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Abstract

In the Freeze-Tag Problem, we are given a set of robots at points inside some metric space.
Initially, all the robots are frozen except one. That robot can awaken (or “unfreeze”)
another robot by moving to its position, and once a robot is awakened, it can move and
help to awaken other robots. The goal is to awaken all the robots in the shortest time.
The Freeze-Tag Problem has been studied in different metric spaces: graphs and Euclidean
spaces.

In this thesis, we look at the Freeze-Tag Problem in polygons, and we introduce the
Visibility Freeze-Tag Problem, where one robot can awaken another robot by “seeing”
it. Furthermore, we introduce a variant of the Visibility Freeze-Tag Problem, called the
Line/Point Freeze Tag Problem, where each robot lies on an awakening line, and one robot
can awaken another robot by touching its awakening line.

We survey the current results for the Freeze-Tag Problem in graphs, Euclidean spaces
and polygons. Since the Visibility Freeze-Tag Problem bears some resemblance to the
Watchman Route Problem, we also survey the background literature on the Watchman
Route Problem. We show that the Freeze-Tag Problem in polygons and the Visibility
Freeze-Tag Problem are NP-hard, and we present an O(n)-approximation algorithm for
the Visibility Freeze-Tag Problem. For the Line/Point Freeze-Tag Problem, we give a
polynomial time algorithm for the special case where all the awakening lines are parallel
to each other. We prove that the general case is NP-hard, and we present an O(1)-
approximation algorithm.
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Chapter 1

Introduction

Freeze Tag or “Stuck in the Mud”1 is a children’s game where players (or “robots’) who
are tagged as “frozen” may not move until they are unfrozen by being touched by another
player. With this idea, Arkin et al. [3] proposed the Freeze-Tag Problem: There are n
frozen players (or “sleeping robots”) inside a domain D, and initially only one player is
unfrozen (or “awake”). An awake player may move to another player to unfreeze it. The
goal is to unfreeze all the players as soon as possible. Once a robot is unfrozen, it can help
to unfreeze other players.

The results for the Freeze-Tag problem (FTP) vary by the domain D. Graphs and the
Euclidean plane are two major spaces being studied. For the graph version, Arkin et al. [3]
show that the FTP is NP-hard even for star graphs, and they also prove that it is NP-hard
to approximate the Freeze-Tag Problem within a factor less than 5

3
, even for a weighted

graph with maximum degree 4. For the FTP in the Euclidean plane, Arkin et al. give a
Polynomial-Time Approximation Scheme (PTAS) such that for a parameter ε > 0, their
algorithm yields an approximation ratio of (1+ε) with running time O(2poly(1/ε)+n log n) for
n frozen robots. It is also worth noting that the complexity of the FTP in the plane remains
unknown. Arkin et al. conjectured that the FTP is NP-hard in the plane for Euclidean
and Manhattan distance metrics. One property that makes this problem particularly
intriguing is that any non-lazy algorithm (and in particular the greedy algorithm) gives
an approximation factor of O(n log n). However, no approximation algorithm better than
greedy has been found for graphs and the Euclidean space.

Arkin et al.[3] discuss an application of the FTP to data distributing where transmission
requires physical proximity because wireless communication could either be bandwidth

1http://en.wikipedia.org/wiki/Freeze_tag/Freeze_tag
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consuming or unsecured. The problem also has applications in broadcasting, where an
urgent message is expected to be broadcasted to a group of people as soon as possible by
only allowing communication between two individuals. The Freeze-Tag Problem also has
some applications in the areas of routing, scheduling, and network design.

The Freeze-Tag Problem is a natural variant of the Traveling Salesman Problem, where
after a salesman reaches a recipient, the recipient becomes a new salesman who can help
with further deliveries. Thus, the Freeze-Tag problem is also called the “parallel” version
of the Traveling Salesman Problem and is studied as a variant of the Cooperative Traveling
Salesman Problem [6].

A natural extension of the FTP in the Euclidean plane is to ask what if all the robots
are inside a polygon. This setting is more practical since it simulates the situation where
the robots are inside a room. Note that the FTP in the Euclidean plane is a special case
of this problem, where all the robots are inside a large bounding box.

For a further extension to the FTP in polygons, we allow one player to unfreeze another
player if it is able to “see” the other player inside the polygon, i.e., the line segment
between them is inside the polygon. We named this problem the Visibility Freeze-Tag
Problem (VFTP). This problem has also been called the Laser-Tag Problem by Joseph
S.B. Mitchell2.

Finally, we study a version of the Freeze-Tag Problem where each player lies on a
line, and is unfrozen when another player touches the line. We named this version the
Line/Point Freeze-Tag Problem.

This thesis is organized as follows.

In Chapter 2, we will take a closer look at some variants of the problems discussed above.
In addition, we will give the preliminary background for understanding the discussion in
the following thesis.

In Chapter 3, we will show that the FTP in a polygon and the VFTP are NP-hard
by reduction from the Freeze-Tag problem in star graphs. We will also give an O(n)-
approximation algorithm for the VFTP.

In Chapter 4, we will look at the Line/Point version of the FTP. We provide a polyno-
mial time algorithm for the case where all the awakening lines are parallel to each other. In
addition, we show this problem is NP-hard, and give an algorithm that achieves constant
approximation ratio for the general case.

2private communication, June 25, 2014
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b bc

Figure 1.1: An example of the Line/Point FTP. In order to wake up the robot positioned
at the solid circle, the shortest path for the robot at the empty circle is to move along the
dashed line.
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Chapter 2

Background Information

In this chapter, we provide necessary preliminaries for understanding the rest of the thesis.
In Section 2.1, we will first provide more details of the background for the Freeze-Tag
Problem, and as this problem is defined on different domains, we will survey the results
for each domain. In Section 2.2, we will look at the background for the Visibility Freeze-
Tag Problem and its variants including the Watchman Route Problem and the Line/Point
Freeze-Tag Problem.

2.1 The Freeze-Tag Problem

In an instance of the Freeze-Tag Problem, we are given a set of robotsR = {s0, s1, s2, ..., sn} ⊂
D in a domain D. All the robots in R are frozen initially except s0. An active robot u can
move to a frozen robot v’s position to awaken it. Once a frozen robot becomes active, it
can help to unfreeze other robots. Let d(u, v) be the distance u needs to move to awaken
v, the measurement of d(u, v) depends on the domain D.

• The domain D is a weighted graph G = (V,E), with non-negative edge weights.
Then d(u, v) is the sum of edge weights along the path robot u travelled to awaken
v.

• The domain D is a d-dimensional Euclidean space. Then d(u, v) is the geodesic
distance robot u travelled to awaken v.

A feasible solution to the Freeze-Tag Problem can be described as a weighted tree T ,
which spanning R and rooted at the initial active robot where every internal node has at
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most 2 children. If robot v is awakened robot by robot u, then the two children of v are
the robots awakened next by v and u. In addition, the weight of an edge (u, v) in T is the
distance u travelled to awaken v. Arkin et al. [3] call such a tree an awakening tree. See
Figure 2.1 for an example of the awakening tree. The goal of the Freeze-Tag Problem is to

p0

p0 wakes up p1

p1 wakes up p3p0 wakes up p2

p1 wakes up p4p3 wakes up p5

Figure 2.1: An example of the awakening procedure describing as a tree.

For any robot u in T , the awakening path of u is the unique path that connects the
initially active robot s0 to u in T . An awakening path P = {s0, s1, . . . , sk} represents an
awakening schedule such that si awakens si+1 for i < k. The objective of the Freeze-Tag
Problem is to find an awakening tree T ∗, such that the depth of T ∗ is minimized, i.e., the
longest root to leaf path is minimized.

As mentioned in Chapter 1, most of the current results are for the Freeze-Tag Problem
in graphs and Euclidean spaces. We will fill in more details for these problems in this
section.

One of the most intriguing properties of the FTP is that any algorithm that satisfies the
following two properties yields an approximation ratio of O(log n) in any domain D that
satisfied the symmetry property, i.e., for any two robots u and v, we have d(u, v) = d(v, u).
(Proposition 1.1 of [3]) An algorithm that satisfies these properties is called “non-lazy”.

• Once a robot becomes active, it immediately claims and travels to an unclaimed
frozen robot’s position.

• If there are no unclaimed robots left, then a robot that becomes active will stay
where it is.
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In the greedy algorithm, when a robot becomes active it claims and travels to the
closest unclaimed robot (if there is one). Since the greedy algorithm satisfies the above
two properties, it also yields an approximation ratio of O(log n) for any domain D that
satisfied the symmetry property.

2.1.1 FTP on Graphs

The graph version of the FTP is defined in a weighted graph G = (V,E), where each vertex
contains zero or more robots, and each edge is associated with a non-negative weight. The
robots on a vertex can be awakened by another robot s traveling to that vertex. The time
taken by robot s is the sum of the edge weights along the path it follows. The FTP on
general graphs has been proved to be NP-hard by Sztainberg et al. [29]. Furthermore, this
problem has been proved to be NP-hard even for some special graph classes such as trees
and star graphs with at most one robot at each vertex [3].

No effective polynomial time algorithm is known so far for the Freeze-Tag Problem
in general graphs. The only polynomial time exact algorithm that has been found is for
unweighed star graphs. Arkin et al. [3] showed that the greedy algorithm gives an optimal
solution for the Freeze-Tag Problem in unweighted star graphs.

Since the Freeze-Tag Problem in general graphs is NP-hard, people are interested in
looking for approximation algorithms. However, the only algorithm known to have a better
approximation ratio than O(log n) on general graphs is the greedy algorithm. Konemann
et al. [24] showed that the greedy algorithm achieves an approximation ratio of O(

√
log n).

Approaches other than the greedy algorithm have been attempted. Arkin et al. [4]
gave a “Density-Based” approximation algorithm which yields an approximation ratio of

O(log nlog( 5
3
)) for unweighed graphs. The algorithmic dilemma for the Freeze-Tag Problem

is that an awakened robot needs to decide whether it should wake up a nearby robot cluster
with a smaller number of robots as helpers or a large cluster of robots for more helpers
that is further away [3]. The density-based algorithm tackles this dilemma by dividing
the graph into smaller components, and first waking up the “densest” component, i.e., the
component that contains the maximum number of robots, then sending those active robots
to awaken the robots in the rest of the components. Note that they only consider the case
where there is exactly one robot at each vertex.

Arkin et al. [3] also investigated lower bounds on the approximation ratio for the FTP.
They showed that it is impossible to have an approximation within a factor of 5

3
in general

weighted graphs unless P = NP . However, they showed that it is possible to have a better
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approximation ratio for certain graph classes. In the same paper, they gave a PTAS for
the Freeze-Tag Problem in weighted star graphs where initially the active robot is at the
center and there are equal numbers of robots at each leaf vertex.

It is also natural to look at the the online version of the Freeze-Tag Problem, where
each robot can only see its neighbourhood. Arkin et al. [3] gave an O(log ∆)-competitive
online algorithm for locally bounded edge-weighted graphs with maximum degree ∆.

2.1.2 FTP in Euclidean Space

The complexity of the FTP is open for Euclidean spaces, even for the Euclidean plane.
Arkin et al. [3] conjectured that the problem is NP-hard. In addition, they gave a PTAS
for the Freeze-Tag Problem in any fixed dimension Euclidean space. Their algorithm finds
a solution to the Freeze-Tag Problem within a factor of 1 + ε of the optimal solution, and
takes time O(2(m2 logm) + n log n), where m = 1/ε.

The most natural algorithm for the Freeze-Tag Problem in a Euclidean space is the
greedy algorithm where each awakened robot claims and moves towards the nearest un-
claimed robot. Sztainberg et al. [29] proved that the greedy algorithm is a 4-approximation
in 1-D and O(

√
log n)-approximation in 2-D. Generally, for d-dimensional Euclidean space,

they showed that the greedy algorithm achieves an approximation ratio of O(log n1− 1
d ) for

d ≥ 2.

Arkin et al. gave an O(1)-approximation algorithm as the first step for the PTAS in
[3]. Later, Arkin et al. [4] gave a density-based (3 + o(1))-approximation algorithm for the
FTP in Euclidean spaces as an improvement. For the FTP in the Euclidean plane, the
algorithm first bounds all the robots with a d× d square, and divides the d× d square into√
n equal size squares of size d/n1/4 × d/n1/4. The initial active robot is sent to wake up

all the robots in the square with the largest number of robots. Finally, all the robots from
that square are distributed into the rest of the squares to wake up the rest of the robots.

2.1.3 FTP in Polygons

The Freeze-Tag Problem in polygons was first raised by Arkin et al. as an open problem
in [3]. For this problem, note that the robots inside a polygon still satisfies the symmetry
property, thus any non-lazy algorithm gives an approximation ratio of O(log n). However,
the PTAS in [3] for the FTP in the Euclidean plane no longer applies to this problem.
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There has been increased research interest in controlling robot swarms in a cooperative
manner, and since a polygon is a good model of an indoor environment, a lot of research has
been done to study robot swarms inside a polygon. An interesting and practical problem is
to place robots in a polygon to form a communication network [12]. Some other variations
of movement problems have also been studied by Demaine et al. [13].

2.2 The Visibility Freeze-Tag Problem

A simple polygon P is a polygon that exactly two edges meet at each vertex. Let R =
{s0, s1, s2, ..., sn} be a set of points (or “robots”) positioned inside P . All the robots in R
are frozen initially except s0. An unfrozen (or “active”) robot u can awaken another frozen
robot v if the line segment uv remains inside the polygon P . Once a frozen robot becomes
active, it can help to unfreeze other robots. The goal is to unfreeze all the robots in R
in the minimum time. The VFTP resembles the idea of the Watchman Route Problem,
which can be considered as a variant of the VFTP where only the initial robot has the
ability to wake up other robots. We will look at the Watchman Tour Problem in Section
2.2.1 and an interesting variant of the VFTP in Section 2.2.2.

2.2.1 The Watchman Tour Problem

Given a polygon P and a point s inside P that represents the “watchman”, the Watchman
Route Problem (WRP) asks for the minimum length path for s to travel inside P so that
every point inside P is visible from some position of s along the path. Clearly the WRP
provides an upper bound for the VFTP, as it would be sufficient to wake up all the robots
if the initial robot travels along a path that “sees” every point inside the polygon. Based
on whether an “anchor” point has been provided which the watchman’s route must go
through, there are two versions of the WRP: If the the watchman’s route must go through
a specified anchor point, this version is called the “anchored” WRP. If no such point is
required, then the problem is called the “floating” WRP.

The WRP was first introduced as a variant of the Art Gallery Problem by Chin and
Ntafos [10]. The difference between the WRP and the Art Gallery Problem is that instead
of having static guards watching over the area, now we have a single guard which is granted
mobility. It can be observed that the WRP shares some characteristics of the TSP, which
also asks for a shortest tour. Both the TSP and the Art Gallery Problem are NP-hard.
However, both versions of the WRP can be solved in polynomial time in simple polygons.

8



Chin and Ntafos also gave a NP-hardness proof for the the WRP in polygons with holes
when they introduced the problem. Later, Dumitrescu and Tóth [16] pointed out some
flaws in Chin and Ntafos’s proof, and gave another proof to show that the problem is
indeed NP-hard in polygons with holes.

Chin and Ntafos gave the first algorithm for solving the WRP in simple polygons. Their
algorithm takes time O(n4 log log n) for the anchored WRP. The current best algorithm is
found by Dror et al. [15]. They approached this problem as the touring polygons problem,
where the the order of visiting is determined by the polygon, and they improved the running
time to O(n3 log n) for the anchored WRP and O(n4 log n) for the floating WRP.

An interesting variant of the Visibility Freeze-Tag Problem is when only the initial
robot is granted the ability to awaken the other robots. It is not hard to see that the
problem can be solved with the touring polygons technique. Take the example from Fig
2.2, where initially only v0 is awake. We can easily convert it to an anchored Watchman
Route Problem starting at position v0.

9
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b

b

b
v0

v1

v2

v3

Figure 2.2: The Visibility Freeze-Tag Problem where only the initial robot can awaken
others can be modelled as a Touring Polygons Problem. In the example shown here, v0
has to visit the dashed red lines to see v1, v2 and v3.

Since the current best solution for the WRP still takes time O(n3 log n), some work
has been done on finding approximation algorithms for this problem. The goal is to find
a linear time algorithm that provides a constant approximation ratio. Carlsson [9] first
provided a linear time algorithm which yields an approximation ratio of 98.9823 for the
anchored WRP. Later, Tan greatly improved the ratio to

√
2 for the anchored version and

2 for the floating version in simple polygons [30]. Very little has been known about the
approximability for the WRP in a polygon with holes until recently Mitchell [27] gave an
O(log2 n)-approximation algorithm.

Another variant of the WRP is the Multi-Watchman Route Problem (MWRP). Instead
of having a single watchman, there are multiple watchmen who can each travel on their
own path. The goal of the MWRP could be minimizing the total travel length of all the
watchman, or minimizing the maximum travel length made by any watchmen. Unfortu-
nately, both versions have been shown to be NP-hard by Packer [28]. Packer also showed

10



that neither problem has an approximation algorithm which achieves a polynomial ap-
proximation ratio unless P = NP . The MWRP could be treated as another variant of the
Freeze-Tag Problem in polygons where a few active robots are given and only those robots
are able to awaken others.

Besides increasing the number of watchman, another variant of the WRP asks to op-
timize a different objective function. This variant was first introduced by Alsuwaiyel and
Lee [2]. It asks for a watchman tour that minimizes the number of line segments of the
tour, i.e., that minimizes the link length of the tour. Thus, the problem is named the
“Minimum Link Watchman Tour Problem”. In the same paper, the problem is proven to
be NP-hard in simple polygons. Later, Arkin et al. [5] showed that this problem is NP-hard
in a rectangle with convex holes. In addition, they provided an O(log n)-approximation
algorithm.

A natural variant of the WRP is where the watchman does not have any information
about the polygon it must explore. This is the online version of the WRP, which is also
known as the polygon exploration problem. This variant has many real life applications in
robot navigation. It is inevitable that the touring path in the online setting will be longer
than the shortest watchman path in the offline setting. Deng et al. [14] first proved the
existence of an online strategy which achieves a constant competitive ratio . Hoffman et
al. [20] provided an online strategy which is 133-competitive for simple polygons. Later,
they improved their algorithm by reducing the competitive ratio to 26.5 [21]. This is the
best online strategy known so far. For the lower bound on the competitive ratio of any
online algorithm, Hagius et al. [19] proved a lower bound of 1.2825 for simple polygons.
Note that there is still a large gap between the lower bound of 1.2825 and the upper bound
of 26.5 for the polygon exploration problem in simple polygons. In addition, no effective
algorithms has yet been found for exploring polygons with holes.

2.2.2 The Line/Point Freeze-Tag Problem

Recall that in the Visibility Freeze-Tag Problem, a robot u can unfreeze another robot v
if and only if they can see each other. If robot v is not visible to the awake robot u then
there is a line that goes through v and a reflex vertex and u must reach that line in order
to see v. This line is called the “window” of v. See the red lines in Figure 2.2 for examples.

Motivated by this, we propose a variant of the Visibility Freeze-Tag Problem where
every frozen robot v has an associated “awakening line” lv and v is awakened when another
robot touches its awakening line. We call this the “Line/Point Freeze-Tag Problem”. Note
that the points and lines are in the plane with no surrounding polygon. We hope that the

11



Line/Point Freeze-Tag Problem gives us better understanding for the Visibility Freeze-Tag
Problem.

There is a close relationship between the Line/Point Freeze-Tag Problem and the Trav-
elling Salesman Problem for lines in the plane. In particular, consider the special case of
the Line/Point Freeze Tag Problem where all the frozen robots are infinitely far away along
their awakening lines. In this case the initial awake robot must visit all the awakening lines
by itself. This is the TSP for lines in the plane, which can be solved in time O(n5) [17].

12



Chapter 3

The Visibility Freeze-Tag Problem

3.1 Introduction

This chapter is about the Visibility Freeze-Tag Problem (VFTP) in a polygon which was
defined in Section 2.2. In Section 3.2, we look at the relationship between the Visibility
Freeze-Tag Problem in a polygon and the original Freeze-Tag Problem in a polygon. Then
we show that both problems are NP-hard in Section 3.3. In Section 3.4, we provide an
algorithm in the VFTP setting to find the shortest path for waking up a sleeping robot
with a given initial active robot. Finally, in Section 3.5, we give an O(n)-approximation
algorithm for the Visibility Freeze-Tag Problem.

3.2 VFTP vs. FTP

One of the major differences between the FTP and the VFTP in a polygon is that distances
are no longer symmetric, i.e., given two robots A and B, the length of the shortest path
for A to wake up B does not have to equal the length of the shortest path for B to wake
up A. See Figure 3.1 for an example.

13



b
b

lA

A
B

lB

Figure 3.1: This is an example to show the asymmetric property of the VFTP. The distance
that A needs to travel to wake up B, lA, is greater than the distance that B needs to travel
to wake up A, lB.

3.3 NP-Hardness of the VFTP and the FTP in Poly-

gons

In this section, we will show that the Freeze-Tag Problem in polygons is NP-hard by
reduction from the Freeze-Tag Problem for star graphs. The same reduction will show
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that the Visibility Freeze-Tag Problem in polygons is NP-hard.

Arkin et al. [3] proved, using a reduction from 3-PARTITION, that the FTP is NP-hard
even for a star (a tree where all the nodes except one are leaves):

Instance: A star graph with n − 1 leaves, an integer L, and non-negative integer edge
weights w1, w2, w3, ..., wn−1 for each edge of the star. Initially there is a frozen robot at
each leaf node of the star, and an active robot at the center node.
Question: Is there an awakening schedule such that all the robots in the graph can be
awakened before time L?

Theorem 3.3.1. The Freeze-Tag Problem in polygons is NP-hard.

Proof. We will reduce the FTP in a star to the FTP in a polygon. Suppose we have an
instance of the FTP in a star (as described above). We first start with a base rectangle
with width n − 1 and arbitrary height ε > 0, and place the initial active robot v0 at the
upper left corner of the base rectangle. For each edge weight wi, we add a spike rectangle
on top of the base rectangle with height n2wi and width 1/2. In addition, the length of the
gap between two spikes is also 1/2 (Figure 3.3). We place one robot at the top-right corner
of each spike. It is easy to see that the construction can be done in polynomial time.

b

b

b
b

b

bw1

w2

w3 b

v0

b

b

b

b

bb b

n2wi

v0

wn−1

b
bb

wi
b

b

b

b

b

bbb

n2w3n2w2

n2w1 n2wn−1

Figure 3.2: Converting a star graph to a polygon
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Figure 3.3: Horizontal distance between two holes is 1
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We claim that there is an awakening schedule in time n2L+(n−1)2 for the FTP in the
constructed polygon if and only if there is an awakening schedule in time L for the FTP
in the star.

For the proof of the “if” part, suppose that there is an awakening schedule in time L for
the star graph. We want to show that by following the same awakening schedule, all the
robots can be awakened by time n2L+(n−1)2 in the FTP in the polygon. Let v be a robot
other than v0 in the star version of the Freeze-Tag problem. Then, in a feasible solution
to the Freeze-Tag Problem, there exists an awakening path for v: v0, v1, v2, ...., vk = v.
Since there are n robots in total, thus k ≤ n− 1. In addition, note that a robot needs to
travel at most n − 1 horizontally to wake up another robot. This implies that the total
horizontal movement is at most (n−1)2. Thus, by following the same awakening schedule,
all the robots could be awakened by the time limit even if all the robots can only move
horizontally and vertically. This completes one direction of our proof.

Conversely, suppose that there is an awakening schedule in time n2L+ (n− 1)2 for the
FTP in the constructed polygon. We want to show that by following the same awakening
schedule, all the robots can be awakened by time L in the FTP on the star. If we ignore the
horizontal component of all the robot moves, this does not increase the total movements.
Therefore the sum of the vertical motions along any path of the awakening tree is at most
n2L+ (n− 1)2. Note that the vertical distance a robot travels inside the polygon is equal
to the distance the corresponding robot travels in the star times n2. Since all the edge
weights in the star are integers, the sum of distance of the robots travel vertically in the
polygon must be a multiple of n2. The largest multiple of n2 less than n2L + (n − 1)2 is
n2L. This implies that by following the same awakening schedule, all the robots in the star
graph can be awakened no later than time L.
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Figure 3.4: Modified spikes for the VFTP NP-hardness Proof

We can make a slight modification to the proof to show that the Visibility Freeze-Tag
Problem is NP-hard. As shown in Figure 3.4, we add a small horizontal spike at the top
of each original spike, and we place one robot in the bottom-right corner of each new
spike. It is obvious that the construction can be done in polynomial time. In this case,
the horizontal distance v0 needs to move to wake up the furthest robot remains n − 1,
and the longest distance for a robot other than v0 to wake up another robot is at most
n − 2 + 1/4 = n − 7/4, since the robot needs to travel distance 1/4 to move out of the
spike, and at most distance n−2 to reach the other robot. Thus, the horizontal movement
is still bounded by (n− 1)2. By the same argument, we have the following corollary:

Corollary 3.3.1. The Visibility Freeze-Tag Problem is NP-hard.

3.4 Shortest Awakening Paths

For the standard Freeze-Tag Problem on points in the plane we know exactly how to make
an awake robot s awaken another robot t—robot s should just travel in a straight line to
t. There is never an advantage in using an intermediate robot if the goal is just to awaken
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b

y

x

z

Figure 3.5: The shortest path for robot x to see z without intermediate robots (shown in
dotted blue) is much longer than the shortest path (shown in solid red) with the help of
the intermediate robot y.

t as quickly as possible. This part is easy and the difficult part of the Freeze-Tag Problem
is deciding the the order in which robots awaken other robots.

However, in the Visibility Freeze Tag Problem, the basic question of how to make an
awake robot s awaken another robot t is not so trivial. It may help to use intermediate
robots. See Figure 3.5 for an example.

In this subsection we address this problem of finding a shortest awakening path from
one robot s to another. In the first step s wakes up some robot s1. Then s1 wakes up s2
and so on. Each step of the path consists of one robot u starting from its initial position
and moving to wake up another robot v (without using any other robots). We can find
such a path using a shortest path algorithm on points R where for edge (u, v) we define
its weight w(u, v) to be the length of a shortest path for u to awaken v without using any
intermediate robots. In other words, w(u, v) is the length of a shortest path inside polygon
P from u to a point z that is visible from v. In particular, if u and v are visible in P then
w(u, v) = 0.

A single source shortest path algorithm (such as Dijkstra’s algorithm) using the weights

18



w(u, v) will find a shortest path tree that gives the shortest awakening path from the initial
active robot s to every other robot t. We call this the shortest awakening path tree. The
shortest awakening path tree does not provide a solution to the VFTP because, e.g., the
root s may have several children in the tree, and s cannot wake them all up at once.
However, the shortest awakening path tree does give us a lower bound on the amount of
time it takes for each robot t to be awakened.

We will give an algorithm to find the shortest awakening path tree in time O(n2 log n)
and space O(n) where n is the total input size, i.e., n = nP + nR where nP is the number
of vertices of P and nR is the number of points in R. We will first show how to achieve
the time bound, which is straight-forward based on known results, and then show how to
modify this to achieve the space bound.

The straight-forward method for finding the shortest awakening path tree is to find
the weights w(u, v) and apply Dijkstra’s single source shortest path algorithm. To find
the weights we will use an algorithm of Knaur et al. [23]. Given a fixed source point u in
a polygon, their algorithm builds a data structure to handle queries of the form: Given
any point v in the polygon, find the shortest path from u to a point visible from v. They
call this the “shortest inspection-path”. The length of the shortest inspection path is the
weight w(u, v) that we want to compute. Their algorithm takes O(n) time and space for
preprocessing, and O(log n) time for each query.

Because we want to compute w(u, v) for each pair u, v, we must build their data struc-
ture for each point u and then query for each point v. Thus the total running time is
O(n2 log n).

Once we have computed the weights w(u, v), we can apply Dijkstra’s shortest path
algorithm to compute the shortest awakening path tree. Dijkstra’s algorithm takes time
O(m + n log n) with a priority queue implementation for a graph with m edges and n
vertices. Since our graph is a complete digraph, thus our total time bound is dominated
by the step of calculating edge weights, which takes O(n2 log n) time. This method uses
space O(n2) since we store all the edge weights.

Before we describe how to reduce the space, we will describe the algorithm of Knauer
et al. [23] and mention which steps do not need to be repeated for each source vertex u.
Briefly, their algorithm uses the following steps (many of which involve previously solved
problems):

1. Compute a data structure that supports O(log n) time shortest path queries between
any two points a, b ∈ P with O(n) preprocessing time. Note that this step only needs to
be done once.
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2. Compute a data structure that supports O(log n) time ray-shooting queries from
any point a with any direction d. This step also requires O(n) preprocessing time, and
only needs to be done once.

3. Compute the shortest path tree rooted at u and preprocess it to support O(1) time
Least Common Ancestor queries.

Using these data structures, they show how to handle a query for point v in O(log n)
time. Even more briefly, this involves finding the shortest path from u to v in the polygon,
then shooting a ray from v back along the last segment of the shortest path to find the
“best” line from which to see v, and then finding how to reach this line via a shortest path
from u. For details, see their paper.

Note that this method uses O(n2) space because we explicitly store the weights w(u, v)
for all pairs u, v. Next we show how to save space by only computing the weights as needed
during Dijkstra’s algorithm.

Recall that Dijkstra’s algorithm first pushes all the nodes into a priority queue with
infinitely large weights except the root node with weight 0. In each round of Dijkstra’s
algorithm we dequeue a node u with the minimum weight, and update the weights of the
rest of the nodes in the queue. The information required in each round is the weights of
edges incident with u. Thus, for each dequeued node u, we apply Knauer et al.’s algorithm
to calculate the weights on edges (u, v) for all v. Note that we do not need to store all the
n2 weights. Thus, our algorithm only requires O(n) space.

3.5 O(∆)-Approximation Algorithm

Recall that from the last section, we are able to build the shortest awakening path tree T
in O(n2 log n) time. Clearly the height of T is a lower bound for solutions to the VFTP. In
this section, we will give an O(∆)-approximation algorithm for the Line/Point Freeze-Tag
Problem, where ∆ is the maximum degree of the shortest awakening path tree T . In the
worst case ∆ is (nR − 1). The basic idea is that each awakened robot u will awaken all its
children in T in a certain order.

More specifically, we first construct a shortest awakening path tree T using the algo-
rithm in Section 3.4. Then for every awakened internal node u of T , order the children
c1, . . . , ck of u in order of the edge weight w(u, ci) from smallest to largest. Our algorithm
sends robot u to awaken its children in this order, returning to its original position after
each child.
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Figure 3.6: An example explaining the awakening strategy: We first sort all the children of
s0—(u, v, w, t) based on the edge weights in ascending order (w, u, v, t). Once s0 is active,
s0 will first unfreeze w, then move back to its original position. After that, s0 will move
to unfreeze u, and then move back. The awakening procedure for v and t is similar.

To show that the above algorithm yields an approximation ratio of O(∆), we will first
prove the following lemma about an upper bound on the length of the path each internal
robot travels.

Lemma 3.5.1. Let w(u, cj) be the weight of the edge between u and its child cj and
wALG(u, cj) be the distance u actually travels when u awakens cj by our algorithm. Then
wALG(u, cj) ≤ (2j − 1)w(u, cj) for j = 1 to k, where k is the the number of children of u
in T .

Proof. When u awakens cj, by our algorithm u has already awakened its children c1, . . . , cj−1.
In addition, since u returns to its original position after awakening each child, u has trav-
elled through each edge (u, c1), . . . , (u, cj−1) twice. Thus, the total time it takes for u to
reach cj is wALG(u, cj) = 2

∑j−1
i=1 w(u, ci) +w(u, cj). In addition, robot u visits its children

in increasing order of the edge weighs. Thus, we have w(u, ci) ≤ w(u, ci+1) for all i = 1 to
j − 1.

Combining the above we have

wALG(u, cj) = 2

j−1∑
i=1

w(u, ci) + w(u, cj) ≤ 2

j−1∑
i=1

w(u, cj) + w(u, cj) = (2j − 1)w(u, cj)
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This completes the proof.

Next we bound the approximation ratio.

Lemma 3.5.2. The above algorithm is an O(∆) approximation.

Proof. Consider a root to leaf path P = {s0, s1, ..., si} in T . By the definition of the shortest
awakening path tree, the sum of the edge weights along P , i.e., T (si) =

∑
j<iw(sj, sj+1)

is the minimum time required for s0 to reach sk with the help of intermediate robots. Let
TOPT (si) be the time to awaken robot si in the optimum schedule. Clearly TOPT (si) ≥
T (si). Let TALG(si) be the time to awaken robot si using our algorithm. We will show
that TALG(si) ≤ ∆TOPT (si).

By Lemma 3.5.1, our algorithm will increase the distance for each robot to reach its
child cj by a factor of at most (2j − 1), i.e., wALG(sj, sj+1) ≤ (2j − 1)w(sj, sj+1). Since ∆
is the maximum degree the T , we will always have j ≤ ∆.

Combining these we have

TALG(si) =
∑
j<i

wALG(sj, sj+1)

≤
∑
j<i

(2j − 1)w(sj, sj+1)

≤
∑
j<i

(2∆− 1)w(sj, sj+1)

≤ (2∆− 1)
∑
j<i

w(sj, sj+1)

≤ (2∆− 1)T (si) ≤ (2∆− 1)TOPT (si)

Thus our algorithm is an O(∆) approximation.

Note that the running time of the above algorithm is dominated by the step of construct-
ing the shortest path awakening tree. Thus, our algorithm runs in time O(n2 log n). In
addition, in the worst case ∆ could be nR−1. Thus, our algorithm is O(nR)-approximation
in the worst case.
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Chapter 4

The Line/Point Freeze-Tag Problem

4.1 Introduction

In this chapter, we will look more closely at the Line/Point Freeze-Tag Problem. Recall
from Chapter 1 that in the Line/Point Freeze-Tag Problem, each point (robot) p has an
awakening line through it, and robot p is awakened when another awake robot touches
the line. There is one initial awake robot and the goal is awaken all the robots in the
minimum time. In Section 4.2, we will give a polynomial time algorithm for a special case
of this problem, where all the awakening lines are parallel to each other. In Section 4.3, we
will show that the Line/Point Freeze-Tag Problem is NP-hard, even for the special case of
horizontal and vertical awakening lines.. In Section 4.4, we will give an O(1)-approximation
algorithm for the Line/Point Freeze-Tag Problem.

4.2 Parallel Awakening Lines

For the special case of the Line/Point Freeze-Tag Problem where all the awakening lines
are parallel, we are able to give a polynomial time algorithm. The idea is to transform the
problem to a 1-Dimensional (1-D) Freeze-Tag Problem, i.e., the FTP for points on a line.
Then we will give an algorithm for the 1-Dimensional Freeze-Tag Problem.

Lemma 4.2.1. Suppose we have an instance of the Line/Point Freeze-Tag Problem with the
initial active robot s, and a set of robots R associated with awakening lines {l0, l1, ..., ln−1},
such that all the awakening lines are parallel to each other. We can construct an instance
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of the 1-D Freeze-Tag Problem, such that an optimum solution for the instance of the
Line/Point Freeze-Tag Problem can be obtained by following the same awakening schedule
of the optimum solution for the instance of the 1-D Freeze-Tag Problem we constructed.

Proof. We will first show the construction. Place a line lp perpendicular to all the awak-
ening lines. Clearly, lp intersects all the awakening lines. Next we place n robots ri on the
intersection of lp and li for i = 0 to n− 1. At last, we place the new initial active robot s′

by projecting s orthogonally onto lp. This completes our construction. See Figure 4.1 for
an example.

l1 l2 l3 l4 l5l0

lp

b

b b

b

b
b

b
s

b bb b b br0 r1 r2 r3 r4 r5bs
′

b s
′

Figure 4.1: The left figure is an example of the Line/Point FTP with an active robot at
points s, where lp (shown in dashed) is the base for the corresponding 1-D FTP instance.
The right figure is the corresponding 1-D FTP instance with the active robot s′.

By our choice of lp, the distance between any two robots ri and rj on the line we
constructed is equal to the shortest distance for the robot on li to reach lj or the robot on
lj to reach li in the Line/Point Freeze-Tag Problem. In addition, since s′ is the orthogonal
projection of s on lp, the distance from s′ to ri is equal to the distance for robot s to reach
li for all i = 0 to n− 1.

We claim that the Line/Point FTP instance has a solution within time T if and only if
the constructed 1-Dimensional FTP instance has a solution within time T .

For one direction, suppose that there exists a solution to the the 1-D FTP instance
within time T . We can obtain a solution to the Line/Point FTP instance within time
T by following the same awakening schedule and asking each corresponding robot in the
Line/Point FTP instance to always travel by the shortest path. Since the shortest path
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for any robot ri to awaken another robot rj equals the shortest distance for the robot on
li to reach lj, we have a solution to the Line/Point FTP instance within time T .

For the other direction, suppose that there exists a solution to the Line/Point FTP
instance within time T . We can obtain a solution to the 1-D FTP instance within time T
by following the same awakening schedule in the solution to the Line/Point FTP instance.
If all the robots in the solution to the Line/Point FTP always travel by the shortest paths
to wake up other robots, then our solution to the 1-D FTP will stay within time T by
construction. Otherwise, if a robot doesn’t following the shortest path to awaken some
other robots, then we can shorten the paths, and this won’t affect the later robots since
all the awakening lines are parallel to each other.

The above Lemma shows that for the special case of the Line/Point Freeze-Tag Problem
where the awakening lines are parallel, we can convert it to an instance of the 1-D Freeze-
Tag Problem. Next we give an algorithm for solving the 1-D Freeze-Tag Problem. Although
this algorithm is very simple, we have not found it in the literature. The 1-Dimensional
Freeze-Tag problem is discussed by Armon et al. [6]. They show that the greedy approach
does not give optimum solution. In addition, they prove that the greedy heuristic for the
1-Dimensional Freeze-Tag Problem is a 4-approximation.

b bb b b b b b b
b b b b b bbbbb

s0 s1 s2 sl s sr snsn−1sn−2

Figure 4.2: An instance of the FTP on a line

Theorem 4.2.1. Suppose we have an instance of the FTP on a line with the initial active
robot s, and frozen robots s0, s1, s2, ..., sn in that order along the line. Let sl and sr be the
robots to the left and right of s, respectively (See Figure 4.2), and let d(s, t) denote the
distance between two points s and t on the line. The optimum awakening schedule will take
time:

min

{
max{d(s, s0), d(s, sl) + d(sl, sn)}
max{d(s, sn), d(s, sr) + d(sr, s0)}

}
Proof. We claim that in the optimum awakening schedule, either sl or sr will be the first
robot awakened by s, and after either sl or sr is awakened, it will awaken all the robots on
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one side of the line, and s will awaken the robots on the other side. See Figure 4.3 for an
example.

b bb b b b b b b
b b b b b bbbbb

s0 s1 s2 sl s sr snsn−1sn−2

Figure 4.3: Two possible optimal awakening schedules: either s awakens sr and then
awakens every robot to the left while sr awakens those to the right (shown in dashed red);
or s awakens sl and then awakens every robot to the right while sl awakens those to the
left (shown in solid blue).

To prove our claim, note that either sl or sr will be the first robot awakened by s
no matter which direction s chooses to start with. Without loss of generality, assume s
chooses to go left and awaken sl first. Since both active robots are at sl, it will take at least
time d(s0, sl) to reach s0, and at least time d(sl, sn) to reach sn. Thus, the minimum time
needed to wake up all the robots if s chooses to go left is max{d(s0, s), d(sl, s) + d(sl, sn)}.
Furthermore, this minimum is achievable. The analysis for s to go right at first is similar.
Thus, the minimum amount of time to awaken all the robots is the smaller of the two.

4.3 NP-hardness of the Line/Point Freeze-Tag Prob-

lem1

In this section, we will show that the Line/Point Freeze-Tag Problem is NP-hard by reduc-
tion from a well-known NP-complete problem, called 3-Satisfiability (or 3SAT). The 3SAT
problem is one of the first problems shown by Cook [11] to be NP-complete. The 3SAT
problem consists a set of n variables v1, v2, . . . , vn and m clauses C1, C2, . . . , Cm, where
each clause is a disjunction of three literals. Note that both vi and ¬vi count as literals.
The 3SAT problem asks whether there exists an assignment to each variable with either
true or false, such that

∧
j≤mCj evaluates to true.

Briefly, our construction is as follows. For each variable vi we make a primary robot
(which we also call vi) with a horizontal awakening line, and create two sets of literal

1This section represents joint work with Kathie Cameron and Juraj Stacho as well as Anna Lubiw.
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robots with vertical awakening lines — the “true” lines Ti and the “false” lines Fi. By
manipulating the position of the awakening lines, we force vi to choose either to awaken
the lines in Ti or the lines in Fi, but not both. For each clause Ci, we create a clause robot
ci with a horizontal awakening line that can only be awakened by one of three points, with
those points corresponding to the literals in the clause. This is the main idea, and the one
complication is that we need to add some relay robots to help awaken all the robots, not
just the ones associated with the true literal robots.

Formally, the 3SAT problem is as follows.

Instance: A set of Boolean variables V = {v1, v2, . . . , vn} and a set of clauses C =
{C1, C2, . . . , Cm}, where each clause is a disjunction of at most three variables from V .

Question: Is there a truth assignment to V such that the formula
∧
j<nCj evaluates to

true?

Theorem 4.3.1. The Line/Point Freeze-Tag Problem is NP-hard, even for the case where
all the awakening lines are horizontal or vertical.

Proof. We will reduce 3SAT to the Line/Point FTP with only horizontal and vertical
awakening lines. Let ε be a sufficiently small number (e.g., ε = 1), and let d be sufficiently
large (e.g., d = 4 > 3ε). Consider the Euclidean plane with s0 the initial active robot at
the origin (0, 0). Given an instance of the 3SAT problem, we construct an instance of the
Line/Point FTP as follows. See Figure 4.4 for an example:

• Primary Robots: n robots Rv = {v1, v2, . . . , vn} associated with horizontal awak-
ening lines. Robot vi is positioned at point (6di, ε

n
(n− i+ 1)).

• Clause Robots: m robots Rc = {c1, c2, . . . , cm} associated with horizontal awaken-
ing lines. Robot ci is positioned at point (0,−6di).

• Literal Robots: Let vl be a variable in the 3SAT instance, and let {Ct1 , Ct2 , . . . , Ctj}
and {Cf1 , Cf2 , . . . , Cfk} be the set of clauses which contain vl and ¬vl, respectively.
For each vl, we place j robots Tl = {tl,1, . . . , tl,j} such that tl,i is at point (6dl −
d − ε

l
i,−6dti + d), and place k robots Fl = {fl,1, . . . , fl,k} such that fl,i is at point

(6dl+d− ε
l
i,−6dfi+d). Define T ′ =

⋃
i≤n Ti and F ′ =

⋃
i≤n Fi. At last, we associate

all the robots in T ′ and F ′ with vertical awakening lines.

• Relay Robots:

– n robotsRw = {v′1, v′2, . . . , v′n} associated with horizontal awakening lines. Robot
v′i is positioned at point (6di,−(6md+ 6di)).
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Figure 4.4: This is an example of a Line/Point FTP instance constructed from a 3SAT
instance with variables V = {v1, v2, v3, v4} and clauses C = {C1 = {v1,¬v2,¬v3}, C2 =
{v1, v2, v4}}.
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– 2n robots Rm = {m1,m2, . . . ,mn} and Ru = {u1, u2, . . . , un}. Each robot is
associated with a vertical awakening line: mi is positioned at point (6di −
d,−(6md+ 6di) + ε) and ui is positioned at point (6di+ d,−(6md+ 6di) + ε).

Clearly the construction can be done in polynomial time. We claim that there is a schedule
to awaken all the robots within time 2d+3ε in the Line/Point Freeze-Tag Problem instance
we constructed, if and only if there is an assignment to satisfy all the clauses in the original
3SAT instance.

To see the “if” part holds, suppose that there is an assignment φ to satisfy all the
clauses in C in the 3SAT instance. We want to show that we will have a schedule to
awaken all the robots within time 2d+ 3ε in the Line/Point FTP instance we constructed.
We start with moving s0 straight up until it awakens all the primary robots in Rv. This
can be done within time ε. For each active robot vi, we move vi leftward to awaken all the
literal robots in Ti if φ(vi) = true. Otherwise we move vi rightward to awaken the literal
robots in Fi. Since the furthest literal robot in Ti and Fi is distance (d+ ε) away from vi,
the robots in T ′ and F ′ will be awakened within time 2ε+d. Next, we move each awakened
literal robot v in T ′ and F ′ straight down until it reaches the awakening line of a clause
robot ck ∈ Rc. Since φ satisfies all the clauses in C, for each ci there must be at least one
literal robot at distance d above the awakening line of ci. Thus, all the robots in Rc can
be awakened by time 2ε + d + d = 2ε + 2d. Note that for each primary robot vi, it only
awakens either Ti or Fi. We still need to wake up all the robots in the other set (Fi or Ti)
that was not awakened by vi for all the primary robots. First note that mi or ui will be
awakened by vi within time ε+ d when ri is on its way to awaken Ti or Fi. Without loss of
generality, suppose that vi moves to awaken Ti. Since mi is exactly distance d away from
vi, then mi will be awakened within time ε + d. We move mi straight down to awaken wi
(which takes time ε), and move wi rightward to awaken all the robots in Fi ∪ ui (which
takes at most time d + ε). The analysis for the case where vi awakens Fi is symmetric.
Thus, the total time required to awaken all the robots in the Line/Point FTP instance we
constructed is 2d+ 3ε.

Conversely, suppose that there is a schedule to awaken all the robots within time 2d+3ε
in the Line/Point FTP instance we constructed. We want to show that we will have an
assignment φ to satisfy all the clauses in the 3SAT instance. We will first prove the
following lemmas.

Lemma 4.3.1. For every primary robot vi, the first active robot in Ti ∪ {mi} ∪ Fi ∪ {ni}
must be awakened by vi. In addition, robot vi can only awaken the robots in either Ti∪{mi}
or Fi ∪ {ni}, but not in both sets.
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Proof. Observe that only robots vi and v′i are within distance 2d + 3ε to any robot in
Ti ∪ {mi} ∪ Fi ∪ {ni}. However, v′i must be awakened by mi or ni, since the nearest
robot to v′i besides mi and ni is at distance 6d − ε away. Thus, the first active robot in
Ti ∪{mi}∪Fi ∪{ni} must be awakened by vi. In addition, the minimum time required for
vi to awaken at least one robot from both Tl ∪ {mi} and Fl ∪ {ni} is at least 3d > 2d+ 3ε.
The minimum occurs when vi only awakens mi and ni. Thus, vi can only awaken the
robots in either Ti ∪ {mi} or Fi ∪ {ni}.

Lemma 4.3.2. For every robot ci ∈ Rc, ci is awakened by a robot u either in T ′ or in F ′.
In addition, robot u must be constructed from one of the literals in clause Ci in the original
3SAT problem.

Proof. Observe that the nearest robot to ci not in T ′ and F ′ is at least distance 6d away.
Thus, ci can only be awakened by a robot in T ′ or F ′. By our construction, only the robots
which are create from the literals in Ci are within distance 2d + 3ε of the awakening line
of ci. Thus, u must be constructed from one of the literals in Ci.

Lemma 4.3.3. If robot vi chooses to awaken the robots in Fi ∪ {ni}, then the first active
robot in Ti ∪ {mi} can only be awakened by v′i. Similarly, if robot vi chooses to awaken the
robots in Ti ∪ {mi}, then the first active robot in Fi ∪ {ni} can only be awakened by v′i.

Proof. We prove the first statement (the other follows by symmetry). First note that the
robots within distance 2d+3ε to any robot in Fi∪{ni} are the robots in Tl∪{mi}∪{vi}∪{v′i}.
However, by Lemma 4.3.1, vi can only awaken the robots in either Ti ∪ {mi} or Fi ∪ {ni}.
By a similar argument, robots in Ti ∪ {mi} also can not awaken the robots in Fi ∪ {ni}
without exceeding the time constraint. This leave us with only v′i.

Lemma 4.3.4. For any robot ck ∈ Rc, if ck is awakened by a robot in Ti then vi must
awaken some robots in Ti ∪ {mi}. Otherwise, if ck is awakened by a robot in Fi then vi
must awaken some robots in Fi ∪ {ni}.

Proof. Without loss of generality, suppose that ck is awakened by a robot in Ti. Assume
to the contrary that vi awakens some robots in Fi ∪{ni}. By the previous lemma, the first
active robot in Ti ∪ {mi} can only be awakened by v′i. Since it takes at least time d for vi
to awaken any robot in Fi ∪ {ni} and time d for v′i to awaken any robot in Ti ∪ {mi}, the
lower bound for awakening any robot in Ti ∪ {mi} is at least d + d = 2d (if we ignore all
the ε). In order to awaken any lk ∈ Rc, a robot in Fi ∪{ni} must travel at least extra time
d. Then the lower bound for awakening lk is 3d, which exceeds the time constraint. (The
proof for the other direction is omitted by symmetry). This completes the proof.
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Having the lemmas above, next we will prove that we can obtain a solution to the
original 3SAT problem.

By Lemma 4.3.2, every clause robot ck is awakened by a robot u which is constructed
from one of the literals of Ck. If u ∈ T ′, then by our construction u is associated with a
positive literal vi. By assigning the Boolean value true to vi, Ck can be satisfied. Otherwise,
if u ∈ F ′, then by our construction u is associated with negative literal ¬vi. By assigning
the Boolean value false to vi, Ck can be satisfied. For those variables without assignment,
we assign true or false arbitrarily. In addition, we claim that a robot will never be assigned
both true and false. Suppose the contrary. This implies that two clause robots ck and cj
are awakened by some Ti and Fi, respectively. By Lemma 4.3.4, this implies that vi
visits robots from both Ti ∪ {mi} and Fi ∪ {ni}, which is impossible. Thus, we obtain an
assignment which is valid and satisfies all the clauses in Ck.

4.4 O(1)-Approximation Algorithm

The Line/Point Freeze-Tag Problem is very similar to the Visibility Freeze-Tag Problem.
In both problems, an active robot may take advantage of intermediate robots to awaken
other robots. See Figure 4.5 for an example.
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Figure 4.5: The path for s to wake up s1 directly (shown in dotted blue) is longer than the
path for s to awaken s0 first, and let s0 awaken s1 (shown in dashed red).

As for the Visibility Freeze-Tag Problem, we can construct a shortest awakening path
tree with Dijkstra’s algorithm on the points R, where, for edge (u, v) we define its weight
w(u, v) to be the distance from point u to the awakening line associated with v. After
constructing the shortest awakening path tree, we can obtain an O(∆)-approximation
using the same method as in Section 3.5.

In this section, we will give an improvedO(1)-approximation algorithm for the Line/Point
Freeze-Tag Problem. Our algorithm asks every robot to follow a logarithmic spiral when
it is awakened. This is a somewhat “oblivious” strategy since the robots do not even make
use of the information about the locations of other points and lines. Nevertheless, we will
show that this algorithm achieves a constant approximation factor.

The idea of following a spiral comes from solutions to the problem of searching for a
line in the plane. We will begin by discussing the background for the searching problem,
since we will use some of the results. The general form of the problem is that we must
design a trajectory starting from the origin that will eventually reach an object at unknown
position/direction in a minimum amount of time. The problem was first introduced by
Bellman [8] in the 1950’s. For the case of searching for a line that lies at a known distance
from the origin, a solution was given by Isbell [22]. The case where the distance to the line
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s

Figure 4.6: To solve the issue with starting from the origin, we ask s to travel to a straight
distance first and then follow the spiral.

is not known was considered by Baeza-Yates, Culberson, and Rawlins [7]. They suggest
following a logarithmic spiral and claim that a line at distance d from the origin will be
encountered within distance 13.81d + O(log d) along the spiral trajectory. They leave out
some details. One issue is how to connect the origin to the spiral (the spiral never actually
reaches the origin). The solution from Gal [1, p. 158, Figure 9.5] is to assume that d is at
least ε and to begin the trajectory with a straight line segment of length ε from the origin,
and then join the logarithmic spiral. See Figure 4.6 for an example of this. Clearly this
is correct, and the length is reduced. The other issue is the details of the analysis of the
bound 13.81d + O(log d). Further details of the analysis for the case d = 1 were given in
an unpublished paper by Finch [18]. However, details of the constant in front of the log n
term do not seem to be available anywhere. As we shall see below, we need this constant
in order to make our analysis precise.

To complete our background discussion we mention that it is an open question whether
the logarithmic spiral is the best solution for the problem of searching for a line in the plane.
Langetepe proved a similar result for the case of searching for a point in the plane [25] and
also for the case of searching for an orthogonal line in the plane [26].

We now turn to our O(1) approximation for the Line/Point Freeze-Tag Problem. Our
algorithm is as follows. Compute the minimum distance, dmin, from any initial robot point
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to a non-incident line. When a robot is awakened, it moves distance dmin horizontally to
the right and then joins the logarithmic spiral centered at its original location.

In order to prove that this spiraling algorithm is an O(1) approximation, we need an
upper bound on the absolute competitive ratio of the spiral trajectory. Let L be a line in
the plane at distance d from the origin, and let t be the length of the logarithmic spiral
from the origin to the first intersection with line L. We want a constant K such that
t ≤ Kd. In theory, such a bound is available from the result of Baeza-Yates et al. [7], that
t ≤ 13.81d + O(log d). However, the details of this asymptotic bound are not available,
and in order to turn it into an absolute bound, we need the constant in front of the log d
which is not given explicitly. We therefore prove a rougher absolute bound.

Claim 4.4.1. Let L be a line in the plane at distance d from the origin, and let t be the
length of the logarithmic spiral from the origin to the first intersection with line L. Then
t ≤ 17.289d.

Proof. We need two basic facts about the logarithmic spiral r = eαθ [31]:

(1) if z is a point on the spiral at distance d(z) from the origin then the distance along

the spiral from the origin to z converges to
√
1+α2

α
d(z).

(2) if the spiral crosses the x-axis at coordinate b, then the next crossing is at x-
coordinate eα2πb.

Consider a line L in the plane and the logarithmic spiral from the origin. Suppose
without loss of generality that L is a vertical line. Then L intersects the x-axis at the
point (d, 0). The spiral crosses the x-axis infinitely often. Let (f, 0) and (f ′, 0) be the two
points where the spiral crosses the x-axis before and after (d, 0). By the time the spiral
reaches (f ′, 0), it has crossed line L. We have f ≤ d < f ′. By (2), f ′ = eα2πf ≤ eα2πd.

Thus, the distance along the spiral to (f ′, 0) is at most
√
1+α2

α
f ′ ≤

√
1+α2

α
e2απd. Solving this

(using Wolfram Alpha) as a function of α, we have
√
1+α2

α
e2απ achieves a local minimum

of 17.289 . . . at α = 0.155402 . . .. Thus the distance along the spiral until we cross L is at
most 17.289d.

Lemma 4.4.1. The spiraling algorithm described above is an O(1) approximation for the
Line/Point Freeze-Tag Problem.

Proof. Consider an optimum awakening schedule for an instance of the Line/Point FTP.
Let TOPT(si) be the time to awaken robot si in this optimum schedule. Let TS(si) be the
time to awaken robot si using the spiraling strategy. We will show that TS(si) ≤ kTOPT(si).
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Suppose that in the optimum awakening schedule, si is awakened via the sequence
s = s0, s1, . . . , si. In other words, for j = 0, . . . , i− 1, robot sj, once it is awakened, follows
some path in the plane, eventually touching the awakening line of sj+1. The time for sj
to awaken sj+1 is at least w(sjsj+1), the distance from the original position of sj to the
awakening line of sj+1. Thus TOPT(si) ≥

∑i−1
j=0w(sj, sj+1).

Let S(sj, sj+1) be the time for the spiral path from sj to reach the awakening line of
sj+1. By the Claim above S(sj, sj+1) ≤ 17.289w(sj, sj+1).

Combining these we have

TS(si) ≤
∑
0≤j<i

S(sj, sj+1) ≤
∑
0≤j<i

17.289w(sj, sj+1) ≤ 17.289TOPT(si)

.
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Chapter 5

Conclusion and Open Problems

For the Freeze-Tag Problem in polygons and the Visibility Freeze-Tag Problem, no previous
work has been done to show the complexity of either problem. We prove both problems
are NP-hard, and we give an algorithm to approximate the Visibility Freeze-Tag Prob-
lem within a factor of O(∆), where ∆ is the maximum degree of the shortest awakening
path tree. Our algorithm takes time O(n2 log n) and space O(n). For the Line/Point
Freeze-Tag problem, we show this problem is NP-hard, and provide a polynomial-time
O(1)-approximation algorithm. We also give an algorithm to find the optimum awakening
schedule for a special case of the Line/Point Freeze-Tag Problem where all the awakening
lines are parallel, and this algorithm also works for the 1-D Freeze-Tag Problem.

There are many open problems left for the FTP and its variants.

For the Freeze-Tag Problem in polygons, the current best algorithm (which is the greedy
algorithm) gives an approximation ratio of O(log n). However, the Freeze-Tag Problem for
points in the plane has a PTAS. One interesting open problem is whether the Freeze-Tag
Problem in polygons has a PTAS.

For the Visibility Freeze-Tag Problem, our algorithm could still give an approximation
factor as bad as O(n) in the worst case. Finding an algorithm that achieves an O(log n)
or ideally an O(1) approximation ratio is worth pursing. Our algorithm made use of the
shortest awakening path tree. Each node s awakened all its children, in order of edge
weights, returning to its original position after each one. This is not the best path for the
node to awaken its children. For a given node s and its children, we know how to calculate
the shortest path for s to awaken all its children using the algorithm for the Watchman
Route Problem. However, this makes the analysis much more difficult. We believe that a
careful analysis may give a better approximation ratio than O(∆).
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For the Line/Point Freeze-Tag problem, we gave a polynomial time O(1)-approximation
algorithm. The movement of the robots in our algorithm was independent of the input
lines, which gives hope for improvement. We conjecture that there is a PTAS for this
problem.
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