Variability-Aware Performance
Prediction: A Case Study

by

Pavel Valov

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Computer Science

Waterloo, Ontario, Canada, 2014

(© Pavel Valov 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Configurable software systems allow users to form configurations by selecting and
deselecting features. The process of configuration creation may directly affect perform-
ance of the system in a non-linear way because of possible complex feature interactions.
Understanding the correlation between feature selection and performance is important for
stakeholders to acquire a desirable program variant. In this work we try to infer this cor-
relation between system configuration and performance, using small samples of already
measured configurations, without additional effort to detect feature interactions. We carry
out a case study of several regression methods for solving this problem: regression trees,
bagging of regression trees, random forests and support vector machines. All regression
methods have their parameters tuned in automatic fashion by using Sobol sampling. To
evaluate the prediction accuracy of the regression methods, the case study is performed
using six real-world configurable software systems from different application domains and
written in different programming languages. We show that bagging outperforms all other
regression methods in most of the cases for all configurable systems, sampling sizes and
parameter settings. We analyse the sensitivity of different regression methods and show
that the most stable ones are regression trees and bagging.

111

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Professor
Krzysztof Czarnecki for giving me this great opportunity of studying and performing re-
search in University of Waterloo, for his continuous support, for his patience, motivation
and immense knowledge. Without him this thesis would not be possible.

Next, I would also like to thank Dr. Jianmei Guo, for his guidance and help in this
project. For his outstanding patience and methodical approach, for his motivation and
desire to make me an independent researcher.

I would like to thank Professor Daniel Lizotte and Professor Eric Blais for being re-
viewers of this thesis and providing a lot of detailed and useful feedback.

I thank my fellow labmates in Generative Software Development Lab that always
helped me with advices and made my studies much more joyful: Alexander Murashkin,

Ed Zulkoski, Jess Alejandro Padilla Gaeta, Leonardo Passos, Michal Antkiewicz, Rafael
Olaechea, Wenbin Ji and Zubair Akhtar.

Last but not the least, I would like to express my deepest gratitude and love to my
parents and my sister, for supporting, loving and caring about me my entire life.

v

Dedication

This work is dedicated to my parents and my sister, people that I will always love.

Table of Contents

List of Tables viii
List of Figures ix
1 Introduction 1
2 Motivating Example 3
3 Regression Methods 5
3.1 CART . . . e 5
3.2 Baggingo 10
3.3 Random Forest 11
3.4 SVM Regression 11
4 Parameter Tuning 15
5 Implementation and Parameter Settings 20
5.1 CART e 20
5.2 Bagging and Random Forest00 21
5.3 SVM Regression 22

vi

6 Evaluation
6.1 Subject Systems
6.2 Experimental Setup

6.3 Results and Discussion . .

6.3.1 Prediction Relative Errors

6.3.2 Sensitivity Analysis
6.3.3 Threats to Validity
6.3.4 Related Work . . .

7 Conclusion and Future Work
APPENDICES
8 Experimental R code

References

vii

23
23
24
26
26
28
29
29

40

42

43

49

List of Tables

2.1

6.1

6.2

A sample of 16 randomly-selected configurations of X264 and corresponding
performance measurements (seconds)

Overview of investigated systems; Lang. - Language; LOC - Lines of code;
C - number of all valid configurations; N - number of all features

Relative errors of different regression methods for different subject systems,
different sample sizes (i.e., |S]), and different parameter settings including
the best, average, and worst cases. Bold font indicates the smallest relat-
ive error for specified system and sampling size across the same parameter
settings of different regression methods

viil

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3

4.4

4.5

4.6

6.1

6.2

Regression tree built from X264 sample 7
Example regression tree 1, generated by bagging from X264 sample

Example regression tree 2, generated by bagging from X264 sample

Example of linear e-SV regression 14
Example of non-linear e-SV regression 14
Example pseudo-random sequences, generated using linear congruential gen-

erator, for 102, 10% and 10* samples 17
Example pseudo-random sequences, generated using Knuth multiple recurs-

ive generator, for 102, 10* and 10* samples 17
Example pseudo-random sequences, generated using Mersenne Twister 2002
generator, for 102, 10® and 10* samples 18
Example quasi-random sequences, generated using Latin Hypercube algorithm,

for 102, 103 and 10 samples 18
Example quasi-random sequences, generated using Halton algorithm, for

102, 10% and 10 samples 19
Example quasi-random sequences, generated using Sobol algorithm, for 102,

103 and 10% samples 19

CART relative errors for different configurable systems, sampling sizes and
parameter settings. Relative errors that are greater than 10% threshold are
showninred. 32

Bagging relative errors for different configurable systems, sampling sizes and
parameter settings. Relative errors that are greater than 10% threshold are
shown inred. 33

X

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Random Forest relative errors for different configurable systems, sampling
sizes and parameter settings. Relative errors that are greater than 10%
threshold are shown inred. 34

SVM relative errors for different configurable systems, sampling sizes and
parameter settings. Relative errors that are greater than 10% threshold are
shown inred. L 35

Relative errors of regression methods for BerkeleyC system, using different
sampling sizes and parameter settings. Relative errors that are greater than
10% threshold are shown inred. 36

Relative error distributions of CART for different systems and different
sampling sizes 37

Relative error distributions of bagging for different systems and different
sampling sizeso 37

Relative error distributions of random forest for different systems and dif-
ferent sampling sizeso L 38

Relative error distributions of SVM for different systems and different sampling
SIZES . . .o 38

Relative error distributions of different regression methods for BERKELEY
DB C system and different sample sizes 39

Chapter 1

Introduction

Most of the modern software systems nowadays provide configuration options to modify
both functional behaviour of the system, i.e. how and what functions system is going
to execute, and non-functional properties of the system, like performance and memory
consumption.

Configuration options of a software system that are relevant to users are usually called
features. Certain selection of features together defines a configuration of a software system.
Each feature of a system has a direct influence on behaviour and non-functional properties.
One of the most important non-functional properties is performance, because it has a direct
influence on the user’s perception of the system. Performance is influenced by many factors,
one of which is the system configuration.

In the current work we try to determine the influence of feature selections on system
performance. Understanding this correlation is a non-trivial task. We regard a software
system as a black box and try to infer the correlation between feature selection and per-
formance to predict performance based on a given system configuration.

The most straightforward approach to solving this problem is to actually measure the
performance of all possible configurations of a system, create a table of correspondence
between configurations and performance and give exact value of performance for each con-
figuration. Unfortunately, this approach is feasible only for very small systems because
number of possible configurations is exponential in number of features. Moreover, meas-
urement effort of individual configuration is potentially high (e.g., executing a complex
benchmark)[3]. Furthermore, in practice only a limited amount of performance measure-
ments might be available, that covers only a small part of all possible configurations.

Another approach is to measure the performance contribution of each feature and pre-
dict the performance of the system by summing up the contributions of all selected features
in a given configuration. Unfortunately, this approach might not be accurate because fea-
ture interactions can lead to unpredictable performance anomalies[15]. Siegmund et al.[15]
overcame this hurdle by detecting performance-relevant feature interactions using specific
sampling heuristics that meet different feature-coverage criteria. However, in practice, the
program variants that we can measure or that we already have at our disposal may not
meet any feature-coverage criterion.

Guo et al.[8] addressed this issue by using regression analysis based on small random
samples of measured variants. But they used only one regression technique, called Clas-
sification And Regression Trees (CART), and they did not perform systematic parameter
tuning and sensitivity analysis (i.e., the prediction accuracy varies widely with the para-
meter settings of the used methods).

In this paper, we aim at an empirical comparison of different regression methods for
variability-aware performance prediction. We compare CART to three other popular re-
gression techniques: bagging[!], random forest[5], and support vector machines (SVM)[25].
We evaluate the prediction accuracy of each regression method based on small random
samples of measured program variants. Moreover, we analyse the parameter sensitivity
of each regression method using a state-of-the-art parameter sampling technique, called
Sobol sampling[14], which chooses a representative set of parameter settings that evenly
cover the parameter space of each method. We conduct experiments on the same dataset
used in[18, 8], which covers six real-world software programs.

In summary, we make the following contributions:

e Methods. We extend our previous work[3] and use four regression methods, in-
cluding CART, bagging, random forest, and SVM, for variability-aware performance
prediction based on only small random samples of measured program variants.

e Evaluation. We evaluate the prediction accuracy of each regression method by
experiments on six real-world software programs. Moreover, we use Sobol sampling
to analyse the parameter sensitivity of each regression method.

e Findings. Our empirical results show that bagging outperforms all other techniques
in terms of prediction accuracy in most cases from the combination the analysed
different software programs, different sample sizes, and different parameter settings.
Furthermore, bagging is identified as the most stable method with regard to para-
meter sensitivity.

Chapter 2

Motivating Example

To motivate our work, we use the same example from our previous work|[], a configurable
command-line tool X264 for encoding video streams into the H.264/MPEG-4 AVC format.
In this example, we consider 16 encoder features of X264, such as encoding with multiple
reference frames and parallel encoding on multiple CPUs. The stakeholder can select
different features to encode a video. The encoding time is used to indicate the performance
of X264 in different configurations. A configuration represents a program variant with
a certain selection of features. This example with only 16 features gives rise to 1,152
configurations. Intuitively, 16 binary features should provide 26 different configurations,
however, in this work we consider only valid configurations i.e. configurations that are
allowed by the system under investigation.

In practice, often only a limited set of configurations can be measured, either by simu-
lation or by monitoring in the field. For example, Table 2.1 lists a sample of 16 randomly-
selected configurations and their actual performance measurements. How can we determine
the performance of other configurations based on a small random sample of measured con-
figurations?

To formulate the above issue, we represent a feature as a binary decision variable x.
If a feature is selected in a configuration, then the corresponding variable is set to 1, and
0 otherwise. Assume that there are N features in total, all features of a program are
represented as a set X = {x1,xs,...,xx}. A configuration is an N-tuple c, assigning 1 or 0
to each variable. For example, each configuration of X264 is represented by 16-tuple, e.g.
ci=(r1=1Lxs=1,23=0,24=0,...,716 = 1). All valid configurations of a program are
denoted by C.

Each configuration c of a program has an actual measured performance value y. Per-

Conlf. Features Perf. (s)

C; Ty X2 T3 Ty Ty Tg Ty g Ty9g T1p Ti1 Ti2 Ti3 T4 Ti5 Tie Yi
(] 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 292
Co 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 071
C3 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 681
Cy 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 263
Cs 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 536
Cg 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 305
o 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 408
Cg 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 278
Co 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 519
C1o 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 781
C11 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 822
Ci2 1 1 0 0 1 0 0 O 1 0 1 0 1 0 0 1 713
Ci3 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 381
Ci4 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 564
Cis 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 489
Cig 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 275

Table 2.1: A sample of 16 randomly-selected configurations of X264 and corresponding
performance measurements (seconds)

formance values are taken from publicly available dataset deployed with SPLConqueror
tool[17]. Detailed description of the dataset is given in Section 6.1.

All performance values of all configurations C form set Y. Suppose that we acquire a
random sample of configurations Cg C C and their actual measured performance values
Ys C Y, together forming sample S. The problem of variability-aware performance predic-
tion is to predict the performance of other configurations in C\Cg based on the measured
sample S.

We regard all variables in X as predictors and a configuration’s actual performance
value y as the response. In other words, we predict a quantitative response y based on a
set of categorical predictors X, which is a typical regression problem[9]. Due to feature
interactions[13], the above issue is reduced to a non-linear regression problem, where the
response depends non-linearly on one or more predictors|s].

Chapter 3

Regression Methods

To address the above non-linear regression problem, we introduce four popular regression
methods, including CART, bagging, random forest, and SVM. We use the motivating
example of Chapter 2 to explain how each regression method works for variability-aware
performance prediction.

3.1 CART

Decision trees, also referred to as Classification and Regression Trees (or CART), is one of
the most widely used machine learning techniques for data analysis[27]. Although CART
might not perform as well as other classification or regression methods, it can be displayed
graphically and is easily understood by the user[10]. The general idea of the method is to
recursively partition data under consideration into smaller segments, until a local prediction
model can be fitted into every segment. After partitioning is performed, all local prediction
models are organised into a global prediction model in the form of a binary decision tree.

Previously, CART has already been used by Guo et al.[8] for variability-aware per-
formance prediction. To illustrate how CART generates regression trees, we are going to
continue with our motivating example. We use CART to generate a regression tree from
the sample S of X264 data, presented in Table 2.1 on page 4. The resulting regression tree
is presented on Figure 3.1 on page 7.

To generate the tree, CART starts with a sample S that contains a set of 16 configura-
tions cq, €y, ..., €1 along with their performance measurements v, 9s, ..., y16. Then, CART
starts recursive partitioning of the sample S into smaller sections. At first, S is split into

two subsections by value of a selected feature variable x,. The variable xz; is selected by
exhaustively searching the feature variable set X for a variable that provides the best split
in terms of reducing the total prediction error in both subsections. As shown in Figure 3.1
the variable that provides the best split for sample S is x14. All configurations that have
x14 = 1 go to the left subsection, while configurations that have x4 = 0 go to the right
subsection. Partitioning into further subsections is performed in the same manner.

The local prediction model of a section is defined by the sample mean of actual per-
formance values of configurations that are collected in the corresponding section.

1
ls, = S >y (3.1)

Y; €Si

The training error of a section is calculated by a common loss function, the sum of
squared error loss, i.e., the sum of squared differences between the local prediction and
actual performance values in section S;[9]:

> Lyjls) = > (y—1s,)’ (32)

Y; €5; Y; €S5;

Therefore, the selection of a feature variable x for splitting of a section into subsections,
i.e. splitting of .S; into S;; and S;g, is done by minimizing the following sum:

Z L(yj7lSiL>+ Z L(yﬁlsm) (3.3)

Y €SiL Y;€Sir

The partitioning process is controlled by the parameters of CART, as we explain in
Section 5.1 on page 20. After the partitioning process is finished, all local estimators are
combined into a global prediction model in the form of a binary decision tree, which we
call a regression tree, denoted as RT(X,S).

The generated regression tree is used to predict the performance of a given configura-
tion. Each non-terminal node of the regression tree represents a feature-selection condition
and determines whether the given configuration meets the condition or not. A performance
prediction is acquired when a terminal node is reached. For example, given a configuration
with feature selection (x4 = 1,219 = 0, 23 = 1), the third leaf from the left of the regression
tree of Figure 3.1 is matched. Thus, the predicted performance value of the configuration
is 483 seconds.

X14 = 17?

YES NO

Figure 3.1: Regression tree built from X264 sample

X14 = 1?

YES NO

X16 — 1? X7 = 1?

(o) () [a7]) (s8] () (2]

Figure 3.2: Example regression tree 1, generated by bagging from X264 sample

YES NO

X116 — 1? Xo = 1?

x4 =12 [302 | [276 |

Figure 3.3: Example regression tree 2, generated by bagging from X264 sample

3.2 Bagging

Regression trees discussed in the previous section experience high variance[10], i.e. if we
break the initial training set into several training subsets and generate a different regres-
sion tree out of each subset, the results provided by those trees might be quite different.
Bootstrap aggregation, or Bagging, is a method for generating multiple versions of a given
predictor and averaging over these versions when predicting a numerical outcome, in or-
der to get a new, aggregated predictor[!]. Bagging of regression trees generates multiple
regression trees and averages over predictions of all regression trees to produce the final
result.

Bagging starts with the initial sample S and generates a set of bootstrap samples {SP}.
Each bootstrap sample S? is produced by random sampling with replacement from the
sample S, i.e., configurations along with their performance measurements are randomly
chosen from S to form the bootstrap sample S” and the same configuration may appear
more than once in SZ.

Next, following the same procedure of CART, bagging builds a regression tree based on
each individual bootstrap sample, and thus generates a set of regression trees { RT'(X, S?)}.
Each regression tree produces a performance prediction for a given configuration. Then,
bagging averages the performance predictions of all generated regression trees as the final
performance prediction of the configuration.

Bagging of regression trees can be summarized as follows:

1. Prepare a sample S = (Xg, Ys) from the configuration set C = (X,Y)

2. Draw with replacement a sequence of bootstrap samples {S)} from the sample
S =(Xs, Ys)

3. Generate a sequence of regression trees {rt(x, S(®))} from the sequence of bootstrap
samples {S(P)}

4. Obtain prediction results by averaging over all individual predictions of the sequence
of regression trees {rt(x, %))}

For example, assume that we generate two regression trees in total, presented in Figure
3.2 and Figure 3.3. Given a configuration with feature selection (214 = 1,216 = 1,26 = 0,23 = 0),
we acquire two predictions: 581 seconds and 512 seconds. The final prediction given by
bagging is the average of 581 and 512, i.e., 546.5 seconds.

10

3.3 Random Forest

Random forest[5] is another enhanced version of CART. Like bagging, random forest draws
a set of bootstrap samples {S®)} from initial sample S, and generates multiple regression
trees from these bootstrap samples. The main difference with Bagging is that Random
Forest introduces a subtle tweak to help decorrelate the generated regression trees[10].
This is done by modifying how regression trees are constructed. “Classical” regression
trees, described previously, explore all features of a given configurable system at each split,
to select the one that provides lowest training error. Random Forest on the contrary,
instead of using all features of the configurable system, for each tree and at each split in
that tree, uses only a random subset of features.

There is a rationale behind this approach. Let’s suppose that out of all features X
of a configurable system, feature x14 is the most useful for prediction. Because of that,
in Bagging, most of the trees might start splitting the data sample using x4 feature,
since most of the time this feature variable will provide the best reduction in prediction
error. Therefore, generated regression trees might be very similar, or correlated, to each
other. However, averaging many highly correlated quantities does not lead to reduction in
variance as big as when averaging many uncorrelated quantities|10].

We denote regression trees in Random Forest as “randomized” regression trees, or
rrt(x, S(P)) since only a random subset of features is used to build each one.

So the actual algorithm of Random Forest has the following structure[12]:

1. Prepare a sample S = (Xg, Ys) from configuration set C = (X,Y)

2. Draw with replacement a sequence of bootstrap samples {S)} from the sample
S = (Xs, Ys)

3. Generate a sequence of “randomized” regression trees {rrt(x,S®)} from the se-
quence of bootstrap samples {S(®)}

4. Obtain prediction results by averaging over all individual predictions of the sequence
of “randomized” regression trees {rrt(x, S))}

3.4 SVM Regression

Support Vector Machines (SVM) is a family of machine learning techniques used for clas-
sification and regression analysis. Different from CART, bagging, and random forest that
build regression trees to carry out regression, SVM[25] creates a hyperplane and uses it for
value approximation in regression problem. Using special functions called “kernels” to work

11

with non-linear problems, SVM can map input into a higher-dimensional decision space and
use hyperplane in that space for solving regression problem. Overall, SVM is considered to
perform well on prediction problems that are non-linear and high-dimensional[27], which
fits our variability-aware performance prediction problem.

We adopt e-SV regression|[25], which is the simplest SVM for regression. e-SV regression
creates a hyperplane f(c) which has maximum deviation from each actual measured per-
formance y; specified by parameter ¢, i.e. deviation of hyperplane from each performance
value is not greater than ¢.

The hyperplane in the current context is defined as flat affine subspace of the target
space, where regression problem is being solved. If the target space is 2-dimensional one,
then the hyperplane in that target space would be 1-dimensional flat affine subspace, i.e.
a line. If the target space is 3-dimensional one, then the hyperplane in that target space
would be 2-dimensional flat affine subspace, i.e. a plane. In our motivational example,
X264 has 16 configurable features, therefore the target space is 17-dimensional one. Then
the hyperplane in the target space would be 16-dimensional flat affine subspace.

The hyperplane used by e-SV regression is defined as follows:

f(c)={(w,c)+b (3.4)

where (-, -) denotes a dot product, w denotes a normal to the hyperplane, and b denotes
a scalar. The hyperplane defined above is linear one and can be used for linear regression,
as shown in Figure 3.4.

In Figure 3.4 actual regression hyperplane f(c), that is used for value approximation,
is surrounded by hyperplanes f(c)+¢ and f(c)—e¢, that form e-insensitive region, in which
all performance measurements should fall. Performance measurements are represented by
black crosses.

One way to use linear hyperplane f(c) for a non-linear regression problem is to prepro-
cess all original predictors in X using a mapping function ® : X — D into a decision space
D, in which the linear hyperplane can be used. Moreover, since -SV regression depends
only on dot products of the values in space D, it is enough to know only a kernel function
k(c;, cj) for calculating dot products in space D, and to use it to build hyperplane in the
decision space. For our experiments a general purpose Radial Basis kernel (or Gaussian
kernel) is used:

K(ei,) = exp(—olle; —) (3.5)

where ¢ is a tuning parameter called inverse kernel width.

12

Sometimes it is necessary to allow some measurements to lie beyond e-boundary. In
order to account for those measurements, the coefficient C' is introduced to specify the cost
of constraint violation, i.e., how far beyond e-boundary measurements can lie.

Unfortunately it is not possible to visualize SVM for our motivational example, since
X264 has 16 configurable features and SVM would build a hyperplane in a 17-dimensional
space. But for the sake of illustration, let us suppose that using a special mapping function
¥ : X — X’ we can convert our observations from 16-dimensional space to 1-dimensional
space. In this case our regression problem will look similar to Figure 3.5. In order to carry
out performance prediction using example regression hyperplane, one should take system
configuration ¢, map it to ¢’ using function ¥, and get performance prediction value from
hyperplane, corresponding to c’.

13

fle)+ ¢
f(e)
fle)— e

Figure 3.4: Example of linear e-SV regression

Y
Fo) + ¢
f(e)
fle)— ¢

-

R 1T .
+ + Yoo +
+ £
/\/
+
+ ___ o+ " €
T Tl +_ _+_”

Figure 3.5: Example of non-linear e-SV regression

14

Chapter 4

Parameter Tuning

Most of machine-learning algorithms encompass parameters - flags, arguments and other
configuration data - that guide execution process of the algorithms[3]. For CART these
parameters include minimal number of observations in terminal nodes and maximal depth
of generated regression tree, for Bagging and Random Forest these parameters include
number of regression trees to be generated and number of features to be considered in
each split, while for SVMs these parameters include width of e-insensitive region and
cost of constraint violation by outliers. Usually, the parameters have a strong influence
on the prediction accuracy of the algorithms. However in many studies parameters of
machine-learning algorithms are chosen by researches empirically, relying on experience
with particular algorithms, datasets or research problems.

There are many different techniques proposed for systematic parameter tuning. The
simplest technique is called grid search[3]. Grid search works in the most straightforward
way possible. It generates all possible combinations of parameters for a given algorithm.
If parameters are continuous, grid search carries out discretisation of parameters with
specified intervals. After generation of combinations is complete, grid search executes the
algorithm using each and every combination, assessing algorithm’s performance. When all
combinations are assessed, grid search selects the one that produces the best prediction
accuracy.

Different from grid search, random search generates a set of parameter combinations
that are randomly selected according to sequences of random numbers[3]. There are differ-
ent types of random numbers available for use. By definition, standard random numbers
(SRNs) are independent observed values of a random variable v that is uniformly distrib-
uted in the interval 0 < x < 1[22]. Unfortunately, variable 7 is an ideal mathematical

15

abstraction that is not practically available[21], therefore for actual computer modelling
pseudo-random and quasi-random numbers[28] can be used.

Numbers 71,79, - - - are called pseudo-random if they are generated in terms of a spe-
cified formula, i.e. they are not actual SRNs, but satisfy certain properties of random
numbers[22]. Different methods were created for generation of sequences of pseudo-random
numbers like: general linear congruential generators, multiple recursive generators and gen-
eralised feedback shift registers.

Numbers 01, 0o, - - - are called quasi-random if, while also being generated in terms of a
specified formula or algorithm, they fill the space under consideration more uniformly[11],
therefore quasi-random numbers are preferred to pseudo-random numbers in some applic-
ations. Therefore, quasi-random numbers are often recommended and used in systematic
parameter tuning. Moreover, empirical studies have demonstrated that random search is
more efficient than grid search for parameter tuning[3]. Various methods were created for
generation of sequences of quasi-random numbers, for example: Halton sequences, Latin
Hypercube Sampling and Sobol sequences.

Pseudo-random sequences are presented on Figure 4.1, Figure 4.2 and Figure 4.3 on
page 17. Quasi-random sequences are presented on Figure 4.4, Figure 4.5, and Figure 4.6
on page 18. As we can see from these figures, pseudo-random sequences have areas of low
and high density, while quasi-random sequences fill the space more evenly.

We use random search with quasi-random numbers for the parameter tuning of regres-
sion methods. Among many techniques that generate quasi-random numbers, we choose
Sobol sampling[14], because it explicitly minimizes the density differences across samples
and covers the parameter space more evenly. Furthermore, Sobol sampling has been re-
commended for parameter sensitivity analysis[10].

For implementation of Sobol sequences in our code, an R package called randtoolbox
was used|[7]. In order to generate different Sobol sequences, Owen type scrambling with a
specified random seed was used.

16

e

: %.rws.,n E W.WS
ris? {

X BA SR e
g LI
ek e g NN
e

¥
&

0.75-
> 0.50

0.25-

0.00

1.00 -
0.75-
0.25-
0.00 -

1
o
o
=}
A

1.00 -
0.75 -
5 .
0.25-
0.00 -

generated using Knuth multiple recursive

9

17

0.00 -

|
0
M~
=)

1.00-
>050- .

Example pseudo-random sequences

generator, for 10%, 10? and 10* samples

1.00 -
0.75 -
> 050~
0.25-

Figure 4.1: Example pseudo-random sequences, generated using linear congruential gener-

ator, for 102, 10® and 10* samples

Figure 4.2:

2822 A S
Wﬁxw.ﬁwm&.: n

4

0
5

b
:

100~ gygzem
%

e,

generated using Mersenne Twister 2002
SRR
t%&“f,fgy,.

o
8 B
C o
=i
]
= -8
S g
n wm
(]
—
g 2 : -3
L) o 5 . S g ! ! _ ! o
=5 88 3 Bl - -
A < A
w_14
3 59 |3
g =h &
N % nna
wn ['e]
& =3 -8
R
3 = 8
ke R o
X —
M =
o .
" -8 = -d
R
. < 3 . .
-0 - -9
1 1 1 | | ° mbv m 1 1 1 1 | °
8 2 3 & 8 = O 8 2 3 & 8
- o =1 =1 =] a0 9 - IS} =) IS} 5}
A — QO A
[o

, generated using Latin Hypercube algorithm,

18

Figure 4.4: Example quasi-random sequences

for 102, 10 and 10* samples

1.00-
0.75-
>0.50-
0.25-
0.00-

I 1 I

0.00 0.25 0.50

X

1.00- o0 -

0.75-
> 0.50-
0.25-
0.00- - 3
| 1 I 1 I 1 1
0.75 1.00 0.00 0.25 0.50 0.75 00
X

075- %

> 050-
0.25-
0.00 - “
1 1 1 1 1
0.00 0.25 0.50 0.75 1.00
X

Figure 4.5: Example quasi-random sequences, generated using Halton algorithm, for 102,

103 and 10* samples

1.00-
0.75- o
-
> 0.50- = = .
M s
.
0.25-
.
0.00 -
| | |
0.00 0.25 0.50
X

1.00- -
0.75- -
7
>050- +
0.25- ¢+
0.00- .
! \ ! ! \ ! \
0.75 1.00 0.00 0.25 0.50 0.75 1.00
X

0.75-

>0.50- .

0.25- ¥

0.00 -

Figure 4.6: Example quasi-random sequences, generated using Sobol algorithm, for 102,

10 and 10* samples

19

Chapter 5

Implementation and Parameter
Settings

We implement the regression methods for variability-aware performance prediction in R
3.0.1[15]. R is an open-source language and environment that provides many packages
for implementation of statistical learning (classification and regression, linear and non-
linear modelling, clustering and time-series analysis, etc.) and graphical (well-designed
publication quality plots, mathematical symbols and formulas, etc.) techniques.

We use packages RPART[21], RANDOMFOREST[!2] and KERNLAB|! 1] for regression ana-
lysis, and adopt package RANDTOOLBOX|7] for Sobol sampling. To implement each regres-
sion method, we consider a number of key parameters for parameter tuning and sensitivity
analysis, which will be explained in the following sections.

Almost every parameter of all regression methods, described in this work, has extreme
values that for certain lower predictions accuracy of the method. Therefore, when perform-
ing parameter tuning or sensitivity analysis of our regression methods, we perform initial
empirical testing of parameter values to identify reasonable parameter range of values for
tuning.

5.1 CART

We implement CART using R package RPART[24]. RPART provides functionality for re-
cursive partitioning of data and creation of regression trees. For parameter tuning and
parameter sensitivity analysis we consider the following key parameters of CART:

20

e minsplit - controls the minimum amount of observations that must exist in a tree
node in order for further partitioning. In our experiments, minsplit varies in the
integer value range [2,10]. Lower bound is set to the lowest possible value for this
parameter - 2. Upper bound is set to 10 to guarantee creation of non-trivial regression
trees, i.e. trees that have more than one node. Setting upper bound any higher is
not desirable since we are using a small sample of observations.

e minbucket - specifies the minimum amount of observations that must be present
in any leaf of a regression tree. In our experiments, minbucket varies in the integer
value range [2,10]. Lower bound is set to 2 in order to allow complex trees with
many terminal nodes to be grown. However, setting lower bound to 1 might cause
overfitting of our regression models to training samples. Upper bound is set to 10,
because setting it any higher won’t make any difference due to a small number of
training observations.

e maxdepth controls the maximum depth of a regression tree. In our experiments,
maxdepth varies in the integer value range [2,20]. Lower bound is set to 2 in order
to allow non-trivial regression trees to be grown. Setting upper bound higher than
20 is not needed due to a small number of training observations.

e cp is complexity parameter that controls optimal size of a regression tree. cp specifies
the minimum improvement in prediction accuracy that each split in a regression tree
should provide. If splitting a node does not produce prediction improvement higher
than cp, splitting will not happen. In our experiment, cp varies in the real value
range [0.0001,0.01], which is chosen by preliminary empirical tests to provide best
values.

5.2 Bagging and Random Forest

We implement Bagging and Random Forest using R package RANDOMFOREST[!2]. We
consider the following key parameters for tuning and sensitivity analysis:

e ntree - specifies the number of trees that will be created. In our experiments, nitree
varies in the integer value range [2, 20]. Lower bound is set to 2 to allow averaging over
different regression trees. Upper bound is set to 20, because, as empirical estimation
has shown, setting it any higher doesn’t provide any improvement to prediction
accuracy.

e nodesize - controls the minimum amount of observations in any terminal node of a
regression tree. This parameter is analogous to the minbucket parameter of CART.
In our experiments, nodesize varies in the integer value range [2,10]. Minsplit

21

parameter is not directly accessible in RANDOMFOREST package and is calculated
automatically.

e mtry - specifies the number of feature-selection variables that are considered when
creating a regression tree. This parameter indicates the key difference between bag-
ging and random forest. For bagging, mitry is fixed to the number of all feature-
selection variables, i.e., |X|. For random forest, mtry varies in the integer value
range [|X|/3,]X]/2]. The lower bound is set to default mtry value for regression.
The upper bound is set to a value chosen by our preliminary experiments. Setting
upper bound to a larger number will make Random Forest results very similar to
Bagging.

5.3 SVM Regression

We implement SVM using R package KERNLAB/[| |]. The parameters we consider for tuning
and sensitivity analysis are as follows:

e epsilon, i.e., € - specifies the width of error-insensitive boundary of a SVM hyper-
plane for regression. In our experiments, the parameter varies in the real value range
[0.01,1]. Those values were chosen by our preliminary experiments.

e sigma, i.e. o specifies inverse kernel width for Radial Basis Kernel. KERNLAB
provides a special function to automatically tune sigma parameter. Nevertheless, in
our experiment, we manually vary sigma in the real value range [0.01, 1]. This range
is based on our empirical observations of best values for sigma.

e C represents the cost of constraint violation. In our experiments, C' varies in the real
value range [1,100]. This interval is also based on preliminary experiments.

22

Chapter 6

Evaluation

We conducted a series of experiments to evaluate the four regression methods for variability-
aware performance prediction. We compared the prediction accuracy of the regression
methods and analysed their parameter sensitivity.

6.1 Subject Systems

We chose a publicly available dataset deployed with the SPLConqueror tool[17]. This
dataset contains six real-world configurable systems with different sizes, implementation
languages, configuration mechanisms and application domains. The dataset includes all
configurations of each system along with their performance measurements (the exception is
SQLITE, for which the dataset contains 4,553 configurations for prediction modelling and
100 additional random configurations for prediction evaluation[!8]). Table 6.1 presents a
summary of configurable systems included in the dataset.

Performance of these subject systems was measured using standard benchmarks, either
provided by vendors or used widely in the corresponding application domains. For example,
to measure the performance of BERKELEY DB C, Oracle’s standard benchmark was used,
while AUTOBENCH and HTTPERF were used for measuring the performance of APACHE
WEB SERVER|3].

23

SYSTEM LANG. LOC C N

APACHE C 230,277 192 9
LLVM C++ 47,549 1,024 11
X264 C 45,743 1,152 16
BERKELEY DB C 219,811 2,560 18
BERKELEY DB JAvA 42,596 400 26
SQLITE C 312,625 3,932,160 39

Table 6.1: Overview of investigated systems; Lang. - Language; LOC - Lines of code; C -
number of all valid configurations; N - number of all features

6.2 Experimental Setup

Our experiment can be divided into three main steps: data preparation, regression method
preparation, and regression analysis. During data preparation phase, data is loaded and
random samples for analysis are generated. To assess effectiveness of our approach we
use small random samples of different sizes to train our regression methods. We generate
samples that are linear in the number of system features, which is reasonable in practice if
cost of performance measurement is high. Throughout method preparation, method para-
meters are analysed and parameter combinations for analysis are selected. Finally, using
generated random samples and parameter combinations, regression analysis is performed.

In detail the whole experiment has the following structure:

1. Data preparation.

(a) We load data for each subject system and calculate the number of involved
features N.

(b) As described before, we generate five sampling sizes in the form of 7' N, where
T is the training coefficient with value from 1 to 5 and N is the number of
features in each system. For example X264 has 16 features, therefore 5 different
sampling sizes for X264 will be generated: 16, 32, 48, 64, 80.

(c) For each configurable system (e.g. X264) we generate 10 random samples of
each of the generated sampling sizes (e.g. 16, 32, 48, 64, 80) from the original
dataset.

2. Regression method preparation.

(a) We identify a set of parameters for each regression method. Thorough descrip-
tion of parameters for each method under study is provided in Chapter 5. For
example, for CART method, minsplit, minbucket, maxdepth and cp are

24

()

selected.

For each parameter of a certain regression method, we set a range of values for
parameter tuning; For example, for CART method, value range for minsplit
parameter will be [2,10];

We use Sobol sampling to generate 1000 quasi-random numbers and convert
them to the corresponding random parameter settings. For example, for CART
method, for minsplit parameter, Sobol sampling will provide value 0.875 which
will be converted to 8, a value from minsplit range [2, 10].

3. Regression analysis.

(a)

(b)

From the 1000 randomly-generated parameter settings, we choose one to ini-
tialise each regression method. For example, all parameters of CART method
will be initialised with values that Sobol sampling provided, e.g.: minsplit - 8,
minbucket - 9, maxdepth - 17, cp - 0.002;

For a certain parameter setting of each regression method, we run the regression
method 10 times and calculate the relative error of each run using the following

formula:
actual — predicted

Relative Error = x 100%

actual

The relative error is the relative difference between the actual measured per-
formance value and the predicted performance value. For example, if the actual
measured performance of a given configuration is 536 and predicted performance
is 512, then relative error will be calculated as follows:

536 — 512

1 =4.
= ‘x 00% 5%

Relative Error = ‘

We average over 10 different relative errors of all runs of selected regression
method (e.g. CART), selected parameter settings, and produce the average
relative error.

We repeat steps (a)-(c) for all studied configurable systems, sampling sizes, re-
gression methods and generated random parameters of each regression method.
We aggregate all acquired relative errors into a single results Table 6.2 on
page 31.

We analyse prediction accuracy and sensitivity to parameter settings of each
regression method.

25

6.3 Results and Discussion

In this section, we present our experimental results. We compare the prediction relative
errors of the regression methods and analyse their parameter sensitivity.

6.3.1 Prediction Relative Errors

Table 6.2 lists experimental results, showing prediction relative errors for different con-
figurable systems, sampling sizes, regression methods and parameter settings. For each
configurable system, we present prediction results for five different sampling sizes: N,
2xN,3%xN,4x N, and 5 * N; where N is the total number of features in the system. For
each regression method, we perform Sobol sampling to choose 1000 parameter settings, and
then present the prediction results using the best, average, and worst parameter settings.
Best parameter settings are those that provided the smallest relative error for given regres-
sion method and sampling size, and therefore the best result. Worst parameter settings are
those that provided the biggest relative error for regression method and sampling size, and
therefore the worst result. Average parameter settings are those that provided the closest
relative error to the mean relative error of all 1000 parameter settings for given regression
method and sampling size. We regard a relative error below 10%, i.e., an accuracy above
90%, as an acceptable prediction.

CART

CART overall produces good prediction results. For APACHE system, CART reaches a
relative error of 8.2% using a sample of 3 * N measured configurations with the best para-
meter setting, and 9.8% using 5 * N measured configurations with the average parameter
setting. For BERKELEY DB C system, CART is not able to produce an acceptable relative
error using any experimental setting. For BERKELEY DB JAVA system, CART reaches 3%
relative error using only N measured configurations with the best parameter setting, 8.1%
using 2 * N configurations for the average setting, and 3% using 3 * N configurations for
the worst setting. For LLVM and SQLITE, CART gains acceptable relative errors using
a small sample of only N measured configurations with either the best, the average, or the
worst parameter setting. For x264, CART reaches relative error 7.3%, 8.4%, and 9.4%
using 2% N, 2% N, 3% N measured configurations with the best, the average, and the worst
parameter setting, respectively.

CART results are presented in the Table 6.2 and in the Figure 6.1.

26

Bagging

Bagging overall provides the best prediction results. For APACHE system, bagging produces
relative error 7.5%, 8.5%, and 8.5% using 3* N, 4+ N, and 5 * N measured configurations
with the best, the average, and the worst parameter setting, respectively. For BERKELEY
DB C system, bagging reaches a relative error of 6.1% using 5% N measured configurations
with the best parameter setting. For BERKELEY DB JAVA system, bagging reaches relative
error 6.9%, 3.3%, and 2.6% using N, 2 * N and 3 * N measured configurations with the
best, the average, and the worst parameter setting, respectively. For LLVM and SQLITE,
bagging reaches acceptable relative errors using only N measured configurations with either
the best, the average, or the worst parameter setting. For X264 system, bagging reaches
relative error 9.5%, 8%, and 8.4% using N, 2+ N and 3 * N measured configurations with
the best, the average, and the worst parameter setting, respectively.

Bagging results are presented in the Table 6.2 and in the Figure 6.2.

Random Forest

Random forest overall provides decent prediction results. For APACHE system, random
forest reaches a relative error of 8.8% using 5 * N measured configurations with the best
parameter setting. For BERKELEY DB C system, random forest is not able to produce an
acceptable relative error with any experimental setting. For BERKELEY DB JAVA system,
random forest reaches a relative error of 3.1% using 2 * N measured configurations with
the best parameter setting. For LLVM and SQLITE, random forest reaches acceptable
relative errors using only N measured configurations with either the best, the average, or
the worst parameter setting. For X264 system, random forest reaches a relative error of
7.7% using 2 * N measured configuration with the best parameter setting.

Random Forest results are presented in the Table 6.2 and in the Figure 6.3

SVM Regression

SVM overall provides the worst prediction results. For APACHE, BERKELEY DB C and
BERKELEY DB JAvA systems, SVM is not able to achieve an acceptable relative error
using any experimental setting. For LLVM and SQLITE, SVM reaches acceptable relative
errors using only N measured configurations with either the best, the average, or the worst
parameter setting. For X264 system, SVM produces a relative error of 9.2% using 3 x N
measured configurations with the best parameter setting.

SVM results are presented in the Table 6.2 and in the Figure 6.4.

27

Summary

According to the experimental results, different subject systems may make or break variability-
aware performance prediction using regression analysis. For example, all regression meth-
ods can produce acceptable prediction results for systems LLVM and SQLITE. However,
for BERKELEY DB C, only bagging is able to provide acceptable prediction results when
using samples of size less than 5 %« N. We suspect that these anomalies can be explained
by investigating feature interactions that are present in different configurable systems and
their influence on performance prediction.

We average the prediction relative errors of each regression method on six subject
systems, and present the results at the bottom of Table 6.2. Overall, bagging provides the
lowest prediction relative errors in most experimental settings. With the best parameter
setting, the smallest sample size needed for bagging to produce acceptable predictions is
3% N; but with the average parameter setting, the smallest sample size is 4% N. Only using
a sample of N and 2 % N measured configurations with the best parameter setting, CART
outperforms other regression methods. Moreover, we observe a stable decreasing relative
error with the increasing sample size of each regression method. That is, acquiring more
measurements always helps improving the prediction accuracy of regression methods.

6.3.2 Sensitivity Analysis

Figures 6.6, 6.7, 6.8, 6.9, 6.10 present the distributions of prediction relative errors of each
regression method with 1000 parameter settings for different subject systems and different
sample sizes. The 1000 parameter settings are generated by Sobol sampling to cover the
parameter space of each regression method evenly. We put the experimental results of five
subject systems together for convenient comparison. Experimental results for BERKELEY
DB C are presented in an independent Figure 6.10, as the relative errors for BERKELEY
DB C have a far larger ranges than those for other subject systems.

To analyse the parameter sensitivity of each regression method, we intuitively observe
the distributions of relative errors of each regression method for each system and for each
sample size, and we analyse the change trend of the distribution ranges, such as the range
between the best case and the worst case and the range between the second quartile and
the third quartile, with the increasing sample sizes. As the sample sizes increase, for
CART and bagging, we observe a rapid decrease in the distribution ranges of relative
errors for BERKELEY DB C, BERKELEY DB JAvA and x264 systems, while the ranges
remain stable for APACHE, LLVM and SQLITE systems. However, bagging reduces the

28

distribution ranges faster than CART for APACHE and BERKELEY DB Java. For random
forest, we do not see a substantial decrease in the distribution ranges of relative errors for all
subject systems. For SVM, we observe an increase in the distribution ranges for APACHE,
BERKELEY DB JavAa, LLVM and X264 systems. In general, if a regression method
has a larger distribution range of relative errors, then it is more sensitive to parameters,
because a random parameter change may cause a significant change in prediction accuracy.
Therefore, according to the experimental results and intuitive analysis, bagging is identified
as the most “stable” method that is quite insensitive to parameter settings when using a
sample with enough measured configurations. If the input sample is very small, such as
N, each regression method may present non-negligible parameter sensitivity.

6.3.3 Threats to Validity

To increase internal validity of our work, we performed automated sampling. All training
samples (from size N to 5 x N) were selected randomly from the whole population of
configurations for each subject system. The rest of the whole population was taken as
testing samples. For each configurable system and each sampling size, we repeated random
sampling ten times.

We are aware that more parameter settings would cover the parameter space more
evenly. However, finding more parameter setting comes at a cost: more prediction effort.
Hence, we use Sobol sampling to generate 1000 parameter settings for each regression
method. Moreover, more parameter tuning methods, such as Bayesian optimization, have
been proposed. We may compare different parameter tuning methods, which will be ex-
plored as future work.

To enhance external validity, we performed our experiments using six real-world soft-
ware systems of different sizes, different implementation languages, and different applica-
tion domains. However, we are aware that the results of our experiments are not automat-
ically transferable to all other software systems.

6.3.4 Related Work

Thereska et al.[23] proposed a model-based performance prediction approach AppModel
and applied it for performance modelling of popular client applications, such as Microsoft
Office Suite, Visual Studio, and Media Player. Systems under consideration were instru-
mented with performance monitoring capabilities, and all performance data were collected

29

from real-world deployments. AppModel analyses the collected performance data, and cre-
ates a performance prediction model using CART. However, AppModel works only with
hardware deployment parameters, such as CPU speed, memory size, network configuration;
it does not consider software configuration options, i.e., features. In contrast, we consider
software features and use different regression methods to build performance models.

Westermann et al.[26] proposed an approach that builds prediction models of expected
accuracy using the least possible number of measurements. Their approach uses three
measurement-point-selection algorithms for exploring the parameter space and two valida-
tion strategies for assessing the performance of prediction model. Their approach assumes
that all features involved in the prediction models are performance-relevant, while our work
considers all features of a software system.

Siegmund et al.[19] proposed SPLConqueror that automatically detects performance-
relevant feature interactions using specific sampling heuristics that meet different feature-
coverage criteria. On the contrary, the regression methods use random samples as basis
and avoid the effort of detecting feature interactions.

This paper extends our previous work[3] using CART for variability-aware performance
prediction. We add three popular regression methods and compare the prediction accuracy
of all regression methods.

Arcuri et al.[l] investigated parameter tuning in search-based software engineering.
They conducted empirical case studies on test data generation and developed a tool called
EvoSuite. They identified five parameters of EvoSuite for tuning. For each parameter, a set
of representative parameter values were chosen empirically. Different from their approach,
we define a value range for each parameter and then use Sobol sampling to randomly choose
a representative sample of parameters that cover the entire parameter space evenly.

30

SPOYJoW UOISSOIFIT JUSISPIP
Jo s3uryjes Iojomrered owres oY) ssorde ozls Surdures pue woIsSAs poywads I10] 0L OAIIR[OI JSO[[RWS O)
SOYROIPUI JUOJ P[Og "SOSBD JSI0M pUR ‘OFeIoA® ‘)soq oY) Suipnpul ssurjjes Iojouwrered jualofyip pue (
soz1s ojdures JuoIPIP ‘Sw)sAS 100[qns JUDISHIP 10J SPOYJOUL UOISSOISOI JUSIOPIP JO SIOLID DAIIR[OY 79 O[qe],

m; ?@.ﬂv

6 F 1T°L0T €9 F €79 9 Feee 9'6C F 9cel €01 F 6729 Ty Far TIT F22l ST F6'9 L0 F 8¢ VeI Fe8c 9TIF €4I TTF¢¢ Nx¢
€L F €11 L°0T F 789 v F 69 €L F 862l LT F 6'89 9eF VI Vel F 161 Y F 16 80 F 8% LELF L0E TVIF 161 CLFT9 Nx¥
7€C F ¢8IT LTl F 97 L'LF 86T 9T€ F 9Tel 90z F 199 T8 FCIC VI F L9T 7’8 F ¢Sl €V F €8 GPTIF T8 8GIF68C Tl F L°0T N« €
¢0€ F L¥eT 10T F 1°€8 99 F 1CE G'Te F 1'set 16T F €8L 96 F79¢ 6°ST F €°9¢ VI F 6°9T L8 F 86T LT F8IP @81 F L0¢ LTI FVET N=«¢
TLY F 80T T9¢ F 886 ¢09 F99¢ 6T1¢FFIer 8TEF 0l 9Fe F LGS 769 F 298 9T F 6'99 L'ce F 8¢ SIS F Tl C0RF LE9 6'9T + €°0¢ N ofeIAY
61T F87¢ ¥'c F 0c T F voe I'vFvel LOF TV 60 F 7’9 90 F V'V 80 F ¢ 0F LS 90 F 69 Nx§
TCF4Ge 7T Feee TeF 7€ 9C F ¥el 6G0F 6T L0 F 69 90 F €¢ 90 F 8¢ FOFT6 G0F 9L Nx¥
8T F LT 9¢ F€ce GEF TLT TF6¢ L0F V8 TFL9 €T FTg TOFT6 80F 78 N«¢€
¢ F 692 L'eF gee ' F 02 CTFLL e F o1 60F8 TTF99 97 F 8T €CF 01 N«¢
TeEFI7E 6CF 10€ €T F e e+ 97c ¥'eF VIl LY F LT g'¢ F €ct €T+ 96 8C F 7€ 96 F 8'1¢c €¢F 911 N P9cx
TOF ST e0FET T0F¥¥ coFo6e T0F9¢ 20 F eV T0F 8¢ T0F9¢ COF VY E0FTV c0F6€ Nx§
TOF 97 TOFET T0F ST TOF7 T0F L€ C0F T T0F6'¢ T0F 8¢ TOFTVY €0F 17 TOF TV N« ¥
TOFI9TV ¢TOFET 20 F SV TOFTY T0 F 8¢ €0 F eV TO0OF 7V T0F6¢€ 20 F SV C0FET TOF TV N« €
€0 F LV T0F¥7 CoOF TV 0 F LY 0 F €V 20 F TV €0 F 87 €0FEV e0FeCr SOF 6T €0F 97 COF VY Nx¢
70F €S T0F¢9V To0FETV €0F ¢ €0 F SV 0 FETV TOF TG TOF OV TOFTTY 90 F TG TOF LY €0FCT N onbg
TOF9 coFTE T0F 6T 70F6S eoFET 70F LT S0 Fge g0 F LT €0FCTT SOF ST 70F e 70 F €T N« §
TOFT9 €0FTE ToOFT1IC TOF9 90 F 4T €0F € g0 F6'¢ voFTE €0F 4T COF6T 90F6€ 70F LT Nx¥
CT0F 9 ¢0FLe 0 F2¢ 70 F6¢ €0 F 8T €0Fce S0 F SV 90 F9'¢ €0F 67T TOF VG ¥0F 97 LoFTE N« €
€0F €9 voF vy S0 F 8¢ c0F €9 SOF TG FOFTV 7’0 F 8¢ 90F 97 90F 7 LOFT9 LOF Ve 80F T N« T
C0OFT9 g0 F¢€g 90 F €V TOFT9 90 F 6¢ LOF 6T 60 F 6°¢ 80 F €'¢ 6G0F 67 ToOF €9 G0FT9 90 F LG N INATT
96 F 616 9'¢ F §'8¢ 7'¢F e LY F LY TeF Ve €0F 6T 70 F 8T 70F 9T €0F VI ToFeE ¢0F 9T €0FCT N« 6
[aRaNes 6T+ €6C 61 F 6°€C 9L F 687 ¢CF 991 70FCT voFT1C 0 F LT Co0FVL ToFE€ ¢0F9¢C TOF6T NxV
T Fvee €T F€0e 7'1TF66C SF TP 9 F €61 L0F LT 20F9¢ €0F T T0F 9T coFe G0 F LT c0Fc N« €
7TFLTE CTFCIE TTF 18 0T F ¢'67 7'e¢F e CTFTE LG F ot T F¢€¢ 20F 6T 6 F 96 oL+ 18 70F T N« ¢
¢l F9ce I F8IE T+ €0¢ L6 F ey 6°¢ F 6°0€ VLF 9Tl 7’9 F v0¢ L9 F €61 9 F 69 ¢ F e €CFVIC €0F¢e N [RSIEN]
0¢ F ¢'1ve T0& FTL6C TO9TF668 9061 F2C619 T&F L09¢ 9°CC F 80¢ 9°€9 F L'8¥ €T ¥ 8°1¢T vVeFT9 1L F 6°0¢T T8 F €99 Ty FIVI Nx§
186 F¢9L8 6LGF962e L0¢F €00l T6FT F €9 916 F T6C T'8T + 429 269 T 98 €ve F ¢¢ €T F LO0T S6LFEVFT 66LFFI8 €V F L1 Nx¥
STET FC609 TO0LFI9T9E Fob F GLIT LT FTCI9 60T F66cE 8T F 00T v'6L F LTITT 9°9% F 299 ¥'CC F 680 LG8 F IS8T 906 F 68T L'89 F 60V N« €
GLTFVIP9 PSITF T60F 8FEF €T GILT F T°¢F9 6'IPL F706E 867 F €7¢T 8°€8 F 9°64T T'8L F €LIT LCy F €99 TT6F 69T 9°€6 F 9€T LLYOF 68 N«C
LVLe F 8089 T60C F 1'96V T°€SE F ¥'PSC V'E€6C F ¢00L L'CGLT F 1¢G €TEL F ¢8LC L'6€E F V'PEV 9PET F 9°9LC €CCL F6'E€8T LT6C F 00L VP9V F+ 696 906 + 8°SEL N DAsEwg
'l F6¢€C I+ 802 IF L1 @V F 98¢ ¢ F 96l I+88 T'TF¢8 90 F 2L 90+ 29 61T F VLl 9'eF 86 90F 1L Nx§
9T F Ve €T F 9T PTF e8I €€ F 968 TCFT'Te STFE0r € F6cr €T F 98 €T F L TTF 98T €F 8T TTF6L Nx¥
ITF17C TTFCTC €T F 961 8T F €8¢ Y F QT TTFTIL 6°C F T8I 8T F ¢01 VIFGL 90 F 681 7T FETI 1F¢8 N«¢€
Tl F8¢€C T1F¢ce 'l +80¢ 8¢ F L0€ LT F97C vy F el €'¢ F 81T €€ F LLT SV F T'et €€ F 96T 9¢F 661 9 F9¢1 N«¢
8C F LGC 6CF 1Ge TeFCre 9 F Loe G F TR ¥'cF 9cc SV FTVC v F €€T ¢S F 6°0C LG F qoe L'GF G'8C €9 F 1Ic N opedy
«A.:v»w/ ofe. ~¢>< soq &muC»?w ¢m‘x.ﬂl>< 1sogq ISTIOANN WMﬁh@){ 1sogq «A.MC\// _wwﬁh@)¢< 1o
INAS 1S910,] WOpURY] Suisdeg IAVD
SPOYIDT\ UOISSIITN] wo)sAg

i
(ap]

Apache BerkeleyJ LLVM Sqlite x264

30 -

1seg

:\5

DLop- >

3 &

: £

=)

©

- II

I I--- e eEm III.

z
@

N 2N 3N 4°N 5°N 2N 3N 4°N 5°N PN FN4NEN N 2°NIN4NEN N 2°N 3N 4°N 5N
Sampllng Size

Figure 6.1: CART relative errors for different configurable systems, sampling sizes and
parameter settings. Relative errors that are greater than 10% threshold are shown in red.

32

Apache BerkeleyJ LLVM Sqlite x264

30 -

1seg

OII

30 -

N
o
1

abelany

Fault Rate (%)
]

30 -

N 2N 3N 4°N 5°N 2N 3N 4°N 5°N 2N FN4NEN N 2N 3N 4°N 5°N
Sampllng Size

20

1SIOM

N 2*N 3*N 4* 5*N

Figure 6.2: Bagging relative errors for different configurable systems, sampling sizes and
parameter settings. Relative errors that are greater than 10% threshold are shown in red.

33

Apache BerkeleyJ LLVM Sqlite x264
50 -

40 -

30 -

1seg

20 -
. I. 15 [150 s 0 0 0 0 ..--

50 -

»
o
|

:\f?
o =z
(0] ()
o 8
% [}
N I e eEmm II
50 -
40 -
g
@

IIIII I|||I lllll ERnEN IIIII
N

Figure 6.3: Random Forest relative errors for different configurable systems, sampling sizes

and parameter settings. Relative errors that are greater than 10% threshold are shown in
red.

2N 3N 4°N 5°N 2N 3N 4°N 5°N PN FN4NEN N 2°NIN4NEN N 2°N 3N 4°N 5N
Sampllng Size

34

Apache BerkeleyJ LLVM Sqlite x264

30 -

_ III — Illl

1seg

30-
S
£20- z
3] o
o &
= [+)
3
o
L 10-
g
&

N

2N 3N 4°N 5°N 2N 3N 4°N 5°N 2N 3N 4°N 5°N 2N 3N 4N 5N N 2N 3N 4°N 5°N
Sampllng Size

Figure 6.4: SVM relative errors for different configurable systems, sampling sizes and
parameter settings. Relative errors that are greater than 10% threshold are shown in red.

35

BAGGING CART FOREST SVM

600 -

400 -

1seg

200 -

600 -

200_I I IIIII IIIII
0- .--— l.--

600 -
400 -
200 - I

PN 3N 4N 5N 2N 3N 4N 5N 2N 3N 4N 5N 2N 3N 4N 5N
Sampling Slze

S

o

<]
|

Fault Rate (%)
abelany

1SIOM

Figure 6.5: Relative errors of regression methods for BerkeleyC system, using different

sampling sizes and parameter settings. Relative errors that are greater than 10% threshold

are shown in red.
36

Apache BerkeleyJ LLVM Sqlite x264

g, i
!i T TEsg - Eff

I I 1 1 | 1 1 I I 1 1 | I 1 1 | I 1 |
N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N
Sampling Size

Fault Rate (%)

N 2N 3N 4N 5N
Figure 6.6: Relative error distributions of CART for different systems and different
sampling sizes

Apache BerkeleyJ LLVM Sqlite x264
30 -

+Hi

N
o
1

Fault Rate (%)

-
o
|
-

=z ||

! += el
= A

EEEE

I I 1 1 I 1 1 | I 1 1 | I 1 I I I 1 I I
N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N
Sampling Size

0-

Figure 6.7: Relative error distributions of bagging for different systems and different
sampling sizes 37

Apache BerkeleyJ LLVM Sqlite x264
50 -

N
o
1

30_!

10 -

Fault Rate (%)
3
1

EiEEE - e e s I
0-

I I I I I I I I I I I I I I I
N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N

1 | I 1 | I I 1 I I
N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N
Sampling Size

Figure 6.8: Relative error distributions of random forest for different systems and different

sampling sizes
X264

I 1 | I I 1 I I
2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N
Sampling Size

Apache BerkeleyJ LLVM

T TT

Sqlite

Fault Rate (%)

-
o
1

UL e L

1
N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N N

Figure 6.9: Relative error distributions of S\/é)l\S/I for different systems and different sampling
sizes

BAGGING CART

FOREST
600 -
5
© 400 -
Q]
e
5
©
(TR
200 - E
- ==
I I 1 1 1 I I
N 2*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N Z*N 3*N 4*N 5*N N 2*N 3*N 4*N 5*N

Sampling Slze

Figure 6.10: Relative error distributions of different regression methods for BERKELEY
DB C system and different sample sizes

39

Chapter 7

Conclusion and Future Work

Throughout our research we tried to deduce correlation between feature selection of a
configurable software system and performance of the system using non-linear regression
analysis. During the analysis we regarded software systems under investigation as black
boxes without decomposing or analysing their structure. We performed a case study of dif-
ferent regression methods (regression trees, bagging, random forest, SVM) for our problem
of variability-aware performance modelling, using only small random samples of measured
configuration variants. In order to avoid manual setting of parameters for regression meth-
ods and to explore parameter space more evenly, we implemented automatic parameter
tuning of regression methods by using Sobol sampling.

As a result of our research, we assessed accuracy and sensitivity of aforementioned
regression methods for the problem of of variability-aware performance prediction. We
showed that in term of accuracy Bagging outperforms all other regression methods in most
of the cases for all configurable systems, sampling sizes and parameter settings. In terms
of sensitivity the most stable regression methods turned out to be Regression Trees and
Bagging.

To make our experiment more sound, for our analysis we used random sampling from
six real-world configurable software systems of different sizes, configuration mechanisms,
application domains and written in different programming languages. However, we under-
stand that results of our work are not automatically transferable to other software systems.

In our future work, we plan to explore additional regression methods for solving the
problem of variability-aware performance prediction. For automatic parameter tuning
of regression methods we are going to attempt more parameter tuning techniques like
Bayesian optimisation and other general optimisation methods. We intend to analyse

40

complex feature interactions in configurable software systems under study and explain
which types of feature interactions influence performance prediction and how. We also
plan on investigating different experimental design policies[13] for performance prediction.

41

APPENDICES

42

Chapter 8

Experimental R code

ConvertFromSobol <— function (lower, upper, sobol, dgts){
Given parameter range and number from Sobol sequence,
function converts Sobol number to parameter value from
the range with specified accuracy

#

Args:

lower: lower bound of the parameter range

upper: upper bound of the parameter range

sobol: number from Sobol sequence that needs to be
converted

dgts: number of digits after decimal point

return (lower + round ((upper — lower) % sobol, dgts))

}

PredictUsingCART <— function(){
Generates Regression Tree (CART) model for the
specified configurable software system and uses it to
predict system performance

Initialize CART parameter ranges

minSplitLower <— 2
minSplitUpper <— 10

43

minBucketLower <— 2
minBucketUpper <— 10

maxDepthLower <— 2
maxDepthUpper <— 20

complexLower <— 0.0001
complexUpper <— 0.01

Initialize utility variables for working with data
crs$dataset <— NULL

errorDataset <— NULL

resultDataset <— NULL

Load experimental data for configurable software system

dataAddr <— paste(” file:///”, "D:\\ ExpData.csv”, sep="")

dataset <— read.csv(dataAddr, strip.white=ITRUE,
na.strings=c(”.”, "NA” 77 77?7,
encoding="UTF-8")

Calculate number of features and observations in the
experimental dataset

featureCount <— ncol(dataset) — 1

obsCount <— nrow(dataset)

Number of times experiment with the same parameters
should be repeated in order to reduce bias
expReps <— 10

Calculate sizes of random samples that will be used
for training regression trees

samplingSizes <— 1:5

samplingSizes <— samplingSizes * featureCount

Generate 4—dimensional (4 is the number of parameters
that CART has) Sobol sequence that will be used for
parameter tuning

sobolN <— 1000 # length of Sobol sequence

44

sobolDim <— 4 # number of dimensions in Sobol sequences
sobolParams <— sobol(n = sobolN, dim = sobolDim
init = TRUE, seed = 1)

Iterate over all different sampling sizes
for (samplingSize in samplingSizes){

minErrorRate <— 1000

Initialize list for storing data samples of the same
sampling size

dataSamples <— list ()

dataSamples <— c(dataSamples, 1:expReps)

Populate list with random data samples of the same
sampling size for each experiment repetition
for (expRep in 1:expReps){
set . seed (expRep)
dataSamples [[expRep|] <— sample(nrow(crs$dataset),
samplingSize)

}

Iterate over Sobol sequence in order to tune method
parameters
for (sobolNIter in 1:sobolN){

Convert dimensions of Sobol sequence into CART
parameters
sobolMinSplit <— convertParam (
minSplitLower ,
minSplitUpper ,
sobolParams [sobolNIter , 1],
0)
sobolMinBucket <— convertParam (
minBucketLower ,
minBucketUpper,
sobolParams [sobolNIter , 2],
0)

45

sobolMaxDepth <— convertParam (
maxDepthLower ,
maxDepthUpper,
sobolParams[sobolNIter , 3],
0)

sobolComplex <— convertParam (
complexLower ,
complexUpper ,

sobolParams [sobolNIter , 4],
4)

Perform experiment several times to reduce bias
for (expRep in 1:expReps){

Build training and testing datasets
set .seed (expRep)

crs$nobs <— nrow(crs$dataset)

crs$train <— dataSamples [[expRep]]

crs$test <— setdiff(seq_len (nrow(crs$dataset)),
crs$train)

Select input and target variables
crs$input <— setdiff(colnames(crs$dataset),

7’PER£177>
crs$target <— "PERF”

Build CART regression model
require (rpart , quietly = TRUE)
set . seed (expRep)

crs$rpart <—

rpart (PERF = .|
data = crs$dataset [crs$train ,
c(crs$input
crs$target)],
method = "anova” ,
parms = list (split = "information”),
control = rpart.control(

minsplit = sobolMinSplit ,

46

minbucket = sobolMinBucket ,
maxdepth = sobolMaxDepth ,
cp = sobolComplex ,
usesurrogate = 0,
maxsurrogate = 0))

Obtain prediction from built regression tree
crs$pr <—
predict (crs$rpart ,
newdata = crs$dataset
[crs$test, c(crs$input)])

Retrieve actual performance values from the

initial data

perfs <— subset(crs$dataset [crs$test ,]|,
select=c("PERF"))

Calculate prediction relative error
faultRate <— abs(perfs — crs$pr) / perfs x 100

Aggregate prediction relative errors
if(is.null(errorDataset)){
errorDataset <— faultRate
}else{
errorDataset <— cbind(errorDataset ,
faultRate)

¥
} # for(expRep in 1:expReps){

Process all results

meanRowsErrorRate <— mean(rowMeans(errorDataset))
meanColsErrorRate <— mean(colMeans (errorDataset))
sdRowsErrorRate <— sd(rowMeans(errorDataset))
sdColsErrorRate <— sd(colMeans(errorDataset))
minErrorRate <— min(minErrorRate, meanRowsErrorRate)

resultDataset <— rbind(resultDataset ,

47

c(samplingSize ,
sobolNIter ,
sobolMinSplit ,
sobolMinBucket ,
sobolMaxDepth ,
sobolComplex ,
minErrorRate ,
meanRowsErrorRate ,
meanColsErrorRate ,
sdRowsErrorRate ,
sdColsErrorRate))

errorDataset <— NULL

}
}

Output the combined data

write.csv(resultDataset ,
file="D:\\ Results.csv”,
row . names=FALSE)

48

References

1]

2]

[10]

[11]

Andrea Arcuri and Gordon Fraser. On parameter tuning in search based software
engineering. In Proc., SSBSE. Springer-Verlag, 2011.

James Bergstra, Rémy Bardenet, Yoshua Bengio, and Balazs Kégl. Algorithms for
hyper-parameter optimization. In Proc. NIPS, 2011.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281-305, February 2012.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

Christophe Dutang and Petr Savicky. randtoolbox: Generating and Testing Random
Numbers, 2013.

Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. Variability-aware performance prediction: A statistical learning approach.
In Proc. ASE. IEEE, 2013.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. Springer, 2009.

G. James, T. Hastie, D. Witten, and R. Tibshirani. An Introduction to Statistical
Learning: With Applications in R. Springer London, Limited, 2013.

Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. kernlab — an
S4 package for kernel methods in R. Journal of Statistical Software, 11(9):1-20, 2004.

49

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R
News, 2(3):18-22, 2002.

Douglas C. Montgomery. Design and Analysis of FExperiments. John Wiley & Sons,
2006.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C (2nd Ed.): The Art of Scientific Computing. Cambridge
University Press, 1992.

R Core Team. R: A Language and Environment for Statistical Computing, 2013.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
and S. Tarantola. Global Sensitivity Analysis: The Primer. Wiley, 2008.

Norbert Siegmund. Splconqueror dataset, 2012.

Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kastner, Sven Apel, Don Bat-
ory, Marko Rosenmiiller, and Gunter Saake. Predicting performance via automated
feature-interaction detection. In Proc. ICSE. IEEE Press, 2012.

Norbert Siegmund, Marko Rosenmller, Martin Kuhlemann, Christian Kstner, Sven
Apel, and Gunter Saake. Spl conqueror: Toward optimization of non-functional prop-
erties in software product lines. Software Quality Journal, 20(3-4):487-517, 2012.

Jasper Snoek, Hugo Larochelle, and Ryan Prescott Adams. Practical bayesian op-
timization of machine learning algorithms. In Proc. NIPS. Curran Associates, Inc.,
2012.

[.LM Sobol’. Calculation of improper integrals using uniformly distributed sequences.
Soviet Math Doklady, 14(3):734-738, 1973.

[.LM Sobol” and Yu.L Levitan. A pseudo-random number generator for personal com-
puters. Computers and Mathematics with Applications, 37(45):33-40, 1999.

Eno Thereska, Bjoern Doebel, Alice X. Zheng, and Peter Nobel. Practical performance
models for complex, popular applications. In Proc. SIGMETRICS. ACM, 2010.

Terry Therneau, Beth Atkinson, and Brian Ripley. rpart: Recursive Partitioning and
Regression Trees, 2014.

20

[25] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., 1995.

[26] Dennis Westermann, Jens Happe, Rouven Krebs, and Roozbeh Farahbod. Automated
inference of goal-oriented performance prediction functions. In Proc. ASE. ACM, 2012.

[27] Graham J. Williams. Data Mining with Rattle and R: The art of excavating data for
knowledge discovery. Springer, 2011.

[28] S. G. Rozin I. M. Sobol’ Yu. L. Levitan, N. I. Markovich. On quasirandom sequences
for numerical computations. USSR Computational Mathematics and Mathematical
Physics, 28(3):88-92, 1988.

ol

	List of Tables
	List of Figures
	Introduction
	Motivating Example
	Regression Methods
	CART
	Bagging
	Random Forest
	SVM Regression

	Parameter Tuning
	Implementation and Parameter Settings
	CART
	Bagging and Random Forest
	SVM Regression

	Evaluation
	Subject Systems
	Experimental Setup
	Results and Discussion
	Prediction Relative Errors
	Sensitivity Analysis
	Threats to Validity
	Related Work

	Conclusion and Future Work
	APPENDICES
	Experimental R code
	References

