The function f : [−1,−1]→ [−1,1] defined by

f(t) = 2t
1+ t2

is continuous, strictly increasing, and onto, so it has a continuous inverse. It
follows that there exists a b ∈Msa such that

a = 2b
1+ b2

.

By the above, there exists a net (bi)i∈I inAsa that converges to b in the strong
operator topology. For every i ∈ I define

ai =
2bi

1+ b2
i
.

Then ai ∈Asa ∩ S. We have

ai − a =
2bi

1+ b2
i
− 2b

1+ b2

= 2bi(1+ b2)− (1+ b2
i )2b

(1+ b2
i )(1+ b2)

= 2
bi − b

(1+ b2
i )(1+ b2)

+ 2
b − bi

(1+ b2
i )(1+ b2)

.

Therefore, (ai)i∈I converges to a in the strong operator topology, showing
that Asa ∩ S is strong operator dense in Msa ∩ S. This proves claim (ii) of the
theorem.

Fix a ∈ M+ ∩ S, and let b = a1/2. By the above, there exists a net (bi)i∈I ∈
Asa ∩ S that converges to b in the strong operator topology. For every i ∈ I,
define

ai = b∗i bi ∈A+ ∩ S.
If ξ, η ∈H , we have

|〈(ai − a)ξ |η〉| = |〈(b∗i bi − b∗b)ξ |η〉|
= |〈b∗i (bi − b)ξ |η〉 + 〈(b∗i − b∗)bξ |η〉|
= |〈(bi − b)ξ |biη〉 + 〈bξ | (bi − b)η〉
≤ ‖(bi − b)ξ‖‖η‖ + ‖(bi − b)η‖‖ξ‖.

Therefore, (ai)i∈I converges to a in the weak operator topology, showing that
A+∩S is weak operator dense inM+∩S. Since the weak operator topology and
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strong operator topology have the same closed convex sets, this implies that
A+ ∩ S is strong operator dense inM+ ∩ S, proving claim (iii) of the theorem.

Now, consider the Hilbert spaceH (2) and the ∗-algebras

M2(A) ⊆ M2(B(H )) � B(H (2))

and
M2(M) ⊆ M2(B(H )) � B(H (2)).

By Proposition 2.8.2 (iv) and the Double Commutant Theorem, M2(A) is strong
operator dense in M2(M). Let S′ be the unit ball of B(H (2)). Fix a ∈ M∩ S.
Then

b =
[

0 a
a∗ 0

]
defines an element of M2(M)sa∩ S′. By the above, it follows that there exists a
net (bi)i∈I in M2(A)sa∩S′ that converges to b in the strong operator topology.
In particular, the net of (1,2) matrix coefficients must also converge in the
strong operator topology on B(H ), showing that A ∩ S is strong operator
dense inM∩ S. This proves claim (i) of the theorem.

Finally, if A is unital, let u ∈ M be a unitary. We will use the Borel func-
tional calculus to find a logarithm for u. Let T be the unit circle in C, and
define g : T → iR by g(eit) = it when −π < t ≤ π . Note that g is a Borel
function such that eg(z) = z for every z ∈ T. Let a = −ig(u). Then a is a self-
adjoint element ofM such that u = eia. By the above, there exists a net (ai)i∈I
in Asa that converges to a in the strong operator topology. Then (eiai)i∈I is a
net of unitaries converging in the strong operator topology to u. This proves
claim (iv) of the theorem. �

The Kaplansky Density Theorem allows us to show that all of the operator
topologies on B(H ) have the same closed ∗-subalgebras.

2.8.17 Corollary. LetM be a ∗-subalgebra of B(H ) that acts nondegenerately
onH . Then the following are equivalent:

(i) M is a von Neumann algebra;
(ii) M is σ -weakly closed;

(iii) the unit ball ofM is σ -weakly closed.

Proof. If M is a von Neumann algebra, then M is weak operator topology
closed. Since the weak operator topology is weaker than the σ -weak topology,
M is σ -weakly closed as well. This shows that (i) =⇒ (ii).

If M is σ -weakly closed, then the unit ball of M is σ -weakly compact by
the Banach-Alaoglu Theorem, showing that (ii) =⇒ (iii).
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Finally, suppose that the unit ball ofM is weak operator topology compact.
We want to show that M is weak operator topology closed. Let a be a weak
operator topology limit point of M. By scaling, we may assume that ‖a‖ ≤ 1.
By Kaplansky’s Density Theorem, there exists a net (ai)i∈I inM that converges
to a such that ‖ai‖ ≤ 1 for every a ∈ A. Since the σ -weak and weak operator
topologies agree on bounded sets, the unit ball ofM is weak operator topology
closed as well. Therefore, a ∈ M, showing that M is weak operator topology
closed. This shows that (iii) =⇒ (i). �

2.8.18 Corollary. Let M be a ∗-subalgebra of B(H ). Then the following are
equivalent:

(i) M is closed in the weak operator topology;
(ii) M is closed in the strong operator topology;

(iii) M is closed in the strong∗ operator topology;
(iv) M is closed in the σ -weak topology;
(v) M is closed in the σ -strong topology;

(vi) M is closed in the strong∗ operator topology.

Proof. This follows from Proposition 2.7.21 and Corollary 2.8.17. �

In our proof of the Kaplansky Density Theorem, we heavily used the fact
that the subspace of B(H ) we are considering is a self-adjoint subalgebra.
It turns out that the first statement of the theorem, that the unit ball of A is
strong operator dense in the strong operator topology closure ofA, is false for
a general subspace of B(H ). We will now give an example of such a subspace.
In fact, we will also show how this example can be modifed to give an example
of a (necessarily non-self-adjoint) subalgebra ofB(H ) for which the Kaplansky
Density Theorem fails.

2.8.19 Example. We claim that if the Kaplansky Density Theorem holds for all
linear subspaces of B(H ), i.e. if for every linear subspace X of B(H ) the unit
ball of X is strong operator dense in the strong operator topology closure of
X, then every σ -weakly closed subspace of B(H ) is weak operator topology
closed. Indeed, if X is a σ -weakly closed subspace of B(H ), then X ∩ S is
weak operator topology compact, where S is the unit ball of B(H ). Let a be
a weak operator topology limit point of X. If the Kaplansky Density Theorem
holds for subspaces of B(H ), then clearly the same statement holds for the
weak operator topology, i.e. for every linear subspace X of B(H ) the unit
ball of X is weak operator dense in the weak operator topology closure of X,
because the strong operator topology and weak operator topology have the
same closed convex sets. Hence there exists a net (ai)i∈I in X ∩ S converging
to a. Therefore, X is weak operator closed. We will produce a linear subspace
of B(H ) that is σ -weakly closed but not weak operator topology.
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LetH be an infinite-dimensional Hilbert space, and x an infinite rank trace-
class operator on H . Define E = {αx : α ∈ C} ⊆ T (H ), and let X = E⊥ ⊆
B(H ). Then X is σ -weakly closed. By the Bipolar Theorem applied to the
σ(B(H ),T (H )) topology, i.e. the σ -weak topology, X⊥ = E. Let F(H ) be
the subspace of T (H ) consisting of the finite rank elements of T (H ). It is
easy to see that the σ(B(H ),F(H )) is the weak operator topology. SinceX⊥∩
F(H ) = {0}, the Bipolar Theorem applied to the σ(B(H ),F(H )) topology
implies that the weak operator topology closure of X is B(H ). Therefore, X
is not weak operator topology closed.

If the Kaplansky Density Theorem holds for all subalgebras of B(H ), then
by the same reasoning as above, every σ -weakly closed subalgebra of B(H ) is
weak operator topology closed. DefineA⊆ M2(B(H )) � B(H (2)) by

A=
{[
α a
0 β

]
: α,β ∈ C, a ∈ X

}
.

Then A is a σ -weakly closed subalgebra of B(H ) that is not weak operator
topology closed.

We will now show that many constructions in operator theory relativize to
a general von Neumann algebra.

2.8.20 Proposition. Let a ∈ B(H ) be a self-adjoint operator, and s(a) the sup-
port projection of a. Then s(a) = χR\{0}(a) ∈ W∗(a).

Proof. From the equality tλR\{0}(t) = t, it follows that aχR\{0} = a, which
implies that s(a) ≤ χR\{0}(a). On the other hand, since as(a) = a, it follows
that f(a)s(a) = f(a) for every f ∈ Bb(σ(a)), first by considering polynomials
with zero constant terms, and then by taking strong operator topology limits.
In particular, χR\{0}(a)s(a) = χR\{0}(a). Therefore, χR\{0} ≤ s(a). �

2.8.21 Proposition. Let a ∈ B(H ) be a positive operator, and s(a) the support
projection of a. Then there exists a sequence of projections (en)∞n=1 in W∗(a)
such that

aen ≥
1
n
en and en ↗ s(a).

Proof. By Proposition 2.8.20, it is clear that the sequence en = χ(1/n,∞)(a) is
such a sequence. �

In order to prove that the polar decomposition of a is contained in W∗(a),
we will first prove a simple criterion for whether an operator in B(H ) belongs
toM.
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2.8.22 Proposition. Let M ⊆ B(H ) be a von Neumann algebra. Then M =
U(M′)′.

Proof. If a ∈ M, then a ∈ M′′ ⊆ U(M′)′. By Proposition 2.6.1, M′ is the
linear span of U(M′). Thus, if a ∈ U(M′)′ then a ∈M′′ =M. �

2.8.23 Proposition. Let a ∈ B(H ) be an operator. If a = v|a| is the polar
decomposition of a, then v and |a| are contained in W∗(a).

Proof. Since W∗(a) is a C∗-algebra, |a| = (a∗a)1/2 ∈ W∗(a), so we need
only show that v ∈ W∗(a). By Proposition 2.8.22, it suffices to show that
v ∈ U(W∗(a)′)′. If u ∈ U(W∗(a)′), then

a = uu∗a = uau∗ = uv|a|u∗ = (uvu∗)|a|.

By Proposition 2.8.20, since |a| ∈ W∗(a), s(|a|) ∈ W∗(a), so

(uvu∗)∗(uvu) = uv∗u∗uvu = uv∗vu∗ = us(|a|)u∗ = uu∗s(|a|) = s(|a|),

and it follows from the uniqueness of the polar decomposition that uvu∗ = v ,
i.e. v commutes with u. Therefore, v ∈ U(W∗(a)′)′ = W∗(a). �

2.8.24 Corollary. Let a ∈ B(H ) be an operator. Then the right support pro-
jection sr(a) of a, left support projection sl(a) of a, and the projection onto the
kernel of a are all contained in W∗(a).

Proof. This follows from Proposition 2.8.23, because if a = v|a| is the polar
decomposition of a, then sr(a) = v∗v , sl(a) = vv∗, and the projection onto
the kernel of a is 1− sr(a). �

If A is a nondegenerate C∗-subalgebra of B(H ), then AH = H . In fact,
A has a bounded approximate identity, so applying the Cohen-Hewitt Factor-
ization Theorem to the Banach A-module H gives that every ξ ∈ H can be
written as aη for some η ∈ H . Sometimes it may be more useful to consider
AS for a particular subset S of H , and in particular, the case where S = {ξ}
for some ξ ∈H .

2.8.25 Definition. Let A be a ∗-subalgebra of B(H ). We say that a subset S
is cyclic (for A) if AS = H , and we say that S is separating (for A) if aS = 0
implies that a = 0. In the particular case of S = {ξ}, we say that ξ is cyclic (for
A) or that ξ is separating (forA).

Intuitively, if A has a cyclic vector then A is “large”, and if A has a sepa-
rating vector, thenA is “small”.
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2.8.26 Proposition. Let A be a ∗-subalgebra of B(H ). If S is a subset of H ,
then S is cyclic forA if and only if S is separating forA′.

Proof. Suppose S is cyclic for A, and that aS = {0} for some a ∈ M′. Let
p be the projection onto the kernel of a. By Proposition 2.8.23, p ∈ A′, so
S ⊆ pH . Since p ∈ A′ and S is cyclic for A, it follows that H = AS ⊆ pH ,
so p = 1 and a = 0.

Conversely, suppose that S is separating forA′. Let p denote the projection
of H onto AS. Since AS is an invariant subspace for A, p ∈ A". Clearly,
(1−p)S = {0}, so since S is separating forA′ it follows that 1−p = 0. Hence
AS =H and S is cyclic forA. �

Historical Notes

The Double Commutant Theorem is due to von Neumann [vN29]. Von Neu-
mann algebras were called “rings of operators” by Murray and von Neumann;
Dieudonné suggested the current terminology in the French tradition of nam-
ing mathematical objects after people, and it was used heavily by Dixmier. The
name “W∗-algebra” was introduced by Segal [Seg50], where the W was meant
to stand for “weakly closed”, just as C∗-algebras are ∗-subalgebras of B(H )
closed in the norm topology. Nowadays, the name W∗-algebra is used by some
to refer to an abstract C∗-algebra that is ∗-isomorphic to some von Neumann
algebra. Ironically, Kaplansky [Kap51b] defined the notion of an AW∗-algebra,
intending to characterize those abstract C∗-algebras that are , but there are
commutative AW∗-algebras that are not W∗-algebras.

The realization that every von Neumann algebra is a dual space is due to
Dixmier [Dix53].

Kaplansky proved the density theorem that bears his name in [Kap51c].
The original proof proceeds by proving the strong operator continuity of the
continuous functional calculus for self-adjoint elements for functions that de-
cay no faster than | · |. The proven given here is a bit simpler, but it is still
essentially the same argument.

2.9 Representations

2.9.1 Definition. Let A be a ∗-algebra. A ∗-homomorphism π : A → B(H ),
whereH is a Hilbert space, is said to be a ∗-representation ofA.

We will often refer to a ∗-representation simply as a representation when
the context is clear, and we will often refer to a representation π and its rep-
resentation Hilbert spaceH as a pair (π,H ). If not otherwise named, we will
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denote the representation space of π as Hπ . We will generally only consider
representations of Banach ∗-algebras, but we will introduce the basic notions
for arbitrary ∗-algebras. Before we continue, we will introduce some helpful
notation. IfH is a Hilbert space and S is a subset ofH , we will let [S] denote
the norm closed span of S inH .

2.9.2 Examples.

(i) Let X be a locally compact Hausdorff space, and let µ be a finite Radon
measure on X. The inclusion of C0(X) into L∞(X, µ) gives a representa-
tion of C0(X), because L∞(X, µ) acts on L2(X, µ) by left multiplication.

(ii) It may very well happen that a Banach ∗-algebra A has no nontrivial
representations. Let A be C2 equipped with the ∞-norm and pointwise
multiplication. Define an involution onA by

(a, b)∗ = (b,a).

ThenA is a commutative unital Banach∗-algebra, but it has no nontrivial
representations, because

(1,0)∗(1,0) = (0,0) and (0,1)∗(0,1) = (0,0).

and {(1,0), (0,1)} is a basis of A. Thus, if π :A→ B(H ) is a represen-
tation,

‖π((1,0))‖2 = ‖π((1,0)∗(1,0))‖ = 0

and
‖π((0,1))‖2 = ‖π((0,1)∗(0,1))‖ = 0,

which implies that π is the zero map. Note that for this example we
took a Banach ∗-algebra with a faithful representation and modified the
involution so that it has no nontrivial representations.

2.9.3 Definition. Let A be a ∗-algebra, and π : A → B(H ) a representation
ofA.

(i) We say that π is nondegenerate if π(A)H =H .
(ii) We say that ξ ∈ H is a cyclic vector for π if ξ is cyclic for π(A), i.e. if
π(A)ξ =H . If π has a cyclic vector, then it is said to be cyclic.

(iii) We say that π is topologically irreducible, or simply irreducible, if the
only closed invariant subspaces of π(A) are {0} andH .

2.9.4 Proposition (Schur’s Lemma). LetA be a ∗-algebra, and π :A→ B(H )
a nondegenerate representation ofA. Then the following are equivalent:

(i) π is irreducible.
(ii) π(A)′ = C.

(iii) Either dim(H ) = 1 or every nonzero ξ ∈H is a cyclic vector for π .
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Proof. We will show that (i) and (ii) are equivalent, and then that (i) and (iii)
are equivalent.

Suppose that π is irreducible and T ∈ π(A)′. Since π(A)′ is a von Neu-
mann algebra, it is the norm closure of linear combinations of its projections
Proposition 2.8.12. The projections in π(A)′ are the projections onto closed
invariant subspaces of π(A), but since π is irreducible, these projections are
only 0 and 1. Therefore, T is a scalar.

Conversely, suppose that π(A)′ = C. Then the only projections commut-
ing with π(A) are 0 and 1, so π has no nontrivial closed invariant subspaces
and is irreducible.

We will now show that (i) and (iii) are equivalent. Suppose that π is irre-
ducible, dim(H ) > 1, and ξ ∈H is nonzero. Then π(A)ξ is a closed invariant
subspace ofA. However, it may possibly be zero. If it is zero, i.e. if π(a)ξ = 0
for all a ∈ A, then {λξ : λ ∈ C} is a closed invariant subspace of π . Since
this subspace is nonzero by definition, by our assumption that π is irreducible
it must be all of H , contradicting our assumption that dim(H ) > 1. Hence
π(A)ξ is a nonzero closed invariant subspace ofA, so it must be equal to all
ofH , showing that ξ is a cyclic vector for π .

Conversely, suppose that either dim(H ) = 1 or every nonzero ξ ∈ H is
a cyclic vector for π . Let X be a nonzero closed invariant subspace of π . If
dim(H ) = 1, then clearly X = H . Otherwise, let ξ ∈ X be nonzero, so that
π(A)ξ ⊆ X. Since ξ is cyclic, π(A)ξ = H , so X = H . Therefore, π is
irreducible. �

2.9.5 Corollary. Let A be a commutative ∗-algebra. Then every irreducible
representation ofA is one-dimensional.

Proof. If π :A→ B(H ) is irreducible, then π(A)′ = C. However, since A is
commutative, π(A)′ ⊆ π(A). Therefore, π(A) = C. �

LetA be a Banach ∗-algebra. If (πi)i∈I is a family of representations ofA,
then the direct sum of this family is the representation

⊕
i∈I
πi :A→ B

⊕
i∈I
Hπi


defined by ⊕

i∈I
πi

 (a) =⊕
i∈I
πi(a).

Since every representation is a contraction, ‖πi(a)‖ ≤ ‖a‖ for every i ∈ I,
showing that every operator defined above is actually bounded.
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2.9.6 Proposition. Let A be a Banach ∗-algebra. Then every nondegenerate
representation ofA is a direct sum of cyclic representations.

Proof. Let π : A → B(H ) be a representation of A, and let F denote the
family of all subsets F of H such that [π(A)ξ] and [π(A)η] are orthogonal
for every distinct pair ξ, η ∈ F . When ordered by inclusion, it is obvious that
every chain in F has an upper bound. Therefore, by Zorn’s Lemma, there
exists a maximal element F = {ξi}i∈I of F . For each i ∈ I, the subspace
Hi = [π(A)ξi] is invariant for π , so (πHi ,Hi) is a subrepresentation of π .
By definition, ξi is a cyclic vector for πi. The maximality of F implies that
H = ⊕i∈IHi, so π = ⊕i∈IπHi . �

A useful fact about nondegenerate ∗-representations of Banach ∗-algebras
is that they take bounded approximate identities to nets converging to 1 in the
strong operator topology.

2.9.7 Proposition. Let A be a Banach ∗-algebra, and π : A → B(H ) a ∗-
representation of A. If (ei)i∈I is a bounded approximate identity of A, then
π(ei) converges to 1 in the strong operator topology.

Proof. Since π(ei) ≤ ‖ei‖ and (ei)i∈I is bounded, (π(ei))i∈I is a bounded net
in B(H ). If a ∈A and ξ ∈H , then

π(ei)π(a)ξ = π(eia)ξ

tends strongly to π(a)ξ because

‖π(eia)−π(a)‖ ≤ ‖eia− a‖

tends to 0. Since π(A)H is dense in H and (π(ei))i∈I is a bounded net
in B(H ), this implies that (π(ei))i∈I converges to the identity in the strong
operator topology. �

2.9.8 Definition. Let A be a Banach ∗-algebra, and let (π1,H1) and (π2,H2)
be nondegenerate representations of A. We say that T ∈ B(H1,H2) is an
intertwining operator from π1 to π2 if

Tπ1(a) = π2(a)T

for every a ∈A. The set of all intertwining operators from π1 to π2 is denoted
R(π1, π2).

It is clear that if T ∈ R(π1, π2) and S ∈ R(π2, π3), then ST ∈ R(π1, π3),
and that the identity is always inR(π1, π1). Hence the class of representations
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ofA forms a category where the morphisms from π1 to π2 are the intertwining
operators from π1 to π2.

If π is a representation of A, then the intertwining operators from π to
itself are precisely the bounded operators onHπ that commute with π . Thus
R(π,π) = π(A)′, and the commutant of a representation can be viewed as
the algebra of endomorphisms of that representation.

The most important intertwining operators are the unitaries, i.ėthe isomor-
phisms of the underlying Hilbert spaces that convert the action of one repre-
sentation into another. If there is a unitary intertwining operator between two
representations, then we say that they are unitarily equivalent. For all of our
purposes, unitarily equivalent representations are essentially considered to be
the same representation.

If G is a locally compact group, the representations of L1(G) are of partic-
ular interest, because they correspond to the unitary representations of G.

2.9.9 Definition. Let G be a locally compact group. A homomorphism π : G →
U(H ) is said to be a unitary representation of G, or simply a representation,
if it is continuous with respect to the strong operator topology.

By Proposition 2.7.22 (iii), all of the operator topologies on agree onU(H ),
so the strong operator topology may be replaced with any of the other operator
topologies.

We can extend unitary representations of G to ∗-representations of L1(G)
and M(G) by integration.

2.9.10 Proposition. Let G be a locally compact group, and π : G →U(H ) be a
unitary representation of G. Define πM(G) : M(G)→ B(H ) by

〈πM(G)(µ)ξ |η〉 =
∫
〈π(s)ξ |η〉dµ(s).

Then πM(G) is a ∗-representation of M(G), and its restriction to L1(G) is nonde-
generate and is given by

〈πL1(G)(f )ξ |η〉 =
∫
f(s)〈π(s)ξ |η〉ds.

Proof. First, note that ‖π(µ)‖ ≤ ‖µ‖, so π(µ) ∈ B(H ) for all µ ∈ M(G).
Clearly, π is linear, so we need only show that it is multiplicative and ∗-

77



preserving. If µ, ν ∈ M(G) and ξ, η ∈H , then

〈πM(G)(µ ∗ ν)ξ |η〉 =
∫
〈π(s)ξ |η〉d(µ ∗ ν)(s)

=
∫∫
〈π(st)ξ |η〉dµ(s)dν(t)

=
∫∫
〈π(t)ξ |π(s−1)η〉dµ(s)dν(t)

=
∫
〈πM(G)(ν)ξ |π(s−1)η〉dµ(s)

=
∫
〈π(s)πM(G)(ν)ξ |η〉dµ(s)

= 〈πM(G)(µ)πM(G)(ν)η |ξ〉,

showing that πM(G) is multiplicative. If µ ∈ M(G) and ξ, η ∈H , then

〈πM(G)(µ∗)ξ |η〉 =
∫
〈π(s−1)ξ |η〉dµ(s)

=
∫
〈π(s)η |ξ〉dµ(s)

= 〈πM(G)(µ)η |ξ〉
= 〈πM(G)(µ)ξ |η〉,

showing that πM(G) is ∗-preserving.

It only remains to be shown that πL1(G) is nondegenerate. Let (ui)i∈I be
a bounded approximate identity for L1(G) such that each ui is positive real-
valued and supp(uj) ⊆ supp(ui) whenever i ≤ j, which exists by Proposi-
tion 2.4.5. Then (πL1(G)(ui))i∈I converges to 1 in the weak operator topology.
Indeed if ξ, η ∈H , then

|〈(πL1(G)(ui)− 1)ξ |η〉| =
∣∣∣∣∫ 〈ui(s)π(s)ξ |η〉ds − 〈ξ |η〉∣∣∣∣

=
∫
|〈ui(s)π(s)ξ − ξ |η〉|ds

≤
∫
ui(s)|〈π(s)ξ − ξ |η〉|ds

≤ sup
s∈supp(ui)

|〈π(s)ξ − ξ |η〉|.

As i increases, the last expression tends to 0 by the continuity of π . There-
fore, 1 is in the weak operator topology closure of the range of πL1(G). Since
the weak operator topology and the strong operator topology have the same
closed convex sets, 1 is in the strong operator topology closure of the range of
πL1(G), which show that πL1(G) is nondegenerate. �

If π : G → U(H ) is a unitary representation of G, we can easily re-
cover π from πM(G) using the embedding s , δs of G into M(G) as the point
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masses, and that this would yield a unitary representation of G for every ∗-
representation ρ of M(G). Unfortunately, if πM(G) is a ∗-representation of
M(G), then the representation π of G obtained by restricting to the point
masses is not necessarily continuous. However, if we assume that πM(G) is
nondegenerate when restricted to L1(G), then we can show that π is continu-
ous.

2.9.11 Proposition. Let G be a locally compact group, and πM(G) : M(G) →
B(H ) a ∗-representation of M(G) whose restriction to L1(G) is nondegenerate.
Define π : G →U(H ) by π(s) = π(δs). Then π is a continuous representation
of G.

Proof. Clearly, π is a homomorphism whose range is contained in U(H ), so
we need only show that π is strong operator topology continuous. Suppose
(sn)∞n=1 is a sequence in G converging to e. If f ∈ Cc(G) and ξ ∈ H , we
claim that π(sn)πM(G)(f )ξ → π(δsn ∗f)ξ in the strong operator topology and
δsn∗f(t) = ∆(s−1

n )f (s−1
n t). By the Lebesgue Dominated Convergence Theorem,

δsn ∗ f converges in L1(G) to f . Hence

‖π(sn)πM(G)(f )ξ −πM(G)(f )ξ‖ ≤ ‖δsn ∗ f − f‖1‖ξ‖.

The right-hand side tends to 0 as n → ∞. Hence, by the nondegeneracy of
the restriction of πM(G) to L1(G) (and the fact that Cc(G) is dense in L1(G)),
π(sn)ξ → ξ on a dense subspace of H . Fix η ∈ H , ε > 0, and ξ ∈ H chosen
so that ‖ξ − η‖ < ε/3. Since each π(sn) is unitary, for sufficiently large n we
have

‖π(sn)η− η‖ ≤ ‖π(sn)η−π(sn)ξ‖ + ‖π(sn)ξ − ξ‖ + ‖ξ − η‖

<
2ε
3
+ ‖π(sn)ξ − ξ‖

< ε.

Therefore, π is strong operator topology continuous. �

Given a ∗-representation of M(G), we can restrict it to L1(G), but how
do we know that every nondegenerate ∗-representation of L1(G) corresponds
to a unitary representation of G, or a ∗-representation of M(G)? We would
like this to be the case, because in many respects the algebra L1(G) is much
more tractable than the algebra M(G). However, since L1(G) is an ideal in
M(G) with a bounded approximate identity, we are able to uniquely extend ∗-
representations of L1(G) to those of M(G). We will carry out this construction,
and then derive the correspondence between representations of G, L1(G), and
M(G).

2.9.12 Lemma. LetA be a Banach ∗-algebra, J a closed self-adjoint ideal ofA
with a bounded approximate identity, and π : J → B(H ) a cyclic representation
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of B. Then π has a unique extension to a representation π̃ of A. Every cyclic
vector for π is a cyclic vector for π̃ and vice-versa.

Proof. Let (ui)i∈I be a bounded approximate identity for A, and let ξ ∈ H
be a cyclic vector for π . Fix a ∈ A. We will define π̃(a) first as a bounded
linear operator on the dense subspace π(J)ξ ofH and then extend it to all of
H by continuity. Define π̃(a) on π(J)ξ by

π̃(a)π(x)η = π(ax)η.

This operator is bounded, because if M is a bound for (ei)i∈I ,

‖π̃(a)π(x)ξ‖ = ‖π(ax)ξ‖
= lim

i∈I
‖π(auix)ξ‖

= lim
i∈I
‖π(aui)π(x)ξ‖

≤ sup
i∈I
‖aui‖ · ‖π(x)ξ‖

≤ sup
i∈I
M · ‖a‖ · ‖π(x)‖ · ‖ξ‖.

Therefore, π̃(a) extends by continuity to a bounded operator on all of H . If
x,y ∈ J , then

π̃(a)π(x)π(y)ξ = π̃(a)π(xy)ξ = π(axy) = π(ax)π(y)ξ.

Since ξ is cyclic for π , this shows that π̂(a)π(x) = π(ax) for every x ∈ J .

The map π̃(a) : A → B(H ) is clearly linear, so we only have to show that
it is multiplicative and self-adjoint. If a,b ∈A and x ∈ J then

π̃(ab)π(x) = π(abx) = π̃(a)π(bx) = π̃(a)π̃(b).

If a ∈A and x,y ∈ J then

〈π̃(a)π(x)ξ |η〉 = 〈π(ax)ξ |π(y)ξ〉
= 〈ξ |π(ax)∗π(y)ξ〉
= 〈ξ |π(x∗a∗y)ξ〉
= 〈ξ |π(x∗)π(a∗y)ξ〉
= 〈ξ |π(x)∗π̃(a∗)π(y)ξ〉
= 〈π(x)ξ | π̃(a∗)η〉.

Since ξ is cyclic for π , this shows that π̃(a∗) = π̃(a)∗ for every a ∈ A.
Therefore, π is a representation. Since H = [π(J)ξ] ⊆ [π̃(A)ξ] ⊆ H , ξ is a
cyclic vector for π̃ . Conversely, let η ∈ H be a cyclic vector for π̂ . To show
that η is cyclic for π we need only show that π̂(A)η ⊆ [π(J)η]. Fix a ∈ A,
and let (xn)∞n=1 be a sequence in J such that such that π(xn)ξ → η. Since
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π(axn) = π̃(a)π(xn), π(axn)η → π̂(a)η, showing that π̃(a) ∈ [π(J)η].
Therefore, η is cyclic for π .

Finally, we will show the uniqueness of this extension. If a ∈ A and T ∈
B(H ) is such that Tπ(x) = π(ax) for every x ∈ J , then

Tπ(x)η = π̃(a)π(x)η

for every x ∈ J and η ∈H . Since π is nondegenerate, T = π̃(a). �

2.9.13 Proposition. Let A be a Banach ∗-algebra, J a closed self-adjoint ideal
ofA with a bounded approximate identity, and π : J → B(H ) a representation
ofB. Then π has an extension to a representation π̃ ofA. If π is nondegenerate
then this extension is unique.

Proof. We will first assume that π is nondegenerate and then derive the gen-
eral case from this. By Proposition 2.9.6, π is the direct sum of cyclic repre-
sentations. Hence the claim follows from Lemma 2.9.12, because a direct sum
of representations has an extension if and only if every summand in the direct
sum has an extension.

Now, suppose that π is not necessarily nondegenerate. LetH0 = [π(J)H ],
and let π0 : J → B(H0) be the subrepresentation π0(x) = π(x)|H0 . Then π0 is
nondegenerate and has an extension π̃0 to all ofA. Let ρ :A→ B(H⊥

0 ) be any
representation, such as the zero representation. Then π̃0 ⊕ ρ is an extension
of π . �

2.9.14 Corollary. LetA be a Banach ∗-algebra, and J a closed self-adjoint ideal
of A with a bounded approximate identity. If π : A → B(H ) and ρ : A →
B(H ) are representations of A such that π|J is nondegenerate and π|J = ρ|J
then π = ρ.

Proof. Since π and ρ are both extensions of π|J = ρ|J , the claim follows from
the uniqueness in Proposition 2.9.13. �

2.9.15 Proposition. Let A be a Banach ∗-algebra, J a closed self-adjoint ideal
of A with a bounded approximate identity, and (π1,H1) and (π2,H2) nonde-
generate representations of J . Then R(π̃1, π̃2) = R(π1, π2).

Proof. Clearly,
R(π̃1, π̃2) ⊆ R(π1, π2).

To show the converse, fix T ∈ R(π1, π2). Then for every a ∈ A, x ∈ J , and
ξ ∈H1,

Tπ̃1(a)π1(x)ξ = Tπ1(ax)ξ = π2(ax)Tξ = π̃2(a)π2(x)Tξ = π̃2(a)Tπ1(x)ξ.
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Since π1 is nondegenerate, we have

Tπ̃1(a)ξ = π̃2(a)Tξ

for every a ∈A and ξ ∈H1, showing that T ∈ R(π̃1, π̃2). �

2.9.16 Proposition. Let G be a locally compact group. Then the integration of
a unitary representation of G to a ∗-representation of M(G) and restriction of
a ∗-representation of M(G) to L1(G) give a bijective correspondence between

(i) continuous unitary representations of G,
(ii) ∗-representations of L1(G),

(iii) ∗-representations of M(G) whose restrictions to L1(G) are nondegenerate.

Moreover, this correspondence preserves intertwining operators and cyclic vec-
tors.

Proof. The correspondence holds by Proposition 2.9.10, Proposition 2.9.11,
and Proposition 2.9.13, so we need only show that it preserves intertwining
operators and cyclic vectors. Let π : G → U(H ) and ρ : G → U(K) be
continuous representations of G. Then, if T : H → K is a bounded linear
operator, using the nondegeneracy of πL1(G) in the appropriate places gives

T is an intertwiner of π and ρ
⇐⇒ Tπ(s)ξ = ρ(s)Tξ for s ∈ G and ξ ∈H
⇐⇒ 〈Tπ(s)ξ |η〉 = 〈ρ(s)Tξ |η〉 for s ∈ G, ξ ∈H , η ∈ K

⇐⇒
∫
f(s)〈Tπ(s)ξ |η〉ds =

∫
f(s)〈ρ(s)Tξ |η〉ds

for f ∈ L1(G), ξ ∈H , η ∈ K
⇐⇒ 〈TπL1(G)(f )ξ |η〉 = 〈ρL1(G)(f )Tξ |η〉 for f ∈ L1(G), ξ ∈H , η ∈ K
⇐⇒ TπL1(G)(f )ξ = ρL1(G)(f )Tξ for f ∈ L1(G), ξ ∈H , η ∈ K
⇐⇒ T is an intertwiner of πL1(G) and ρL1(G).

The case of cyclic vectors is similar, so we will leave it as an exercise.

The passage between representations of L1(G) and M(G) preserves inter-
twining operators and cyclic vectors by Lemma 2.9.12 and Proposition 2.9.15.�

Since this correspondence preserves intertwining operators between two
representations, it also preserves the commutant of a single representation. If
π : G → U(H ) is a representation, then π(G) ⊆ B(H ) is a self-adjoint set of
operators, so π(G)′ is a von Neumann algebra that agrees with πL1(G)(L1(G))′
and πM(G)(M(G)). Thus π(G)′′ is also a von Neumann algebra, which we will
call the von Neumann algebra generated by π .
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The two most important representations of G are the left regular represen-
tation and right regular representation on L2(G), defined by

(λ(g)ξ)(s) = ξ(g−1s)

and
(ρ(g)ξ)(s) = ∆(g)1/2ξ(sg)

respectively. It is easy to check that these define continuous unitary represen-
tations of G. The integrated forms of these representations on L1(G) are given
by

(λL1(G)(f )ξ)(t) = (f ∗ ξ)(t) =
∫
f(s)ξ(s−1t)ds

and

(ρL1(G)(f )ξ)(t) = (ξ ∗ f)(t) =
∫
∆(s)1/2f(s)ξ(ts)ds.

2.9.17 Proposition. Let G be a locally compact group. Then the left and right
regular representations are faithful unitary representations of G that give faith-
ful representations of L1(G) and M(G).

Proof. We will only give proofs for the left regular representation. The case
of the right regular representation is similar.

First, we will show that λ gives a faithful representation of G. Fix s ∈ G
such that s ≠ e. Choose a relatively compact symmetric neighbourhood V of e
so that s ∉ V 2. Then V has a finite non-zero Haar measure, so that χV ∈ L2(G).
We have

λ(s)χV = χsV ≠ χV = λ(e)χV
Therefore, λ is faithful when viewed as a representation of G.

Now, we will show that λ gives a faithful representation of M(G), and thus
also of L1(G). Fix a nonzero µ ∈ M(G). Since M(G) is the dual of C0(G),
which contains Cc(G) as a dense subspace, there exists an f ∈ Cc(G) such that∫
f dµ ≠ 0. The function µ ∗ f on G defined by

(µ ∗ f)(t) =
∫
f(s−1t)dµ(s)

is continuous, since f is uniformly continuous, and we have

|(µ ∗ f)(s)− (µ ∗ f)(t)| ≤ ‖fs − ft‖∞‖µ‖.

Since (µ ∗ f)(e) =
∫
f dµ is nonzero,

‖λ(µ)f‖2
2 =

∫
|(µ ∗ f)(s)|2ds > 0,

which implies that λ(µ) ≠ 0. Therefore, λ gives a faithful representation of
M(G). �
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The von Neumann algebras λ(G)′′ and ρ(G)′′ are called the left group von
Neumann algebra and right group von Neumann algebra of G respectively.
Usually, the left algebra is preferred and is simply called the group von Neu-
mann algebra of G.

Unitary representations of groups have additional structure that is not
shared by representations of ∗-algebras. If π : G → U(H ) and ρ : G → U(K)
are representations of G, then the tensor product of π and ρ is the represen-
tation π ⊗ ρ : G →U(H ⊗K) defined by

(π ⊗ ρ)(s) = π(s)⊗ ρ(s).

Let π : G →U(H ) be a representation of G andH the conjugate Hilbert space
of H . The contragredient of π is the representation π : G → U(H ) defined
by

〈π(s)ξ |η〉 = 〈π(s)ξ |η〉.
If operators on H and H are represented as (possibly infinite) matrices with
respect to some orthonormal basis, then the matrix representing π(s) is sim-
ply the transpose of the matrix representing π(s−1) = π(s)∗.

If G and H are both locally compact groups, then there is another notion of
tensor product of a representation of G and a representation of H. If G = H,
then this notion does not agree with the notion of tensor product. Hence
this tensor product is often called the Kronecker product of representations,
reserving the use of the phrase “tensor product” for the product defined above.

Since representations of a Banach ∗-algebra (or a locally compact group)
always generate C∗-subalgebras of B(H ), it would be more convenient for
the purposes of representation theory to replace a Banach ∗-algebra or locally
compact group with a C∗-algebra that is a universal object with respect to
the representation theory of the algebra or group. Then the study of repre-
sentations of these objects could be replaced entirely by the study of repre-
sentations of C∗-algebras. We will carry out this construction for all Banach
∗-algebras with a separating family of ∗-representations.

2.9.18 Definition. Let A be a Banach ∗-algebra with a separating family of
∗-representations. Define ‖ · ‖rep :A→ [0,∞) by

‖a‖rep = sup{‖π(a)‖ : π is a ∗-representation ofA}.

We refer to ‖ · ‖rep as the representation norm onA.

Of course, we must justify our choice of notation and actually show that
‖ · ‖rep is a norm onA.
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2.9.19 Proposition. Let A be a Banach ∗-algebra with a separating family of
∗-representations. Then

(i) ‖ · ‖rep is a norm onA;
(ii) ‖ab‖rep ≤ ‖a‖rep‖b‖rep for all a,b ∈A;

(iii) ‖a∗‖rep = ‖a‖rep for every a ∈A;
(iv) ‖a∗a‖rep = ‖a‖2

rep for every a ∈A.

Therefore, the completion ofA with respect to ‖ · ‖rep is a C∗-algebra.

Proof.

(i) If a,b ∈A, then ‖π(a+b)‖ ≤ ‖π(a)‖+‖π(b)‖ for every representation
π of A, so ‖a + b‖rep ≤ ‖a‖rep + ‖b‖rep. Similarly, if a ∈ A and α ∈
C, then ‖π(αa)‖ = |α| · ‖π(a)‖ for every representation π of A, so
‖αa‖rep = |α|‖a‖rep. Nondegeneracy follows from the assumption that
A has a separating family of ∗-representations.

(ii) If a,b ∈A, then ‖π(ab)‖ ≤ ‖π(a)‖ ·‖π(b)‖ for every representation π
ofA, so ‖ab‖rep ≤ ‖a‖rep‖b‖rep.

(iii) If a ∈ A, then ‖π(a∗)‖ = ‖π(a)‖ for every representation π of A, so
‖a∗‖rep = ‖a‖rep.

(iv) If a ∈A, then ‖π(a∗a)‖ = ‖π(a)‖2 for every representation π ofA, so
‖a∗a‖rep = ‖a‖2

rep. �

2.9.20 Definition. LetA be a Banach ∗-algebra with a separating family of ∗-
representations. The completion ofA with respect to the representation norm
‖ · ‖rep is called the enveloping C∗-algebra ofA, and is denoted by C∗(A).

The enveloping C∗-algebra gets its name because every ∗-homomorphism
from A to a C∗-algebra B factors uniquely through C∗(A). However, we are
not yet able to show this, because we have not proven that every C∗-algebra
has a faithful ∗-representation.

2.9.21 Example. LetG be a locally compact group. Then, by Proposition 2.9.17,
the left regular representation of L1(G) is faithful, so L1(G) has a separating
family of ∗-representations. The enveloping C∗-algebra of L1(G) is called the
group C∗-algebra of G and is denoted by C∗(G). If π is a representation of
G, it extends uniquely to a representation πC∗(G) of C∗(G), so we can define
C∗π(G) as the quotient C∗(G)/ker(πC∗(G)). In particular, if λ is the left regu-
lar representation of G, C∗λ (G) is denoted by C∗r (G), and is called the reduced
group C∗-algebra of G. Even though λ integrates to a faithful representation
of L1(G), it is not necessarily faithful when extended to C∗(G). In fact, it is a
theorem of Hulanicki [Hul64] that λ gives a faithful representation of C∗(G) if
and only if G is amenable.
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Historical Notes

Representations of ∗-algebras were considered in the earliest papers on C∗-
algebras by Gelfand and Naimark [GN43] and Segal [Seg47], as they both char-
acterized C∗-algebras as those Banach ∗-algebras that are isometrically iso-
morphic to a ∗-subalgebra of B(H ).

Schur’s Lemma (Proposition 2.9.4) is due to Schur in the case of finite-
dimensional representation of a finite group. The original version actually
concerns intertwining operators of two irreducible representations, where it
is shown that irreducible representations have intertwining operators if and
only if they are equivalent, in which case all of the intertwining operators are
scalar multiples of the identity. It was used as a lemma in the proof of the
famous Schur orthogonality relations of characters. Schur made the impor-
tant realization that the developing theory of representations and characters
of finite groups could be recast in terms of linear algebra, which paved the way
for the generalization of representation theory to infinite groups in terms of
operators on infinite-dimensional spaces.

The connection between representations of locally compact groups and ∗-
representations of C∗-algebras has been known since the beginning of oper-
ator algebras. However, the first person to explicitly state that there exists
a C∗-algebra C∗(G) whose representation theory is equivalent to that of G is
Kaplansky [Kap51a]. The reduced group C∗-algebra was already introduced by
Segal [Seg47].

2.10 Positive Linear Functionals

2.10.1 Definition. Let A be a ∗-algebra. If ω : A → C is a linear functional,
we say thatA is positive if ω(a∗a) ≥ 0 for every a ∈A.

2.10.2 Examples.

(i) Let X be a locally compact Hausdorff space, and let µ be a positive finite
Radon measure on X. Then the map ω : C0(X)→ C defined by

ω(f) =
∫
f(x)dµ(x)

is a continuous positive linear functional onA. By the Riesz Representa-
tion Theorem, every continuous positive linear functional onA is of this
form.

(ii) Let π : A → B(H ) be a representation of A, and fix ξ ∈ H . Define
ω :A→ C by

ω(a) = 〈π(a)ξ |ξ〉.
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Then ω is obviously linear, and

ω(a∗a) = 〈π(a∗a)ξ |ξ〉 = 〈π(a)∗π(a)ξ |ξ〉 = 〈π(a)ξ |π(a)ξ〉 ≥ 0,

so ω is positive. Since π is continuous, ω is also continuous. A positive
linear functional expressed in this way is said to be in vector form.

(iii) The sum of any two positive linear functionals on A is a positive linear
functional, and if ω is a positive linear functional on A, then so is λω
for every λ ≥ 0.

The main objective of this section is to show that this second example is
the typical example of a positive linear functional. However, there are a few
immediate complications:

(i) Since a ∗-homomorphism whose range is a C∗-algebra is always continu-
ous, any positive functional ω onA of the form

ω(a) = 〈π(a)ξ |ξ〉,

where π is a representation of A and ξ ∈ H , must also be continuous.
However, it is not very difficult to produce non-continuous positive lin-
ear functionals on a Banach ∗-algebra. The easiest examples are related
to the failure of factorization results for A. Let A2 be the span of all
products of two elements in A. If A has a bounded approximate iden-
tity, then the simplest form of the Cohen Factorization Theorem implies
thatA2 =A. However, ifA does not have a bounded approximate iden-
tity, it is very well possible that A2 is strictly smaller than A. In such a
case, any linear functional ω of A that vanishes on A2 is positive, but
there are many such functionals that are not continuous. We will show
in Theorem 2.10.9 that the existence of a bounded approximate identity
in a Banach ∗-algebra implies that every positive linear functional on the
algebra is continuous.

(ii) Even whenϕ is assumed to be continuous, there are other simple restric-
tions thatϕ must satisfy in order to have a representation in our desired
form. Suppose that ω(a) = 〈π(a)ξ |ξ〉, where π is a representation of
A and ξ ∈ H . It is easy to extend π to AI, the unitization of A, by
simply defining

π̃(a, λ) = π(a)+ λ · 1.

Then ω also extends toAI as

ω̃(a, λ) = 〈π̃(a, λ)ξ |ξ〉.

Just as a bounded approximate identity in a closed self-adjoint ideal J
of a Banach ∗-algebra A allows one to extend representations of J to
representations ofA Proposition 2.9.13, it is reasonable to expect that a
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bounded approximate identity in A would allow one to extend positive
functionals on A to AI, since A is a closed self-adjoint ideal of AI.
We could show this directly, but we will get it as a consequence of the
construction of a representation from ω.

We will show that if A has a bounded approximate identity then every
positive linear functional on A arises from a nondegenerate (and even cyclic)
representation in this fashion. The key idea behind the construction of such
representations is that for any positive linear functionalω onA we can define
a sesquilinear form [·, ·] onA by

[a, b] =ω(b∗a).

With a small amount of work, we can show that [a, b] = [b,a], as we do in
the next proposition, where we also reprove the Cauchy-Schwarz inequality
for ω for the sake of completeness. If [·, ·] were an inner product, we could
representA by left multiplication on itself, equipped with this inner product,
and then try completing the inner product to get a representation of A on a
Hilbert space. However, there is one thing preventing [·, ·] from being an inner
product: it is quite possible that [a,a] = 0, i.e. ω(a∗a) = 0, when a ≠ 0. To
correct this problem, we will define a subset Nω of A associated to ω that is
essentially the kernel of [·, ·] as a bilinear map. We will then show thatNω is
a left ideal ofA, allowing us to redefine [·, ·] as an inner product onA/Nω.

2.10.3 Proposition. Let A be a ∗-algebra, and ω a positive linear functional
onA. Then:

(i) ω(b∗a) =ω(a∗b) for all a,b ∈A;
(ii) |ω(b∗a)|2 ≤ω(a∗a)ω(b∗b) for all a,b ∈A;

Proof.

(i) We have

ω(a∗a)+ω(b∗a)+ω(a∗b)+ω(b∗b) =ω((a+ b)∗(a+ b)) ≥ 0,

so Im(ω(b∗a) +ω(a∗b)) = 0. Hence Im(ω(b∗a)) = − Im(ω(a∗b)). By
replacing a by ia,

Re(ω(b∗a)) = Im(iω(b∗a))
= Im(ω(b∗(ia)))
= − Im(ω((ia)∗b))
= − Im(−iω(a∗b))
= Im(iω(a∗b))
= Re(ω(a∗b)),

showing that ω(b∗a) =ω(a∗b).
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(ii) If ω(b∗b) = 0, the inequality is trivial. Thus we we will assume that
ω(b∗b) ≠ 0. For every α ∈ C,

ω(a∗a)−ᾱω(b∗)−αω(b∗b)+|α|2ω(b∗b) =ω((a−αb)∗(a−αb)) ≥ 0.

In particular, when α =ω(b∗a)/ω(b∗b), we get that

ω(a∗a)− |ω(b
∗a)|2

ω(b∗b)
≥ 0,

establishing the desired inequality. �

2.10.4 Definition. Let A be a ∗-algebra, and ω a positive linear functional on
A. The left kernel of ω is the set

Nω = {a ∈A :ω(a∗a) = 0}.

2.10.5 Proposition. Let A be a ∗-algebra, and ω a positive linear functional
on A. Then Nω is a left ideal of A. Furthermore, the sesquilinear form 〈· | ·〉
onA/Nω defined by

〈a+N |b +N〉 =ω(b∗a)
is a well-defined inner product onA/Nω.

Proof. If a,b ∈Nω,

ω((a+ b)∗(a+ b)) =ω(a∗a+ a∗b + b∗a+ b∗b)
= 2 Re(ω(a∗b))

≤ 2ω(a∗a)
1
2ω(b∗b)

1
2

= 0,

so a+ b ∈Nω. If either a ∈A or a ∈ C and b ∈Nω then

ω((ab)∗(ab)) =ω(b∗a∗ab)
≤ω(b∗b) 1

2ω((a∗ab)∗(a∗ab))
1
2

= 0,

so ab ∈Nω. HenceNω is a left ideal.

The bilinear form 〈· | ·〉 is well-defined because if n1, n2 ∈Nω,

ω((b +n2)∗(a+n1) =ω(b∗a)+ω((b +n2)∗n1)+ω(a∗n2) =ω(b∗a).

By part (ii) of Proposition 2.10.3,

〈a+Nω |b +Nω〉 =ω(b∗a) =ω(a∗b) = 〈b +Nω |a+Nω〉.

If 〈a+Nω |a+Nω〉 = 0, thenω(a∗a) = 0 and a ∈Nω, i.e. a+Nω = 0+Nω.
Therefore 〈· | ·〉 is an inner product. �
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We noted earlier in this section that continuity of a positive linear func-
tional is necessary for it to be derived from a representation. We will first
prove the continuity of a positive linear functional ω on A whenever A has
a bounded approximate identity, as the continuity of ω will be essential in
showing that the representation ofA onA/Nω is bounded.

One of the most important corollaries of the continuous functional calculus
for C∗-algebras is the existence of square roots of positive elements. In many
cases, one can also use the holomorphic functional calculus to obtain a square
root for an element in a general Banach ∗-algebra. Obviously, this is not always
possible, due to the existence of multiple branches of the square root function
for negative real numbers. However, the natural argument works by simply
restricting the spectrum of an element so that it lies in the remainder of the
unit disc.

2.10.6 Proposition. Let A be a unital Banach ∗-algebra. If a ∈ A is self-
adjoint and such that spr(1−a) < 1 then there exists a self-adjoint b ∈A such
that b2 = a.

Proof. Let D = {λ ∈ C : ‖λ − 1‖ < 1}. Since spr(1 − a) < 1, we have that
σ(a) ⊆ D. Let f : D → C be the analytic continuation of the square root
function from the open interval (0,1) to D. Let b = f(a). Then b2 = a by
the holomorphic functional calculus. Since the Taylor series expansion of f
around 1 has real coefficients converging in D, b is self-adjoint. �

2.10.7 Lemma. Let A be a unital Banach ∗-algebra, and ω a positive linear
functional onA. Then ω is continuous, and if ‖1‖ = 1, we have ‖ω‖ =ω(1).

Proof. By Proposition 2.1.13, we may renorm A so that ‖1‖ = 1. If a ∈ A
is self-adjoint and ‖a‖ < 1, then spr(a) < 1, so spr(1 − a) < 1 Thus, by
Proposition 2.10.6, there is a self-adjoint b ∈A such that b∗b = 1− a, so

ω(1)−ω(a) =ω(1− a) =ω(b∗b) ≥ 0.

If ‖a‖ < 1, then ‖a∗a‖ ≤ ‖a‖2 < 1. Since a∗a is self-adjoint, the above gives
us that ω(a∗a) ≤ω(1). Hence by Proposition 2.10.3,

|ω(a)|2 = |ω(1 · a)|2 ≤ω(a∗a)ω(1) ≤ω(1)2.

Therefore, ‖ω‖ ≤ω(1), andω is continuous. If ‖1‖ = 1, then ‖ω‖ ≥ω(1), so
‖ω‖ =ω(1). �

2.10.8 Proposition. LetA be a Banach ∗-algebra, andω a positive linear func-
tional on A. Fix b ∈ A, and define ρ : A → C by ρ(x) = ω(b∗ab). Then ρ
is a continuous positive linear functional and ‖ρ‖ ≤ ω(b∗b). In particular,
|ω(b∗ab)| ≤ ‖a‖ω(b∗b) for all a,b ∈A.
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Proof. LetAI be the unitization ofA. Define ρ̃ :AI → C by ρ̃(a) =ω(b∗ab),
which makes sense becauseA is an ideal ofAI and thus b∗ab ∈A. Obviously,
ρ̃ is a linear functional, and

ρ̃(a∗a) =ω(b∗a∗ab) =ω((ab)∗(ab)) ≥ 0,

ρ̃ is positive. Therefore, by Lemma 2.10.7, ρ̃ is continuous, and ‖ρ̃‖ = ρ̃(1) =
ω(b∗b). Restricting toA, we have that ρ is a continuous positive linear func-
tional and ‖ρ‖ ≤ ‖ρ̃‖ =ω(b∗b). The final inequality holds because

|ω(b∗ab)| = |ρ(a)| ≤ ‖a‖ · ‖ρ‖ ≤ ‖a‖ω(b∗b). �

2.10.9 Theorem. Let A be a Banach ∗-algebra with a bounded approximate
identity. Then every positive linear functional onA is continuous.

Proof. Let ω be a positive linear functional on A, and let (xn)∞n=1 be any
sequence in A such that xn → 0. Then by Corollary 2.4.10 there is an a ∈ A
and a sequence (yn)∞n=1 in A such that xn = ayn for all n ≥ 1 and yn → 0.
Applying the same theorem to Aop, there is a b ∈ A and a sequence (zn)∞n=1

in A such that yn = znb for all n ≥ 1 and zn → 0. Define ρ : A → C by
ρ(x) =ω(axb). From the polarization identity

4axb =
3∑
k=0

ik(a∗ + ikb)∗x(a∗ + ikb)

we have

ρ(x) =ω(axb) = 1
4

 3∑
k=0

ikω((a∗ + ikb)∗x(a∗ + ikb)
 ,

so ρ is a linear combination of functionals of the form x ,ω(c∗xc) for some
c ∈ A, which are all continuous by Proposition 2.10.8. Therefore, ρ is also
continuous, and

lim
n→∞

ω(xn) = lim
n→∞

ω(aznb) = lim
n→∞

ρ(zn) = 0,

showing that ω is continuous. �

The automatic continuity of positive linear functionals in the presence of a
bounded approximate identity allows us to generalize some inequalities that
are easy to prove in the unital case.

2.10.10 Proposition. Let A be a Banach ∗-algebra with a bounded approxi-
mate identity, and ω a positive linear functional onA. Then:
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(i) ω(a∗) =ω(a) for all a ∈A;
(ii) if K is a bound for a bounded approximate identity ofA, then

|ω(a)|2 ≤ K2‖ω‖ω(a∗a)

for all a ∈A;

Proof.

(i) Let (ei)i∈I be a bounded approximate identity ofA. For every a ∈A,

ω(a∗) = lim
i∈I
ω(a∗ei)

= lim
i∈I
ω(e∗i a)

= lim
i∈I
ω((a∗ei)∗)

=ω(a∗∗)
=ω(a).

(ii) Let (ei)i∈I be a bounded approximate identity of A with bound K. For
every a ∈A,

|ω(a)|2 = lim
i∈I
|ω(e∗i a)|2

≤ lim sup
i∈I

ω(e∗i ei)ω(a
∗a)

≤ lim sup
i∈I

‖e∗i ei‖‖ω‖ω(a∗a)

≤ lim sup
i∈I

‖ei‖2‖ω‖ω(a∗a)

≤ K2‖ω‖ω(a∗a). �

If A is an algebra with a contractive approximate identity, such as a C∗-
algebra or L1(G) for a locally compact group G, then the positive linear func-
tionals on A are more well-behaved than in the general case of a bounded
approximate identity.

2.10.11 Proposition. LetA be a Banach ∗-algebra with a contractive approxi-
mate identity, and ω a positive linear functional onA. Then:

(i) ω has a unique extension ω̃ toAI such that ‖ω̃‖ = ‖ω‖;
(ii) ‖ω‖ = supa∈A,‖a‖≤1ω(a∗a);

(iii) if (ai)i∈I is a net inA such that ω(ai)→ ‖ω‖, then ω(a∗i ai)→ ‖ω‖.

LetN =Nω̃, so thatAI/N is the inner product space associated with ω̃. Then:

(iv) if (ai)i∈I is a net inA such that ω(ai)→ ‖ω‖, then ai +N → 1+N ;

92



(v) the image ofA is dense inAI/N ;
(vi) if (ei)i∈I is a contractive approximate identity ofA, then ω(ei)→ ‖ω‖;

(vii) if ψ is another positive linear functional onA, then

‖ω+ψ‖ = ‖ω‖ + ‖ψ‖ and Èω+ψ = ω̃+ ψ̃.
Proof.

(i) By Lemma 2.10.7, the norm of a positive linear functional onAI is deter-
mined by its value at the identity. Since A has codimension 1 in AI, the
extension of any positive linear functional to AI, if it exists, is unique.
Define a linear functional ω̃ onAI by

ω̃(a+ λ1) =ω(a)+ λ‖ω‖.

Then, using part (ii) of Proposition 2.10.10, we have

ω̃((a+ λ1)∗(a+ λ1)) =ω(a∗a+ λa+ λa∗)+ |λ|2‖ω‖
=ω(a∗a)+ 2 Reλω(a)+ |λ|2‖ω‖
≥ω(a∗a)− 2|λ|‖ω‖1/2ω(a∗a)+ |λ|2‖ω‖
= (ω(a∗a)1/2 − |λ|‖ω‖1/2)2

≥ 0,

so ω̃ is positive. By Lemma 2.10.7, ‖ω̃‖ = ω̃(1) = ‖ω‖.
(ii) By part (ii) of Proposition 2.10.10, we have

‖ω‖2 = sup
a∈A,‖a‖≤1

|ω(a)|2 ≤ sup
a∈A,‖a‖≤1

‖ω‖ω(a∗a) ≤ ‖ω‖2,

so dividing by ‖ω‖ gives

‖ω‖ = sup
a∈A,‖a‖≤1

ω(a∗a).

(iii) By part (ii) of Proposition 2.10.10, we have

ω(ai)2 ≤ ‖ω‖ω(a∗i ai) ≤ ‖ω‖2.

Hence ω(a∗i ai)→ ‖ω‖.
(iv) By Lemma 2.10.7 and part (i) of Proposition 2.10.10, we have

〈ai − 1+N |ai − 1+N〉 = ω̃((ai − 1)∗(ai − 1))
= ω̃(a∗i ai − a∗i − ai + 1)

=ω(a∗i ai)−ω(ai)−ω(ai)+ ‖ω‖.

By part (iii), the first term tends to ‖ω‖, and the middle two terms each
tend to −‖ω‖, so

lim
i∈I
〈ai − 1+N |ai − 1+N〉 = 0,

and ai +N → 1+N .
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(v) Let (an)∞n=1 be a sequence in the unit ball ofA such that |ω(an)| → ‖ω‖.
Define

bn = sgn(ω(an))an,

so thatω(bn)→ ‖ω‖. By part (iv), bn+N → 1+N . Fix c ∈AI, and define
cn = cbn. Then (cn)∞n=1 is a sequence inA, and by Proposition 2.10.8,

‖cn − c +N‖2 = ‖(c(bn − 1)+N‖
= ω̃((c(bn − 1))∗c(bn − 1))
= ω̃((bn − 1)∗c∗c(bn − 1))
≤ ‖c∗c‖ω̃((bn − 1)∗(bn − 1))
= ‖c∗c‖ · ‖bn − 1+N‖.

Therefore, cn +N → c +N .
(vi) If a ∈A,

lim
i∈I
〈ei +N |a+N〉 = lim

i∈I
ω(a∗ei) =ω(a∗) = 〈1+N |a+N〉,

By part (v) the image ofA is dense inAI/N , so ei+N → 1+N weakly.
Therefore,

lim
i∈I
ω(ei) = lim

i∈I
〈ei +N |1+N〉 = 〈1+N |1+N〉 = ω̃(1) = ‖ω‖.

(vii) The first claim follows from part (vi), and the second follows from the
first. �

Before we finally show that every positive linear functional on a Banach
∗-algebra with a bounded approximate identity can be expressed in vector
form with respect to a representation of the algebra, we will show that such a
representation is unique.

2.10.12 Proposition. LetA be a ∗-algebra, π :A→ B(H ) a representation of
A, and ξ a cyclic vector for π . If ρ :A→ B(K) is another representation ofA
and η ∈ K is a cyclic vector for ρ such that

〈π(a)ξ |ξ〉 = 〈ρ(a)η |η〉

for all a ∈ A, then there exists a unique unitary U : H → K establishing a
unitary equivalence of π and ρ and taking ξ to η.

Proof. Define U0 : π(A)ξ → ρ(A)η by

U0π(a)ξ = ρ(a)η.
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We have

〈U0π(a)ξ |U0π(b)ξ〉 = 〈ρ(a)η |ρ(b)η〉
= 〈ρ(b)∗ρ(a)η |η〉
= 〈ρ(b∗a)η |η〉
=ω(b∗a)
= 〈π(b∗a)ξ |ξ〉
= 〈π(a)ξ |π(b)ξ〉.

Hence U0 is well-defined and an isometry from π(A)ξ onto ρ(A)η, so it ex-
tends by uniform continuity to a unitary U from H onto K, as ξ and η are
cyclic vectors for π and ρ respectively. Then for all a,b ∈A,

ρ(a)U0π(b)ξ = ρ(a)ρ(b)η
= ρ(ab)η
= U0π(ab)ξ
= U0π(a)π(b)ξ.

Therefore ρ(a)U = Uπ(a) for every a ∈ A, and U establishes the unitary
equivalence of π and π ′. The uniqueness is clear because U is uniquely deter-
mined by U0, and U0 is the only way that we could establish a unitary equiva-
lence between π and ρ exchanging the cyclic vectors. �

2.10.13 Theorem (Gelfand-Naimark-Segal). LetA be a Banach ∗-algebra with
a bounded approximate identity. If ω is a positive linear functional onA there
is a representation π :A→ B(H ) and a cyclic vector ξ for π such that

ω(a) = 〈π(a)ξ |ξ〉.
Moreover, ifA has a contractive approximate identity, then ‖ω‖ = ‖ξ‖2.

Proof. Let N =Nω = {a ∈ A :ω(a∗a) = 0}, and 〈· | ·〉 the bilinear form on
A/N defined by

〈a+N |b +N〉 =ω(b∗a).
By Proposition 2.10.5, 〈· | ·〉 is actually a well-defined inner product on A/N .
Let H denote the completion of A/N as an inner product space. Let π0 :
A→A/N denote the left regular representation ofA onA/N defined by

π0(a)(x +N ) = a(x +N ),
which is well-defined because N is a left ideal. It is obviously linear, but it
also preserves the involution because

〈π0(a)(x +N ) |y +N〉 =ω(y∗ax)
=ω((a∗y)∗x)
= 〈x +N |π0(a∗)(y +N )〉
= 〈π0(a∗)∗(x +N ) |y +N〉,
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showing that π0(a∗) = π0(a)∗. Moreover, π0(a) is bounded for every a ∈ A
as Proposition 2.10.10 implies that for all a,x ∈A,

‖π0(a)(x +N )‖2 = ‖a(x +N )‖
= ‖ax +N‖
=ω(x∗a∗ax)
≤ ‖a∗a‖ω(x∗x)
= ‖a∗a‖ · ‖x +N‖2.

Thus π0 extends by continuity to a ∗-representation π :A→ B(H ).
Now, we want to get the cyclic vector. If A is unital, then it is easy to

see that 1 +N is a cyclic vector for π . If A has a contractive approximate
identity (ei)i∈I , then we can use the fact that ω(ei) → ‖ω‖ to show that ei +
N defines a Cauchy net in H , whose limit will be a cyclic vector. However,
in the case of a general bounded approximate identity, this approach does
not necessarily work. Instead, we show that ω descends to a bounded linear
functional on the quotientA/N , and thus defines a bounded linear functional
on H , finally using the Riesz-Fréchet Theorem to get the cyclic vector. Define
a linear functional ψ0 on A/N by ψ0(a + N ) = ω(a). To see that this is
well-defined, let (ei)i∈I be a bounded approximate identity for A with bound
K. Then, by part (ii) of Proposition 2.10.3, for all n ∈N ,

|ω(n)|2 = lim
i∈I
|ω(e∗i n)|2 ≤ lim

i∈I
K2ω(n∗n)ω(e∗i ei) = 0.

By Proposition 2.10.10,

|ψ0(a+N)| = |ω(a)| ≤ ‖ω‖
1
2ω(a∗a)

1
2 = ‖ω‖ 1

2‖a+N‖.

Therefore, ψ0 is bounded and extends by continuity to a bounded linear func-
tional ψ on H . By the Riesz-Fréchet Theorem, there exists a unique vector
ξ ∈H such that ψ(η) = 〈η |ξ〉 for every η ∈H , and thusω(a) = 〈a+N |ξ〉
for every a ∈A. We then have, for all a,b ∈A,

〈a+N |b +N〉 =ω(b∗a)
= 〈b∗a+N |ξ〉
= 〈π(b∗ +N )(a+N ) |ξ〉
= 〈a+N |π(b +N )ξ〉.

Hence a+N = π(a)ξ and

ω(a) = 〈a+N |ξ〉 = 〈π(a)ξ |ξ〉

for every a ∈ A. Since π(a)ξ = a+N , π(A)ξ = A/N =H , so ξ is a cyclic
vector for π .
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Now, assume thatA has a contractive bounded approximate identity (ei)i∈I .
Since π is nondegenerate, π(ei)→ 1 in the strong operator topology by Propo-
sition 2.9.7. Hence, by

‖ω‖ = lim
i∈I
|ω(ei)| = lim

i∈I
〈π(ei)ξ |ξ〉 = ‖ξ‖2. �

The construction in the preceding theorem is called the Gelfand-Naimark-
Segal construction, or simply the GNS construction. We will often denote the
triple of the representation, Hilbert space, and cyclic vector associated with a
positive linear functional ω by (πω,Hω, ξω), and call it the GNS triple associ-
ated with ω.

If G is a locally compact group, then the positive functionals on L1(G) are
all continuous, because L1(G) has a bounded approximate identity. Hence they
are elements of L∞(G). We would like a characterization of the positive func-
tionals on L1(G) in terms of their concrete properties as (equivalence classes
of) functions on G.

2.10.14 Definition. Let G be a locally compact group. If ϕ is a continuous
function on G, we say that ϕ is of positive type, or is positive definite, if for
every finite sequence s1, . . . , sn ∈ G, the matrix [ϕ(s−1

i sj)]1≤i,j≤n is positive.
We let P(G) denote the set of all functions on G of positive type.

2.10.15 Examples.

(i) If π : G → U(H ) is a representation of G and ξ ∈ H , then ϕ : G → C
defined by

ϕ(s) = 〈π(s)ξ |ξ〉
is of positive type. Indeed, if s1, . . . , sn ∈ G and α1, . . . , αn ∈ C, then∑

1≤i,j≤n
αiαj〈π(s−1

i sj)ξ |ξ〉 =
∑

1≤i,j≤n
〈αiαjπ(s−1

i sj)ξ |ξ〉

=
∑

1≤i,j≤n
〈π(sj)αiξ |π(si)αiξ〉

=
〈 n∑
i=1

π(si)αiξ

∣∣∣∣∣∣
n∑
i=1

π(si)αiξ
〉

=

∥∥∥∥∥∥
n∑
i=1

π(si)αiξ

∥∥∥∥∥∥
2

≥ 0.

(ii) The special case of (i) where π is the left regular representation is partic-
ularly interesting. Recall that if f is a function on G, then f∨ is the func-
tion on G defined by f∨(s) = f(s−1). If ξ, η ∈ L2(G), then ξ∗η∨ ∈ C0(G)
and

〈λ(s)ξ |η〉 = (η∗ ξ∨)(s).
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Suppose, first, that ξ, η ∈ Cc(G). Then

〈λ(s)ξ |η〉 =
∫
ξ(s−1t)η(t)dt =

∫
η(t)ξ∨(t−1s)dt = η∗ ξ∨(s).

Since ξ, η ∈ Cc(G), it is clear that η ∗ ξ∨(s) also has compact support
and is in C0(G). If ξ, η ∈ L2(G), then there exist sequences (ξn)∞n=1 and
(ηn)∞n=1 in Cc(G) converging to ξ and η respectively. If s ∈ G we have

|〈λ(s)ξ |η〉 − 〈λ(s)ξn |ηn〉| ≤ ‖λ(s)(ξ − ξn)‖‖η‖ + ‖λ(s)ξn‖‖η− ηn‖
= ‖ξ − ξn‖‖η‖ + ‖ξn‖‖η− ηn‖.

Therefore, the coefficient function 〈λ(·)ξ |η〉 is approximated in the uni-
form norm by compactly supported functions, so it must be in C0(G).
Since

〈λ(s)ξn |ηn〉 = (ηn ∗ ξ∨n)(s)
for every n ∈ N, we have

〈λ(s)ξ |η〉 = (η∗ ξ∨)(s).

In particular, if ξ ∈ L2(G), then ξ ∗ ξ∨ is a function of positive type.
(iii) The sum of any two functions of positive type on G is of positive type,

and if ϕ : G → C is of positive type, then so is λϕ for every λ ≥ 0.
(iv) A function of positive type is not necessarily positive valued. For exam-

ple, the function ϕ : R → C defined by ϕ(t) = eit is a one-dimensional
representation of R and thus a function of positive type.

2.10.16 Proposition. Let G be a locally compact group, and ϕ : G → C be a
function of positive type. Then

(i) ϕ(s−1) =ϕ(s) for every s ∈ G;
(ii) |ϕ(s)| ≤ϕ(e) for every x ∈ G;

(iii) ‖ϕ‖∞ =ϕ(e).

Proof.

(i) Since the matrix (
ϕ(e) ϕ(s)
ϕ(s−1) ϕ(e)

)
is positive it is also self-adjoint, showing that ϕ(s−1) =ϕ(s).

(ii) Since the matrix [ϕ(e)] is positive, ϕ(e) ≥ 0. The matrix(
ϕ(e) ϕ(s)
ϕ(s−1) ϕ(e)

)

is also positive, so it has positive determinant, i.e.

ϕ(e)2 −ϕ(s)ϕ(s−1) ≥ 0.
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By (i), this implies that

ϕ(e)2 − |ϕ(s)|2 =ϕ(e)2 −ϕ(s)ϕ(s) =ϕ(e)2 −ϕ(s)ϕ(s−1) ≥ 0.

Hence |ϕ(s)| ≤ϕ(e).
(iii) This is immediate from (ii). �

Following part (iii), we let P1(G) denote the set of functions of positive type
of norm 1 on G.

We will see that there is a natural correspondence between functions of
positive type on G and positive linear functionals on L1(G), where a positive
linear functional on L1(G) is constructed by integrating against a function of
positive type, and we will show that every function of positive of positive type
arises in this fashion. Thus the functions of positive type on G can be viewed
as concrete realizations of the positive linear functionals on C∗(G) as actual
continuous functions on G. We first need a lemma about the extreme points
of the unit ball of M(G)

2.10.17 Proposition. Let X be a locally compact Hausdorff space. Then the set
of extreme points of the unit ball of M(X) is

{αδx : α ∈ C, |α| = 1 and x ∈ X}.

The set of extreme points of the set of probability measures on X is

{δx : x ∈ X}.

Proof. We leave it as an easy exercise to show that αδx is an extreme point
of the unit ball of M(X) when |α‖ = 1 and x ∈ X.

Now, let µ be an extreme point of the unit ball of M(X). Suppose that the
support of µ is {x} for some x ∈ X. Then it is easy to see that µ = αδx for
some α ∈ C such that |α| = 1.

Suppose that the support of µ contains two distinct points x1andx2. Let
U1 and U2 be neighbourhoods of x1 and x2 respectively with disjoint closures.
By Urysohn’s Lemma, there is an f ∈ C0(X) such that 0 ≤ f(x) ≤ 1 for all
x ∈ X, f(x) = 1 for all x in the closure of U1 and f(x) = 0 for all x in the
closure of U2. Consider the measures f · µ and (1− f) · µ. Let

α = ‖f · µ‖ =
∫
|f |d|µ| =

∫
f d|µ|.

Then

α =
∫
f d|µ| ≤ ‖µ‖ = 1 and α =

∫
fd |µ| ≥ |µ|(U1) > 0,
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because U1 is open and U1 ∩ supp(µ) ≠ �. Also,

1−α = 1−
∫
f d|µ| =

∫
(1− f)d|µ| = ‖(1− f) · µ‖,

and thus

1−α ≥
∫
U2

d|µ| = |µ|(U2) > 0,

because U2 ∩ supp(µ) ≠ �. Hence 0 < α < 1. However,∥∥∥∥ 1
α
f · µ

∥∥∥∥ ≤ 1 and
∥∥∥∥ 1

1−α(1− f) · µ
∥∥∥∥ ≤ 1,

and

µ = α
(
f · µ
α

)
+ (1−α)

(
(1− f) · µ

1−α

)
.

Sine µ is an extreme point of the unit ball of M(X) and α ≠ 0, this implies that
µ = (1/α)f · µ. This implies that f is equal to α < 1 µ-almost everywhere
on the support of µ. However, f is 1 on U1 and |µ|(U1) > 0, a contradiction.
Therefore, our assumption that the support of µ is more than a single point is
false, and µ = αδx for some α ∈ C.

In order to prove the characterization of the extreme points of the proba-
bility measures on X it suffices to show that any extreme point of the set of
probability measures is also an extreme point of M(X). Suppose µ is an ex-
treme point of the probability measures, and let µ1, µ2 ∈ M(X) be such that
‖µ1‖ ≤ 1, ‖µ2‖ ≤ 1, and

µ = 1
2
(µ1 + µ2).

Then

1 = ‖µ‖ ≤ 1
2
(‖µ1‖ + ‖µ2‖) ≤ 1.

Hence ‖µ1‖ + ‖µ2‖ = 2, so ‖µ1‖ = ‖µ2‖ = 1. Also,

1 = µ(X) = 1
2
(µ1(X)+ µ2(X)).

Therefore,

1 = ‖µ‖ ≤ 1
2
(‖µ1‖ + ‖µ2‖) ≤ 1.

which implies that ‖µ1‖ = ‖µ2‖ = 1. We want to show that µ1 and µ2 are both
probability measures. We have

1 = µ(X) = 1
2
(µ1(X)+ µ2(X))

Since |µ1(X)| ≤ 1, |µ2(X)| ≤ 1, and 1 is an extreme point of the unit ball of C,
we have

‖µ1‖ = µ1(X) = 1 and ‖µ2‖ = µ2(X) = 1.
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By a well-known fact from measure theory, this equality implies that µ1 and µ2

are probability measures. We reprove this fact for bounded linear functionals
on possibly noncommutative C∗-algebras in Proposition 2.12.1. Since µ is an
extreme point of the set of probability measures, this implies that µ is an
extreme point of the unit ball. �

2.10.18 Theorem. Let G be a locally compact group, and suppose ϕ ∈ Cb(G).
Then the following are equivalent:

(i) ϕ is a function of positive type;
(ii) ϕ represents a positive linear functional on L1(G), i.e.

〈f∗ ∗ f ,ϕ〉 =
∫∫
ϕ(s−1t)f (s)f (t)ds dt ≥ 0

for all f ∈ L1(G);
(iii) ϕ represents a positive linear functional on M(G), i.e.

〈µ∗ ∗ µ,ϕ〉 =
∫∫
ϕ(s−1t)dµ(s)dµ(t) ≥ 0

for all µ ∈ M(G).

Proof. Supposeϕ is of positive type. We only need to show that the condition
in (ii) holds for functions in Cc(G), since it a dense subset of L1(G). Fix f ∈
Cc(G). The function

(s, t),ϕ(s−1t)f (s)f (t)

on G × G is continuous and of compact support. Let S denote the support of
this function. Then there is a compact subset K of G such that S ⊆ K × K. By
the Krein-Milman Theorem and Proposition 2.10.17, the restriction of the Haar
measure to K is the weak∗ limit of a bounded net of positive measures (νi)i∈I
of finite support, so the restriction of the Haar measure of G × G to K × K is
the weak∗ limit of the net of product measures (νi)i∈I . Let ν be a measure of
finite support defined by the positive masses α1, . . . , αn at the points s1, . . . , sn.
Then we have∫∫

ϕ(s−1t)f (s)f (t)dν(s)dν(t) =
∑

1≤i,j≤n
αiαjϕ(s−1

i sj)f (si)f (sj) ≥ 0.

Therefore, taking the weak∗ limit,∫∫
ϕ(s−1t)f (s)f (t)ds dt ≥ 0.

Suppose (ii) holds. If µ ∈ M(G) has compact support K and f ∈ Cc(G), then

〈f∗ ∗ µ∗ ∗ µ ∗ f ,ϕ〉 =
∫∫ (∫∫

ϕ(xyzs)f∗(x)f(s)dx ds
)
dµ∗(y)dµ(z) ≥ 0.
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Fix ε > 0. Using the compactness of K−1 × K, there is a relatively compact
symmetric neighbourhood V of e such that if x, s ∈ V , then

|ϕ(xyzs)−ϕ(yz)| < ε

for all (y, z) ∈ K−1×K. Hence if fV is a positive function supported on V such
that

∫
fV(x)dx = 1, then

|〈µ∗ ∗ µ,ϕ〉 − 〈f∗V ∗ µ∗ ∗ µ ∗ fV ,ϕ〉|

=
∣∣∣∣∫∫ ((ϕ(yz)−ϕ(xyzs))f∗V (x)fV(s)dx ds) dµ∗(y)dµ(z)∣∣∣∣

≤
∫∫ (∫∫

|ϕ(yz)−ϕ(xyzs)|f∗V (x)fV(s)dx ds
)
d|µ∗|(y)d|µ|(z)

≤ε|µ∗|(K−1)|µ|(K).

Taking ε sufficiently small shows that 〈µ∗∗µ,ϕ〉 ≥ 0 if µ ∈ M(G) is of compact
support. Since the measures of compact support are dense in M(G),

〈µ∗ ∗ µ,ϕ〉 ≥ 0

for all µ ∈ M(G).

Finally, suppose (iii) holds. Fix s1, . . . , sn ∈ G and α1, . . . , αn ∈ C, and let
µ =

∑n
i=1αisi ∈ M(G). Since

µ∗ ∗ µ =
n∑

i,j=1

αiαjϕ(s−1
i sj),

we have
n∑

i,j=1

αiαjϕ(s−1
i sj) = 〈µ∗ ∗ µ,ϕ〉 ≥ 0.

Therefore, ϕ is of positive type. �

2.10.19 Theorem. Let G be a locally compact group, and suppose ϕ ∈ L∞(G).
Then the following are equivalent:

(i) ϕ is in the equivalence class of a (necessarily unique) continuous function
of positive type;

(ii) ϕ represents a positive linear functional on L1(G), i.e.

〈f∗ ∗ f ,ϕ〉 =
∫∫
ϕ(s−1t)f (s)f (t)ds dt ≥ 0

for all f ∈ L1(G);
(iii) there exists a unitary representation π : G → U(H ) and a ξ ∈ H such

that
ϕ(s) = 〈π(s)ξ |ξ〉.

Moreover, ξ may be taken to be cyclic for π .
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Proof. The equivalence of (i) and (ii) follows from Theorem 2.10.18. Suppose
(ii) holds. Then, by the GNS Theorem, there exists a representation πM(G) :
M(G)→ B(H ) and a cyclic vector ξ ∈H such that

〈µ,ϕ〉 = 〈π(µ)ξ |ξ〉.

Let π : G →U(H ) be the associated representation of G defined by

π(g) = πM(G)(δg).

Then
ϕ(s) = 〈δs ,ϕ〉 = 〈πM(G)(δs)ξ |ξ〉 = 〈π(s)ξ |ξ〉

for all s ∈ G, proving (iv). Finally, the implication (iii) =⇒ (i) is part (i) of
Examples 2.10.15. �

Since unitary representations of groups have the same intertwiners and
cyclic vectors as their integrated forms on L1(G), the same uniqueness that
holds for the GNS construction of L1(G) holds for the corresponding repre-
sentation of a function of positive type: if π : G → U(H ) and ρ : G → U(K)
are unitary representations of G with cyclic vectors ξ ∈ H and η ∈ K such
that

〈π(s)ξ |ξ〉 = 〈ρ(s)η |η〉,
then there exists a unique unitary U : H → K establishing a unitary equiv-
alence of π and ρ and taking ξ to η. If ϕ is a function of positive type on
G, we denote the triple of the representation, Hilbert space, and cyclic vector
associated with ϕ by (πϕ,Hϕ, ξϕ), and call it the GNS triple associated with
ϕ.

One consequence of this characterization of functions of positive type is
that the functions of positive type are closed under pointwise multiplication,
and that the product is easily computed using the tensor product of repre-
sentations. The closure of functions of positive type under multiplication also
follows directly from the definition and the fact that the Schur (or coordinate-
wise) product of positive matrices is positive, but the concrete form is more
useful. Similarly, complex conjugates of functions of positive type are also
functions of positive type, which is given by the contragredient of a unitary
representation.

2.10.20 Corollary. Let G be a locally compact group.

(i) If ϕ and ψ are functions of positive type on G, then ϕ ·ψ is a function of
positive type.

(ii) If ϕ is a function of positive type on G, then ϕ is a function of positive
type.
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Proof.

(i) Let (πϕ,Hϕ, ξϕ) be (πψ,Hψ, ξψ) be the GNS triples associated with ϕ
and ψ. Then

(ϕ ·ψ)(s) = 〈πϕ(s)ξϕ |ξϕ〉〈πψ(s)ξψ |ξψ〉
= 〈(πϕ(s)ξϕ)⊗ (πψ(s)ξψ) |ξϕ ⊗ ξψ〉
= 〈(πϕ ⊗πψ)(s)ξϕ ⊗ ξψ |ξϕ ⊗ ξψ〉,

which shows that ϕ ·ψ is of positive type.
(ii) Let (πϕ,Hϕ, ξϕ) be the GNS triple associated with ϕ. Then

ϕ(s) =ϕ(s)
= 〈πϕ(s)ξϕ |ξϕ〉 = 〈πϕξϕ |ξϕ〉,

which shows that ϕ is of positive type. �

The natural topology for the positive functionals on a Banach ∗-algebra
is the weak∗ topology, but in the case of L1(G) for a locally compact group,
we would really like a concrete realization of this topology as a topology of
functions on the group. We will show that the weak∗ topology on L∞(G) is
the topology of uniform converge on compact sets when restricted to the set
of states on L1(G). Unfortunately, the proof is of a somewhat more technical
flavour than the other results about functions of positive type, and there does
not really seem to be any way to reduce the amount of technicality. First,
we will show an inequality for functions of positive type that shows they are
continuous.

2.10.21 Proposition. Let G be a locally compact group, and let ϕ : G → C be a
function of positive type. Then

|ϕ(x)−ϕ(y)|2 ≤ 2ϕ(e)[ϕ(e)− Reϕ(x−1y)].

Proof. Let (π,H , ξ) be the GNS representation associated with ϕ. Then

|ϕ(x)−ϕ(y)|2 = |〈(π(x)−π(y))ξ |ξ〉|2

≤ ‖ξ‖2 · ‖π(x)ξ −π(y)ξ‖2

=ϕ(e)[‖π(x)ξ‖2 + ‖π(y)ξ‖2 − 2 Re〈π(x)ξ |π(y)ξ〉]
=ϕ(e)[2‖ξ‖2 − 2 Re〈π(x−1y)ξ |ξ〉]
= 2ϕ(e)[ϕ(e)− Reϕ(x−1y)]. �

2.10.22 Theorem (Raikov). Let G be a locally compact group. Then the weak∗

topology on P1(G) agrees with the topology of uniform convergence on compact
sets.
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Proof. Let (ϕi)i∈I be a net in P1(G) converging to some ϕ ∈ P1(G) uniformly
on every compact subset of G. Fix f ∈ L1(G) and ε > 0. Choose a compact
subset K of G and an i0 ∈ I such that

‖(1− χK)f‖1 <
ε
4

and ‖χK(ϕi −ϕi0)‖∞ <
ε

2‖f‖1

for every i ≥ i0. Then, for every i ≥ i0 we have

|〈f ,ϕi −ϕ〉| = |〈f , χK(ϕi −ϕ)〉| + |〈f , (1− χK)(ϕi −ϕ)〉|
≤ ‖f‖1‖χK(ϕi −ϕ)‖∞ + ‖(1− χK)f‖1‖ϕi −ϕ‖∞
≤ ε

2
+ 2‖(1− χK)f‖1

≤ ε
2
+ ε

2
= ε.

Therefore, (ϕ)i∈I converges in the weak∗ topology on L∞(G).

Conversely, suppose that (ϕi)i∈I is a net in P1(G) converging to some ϕ in
the weak∗ topology on L∞(G). Fix a compact set K of G. Let V be a relatively
compact neighbourhood of the identity e ∈ G such that

V ⊆ {s ∈ G : |1−ϕ(s)| ≤ ε}.

Define fV = χV/m(V) ∈ L1(G). Fix ε > 0, and choose i1 ∈ I such that |〈fV ,ϕi−
ϕ〉| < ε for all i ≥ i1, i.e.∣∣∣∣∫

V
ϕi(s)−ϕ(s)ds

∣∣∣∣ < εm(V).
For every i ≥ i1, we have∣∣∣∣∫

V
(1−ϕi(s))ds

∣∣∣∣ ≤ ∫
V
|1−ϕ(s)|ds +

∣∣∣∣∫
V
ϕi(s)−ϕ(s)ds

∣∣∣∣ < 2εm(V).

By Proposition 2.10.21, if i ∈ I and s, t ∈ G,

|ϕi(t−1s)−ϕi(s)| ≤
√

2ϕi(e)(ϕi(e)− Reϕi((t−1s)−1s))

=
√

2− 2 Reϕi(t).
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Therefore, for every i ≥ i1 and s ∈ G,

|fV ∗ϕi(s)−ϕi(s)| =
∣∣∣∣∫
V
fV(t)(ϕi(t−1s)−ϕi(s))dt

∣∣∣∣
≤ 1

m(V)

∫
V
|ϕi(t−1s)−ϕi(s)|dt

≤ 1
m(V)

∫
V

√
2− 2 Reϕi(t)dt

≤ 1
m(V)

(∫
V

2− 2 Reϕi(t)dt
) 1

2

m(V)
1
2

≤ 1
m(V)

∣∣∣∣2
∫
V

1−ϕi(t)dt
∣∣∣∣ 1

2

m(V)
1
2

≤
√

2ε.

Hence, for every i ≥ i1,
‖fV ∗ϕi −ϕi‖∞ ≤

√
2ε

Similarly, since |1−ϕ(s)| < ε for all s ∈ V , we could repeat the above argument
to get

‖fV ∗ϕ −ϕ‖∞ ≤
√

2ε.

If f ∈ L1(G) and s ∈ G, define sf ∈ L1(G) by sf(t) = f(s−1t). For a fixed
s ∈ G, the map f , sf on L1(G) is continuous. Since K is compact, so is
K−1, and thus the subset {s(fV) : s ∈ K−1} of L1(G) is compact in the norm
topology. Ifψ ∈ L∞(G), defineψ∨ ∈ L∞(G) byψ∨(s) = ψ(s−1). It is easily seen
that the mapping given by ∨ is weak∗-continuous. Therefore, the net (ϕ∨i )i∈I
converges to ϕ∨ in the weak∗ topology, and there exists some i2 ∈ I such that

sup
s∈K
|〈s−1fV ,ϕ∨i −ϕ∨〉| < ε

for every i ≥ i2. If f ∈ L1(G) and ψ ∈ L∞(G), then

〈s−1f ,ψ∨〉 =
∫
ψ∨(t)f (st)dt

=
∫
ψ∨(s−1t)f (t)dt

=
∫
f(t)ψ(t−1s)dt

= f ∗ψ(s).

Hence, for every i ≥ i2,

sup
s∈K
|fV ∗ϕi(s)− fV ∗ϕ(s)| ≤ ε.
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Let i0 be an element of I that dominates i1 and i2. Then for every i ≥ i0,

sup
s∈K
|ϕi(s)−ϕ(s)|

≤‖ϕi − fV ∗ϕi‖∞ + sup
s∈K
|fV ∗ϕi(s)− fV ∗ϕ(s)| + ‖fV ∗ϕ −ϕ‖∞

≤2
√

2ε+ ε+ 2
√

2ε.

Therefore, the net (ϕi)i∈I converges to ϕ uniformly on K. �

IfA is a Banach ∗-algebra with a bounded approximate identity and a sep-
arating family of ∗-representations, then the positive linear functionals on A
correspond to the positive linear functionals on C∗(A), and this identification
is isometric. If we restrict our attention to the positive linear functionals of
norm 1, then this identification is a homeomorphism with respect to the weak∗

topologies onA∗ and C∗(A)∗.

2.10.23 Proposition. Let A be a Banach ∗-algebra with a bounded approxi-
mate identity and a separating family of ∗-representations. Then

(i) every positive linear functional ω on A has a unique extension to a posi-
tive linear functional ω̃ on C∗(A);

(ii) the map ω, ω̃ is a norm-preserving bijection fromA∗
+ onto C∗(A)∗+;

(iii) the map ω , ω̃ is a homeomorphism onto its range when restricted to
any bounded subset of A∗

+, where both A∗
+ and C∗(A)∗+ are equipped

with the weak∗ topology.

Proof.

(i) Without loss of generality, we can assume that ‖ω‖ ≤ 1. By the GNS
Theorem, there exists a representation π : A → B(H ) and a vector
ξ ∈H such that ‖ξ‖ ≤ 1 andω(a) = 〈π(a)ξ |ξ〉. Then for every a ∈A,

|ω(a)| = |〈π(a)ξ |ξ〉|
≤ ‖π(a)ξ‖‖ξ‖
≤ ‖π(a)‖‖ξ‖‖ξ‖
≤ ‖π(a)‖
≤ ‖a‖rep,

showing that ω is continuous with respect to the representation norm.
Therefore, it extends to a unique linear functional ω̃ on C∗(A). To see
that ω̃ is also positive, fix b ∈ C∗(A). Then there exists a sequence
(an)∞n=1 inA such that converges to b. Sinceω is positive,ω(a∗nan) ≥ 0
for every n ≥ 1. Thus

ω̃(b∗b) = lim
n→∞

ω̃(a∗nan) = lim
n→∞

ω(a∗nan) ≥ 0,

showing that ω̃ is positive.
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(ii) Let ω be a positive linear functional on A. The map ω , ω̃ is obvi-
ously injective. Since the restriction of every positive linear functional
on C∗(A) to a positive linear functional onA, this map is also bijective.
Since the representation norm on A is dominated by its usual norm, for
every a ∈A such that ‖a‖ ≤ 1,

|ω(a)| = |ω̃(a)| ≤ ‖ω̃‖‖a‖ ≤ ‖ω̃‖.

Hence ‖ω‖ ≤ ‖ω̃‖. For the reverse inequality, note that by Proposi-
tion 2.10.10, for every a ∈A such that ‖a‖rep ≤ 1 we have

|ω̃(a)| = |ω(a)|
≤ ‖ω‖ 1

2ω(a∗a)
1
2

= ‖ω‖ 1
2 ω̃(a∗a)

1
2

≤ ‖ω‖ 1
2‖ω̃‖ 1

2‖a∗a‖ 1
2

≤ ‖ω̃‖ 1
2‖ω̃‖ 1

2 (‖a‖2)
1
2

= ‖ω̃‖‖a‖rep

≤ ‖ω̃‖.

Since the unit ball of A equipped with the ‖ · ‖rep norm is dense in the
unit ball of C∗(A), this establishes that ‖ω̃‖ ≤ ‖ω‖.

(iii) Let M be a bounded subset of A∗
+, and let N = {ω̂ :ω ∈ M}. By (ii), N is

also bounded. The map from N onto M defined by ω̂ , ω is obviously
uniformly continuous with respect to the weak∗ topologies on M and N ,
becauseA is a dense subset of C∗(A). Since N is bounded, it is precom-
pact, and thus the map ω̂ , ω is a homeomorphism when restricted to
N , i.e. the map ω, ω̂ is a homeomorphism when restricted to M . �

The preceding result is very useful when applied to L1(G) for a locally com-
pact group G, because it implies that the functions of positive type on G can
be identified with the positive linear functionals on C∗(G).

Historical Notes

The GNS construction is independently due to Gelfand and Naimark [GN43]
and Segal [Seg47], who only considered C∗-algebras. The generalization to Ba-
nach ∗-algebras with a bounded approximate identity is clear, as long as the
positive linear functional in question is assumed to be continuous. This as-
sumption was shown to be unnecessary by Varopoulos, who proved in [Var64]
that all positive linear functionals on a Banach ∗-algebra with a bounded ap-
proximate identity are automatically continuous

Functions of positive type are a part of classical Fourier analysis on the real
line. The theory of functions of positive type was generalized to general locally

108



compact groups by Gelfand and Raikov [GR43] and Godement [God48]. Raikov
proved the equivalence of the weak∗ topology on P1(G) with the topology of
the uniform convergence compact sets (Theorem 2.10.22) in [Rai47].

2.11 Pure Positive Functionals and Irreducible
Representations

The Gelfand-Naimark-Segal construction gives an association of representa-
tions to positive functionals. We would like to know when this results in an
irreducible representation.

The key tool in resolving this question is an operator-theoretic analogue of
the Radon-Nikodym Theorem in measure theory. In the case of a commuta-
tive C∗-algebra, where positive linear functionals correspond to positive finite
Radon measures, the order structure on the positive functionals has an inter-
pretation in terms of a familiar property from measure theory. Let X be a
locally compact Hausdorff space, and µ and ν positive finite Radon measures
on X. Then µ ≤ Cν for some C > 0, when µ and ν are viewed as positive
functionals on C0(X), precisely when µ is absolutely continuous with respect
to ν , i.e. every ν-null set is also a µ-null set. The Radon-Nikodym Theorem
states that µ ≤ Cν for some C > 0 if and only if there exists a g ∈ L1(X, ν)
(which, due to the positivity of the measures µ and ν , is necessarily positive)
such that

µ(E) =
∫
E
g dν,

in which case ∫
f dµ =

∫
fg dν.

We will present an operator-theoretic analogue of the Radon-Nikodym Theo-
rem here, although it is not strictly a generalization, because it is impossible to
recover the classical Radon-Nikodym Theorem from the version we give here.

2.11.1 Proposition. Let A be a ∗-algebra, π : A → B(H ) a representation of
A, and ξ ∈H . Define a positive linear functional ω onA by

ω(a) = 〈π(a)ξ |ξ〉.

If T ∈ π(A)′ is such that 0 ≤ T ≤ 1, let ωT be the linear functional on A
defined by

ωT (a) = 〈Tπ(a)ξ |ξ〉.
ThenωT is a positive functional onA such thatωT ≤ω. Moreover, if ξ is cyclic
then the map T ,ωT is injective.
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Proof. Since the product of commuting positive operators is positive, ωT is
positive. If a ∈A, we have

ωT (a∗a) = 〈Tπ(a∗a)ξ |ξ〉
= 〈T 1/2π(a)ξ |T 1/2π(a)ξ〉
= ‖Tπ(a)ξ‖2

≤ ‖π(a)ξ‖2

=ω(a∗a),

so ωT ≤ω. Now, suppose that ξ is cyclic, and that ωT =ωT ′ . Then

〈Tπ(a)ξ |ξ〉 = 〈T ′π(a)ξ |ξ〉.

Since ξ is cyclic, this implies that Tξ = T ′ξ, i.e. that (T − T ′)ξ = 0. Since ξ is
cylic for π(A), it is separating for π(A)′, so (T − T ′) = 0, i.e. T = T ′. �

2.11.2 Proposition. LetA be a Banach ∗-algebra with a bounded approximate
identity, and ω and ψ be positive linear functionals on A. Furthermore, let
(π,H , ξ) denote the GNS representation given by ω. If ψ ≤ ω, then there is a
T ∈ π(A)′ such that 0 ≤ T ≤ 1 and

ψ(a) = 〈Tπ(a)ξ |ξ〉

for all a ∈A.

Proof. Using that ξ is cyclic for π , define a sesquilinear form [·, ·] onH by

[π(a)ξ,π(b)ξ] = ψ(b∗a).

As in the proof of the GNS Theorem, [·, ·] is a bounded sesquilinear form.
Therefore, by the Riesz-Fréchet Theorem there is a T ∈ B(H ) such that
[η, ζ] = 〈Tη |ζ〉 for all η,ζ ∈ H . We will now show that T ∈ π(A)′. If
a,b, c ∈A, then

〈Tπ(a)(π(c)ξ) |π(b)ξ〉 = ψ(b∗(ac))
= ψ((a∗b)∗c)
= 〈Tπ(c)ξ |π(a∗)(π(b)ξ)〉
= 〈π(a)T(π(c)ξ) |π(b)ξ〉.

Therefore, fixing a and letting b and c range overA, we conclude that Tπ(a) =
π(a)T , i.e. T ∈ π(A)′. Finally, we will show that 0 ≤ T ≤ 1. We have

〈Tπ(a)ξ |π(a)ξ〉 = ψ(a∗a)

for every a ∈A, so T is positive. Since

〈Tπ(a)ξ |π(a)ξ〉 = ψ(a∗a) ≤ω(a∗a) = 〈π(a)ξ |π(a)ξ〉

for every a ∈A, the norm of T is at most 1. �
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2.11.3 Definition. Let A be a ∗-algebra, and ω a positive linear functional on
A. We say that ω is pure if whenever ψ is a positive linear functional such
that ψ ≤ω, there exists a λ ≥ 0 such that ψ = λω.

2.11.4 Proposition. LetA be a Banach ∗-algebra with a bounded approximate
identity, and ω a positive linear functional on A. Then ω is pure if and only if
the GNS representation associated with ω is irreducible.

Proof. Let (π,H , ξ) be the GNS representation associated toω. Suppose that
ω is pure but π is not irreducible. By Proposition 2.9.4, there is a projection
p ∈ π(A)′ such that p ≠ 0 and p ≠ 1. Then pξ ≠ 0, as otherwise p(π(a)ξ) =
π(a)pξ = 0 for all a ∈ A and p = 0. Similarly, (1 − p)ξ ≠ 0. For a ∈ A,
define

ω1(a) = 〈π(a)pξ |pξ〉 =ω(pπ(a))
and

ω2(a) = 〈π(a)(1− p)ξ | (1− p)ξ〉 =ω((1− p)π(a)).
Then ω1 and ω2 are positive linear functionals onA and ω =ω1 +ω2. Since
ω is pure, ω1 = λω and ω2 = (1 − λ)ω for some λ satisying 0 < λ < 1. Fix
ε > 0. Since ξ is cyclic for π , there is an a ∈ A such that ‖π(a)ξ − pξ‖ < ε.
We have ‖π(a)ξ‖2 =ω(a∗a) = ‖pξ‖2, so

‖(1− p)π(a)ξ‖ = ‖(1− p)(π(a)ξ − pξ)‖ < ε

and

(1− λ)‖pξ‖2 = (1− λ)ω(a∗a) =ω2(a∗a) = ‖(1− p)π(a)ξ‖2 < ε2.

Since this holds for all ε > 0, λ = 1, a contradiction. Therefore, our assumption
that ω is not irreducible is false.

Conversely, suppose π is irreducible but ω is not pure. Then there exists
a positive linear functional ψ on A such that ψ ≤ ω but ψ ≠ λω for any
λ ∈ [0,1]. In particular, ψ ≠ ω. Therefore, by Proposition 2.11.2 there exists
a T ∈ π(A)′ such that 0 ≤ T ≤ 1

ψ(a) = 〈Tπ(a)ξ |ξ〉

for all a ∈ A. Since ‖ψ‖ = 1 and ψ ≠ ω, 0 < T < 1. Therefore, π(A)′ ≠ C,
which contradicts the irreducibility of π by Proposition 2.9.4. Therefore, ω is
pure. �

2.11.5 Proposition. Let A be a normed ∗-algebra. If M ≥ 0, then the set of
positive linear functionals onA of norm at most M is a weak∗ compact convex
subset ofA∗.
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Proof. By the Banach-Alaoglu Theorem, the unit ball ofA∗ is weak∗ compact.
The set of positive linear functionals onA is a weak∗ closed subset ofA∗, so
its intersection with the unit ball is weak∗ compact. �

2.11.6 Proposition. Let A be a Banach ∗-algebra with a contractive bounded
approximate identity, and let B be the set of positive linear functionals on A
with norm at most 1. Then ω ∈ B is an extreme point if and only if ω is pure
and either ω = 0 or ‖ω‖ = 1.

Proof. Suppose ω is a nonzero extreme point of B. Clearly, ‖ω‖ = 1. Let
ω1 be a positive linear functional on A such that ω1 ≤ ω. If ω1 = ω, we
are done, so suppose ω1 < ω. Then if ω2 = ω −ω1, ω = ω1 +ω2, where
both ω1 and ω2 are nonzero positive linear functionals. Let λ = ‖ω‖, so that
‖ω2‖ = 1 − λ (since the norms of positive functionals are additive), and let
ψ1 = λ−1ω2, ψ2 = (1− λ)−1ψ2. Then ψ1,ψ2 ∈ B and

ω = λψ1 + (1− λ)ψ2.

Since ω is an extreme point of B, ω = ω1 = ω2. Therefore, ω1 = λω, which
shows that ω is pure.

Conversely, suppose that ω is pure and either ω = 0 or ‖ω‖ = 1. To
show that 0 is an extreme point of B, it suffices to show that if ω is a linear
functional on A such that ω ∈ B and −ω ∈ B, then ω = 0. Since both ω and
−ω are positive, ω(a∗a) = 0 for all a ∈A. By part (ii) of Proposition 2.10.10,
we have the inequality |ω(a)|2 ≤ ‖ω‖ω(a∗a) = 0 for all a ∈ A, which shows
that ω = 0. Suppose that ω is pure and nonzero, ‖ω‖ = 1, and that ω =
λω1+(1−λ)ω2 for some positive linear functionalsω1 andω2 onA of norm
at most ‖ω‖ and λ such that 0 < λ < 1. Then λω1 ≤ ω, so there exists an
α ≥ 0 such that λω1 = αω. Since 0 < λ < 1, we have 0 ≤ α ≤ 1. Since

‖ω‖ ≤ λ‖ω1‖ + (1− λ)‖ω2‖

and ‖ω1‖,‖ω2‖ ≤ ‖ω‖, we must have ‖ω1‖ = ‖ω2‖ = ‖ω‖. Therefore, λ = α
and ω =ω1 =ω2, which shows that ω is an extreme point of B. �

2.11.7 Corollary. Let A be a Banach ∗-algebra with a contractive bounded
approximate identity, and let B be the set of positive linear functionals on A
with norm at most 1. Then B is the weak∗ closed convex hull of the pure positive
functionals of norm 1 and 0.

Proof. This is clear from Proposition 2.11.6 and the Krein-Milman Theorem.�

Historical Notes

The results of this section are due to Gelfand and Raikov [GR43] and Segal
[Seg47].
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2.12 Positive Linear Functionals on C∗-algebras

By Lemma 2.10.7, positive functionals on unital Banach ∗-algebras achieve
their norm at the identity. For C∗-algebras, there is a converse: every bounded
linear functional that achieves its norm at any positive element in the unit ball
is positive.

2.12.1 Proposition. LetA be a C∗-algebra, andω a bounded linear functional
on A. If there is an a ∈ A+ such that ‖a‖ ≤ 1 and ω(a) = ‖ω‖, then ω is
positive.

Proof. We will first prove the proposition in the case where A is unital, and
then derive the general case. Since 0 ≤ a ≤ 1, we have ‖a+ eiθ(1−a)‖ ≤ 1 for
every θ ∈ R. Choosing a θ such that eiθω(1− a), we have

‖ω‖ ≤ω(a)+ eiθω(1− a) =ω(a+ eiθ(1− a)) ≤ ‖ω‖,

so ω(1 − a) = 0, and ω(1) = ω(a) = ‖ω‖. Without loss of generality, we
may assume that ‖ω‖ = 1 by possibly replacingω withω/‖ω‖. We claim that
ω(Asa) ⊆ R. Fix b ∈ Asa and suppose ω(b) = α+ βi for α,β ∈ R and β ≠ 0.
Without loss of generality, we may assume that β > 0 by possibly replacing b
with −b. Furthermore, since ω(b − α · 1) = βi, we may assume that α = 0.
Then, for λ ≥ 0,

|ω(b + λi · 1)| = β+ λ ≤ ‖ω(b + λi · 1‖ ≤ (‖b‖2 + λ2)
1
2 ,

which is impossible for sufficiently large λ. Therefore, β must be zero. Hence
ω(Asa) ⊆ R, so that ω(b∗) =ω(b) for all b ∈A.

Now, for an arbitrary b ∈A+, we have ‖‖b‖ · 1− b‖ ≤ ‖b‖, so that

‖b‖ −ω(b) =ω(‖b‖ · 1− ‖b‖) ≤ ‖b‖.

Therefore, ω(b) ≥ 0, i.e. ω is positive.

IfA is not unital, considerAI and a Hahn-Banach extension ω̃ ofω toAI.
Then ω̃ satisfies the conditions of the proposition, so by the unital case shown
above, ω̃ is positive. The restriction of a positive functional to a subalgebra is
also positive, so ω is positive. �

An important consequence of the Gelfand-Naimark-Segal Theorem is that
in order to produce sufficiently many representations of a Banach ∗-algebra
with a bounded approximate identity, it suffices to construct sufficiently many
positive linear functionals on A. However, this is not always possible, even
whenA is commutative, unital, and finite-dimensional.
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2.12.2 Example. Let A be C2 equipped with the ∞-norm, pointwise multipli-
cation, and the involution (a, b)∗ = (b,a). SinceA is unital, the GNS Theorem
holds, and hence to show thatA has no non-zero positive linear functionals it
suffices to show that A has no non-zero representations. Let π : A → B(H )
be a representation of A, and let a = (1,0). Since π(a)∗π(a) = π(a∗a) =
π(0) = 0, we must have that π(a) = π(a∗) = 0. But a and a∗ are a basis for
A, so π must be identically zero.

Therefore, in order to show the existence of nontrivial positive linear func-
tionals on a Banach ∗-algebra it will be necessary to either assume a very
strong condition on the algebra, such as being a C∗-algebra, or to work with
a specific class of examples, such as L1(G) for a locally compact group G. We
will deal with the case of a C∗-algebra here.

2.12.3 Proposition. LetA be a C∗-algebra, and a ∈A self-adjoint. Then there
exists a pure state ω onA such that |ω(a)| = ‖a‖.

Proof. IfA is not unital, then we will work inAI. Then C∗(a) is a subalgebra
of AI. Since ‖a‖ = spr(a), there is a multiplicative linear functional ω on
C∗(a) such that |ω(a)| = ‖a‖. Because ω is multiplicative, we have ‖ω‖ =
1 = ω(1). Let ρ be any Hahn-Banach extension of ω to a functional on AI.
Then ‖ρ‖ = 1 = ρ(1), so by Proposition 2.12.1 ρ is a state onAI, and thus ρ|A
is a state onA.

Let F be the set consisting of all states ϕ on A such that ϕ(a) = ρ(a).
By the above, this set is a non-empty weak∗ closed bounded convex subset
of A∗. Thus, by the Banach-Alaoglu Theorem, F is weak∗ compact. By the
Krein-Milman Theorem, it has an extreme point ϕ0. We want to show that ϕ0

is an extreme point of S(A) and is thus pure. To do this, it suffices to show
that F is a face of S(A).

Suppose ϕ ∈ F is such that ϕ = (ψ1 +ψ2)/2 for ψ1,ψ2 ∈ S(A). Then

‖a‖ = |ϕ(a)| ≤ |ψ1(a)| + |ψ2(a)|
2

≤ ‖a‖.

This can only occur if ψ1(a) = ψ2(a) = ϕ(a) = ρ(a). Thus ψ1,ψ2 ∈ F ,
showing that F is a face. �

2.12.4 Corollary. LetA be a C∗-algebra. Then for every a ∈A there exists an
irreducible representation π : A → B(H ) of A and a unit vector ξ ∈ H such
that ‖π(a)ξ‖ = ‖a‖.

Proof. By the preceding proposition, there exists a pure state ϕ on A such
that ϕ(a∗a) = ‖a‖2. Let π be a representation of A and ξ ∈ Hπ the cylic
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vector obtained from applying the GNS construction to ϕ. Since ϕ is pure, by
Proposition 2.11.4, π is irreducible. Finally,

‖π(a)ξ‖2 = 〈π(a∗a)ξ |ξ〉 =ϕ(a∗a) = ‖a‖2. �

2.12.5 Theorem (Gelfand-Naimark). Let A be a C∗-algebra. Then the repre-
sentation

π =
⊕
ω∈A∗+

(πω,Hω)

is faithful. If A is separable, there is a faithful representation of A on a sepa-
rable Hilbert space.

Proof. It follows from the preceding corollary that ‖π(a)‖ = ‖a‖ for every
a ∈ A. To show the statement about separability, pick a countable subset of
A∗
+ that separates the points ofA. �

The representation mentioned in the statement of the Gelfand-Naimark
Theorem is called the universal representation ofA.

If G is a locally compact group, then the left regular representation of L1(G)
is faithful, so many of the preceding results also have consequences for group
representations as well.

2.12.6 Proposition. Let G be a locally compact group, and ϕ a function of pos-
itive type on G. Then ϕ is the limit, in the topology of uniform convergence on
compact sets, of convex combinations of pure functions of positive type of norm
‖ϕ‖ and 0.

Proof. By Corollary 2.11.7, the weak∗ closed convex hull of the pure positive
functionals of norm ‖ϕ‖ and 0 is the set of functions of positive type of norm
at most ‖ϕ‖. By Theorem 2.10.22, the weak∗ topology on functions of positive
type is the topology of uniform convergence on compact sets. �

2.12.7 Corollary. Let G be a locally compact group. Then every function in
C0(G) is the limit, in the topology of uniform convergence of compact sets, of
linear combinations of pure functions of positive type.

Proof. Since Cc(G) is dense in C0(G) in the topology of uniform convergence
on compact sets, it suffices to prove the claim for functions in Cc(G). Fix f ∈
Cc(G), and let (ei)i∈I be a bounded approximate identity of C0(G) contained
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in Cc(G). Then f is the uniform limit of the net (f ∗ ei)i∈I in Cc(G). We have
the polarization identity

f ∗ ei(s) = 〈λ(s)e∨i |f 〉

= 1
4

3∑
k=0

ik〈λ(s)(e∨i + ikf) | e∨i + ikf 〉

= 1
4

3∑
k=0

ik(ei + ikf)∗ (e∨i + ikf)∨.

Hence f ∗ ei is the linear combination of functions of the form h ∗ h∨, each
of which is a function of positive type. The result then follows by Proposi-
tion 2.12.6. �

2.12.8 Corollary (Gelfand-Raikov). Let G be a locally compact group. If s ∈ G
is not equal to the identity, then there exists an irreducible representation π of
G such that π(s) ≠ 1.

Proof. There exists a function in C0(G) that takes different values at s and e,
so by Proposition 2.12.6 there exists a pure function of positive type ϕ on G
that takes different values at s and e. If (π,H , ξ) is the GNS triple associated
to ϕ, then π is irreducible by Proposition 2.11.4 and

〈π(s)ξ |ξ〉 =ϕ(s) ≠ϕ(e) = 〈ξ |ξ〉.

Therefore, π(s) ≠ 1. �

If A is a commutative C∗-algebra, then positive linear functionals on A
correspond to positive finite regular Borel measures on the spectrum of A.
The Jordan decomposition from measure theory implies that any signed finite
regular Borel measure on a locally compact Hausdorff space µ is the difference
of two positive finite regular Borel measures µ+ and µ− such that |µ| = |µ+| +
|µ−|. The decomposition is found by partitioning the measure space into two
sets and restricting the measure to each of them, and it is unique up to any
two such partitions differing by null sets.

There is a generalization of this result to all C∗-algebras, and it can actu-
ally be proven by using a careful application of the Jordan decomposition for
ordinary measures. First, we will prove a proposition that will be useful in
establishing the appropriate uniqueness claim for the decomposition.

2.12.9 Proposition. Let A be a unital C∗-algebra, and let ϕ+ and ϕ− be posi-
tive linear functionals onA. Then the following are equivalent:

(i) ‖ϕ+ −ϕ−‖ = ‖ϕ+‖ + ‖ϕ−‖.
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(ii) For every ε > 0 there is a z ∈A1
+ such that ϕ+(1−z) < ε and ϕ−(z) < ε.

Proof. Suppose that ‖ϕ+ −ϕ−‖ = ‖ϕ+‖ + ‖ϕ−‖ Since ϕ+ −ϕ− ∈ A∗
sa there

is an a ∈A1
sa such that

ϕ+(a)−ϕ−(a)+ ε ≥ ‖ϕ+ −ϕ−‖.

But then

ϕ+(a)−ϕ−(a)+ ε ≥ ‖ϕ+‖ + ‖ϕ−‖ =ϕ+(1)+ϕ−(1),

so ϕ(1 − a) +ψ(1 + a) < ε. Since 0 ≤ 1 − a ≤ 2 and 0 ≤ 1 + a ≤ 2 we can
choose z = 1/2(1+ a) so that 1− z = 1/2(1− a).

Conversely, suppose that for every ε > 0 there is a z ∈ A1
+ such that

ϕ+(1 − z) < ε and ϕ−(z) < ε. Clearly, ‖ϕ+ − ϕ−‖ ≤ ‖ϕ+‖ + ‖ϕ−‖. But if
ϕ+(1− z) < ε and ϕ−(z) < ε,

‖ϕ+‖ + ‖ϕ−‖ =ϕ+(1)+ϕ−(1)
≤ϕ+(2z − 1)+ϕ−(1− 2z)+ 4ε
= (ϕ+ −ϕ−)(2z − 1)+ 4ε
≤ ‖ϕ+ −ϕ−‖ + 4ε,

since ‖2z − 1‖ ≤ 1. Since ε > 0 is arbitrary, ‖ϕ+‖ + ‖ϕ−‖ ≤ ‖ϕ+ −ϕ−‖. �

2.12.10 Theorem (Jordan Decomposition). Let A be a C∗-algebra. Then if ϕ
is a self-adjoint bounded linear functional on A, there exist unique positive
linear functionals ϕ+ and ϕ− onA such that ϕ =ϕ+−ϕ− and ‖ϕ‖ = ‖ϕ+‖+
‖ϕ−‖.

Proof. We will first show existence. If a ∈ A, then a = a1 + ia2 for self-
adjoint elements a1, a2 ∈ A. Hence ϕ is determined by its values on Asa,
where it only takes real values.

Let X = {ω ∈ A∗
+ : ‖ω‖ ≤ 1}, and equip X with the weak∗ topology. By

the Banach-Alaoglu Theorem, X is a compact Hausdorff space. Every a ∈ Asa

defines a real-valued continuous function fa on X by fa(ω) = ω(a). Also, by
Corollary 2.12.12,

‖fa‖∞ = sup
ω∈X

|fa(ω)|

= sup
ω∈X

|ω(a)|

= sup{|〈π(a)ξ |ξ〉| : π a representation ofA, ξ ∈Hπ ,‖ξ‖ ≤ 1}.
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Let V = {fa : a ∈Asa} be the vector subspace of C(X) formed by the image of
Asa. Define a linear functional F on this subspace by F(fa) =ϕ(a). Then

‖F‖ = sup
‖fa‖∞≤1

|ϕ(a)|

= sup
‖a‖∈Asa,‖a‖≤1

|ϕ(a)|

≤ ‖ϕ‖,

so F is bounded. Hence, by the Hahn-Banach Theorem, F extends to a bounded
linear functional defined on all of C(X), which we will also denote by F , with
the same norm. The Riesz Representation Theorem implies that there is a real-
valued finite regular Borel measure µ on X such that |µ| = ‖F‖ ≤ ‖ϕ‖ such
that

F(f) =
∫
X
f(ω)dµ(ω).

In particular, if a ∈Asa,

ϕ(a) = F(fa) =
∫
X
fa(ω)dµ(ω).

Let µ = µ+−µ− be the Jordan decomposition of µ as the difference of positive
finite regular Borel measures µ+ and µ− on X. For a ∈Asa, define

ϕ+(a) =
∫
X
fa(ω)dµ−(ω) and ϕ−(a) =

∫
X
fa(ω)dµ+(ω).

Extend ϕ+ and ϕ− to all ofA by defining

ϕ±(a1 + a2) =ϕ±(a1)+ iϕ±(a2)

for a1, a2 ∈ Asa. Clearly, ϕ+ and ϕ− define positive linear functionals on A,
and ϕ =ϕ+ −ϕ−. Note that

|ϕ±(a)| ≤ ‖fa‖∞|µ±| = ‖a‖|µ±|,

so ‖ϕ±‖ ≤ |µ±|. Therefore,

‖ϕ‖ = ‖ϕ+ −ϕ−‖
≤ ‖ϕ+‖ + ‖ϕ−‖
≤ |µ+| + |µ−|
= |µ|
= ‖F‖
≤ ‖ϕ‖,

showing that ‖ϕ‖ = ‖ϕ+‖ + ‖ϕ−‖.
Now, we will show uniqueness. We will first prove it in the case whereA is

unital and then derive the general case. Suppose that ψ+ and ψ− are positive
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linear functionals on A such that ϕ = ψ+ −ψ− and ‖ϕ‖ = ‖ψ+‖ + ‖ψ−‖. Fix
ε > 0. By Proposition 2.12.9, there is a z ∈ A1

+ such that ϕ+(1 − z) < ε and
ϕ−(z) < ε. Then

ψ+(z) ≥ ψ+(z)−ψ−(z) =ϕ+(z)−ϕ−(z) > ϕ+(1)− 2ε.

Likewise, ψ−(1− z) > ϕ−(1)− 2ε, so that

ψ+(z)+ψ−(1− z) > ‖ϕ+‖ + ‖ϕ−‖ − 4ε = ‖ψ+‖ + ‖ψ−‖ − 4ε.

It follows that ψ+(1− z)+ψ−(z) < 4ε. Since ϕ+ −ψ+ =ϕ− −ψ− we have for
every a ∈A,

ϕ+(a)−ψ+(a) =ϕ+(az)−ψ+(az)+ϕ+(a(1− z))−ψ+(a(1− z)
=ϕ−(az)−ψ−(az)+ϕ+(a(1− z))−ψ+(a(1− z)).

Then

|ϕ−(az)|2 ≤ϕ−(aa∗)ϕ−(z2)

≤ ‖a‖2‖ϕ−‖ϕ−(z)
≤ ‖a‖2‖ϕ+ −ϕ−‖ϕ−(z).

Similarly, we have the inequalities

|ψ−(az)|2 ≤ ‖a‖2‖ϕ+ −ϕ−‖ψ−(z)
|ϕ+(a(1− z))|2 ≤ ‖a‖2‖ϕ+ −ϕ−‖ϕ+(1− z)
|ψ+(a(1− z))|2 ≤ ‖a‖2‖ϕ+ −ϕ−‖ψ+(1− z)

Combining all of the above work, we have

|ϕ+(a)−ψ+(a)|
=‖ϕ−(az)−ψ−(az)+ϕ+(a(1− z))−ψ+(a(1− z))
≤‖ϕ−(az)‖ + ‖ψ−(az)‖ + ‖ϕ+(a(1− z))‖ + ‖ψ+(a(1− z))‖
≤‖a‖‖ϕ+ −ϕ−‖

1
2 (ϕ−(z2)

1
2 +ψ−(z)

1
2 +ϕ+(1− z)

1
2 +ψ+(1− z)

1
2

≤‖a‖‖ϕ+ −ϕ−‖
1
2 (ε

1
2 + (4ε) 1

2 + ε 1
2 + (4ε) 1

2 )

≤‖a‖‖ϕ+ −ϕ−‖
1
2 6ε

1
2

Since ε > 0 is arbtirary, ϕ+ = ψ+ and thus ϕ− = ψ−.

Suppose thatA is not unital. All of the positive linear functionals ϕ+, ϕ−,
ψ+, and ψ− extend uniquely to positive linear functionals on AI of the same
norm. Since

AI =A⊕ C · 1,

the extension of every positive linear functional onA toAI takes the value of
its norm at 1, and

‖ϕ+‖ + ‖ϕ−‖ = ‖ψ+‖ + ‖ψ−‖,
the algebraic relationϕ+−ϕ− = ψ+−ψ− is preserved by extending the positive
functionals toAI. �
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2.12.11 Corollary. LetA be a C∗-algebra. Then if ϕ is a bounded linear func-
tional onA, there exist positive linear functionals ω1, . . . ,ω4 onA such that

ϕ =ω1 −ω2 + i(ω3 −ω4).

Proof. Apply the Jordan decomposition to the real and imaginary parts of
ϕ. �

Coupled with the Gelfand-Naimark-Segal Theorem, the Jordan decomposi-
tion provides a description of all bounded linear functionals on a C∗-algebra.

2.12.12 Corollary. Let A be a C∗-algebra. If ϕ is a bounded linear functional
on A, then there exists a cyclic representation π of A and vectors ξ, η ∈ Hπ
such that

ϕ(a) = 〈π(a)ξ |η〉.

Proof. Let ω1, . . . ,ω4 be positive linear functionals onA such that

ϕ =ω1 −ω2 + i(ω3 −ω4).

By the GNS Theorem, there exist representations πi ofA and vectors ξi ∈Hπi
such that ωi(a) = 〈πi(a)ξi |ξi〉. Let

ω =ω1 +ω2 +ω3 +ω4,

and let (π,H , ξ) be the GNS triple associated with ω. Since ωi ≤ ω, each ωi
induces a bounded linear functional ψi on the subspace π(A)ξ ofH by

ψi(π(a)ξ) =ωi(a).
Since ξ is cyclic for π , ψi extends uniquely to a bounded linear functional on
H = π(A)ξ. Therefore, by the Riesz-Fréchet Theorem, there exists an ηi ∈H
such that

ωi(a) = ψi(π(aξ)) = 〈π(a)ξ |η〉.
Letting η = η1 − η2 + i(η3 − η4) gives the decomposition

ϕ(a) = 〈π(a)ξ |η〉. �

We will show in Corollary 3.6.4 that the norm of ϕ may be achieved by a
particular choice of π , ξ, and η, but this result is by no means trivial.

The Jordan Decomposition of bounded linear functionals on a C∗-algebra
has particularly important implications to the representation theory of locally
compact groups. In Section 2.10, we saw the correspondence between positive
linear functionals on C∗(G), L1(G), and M(G) and functions of positive type on
G. The method of proof used there does not allow any similar correspondence
between arbitrary bounded linear functionals on C∗(G) and a class of contin-
uous functions on G, because in general the dual spaces of C∗(G), L1(G), and
M(G) are all distinct.
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2.12.13 Definition. Let G be a locally compact group. The Fourier-Stieltjes Al-
gebra of G is the linear span of the functions of positive type in L∞(G), and is
denoted by B(G).

Since every function of positive type is in the unique equivalence class of
some continuous function, we may also view B(G) as a subspace of Cb(G). By
the Jordan Decomposition of functionals on C∗(G), we may identify B(G) with
the dual space of C∗(G). Indeed, if ϕ ∈ B(G) and f ∈ L1(G), we have

〈f ,ϕ〉 =
∫
ϕ(s)f(s)ds.

2.12.14 Proposition. Let G be a locally compact group. If ϕ ∈ L∞(G), then
ϕ ∈ B(G) if and only if there exists a representation π : G →U(H ) and vectors
ξ, η ∈H such that

ϕ(s) = 〈π(s)ξ, η〉,
in which case we may choose ξ to be a cyclic vector for π . Moreover, B(G) is a
∗-subalgebra of Cb(G).

Proof. The first claim follows from Corollary 2.12.12, and the second claim
follows from Corollary 2.10.20 and the definition of B(G) as the linear span of
the functions of positive type. �

We would like to show that B(G) is a Banach ∗-algebra when equipped with
the norm from C∗(G)∗, but this result will have to wait until Corollary 3.6.5.

2.12.15 Proposition. Let G be a locally compact group. Then B(G) is invariant
under translation by elements of G.

Proof. Since translation by an element of G is linear on L∞(G), we need only
show that if ϕ ∈ B(G) is a function of positive type, then any translation of
ϕ is the linear combination of functions of positive type. Let ϕ be a function
of positive type on G, and let (π,H , ξ) be the GNS triple associated with ϕ.
Fix g,h ∈ G and let η = π(g)ξ and ζ = π(h)∗ξ. Then, using a standard
polarization identity,

4ϕ(hsg) = 4〈π(hsg)ξ |ξ〉
= 4〈π(s)η |ζ〉

=
3∑
k=0

ik〈π(s)(η+ ikζ) | (η+ ikζ)〉. �
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Historical Notes

The Jordan decomposition of self-adjoint bounded linear functionals on a C∗-
algebra is due to Takeda [Tak54], but the norm formula ‖ϕ‖ = ‖ϕ+‖ + ‖ϕ−‖
and the uniqueness are due to Grothendieck [Gro57]. Grothendieck’s original
proof of uniqueness relied on the polar decomposition of normal linear func-
tionals on a von Neumann algebra, which we prove in Theorem 3.6.2. The proof
given here is due to Pedersen [Ped69]. The Fourier-Stieltjes algebra of a gener-
ally locally compact group was introduced by Eymard in his thesis [Eym64].
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Chapter 3

Von Neumann Algebras

3.1 Basic Properties

Recall that a von Neumann algebra is a strong operator closed, or equivalently,
σ -weakly closed, unital ∗-subalgebra of B(H ). In this section, we will develop
some of the basic properties and definitions of the theory of von Neumann
algebras. First, we will examine the structure of σ -weakly closed ideals.

3.1.1 Proposition. Let M ⊆ B(H ) be a von Neumann algebra, and I a σ -
weakly closed left (resp. right) ideal ofM. Then there exists a unique projection
p ∈ M such that I = Mp (resp. I = pM). If I is a two-sided ideal then p is
central.

Proof. Suppose I is a σ -weakly closed left ideal of M. Then J = I ∩ I∗ is a
σ -weakly closed ∗-algebra of operators on H , so there is a largest projection
p ∈ J . Then we have Mp ⊆ I because p ∈ I and I is a left ideal. Conversely,

fix a ∈ I . Since a∗a is in I and self-adjoint, a∗a ∈ J . Then |a| = (a∗a) 1
2 is in J

because J is a C∗-algebra, so |a|p = |a|. Considering the polar decomposition
a = u|a| of a shows a = ap, so a ∈ Mp. Therefore, I ⊆ Mp. The proof for
the case where I is a right ideal is similar.

If I is a two-sided ideal, then we for every a ∈ A we have pa ∈ I = Mp,
and thus pa = (pa)a = pap. Considering a∗, we have pa∗ = pa∗p, so

pa = pap = (pa∗p)∗ = (pa∗)∗ = ap. �

If H has finite dimension n, then it is a well-known fact that B(H ) �
Mn(C) is a simple algebra, i.e. it has no nontrivial ideals. This is no longer
the case if H is infinite-dimensional, because the compact operators K(H )
form a nontrivial self-adjoint closed ideal of B(H ). However, if we restrict our
attention to σ -weakly closed ideals, then the situation is different.
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3.1.2 Definition. Let M be von Neumann algebra. We say that M is a factor if
Z(M) = C1.

3.1.3 Corollary. Let M be a factor. Then M has no nontrivial σ -weakly closed
two-sided ideals.

Proof. Let J be a two-sided ideal of M. By Proposition 3.1.1, there exists a
central projection p ∈ Z(M) such that J = pM. Since M is a factor, Z(M) =
C1, so p = 0 or p = 1. �

If M is a von Neumann algebra, then by the Double Commutant Theorem
Z(M) = M ∩M′ is also a von Neumann algebra. In particular, the central
projections ofM form a complete lattice.

3.1.4 Definition. Let M be a von Neumann algebra. If p ∈ M is a projection,
then c(p), the central cover or central support of p, is the least central projec-
tion z inM such that zp = p.

If p is a projection, then it is easily seen that c(p) is the least central pro-
jection z such that zp = p If M is represented on a Hilbert space, we can
concretely describe c(p).

3.1.5 Proposition. Let M ⊆ B(H ) be a von Neumann algebra. If p ∈ M is a
projection, then c(p) is the projection onto the norm closure of (Mp)H .

Proof. Let z be the projection onto the norm closure of (Mp)H . Since
(Mp)H is an invariant subspace for both M and M′, it follows that z ∈
M ∩ M′ = Z(M). Since (Mp)H ⊆ pH , it follows that zp = p. Hence
z ≥ c(p). Conversely, c(p)H is obviously an invariant subspace for M and
c(p)H ⊇ pH . Hence, we have that c(p)H ⊇ (Mp)H , i.e. c(p) ≥ z. There-
fore, c(p) = z. �

There is another interpretation of the central cover of p in terms of unitary
conjugates of p.

3.1.6 Proposition. LetM be a von Neumann algebra. If p ∈M is a projection,
then

c(p) = sup{u∗pu : u ∈ U(M)}.

Proof. If z ∈ Z(M) is a projection, and z ≥ p, then

z = u∗zu ≥ u∗pu
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for all u ∈ U(M). Therefore, c(p) dominates

z = sup{u∗pu : u ∈ U(M)}.

The definition of z is as an element ofM, but in order to show that z ∈ Z(M)
we need to show that z ∈ M. From the definition of z, we have u∗zu = z for
all u ∈ U(M), so zu = uz. Thus, z commutes with every unitary inM, which
by Proposition 2.8.22 implies that z ∈ M′, and thus z ∈ Z(M). By taking
u = 1 in the definition of z, we get that z ≥ p. Therefore, c(p) ≥ z ≥ p, and
z = c(p). �

There are two basic constructions for “cutting down” a von Neumann al-
gebra with respect to a projection in either the algebra or its commutant. Let
M ⊆ B(H ) be a von Neumann algebra, and p ∈ M a projection. Every opera-
tor in pMp leaves pH invariant, so that the set

{a|pH : a ∈ pMp}

is a nondegenerate ∗-subalgebra of B(pH ). We denote this algebra by pMp,
and call it the reduced von Neumann algebra of M with respect to p. The
notations Mp and MpH are also common, to specify that this algebra acts on
a potentially smaller Hilbert space, but there is no risk of confusion in anything
that we will do, so we will simply use the notation pMp.

Similarly, every operator inM′p also leaves pH invariant, so that the set

{a|pH : a ∈M′p}

is a nondegenerate ∗-subalgebra of B(pH ). We denote this algebra by M′p,
and call it the induced von Neumann algebra of M′ with respect to p. Since
p commutes with M′, this is equal to pM′p as a set, but we will always use
distinct notation to distinguish the induced von Neumann algebra from the
reduced von Neumann algebra.

First, we will prove that these ∗-algebras are actually von Neumann alge-
bras, and that they are commutants of each other.

3.1.7 Proposition. Let M ⊆ B(H ) be a von Neumann algebra and p ∈ M a
projection. Then pMp and M′p are both von Neumann algebra on pH and
(pMp)′ =M′p.

Proof. Let ρ : M → pMp be the restriction map given by ρ(a) = apH . It is
easily checked that ρ is a surjective σ -weakly continuous ∗-homomorphism,
and that pMp is norm closed. A surjective ∗-homomorphism between C∗-
algebras is a quotient map, so ρ takes the unit ball of M onto the unit ball
of pMp. Since ρ is σ -weakly continuous and the unit ball of M is σ -weakly
compact, the unit ball of pMp is σ -weakly compact. By Corollary 2.8.17, this
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implies that pMp is a von Neumann algebra. An identical argument shows
thatM′p is a von Neumann algebra.

We will prove that pMp = (M′p)′, which is equivalent to (pMp)′ = M′p
by the Double Commutant Theorem. It is obvious that pMp ⊆ (M′p)′. Con-
versely, fix apH ∈ (M′p)′ so that a = pap. For every b ∈ M′, we have
apHbpH = bpHapH , so ab = ba. Therefore, a ∈M′′ =M. �

If p′ ∈ M′ is a projection, the central cover of p′ determines whether the
restriction map fromM toMp′ is a ∗-isomorphism.

3.1.8 Proposition. Let M ⊆ B(H ) be a von Neumann algebra, and p′ ∈ M′ a
projection. The restriction map from M onto Mp′ is a ∗-isomorphism if and
only if c(p′) = 1.

Proof. Let ρ : M → Mp′ be the restriction map, and suppose that ρ is a
∗-isomorphism. Since p′ ≤ c(p′),

ρ(1− c(p′)) = (1− c(p′))p′H = 0.

Since ρ is a ∗-isomorphism, 1− c(p′) = 0, i.e. c(p′) = 1.

Conversely, suppose that c(p′) = 1. By Proposition 3.1.5, we have that the
closure of (M′p′)H is H . If a ∈ M and ρ(a) = ap′H = 0, then ap′H = {0},
and

a(M′p′H ) =M′(ap′H ) = {0}.
Therefore, a = 0, showing that ρ is a ∗-isomorphism. �

Historical Notes

The results in this section are due to Murray and von Neumann [MvN36] [MvN37].
It is often assumed that the name “factor” is due to the fact that, at least on a
separable Hilbert space, every von Neumann algebra may be written as a gener-
alized direct sum, or “direct integral” of factors, but this is not the case. Mur-
ray and von Neumann were interested in von Neumann algebras M ⊆ B(H )
such that M⊗M′ � B(H ), where ⊗ represents the σ -weak closure of the al-
gebraic tensor productM⊗M′. Hence factors were originally supposed to be
factors in a tensor product decomposition of B(H ). However, such a decom-
position can not exist for all factors, only the so-called Type I factors, which
are all ∗-isomorphic to B(K) for some Hilbert space K. Thus, in retrospect,
the name “factor” is somewhat poorly chosen.
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3.2 Comparison of Projections

If p and q are projections in B(H ), then the most natural way to compare p
and q is by comparing the dimensions of their subspaces as cardinal numbers.
However, if p and q are projections in a von Neumann subalgebra of B(H ),
then this isn’t necessarily a very good way to compare p and q, because it
doesn’t involveM in any way, and it is dependent on the representation ofM
on a Hilbert space. What is actually important in the case of B(H ) is that if p
and q are two projections whose ranges have the same dimension, then there
exists a partial isometry v such that v∗v = p and vv∗ = q. This definition
is entirely algebraic and is easily relativized to a von Neumann subalgebra of
B(H ), so it will be the one we use.

3.2.1 Definition. LetM be a von Neumann algebra. If p and q are projections
in M, we say that p and q are (Murray-von Neumann) equivalent, denoted
p ∼ q, if there exists an element u ∈M such that uu∗ = p and uu∗ = q. If p
is equivalent to a projection q1 ≤ q, we denote this by p � q.

3.2.2 Proposition. LetM be a von Neumann algebra. Then ∼ is an equivalence
relation on the projections ofM.

Proof. Clearly, ∼ is reflexive and symmetric, so we need only show that it is
transitive. If p,q, r ∈ M are projections and v,w ∈ M are such that v∗v =
p,vv∗ = q and w∗w = q,ww∗ = r , then

(wv)∗wv = v∗w∗wv = v∗qv = v∗v = p

and
wv(wv)∗ = wvv∗w∗ = wqw∗ = ww∗ = r .

Therefore, p ∼ q. �

3.2.3 Examples.

(i) If p,q ∈ B(H ) are projections, then p ∼ q if and only if the ranges of p
and q have the same dimension, and p � q if and only if the dimension
of the range of p is at most the dimension of the range of q.

(ii) If p,q ∈M are central projections, then p ∼ q if and only if p = q, from
which it follows that p � q if and only if p ≤ q. Indeed, let v ∈ M be
such that v∗v = p and vv∗ = q. Since 1− p is also a central projection,

((1− p)v)∗(1− p)v = (1− p)v∗v = (1− p)p = 0,

which implies that

(1− p)q = (1− p)vv∗ = (1− p)v((1− p)v)∗ = 0.

Similarly, (1− q)p = 0. Therefore, p = q.
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(iii) If a ∈M, consider the polar decomposition a = v|a| of a. Then the left
and right support projections of a, given by vv∗ and v∗v respectively,
are equivalent.

(iv) Similarly, ifϕ ∈M∗, consider the polar decompositionϕ = v · |ϕ| ofϕ.
Then the left and right support projections of a, given by vv∗ and v∗v
respectively, are equivalent.

3.2.4 Proposition. LetM be a von Neumann algebra.

(i) p ∼ 0 if and only if p = 0;
(ii) if p ∼ q and z is a central projection, then zp ∼ zq;

(iii) if p � q, then c(p) ≤ c(q);
(iv) if (pi)i∈I and (qi)i∈I are two families of mutually orthogonal projections

inM such that pi ∼ qi for all i ∈ I, then
∑
i∈I pi ∼

∑
i∈I qi, where the sums

are taken in the strong operator topology.

Proof.

(i) If v∗v = 0, then v = 0 and vv∗ = 0.
(ii) Let v ∈M be such that v∗v = p and vv∗ = q. Then

(zv)∗zv = v∗zzv = zv∗v = zp and zv(zv)∗ = zvv∗z = zq.

(iii) We need only show that if p ∼ q, then c(p) = c(q). If z is a central projec-
tion annihilating p then zp = 0 and zp ∼ zq, which implies that zq = 0.
By symmetry, p and q are annihilated by the same central projections,
and thus have the same central cover.

(iv) For every i ∈ I, let vi ∈M be such that v∗i vi = pi and viv∗i = qi. Define

v =
∑
i∈I
vi,

where the sum is taken in the strong operator topology. We need to
actually show that this sum converges. Let J be a finite subset of I, and
define

vJ =
∑
i∈J
vi.

Let F be the directed set of all finite subsets of I, ordered by reverse
inclusion. We want to show that the net (vJ)J∈F converges in the strong
operator topology. By the Banach-Steinhaus Theorem, we only need to
show that (vJξ)J∈F converges in norm for every ξ ∈ H . Since the vec-
tors viH are mutually orthogonal for all i ∈ I, this is equivalent to the
condition ∑

i∈I
‖vi‖2 = lim

J∈F

∑
i∈J
‖viξ‖2 <∞.
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We have∑
i∈I
‖viξ‖2 =

∑
i∈I
〈v∗i viξ |ξ〉 =

∑
i∈I
〈piξ |ξ〉 =

∑
i∈I
〈(∨i∈Ipi)ξ |ξ〉 <∞.

Therefore, the net (vi)i∈I converges in the strong operator topology to
some v ∈ M, as desired. Similarly, the net (v∗i )i∈I converges in the
strong operator topology to some w ∈ M. Since v =

∑
i∈I vi in the

strong operator topology, v =
∑
i∈I vi in the weak operator topology as

well, so v∗ =
∑
i∈I v∗i in the weak operator topology. This implies that

v∗ = w. From the equalities v∗i vj = δijpi and viv∗j = δijpj , it follows
that

v∗v =
∑
i∈I
pi and vv∗

∑
i∈I
qi.

�

3.2.5 Proposition. LetM be a von Neumann algebra. If p and q are projections
inM, then the following are equivalent:

(i) c(p) and c(q) are not orthogonal;
(ii) pMq ≠ {0};

(iii) there exist nonzero projections p1 ≤ p and q1 ≤ q inM such that p1 ∼ q1.

Proof. We will first show that (i) =⇒ (ii). Suppose pMq = {0}, and let
J = {a ∈ M : pMa = {0}}. Then J is a σ -weakly closed two-sided ideal
of M, so there exists a central projection z ∈ M such that J = zM. Since
q ∈ J , we have q ≤ z, so c(q) ≤ z. By definition, pz = 0, so c(q)p = 0. hence
p ≤ 1− c(q). Therefore, c(p) and c(q) are orthogonal.

Next, we show that (ii) =⇒ (iii). Fix a nonzero a ∈ pMq. Then paq = a,
so letting p1 be the left support projection of a and q1 be the right support
projection of a we have that p1 ≤ a, q1 ≤ q, and p1 ∼ q1.

Finally, we show (iii) =⇒ (i). if there exist nonzero projections p1 ≤ p and
q1 ≤ q in M such that p1 ∼ q1, then c(p1) = c(q1) ≠ 0, c(p1) ≤ c(p), and
c(q1) ≤ c(q), so c(p) and c(q) are not orthogonal. �

If p and q are projections in B(H ), then p � q if and only if the dimension
of the range of p is less than the dimension of the range of q. Therefore, if
p � q and p � q, p ∼ q by the Schroeder-Bernstein Theorem. The same fact
holds for an arbitrary von Neumann algebra, with essentially the same proof.

3.2.6 Theorem (Schroeder-Bernstein Theorem). LetM be a von Neumann al-
gebra. If p and q are projections inM such that p � q and q � p, then p ∼ q.

Proof. Let q1 be a projection inM and v a partial isometry inM such that

p = v∗v, vv∗ = q1 ≤ q.
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Similarly, let p1 and w be such that

q = w∗w, ww∗ = p1 ≤ p.

By induction, we construct two decreasing sequences of projections by defin-
ing

pn+1 = wqnw∗, qn+1 = vpnv∗.
Let p∞ and q∞ be the infima of these two sequences of projections. Then

p =
∞∑
n=0

(pn − pn+1)+ p∞, q =
∞∑
n=0

(qn − qn+1)+ q∞,

where p0 = p and q0 = q. Clearly, we have

v(pn − pn+1)v∗ = qn+1 − qn+2, w(qn − qn+1)w∗ = pn+1 − pn+2,

and
vp∞v∗ = q∞, wq∞w∗ = p∞.

Hence

p2n − p2n+1 ∼ q2n+1 − q2n+2, p2n+1 − p2n+2 ∼ q2n − q2n+1.

Therefore,

p =
∞∑
n=0

(p2n − p2n+1)+
∞∑
n=0

(p2n+1 − p2n+2)+ p∞

∼
∞∑
n=0

(q2n − q2n+2)+
∞∑
n=0

(q2n − q2n+1)+ q∞

= q. �

If p and q are projections in B(H ), then either p � q or q � p. This
does not hold for more general von Neumann algebras, because by part (iii) of
Proposition 3.2.4 Murray-von Neumann comparability of projections implies
comparability of their central covers in the usual ordering on self-adjoint el-
ements, and this is not always the case. For example, in any nontrivial direct
productM1×M2, the central cover of a nonzero projection (p,0) is orthogonal
to the central cover of a nonzero projection (0, q). However, this is essentially
the only impediment to comparison of two projections, in the sense that there
always exists a central projection breaking the von Neumann algebra into two
pieces where comparison is possible.

3.2.7 Theorem (Comparison Theorem). Let M be a von Neumann algebra. If
p and q are projections inM then there exists a central projection z ∈M such
that

zp � zq and (1− z)p � (1− z)q.
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Proof. Let (pi)i∈I and (qi)i∈I be a maximal pair of families of mutually or-
thogonal projections such that

pi ≤ p, qi ≤ q, pi ∼ qi

for every i ∈ I. By the additivity of equivalence, it follows that

p1 =
∨
i∈I
pi ∼

∨
i∈I
qi = q1.

If p2 = p − p1 and q2 = q − q1, then, due to the maximality of the chosen
families and Proposition 3.2.5, it follows that

c(p2)c(q2) = 0.

Let z = c(q2). Then we have

zp = zp1 + zp2 = zp1 + c(q2)c(q2)p2 = zp1 ∼ zq1 ≤ zq,

and similarly,

(1− z)q = (1− z)q1 + (1− z)q2 = (1− z)q1 ∼ (1− z)p1 ≤ (1− z)p. �

Historical Notes

The comparison theory of projections is originally due to Murray and von Neu-
mann [MvN36] [MvN37]. However, they proved many of their results only in the
case of factors, or in the case of a separable Hilbert space. These results were
extended to general von Neumann algebras by Dixmier [Dix49] and Kaplansky
[Kap51b].

3.3 Normal Linear Functionals

Since the self-adjoint part of a von Neumann algebra is monotone complete,
it makes sense to consider maps between von Neumann algebras that respect
this additional structure. We will first consider linear functionals, and then
use the results for linear functionals to derive similar results for more general
linear maps between von Neumann algebras.

3.3.1 Definition. Let M be a von Neumann algebra, and let ϕ be a bounded
linear functional on M. We say that ϕ is normal if whenever (ai)i∈I is a
bounded increasing net inMsa,

ϕ
(

sup
i∈I
ai

)
= lim

i∈I
ϕ(ai).
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Equivalently, ϕ is normal if whenever (ai)i∈I is a bounded decreasing net in
M+ whose greatest lower bound is 0,

lim
i∈I
ϕ(ai) = 0.

We letM∗ denote the set of all normal linear functionals onM.

3.3.2 Examples.

(i) Since the strong operator topology limit of a bounded increasing net in
Msa is its supremum, any linear functional on M that is strong operator
topology continuous on bounded parts is normal. By Proposition 2.7.9,
these are precisely the σ -weakly continuous linear functionals onM.

(ii) As a particular case of (ii), every linear functional in vector form is nor-
mal, i.e. ifM⊆ B(H ) and ξ, η ∈H , then the linear functionalϕ defined
by ϕ(a) = 〈aξ |η〉.

Note that the definition of normality only depends on the structure ofM as
a C∗-algebra, and thus is independent of the particular representation ofM on
a Hilbert space. The notationM∗ suggests thatM∗ is a Banach space predual
ofM. Our first goal will be to show that this is indeed the case, i.e. thatM∗ is
precisely the space of linear functionals on M continuous with respect to the
σ -weak topology onM.

Recall that if A is a Banach algebra, then A∗ has a canonical Banach A-
bimodule structure given by

(b ·ϕ)(a) =ϕ(ab) and (ϕ · b)(a) =ϕ(ba).

We first prove that M∗ is a closed subspace of M∗ that is invariant under all
of the basic operations.

3.3.3 Proposition. LetM be a von Neumann algebra. Then

(i) M∗ is a closed subspace ofM∗;
(ii) if ϕ ∈M∗, then ϕ∗ ∈M∗;

(iii) if ϕ ∈M∗ and b ∈M, then b ·ϕ ∈M∗ and ϕ · b ∈M∗;
(iv) if ϕ ∈M∗ is self-adjoint, then ϕ+ ∈M∗ and ϕ− ∈M∗.

Proof.

(i) It is clear that M∗ is a linear subspace of M. Let (ϕn)∞n=1 be a sequence
in M∗ converging to ϕ ∈ M∗, and let (ai)i∈I be a bounded monotone
increasing net with supremum a. Obviously,

ϕ(a) ≥ sup
i∈I
ϕ(ai).
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Fix ε > 0. Then there exists an index i ∈ I such that ϕn(a)− ε < ϕn(ai),
since ϕn is normal. We have

ϕ(ai) ≥ϕn(ai)− ε‖ai‖
≥ϕn(a)− ε‖a‖ − ε− ε‖ai‖
≥ϕ(a)− ε‖a‖ − ε− ε‖ai‖
≥ϕ(a)− (1+ 2‖a‖)ε.

Therefore, we have
ϕ(a) ≤ sup

i∈I
ϕ(ai),

showing that ϕ is normal.
(ii) The definition of normality only mentions self-adjoint elements ofM, so

if ϕ ∈M∗ then ϕ∗ ∈M∗.
(iii) If a,b ∈ M and a ≥ 0, then b∗ab∗ ≥ 0, so it follows that b ·ϕb∗ ∈ M∗

for every ϕ ∈M∗. Hence, by the polarization identity

4ba =
3∑
n=0

in(a+ in)∗b(a+ in),

the functional b · ϕ is a linear combination of normal functionals, so
b ·ϕ ∈M∗. SinceM∗ is ∗-invariant, we have ϕ · b = (b∗ ·ϕ)∗ ∈M∗.

(iv) Fix ε > 0. By Proposition 2.12.9 we can find z ∈M1
+ such thatϕ+(1−z) <

ε and ϕ−(z) < ε. Then for every a ∈M,

|ϕ+(a)−ϕ(za)| ≤ |ϕ+((1− z)a)| + |ϕ−(za)|
≤ϕ+(1− z)

1
2‖ϕ+‖

1
2‖a‖ +ϕ−(z)

1
2‖ϕ−‖

1
2‖a‖

< 2ε
1
2‖ϕ‖ 1

2‖a‖.

Since ϕ · z ∈M∗ andM∗ is norm-closed it follows that ϕ+ and thus ϕ−
belong toM∗. �

3.3.4 Lemma. Let M be a von Neumann algebra and ω a normal state on M.
Then there is a family (pi)i∈I of mutually orthogonal nonzero projections inM
with

∑
i∈I pi = 1 such that each functional pi ·ω is weak operator continuous.

Proof. Using Zorn’s Lemma, let (pi)i∈I be a maximal family of mutually or-
thogonal projections in M such that pi ·ω is weak operator continuous for
every i ∈ I. We claim that p0 =

∑
i∈I pi = 1. Suppose otherwise. Choose a

unit vector ξ ∈ (1 − p0)H and define a linear functional ψ on M by ψ(a) =
2〈aξ |ξ〉. Again using Zorn’s Lemma, let (qi)i∈I be a maximal family of mu-
tually orthogonal projections in (1 − p0)M(1 − p0) such that ω(qi) ≥ ψ(qi)
for every i ∈ I, and let q0 =

∑
i∈I qi. Since ω and ψ are both normal, ω(q0) ≥
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ψ(q0). Therefore, q0 ≠ 1− p0. Let p1 = 1− p0 − q0. Then p1 ≠ 0 and for each
projection p ≤ p1 we have ω(p) < ψ(p) by the maximality of q0. Since each
element in M+ can be approximated in norm by positive linear combinations
of projections this shows that ω ≤ ψ on p1Mp1. But then

|ω(ap1)|2 ≤ω(p1a∗ap1) ≤ ψ(p1a∗ap1) = 2‖ap1ξ‖2,

which implies that the functional ω · p1 is strong operator continuous, and
thus also weak operator continuous by Proposition 2.7.4. This contradicts the
maximality of the family (pi)i∈I . �

3.3.5 Theorem. Let M be a von Neumann algebra and ϕ be a bounded linear
functional onM. Then the following are equivalent:

(i) ϕ is normal;
(ii) ϕ is σ -weakly continuous;

(iii) ϕ is σ -strongly continuous;
(iv) ϕ is σ -strong∗ continuous;
(v) ϕ is weak-operator continuous on the unit ball ofM;

(vi) ϕ is strong-operator continuous on the unit ball ofM;
(vii) ϕ is strong∗-operator continuous on the unit ball ofM;

(viii) there exist sequences (ξn)∞n=1 and (ηn)∞n=1 inH (∞) such that

ϕ(a) =
∞∑
n=1

〈aξn |ηn〉.

Proof. To show that (i) =⇒ (v), by Proposition 3.3.3 we may assume that
ϕ is a state. By Lemma 3.3.4, there exists a (pi)i∈I of mutually orthogonal
nonzero projections in M with

∑
i∈I pi = 1 such that each functional pi ·ω is

weak-operator continuous. Fix ε > 0. It is easy to see that ϕ must vanish on
all but finitely many pi, by adding a large enough finite number of the pi, we
can find a projection p ∈M such that p ·ϕ is weak-operator continuous and
ϕ(1−p) < ε. If (aj)j∈J is a bounded net inM converging weakly to zero then

|ϕ(aj)| ≤ |ϕ(ajp)| + ‖aj‖‖ϕ‖
1
2ε

1
2 ,

which shows that (ϕ(aj))j∈J converges to zero. The conditions (ii) – (viii) are
all equivalent by Proposition 2.7.9 and Proposition 2.7.19.

To finish the proof, we will show that (iii) =⇒ (i). Suppose that ϕ is
σ -strongly continuous. The supremum of a bounded monotone net in Msa

agrees with its σ -strong limit, so ϕ is normal. �

3.3.6 Theorem (Sakai). Let M be a von Neumann algebra. Then the Banach
space dual of M∗ is isometrically isomorphic to M via the natural map. More-
over, if X a Banach space such that X∗ is isometrically isomorphic to M, then
X is isometrically isomorphic toM∗.
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Proof. Let S be the closed unit ball of M. Since M∗ is the space of σ -weakly
continuous linear functionals onM and the σ -weak topology is a weak∗ topol-
ogy forM, the Banach space dual ofM∗ isM. Let X be another Banach space
such that X∗ is isometrically isomorphic toM. We claim thatMsa is σ(M, X)-
closed. SinceMsa is convex, by the Krein-S̆mulian Theorem it suffices to show
thatMsa ∩ S is σ(M, X)-closed.

Let (aj)j∈J be a net in Msa ∩ S converging in the σ(M, X)-topology to a.
Let a = b + ic be the decomposition of a into real and imaginary parts, so
that b, c ∈ Msa. By the Banach-Alaoglu Theorem, S is σ(M, X)-compact and
thus σ(M, X)-closed, so we only need to show that a ∈ Msa. If c = 0, then
a ∈ Msa and we are done. Otherwise, if c ≠ 0, for a sufficiently large positive
or negative n ∈ Z we have

‖b + i(c +n1)‖ ≥ ‖c‖ + |n| >
√

1+n2 ≥ ‖aj + in1‖.

By the Banach-Alaoglu Theorem, B(M,
√

1+n2) is σ(M, X)-closed, so (aj +
in1)j∈J can not converge to a+ i(b + n1), contradicting the assumption that
c ≠ 0 Therefore,Msa is σ(M, X)-closed. Since

M+ ∩ S = (Msa ∩ S)∩ (1−Msa ∩ S)

is σ(M, X)-closed and M+ is convex, M+ is σ(M, X)-closed by the Krein-
S̆mulian Theorem.

Let X+ denote the set of positive functionals in X. We claim that X+ sep-
arates the points of M. Every C∗-algebra is the linear span of its positive
cone, so it suffices to show that X separates the points of M+. Since M+ is
a σ(M, X)-closed cone, if a ∈ M+ then by the Hahn-Banach Theorem there
exists ϕ ∈ X such that ϕ(M+) ≥ 0 and ϕ(a) > 0. Finally, we claim that ev-
ery functional in X+ is normal. Fix an increasing net (ai)i∈I in Msa bounded
in norm by K > 0. Since Msa ∩ B(M, K) is σ(M, X)-compact, there exists a
subsequence (aj)j∈J of (ai)i∈I that converges to some a ∈ Msa. We want to
show that a is actually the least upper bound of (ai)i∈I . For every ai we even-
tually have aj ≥ ai, i.e. aj − ai ∈ M+, so a ≥ ai for all i ∈ I because M+ is
σ(M, X)-closed. If ω ∈ X+, then

lim
i∈I
ω(ai) ≤ω(a) = lim

j∈J
ω(aj) ≤ lim

i∈I
ω(ai),

so ω is normal. The above shows that X is a subspace of M∗ that separates
the points ofM. Therefore, X =M∗ by the Hahn-Banach Theorem. �

There is a converse to the preceding corollary due to Sakai [Sak56], namely
that ifA is a C∗-algebra and X is a Banach space such that X∗ is isometrically
isomorphic to a von Neumann algebra, then there exists a von Neumann al-
gebra M and a weak∗ homeomorphic ∗-isomorphism between A and M that
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identifies X with M∗. Tomiyama [Tom57] found a simplified proof of this
result.

Given a dual Banach space X, it is not always possible to extend a weak∗

continuous linear functional on a subspace X0 of X to a weak∗ continuous
linear functional on X with the same norm. Similarly, if a dual Banach space
is equipped with an order structure, an order-preserving weak∗ continuous
linear functional on a subspace of X0 need not have an order-preserving weak∗

continuous extension to all of X.

However, the situation for normal linear functionals on a von Neumann
algebra is much different. If M ⊆ B(H ) is a von Neumann algebra and ϕ is a
normal linear functional onM, then there exist sequences (ξn)∞n=1 and (ηn)∞n=1

inH (∞) such that

ϕ(a) =
∞∑
n=1

〈aξn |ηn〉

and
‖ϕ‖ = ‖(ξn)∞n=1‖‖(ηn)∞n=1‖.

We will first prove this in the positive case, and we will derive the general case
from the positive case in Corollary 3.6.3.

3.3.7 Proposition. LetM⊆ B(H ) be a von Neumann algebra, andω a normal
positive functional on M. Then there exists a sequence (ξn)∞n=1 in H (∞) such
that

ω(a) =
∞∑
n=1

〈aξn |ξn〉.

In particular,

‖ω‖ = ‖(ξn)∞n=1‖2 =
∞∑
n=1

‖ξn‖2,

and ω extends to a normal positive functional on B(H ) with the same norm.

Proof. Since ω is a normal linear functional on M, there exist sequences
(ξn)∞n=1 and (ηn)∞n=1 inH (∞) such that

ω(a) =
∞∑
n=1

〈aξn |ηn〉.

Let ρ : B(H ) → B(H (∞)) be the amplification map. If ξ = (ξn)∞n=1 and η =
(ηn)∞n=1, then we have

ω(a) = 〈ρ(a)ξ |η〉.
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If a ∈M is positive, then

4ω(a) = 2(ω(a)+ω∗(a))
= 2(〈aξ |η〉 + 〈aη |ξ〉)
= 〈a(ξ + η) |ξ + η〉 − 〈a(ξ − η) |ξ − η〉
≤ 〈a(ξ + η) |ξ + η〉.

Therefore, by Proposition 3.3.7, there exists a T ∈ ρ(M)′ such that

ω(a) = 〈ρ(a)T 1/2(ξ + η) |T 1/2(ξ + η)〉.

Define ζ = (ζn)∞n=1 inH (∞) by ζ = T 1/2(ξ + η). Then

ω(a) = 〈ρ(a)ζ |ζ〉 =
∞∑
n=1

〈aζn |ζn〉.
�

3.3.8 Definition. A von Neumann algebra is said to be countably decompos-
able, or σ -finite, if it admits at most countably many orthogonal projections.

3.3.9 Proposition. Let M ⊆ B(H ) be a von Neumann algebra. Then the fol-
lowing three statements are equivalent:

(i) M is countably decomposable;
(ii) there exists a countable separating subset ofH forM;

(iii) there exists a faithful positive functional inM∗.

Proof. Suppose thatM is countably decomposable, and let (ξn)∞n=1 be a max-
imal family of vectors in H such that for distinct m,n, [M′ξm] and [M′ξn]
are orthogonal, where the index must be countable because the projections
en of H onto [M′ξi] are in M and are orthogonal. By the maximality of this
decomposition, we have

∞∑
n=1

ei = 1.

Hence (ξi)∞n=1 is cyclic forM′, so it is separating forM.

Suppose that (ξn)∞n=1 is a countable separating family of vectors in H for
M. Let ϕ be the normal positive functional defined by

ϕ(a) =
∞∑
n=1

1
2n‖ξn‖2

〈aξn |ξn〉.

Since ϕ(a∗a) = 0 if and only if aξn = 0 for all n, ϕ is faithful.
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Let ϕ be a faithful normal positive functional on M, and let (ei)i∈I be an
orthogonal family of projections. Let In be the set of indices i with ϕ(ei) ≥
1/n. Since ϕ is faithful, we have that I =

⋃∞
n=1 In. But the inequality

ϕ(1) ≥ϕ
∑
i∈In
ei

 ≥ ∑
i∈In
ϕ(ei) ≥

1
n
|In|

shows that each In must be finite, so I is countable. �

Historical Notes

The equivalence between the normality and σ -weak continuity of a linear func-
tional is due to Dixmier [Dix53]. Originally he only considered positive linear
functionals, but the generalization to general linear functionals is easy given
Pedersen’s version of the Jordan decomposition for self-adjoint bounded lin-
ear functionals on a C∗-algebra [Ped69]. Similarly, the generalization to topolo-
gies other than the σ -weak topology is easy given the results of Section 2.7.

Proposition 3.3.7, which states that every normal positive functional ϕ on
a von Neumann algebra onH can be written in the form

ϕ(a) =
∞∑
n=1

〈aξn |ξn〉

for some sequence of vectors (ξn)∞n=1 inH (∞) is due to Dixmier [Dix54].

3.4 Normal maps

Just as in the case of linear functionals we can define the notion of a normal
linear map between two von Neumann algebras. Unfortunately, the theory is
unsatisfactory in the general case, because a bounded linear map need not be
the linear combination of four positive maps. Therefore, we will restrict our
attention only to positive maps.

3.4.1 Definition. LetM andN be von Neumann algebras, and let ρ :M→N
be a positive map. We say that ρ is normal if, whenever (ai)i∈I is a bounded
increasing net inMsa, then

ρ
(

sup
i∈I
ai

)
= sup

i∈I
ρ(ai).

3.4.2 Examples.

(i) Since the definition of normality of a positive map between von Neumann
algebras only depends on the properties of the von Neumann algebras as
abstract C∗-algebras, every ∗-isomorphism between von Neumann alge-
bras is automatically normal.
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(ii) Since the supremum of a bounded increasing net inMsa is also its strong
operator topology limit, every positive map between von Neumann al-
gebras that is strong operator topology continuous on bounded parts is
normal.

(iii) As a particular case of (ii), if α is a cardinal, then the α-fold amplification
map ρ : B(H )→ B(H (α)) is a normal ∗-homomorphism.

(iv) As another particular case of (ii), ifM⊆ B(H ) is a von Neumann algebra
and p ∈ M′ is a projection, then the induction map from M to Mp is a
normal ∗-homomorphism. If p has central cover 1, then the induction
map is a normal ∗-isomorphism by Proposition 3.1.8.

The three concrete examples of normal maps above are the prototypical
examples, and we will show that any normal ∗-isomorphism between von Neu-
mann algebras is the composition of such maps in Theorem 3.4.8.

We will now show the equivalence of normality of a ∗-homomorphism with
continuity in the various operator topologies. Our argument is actually valid
for a more general class of positive maps, because it depends only on the fact
that a generalized Cauchy-Schwarz inequality holds for ∗-homomorphisms.
Such an inequality holds for other positive maps that are not necessarily ∗-
homomorphisms. The reader who is familiar with operator spaces should note
that it holds for all completely positive maps.

3.4.3 Proposition. LetM andN be von Neumann algebras, and ρ :M→N a
positive map that satisfies a generalized Cauchy-Schwarz inequality

ρ(a)∗ρ(a) ≤ Kρ(a∗a),

for some K > 0. Then the following are equivalent:

(i) ρ is normal.
(ii) ρ is continuous with respect to the σ -weak topologies onM andN ;

(iii) ρ is continuous with respect to the σ -strong topologies onM andN ;
(iv) ρ is continuous with respect to the σ -strong∗ topologies onM andN ;
(v) ρ is continuous with respect to the weak-operator topologies on bounded

parts ofM andN ;
(vi) ρ is continuous with respect to the strong-operator topologies on bounded

parts ofM andN ;
(vii) ρ is continuous with respect to the strong∗-operator topologies on bounded

parts ofM andN .

Proof. The equivalence (i) ⇐⇒ (ii) is clear, because the σ -weak topology is
generated by the predual, so ρ is σ -weakly continuous if and only ifϕ◦ρ ∈M∗
for every ϕ ∈ N∗, and ρ is normal if and only if ϕ ◦ ρ is normal for every
ϕ ∈N +

∗ .
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The implications (ii) =⇒ (v) holds because the σ -weak topology agrees with
the weak operator topology on bounded sets, and similarly for (iii) =⇒ (vi) and
(iv) =⇒ (vii).

We will now prove that (ii) =⇒ (iii). Suppose that ρ is σ -weakly continuous
and ai → 0 σ -strongly. Then a∗i ai → 0 σ -weakly, so ρ(a∗i ai) → 0 σ -weakly.
Then

ρ(ai)∗ρ(ai) ≤ Kρ(a∗i ai),
so ρ(ai)∗ρ(ai)→ 0 σ -weakly, i.e. ρ(ai)→ 0 σ -strongly. The proofs of (ii) =⇒
(iv), (v) =⇒ (vi), and (v) =⇒ (vii) are similar.

Finally, (vi) =⇒ (i) and (vii) =⇒ (i) hold because the supremum of a
bounded increasing net in Msa is its strong operator and strong∗ operator
limit. �

3.4.4 Remark. Kadison [Kad52] proved that if A and B are C∗-algebras and
ρ : A → B is a positive map, then ρ(a)2 ≤ ρ(a2) for all a ∈ A. Since the
adjoint is continuous in the σ -strong∗ topology, the decomposition of a gen-
eral element into its real and imaginary parts is also continuous with respect
to the σ -strong∗ topology. Therefore, using Kadison’s inequality, the proof
of the previous theorem can be adopted to show that ρ is σ -weakly continu-
ous if and only if ρ is σ -strong∗ continuous, without the assumption of any
generalized Cauchy-Schwarz inequality.

3.4.5 Proposition. Let M be a von Neumann algebra, and let ω be a positive
functional onM. Then ω is normal if and only if the GNS representation πω is
normal.

Proof. Let (π,H , ξ) be the GNS representation associated with ω. Suppose
that ω is normal, and let (ai)i∈I be a bounded increasing net in Msa with
supremum a. Then (π(ai))i∈I is a bounded increasing net in B(H )sa, so it
has a supremum b. For every x ∈M we have

〈π(a)π(x)ξ |π(x)ξ〉 =ω(x∗ax)
= lim

i∈I
ω(x∗aix)

= lim
i∈I
〈π(ai)π(x)ξ |π(x)ξ〉

= 〈π(b)π(x)ξ |π(x)ξ〉,

where the limits are taken in the strong∗ topology. Since ξ is as a cyclic vector
for π , this implies that π(a) = b. Therefore, π is normal.

Conversely, suppose that πω is normal. Then

ω(a) = 〈π(a)ξ |ξ〉,

soω is the composition of π and the normal functional b , 〈bξ |ξ〉 on π(M).
Therefore, ω is normal. �
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3.4.6 Remark. The reader who is familiar with the theory of operator spaces
and completely bounded maps should note that it possible to define the notion
of a normal completely bounded map, by modifying the definition of a normal
positive map so that a completely bounded map ϕ : M → N is normal if,
whenever (ai)i∈I is a bounded increasing net inMsa, then

ϕ
(

sup
i∈I
ai

)
= lim

i∈I
ϕ(ai).

There are versions of the Stinespring and Wittstock theorems for normal com-
pletely positive and completely bounded maps, and the proofs of these theo-
rems are similar to that of the GNS Theorem for normal maps. In particular,
the Wittstock Structure Theorem for normal maps allows one to prove the
analogue of Proposition 3.4.3 for all completely bounded maps.

3.4.7 Proposition. LetM andN be von Neumann algebras, and ρ :M→N a
normal ∗-homomorphism. Then ker(ρ) is a σ -weakly closed ideal and ρ(M) is
a σ -weakly closed subalgebra of N , which is a von Neumann subalgebra if ρ
is unital.

Proof. The first claim is clear. Since a ∗-homomorphism between C∗-algebras
is a quotient map onto its range, ρ maps the closed unit ball of M onto the
closed unit ball of ρ(M). Since ρ is σ -weakly continuous and the unit ball of
M is σ -weakly compact, this implies that the unit ball of ρ(M) is σ -weakly
compact. Therefore, by Corollary 2.8.17, ρ(M) is a von Neumann algebra. �

We will now prove two structure theorems for ∗-isomorphisms.

3.4.8 Theorem. Let M and N be von Neumann algebras, and let ρ : M → N
be a surjective normal ∗-homomorphism. Then ρ is the composition ρ3 ◦ρ2 ◦ρ1

of an amplification ρ1 :M→M(α), an induction ρ2 :M(α) → pM(α) defined by
a projection p ∈M(α)′, and a spatial isomorphism ρ3 : pM(α) →N . Moreover,
if ρ is cyclic, then p must have central cover 1.

Proof. Suppose M ⊆ B(H ) and N ⊆ B(K). We will first prove the claim in
the case where ρ is a normal cyclic representation. Let ξ ∈ K be a cyclic vector
for ρ, and define a normal positive functional onM by

ω(a) = 〈ρ(a)ξ |ξ〉.

Since ω is normal, there exists a sequence η = (ξn)∞n=1 inH (∞) such that

ω(a) = 〈ρ1(a)η |η〉,
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where ρ1 :M→M(∞) is the amplification map. Let p ∈M(∞)′ be the projection
onto M(∞)η, and ρ2 : M(∞) → pM(∞) the corresponding induction map. Then
η is a cyclic vector for the homomorphism ρ2 ◦ ρ1 and

〈ρ(a)ξ |ξ〉 =ω(a) = 〈ρ1(a)η |η〉 = 〈pρ1(a)η |η〉 = 〈(ρ2 ◦ ρ1)(a)η |η〉.

By the uniqueness of the GNS construction (see Proposition 2.10.12), there
exists a spatial isomorphism ρ3 : pM(∞) →N such that ρ3 ◦ ρ2 ◦ ρ1 = ρ.

We will now derive the general case from the cyclic case. Let (ξi)i∈I be a
maximal family of nonzero vectors in K such that the subspaces Ki = N ξ
of K are mutually orthogonal. Since the family is maximal, K =

⊕
i∈IKi.

For every i ∈ I, let qi ∈ M′ be the projection onto Ki and ρi : M → qiN
the surjective normal ∗-homomorphism defined by ρi(a) = qiρ(a). If i ∈ I,
then ξi is a cyclic vector for ρi, so exists a an amplification ρi,1 : M → M(∞),
an induction ρi,2 : M(∞) → piM(∞) defined by a projection pi ∈ M(∞)′, and
a spatial isomorphism ρi,3 : piM(∞) → qiN such that ρi = ρi,3 ◦ ρi,2 ◦ ρi,1. If
α = ℵ0 ·card(I), then the amplification map ρ1 :M→M(α) is simply the direct
sum of the amplifications ρi,1. Similarly, if p = ⊕i∈Ipi, then the induction map
ρ2 : M(α) → pM(α) is the coordinate-wise sum of each of the ρi,2, and the
spatial equivalences ρi,3 combine to give a spatial equivalence ρ3 : pM(α) →N
such that ρ1 ◦ ρ2 ◦ ρ3 = ρ.

Finally, if ρ is a ∗-isomorphism, then ρ2 must be a ∗-isomorphism. It
follows from Proposition 3.1.8 that p has central cover 1. �

3.4.9 Theorem. Let M and N be von Neumann algebras, and let ρ : M → N
be a ∗-isomorphism. Then there exist projections p ∈ M′ and q ∈ N ′, both
with central cover 1, and a spatial isomorphism ρ0 : pM → qN such that the
following diagram is commutative:

M

��

ρ //N

��
pM ρ0 // qN

Proof. By Theorem 3.4.8, we only need to prove the theorem under the as-
sumption that M = eR and N = fR, where R ⊆ B(H ) is a von Neumann
algebra, and e and f are projections in R′ with central cover 1.

Since the unit ball of the subspace fM′e of M′ is convex and σ -weakly
compact, by the Krein-Milman Theorem it has an extreme point v . By Theo-
rem 2.6.9, v is a partial isometry, and if p = v∗v and q = vv∗ are the source
and range projections of v , we have

(f − q)M′(e− p) = {0}.

Therefore, if u ∈M′ is unitary, u∗(f −q)u is orthogonal to e−p. By Proposi-
tion 3.1.6, c(f −q) is the supremum of the projections of the form u∗(f −q)u,
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where u ∈M′ is unitary, so c(f −q) is orthogonal to e−p. Therefore, c(f −q)
and c(e− p) are orthogonal. We have

1 = c(e) ≤ c(e− p)+ c(p) and 1 = c(f ) ≤ c(f − q)+ c(q).

Since p ∼ q, c(p) = c(q), and it follows that

1 ≤ c(f − q)+ c(q) ≤ 1− c(e− p)+ c(q) ≤ c(p)+ c(q) = 2c(p).

Therefore, c(p) = c(q) = 1. �

Historical Notes

The continuity result Proposition 3.4.3 is due to Dixmier [Dix53]. The structure
theorems for normal ∗-homomorphisms, Theorem 3.4.8 and Theorem 3.4.9,
are also due to Dixmier [Dix54].

3.5 The Enveloping von Neumann Algebra of a
C∗-algebra

Every representation of a C∗-algebra A generates a von Neumann algebra,
so some aspects of C∗-algebra theory are invariably von Neumann algebraic
in nature. Analogous to the enveloping C∗-algebra of a Banach ∗-algebra, it
would be useful to construct a universal enveloping von Neumann algebra of
A that acts as a “stand-in” for A in the category of von Neumann algebras.
Such a von Neumann algebra always exists, and it may be identified with the
bidualA∗∗ ofA.

3.5.1 Proposition. LetA be a C∗-algebra, π a representation ofA, and define
M = π(A)′′. Then the adjoint of the restriction of the adjoint of π to M∗ is
the unique surjective linear map of π̃ : A∗∗ → M such that π = π̃ ◦ ι, where
ι :A→A∗∗ is the canonical embedding. Moreover:

(i) π̃ is continuous with respect to the weak∗ topology on A∗∗ and the σ -
weak topology onM;

(ii) π̃ maps the closed unit ball ofA∗∗ onto the closed unit ball ofM.

Proof. Let π∗ : M∗ → A∗ be the adjoint of π , and let π̃ : A∗∗ →M∗ be the
adjoint of the restriction of π∗ toM∗. Then for every a ∈A and ϕ ∈M∗,

〈π(a),ϕ〉 = 〈ι(a),π∗(ϕ)〉 = 〈π̃(ι(a)),ϕ〉,

so π = π̃ ◦ ι. By Goldstine’s Theorem, A is weak∗ dense in A∗∗, so π̃ is
uniquely determined by this property. Since π̃ is the adjoint of a map from
M∗ toA∗, it is continuous with respect to the weak∗ topology onA∗∗.
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By Goldstine’s Theorem, the unit ball of ι(A) is weak∗ dense inA∗∗, so π̃
maps the closed unit ball of A∗∗ onto the closed unit ball of M. Since π̃ is
the adjoint of the restriction of an adjoint of a contraction, it is a contraction
itself. Since π = π̃ ◦ ι, π̃(A∗∗) contains π(A), so by the Kaplansky Density
Theorem, π̃ maps the unit ball ofA∗∗ onto the closed unit ball ofM. �

3.5.2 Theorem. Let A be a C∗-algebra and π : A → B(H ) the universal rep-
resentation of A. Define M = π(A)′′, and recall the definition of the map
π̃ :A∗∗ →M of Proposition 3.5.1. Then:

(i) if ϕ ∈A∗, then there exist ξ, η ∈H such that ϕ(a) = 〈π(a)ξ |η〉, and if
ϕ is positive we can choose ξ and η such that ξ = η;

(ii) π̃ is an isometric isomorphism and a homeomorphism with respect to the
weak∗ topology onA∗∗ and the σ -weak topology onM;

(iii) for every von Neumann algebra N and ∗-homomorphism ρ0 : A → N
there exists a normal ∗-homomorphism ρ :M→N such that ρ0 = ρ ◦π ;

Proof.

(i) By Corollary 2.12.12, there exists a cyclic representation ρ :A→ B(Hρ)
and ξ, η ∈Hρ such thatϕ(a) = 〈ρ(a)ξ |η〉. Since ρ is a direct summand
of π , we may regard ξ and η as the projection onto Hρ of elements ξ′
and η′ ofH , so that ϕ(a) = 〈π(a)ξ′ |η′〉. Similarly, the assertion about
positivity follows directly from the GNS Theorem.

(ii) Since π is an isometry, π∗ is a quotient map. Clearly, (i) implies that the
restriction (π∗)|M∗ :M∗ →A∗ is surjective, so it is a quotient map, and
its adjoint π̃ is an isometry. By Proposition 3.5.1, π̃ is surjective, so it
is an isometric isomorphism. Also, π̃ is continuous with respect to the
weak∗ topology on A∗∗ and the σ -weak topology on M. Therefore, by
the Krein-S̆mulian Theorem, π̃ is a homeomorphism with respect to the
weak∗ topology onA∗∗ and the σ -weak topology onM.

(iii) Let ρ0 : A → N be a ∗-homorphism, and let ρ̃0 : A∗∗ → ρ0(A)′′ be the
map defined in Proposition 3.5.1. Define ρ = ρ0 ◦ π̃−1. Then ρ is normal
and ρ0 = ρ ◦π . �

3.5.3 Examples.

(i) The bidual of c0(N) is isometrically isomorphic to `∞(N), and the usual
product on `∞(N) extends the product on c0(N), so `∞(N) is the envelop-
ing von Neumann algebra of c0(N).

(ii) Consider the algebraK(H ) of compact operators on some Hilbert space
H . By Corollary 2.7.17, the bidual ofK(H ) isB(H ), and the usual prod-
uct on B(H ) extends the product onK(H ), so B(H ) is the enveloping
von Neumann algebra of K(H ). However, since B(H )′ = C, B(H ) can
not be identified spatially with a direct sum of representations, whereas
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the enveloping von Neumann algebra ofK(H ) is defined as a direct sum
of cyclic representations. Therefore, B(H ) is not spatially isomorphic to
K(H )∗∗.

(iii) Let G be a locally compact group. Then the enveloping von Neumann
algebra of C∗(G) is denoted by W∗(G), and is called the enveloping von
Neumann algebra of G. Since the Fourier-Stieltjes algebra B(G) is the
dual of C∗(G), it is the predual of W∗(G).

Given a von Neumann algebra M and the bimodule action of M on M∗, it
is natural to examine the subsets ofM∗ that are invariant under this action.

3.5.4 Definition. Let M be a von Neumann algebra. A subset V of M∗ is said
to be left-invariant (resp. right-invariant) if a · V ⊆ V (resp. V · a ⊆ V ) for
every a ∈ M. If V is both left-invariant and right-invariant, it is simply called
invariant.

3.5.5 Examples.

(i) Let M be a von Neumann algebra and ϕ a normal linear function on M.
Define

Vϕ = [Mϕ] and Wϕ = [ϕM].
Then Vϕ and Wϕ are respectively left-invariant and right-invariant norm
closed subspaces ofM∗.

(ii) LetA be a C∗-algebra and π a representation ofA. The coefficient space
of π is the subspace π∗(M∗(π)) of A∗, and is denoted by Aπ . It is
called the coefficient space because the prototypical element of Aπ is the
elementary coefficient function

πξ,η(a) = 〈π(a)ξ |η〉

for some ξ, η ∈ H . However, Aπ is only the norm closed span of these
coefficient functions, and it is not necessarily the case that every element
of Aπ is a coefficient function. Since π is a quotient map, π∗ is an isome-
try, so Aπ is a norm closed subspace ofA∗. It is also invariant under the
bimodule action ofA∗∗, because if a,b,x ∈A and ϕ ∈M∗(π) then

〈x,a ·π∗(ϕ) · b〉 = 〈bxa,π∗(ϕ)〉
= 〈π(bxa),ϕ〉
= 〈π(b)π(x)π(a),ϕ〉
= 〈π(x),π(a) ·ϕ ·π(b)〉
= 〈x,π∗(π(a) ·ϕ ·π(b))〉.

In the case where A is C∗(G) for a locally compact group G, the dual
A∗ can be identified with the Fourier-Stieltjes algebra B(G), and thus Aπ
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may be regarded as the subspace of B(G) generated by the elementary
coefficient functions of the associated representation of G. We will often
slightly conflate notation and refer to Aπ in the case where π is a unitary
representation of G when we really mean the coefficient space of the
integrated form of π on C∗(G).

(iii) Let G be a locally compact group, and π : G → U(H ) the universal
representation of G. Then the enveloping von Neumann algebra W∗(G)
is generated by π , and the Fourier-Stieltjes algebra B(G) is the predual
of W∗(G). The left and right actions of π(G) on B(G) are given by right
and left translation respectively. Indeed, if ϕ ∈ B(G), ξ, η ∈ H are such
that ϕ(s) = 〈π(s)ξ |η〉, and g ∈ G, then

(π(g) ·ϕ)(s) = 〈π(sg)ξ |η〉 =ϕ(sg)

and
(ϕ ·π(g))(s) = 〈π(gs)ξ |η〉 =ϕ(gs).

Therefore, the left-invariant subsets of B(G) are the subsets invariant
under right translations, and the right-invariant subsets of B(G) are the
subsets invariant under left translations.

3.5.6 Theorem. Let M be a von Neumann algebra. Then the map p ,M∗ · p
(resp. p , p ·M∗) establishes a bijective correspondence between

(i) projections inM, and
(ii) norm closed left-invariant (resp. right-invariant) subspaces ofM∗.

This correspondence induces a bijective correspondence between

(i) central projections inM
(ii) norm closed invariant subspaces ofM∗,

Proof. Suppose p ∈M is a projection. We want to show that

M∗ · p = ((1− p)M)⊥.

If ϕ ∈M∗ and a ∈ (1− p)M, then a = (1− p)b for some b ∈M, so

(ϕ · p)(a) =ϕ(pa) =ϕ(p(1− p)b) =ϕ(0b) = 0,

showing thatM∗ · p ⊆ ((1− p)M)⊥. If ϕ ∈ ((1− p)M)⊥ and a ∈M, then

ϕ(a) =ϕ(pa+ (1− p)a)
=ϕ(pa)+ϕ((1− p)a)
=ϕ(pa)+ 0

= (ϕ · p)(a),
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so ϕ =ϕ · p and ϕ ∈M∗ · p. Therefore,

M∗ · p = ((1− p)M)⊥,

which is clearly a norm closed left-invariant subspace ofM∗. Similarly,

p ·M∗ = (M(1− p))⊥,

which is clearly a norm closed right-invariant subspace of M. The map p ,
M∗ ·p (resp. p , p ·M∗) is injective because (1−p) is the largest projection
in (1− p)M (resp. inM(1− p)).

We now want to show that the map p , M∗ · p is surjective. Suppose V
is a norm closed left-invariant subspace ofM∗. Then V⊥ is a σ -weakly closed
subspace ofM. If x ∈ V⊥, a ∈A, and ϕ ∈ V , then a ·ϕ ∈ V and

ϕ(xa) = (a ·ϕ)(x) = 0,

showing that xa ∈ V⊥. Hence V⊥ is a right ideal of M. By Proposition 3.1.1,
there exists a projection p ∈M such that V⊥ = pM. Thus

V = V⊥⊥ = ((1− (1− p))M)⊥ =M∗ · (1− p).

Similarly, if V is a norm closed right-invariant subspace ofM∗, then V⊥ is a σ -
weakly closed left ideal ofM, and by Proposition 3.1.1 there exists a projection
p ∈M such that V⊥ =Mp. Thus

V = V⊥⊥ = (M(1− (1− p)))⊥ = (1− p) ·M∗.

If V is invariant on both sides then V⊥ is a σ -weakly closed two-sided ideal of
M, so by Proposition 3.1.1 there is a central projection p ∈M such that

V⊥ = pM=Mp.

Therefore,
V =M∗ · (1− p) = (1− p) ·M∗. �

The correspondence between projections and invariant subspaces of the
predual in the preceding theorem will be of considerable interest to us through-
out this work, so we will give it its own nomenclature.

3.5.7 Definition. Let M be a von Neumann algebra. If V is a norm closed left-
invariant (resp. right-invariant) subspace of M∗, then the left support (resp.
right support) of V is the unique projection p ∈M such that V =M∗ ·p (resp.
V = p ·M∗). If, in addition, V is invariant on both sides, p is simply called the
support of V .
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3.5.8 Examples.

(i) Let M be a von Neumann algebra and ϕ a normal linear function on M.
Define

Vϕ = [Mϕ] and Wϕ = [ϕM].
Then Vϕ and Wϕ are respectively left-invariant and right-invariant norm
closed subspaces of M∗, so by Theorem 3.5.6 there exist projections
p,q ∈M such that

Vϕ =M∗ · p and Wϕ = q ·M∗.

The projections p and q are, respectively, the smallest projections in
M such that ϕ = ϕ · p and ϕ = q · ϕ. Thus the projections p and
q are called, respectively, the right support projection and left support
projection of ϕ and are denoted by sl(ϕ) and sr(ϕ). We have sr(ϕ) =
sl(ϕ∗), so if ϕ is self-adjoint, then Vϕ = Wϕ and sr(ϕ) = sl(ϕ), in which
case we denote both by s(ϕ), the support projection of ϕ.

(ii) LetA be a C∗-algebra and π a representation ofA. The coefficient space
Aπ of π is a norm closed invariant subspace ofA∗, the predual ofA∗∗,
so there exists a unique central projection z ∈A∗∗ such that Aπ = z·A∗.
This central projection is called the central support of π and is denoted
by c(π). Moreover, we can associate a representation ofA to any central
projection z ∈ A∗∗. Let π : A → B(H ) be the universal representation
of A and z ∈ A∗∗ a central projection. Define a representation ρ :A→
B(zH ) by ρ(a) = zπ(a). Then the central support of ρ is clearly z.

(iii) Let G be a locally compact group. Then the Fourier-Stieltjes algebra B(G)
is the predual of the enveloping von Neumann algebra W∗(G), and the
invariant subspaces of B(G) under the bimodule action of W∗(G) are
simply the translation-invariant subspaces.

If A is a C∗-algebra, then unitarily equivalent representations of A clearly
have equal central support inA∗∗, but it is impossible for the central support
of representations to distinguish them up to unitary equivalence, simply be-
cause there are not “set many” equivalence classes of unitary representations
of A. Since the central support of a representation π depends only on its co-
efficient space Aπ , which is a copy ofM∗(π) sitting inside ofA∗, it is natural
to consider the notion of equivalence of representations by considering nor-
mal ∗-isomorphisms of the respective von Neumann algebras that preserve
the action ofA.

3.5.9 Definition. Let A be a C∗-algebra, and let π1 and π2 be nondegenerate
representations ofA. We say that π1 and π2 are quasiequivalent if there exists
a normal ∗-isomorphism ρ :M(π1)→M(π2) such that ρ ◦π1 = π2.
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3.5.10 Examples.

(i) Unitarily equivalent representations are quasiequivalent.
(ii) Let π a representation ofA and α a nonzero cardinal number. Then the

amplification map ρ :M(π)→M(π (α)) is a normal ∗-isomorphism such
that ρ ◦π = π (α). Therefore, π and π (α) are quasiequivalent.

(iii) Let π be a representation ofA, and p ∈M(π)′ a projection with central
cover 1. Define a representation σ ofA by σ(a) = pπ(a). ThenM(σ) =
pM(π), and if ρ : M(π) → M(σ) is the induction map with respect to
p, we have ρ ◦π = σ . Therefore, π and σ are quasiequivalent.

3.5.11 Theorem. Let A be a C∗-algebra. and let π1 and π2 be nondegenerate
representations ofA. Then the following are equivalent:

(i) π1 and π2 are quasiequivalent;
(ii) c(π1) = c(π2);

(iii) Aπ1 = Aπ2 .

Proof. We will first show the equivalence (i) ⇐⇒ (iii), because the equiva-
lence (ii) ⇐⇒ (iii) follows from Theorem 3.5.6. Suppose that π1 and π2 are
quasiequivalent, and let ρ :M(π1)→M(π2) be a normal ∗-isomorphism such
that ρ ◦ π1 = π2. Then, since ρ is a σ -weakly bicontinuous isometric isomor-
phism, the preadjoint ρ∗ of ρ is an isometric isomorphism fromM∗(π2) onto
M∗(π2), and π∗1 ◦ ρ∗ = π∗2 . Therefore, we have

Aπ2 = π∗2 (M∗(π2)) = π∗1 ◦ ρ∗(M∗(π2)) = π∗1 (M∗(π1)) = Aπ1 .

Conversely, suppose that Aπ1 = Aπ2 . The restriction of π∗i to M∗(πi) es-
tablishes an isometric isomorphism betweenM∗(πi) and Aπi . Hence

σ = ((π∗1 )|M∗(π1))
−1 ◦ (π∗2 )|M∗(π2)

is an isometric isomorphism from M∗(π2) onto M∗(π1). Let ρ = σ∗ be the
adjoint of σ . Then ρ is a σ -weakly bicontinuous isometric isomorphism of
M(π1) ontoM(π2). If a,b ∈A and ϕ ∈M∗(π2), we have

〈ϕ,ρ(π1(a)∗π2(b))〉 = 〈σ(ϕ),π1(a)∗π2(b)〉
= 〈σ(ϕ),π1(a∗b)〉
= 〈π∗2 (ϕ),a∗b〉
= 〈ϕ,π2(a∗b)〉
= 〈ϕ,π2(a)∗π2(b)〉.

Therefore, ρ is a normal ∗-isomorphism and ρ ◦π1 = π2. �
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Since quasiequivalence of von Neumann algebras is specified by a nor-
mal ∗-isomorphism, the two structure theorems we proved for normal ∗-
isomorphisms of von Neumann algebras have implications about quasiequiva-
lent representations.

3.5.12 Proposition. Let A be a C∗-algebra, and let π1 and π2 be nondegen-
erate representations of A. If π1 and π2 are quasiequivalent, then there is a
representation π , quasiequivalent to π1 and π2, such that both π1 and π2 are
unitarily equivalent to subrepresentations of π .

Proof. Clear from Theorem 3.4.8 and the fact that amplifications, inductions,
and spatial equivalences all preserve quasiequivalence. �

3.5.13 Proposition. Let A be a C∗-algebra, and let π1 and π2 be nondegen-
erate representations of A. If π1 and π2 are quasiequivalent, then there are
unitarily equivalent subrepresentations σ1 and σ2 of π1 and π2 respectively
that are both quasiequivalent to π1 and π2.

Proof. Clear from Theorem 3.4.9 and the fact that amplifications, inductions,
and spatial equivalences all preserve quasiequivalence. �

Another property of representations closely related to quasiequivalence is
disjointness.

3.5.14 Definition. LetA be a C∗-algebra, and let π1 and π2 be nondegenerate
representations ofA. We say that π1 and π2 are disjoint if π1 and π2 have no
nonzero intertwining operators.

3.5.15 Theorem. Let A be a C∗-algebra, and let π1 and π2 be nondegenerate
representations ofA. Then the following are equivalent:

(i) π1 and π2 are disjoint;
(ii) π1 and π2 have no nonzero unitarily equivalent subrepresentations;

(iii) c(π1) and c(π2) are orthogonal;
(iv) Aπ1 ∩Aπ2 = {0};
(v) (π1 ⊕π2)(A)′′ = π1(A)′′ ⊕π2(A)′′;

(vi) (π1 ⊕π2)(A)′ = π1(A)′ ⊕π2(A)′.

Proof. We will first show (i) =⇒ (ii). Suppose that π1 and π2 are disjoint
but there exist nonzero subrepresentations ρ1 and ρ2 of π1 and π2 that are
unitarily equivalent by some unitary U : Hρ1 → Hρ2 . Define an operator V :
Hπ1 → Hπ2 by extending U to vanish on H⊥

ρ1
. Then V is a partial isometry

from Hπ1 to Hπ2 that intertwines π1 and π2, contradicting the disjunction of
π1 and π2.
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Conversely, suppose that (ii) holds, and let T : Hπ1 → Hπ2 be a nonzero
intertwiner for π1 and π2, i.e.

Tπ1(a) = π2(a)T

for all a ∈A. Taking adjoints, we have

π1(a∗)T∗ = T∗π2(a∗).

Hence T∗ is an intertwiner ofπ2 andπ1. This implies that the positive operator
T∗T commutes with π1(A), and thus |T | = (T∗T)1/2 ∈ π1(A)′. Let T = V |T |
be the polar decomposition of T . Then V implements a unitary equivalence
between the subrepresentations of π1 and π2 defined by the source and range
spaces of V respectively. Since T is nonzero, V is also nonzero.

We will now show (ii) =⇒ (iii). Suppose that (ii) holds but c(π1) and c(π2)
are not orthogonal. Let π̃1 and π̃2 denote the canonical extensions of π1 and
π2 toA∗∗. Let ρ1 and ρ2 be the subrepresentations of π1 and π2 respectively
determined by the projections π̃1(c(π2)) and π̃2(c(π1)) in π1(A)′ and π2(A)′
respectively. Both of these representations have central cover c(π1)c(π2), and
thus are quasiequivalent by Theorem 3.5.11. If c(π1) and c(π2) are not or-
thogonal, then these subrepresentations are nonzero, and thus by Proposi-
tion 3.5.13, π1 and π2 have nonzero unitarily equivalent subrepresentations,
a contradiction.

The equivalence (iii) ⇐⇒ (iv) is clear, because Aπ1 = c(π1)·A∗ and similarly
for Aπ2 . We will show that (iii) =⇒ (v). Let π̃1 and π̃2 denote the canonical
extensions of π1 and π2 to A∗∗. If a ∈ A∗∗, then (π̃1 ⊕ π̃2)(a) = 0 if and
only if π̃1(a) = 0 and π̃2(a) = 0. If π is a representation of A and π̃ is
the canonical extension of π to A∗∗, then the kernel of π̃ is A∗∗(1 − c(π)).
Therefore,

ker(π̃1 ⊕ π̃2) = ker(π̃1)∩ ker(π̃2)
=A∗∗(1− c(π1))(1− c(π2))
=A∗∗(1− (c(π1)+ c(π2)).

It follows that (π̃1 ⊕ π̃2)(A∗∗) is ∗-isomorphic to

A∗∗(c(π1)+ c(π2)) =A∗∗c(π1)⊕A∗∗c(π2).

Therefore,
(π1 ⊕π2)(A)′′ = π1(A)′′ ⊕π2(A)′′.

The equivalence (v) ⇐⇒ (vi) holds by the Double Commutant Theorem,
so all that remains to be shown is that (vi) =⇒ (ii). Suppose that (vi) holds
but there exist nonzero subrepresentations ρ1 and ρ2 of π1 and π2 that are
unitarily equivalent by some unitary U : Hρ1 → Hρ2 . Define an operator V :
Hπ1 → Hπ2 by extending U to vanish on H⊥

ρ1
. Then V is a partial isometry
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from Hπ1 to Hπ2 that intertwines π1 and π2. It is easy to verify that V∗V ∈
π1(A)′, VV∗ ∈ π2(A)′, and

V∗(π2(a)VV∗)V = π1(a)V∗V

for all a ∈A. Consider V as a bounded operator onHπ1 ⊕Hπ2 . Then

V =
(

0 0
V21 0

)
for some V21 ∈ B(H1,H2). We have

(pi1 ⊕π2)(a)V = (π1(a)+π2(a))V
= π2(a)V
= Vπ1(a)
= V(π1(a)+π2(a))
= V(π1 ⊕π2)(a).

Hence V ∈ (π1 ⊕π2)(A)′. By our assumption of (vi),

(π1 ⊕π2)(A)′ = π1(A)′ ⊕π2(A)′ ⊆ B(Hπ1)⊕B(Hπ2),

Therefore, V = 0. �

We will now discuss some applications of the theory developed above to
direct sums of representations.

3.5.16 Proposition. Let A be a C∗-algebra. If (πi)i∈I is a family of mutually
disjoint nondegenerate representations ofA and π =

∑
i∈I πi, then

Aπ =

u ∈ B(G) : u =
∑
i∈I
ui where ui ∈ Aπi and

∑
i∈I
‖ui‖ <∞

 .
Moreover, if u ∈ Aπ , then

‖u‖ = inf

∑
i∈I
‖ui‖ : u =

∑
i∈I
ui and ui ∈ Aπi

 .
Proof. Fix u ∈ Aπ , and sequences (ξn)∞n=1 and (ηn)∞n=1 such that

u =
∞∑
n=1

πξn,ηn and
∞∑
n=1

‖ξn‖‖ηn‖ <∞.

Since Hπ = ⊕i∈IHπi , we can write ξn = (ξn,i)i∈I and ηn = (ηn,i)i∈I for i ∈ I
such that

‖ξn‖ =
∑
i∈I
‖ξn,i‖2

 1
2

, ‖ηn‖ =
∑
i∈I
‖ηn,i‖2

 1
2

,
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and
πξn,ηn =

∑
i∈I
πξn,i,ηn,i .

For every i ∈ I, define

ui =
∞∑
n=1

πξn,i,ηn,i .

Then ui ∈ Aπ , because

∞∑
n=1

‖ξn,i‖‖ηn,i‖ ≤
∞∑
n=1

‖ξn‖‖ηn‖ <∞.

We have

∑
i∈I
‖ui‖ ≤

∑
i∈I

∞∑
n=1

‖ξn,i‖‖ηn,i‖

=
∞∑
n=1

∑
i∈I
|ξn,i‖‖ηn,i‖

≤
∞∑
n=1

∑
i∈I
‖ξn,i‖2

 1
2
∑
i∈I
‖ηn,i‖2

 1
2

=
∞∑
n=1

‖ξn‖‖ηn‖.

Hence
∑
i∈I ui ∈ A∗. Since the sums above converge absolutely, we may rear-

range them to obtain

∑
i∈I
ui =

∑
i∈I

∞∑
n=1

(πi)ξn,i,ηn,i =
∞∑
n=1

∑
i∈I
(πi)ξn,i,ηn,i =

∞∑
n=1

πξn,ηn = u.

Conversely, it is clear that any sum of the form
∑
i∈I ui, where ui ∈ Aπi and∑

i∈I ‖ui‖ <∞, is also in Aπ .

The norm formula follows from the above calculations and the fact that Aπ
is the quotient ofH ⊗γH , whereH = ⊕i∈IHπi . �

3.5.17 Proposition. LetA be a C∗-algebra. If π1 and π2 are disjoint nondegen-
erate representations ofA, then Aπ1⊕π2 = Aπ2 ⊕1 Aπ2 , where ⊕1 means a direct
sum in the `1 sense.

Proof. Since π1 and π2 are disjoint, by Theorem 3.5.15 we have that Aπ1 ∩
Aπ2 = �. Since Aπ1 and Aπ2 are both closed subspaces of A∗∗, the conclusion
follows from Proposition 3.5.16. �
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3.5.18 Proposition. LetA be a C∗-algebra. If (πi)i∈I is a family of mutually dis-
joint nondegenerate representations ofA and π =

∑
i∈I πi, then Aπ =

∑
i∈I Aπi ,

where the direct sum is a direct sum in the `1 sense.

Proof. We claim that for every every j ∈ I, πj and ⊕i∈I,i≠jπi are disjoint.
Indeed, by Theorem 3.5.15, if they are not disjoint, there are nonzero sub-
representations ρ and σ of πj and ⊕i∈I,i≠jπi respectively that are unitarily
equivalent. LetK be the subspace of ⊕i∈I,i≠jHπi corresponding to σ . Since σ
is nonzero, there is an i ∈ I such that σ ∩Hπi ≠ 0. This defines a nonzero
subrepresentation of πi that is unitarily equivalent to some subrepresentation
of ρ, and thus πj , contradicting our assumption.

Now, by Proposition 3.5.17, we have that Aπ = Aπj ⊕1 Aρ, where ρ =
⊕i∈I,i≠jπi. The conclusion of the theorem follows by (possibly transfinite) in-
duction. �

3.5.19 Proposition. Let A be a C∗-algebra. If π1 and π2 are nondegenerate
representations of A, then Aπ1 ⊆ Aπ2 if and only if π1 is quasiequivalent to a
subrepresentation of π2.

Proof. Suppose that Aπ1 ⊆ Aπ2 . Then c(π1) ≤ c(π2). Let π̃1 and π̃2 be the
canonical extensions of π1 and π2 to A∗∗. Then π̃1(c(π1)) ∈ π1(A)′ and
π̃2(c(π2)) ∈ π2(A)′ define quasiequivalent subrepresentations of π1 and and
π2 respectively. However, π̃1(c(π1)) = 1, which implies that π1 is quasiequiv-
alent to a subrepresentation of π2.

Conversely, suppose that π1 is quasiequivalent to a subrepresentation ρ of
π2. Then by Theorem 3.5.11, Aπ1 = Aρ ⊆ Aπ2 . �

Historical Notes

The result establishing the existence of an enveloping von Neumann algebra
was first announced by Sherman [She50], but a proof never appeared. The first
published proof was given by Takeda [Tak54].

The correspondence between projections in a von Neumann algebra and
invariant subspaces of its predual is due to Effros [Eff63].

The concepts of quasiequivalence and disjointness of representations are
due to Mackey [Mac53] [Mac76]. The theory of coefficient spaces of represen-
tations of C∗-algebras and groups is part of the folklore of the subject, so
it is difficult to pin down the exact origin of most of the results given here.
Our treatment closely follows Arsac’s PhD thesis [Ars76]. However, we use
the enveloping C∗-algebra in some places where Arsac quotes results about
subrepresentations of an arbitrary representation.
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3.6 The Polar Decomposition of Normal Functionals

If ϕ is a normal linear functional on B(H ), then there exists a trace-class
operator x ∈ T (H ) such that

ϕ(a) = Tr(ax).

If x = v|x| is the polar decomposition of x, then |x| ∈ T (H ), and

ϕ(a) = Tr(av|x|) = v · Tr(a|x|),

so every normal linear functional on B(H ) is the product of a partial isometry
and a normal positive functional. If M ⊆ B(H ) is a von Neumann algebra
and ϕ is a normal linear functional onM, then we can extend ϕ to B(H ) and
get the same decomposition, but there is no reason to believe that the partial
isometry v lies in M. In this section, we develop a similar decomposition
relative to an arbitrary von Neumann algebra.

3.6.1 Proposition. Let M be a von Neumann algebra, and ϕ a normal linear
functional onM. If a projection p ∈M satisfies ‖p ·ϕ‖ = ‖ϕ‖ then p ·ϕ =ϕ.

Proof. We may assume that ‖ϕ‖ = 1. Let q = 1 − p. We will show that
q · ϕ = 0, proving the result. If q · ϕ ≠ 0 then there exists a b ∈ M with
‖b‖ = 1 such that (q ·ϕ)(b) = δ > 0. By the Banach-Alaoglu Theorem, there
exists an a ∈M with ‖a‖ = 1 such that (p ·ϕ)(a) = ‖a‖ = 1. Since

‖ap + δbq‖2 = ‖(ap + δbq)(ap + δbq)∗‖
= ‖apa∗ + δ2bqb∗‖
≤ 1+ δ2,

it follows that
‖ap + δbq‖ ≤ (1+ δ2)

1
2 < 1+ δ2.

On the other hand,

ϕ(ap + δbq) = (p ·ϕ)(a)+ δ(q ·ϕ(b) = 1+ δ2,

which contradicts the fact that ‖ϕ‖ = 1. Therefore, q ·ϕ = 0. �

3.6.2 Theorem. Let M be a von Neumann algebra, and ϕ a normal linear
functional on M. Then there exists a unique normal positive linear functional
|ϕ| ∈ M∗ and partial isometry v ∈M such that

ϕ = v · |ϕ|

and
v∗v = s(|ϕ|).

Moreover, ‖|ϕ|‖ = ‖ϕ‖, sr(ϕ) = s(|ϕ|), and sl(ϕ) = vv∗.
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Proof. By the σ -weak compactness of the unit sphere ofM, there is an a ∈M
with ‖a‖ = 1 such that ϕ(a) = ‖ϕ‖. Let a∗ = u|a∗| be the polar decomposi-
tion of a∗. Then

a = |a∗|u∗

and we have
‖ϕ‖ =ϕ(a) =ϕ(|a∗|u∗) = (u∗ ·ϕ)(|a∗|).

Let |ϕ| = u∗ · ϕ. Then by Proposition 2.12.1, |ϕ| is positive because 0 ≤
|a∗| ≤ 1. Let p = uu∗. Then we have

u · |ϕ| = uu∗ ·ϕ = p ·ϕ

and
‖ϕ‖ =ϕ(a) =ϕ(ap) = (p ·ϕ)(a),

so ‖p ·ϕ‖ = ‖ϕ‖. Hence by Proposition 3.6.1, p ·ϕ = ϕ, i.e. ϕ = u · |ϕ|. By
the equality

u∗u · |ϕ| = u∗ ·ϕ = |ϕ|
we have u∗u ≥ s(|ϕ|). Hence v = us(|ϕ|) is a partial isometry in M with
ϕ = v · |ϕ| and v∗v = s(|ϕ|). Since

|ϕ| = u∗ ·ϕ and ϕ = u · |ϕ|,

we have
‖|ϕ|‖ ≤ ‖ϕ‖ and ‖ϕ‖ ≤ ‖|ϕ|‖.

Therefore, ‖|ϕ|‖ = ‖ϕ‖, obtaining the desired decomposition of ϕ.

Now, we will show uniqueness. Letω be a normal positive functional onM
and w ∈ M a partial isometry such that ϕ = w ·ω and w∗w = s(ω). Then
we have

|ϕ|(1) = |ϕ|(v∗v)
=ϕ(v∗)
=ω(v∗w)
=ω(w∗wv∗w)
=ϕ(w∗wv∗)
= |ϕ|(w∗wv∗v)
= |ϕ|(w∗w),

so w∗w ≥ s(|ϕ|) = v∗v . Similarly, v∗v ≥ w∗w, so v∗v = w∗w. Let p =
v∗v = w∗w. Since

w∗v = w∗ww∗vv∗v = pw∗vp ∈ pMp,

there exist a,b ∈ (pMp)sa such that w∗v = a+ ib. We have

|ϕ|(a)+ i|ϕ|(b) = |ϕ|(w∗v) =ϕ(w∗) =ω(w∗w) = ‖ω‖ = ‖|ϕ|‖.
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Hence |ϕ|(a) = ‖|ϕ|‖ = |ϕ|(1) = |ϕ|(p), so |ϕ|(p−a) = 0. Since p = s(|ϕ|),
|ϕ| is faithful when restricted to pMp. Therefore, because a is self-adjoint,
p − a = 0, i.e. a = p. Since ‖w∗v‖ ≤ 1, w∗v = p + ib, and ‖p + ib‖ ≤
‖p‖ + ‖ib‖ = 1 + ‖b‖, we have ‖b‖ = 0, so b = 0. Hence w∗v = p, and
v∗w = (w∗v)∗ = p as well. We have

v = vp = vv∗w and w = wp = ww∗v

so that

vv∗ = vv∗ww∗vv∗ ≤ ww∗ and ww∗ = ww∗vv∗ww∗ ≤ vv∗,

which implies that sl(ϕ) = vv∗ = ww∗. Finally, we have

v = (vv∗)v = (ww∗)v = wp = ww∗v = w.

Therefore,
|ϕ| = v∗ ·ϕ = w∗ ·ϕ =ω. �

The expression of ϕ in Theorem 3.6.2 is called the polar decomposition of
ϕ and |ϕ| is called the absolute value of ϕ.

3.6.3 Corollary. Let M ⊆ B(H ) be a von Neumann algebra, and ϕ a normal
linear functional on M. Let ϕ = v · |ϕ| be the polar decomposition of ϕ and
(ηn)∞n=1 a sequence inH (∞) such that

|ϕ|(a) =
∞∑
n=1

〈aηn |ηn〉.

If ξn = vηn, then

ϕ(a) =
∞∑
n=1

〈aξn |ηn〉 and ‖ϕ‖ = ‖(ξn)∞n=1‖‖(ηn)∞n=1‖.

Proof. We have

ϕ(a) = (v · |ϕ|)(a) = |ϕ|(av) =
∞∑
n=1

〈avηn |ηn〉 =
∞∑
n=1

〈aξn |ηn〉.

Clearly, ‖ϕ‖ ≤ ‖(ξn)∞n=1‖‖(ηn)∞n=1‖, and

‖ϕ‖ = ‖|ϕ|‖ = |ϕ|(1) = ‖(ηn)∞n=1‖2 ≥ ‖(ξn)∞n=1‖‖(ηn)∞n=1‖,

so ‖ϕ‖ = ‖(ξn)∞n=1‖‖(ηn)∞n=1‖. �
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3.6.4 Corollary. Let A be a C∗-algebra. If ϕ ∈ A∗, then there exists a repre-
sentation π :A→ B(H ) and ξ, η ∈H such that

ϕ(a) = 〈π(a)ξ |η〉 and ‖ϕ‖ = ‖ξ‖‖η‖.

Moreover, if ϕ is positive, we may choose ξ = η.

Proof. This follows from Corollary 3.6.3 and the fact that if ϕ =ωξ , then

‖ϕ‖ =ϕ(1) = 〈ξ |ξ〉 = ‖ξ‖2. �

3.6.5 Corollary. Let G be a locally compact group. Then B(G) is a Banach alge-
bra with respect to pointwise operations and the norm from C∗(G)∗. Moreover,
‖u‖∞ ≤ ‖u‖B(G) for every u ∈ B(G).

Proof. We only need to show that the norm in B(G) is submultiplicative with
respect to pointwise multiplication and that the adjoint is an isometry. Fix
ϕ,ψ ∈ B(G). Since B(G) is the predual of W∗(G), by Corollary 3.6.4 there
exist representations π and ρ of G, ξ1, η1 ∈ Hπ , and ξ2, η2 ∈ Hρ such that
ϕ = πξ1,η1 , ρ = πξ2,η2 , ‖ϕ‖ = ‖ξ1‖‖η1‖, and ‖ρ‖ = ‖ξ2‖‖η2‖. Then

(ϕψ)(s) = 〈(π ⊗ ρ)(s)ξ1 ⊗ ξ2 |η1 ⊗ η2〉,

so
‖ϕψ‖ ≤ ‖ξ1‖‖η1‖‖ξ2‖‖η2‖ = ‖varphi‖‖ψ‖.

We also have

ϕ(s) =ϕ(s) = 〈π(s)ξ1 |η1〉 = 〈π(s)ξ1 |η1〉,

so
‖ϕ‖ ≤ ‖ξ1‖‖η1‖ = ‖ξ1‖‖η1‖ = ‖ϕ‖.

Since complex conjugation is an involution, this implies that ‖ϕ‖ = ‖ϕ‖. The
inclusion map ι : B(G) → Cb(G) is a ∗-homomorphism and Cb(G) is a C∗-
algebra, so ‖u‖∞ = ‖ι(u)‖∞ ≤ ‖u‖B(G). �

Historical Notes

The polar decomposition of normal linear functionals is due to Sakai [Sak58].
The corollary that B(G) is a Banach algebra is due to Eymard [Eym64].
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3.7 The Radon-Nikodym Theorem for Normal
Functionals

In this section, we will prove a Radon-Nikodym theorem for normal positive
functionals on a von Neumnn algebra. We will frequently use vector function-
als defined on both an algebra and its commutant. To avoid confusion, we
will introduce some notation that allows us to distinguish between the two
cases. IfM⊆ B(H ) is a von Neumann algebra and ξ ∈H , then letωξ denote
the restriction of the vector functional ωξ on B(H ) to M and ω′ξ denote the
restriction of ωξ toM′.

We will first prove a lemma of independent interest.

3.7.1 Proposition. Let M be a von Neumann algebra and ϕ a normal positive
functional onM. If x ∈M, then |x ·ϕ| ≤ ‖x‖ϕ.

Proof. Let x ·ϕ = v · |x ·ϕ| be the polar decomposition of x ·ϕ. Then

|x ·ϕ|(a) = (x ·ϕ)(av∗) =ϕ(av∗x)

and
ϕ(ax) = (x ·ϕ)(a) = |x ·ϕ|(av)

for all a ∈M. Let y = v∗x. Then y ·ϕ = |x ·ϕ| is positive, and for all a ∈M,

ϕ(ay) = (y ·ϕ)(a) = (yϕ̇)∗(a) =ϕ(a∗y) =ϕ((y∗a)∗) =ϕ(y∗a).

Hence ϕ(ay2) =ϕ(y∗ay) for all a ∈M, and

ϕ(a∗ay2) =ϕ(y∗a∗ay) =ϕ((ay)∗(ay)) ≥ 0

for all a ∈M, so y2 ·ϕ is positive. Similarly,

(y2n+1 ·ϕ)(a) =ϕ(ay2n+1) =ϕ(y2nay2n)

for all a ∈M and n ≥ 0, so y2n+1 ·ϕ is positive. Therefore, if a ∈M+,

|x ·ϕ|(a) =ϕ(ay)
=ϕ(a1/2(a1/2y))

≤ϕ(a)1/2ϕ(y∗ay)1/2

=ϕ(a)1/2ϕ(ay2)1/2

≤ϕ(a)1/2ϕ(a)1/4ϕ(ay4)1/4

...

≤ϕ(a)1−2−nϕ(ay2n)2
−n

≤ϕ(a)1−2−n(‖ϕ‖‖a‖‖y‖2n)2
−n
.

Taking the limit as n→∞ gives

|x ·ϕ|(a) ≤ ‖y‖ϕ(a) = ‖v∗x‖ϕ(a) ≤ ‖x‖ϕ(a). �
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3.7.2 Theorem. Let M be a von Neumann algebra and ψ a normal positive
functional on M. If ϕ is another normal positive functional on M such that
ϕ ≤ ψ, then there exists a unique x ∈ M such that 0 ≤ x ≤ 1, s(x) ≤ s(ψ),
and ϕ = x ·ψ · x. Moreover, s(x) = s(ϕ).

Proof. By considering the reduced algebra s(ψ)Ms(ψ), we may assume that
ψ is faithful. Then, by the normal GNS construction Proposition 3.4.5, we may
assume that M ⊆ B(H ) and ψ = ωξ for some ξ ∈ H . Since ψ is faithful, ξ
is a separating vector forM. Since ϕ ≤ ψ, by Proposition 2.11.2 there exists a
t′ ∈M′, 0 ≤ t′ ≤ 1, such that

ϕ(a) = 〈at′ξ |ξ〉 = 〈as′ξ | s′ξ〉,

where s′ = (t′)1/2. Let ϕ′ denote the normal linear functional on M′ defined
by

ϕ′(a) = (s′ ·ω′ξ)(a) = 〈asξ |ξ〉.
By Proposition 3.7.1, |ϕ′| ≤ ω′ξ , so there is an x ∈ M, 0 ≤ x ≤ 1, such that
|ϕ′| = x ·ω′ξ . Let ϕ′ = v′|ϕ′| denote the polar decomposition of ϕ′. Then,
for all b ∈M′,

〈xξ |bξ〉 = 〈b∗xξ |ξ〉
= |ϕ′|(b∗)
=ϕ′(b∗(v′)∗)
= 〈b∗(v′)∗s′ξ |ξ〉
= 〈(v′)∗s′ξ |bξ〉.

Since ξ is separating for M, it is cyclic for M′, so the above implies that xξ =
(v′)∗s′ξ. Similarly, for all b ∈M′,

〈v′(v′)∗sξ |bξ〉 = 〈b∗v′(v′)∗s′ξ |ξ〉
= |ϕ′|(b∗v′)
=ϕ′(b∗)
= 〈b∗s′ξ |ξ〉
= 〈s′ξ |bξ〉,

so v′xξ = v′(v′)∗s′ξ = s′ξ. Then, for every a ∈M,

ϕ(a) = 〈as′ξ | s′ξ〉
= 〈as′ξ |vxξ〉
= 〈a(v′)∗s′ξ |xξ〉
= 〈axξ |xξ〉
= 〈xaxξ |ξ〉
= ψ(xax).
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The claim that s(x) = s(ϕ) is clear.

We will now show uniqueness. Suppose y ∈ M is such that 0 ≤ y ≤ 1,
s(y) ≤ s(ψ) and

ϕ(a) = ψ(yay)
for all a ∈ A. Since s(y) ≤ s(ψ), we may continue our convention of only
considering the reduced algebra s(ψ)Ms(ψ) represented on the GNS Hilbert
space associated with ψ. Since ψ =ωξ , for all a ∈A we have

ωξ(xax) =ωξ(yay),

which implies

‖axξ‖2 =ωξ(xa∗ax) =ωξ(ya∗ay) = ‖ayξ‖2.

Hence we can define a partial isometry u′ ∈M′ by

u′(axξ) = ayξ.

Consider the normal functionals ϕ′x and ϕ′y onM′ given by

ϕ′x(b) = 〈bxξ |ξ〉 and ϕ′y(b) = 〈byξ |ξ〉.

These functionals are positive, because the product of two commuting positive
elements in a C∗-algebra is positive. If b ∈M′, then

ϕ′y(b) = 〈bv′yξ |ξ〉 = (v′ ·ϕ′x)(b),

so ϕ′y = u′ · ϕ′x. It is also clear from the definitions of u′ and ϕ′x that
(u′)∗u′ = s(ϕ′x). Since both ϕ′x and ϕ′y are positive, the uniqueness of polar
decomposition implies that u′ is the identity on the range of s(ϕ′x), which is
clearly [M′xξ]. In particular,

xξ = u′xξ = yξ.

Since ξ is a separating vector forM, this implies that x = y . �

We will show a number of results about the vector implementation of nor-
mal linear functionals and the relationship between a von Neumann algebra
and its commutant. Let M ⊆ B(H ) be a von Neumann algebra. If ξ ∈ H , let
pξ and p′ξ be the projections onto [M′ξ] and [Mξ] respectively. Then pξ ∈M
and p′ξ ∈ M′. If ωξ is the restriction of the vector functional ωξ on B(H ) to
M and ω′ξ is the restriction of ωξ toM′, it is easy to see that

s(ωξ) = s(ωξ|M) = pξ and s(ω′ξ) = s(ωξ|M′) = p′ξ.

Note that ξ is cyclic if and only if p′ξ = 1, and separating if and only if pξ = 1.
For this reason pξ and p′ξ are called cyclic projections of M and M′ respec-
tively. This notation can be slightly confusing, because pξ = 1 if and only if ξ
is separating, not cyclic, but it is standard.
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3.7.3 Proposition. LetM⊆ B(H ) be a von Neumann algebra and ϕ a normal
positive functional onM. If ξ ∈H is such that

ϕ ≥ωξ and s(ϕ) = pξ,

then there exists an η ∈H such that

ϕ =ωη and p′η = p′ξ.

Proof. Since ϕ ≥ ωξ , by Theorem 3.7.2 there exists an x ∈ M, 0 ≤ x ≤ 1,
such that

ωξ = x ·ϕ · x and s(x) = s(ϕ).

Since s(ωξ) = s(ϕ), it follows that s(x) = s(ϕ) = pξ . By Proposition 2.8.21,
there exists an increasing sequence (en)∞n=1 of projections in M, such that en
and x commute,

xen ≥
1
n
en and en ↗ s(x).

Then xen is invertible in enMen, so there exists a positive an ∈ enMen such
that xan = en. Let ηn = anξ. Then, for n ≥m, we have

‖ηm − ηn‖2 = 〈(am − an)ξ | (am − an)ξ〉
=ωξ((am − an)2)
=ϕ(x(am − an)2x)
=ϕ(em − en).

Since ϕ is normal and en → s(x) in the strong operator topology, we have
ϕ(en) → ϕ(s(x)). It follows that (ηn)∞n=1 is a Cauchy sequence. Let η be its
limit. Then, for every a ∈M,

ϕ(a) =ϕ(s(x)as(a))
= lim
n→∞

ϕ(enaen)

= lim
n→∞

ϕ(xanaana)

= lim
n→∞
〈aanξ |anξ〉

= 〈aη |η〉
=ωη(a),

so ϕ = ωη. We have ηn ∈ Mξ for every n ∈ N, so η ∈ [Mξ] and p′η ≤ p′ξ.
Conversely, we have

xη = lim
n→∞

xanξ = lim
n→∞

enξ = s(a)ξ = pξ(ξ)ξ.

Therefore, ξ ∈Mη and p′ξ ≤ p′η. �
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3.7.4 Theorem. Let M ⊆ B(H ) be a von Neumann algebra and ϕ a normal
positive functional onM. If ξ ∈H has the property that s(ϕ) ≤ pξ , then there
exists an η ∈ [Mξ] ∩ [M′ξ] such that ϕ = ωη. Moreover, if s(ϕ) = pξ , then
there exists an η ∈H such that ϕ =ωη and p′η = p′ξ .

Proof. Let ψ = ϕ +ωξ . By Proposition 3.7.3, there exists an η0 ∈ H such
that

ψ =ωη0 and p′η0
= p′ξ.

Since ϕ ≤ ψ, it follows from Theorem 3.7.2 that there exists an x ∈ M, 0 ≤
x ≤ 1, such that

ϕ = x ·ψ · x and s(x) ≤ s(ψ) = s(ξ).

Let η = xη0. Then for any a ∈M, we have

ϕ(a) =ωη0(xax) =ωη(a),

so ϕ = ωη. Since η = xη0 ∈ Mη0, it follows that η ∈ [Mξ]. On the other
hand, we have

η = xη0 ∈ s(x)H ⊆ pξH = [M′ξ].

Let us now assume that s(ϕ) = pξ . Then, it follows that s(a) = pη0 . By
Proposition 2.8.21, there exists a sequence (en)∞n=1 of projections inM and an
increasing sequence (an)∞n=1 of positive elements ofM such that an ∈ enMen,

xan = anx = en and en ↗ s(a).

Let ηn = anη = anxη0 = enη0. Since ηn = anη ∈Mη, we have

η0 = pη0(η0) = s(a)(η0) = lim
n→∞

enη0 ∈ [Mη].

Thus, p′η0
≤ p′η. But p′η0

= p′ξ , so this implies that p′ξ ≤ p′η. On the other hand,
it is obvious that p′η ≤ p′ξ . Therefore, p′η = p′ξ . �

The following corollary is one of the most important results in the theory
of von Neumann algebras.

3.7.5 Corollary. Let M ⊆ B(H ) be a von Neumann algebra with a separating
vector. If ϕ is a normal linear functional on M, then there exist ξ, η ∈ H such
that

ϕ =ωξ,η and ‖ϕ‖ = ‖ξ‖‖η‖.
Moreover, if ϕ is positive, then we may choose ξ = η, and if ϕ is positive and
faithful and ζ is a separating vector of M, then we may choose ξ such that
p′ξ = p′ζ .
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Proof. If ζ is a separating vector forM, then pζ = 1. Thus, the result follows
from Theorem 3.7.4, Corollary 3.6.3, and the fact that if ϕ =ωξ , then

‖ϕ‖ =ϕ(1) = 〈ξ |ξ〉 = ‖ξ‖2. �

If ϕ is a faithful positive functional onM⊆ B(H ), then the GNS represen-
tation of ϕ is a ∗-homomorphism and thus normal. By Proposition 3.4.5, this
implies thatϕ is normal as well. If we assume thatM is in the GNS representa-
tion with respect to ϕ, and ξ ∈H is a cyclic vector such that ϕ(a) = 〈aξ |ξ〉,
then ξ is also separating, because ϕ is faithful. Conversely, if η ∈ H is both
cyclic and separating, then the linear functional ψ onM defined by

ψ(a) = 〈aξ |ξ〉

is a faithful normal positive functional. The following theorem shows that all
∗-isomorphisms between von Neumann algebras with a cyclic and separating
vector are spatial isomorphsisms.

3.7.6 Theorem. LetM1 ⊆ B(H1) andM2 ⊆ B(H2) be von Neumann algebras,
and let ξ1 ∈ H1 and ξ2 ∈ H2 be vectors that are cyclic and separating for M1

and M2 respectively. If ρ : M1 → M2 is a ∗-isomorphism, then there exists a
unitary U :H1 →H2 such that ρ(a) = UaU∗.

Proof. Define a normal positive functional ϕ onM1 by

ϕ(a) =ωξ2(ρ(a)).

Then ϕ is faithful, because ξ2 is separating forM2 and ρ is a ∗-isomorphism.
By Corollary 3.7.5, there exists a vector η1 ∈ H1 such that ϕ = ωη1 and
p′η1

= p′ξ1
. Since ξ1 is cyclic, p′η1

= p′ξ1
, and η1 is cyclic as well.

Define a linear map U0 :M1η1 →M2ξ2 by

U0(aη1) = ρ(a)ξ2.

If a ∈M1, then

‖aη1‖2 =ωη1(a
∗a) =ϕ(a∗a) =ωξ2(ρ(a

∗a)) = ‖ρ(a)ξ2‖2.

Hence U0 is an isometry. Since the vectors η1 and ξ2 are cyclic for M1 and
M2 respectively, it follows that U0 can be extended by uniform continuity to a
unitary U :H1 →H2. If a,b ∈M1, we have

ρ(a)ρ(b)ξ2 = ρ(ab)ξ2 = U0abη1 = (U0a)(bη1) = U0aU−1
0 ρ(b)ξ2.

Therefore, ρ(a) = uau∗ for all a ∈M1. �
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3.7.7 Theorem. Let M ⊆ B(H ) be a von Neumann algebra. If ξ, η ∈ H , then
pξ � pη if and only if p′ξ � p′η.

Proof. By symmetry, we need only prove the forwards direction. Moreover, if
q is a subprojection of pη, then

M′qξ = qM′ξ = qpH = qH ,

so q = pqξ . Similarly, if q′ is a subprojection of p′η, then q′ = p′q′ξ . Therefore,
we need only prove that pξ ∼ pη implies p′ξ ∼ p′η.

Suppose pξ ∼ pη, and let v ∈M be such that v∗v = pξ and vv∗ = pη. Let
ξ0 = vξ. Then

Mξ0 =Mvξ ⊆Mξ =Mv∗vξ ⊆Mvξ =Mξ0,

soMξ0 =Mξ. Thus, p′ξ = p′ξ0
, and we need only prove that p′ξ0

∼ p′η. We have

M′ξ0 =M′vξ = vM′ξ =M′η.

Hence pξ0 = pη. Since pη is the support projection of ωη, by Theorem 3.7.4
there exists a η0 ∈ H such that ωη = ωη0 and p′η0

= p′ξ0
. Define w0 : Mη0 →

Mη by w0aη0 = aη. If a ∈M, then

‖w0aη0‖2 = ‖aη‖2 =ωη(a) =ωη0(a) = ‖aη0‖2,

so w0 is an isometry. Extend w0 by uniform continuity to an isometry w0 :
Mη0 →Mη. Extend w0 to a partial isometry w :H →H by defining w to be
zero onMη0

⊥
. Clearly, w ∈M′,

w∗w = p′η0
= p′ξ0

= p′ξ,

and ww∗ = p′η. Therefore, p′ξ ∼ p′η. �

3.7.8 Corollary. Let M ⊆ B(H ) be a von Neumann algebra. If M has both a
cyclic vector and a separating vector, then M has a vector that is both cyclic
and separating.

Proof. Let ξ be a cyclic vector for M and η a separating vector for M. Then
p′ξ = 1 and pη = 1. Thus pξ � pη and p′η � p′ξ . By Theorem 3.7.7, p′ξ � p′η, so
p′ξ ∼ p′η. Let v ∈ M′ be such that v∗v = p′η and vv∗ = p′ξ . Since p′ξ = 1, the
range of v must beH . Let ξ0 = vη. Then

Mξ0 =Mvη = vMη =H .

Thus, ξ0 is cyclic for M. Since aξ0 = avη = vaη for all a ∈ M, we have that
aξ0 = 0 if and only if aη = 0. Since η is separating, this implies that ξ0 is
separating as well. �
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Historical Notes

The Radon-Nikodym Theorem for normal positive functionals is due to Sakai
[Sak65]. The remaining results on implementation of normal positive func-
tionals as vector functionals are essentially due to Murray and von Neumann
[MvN37], but their original proofs are much more complicated than the ones
given here, relying on nontrivial results from unbounded operator theory. Mur-
ray and von Neumann first proved Theorem 3.7.7, the equivalence of pξ � pη
and p′ξ � p′η, and derived the other results as corollaries of this theorem. In his
survery article [Kad58], Kadison sketched proofs of the other results assuming
Theorem 3.7.4, the theorem on vector implementation of normal functionals.
These proofs are much simpler than the original proofs and are the ones given
here. Vowden [Vow69] was the one to finally prove Theorem 3.7.4 directly
from Sakai’s Radon-Nikodym Theorem.
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Chapter 4

The Fourier Algebra

4.1 Definition and Basic Properties

In Section 3.5, we discussed coefficient spaces of representations of Banach
∗-algebras with a bounded approximate identity. In this section, we will dis-
cuss the properties of coefficient spaces of representations of locally compact
groups, and in particular, the coefficient space of the left regular representa-
tion. First, we will prove some functorial properties of coefficient spaces with
respect to continuous homomorphisms of locally compact groups.

If G and H are locally compact groups, σ : H → G is a continuous homo-
morphism, and π is a representation of G, then π ◦σ is a representation of H.
If u = πξ,η ∈ B(G), then u ◦σ = (π ◦σ)ξ,η ∈ B(H). The map jσ : B(G)→ B(H)
given by jσ (u) = u ◦ σ is clearly a linear contraction.

4.1.1 Proposition. Let G and H be locally compact groups and σ : H → G a
continuous homomorphism. If jσ : B(G) → B(H) is the map induced by σ and
π is a representation of G, then:

(i) jσ (Aπ) = Aπ◦σ ;
(ii) for all v ∈ Aπ◦σ , there is a u ∈ Aπ such that jσ (u) = v and ‖u‖B(G) =
‖v‖B(H).

Proof.

(i) Clearly, jσ (Fπ) ⊆ Fπ◦σ , so jσ (Aπ) ⊆ Aπ◦σ . Conversely,

Aπ◦σ =

v ∈ B(H) : v =
∞∑
n=1

(π ◦ σ)ξn,ηn where
∞∑
n=1

‖ξn‖‖ηn‖ <∞

 ,
which is clearly contained in jσ (Aπ).
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(ii) Fix v ∈ Aπ◦σ . By Corollary 3.6.3 applied to (π ◦ σ)(G)′′, there exist
sequences (ξn)∞n=1 and (ηn)∞n=1 inH (∞) such that

v =
∞∑
n=1

(π ◦ σ)ξn,ηn and ‖v‖B(H) =
∞∑
n=1

‖ξn‖‖ηn‖.

Let

u =
∞∑
n=1

πξn,ηn .

Then j(u) = v , so ‖v‖B(H) ≤ ‖u‖B(G), and

‖u‖B(G) ≤
∞∑
n=1

‖ξn‖‖ηn‖ = ‖v‖B(H).

Therefore, ‖u‖B(G) = ‖v‖B(H). �

4.1.2 Corollary. Let G be a locally compact group, π a representation of G,
and H a closed subgroup of G. Then Aπ|H is a closed subspace of B(H), and the
restriction map u, u|H is a quotient map from Aπ onto Aπ|H .

Proof. Let σ : H → G be the inclusion map. Then the restriction map u, u|H
is simply jσ . Hence Aπ|H = jσ (Aπ) = Aπ◦σ is closed in B(H). The fact that jσ
is a quotient map follows from part (ii) of Proposition 4.1.1. �

Since B(G) has the additional structure of a Banach ∗-algebra, it is natu-
ral to ask which coefficient spaces are subalgebras and ideals of B(G). The
following characterization is quite natural.

4.1.3 Proposition. Let G be a locally compact group and π a representation of
G. Then:

(i) Aπ is a subalgebra of B(G) if and only if π ⊗ π is quasiequivalent to a
subrepresentation of π ;

(ii) Aπ is an ideal of B(G) if and only if ρ ⊗π is quasiequivalent to a subrep-
resentation of π for every representation ρ of G.

Proof.

(i) We have the following equivalences, using Proposition 3.5.19 for the last
one:

Aπ is an algebra ⇐⇒ AπAπ ⊆ Aπ
⇐⇒ FπFπ = Fπ⊗π ⊆ Aπ
⇐⇒ Aπ⊗π ⊆ Aπ
⇐⇒ π ⊗π is quasiequivalent to

a subrepresentation of π.
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(ii) We have the following equivalences, using Proposition 3.5.19 for the last
one:

Aπ is an ideal ⇐⇒ AρAπ ⊆ Aπ for all ρ
⇐⇒ FρFπ = Fρ⊗π ⊆ Aπ for all ρ
⇐⇒ Aρ⊗π ⊆ Aπ for all ρ
⇐⇒ ρ ⊗π is quasiequivalent to a

subrepresentation of π for all ρ. �

We will show that Aλ is an ideal of B(G) by using an even stronger state-
ment, that π ⊗ λ is quasiequivalent to λ itself in a very natural way for every
representation π of G.

4.1.4 Proposition (Fell’s Absorption Principle). Let G be a locally compact
group and π : G → U(H ) a representation of G. Let α be the dimension of H
if the dimension is infinite, and ℵ0 otherwise. Then π ⊗λ is unitarily equivalent
to the representation λ(α). In particular, π ⊗ λ is quasiequivalent to λ.

Proof. Define U1 :H ⊗ L2(G)→ L2(G,H ) by

U1(ξ ⊗ f)(s) = f(s)π(s−1)ξ.

Let (ei)i∈I be an orthonormal basis forH , and define U2 : L2(G,H )→ L2(G)(I)
by

U2f = (〈f(·) | ei〉)i∈I .
Clearly, both U1 and U2 are unitaries, so U = U2U1 :H ⊗ L2(G) → L2(G)(I) is a
unitary. For all s and almost all t in G, we have for an elementary tensor ξ ⊗ f
inH ⊗ L2(G),

U(π ⊗ λ(s))(ξ ⊗ f(t)) = U2U1(π(s)ξ ⊗ λ(s)f (t))
= U2f(s−1t)π(t−1s)ξ

= (f (s−1t)〈ξ |π(s−1t)ei〉)i∈I
= λ(I)(s)(f (t)〈ξ |π(t)ei〉)i∈I
= λ(I)(s)U(ξ ⊗ f(t)).

Hence π ⊗ λ is unitarily equivalent to λ(I), and thus quasiequivalent to λ. �

4.1.5 Corollary. Let G be a locally compact group. Then Aλ is an ideal of B(G).

Proof. Follows from part (ii) of Proposition 4.1.3 and Proposition 4.1.4. �

4.1.6 Definition. Let G be a locally compact group. The Fourier algebra of G
is the coefficient space Aλ of the left regular representation.
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Recall part (ii) of Examples 2.10.15, which states that if ξ, η ∈ L2(G), then
ξ ∗ η∨ ∈ A(G) and

〈λ(s)ξ |η〉 = (η∗ ξ∨)(s).
Indeed, the span of such functions is dense in A(G). We will show in Corol-
lary 4.3.17 that every function in A(G) is of this form, but this result is highly
nontrivial.

An important basic fact about the Fourier algebra is that it satisfies a prop-
erty similar to Urysohn’s lemma.

4.1.7 Definition. Let A be a Banach algebra of functions in C0(X) on a locally
compact Hausdorff space X. We say that A is regular if for every compact
subset K of X and open subset U of X such that K ⊆ U , there is a u ∈A such
that u(s) = 1 for all s ∈ K and u(s) = 0 for all s ∈ X \U .

4.1.8 Proposition. Let G be a locally compact group. Then A(G) is a regular
Banach algebra of functions in C0(G).

Proof. Fix a compact subset K of G. Let V be a relatively compact symmetric
neighbourhood of the identity such that KV 2 ⊆ U , and define

u = 1
m(V)

χKV ∗ χV ∈ A(G).

Then, if s ∈ G, we have

u(s) =
∫

1
m(V)

χKV(t)χV(t−1s)dt = 1
m(V)

∫
χKV∩sV(t)dt =

m(KV ∩ sV)
m(V)

,

so u clearly has the desired properties. �

Using this Urysohn property and the fact that A(G) is an ideal of B(G), it is
not difficult to show that A(G) is the closure of compactly supported functions
in B(G).

4.1.9 Definition. Let A be a Banach algebra of functions on a locally compact
Hausdorff space X. We say that A is Tauberian if the compactly supported
elements ofA are dense inA.

4.1.10 Theorem. Let G be a locally compact group. Then A(G) is the closure of
B(G)∩ Cc(G) in B(G). In particular, A(G) is Tauberian.

Proof. We will first show that B(G)∩Cc(G) ⊆ A(G). Fix v ∈ B(G) ⊆ Cc(G) and
let K be the support of v . By Proposition 4.1.8, there exists some u ∈ A(G)
such that u(s) = 1 for all s ∈ K. Therefore, v = vu ∈ A(G), as A(G) is an
ideal in B(G).
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Now we will show that B(G) ∩ Cc(G) is dense in A(G). To show this, it
suffices to show that it is dense in Fλ. Fix u ∈ Fλ, and let ξ1, . . . , ξn, η1, . . . , ηn ∈
H be such that

u =
k∑
i=1

λξi,ηi =
k∑
i=1

ηi ∗ ξ∨i .

Let (fi,n)∞n=1 and (gi,n)∞n=1 be sequences in Cc(G) such that

lim
n→∞

‖fi,n − ξi‖ = 0 and lim
n→∞

‖gi,n − ηi‖ = 0.

Then it is easy to check that

u = lim
n→∞

k∑
i=1

gi,n ∗ f∨i,n

and that
k∑
i=1

gi,n ∗ f∨i,n ∈ Cc(G)

for every n ∈ N. �

4.1.11 Corollary. Let G be a locally compact group. Then A(G) is a dense sub-
algebra of C0(G).

Proof. Recall that the B(G) norm dominates the uniform norm. Since A(G)∩
Cc(G) is dense in A(G) by Theorem 4.1.10, it follows that A(G) ⊆ C0(G). By
Proposition 4.1.8, A(G) is regular, so it is a point-separating self-adjoint sub-
algebra of C0(G), so it is dense by the Stone-Weirstrass Theorem. �

Since A(G) is a Banach algebra of continuous functions on G that separates
the points of G, the spectrum of G at least contains the point evaluation func-
tional for each element of G. We will now show that this is the entirety of the
spectrum of A(G).

4.1.12 Definition. Let X be a locally compact Hausdorff space, andA a Banach
algebra of functions in C0(X). We let Ac denote the compactly supported
elements ofA. If x ∈ X, let

I(x) = {f ∈A : f(x) = 0} and J(x) = {f ∈Ac : x ∉ supp(f )},

We say that x is a point of local synthesis ifAc∩ I(x) is in the closure of J(x).

4.1.13 Proposition. Let G be a locally compact group. Then every element of
G is a point of local synthesis for A(G).

171



Proof. Fix x ∈ G and f ∈ A(G)c ∩ I(x). Fix ε such that 0 < ε < ‖f‖∞. Let

W = {s ∈ G : ‖fs − f‖ ≤ ε}.

Then W is a compact subset of G that contains an open neighbourhood V of
the identity. Let v be the function on G defined by

v(s) =

f(s) if s ∈ xV,
0 otherwise.

Define u : G → C by

u(s) = 1
m(V)

χV ,

where m(V) is the Haar measure of V . Then u ∈ L2(G) and
∫
u(s)ds = 1. We

also have f − v ∈ L2(G). Thus,

ϕ = (f − v)∗u∨ ∈ A(G).

If s ∈ G, we have

ϕ(s) =
∫
(f − v)(st)u(t)dt.

Hence ϕ(s) = 0 if and only if ssupp(u) ⊆ xV . It follows that supp(ϕ) is a
compact set not containing x. We have

f −ϕ = (f − f ∗u∨)+ (v ∗u∨).

Since supp(u) ⊆ W ,

‖f − f ∗u∨‖ ≤
∫
‖f − fs‖u(s)ds ≤ ε.

Also,
‖v ∗u∨‖ ≤ ‖u‖2‖v‖2,

but the particular choice of u implies that ‖u‖2 =m(V)−1/2. Therefore,

dist(f , J(x)) ≤ ε+m(V)−
1
2

(∫
xV
|f(s)|2ds

) 1
2

.

Since ε > 0 is arbitrary, we have dist(f , J(x)) = 0. Therefore, x is a point of
local synthesis for A(G). �

We now define the notion of support for a bounded linear functional on
a regular Banach algebra. Note that this notion agrees with the support of a
measure in the case of C0(X).

4.1.14 Definition. Let X be a locally compact Hausdorff space andA a Banach
algebra of functions in C0(X). If ϕ ∈ A∗, we define supp(ϕ), the support of
ϕ, by saying that x ∈ supp(ϕ) if and only if there exists a neighbourhood U
of x such that 〈u,ϕ〉 = 0 for u ∈A such that supp(u) ⊆ U .
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It follows from the regularity of A that supp(ϕ) is the smallest closed
subset E of X such that 〈u,ϕ〉 = 0 for every u ∈ A with compact support
disjoint from E. Note that if x ∈ X, then x ∈ supp(ϕ) if and only if 〈u,ϕ〉 = 0
for every u ∈ J(x). Also, the statement that supp(ϕ) = � if and only if ϕ = 0
is equivalent to the Tauberianness ofA.

4.1.15 Proposition. Let X be a locally compact Hausdorff space andA a regu-
lar Tauberian Banach algebra of functions in C0(X). If ϕ ∈ σ(A) is nonzero,
then supp(σ) = {x} for some x ∈ X.

Proof. SinceA is Tauberian andϕ is nonzero, supp(ϕ) ≠ �. Fix x ∈ supp(ϕ).
If U is an open neighbourhood of x, by the definition of supp(ϕ) there exists
a u ∈ A with compact support such that 〈u,ϕ〉 ≠ 0 and supp(u) ⊆ U . By the
regularity of A, there exists a v ∈ A such that v = 1 on supp(ϕ) and v = 0
off of U . Since ϕ is multiplicative, we have

〈u,ϕ〉 = 〈uv,ϕ〉 = 〈u,ϕ〉〈v,ϕ〉,

so 〈v,ϕ〉 = 1 and hence v ·ϕ = ϕ. Therefore, supp(ϕ) ⊆ U . Since U is an
arbitrary open neighbourhood of x, it follows that supp(ϕ) = {x}. �

If x ∈ X, we let δx denote the linear functional on C0(X) defined by eval-
uation at x. We will also use δx to denote the restriction of δx to any Banach
algebra of functions in C0(X).

4.1.16 Proposition. Let X be a locally compact Hausdorff space and A a reg-
ular Banach algebra of functions in C0(X). If x is a point of local synthesis for
A and the support ϕ ∈A∗ is {x}, then ϕ = αδx for some α ∈ C. Thus, if ϕ is
multiplicative, ϕ = δx.

Proof. We want to show that 〈u,ϕ〉 depends only on u(x), in which case it
follows that ϕ = αδx for some α ∈ C. Fix u,v ∈ Ac such that u(x) = v(x).
Then u − v ∈ Ac ∩ I(X). Since x is a point of local synthesis for A, u − v
is in the closure of J(x). Since supp(ϕ) = {x}, we have 〈u − v,ϕ〉 = 0.
Thus, 〈u,ϕ〉 = 〈v,ϕ〉, and there exists an α ∈ C such that ϕ = αδx. If ϕ is
multiplicative, it follows that α = 1 and ϕ = δx. �

If A is a Banach algebra of functions in C0(X), then the map x , δx is a
continuous embedding of X into the spectrum of A. Thus, when we say that
the spectrum of A is X, we mean that the topology on the spectrum is the
same as the usual topology on X.

4.1.17 Corollary. Let X be a locally compact Hausdorff space andA a regular
Tauberian Banach algebra of functions in C0(X) such that every point of X is a
point of local synthesis forA. Then the spectrum ofA is X.
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Proof. This follows immediately from the combination of Proposition 4.1.15
and Proposition 4.1.16. �

4.1.18 Corollary (Eymard). Let G be a locally compact group. Then the spec-
trum of A(G) is G.

Proof. By Proposition 4.1.8 and Theorem 4.1.10, A(G) is a regular Tauberian
Banach algebra of functions on C0(G). By Proposition 4.1.13, every point of
G is a point of local synthesis for A(G). Therefore, by Corollary 4.1.17, the
spectrum of A(G) is G. �

Historical Notes

The general results on the coefficient spaces of representations at the begin-
ning of this section are taken from [Ars76], but they are likely folklore. The
Fourier algebra was first defined in general by Eymard [Eym64], who proved it
is an algebra and an ideal in B(G). Stinespring already defined it and proved it
is an algebra in the unimodular case [Sti59], but his methods do not general-
ize to general locally compact groups without the deep modular theory of von
Neumann algebras due to Tomita and Takesaki [Tak70].

Eymard’s original proof that A(G) is an ideal in B(G) relies on defining it as
the closure of the compactly supported functions in B(G), whereas we defined
it as the coefficient space of the left regular representation and used Fell’s
Absorption Principle. Fell proved the principle that bears his name in [Fel62],
but it was known much earlier. It was a well-known fact in the development of
the representation theory of finite groups, and in the case of a general locally
compact group G, it is an easy consequence of Mackey’s subgroup theorem
[Mac52].

Eymard proved his theorem on the spectrum of A(G) in [Eym64]. The sim-
plified proof given here is due to Herz [Her73].

4.2 Herz’s Restriction Theorem

Let G be a locally compact group and H a closed subgroup of G. If u ∈ B(G),
then there exists a representation π : G →U(H ) of G and ξ, η ∈H such that

u(s) = 〈π(s)ξ |η〉 and ‖u‖ = ‖ξ‖‖η‖

By restricting π to H, we have

u|H(s) = 〈π|H(s)ξ |η〉,
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which shows that u|H ∈ B(H) and ‖u|H‖ ≤ ‖ξ‖‖η‖ = ‖u‖. Since A(G) is the
closure of B(G) ∩ Cc(G) in B(G) and A(H) is the closure of B(H) ∩ Cc(H) in
B(H), it follows from the contractivity of the restriction map that if u ∈ A(G),
then u|H ∈ A(H).

It is natural to ask whether the restriction of functions in A(G) is all of
A(H). This is indeed the case. We will give a clever proof of this fact based
on an analogue of the Stone-Weierstrass Theorem for A(H) that characterizes
A(H) amongst its closed subalgebras.

Let E be the span of all products f∗g, where f , g ∈ Cc(G). Then E is dense
in A(G), and E is closed under complex conjugation and the ∨-operation.

Recall that ρ : G → U(L2(G)) is the right regular representation of G given
by

(ρ(g)ξ)(s) = ∆(g)1/2ξ(sg),
or for f ∈ L1(G),

(ρL1(G)(f )ξ)(t) = (ξ ∗ f)(t) =
∫
∆(s)1/2f(s)ξ(ts)ds.

4.2.1 Proposition. Let G be a locally compact group. If f ∈ L1(G), then ρ(f) ∈
VN(G)′.

Proof. If ξ ∈ L2(G) and f , g ∈ L1(G), then by the associativity of convolution,
we have

λ(f)ρ(g)ξ = λ(f)(ξ ∗ g)
= f ∗ (ξ ∗ g)(f ∗ ξ)∗ g
= ρ(g)(f ∗ ξ)
= ρ(g)λ(f)ξ. �

To avoid confusion in this section, we will temporarily suspend our conven-
tion of using lowercase letters to refer to elements of von Neumann algebras,
and we will generally use T to refer to an element of VN(G). Also, if h ∈ E, we
will be very careful to distinguish between Th ∈ L2(G) and T · h ∈ A(G).

4.2.2 Proposition. Let G be a locally compact group. If T ∈ VN(G) and h ∈ E,
then Th ∈ A(G) and 〈h,T〉 = (Th∨)(e).

Proof. Consider h∨ = f ∗ g, where f , g ∈ Cc(G). Then, since ρ commutes
with VN(G),

Th∨ = T(f ∗ g) = Tρ(g)f = ρ(g)Tf = (Tf)∗ g ∈ A(G).
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By linearity, Th ∈ A(G) for all h ∈ E. If h ∈ E is such that h∨ = f ∗ g, we
have h = λf ,g∨ , and

〈h,T〉 = 〈Tf |g∨〉

=
∫
(Tf)(s)g(s−1)ds

= ((Tf)∗ g)(e)
= (T(f ∗ g))(e)
= (Th∨)(e). �

We require one more simple computation before we prove our theorem.

4.2.3 Proposition. Let G be a locally compact group. If f ∈ L1(G) and u ∈
A(G), then λ(f) ·u = (f ∗u∨)∨.

Proof. If s ∈ G, we have

(λ(f) ·u)(s) = 〈λ(f) ·u,λ(s)〉
= 〈u,λ(s)λ(f)〉
= 〈u,λ(sf)〉

=
∫
u(t)f(s−1t)dt

=
∫
f(t)u(st)dt

=
∫
f(t)u∨(t−1s−1)dt

= (f ∗u∨)(s−1)
= (f ∗u∨)∨(s). �

4.2.4 Theorem. Let G be a locally compact group. If B is a point-separating
translation-invariant self-adjoint closed subalgebra of A(G) such that for every
s ∈ G there is a u ∈ B∩ Cc(G) such that u(s) ≠ 0, then B = A(G).

Proof. Since B is closed under translations, it follows that B is a VN(G)-
subbimodule of A(G). (In fact, by Theorem 3.5.6, it follows that B is the coeffi-
cient space of some representation of G.) Suppose that B ≠ A(G). Then, by the
Hahn-Banach Theorem, there exists a nonzero T ∈ VN(G) such that 〈u,T〉 = 0
for all u ∈ B. Moreover, since B is a VN(G)-subbimodule of A(G) it follows
that

〈u,Tλ(f)〉 = 〈λ(f) ·u,T〉 = 0

176



for every u ∈ B and f ∈ L1(G). Therefore, by Proposition 4.2.2 and Proposi-
tion 4.2.3, if w ∈ A(G)∩ Cc(G) and h ∈ E ⊆ L1(G),

〈w,Tλ(h)〉 = 〈λ(h) ·w,T〉
= 〈(h∗w∨)∨, T〉
= (T(h∗w∨))(e)
= ((Th)∗w∨)(e)

=
∫
(Th)(s)w(s)ds.

In particular, by our choice of T ,∫
(Th)(s)w(s)ds = 〈w,Tλ(h)〉 = 0.

Since T ≠ 0 and E is dense in L2(G), there is h ∈ E such that Th ≠ 0. In
particular, there exists some s ∈ G such that (Th)(s) ≠ 0. By Proposition 4.2.2,
Th ∈ A(G). Thus, applying the hypotheses in the statement of this theorem,
there exists some u ∈ B∩ Cc(G) such that u(s) ≠ 0. If we let uTh denote the
pointwise product of u and Th, then (uTh)(s) ≠ 0, and so uTh ≠ 0. If v ∈ B,
then uv ∈ B∩ Cc(G), so∫

u(s)(Th)(s)v(s)ds =
∫
(Th)(s)u(s)v(s)ds = 〈uv,Tλ(h)〉 = 0.

However, by the Stone-Weierstrass Theorem, the closure of B in the uniform
topology must be C0(G), so it follows that∫

u(s)(Th)(s)v(s)ds = 0

for all v ∈ C0(G), which contradicts the fact that uTh ≠ 0. Therefore, our
assumption that B ≠ A(G) is false. �

4.2.5 Corollary (Herz’s Restriction Theorem). Let G be a locally compact
group and H a closed subgroup of G. Then the restriction map from A(G) to
A(H) is a contractive surjective homomorphism. Moreover, if v ∈ A(H), there
exists a u ∈ A(G) such that u|H = v and ‖u‖A(G) = ‖v‖A(H).

Proof. Let B = A(G)|H ⊆ A(H). Clearly, B is a translation-invariant closed
subalgebra of A(H), and the restriction map is a quotient map by Corol-
lary 4.1.2. Hence, we need only show that the restriction map is surjective.
If u ∈ A(G) ∩ Cc(G), then u|H ∈ A(G) ∩ Cc(G), so surjectivity follows from
Theorem 4.2.4. �

Herz’s Restriction Theorem has an important corollary that allows us to
represent VN(H) naturally as a subalgebra of VN(G).
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4.2.6 Corollary. Let G be a locally compact group and H a closed subgroup
of G. Let VNH(G) be the σ -weakly closed span of λG(H). Then there is a ∗-
isomorphism Φ : VN(H)→ VNH(G) such that Φ(λG(s)) = λH(s) for all s ∈ H.

Proof. By Corollary 4.2.5,

AλG|H = A(G)|H = A(H) = AλH ,

so by Theorem 3.5.11, λG|H and λH are quasiequivalent. Therefore, there exists
an intertwining ∗-isomorphism Φ :M(λH)→M(λG|H). Our conclusion follows
immediately, becauseM(λH) = VN(H) andM(λG|H) = VNH(G). �

Historical Notes

Herz proved his restriction theorem in [Her70]. The clever proof we give here
is due to Arsac [Ars76].

4.3 Standard Form and the Fourier Algebra

The prototypical element of A(G) is of the form λξ,η, for ξ, η ∈ L2(G). We
would like to show that every element of A(G) is of this form. Since A(G) is
the space of normal linear functionals on VN(G), the natural way to approach
this problem is to examine when a normal linear functional on a von Neumann
algebraM⊆ B(H ) is of the form

ωξ,η(a) = 〈aξ |η〉

for some ξ, η ∈H . Unfortunately, this doesn’t always happen, even in simple
cases like B(H ). If every normal state onM is a vector functional, then the σ -
weak topology, which is generated by the normal linear functinals, is equal to
the weak operator topology, which is generated by the vector functionals. This
is not true for many von Neumann algebras, including B(H ) for an infinite-
dimensional Hilbert spaceH .

It might seem strange that VN(G) always has the nice property that nor-
mal linear functionals can be put into vector form, when even a simple and
relatively well-behaved von Neumann algebra like B(H ) fails to have it. When
M is L∞(X, µ) for some localizable measure space (X, µ), every normal linear
functional onM can be put into vector form. Indeed, if ϕ is a normal positive
functional onM, then by the duality of L1(X, µ) and L∞(X, µ) (which is essen-
tially the Radon-Nikodym Theorem) there exists a positive g ∈ L1(X, µ) such
that

ϕ(f) =
∫
f(x)g(s)ds.
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Then g1/2 ∈ L2(X, µ), and

ϕ(f) = 〈Mfg1/2 |g1/2〉.

The general case follows by considering the polar decomposition of ϕ.

It turns out that there is a general “noncommutative integration theory” for
von Neumann algebras that gives a canonical representation of an arbitrary
von Neumann algebra for which many analogues of facts from measure theory
hold. In this representation, one can show that every normal linear functional
is a vector functional, essentially using the same argument as in the case of
L∞(X, µ). However, this theory is unfortunately quite involved, so we will not
develop it here. Instead, we will use a simpler method that suffices for many
cases, including VN(G) for any locally compact group G.

In order to axiomatize this situation, it makes sense to consider a ∗-algebra
A that is simultaneously a inner product space such that the action of A on
itself by left multiplication defines a nondegenerate bounded representation
of A consisting of bounded operators. The first difficulties arise when de-
scribing the interaction between the involution and the inner product. The
simplest condition to place on the involution is that it defines a conjugate
linear isometry on the Hilbert space, so we will consider that case first.

4.3.1 Definition. A Hilbert algebra is a ∗-algebra A also equipped with an
inner product such that

(i) if a ∈ A, then the left multiplication operator λ(a) : A → A defined by
λ(a)a = ab is bounded;

(ii) 〈ab | c〉 = 〈b |a∗c〉 for all a,b, c ∈A;
(iii) 〈a |b〉 = 〈b∗ |a∗〉 for all a,b ∈A;
(iv) the linear spanA2 of products of elements inA is dense inA;

Let H be the completion of A as an inner product space. Since λ(a) is
bounded for every a ∈A, it extends uniquely to a bounded linear operator on
H , which we will also denote by λ(a). The map λ is then a ∗-homomorphism,
and is called the left regular representation of A. By the last axiom of a
Hilbert algebra, λ is a nondegenerate representation. The von Neumann al-
gebra λ(A)′′ is called the left von Neumann algebra of A. If a ∈ A, define a
linear map ρ(a) :A→A by ρ(a)b = ba. If ξ, η ∈A, then

〈ρ(a)ξ |ρ(a)η〉 = 〈ξa |ηa〉 = 〈a∗η∗ |a∗ξ∗〉 = 〈λ(a∗)η∗ |λ(a)∗ξ∗〉,

so ‖ρ(a)‖ = ‖λ(a∗)‖ = ‖λ(a)‖ < ∞. Hence ρ(a) is bounded and extends
uniquely to a bounded linear operator on H , which we will also denote by
ρ(a). The map ρ is then a ∗-anti-homomorphism, and is called the right
regular representation of A. Again using the last axiom of a Hilbert algebra,
ρ(A) is a nondegenerate ∗-subalgebra of B(H ). The von Neumann algebra
ρ(A)′′ is called the right von Neumann algebra ofA.
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4.3.2 Examples.

(i) Let (X, µ) be a decomposable measure space. Then L2(X, µ)∩L∞(X, µ) is
a Hilbert algebra under pointwise multiplication and conjugation.

(ii) Let G be a unimodular locally compact group. Then Cc(G) is a Hilbert
algebra with the usual convolution product and inner product, and the
involution f∗(s) = ∆(s−1)f (s−1) = f(s−1).

Unfortunately, if G is not unimodular then Cc(G) need not be a Hilbert alge-
bra. In fact, the standard involution on Cc(G)may not even be bounded. There
is a more general notion of a left Hilbert algebra that suffices to construct the
standard form of an arbitrary von Neumann algebra. Unfortunately, the the-
ory of left Hilbert algebras requires some very delicate arguments involving
unbounded operators. Since we are only immediately interested in the case of
VN(G) for a locally compact group G, we will develop a simpler generalization
of Hilbert algebras, known as quasi-Hilbert algebras.

The basic idea behind the definition of a quasi-Hilbert algebra is best de-
scribed in the case of the Cc(G). Since the problem with non-unimodular
groups arises due to the presence of the modular function in the involution
on Cc(G), we simply remove the modular function. The missing modular func-
tion has to be incorporated somewhere, so we redefine the inner product on
Cc(G) to incorporate the modular function, and define a new involution on
Cc(G), which gets introduced during multiplication, to also incorporate the
modular function. Unfortunately, this requires redefining a small amount of
existing notation. This new notation will only be used in this section, and the
reader should be warned that this contradicts our notation elsewhere as well
as accepted notation in the literature when dealing with Cc(G) as a left Hilbert
algebra rather than a quasi-Hilbert algebra.

Let G be a locally compact group, and define a new inner product on Cc(G)
by

〈f |g〉 =
∫
∆(s)−

1
2f(s)g(s)ds.

Breaking usual conventions, define

f∗(s) = f(s−1) and f ](s) = ∆(s)− 1
2f(s).

Let [ be the inverse of ], so that f [(s) = ∆(s) 1
2f(s). We will now axiomatize

this situation.

4.3.3 Definition. A quasi-Hilbert algebra is a ∗-algebra A also equipped with
an inner product and a bijective linear mapping x , x], whose inverse will be
denoted x[, such that

(i) if a ∈ A, then the left multiplication operator λ(a) : A → A defined by
λ(a)b = ab is bounded;
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(ii) 〈a |b〉 = 〈b∗ |a∗〉 for all a,b ∈A;
(iii) 〈ab | c〉 = 〈b |a∗]c〉 for a,b, c ∈A;
(iv) the linear spanA2 of products of elements inA is dense inA;
(v) ifH is the completion ofA and ξ, η ∈H are such that

〈ξ |ab〉 = 〈η |a]b]〉

for all a,b ∈ A, then there exists a sequence (xn)∞n=1 in A such that
xn → η and x]n → ξ.

Note that every Hilbert algebra becomes a quasi-Hilbert algebra by defining
] to be the identity function onA.

4.3.4 Proposition. Let G be a locally compact group. Then Cc(G) is a quasi-
Hilbert algebra.

Proof. Fix f ∈ Cc(G). We want to show that the map λ(f) is bounded. If
g,h ∈ Cc(G), then

|〈f ∗ g |h〉| =
∣∣∣∣∫ ∆(t)− 1

2 (f ∗ g)(t)h(t)dt
∣∣∣∣

=
∣∣∣∣∫ ∆(t)− 1

2

∫
f(s)g(s−1t)ds h(t)dt

∣∣∣∣
≤
∫∫ ∣∣∣∆(t)− 1

2f(s)g(s−1t)h(t)
∣∣∣ ds dt

=
∫
|f(s)|

∫
∆(t)−

1
2 |g(s−1t)h(t)|dt ds

=
∫
|f(s)|

∫
|∆(t)− 1

4g(s−1t)||∆(t)− 1
4h(t)|dt ds

By the Cauchy-Schwarz inequality,

|〈f ∗ g |h〉|

≤
∫
|f(s)|

(∫
∆(t)−

1
2 |g(s−1t)|2dt

) 1
2
(∫
∆(t)−

1
2 |h(t)|2dt

) 1
2

ds

=
∫
|f(s)|

(
∆(s)−

1
2

∫
∆(t)−

1
2 |g(t)|2dt

) 1
2
(∫
∆(t)−

1
2 |h(t)|2dt

) 1
2

ds

=
∫
∆(s)−

1
4 |f(s)|

(∫
∆(t)−

1
2 |g(t)|2dt

) 1
2
(∫
∆(t)−

1
2 |h(t)|2dt

) 1
2

ds

≤
∫
‖g‖‖h‖∆(s)− 1

4 |f(s)|ds

Thus, if C is the maximum value of |f(t)| for t ∈ G, then

‖f ∗ g‖ ≤ ‖g‖
∫
∆(s)−

1
4 |f(s)|dt,

181



where the integral is finite. If f , g ∈ Cc(G), then

〈f |g〉 =
∫
∆(s)−

1
2f(s)g(s)ds

=
∫
∆(s)−

1
2g∗(s−1)f∗(s−1)ds

=
∫
∆(s−1)∆(s−1)−

1
2g∗(s)f∗(s)ds

=
∫
∆(s)−1∆(s)

1
2g∗(s)f∗(s)ds

=
∫
∆(s)−

1
2g∗(s)f∗(s)ds

= 〈g∗ |f∗〉.

We leave the axiom 〈fg |h〉 = 〈g |f∗]h〉 as an exercise. It is proven in a similar
fashion to the previous axioms.

To show that Cc(G)2 is dense in Cc(G), simply take the standard bounded
approximate identity for Cc(G).

To prove the last axiom of a Hilbert algebra, fix ξ, η ∈H such that

〈ξ |fg〉 = 〈η |f ]g]〉

for all f , g ∈ C0(G). Clearly, this implies the equality of the linear functionals

on H defined by integration against ξ(s) and ∆(s)−
1
2η(s), so there exists a

sequence (hn)∞n=1 in Cc(G) such that hn → η and h]n → ξ. �

LetH denote the completion ofA with respect to its inner product. Since
λ(a) is bounded for every a ∈ A, it extends uniquely to a bounded linear op-
erator onH , which we will also denote by λ(a). It may not be wise to call λ the
left regular representation of A, because it is not actually a ∗-representation.
If a ∈A, define a linear map ρ(a) :A→A by ρ(a)b = ba. If ξ, η ∈A, then

〈ρ(a)ξ |ρ(a)η〉 = 〈ξa |ηa〉 = 〈a∗η∗ |a∗ξ∗〉 = 〈λ(a∗)η∗ |λ(a)∗ξ∗〉,

so ‖ρ(a)‖ = ‖λ(a∗)‖ = ‖λ(a)‖ < ∞. Hence ρ(a) is bounded and extends
uniquely to a bounded linear operator on H , which we will also denote by
ρ(a).

Since 〈a |b〉 = 〈a∗ |b∗〉 for all a,b ∈ A, the involution on A extends
uniquely to a conjugate linear isometry J : H → H . There are a number of
useful formulas that can easily be verified:

λ(αa+ βb) = αλ(a)+ βλ(b), ρ(αa+ βb) = αρ(a)+ βρ(b),

λ(a∗]) = λ(a)∗, ρ(a]∗) = ρ(a)∗,
λ(a)ρ(b) = ρ(b)λ(a),
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Jλ(a)J = ρ(a∗) Jρ(a)J = λ(a∗).
Thus, λ(A) and ρ(A) are ∗-subalgebras of B(H ), which are nondegenerate
because of the assumption that A2 is dense in A. We call λ(A)′′ and ρ(A)′′
the left and right von Neumann algebras of A respectively. From the above
formulas, it is easy to see that λ(A)′′ and ρ(A)′′ commute. Our goal is to
show that λ(A)′ = ρ(A)′′ and ρ(A)′ = λ(A)′′. However, we will first make
a brief aside about the relationship between the left von Neumann algebra of
Cc(G) as a quasi-Hilbert algebra and VN(G).

We have changed the inner product on Cc(G), so we should note that the
resulting von Neumann algebra is unitarily equivalent to VN(G). Indeed, define
U0 : Cc(G)→ Cc(G) by

(U0f)(s) = ∆(s)
1
4f(s).

Clearly, U0 is a linear bijection. If f , g ∈ Cc(G), then

〈U0(f ) |U0(g)〉 =
∫
∆(s)−

1
2 (U0f)(s)(U0g)(s)ds

=
∫
∆(s)−

1
2∆(s)

1
4f(s)∆(s)

1
4g(s)ds

=
∫
f(s)g(s)

= 〈f |g〉.

Therefore, U0 extends by uniform continuity to a unitary U : L2(G) → H ,
where L2(G) denotes Cc(G) completed with the usual inner product and H
denotes Cc(G) completed with the inner product given here. There is a sub-
tlety here that limits the use of quasi-Hilbert algebra techniques. While U is
the “natural” unitary between Cc(G) with the usual inner product and this
new inner product, it is not necessarily an intertwiner for the usual represen-
tation of Cc(G) on itself by left multiplication and the representation λ. Let
L : Cc(G) → B(L2(G)) denote the usual left regular and right regular represen-
tations, given by

(L(f)ξ)(t) = (f ∗ ξ)(t) =
∫
f(s)ξ(s−1t)ds

Let λ : Cc(G)→ B(H ) denote the left regular representations given by viewing
Cc(G) as a quasi-Hilbert algebra. Then, for every f ∈ Cc(G) and ξ ∈ L2(G), we
have

(λ(f)Uξ)(t) = (f ∗ (Uξ))(t)

=
∫
f(s)∆(s−1t)

1
4ξ(s−1t)ds

=
∫
f(s)∆(s)−

1
4∆(t)

1
4ξ(s−1t)ds

= ∆(t) 1
4

∫
∆(s)−

1
4f(s)ξ(s−1t)ds
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If G is not unimodular, then it is not necessarily the case that

f(s) = ∆(s)−1/4f(s).

However, if we let h(s) = ∆(s)−1/4f(s) ∈ Cc(G), then we have λ(f)Uξ =
UL(h)ξ. This shows that U takes L(Cc(G)) to λ(Cc(G)) setwise, which is
enough to guarantee that the von Neumann algebras λ(Cc(G))′′ and L(Cc(G))′′
are spatially equivalent. Thus, λ(Cc(G))′′ is spatially equivalent to VN(G).

4.3.5 Definition. An element a ∈ H is said to be left bounded (resp. right
bounded) if there exists an operator λ(a) (resp. ρ(a)) such that λ(a)x =
ρ(x)a (resp. ρ(a)x = λ(x)a) for all x ∈ A. We let m denote the set of λ(a),
where a is a left bounded element ofH , and let n denote the ρ(a), where a is
a right bounded elements ofH .

The elements of A are both left and right bounded, and the notation λ(a)
and ρ(a) is consistent with the above when a ∈ A. Moreover, the equality
λ(a)x = ρ(x)a shows that if we let ρ(x) converge weakly to the identity, then
a ∈ λ(a)H , and similarly with λ and ρ exchanged. This implies that the maps
a→ λ(a) and a→ ρ(a) are injective.

4.3.6 Proposition. If a is left bounded and T ∈ ρ(A)′, then Ta is left-bounded,
Tλ(a) = λ(Ta). Hence the set m forms a right ideal of λ(A)′′. Similarly, if a is
right bounded and T ∈ λ(A)′, then Ta is right bounded and Tρ(a) = ρ(Ta),
so the set n forms a left ideal of ρ(A)′′.

Proof. Let a be left bounded and fix x,y ∈A. We have that

λ(a)ρ(x)y = λ(a)(yx) = ρ(yx)a = ρ(x)ρ(y)a = ρ(x)λ(a)y,
so that λ(a) commutes with the ρ(x), showing that λ(a) ∈ ρ(A)′. If T ∈
ρ(A)′, we have

Tλ(a)x = Tρ(x)a = ρ(x)Ta,
and so that Ta is left-bounded and Tλ(a) = λ(Ta). A similar argument ap-
plies for the case of right bounded elements. �

4.3.7 Proposition. Let m1 = m∩m∗ and n1 = n∩ n∗. We have

m′′1 = ρ(A)′ and n′′1 = λ(A)′.

Proof. We will only prove the first claim, because the the proof of the second
claim is similar. By the previous proposition, Proposition 4.3.6, we have that
m′′1 ⊆ ρ(A)′, so we only need to show that ρ(A)′ ⊆ m′′1 . Fix T ∈ ρ(A)′ and
T1 ∈ m′1, and let us show that TT1 = T1T . The previous proposition, Proposi-
tion 4.3.6, implies immediately that for x,x′ ∈A, we have that λ(x′)∗Tλ(x) ∈
m1. Hence

λ(x′)∗Tλ(x)T1 = T1λ(x′)∗Tλ(x),
and it suffices to let λ(x) and λ(x′) converge weakly to the identity. �
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4.3.8 Proposition. m1 and n1 commute.

Proof. Fix λ(a) ∈ m1, ρ(c) ∈ n1. We then have λ(a)∗ = λ(b) and ρ(c)∗ =
ρ(d), with a and b left-bounded, and c and d right-bounded. For all x,y ∈A,
we have

〈a |xy〉 = 〈a |ρ(y)x〉
= 〈ρ(y]∗)a |x〉
= 〈λ(a)y]∗ |x〉
= 〈y]∗ |λ(b)x〉
= 〈y]∗ |ρ(x)b〉
= 〈ρ(x]∗y]∗ |b〉
= 〈(x]y])∗ |b〉
= 〈Jb |x]y]〉.

By the last axiom of a quasi-Hilbert algebra, there exists a sequence (xn)∞n=1 in
A such that x∗n → b and x]n → a. A similar calculation yields the existence of
a sequence (yn)∞n=1 inA such that y∗n → c, y

]
n → d. Then

〈λ(a)ρ(c)x |y〉 = 〈ρ(c)x |λ(b)y〉
= 〈λ(x)c |ρ(y)b〉
= lim〈λ(x)y∗n |ρ(y)x∗n〉
= lim〈xy∗n |x∗ny〉
= lim〈x]nx |yy[n〉
= lim〈ρ(x)x]n |λ(y)y[n〉
= 〈ρ(x)a |λ(y)d〉
= 〈λ(a)x |ρ(d)y〉
= 〈ρ(c)λ(a)x |y〉,

and hence λ(a)ρ(c) = ρ(c)λ(a). �

4.3.9 Theorem. λ(A)′ = ρ(A) and ρ(A)′ = λ(A).

Proof. We already know that λ(A) ⊆ ρ(A)′. Moreover,

ρ(A)′ = m′′1 ⊆ n′′′1 = λ(A)′′ = λ(A),

and hence λ(A) = ρ(A)′. By the Double Commutant Theorem, it follows that
ρ(A)′ = λ(A). �

The J operator defined above is a conjugate linear isometry ofH that takes
λ(A)′′ onto its commutant ρ(A)′′. We will axiomatize its properties, because
of the importance of such operators in von Neumann algebra theory.
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4.3.10 Definition. Let M ⊆ B(H ) be a von Neumann algebra. A unitary in-
volution of M is a conjugate linear operator J : H → H with the following
properties:

(i) 〈Jξ | Jη〉 = 〈η |ξ〉,
(ii) J2 = 1,

(iii) JMJ =M′,
(iv) JaJ = a∗ for all a ∈ Z(M).

IfM is equipped with a unitary involution, it is said to be in standard form.

Theorem 4.3.9 shows that if A is a quasi-Hilbert algebra, then λ(A)′′ is
in standard form. In particular, since being in standard form is preserved by
spatial equivalence, VN(G) is in standard form.

4.3.11 Proposition. Let M ⊆ B(H ) be a von Neumann algebra and z ∈ M a
central projection. ThenM is in standard form if and only ifMz andM(1−z)
are in standard form.

Proof. Suppose that J is a unitary involution of M. Define J1 : zH → zH
and J2 : (1− z)H → (1− z)H by

J1ξ = Jzξ and J2ξ = J(1− z)ξ.

We will show that J1 is a unitary involution for Mz, in which case it follows
that J2 is also a unitary involution forM(1− z) by symmetry. We have

J1ξ = Jzξ = JJzJξ = zJξ,

so the range of J1 is actually in zH . If ξ, η ∈ zH , then

〈J1ξ | J1η〉 = 〈Jξ | Jη〉 = 〈η |ξ〉.

If ξ ∈ zH , then
J1J1ξ = JzJzξ = z∗zξ = zξ = ξ,

so J2
1 = 1. If a ∈ M′, then J1azJ1 = (JzazJ)|zH . Since (Mz)′ = M′z, this

shows that JMJ =M′. Finally, if az ∈ Z(Mz) =Mz ∩M′z, then

J1azJ1 = JzazJz = JazJz = z∗a∗z = (az)∗.

Conversely, suppose that J1 : zH → zH and J2 : (1−z)H → (1−z)H are
unitary involutions forMz andM(1− z) respectively. Define J :H →H by

Jξ = J1zξ + J2(1− z)ξ.

Arguments similar to those employed in the forward direction show that J is
a unitary involution ofM. �
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4.3.12 Proposition. Let M ⊆ B(H ) be a countably decomposable von Neu-
mann algebra. Then there exists a central projection z ∈M such that zMz has
a cyclic vector and (1− z)M(1− z) has a separating vector.

Proof. Using Zorn’s Lemma, Let (ξi)i∈I be a maximal family of nonzero vec-
tors inH such that (pξi)i∈I and (p′ξi)i∈I are both orthogonal families of cyclic
projections, inM andM′ respectively. Define projections p ∈M and p ∈M′

by
p =

∑
i∈I
pξi and p′ =

∑
i∈I
p′ξi .

Let q = 1− p and q′ = 1− p′. If qq′ ≠ 0, then qH ∩ q′H contains a nonzero
vector η. In this case, M′η is orthogonal to each M′ξi and Mη is orthogonal
to eachMξi, contradicting our assumption of the maximilaity of (ξi)i∈I . Thus,
qq′ = 0, which implies that c(q)q′ = 0 and c(q)c(q′) = 0. This implies that

c(q) ≤ 1− q′ = p′ and 1− c(q) ≤ p.

Since M is countably decomposable, I must be countable, so we may assume
that ∑

i∈I
‖ξi‖2 <∞

by possibly replacing each ξi by some scalar multiple. Let ξ =
∑
i∈I ξi. Then

we have
ξi = pξiξ = p′ξξ.

Hence bothMξ andM′ξ contain each ξi, so that

pξ ≥
∑
i∈I
pξi = p and p′ξi ≥

∑
i∈I
p′ξi = p

′.

But ξ = pξ = p′ξ, so pξ ≤ p and p′ξ ≤ p. Therefore, p = pξ and p′ = p′ξ . Let
z = c(q). Then

z = zp′ = zpξ = p′zξ,
so zξ is cyclic forMz. Similarly,

1− z = (1− z)p = (1− z)pξ = p(1−z)ξ.

Thus, (1− z)ξ is cyclic forM′(1− z), so it is separating forM(1− z). �

4.3.13 Corollary. Let M ⊆ B(H ) be a countably decomposable von Neumann
algebra. If M is in standard form, then M has a vector that is both cyclic and
separating. Hence the identity representation ofM is unitarily equivalent to the
GNS representation from a faithful normal state.
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Proof. By Proposition 4.3.12, there exists a central projection z ∈ M such
that zMz has a cyclic vector and (1 − z)M(1 − z) has a separating vector.
By Proposition 4.3.11, both zMz and (1 − z)M(1 − z) are in standard form.
However, ifN ⊆ B(K) is a von Neumann algebra and J is a unitary involution
of N , then ξ ∈ H is cyclic if and only if Jξ is separating and ξ ∈ K is
separating if and only if Jξ is cyclic. Since zMz and (1−z)M(1−z) each have
both cyclic vectors and separating vectors, by Corollary 3.7.8 they each have
a vector that is both cyclic and separating. Taking the sum of the two vectors
yields a vector that is both cyclic and separating forM. �

In order to reduce to the countably decomposable case, we need to consider
induction by the product of a projection inM and a projection inM′.

4.3.14 Proposition. Let M ⊆ B(H ) be a von Neumann algebra, and let p and
p′ be projections in M and M′ respectively. Let q = pp′, and consider qMq as
an algebra of operators on qH . Then

(i) qMq is a von Neumann algebra;
(ii) (qMq)′ = qM′q;

(iii) Z(qMq) = qZ(M)q;
(iv) the map pap , qaq is a ∗-isomorphism of pMp onto qMq if and only if

c(p) ≤ c(p′).

Proof. The map a , qaq is the composition of a reduction a , pap onto
pMp followed by an induction pap , qaq of pMp onto qMq, where q is
regarded as an element of (pMp)′ = pM′p. Thus, the claims of the theo-
rem follow from the corresponding claims in Proposition 3.1.7 and Proposi-
tion 3.1.8. �

4.3.15 Corollary. LetM be a von Neumann algebra in standard form, J a uni-
tary involution for M, and p ∈ M a projection. Let p′ = JpJ and q = pp′.
Then the induction map pap , qaq is a ∗-isomorphism of pMp onto qMq.

Proof. Since J commutes with central projections, we have

c(p′) = Jc(p′)J ≥ Jp′J = p.

Hence c(p) ≤ c(p′), so by part (iv) of Proposition 4.3.14, the induction map
pap , qaq is a ∗-isomorphism. �

4.3.16 Theorem. LetM⊆ B(H ) be a von Neumann algebra in standard form.
If ϕ is a normal linear functional onM, then there exist ξ, η ∈H such that

ϕ =ωξ,η and ‖ϕ‖ = ‖ξ‖‖η‖.

Moreover, if ϕ is positive, then we may choose ξ = η.
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Proof. We will only prove the case where ϕ is positive, because the general
case follows from Theorem 3.6.2 and Corollary 3.6.3. Let ϕ be a normal pos-
itive functional on M, and let p = s(ϕ), p′ = JpJ, and q = pp′. By Corol-
lary 4.3.15, the induction map from pMp to qMq is an isomorphism, there
exists a normal positive functional ψ on (qMq)∗ such that

ϕ(a) = ψ(qaq)

for all a ∈ M. Since qMq is countably decomposable and J|qH is a unitary
involution for qMq, it follows that there exists a ξ ∈ qH such that

ϕ(a) = ψ(qaq) = 〈qaqξ |ξ〉 = 〈aqξ |qξ〉 = 〈aξ |ξ〉

for all a ∈A. �

4.3.17 Corollary. Let G be a locally compact group. If ϕ ∈ A(G), then there
exist ξ, η ∈ L2(G) such that

ϕ = λξ,η and ‖ϕ‖ = ‖ξ‖‖η‖.

Moreover, if ϕ is positive, then we may choose ξ = η.

Proof. Follows from Theorem 4.3.9 and Theorem 4.3.16. �

Historical Notes

Hilbert algebras were first introduced by Nakano [Nak50] as a generalization
of the H∗-algebras studied by Ambrose [Amb45]. Quasi-Hilbert algebras were
introduced by Dixmier [Dix52] for the purpose of extending the commutation
theorem for the left and right regular representations to general locally com-
pact groups. The original definition of a quasi-Hilbert algebra is somewhat
messier than the one given here, which is taken from [Dix69a]. In some sense,
the theory of quasi-Hilbert algebras is just a trick to prove the commutation
theorem for general locally compact groups. The theory of quasi-Hilbert alge-
bras doesn’t immediately generalize all of the results derived from the Hilbert
algebra machinery for unimodular groups, and it is not the case that every von
Neumann algebra arises from a quasi-Hilbert algebra.

The problem of developing a true generalization of Hilbert algebras re-
mained open for quite some time, until Tomita produced some preprints in
the late 1960s. Unfortunately, these preprints contained serious errors, which
led to their rejection by most of the operator algebras community. Takesaki
thought that the crucial ideas were recoverable, and after a great deal of work
he produced a rigourous account of Tomita’s ideas in [Tak70]. Today, this
theory is known as the Tomita-Takesaki or modular theory of von Neumann
algebras, and it is a cornerstone of the theory of operator algebras.
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The proof that every normal linear functional on VN(G) is a vector func-
tional ultimately requires a reduction to the countably decomposable case. Ey-
mard uses structure theory of locally compact groups to make the reduction
[Eym64], whereas we use a nice observation of Haagerup [Haa75].
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