
Use-Bounded Strong
Reducibilities

by

David R. Bélanger

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Pure Mathematics

Waterloo, Ontario, Canada, 2009

c© David R. Bélanger 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We study the degree structures of the strong reducibilities (≤ibT) and (≤cl), as
well as (≤rK) and (≤wtt). We show that any noncomputable c.e. set is part of a
uniformly c.e. copy of (Q,≤) in the c.e. cl-degrees within a single wtt-degree; that
there exist uncountable chains in each of the degree structures in question; and that
any countable partially-ordered set can be embedded into the cl-degrees, and any
finite partially-ordered set can be embedded into the ibT-degrees. We also offer
new proofs of results of Barmpalias [1] and Lewis-Barmpalias [10] concerning the
non-existence of cl-maximal sets.

iii

Acknowledgements

This work would not have been possible without my advisor, Barbara F. Csima,
and her endless supply of encouraging words and relevant results. The paper’s
readers, Rahim Moosa and Ross Willard, greatly influenced (for the better) its
eventual content and structure, and their patience through the final revisions has
been hagiheroical. Most overdue are my thanks to the family, friends, and colleagues
who have helped, for many years and in many ways, keep me from losing my heading
or my head.

iv

Contents

1 Introduction 1

1.1 Other notation and concepts . 6

1.2 A note on distinctness . 9

2 cl-Maximality 15

2.1 On the cl degrees . 16

2.2 Corollaries . 20

3 Embedding Linear Orderings 21

3.1 Within a single degree . 21

3.2 Upper bounds and uncountable chains 23

4 Incomparable c.e. Sets 29

4.1 Basic techniques and results . 29

4.2 Arbitrary countable partially-ordered sets 36

4.3 Compression and c.e. reals . 42

References 47

v

Chapter 1

Introduction

The ibT and cl reducibilities are preorders on 2ω, the power set of the natural
numbers. Each is a strengthened version of the classical Turing reducibility, with a
restriction on the computational resources allowed. Although the ibT reducibility
has long had a place in computability-theoretic arguments, arising naturally as a
special case of the Turing reducibility in, for example, certain permitting arguments,
it was only recently isolated and named by Soare. The similar cl reducibility was
devised by Downey, Hirschfeldt, and LaForte as a possible tool (or foundation) for
the study and quantification of relative randomness between elements of 2ω.

For our basic computability-theoretic notation, we conform largely to modern
standards as presented in texts such as Cooper’s Computability Theory [3], Nies’s
Computability and Randomness [13], and Soare’s Computability Theory and Appli-
cations [17]. More specialised background on the cl and rK degrees can be found in
Downey and Hirschfeldt’s monograph Algorithmic Randomness and Complexity [5]
or in their expository paper with Nies and Terwĳn [6].

Informally, a Turing functional Γ can be thought of as an idealised computer
that, given access to some extra information A ∈ 2ω, will perform algorithmic
operations on its input n ∈ ω and, perhaps, halt after some finite number of steps
and output a number k ∈ ω. In this case, we say that ΓA(n) converges, written
ΓA(n)↓, and that ΓA(n) = k—or, more succinctly, ΓA(n)↓ = k. Otherwise, ΓA(n)
diverges, denoted ΓA(n)↑.

1

A partial computable function is a partial function in ω → ω of the form
f(n) = Γ∅(n) for some Turing functional Γ, with domain domf = {n ∈ ω : Γ∅(n)↓}.
A (total) computable function is a partial computable function whose domain
is all of ω. It is possible to talk about n-ary partial computable functions, or
partial computable functions on a set other than ω, by composing a regular partial
computable function with an appropriate effective mapping into or out of ω. A
Gödel numbering is a computable bĳection from some set onto ω. A set or
relation is called computable if its characteristic function is computable. A set
W ∈ 2ω is called computably enumerable (c.e.) if it is the domain of some
partial computable function f .

We say that a set A ∈ 2ω is Turing reducible to a set B ∈ 2ω if there is a
Turing functional Γ that can fully decide the elements of A by looking at those
of B, i.e., n ∈ A ⇐⇒ ΓB(n)↓ = 1 and n 6∈ A ⇐⇒ ΓB(n)↓ = 0. This is
written as A≤TB. Along with the other reducibilities we shall be studying, the
Turing reducibility is both reflexive and transitive, thus forming a pre-ordering
on 2ω. If A≤TB and B≤TA, then A and B are Turing equivalent, written
A≡TB; if A6≤TB and B 6≤TA, then we write A|TB. The central objects of study in
computability theory are the partially-ordered degree structure that (≤T) induces
on its equivalence classes, and this structure’s restriction to certain subclasses of 2ω

such as the previously-mentioned c.e. sets or the ∆2 sets, which we define presently:

Definition 1.1. (a) A set A is called a Σ0
n set or simply a Σn set if there is an

(n+ 1)-ary computable relation R such that

k ∈ A ⇐⇒ (∃x1)(∀x2)(∃x3) · · · (Qxn)[(k, x1, x2, . . . , xn) ∈ R] ,

where Q is “∀” if n is even and “∃” if n is odd.

(b) A set A is called Π0
n or Πn if its complement A is Σn.

(c) If A is both Σn and Πn, then it is called ∆0
n or ∆n.

A set is c.e. if and only if it is Σ1. This latter, more intuitive, characterisation
sheds light on both the c.e. sets and the hierarchy of Σn sets.

2

If a Turing degree a contains a c.e. set, then we call a a c.e. degree. Similarly,
if a contains a ∆2 set, then we say that a is a ∆2 degree.

When A≤TB by functional Γ, we may write A = ΓB. In this case, each computa-
tion ΓB(n) halts after some finite number of steps, and therefore seeks only finitely
many elements of B. Define the use of the reduction at n, denoted use ΓB(n),
to be the largest such element. Then, use ΓB is a function in ω → ω. Different
pre-orderings and degree structures can be created from the Turing reducibility by
weakening the definition (allowing non-determinism, for example) or by strength-
ening it. The structures we shall be studying are strong forms of the Turing re-
ducibility, usually obtained by placing restrictions on the use function.

Definition 1.2 (Soare [18]). Let A,B ∈ 2ω be two sets of natural numbers. We say
that A is identity-bounded Turing reducible to B, written A≤ibTB, if there is
a Turing functional Γ such that A = ΓB and, for all n, use ΓB(n) ≤ n.

Definition 1.3 (Downey-Hirschfeldt-LaForte [7]). We say that A is computably
Lipschitz reducible to B, written A≤clB, if there are a Turing functional Γ and
a constant c ∈ ω such that, for all n, use ΓB(n) ≤ n+ c.

The computably Lipschitz reducibility (≤cl) was first named the strong weak
truth-table reducibility (≤sw), and has also been called linear reducibility
(≤`) by Lewis and Barmpalias [10]. The term computably Lipschitz was introduced
by Barmpalias and Lewis [2] after its behaviour on the Cantor space topology of 2ω,
and this notation is adopted in the Downey and Hirschfeldt’s textbook [5]. That
the ibT and cl reducibilities are inherently related is obvious: after all, an ibT
reduction is exactly a cl reduction with constant c = 0. One of the goals of this
paper is to elucidate the similarities, differences, and interdependencies of these two
notions.

An initial segment of A is a set of the form

A��x := A ∩ [0, x] ;

we use this here in place of the more traditional notation

A � x = A ∩ [0, x) .

3

We denote by 2<ω the set of all finite subsets of ω, or, equivalently, the set of all
finite binary strings. This set is in computable bĳection with the natural numbers,
for example, through the Gödel numbering 2<ω → ω, A 7→ Σ{x : x ∈ A}. Hence
we may consider partial computable functions taking 2ω as domain or codomain.

Definition 1.4 (Downey-Hirschfeldt-LaForte [7]). We say that A is relative prefix-
free Kolmogorov reducible to B, written A≤rKB, if, for some k ∈ ω, there
are Turing functionals Γ0, . . . ,Γk such that, for each n, there is a j ≤ k with
ΓBj (n)↓ = A��n with use ΓBj (n) ≤ n.

Equivalently, we may gather these Γj into a single function, so that (A≤rKB)
iff there exist a binary partial computable function f(·, ·) : 2<ω × ω → 2<ω and a
constant k ∈ ω such that, for all n ∈ ω, there is a j ≤ k with f(B��n, j)↓ = A��n.

The rK reducibility is thus a non-deterministic version of the ibT reducibility.
The cl and rK reducibilities were introduced simultaneously by Downey, Hirschfeldt,
and LaForte as possible measures of relative randomness, the idea being that if
A≤clB or A≤rKB, then B ought to be in some intuitive sense more random a
set than A. The specific notion they had in mind was a formulation by Martin-
Löf [11]. Technical and philosophical aspects of the study of randomness can be
found in Downey and Hirschfeldt’s book [5] and van Lambalgen’s dissertation [20],
respectively.

We now recall a more classical example of a strong reducibility:

Definition 1.5. A set A is weak truth table reducible to B, written A≤wttB,
if there are a Turing functional Γ and a total computable function f(x) such that,
for all n, use ΓB(n) ≤ f(n).

The weak truth table reducibility was so named because it weakened another
classical reducibility, the truth table reducibility (tt). Partly in reaction to the
attenuating bonds between names of reducibilities and their actual meaning—as
exemplified in the progression from truth table, to weak truth table, to the strong
weak truth table introduced a few paragraphs ago—the name bounded Turing
reducibility (bT), coined by Soare, is gaining some currency as an alternative for
“wtt”.

4

When investigating the properties of (≤ibT) and (≤cl), it is sensible and ex-
pedient to look to the vast body of known results on the Turing and weak truth
table degrees. For example, a classical result of Spector [19] states that there is
a minimal (non-computable) Turing degree, i.e., a noncomputable degree with no
noncomputable degree strictly Turing below it. We might ask ourselves the anal-
ogous question: Are there minimal ibT or cl degrees? The answer, after some
reflection, will be negative. Here we use a natural pair of counter-examples noted
in Barmpalias and Lewis [2]:

Proposition 1.6. If A is a non-computable set, and if we write A + 1 = {x + 1 :
x ∈ A} and 2A = {2x : x ∈ A}, then ∅<ibTA+ 1<ibTA and ∅<cl2A<clA.

We might similarly wish to seek maximal or complete degrees. Listing out
the algorithms that represent them, we can obtain a computable (though non-
injective) enumeration (Φe)e∈ω of Turing functionals. Perhaps the best-known non-
computable set is Turing’s halting set, defined by ∅′ = {e ∈ ω : Φ∅e(e)↓}. A
relativisation of this construction yields the Turing jump operator ′, by which,
if A ∈ 2ω, then A′ = {e ∈ ω : ΦA

e (e)↓}. The jump induced on the Turing degrees
is well-defined, and, for any degree a, it is known that a<Ta′. Hence there is no
maximal Turing degree. When we restrict the ordering to a particular class of sets,
however, we may be left with maximal degrees; the well-known Post Theorem, for
example, tells us that the degree 0′ of the halting set is Turing complete among the
∆2 sets, that is, 0′ is the greatest ∆2 Turing degree. Restriction along these lines
will yield a host of more-or-less natural questions to ask about a degree structure:
Yu and Ding [21] settled one such by showing there is no cl-complete element
among the left-c.e. reals (see Definition 1.12); Barmpalias [1] solved another by
proving the non-existence of a cl-maximal element among the c.e. sets. Lewis and
Barmpalias later showed in [10] that there are no cl-maximal sets in general. We
shall, in Chapter 2, offer a new proof of this last result, and obtain new corollaries
on certain classes, including the ∆2 sets.

Changing our focus slightly, we might examine the structure under one reducibil-
ity within a single degree of another. For example, the wtt reducibility is stronger
than the Turing, and so each wtt degree is contained entirely within a Turing de-

5

gree. On the other hand, Downey [4] showed that there exist non-trivial strongly
contiguous c.e. Turing degrees, which contain exactly one wtt-degree. There is
no exact analogue of this property between the cl and ibT degrees, or the wtt and
cl degrees, as evidenced by the constructions in Proposition 1.6. Applied näıvely,
however, these constructions will generate only linear orderings. In Chapter 3 we
investigate what sort of linear orderings can be thus embedded, and in Chapter 4
we do what we can to salvage or forever bury some weakened notion of contiguity
among the wtt, cl, and ibT degrees by searching for a degree in which all sets are
totally ordered with respect to another reducibility. Our results here are strictly
negative; we arrive at a number of results on embeddings of partial orderings into
the c.e. cl or ibT degrees, and in particular that each c.e. wtt degree contains two
cl-incomparable sets, and each c.e. cl degree contains two ibT-incomparable sets.

1.1 Other notation and concepts

We always equate a set A with its characteristic function as an infinite binary
sequence:

A = (A(0), A(1), A(2), · · ·) .

When building sets from sets, we usually write them in terms of arithmetic and set
operations. For example, we define the join operation on the Turing reducibility:

A⊕B = 2A ∪ (2B + 1) = {2n : n ∈ A} ∪ {2m+ 1 : m ∈ B} .

When this becomes impossible or unwieldy, we define the characteristic function
directly.

Recall that a Gödel numbering is a computable bĳection from some countable
set to ω. We fix one such numbering 〈·, ·〉 : ω × ω → ω and call it the pairing
function. Using this, we define the so-called infinite join on sets (Ak)k∈ω:

⊕
n∈ω

An = {〈x, n〉 : x ∈ An} .

Similarly, we fix a computable bĳection 〈·, ·, ·〉 : ω × ω × ω → ω, and so on.

6

We use the symbols ∃∞ and ∀∞ to say for infinitely many and for all but
finitely many, respectively. We use µ to represent the partial computable operation
of taking the minimum element of a computable set, or, more generally, to denote
the minimum of any set.

Recall our effective listing (Φe)e∈ω of Turing functionals. We shall refer to a
such a functional as Φe when its index e is important; otherwise, we shall continue
to name them Γ, Γ1, or Γ2. By setting

Φ̂X
e (y) =

 k if ΦX
e (y)↓ = k with use ΦX

e (y) ≤ y

↑ otherwise

we obtain an effective enumeration
(
Φ̂e

)
e∈ω

of what we will call ibT functionals.
Clearly, A≤ibTB if and only if A = Φ̂B

e for some e. Altering the definition slightly
more,

Φ̃X
e (y) =

 k if ΦX
e (y)↓ = k with use ΦX

e (y) ≤ y + e

↑ otherwise

gives an enumeration
(
Φ̃e

)
e∈ω

of cl functionals. Again, if A≤clB, then there is
an e such that A = Φ̃B

e . Indeed, if A = ΦB
i with use bounded by identity plus c,

we can produce (for example, by adding some number of useless operations to the
machine) an e ≥ c such that Φe behaves the same way as Φi, giving A = Φ̃B

e .

For any Turing functional Γ, any set B ∈ 2ω, and any finite number of steps s,
we can let Γs be the functional describing Γ after s steps of computation:

ΓBs (x) =

 ΓB(x) if the computation halts after fewer than s steps
↑ otherwise

One should be able to determine from the context when we are talking about this
Γs and when we really mean the generic Γ1 and Γ2 mentioned earlier. The sequence
(Γs)s∈ω approximates Γ in the sense that

(∀n∃s)
[
ΓB(n)↓ → ΓBs (n)↓

]
and

(∀n∀s∀t)
[
(ΓBs (n)↓ ∧ s ≤ t)→

(
ΓB(n)↓ ∧ ΓBt (n)↓ ∧ ΓB(n) = ΓBt (n)

)]
.

7

If Φe = Γ, we write Φe,s = Γs. If f = Γ∅ is a computable function, then we write
fs = Γ∅s.

From the enumeration (Φe)e∈ω of Turing functionals, there is a natural enumer-
ation of the c.e. sets, namely (We)e∈ω, where We = dom(Φ∅e), that is, n ∈ We ⇐⇒
Φ∅e(n)↓.

Definition 1.7. A c.e. approximating sequence is a computable sequence (As)s∈ω
of finite sets As ⊆ {0, 1, . . . , s} such that

(∀n∀s)(∀t ≥ s) [n ∈ As → n ∈ At] .

Any c.e. approximating sequence (As)s∈ω will have a pointwise limit A = limsAs

(in the usual discrete topology on {0, 1}). If we define a partial computable function
f by f(n) = (µs)[n ∈ As], then A = domf , so A is c.e.. On the other hand, for
each c.e. We and s ∈ ω, we may write We,s = dom(Φ∅e,s)��s. Then (We,s)s∈ω forms
a c.e. approximating sequence, and We = limsWe,s. We normally assume, for a
c.e. approximation (As)s∈ω, that (∀s) [|As+1 \ As| ≤ 1].

By analogy, we can define a number of other types of sets:

Definition 1.8. A ∆2 approximating sequence or computable approxima-
tion is a computable sequence (As)s∈ω of finite sets As ⊆ {0, 1, . . . , s} with a point-
wise limit A = limsAs. This A is called a limit computable or computably
approximable set.

Definition 1.9. An ω-c.e. approximating sequence is a computable sequence
(As)s∈ω of finite sets As ⊆ {0, 1, . . . , s} such that there exists a total computable
function f satisfying:

(∀n) [|{s : As+1(n) 6= As(n)}| ≤ f(n)] .

The limit A = limsAs is called an ω-c.e. set. In the case where f ≤ n for some
constant n, A is called an n-c.e. set. Note that the 1-c.e. sets are exactly the
c.e. sets.

With versions of the Shoenfield Limit Lemma [16] and Post’s Theorem we can
relate these notions back to our reducibilities and justify the name ∆2 approximating
sequence.

8

Theorem 1.10 (Limit Lemma). (i)A is limit computable ⇐⇒ A≤T∅′.
(ii)A is ω-c.e. ⇐⇒ A≤wtt∅′.

Theorem 1.11 (Post). A is ∆2 ⇐⇒ A≤T∅′.

Definition 1.12. A c.e. real approximation is a computable sequence (As)s∈ω
of finite sets As ⊆ {0, 1, . . . , s} with the property that

(∀s∀n)(∃m < n)[n ∈ As \ As+1 → m ∈ As+1 \ As] .

A c.e. real approximation necessarily has a limit; we can see by induction on n that
the initial segment As��n changes in at most 2n+1 − 1 stages. This A = limsAs is
called a (left-) c.e. real or an almost computable set. We normally assume
that |As+1 \ As| ≤ 1 for all s.

Thinking ofA as the real number whose decimal expansion is 0.A(1)A(2)A(3) . . .,
a c.e. real approximation is exactly a computable, increasing sequence of dyadic ra-
tionals whose limit is A in the usual norm. The c.e. reals enjoy a position in
the study of algorithmic randomness on par with that of the c.e. sets in classical
computability theory: a detailed apologia can be found in Downey-Hirschfeldt [5].

1.2 A note on distinctness

We have in a short time defined—formally or not—no fewer than five orderings on
2ω, namely, the ibT, the cl, the rK, the wtt, and the T reducibilities. We know
that the wtt reducibility is strictly weaker than the T: an example of a set A ∈ 2ω

such that A≤T∅′ but A6≤wtt∅′ can be constructed from the T and wtt versions of
the Limit Lemma 1.10. Before immersing ourselves too wholly in the fine points of
their structure, we will verify that our objects of study are actually distinct, and
decide precisely which are stronger or weaker than which. Most of these questions
are settled in, or follow from, the paper in which Downey, Hirschfeldt, and LaForte
first introduced cl and rK [7], as we shall see.

Some relationships are immediate from the mere definitons:

9

Proposition 1.13.
A≤ibTB ⇒ A≤clB ⇒ A≤wttB

If A≤clB via cl functional Γ with use bounded by identity plus c, we can produce,
for each subset σ ⊆ {0, 1, . . . , c− 1}, an ibT functional Γσ such that

ΓBσ (n) = Γ(B��n)∪{n+1+x:x∈σ}(n) .

Since there will always be a σ such that B ∩ [n + 1, n + c] = {n + 1 + x : x ∈ σ},
the set {Γσ : σ ⊆ {0, 1, . . . , c− 1}} describes an rK reduction from A to B:

Proposition 1.14 (Downey-Hirschfeldt-LaForte [7]).

A≤clB ⇒ A≤rKB

A rather more difficult result relates the rK and T reducibilities. Here we use
the proof from [7].

Proposition 1.15 (Downey-Hirschfeldt-LaForte [7]).

A≤rKB ⇒ A≤TB

Proof. Let k be the smallest such that there is an f where f(·, 0), . . . , f(·, k) witness
A≤rKB. Assuming that, for a given string X ∈ 2<ω, no two f(X, i), f(X, j) halt on
the same stage s, define a new binary partial computable function g to give these
values in order of the functions halting:

g(X, y) =

 f(X, i) if i ≤ k ∧ fs(X, i)↓ ∧ fs−1(X, i)↑ ∧ |{` ≤ k : fs(X, `)↓}| = y

↑ if there is no such i

Then A≤rKB through g. If there is a largest N such that, for all j ≤ k,
f(B��N, j)↓, then for n > N , g(B��n, k) is never used in the rK-reduction, allowing
us to get an rK-reduction using only g(B, j) such that j ≤ k − 1. This contradicts
our choice of k, so there must be infinitely many N such that, for all j ≤ k,
f(B��N, j)↓. We may, by waiting, B-compute an ascending sequenceN0 < N1 < · · ·
of such N .

10

Then, for any m, we can B-compute up to k + 1 different possibilities, one of
which is correct, for A��Nm. For each C that is rK-reducible to B through this f
and k, we must have C��Nm = σ for one of these possibilities σ. If there were at
least k + 2 such C, there would be an m such that the C��Nm were all different.
This is impossible, so there are at most k + 1 different C. We can therefore fully
B-decide our A by choosing an m such that all C��Nm are different and, with the
finite knowledge in σ := A��Nm, determining A��Nn for all n > m by finding an `

large enough that for exactly one j ≤ k there is an i ≤ k such that

A��Nm = f(B��Nn, j)��Nm and f(B��Nn, j) = f(B��N`, i)��Nn

The constructions in Proposition 1.6 establish that ibT, cl, and wtt are not the
same; for, if A is not computable, we nonetheless have A≡clA + 1 and A≡wtt2A.
The structures of the cl and rK degrees are also different, as guaranteed by, say,
Raichev’s result in Theorem 3.6 combined with Proposition 2.6.

Downey, Hirschfeldt, and LaForte [7] proved that there were an A and a B such
that A≤rKB but A6≤wttB, and in particular A 6≤clB. We shall exhibit here such
an A and B, whose construction introduces a favourite and recurring strategy of
ours: that of making two sets sufficiently spread out or shifted to balk a given
use-bounded reducibility. We let f be the busy-beaver-style function

f(n) = 2 + maxe<n
(
{0} ∪ {f(e)} ∪ {Φ∅e(n) : Φ∅e(n)↓}

)
.

and C ∈ 2ω be such that C 6≤Tf .

Define

A = {f(x) : x ∈ C}

and

B = {f(x) : x ∈ ω} ∪ {f(x+ 1) + 1 : x ∈ C} .

Then A≤rKB: for any n ≥ 1, we can ibT-compute from B the unique ` such
that f(`) ≤ n < f(` + 1), and we can cl-compute from B the initial segment

11

C��(`− 1). Hence A≤rKB by the two cl-functionals

ΓB1 (n) = {f(x) : x ∈ C��(`− 1)}
ΓB2 (n) = {f(x) : x ∈ C��(`− 1)} ∪ {f(`)}

where A��n = ΓB1 (n) if ` 6∈ C and A��n = ΓB2 (n) if ` ∈ C.

On the other hand, if A≤wttB through a given Turing functional Φe and com-
putable bound g = Φ∅i , then for ` > i we have g(f(`)) < f(`+ 1). By definition of
B, we know that B��(f(`+ 1)− 1) = B��(f(`) + 1). Thus we can compute A(f(`))
from

B��g(f(`)) = B��(f(`) + 1)≡wtt{f(k) : k ≤ `} ∪ {f(k) + 1 : k ∈ C��(`− 1) .

In particular, given an oracle to f , we can compute C(`) from C��(`−1). Hence
C≤Tf , a contradiction.

To resolve the other half of the relationship between rK and wtt, as well as rK
and T, will require methods somewhat more sophisticated. We shall tacitly use
the technique of permitting, introduced in Chapter 4, through one of that chapter’s
theorems, together with the following result, essentially due to Downey, Hirschfeldt,
and LaForte in [7]. The proof here is more basic (as are our intentions) and contains
ideas, particularly that of counting events by tallying a c.e. approximation, that will
resurface in Chapter 4.

Lemma 1.16. For each c.e. real A, there is a c.e. set W such that A≡wttW . Hence,
the c.e. real wtt-degrees co-incide with the c.e. wtt-degrees.

Proof. Take A with c.e. real approximation (As)s∈ω. Any initial segment A��n can
change at most 2n+1 − 1 times throughout the approximation, i.e., there are at
most 2n+1− 1 values of s for which As+1��n 6= As��n. In particular, any given n can
enter or leave A no more than 2n+1 times. We can use a c.e. set W simply to count
these changes as they occur: each time the element n enters or leaves A, we add a
new element to W ∩ [2n+1, 2n+2). If we know the final tally |W ∩ [2n+1, 2n+2)|, we
can then determine whether n ∈ A simply by checking the parity.

12

Formally, define a c.e. approximating sequence:

W0 = ∅
Ws+1 = Ws ∪ {(µm) [m ≥ 2n+1 ∧m 6∈ Ws] : n ∈ As+1 \ As ∨ n ∈ As \ As+1}

with W := limsWs. If we know an s such that As��n = A��n, then we know that
Ws��(2n+2 − 1) = W ��(2n+2 − 1); hence, taking the A-computable function

g(n) = (µs) [As��n = A��n] ,

we can define a functional Γ for 0 ≤ k < 2n+1 by

ΓA(2n+1 + k) =

 1 if (∃>ks < g(n))[n ∈ As+1 \ As ∨ n ∈ As \ As+1]
0 otherwise

to witness W≤wttA (since it looks at A��n only to calculate g(n), the use is loga-
rithmic, giving W≤ibTA). On the other hand, we can define a functional Γ1 by

ΓW1 (n) =

 1 if |W ∩ [2n+1, 2n+2)| is odd
0 otherwise

to witness A≤wttW .

If A≤wttB were to imply that A≤rKB, then each c.e. real would also be rK-
equivalent to a c.e. set; as we shall see in Proposition 4.12, however, there is a
c.e. real that is not rK-below any c.e. set. Therefore, wtt and rK are, in this sense,
independent of one another. The same argument also shows that A≤TB does not
imply that A≤rKB.

ibT

cl

wtt rK

T

6

@
@I

�
��

��� @@I

13

Chapter 2

cl-Maximality

We begin this section with a proof of a relatively simple fact. The reader will
notice that it is nothing but one of the transformations of Proposition 1.6 performed
backward. We show its correctness in full to motivate and illuminate our strategy
against more exciting problems.

Proposition 2.1. There are no ibT-maximal sets.

Proof. Suppose we have some A ⊆ ω. If A is computable, then A is not ibT-
maximal since, for example, A<ibT∅′. So, assume that A is not computable. Let
the set W be A shifted one space to the left as a binary string, namely,

W = A−̇1 = {a : a+ 1 ∈ A} .

We shall now see that A<ibTW .

Claim: A≤ibTW .

Construct a functional Γ such that, on oracle W ,

ΓW (x) =

 A(0) if x = 0
W (x− 1) otherwise

Then A = ΓW and this reduction is identity-bounded.

Claim: W 6≤ibTA.

Suppose, to the contrary, that W≤ibTA via functional Γ1. Then, for all x ≥ 0,
Γ1 computes A(x + 1) = W (x) using A��x. By induction, then, Γ1 can compute

15

any A(x + 1) using only an oracle to A(0). This implies that A is computable, a
contradiction.

In almost any other context, A and W would be indistinguishable—that is, the
sets A and W occur simultaneously in just about any class that we could want. It
is clear, for example, that A and W are share the same Turing degree. With little
effort, we can get a small army of small results.

Corollary 2.2. There are no ibT-maximal sets when restricted to the classes of
c.e. sets, the n-c.e. sets, the ω-c.e. sets, or ∆2 sets.

Proof. If (As)s∈ω is a computable approximation for A, then (As−̇1)s∈ω is a com-
putable approximation for A−̇1.

2.1 On the cl degrees

To achieve our goal on the ibT degrees, we dropped a finite amount of information—
namely, A(0)—from the set A, shifting the rest over to take its place, and then
argued that, if there were a machine that could always tell what the next element
of our new set would be based only on previous elements, then A must have been
computable. Next, we wish to apply the same sort of strategy to the cl-ordering.
Because in a cl-reduction the machine may skip any finite number of entries, we
must toss out an infinite amount of information—which, in general, we might not
be able to recover. In certain cases, however, we can remove a well-behaved infinite
subset and not feel the loss. We say that a set A is bi-immune if neither A nor A
contains an infinite computable subset.

Lemma 2.3. If a set A is not bi-immune, then A is not cl-maximal.

Proof. If A is computable, then A<cl∅′. So, assume that A is not computable.

First, say B ⊆ A is an infinite computable subset. Then, we may define a set
W by:

W (x) = A (x+ |B��x|) ,

16

hence W is simply the set A with the subset B deleted and the other elements
shifted over in its place. Then A is recoverable from W by the Turing functional:

ΓW (x) =

 1 if x ∈ B
W (x− |B��x|) otherwise

Thus A = ΓW , and this reduction is identity-bounded. In particular, A≤clW .

Claim: W 6≤clA.

Suppose, to the contrary, thatW = ΓA1 for some Γ1 with use bounded by identity
plus a constant c. Let N be the (c+ 1)-th smallest element of B. For each n ≥ N ,
A(n) can be computed by Γ using oracles to only W ��(n − c − 1); each entry of
W ��(n − c − 1) can, in turn, be computed by Γ1 using only A��((n − c − 1) + c) =
A��(n−1). Hence, iterating and composing Γ and Γ1 appropriately, we can produce
an algorithm to compute any A(n) from A��(n − 1) for any n ≥ N . Recursing
on this algorithm, and including the additional finite information of A��N , we can
decide effectively whether n ∈ A for any n. So A is computable, a contradiction.

If A has a infinite computable subset B, then we may use it as above to construct
W such that A<clW . Because A≡clA, we then get A<clW .

This gives immediately an alternate proof of a theorem of Barmpalias:

Corollary 2.4 (Barmpalias [1]). There are no cl-maximal c.e. sets. That is, for
every c.e. set A, there exists a c.e. set W such that A<clW .

Proof. If A is computable, then we are done. Otherwise, there is an infinite, co-
infinite, computable subset B ⊆ A (see, for example, Soare [17]). We can then use
the construction in Lemma 2.3 to find a set W such that A<clW .

Claim: W is c.e..

Take a c.e. approximation (As)s∈ω of A. We produced W from A by deleting
the elements of B and shifting the rest into their place. In the same way, we can
delete B from each As to construct a c.e. approximation for W :

Ws(x) = As (x+ |B��x|) .

17

There are no n-c.e. bi-immune sets, so this can be generalised:

Corollary 2.5. There are no cl-maximal n-c.e. sets for any n ≥ 1.

Sadly, this precise method can only take us so far: there do exist bi-immune
sets, even among such relatively tame classes as the ω-c.e. sets. We shall redress
the proof by creating two sets U and V such that if A6<clU then A<clV . The set
U will resemble W from Proposition 2.1, except in that rather than shifting the
whole sequence, we shift a certain subsequence whose entries become more and more
spread out. The set V will be made from A by removing this subsequence entirely
and shifting the rest to compensate, in the manner of W from Lemma 2.3. This
will give a new proof of a result of Lewis and Barmpalias, along with a number of
new corollaries:

Proposition 2.6 (Lewis-Barmpalias [10]). There are no cl-maximal sets.

Proof. Take a set A and consider it as a binary string. Assume, once again, that
A is not computable.

For a = 0, 1, 2, 3, . . . let

na = (a+ 1) · (a+ 2)
2 − 1 = −1 + (1 + 2 + 3 + · · ·+ (a+ 1)) .

This gives n0 = 0, n1 = 2, n2 = 5, and so on, with na = na−1 + a+ 1.

Construct a new set U from A by moving back successive na:

U(x) =

 A(na+1) if x = na for some a
A(x) otherwise

Then we can compute most of A from U by moving each na back in the other
direction; the single entry A(0) whose information is not present in U can be coded
directly into the computation. This reduction is identity-bounded, and, in partic-
ular, A≤clU .

18

If U 6≤clA, then A<clU and we are done; so suppose that U≤clA, via some
functional Γ with use bounded by identity plus constant c ≥ 1. Construct a new
set V from A by deleting each na-th entry:

V (x) = A (x+ |{na : a ∈ ω}��x|) .

Claim: A≤clV .

For any x 6∈ {na : a ∈ ω}, we can just read off

A(x) = V (x− |{na : a ∈ ω}��x|) .

Given m = na with a ≥ c, we may use Γ to decide A(na) = U(na−1) from only the
initial segment

A��(na−1 + c) ⊆ A��(na − 1) ,

so, by recursing, all of A can be solved-for using Γ, an identity-bounded oracle to
V , and the finite information of A��nc.

Claim: V 6≤clA.

Suppose that V≤clA by Turing functional Γ1 with use bounded by identity plus
d. We shall derive a contradiction by showing A to be computable. Suppose that
m > nc and m > nd. If m = na for some a, then we can compute A(m) = U(na−1)
using Γ with an oracle to A��(na−1 + c), since use ΓU is bounded by identity plus c.
But we have na > nc, giving in particular that a > c, so

na−1 + c ≤ na − 1 = m− 1 ;

hence Γ can be used to compute A(m) from A��(m− 1).

For all other m, we can apply Γ1 to obtain A(m) = V (m− |{a ∈ ω : na ≤ m}|)
from

A�� (m− |{a ∈ ω : na ≤ m}|+ d) ⊆ A��(m− 1) ,

this time by the fact that m > nd. By applying Γ and Γ1 repeatedly in this way and
hard-coding the finite information in A��nc and A��nd, we can produce an algorithm
to compute A—a contradiction.

19

2.2 Corollaries

We may use the construction in Proposition 2.6, as we did with Lemma 2.3, to build
from any computable approximation (As)s∈ω two new computable approximations
(Us)s∈ω and (Vs)s∈ω for U and V , respectively. Furthermore, if (As)s∈ω happens to
be an ω-c.e. approximating sequence, with computable bound f on the changes,
then we can create two new computable functions

g(x) =

 f(na+1) if x = na for some a
f(x) otherwise

and
h(x) = f (x+ |{na : a ∈ ω}��x|) ,

bounding the changes on (Us)s∈ω and (Vs)s∈ω, respectively. Hence:

Corollary 2.7. There are no cl-maximal elements among the ∆2 sets or the ω-
c.e. sets.

We can generalise in another direction by performing the same computable
transformation on any computable relation:

Corollary 2.8. There are no cl-maximal sets among any of the Σ0
n, Π0

n, or ∆0
n+1

sets, for n ≥ 1.

20

Chapter 3

Embedding Linear Orderings

Given any non-zero cl-degree a, we can construct, through repeated application of
Propositions 1.6 and 2.6, a copy of (Z,≤) contained in the cl-degrees, with a as
an element. We might then ask: What other sorts of countable order types can
be embedded? We shall answer this question in its greatest generality for certain
degrees a in Chapter 4; for the moment, we restrict ourselves to linear order types.
This question is settled on the Turing degrees, as every countable linear order type
can be embedded into (Q,≤), which can in turn be embedded into the Turing
degrees by the Sacks Density Theorem [15]. Similarly, if we can manage to embed
Q into the cl-degrees, our question will be answered.

3.1 Within a single degree

We will push the question of countable linear embeddings as far as we reasonably
can by embedding Q into the cl-degrees into any given nonzero wtt-degree. The
sheer strength of the result will lead us to ask what other structures can always be
embedded, both globally and within a given degree. This question forms the basis
for Section 3.2 and for Chapter 4. For now:

Proposition 3.1. The rationals Q can be embedded as a linear ordering into the
cl-degrees. In fact, this can be done within any non-computable wtt-degree a. More-
over, if a is a c.e. degree, then the image of Q is uniformly c.e.; that is, their indices

21

in the enumeration (We)e∈ω can be found using a single procedure.

Proof. Recall Proposition 1.6, wherein we multiplied a given noncomputable set
A by a factor of 2 to stretch it and get A>cl2A. We could repeat this method
for successive powers of two to get an infinite sequence A>cl2A>cl4A>cl8A>cl · · · ,
but we can see immediately that every positive natural number can be included:
A>cl2A>cl3A>cl4A>cl · · · . The obvious way, then, to get the order type of Q would
be to multiply A by rational coefficients. While it does not make sense to multiply
these sets by a negative number, say, the intuition is largely correct, and, other
than some technicalities with rounding, the construction we shall use is essentially
that in Proposition 1.6 repeated infinitely many times.

It suffices to embed the open interval (0, 1) ∩ Q, which is isomorphic to Q as
a linear ordering. By reversing the relation we may, in fact, embed it backwards,
and shall do just that in order to simplify the arithmetic. For each q ∈ (0, 1) ∩Q,
define the corresponding function fq : ω → ω by fq(x) = b(1 + q) · xc. This has
a left-inverse gq(x) =

⌈
x

1+q

⌉
(to see this, note that 0 ≤ (1 + q) · x − fq(x) < 1,

and hence 0 ≤ x − fq(x)
1+q < 1). These fq and gq are computable, so for any set A,

A≡Tfq(A).

Now, if q < s with q, s ∈ (0, 1) ∩ Q, then for all n ∈ fs(ω), n ∈ fs(A) ⇐⇒
fq(gs(n)) ∈ fq(A). Since q < s, we have fq(gs(n)) ≤ n; thus, fs(A)≤ibTfq(A),
and in particular fs(A)≤clfq(A). In order to show that this reduction is strict, we
suppose that fq(A)≤clfs(A) and produce a contradiction by showing that Amust be
computable. Take Γ and c such that fq(A) = Γfs(A) and use Γfs(A) ≤ id+ c. Notice
that, for all n, A��n is computable via gq from fq(A)��fq(n), which is computable
via Γ from fs(A)��fq(n) + c, which is computable via fs from A��gs(fq(n) + c).

Let d =
⌈
c+1
s−q

⌉
. Then, for all n > d, we have

fs(n)− fq(n) = b(1 + s) · nc − b(1 + q) · nc ≥ (1 + s) · n− (1 + q) · n− 1

= (s− q) · n− 1 > (s− q) · d− 1 ≥ c+ 1− 1 = c .

That is, for all n > d, fs(n) > fq(n) + c. Hence, A��gs(fq(n) + c) is a proper initial
segment of A��n. So we can compute A��n from A��(n−1) and, as in previous proofs,
by iterating this method we can compute all of A from the finite segment A��d.

22

Corollary 3.2. Any countable linear ordering can be so embedded (perhaps sacri-
ficing uniformity).

3.2 Upper bounds and uncountable chains

We might similarly wish to ask, given a linear ordering in the cl-degrees, how we
can extend that ordering. For example, on the Turing ordering, any countable
collection {An}n∈ω of sets from 2ω is bounded above by the infinite join. This
bound is not a supremum, however: Kleene and Post [9] used an embedding of
(Q,≤) into the Turing degrees to see that, if every countable set had a supremum,
then using Dedekind cuts one could then construct a copy of (R,≤) in the Turing
degrees. Such an embedding is impossible, as there are only countably many Turing
functionals, and hence at most countably many Turing degrees below a given degree.
By Proposition 3.1, the same argument applies to countable collections of cl-degrees.

There is nonetheless some structure to the upper bounds of a sequence of Turing
degrees, as can be seen from Spector’s remarkable result:

Theorem 3.3 (Kleene-Post-Spector [19]). Every strictly ascending sequence of
Turing degrees a1<Ta2<Ta3<T · · · has an exact pair b, c, that is, one such that
an≤Tb, c for each n, and for each degree d we have d≤Tb∧d≤Tc⇒ (∃n)[d≤Tan].

There are a number of other interesting theorems concerning upper bounds to
such a sequence. In order for any of them to have analogues on cl, each cl-ascending
sequence must at least be bounded above. We shall show that even this is not the
case. The following lemma will be one of our main tools.

Lemma 3.4. If P is a non-empty partially-ordered set such that no element is
maximal and each ascending sequence a1 < a2 < a3 < · · · has an upper bound, then
P has an uncountable chain.

Proof. For each element a, choose another element S(a) > a. Pick some element
a0; then a0 < S(a0) < S(S(a0)) < · · · forms an infinite chain. Now, assume that
each chain is countable. Given an infinite chain C with no maximal element, we

23

may list its elements c1, c2, · · · , in no particular order. Defining {m1 < m2 <

· · · } = {n : (∀k < n)[ck < cn]}, we take the cofinal sequence D within C given by
D = (cm1 < cm2 < · · ·). Then D has an upper bound b in P , and this b must also
bound C. By Zorn’s Lemma, then, P has a maximal element—a contradiction.

This has a famous consequence on the Turing reducibility (and also the wtt
reducibility):

Corollary 3.5. The Turing degrees have an uncountable chain.

Proof. There is no maximal element because any Turing degree a is strictly below
its jump a′. Every infinite ascending sequence has an upper bound by Theorem 3.3,
and the result follows by Lemma 3.4.

In fact, this proves that any countable chain in the Turing degrees is part of an
uncountable chain. We shall see that this is not true of the ibT or cl degrees. To
begin, we introduce a theorem of Raichev.

Theorem 3.6 (Raichev [14]). There exists an A such that, if A≤clB, then A≡rKB.
(Indeed, this is true of any A that is ML-random in the sense of Martin-Löf [11].)

Lewis and Barmpalias [10] later, independently, uncovered a weaker version,
with A≡TB in the place of A≡rKB. They dubbed any A with this property quasi-
maximal. We can produce two T-incomparable quasi-maximal sets (for example,
T-incomparable ML-random sets are known to exist). Such pairs will have no
common ibT- or cl-upper bound. We can also combine Theorem 3.6 with Lemma 3.4
to produce a rather indirect proof that there is no analogue to Theorem 3.3 on the
cl-degrees:

Corollary 3.7. Not every ascending sequence in the cl-degrees has an upper bound.

Proof. Let A be as in Theorem 3.6 and take the partial ordering induced by (≤cl)
on P(≥clA) := {B : B≥clA}. By the construction in Proposition 2.6, P(≥clA)
has no maximal elements. If each ascending sequence had an upper bound then,
by Lemma 3.4, P(≥clA) would be uncountable. Yet, P(≥clA) ⊆ degrK(A) by

24

Theorem 3.6, and hence P(≥clA) is countable (since the number of possible rK-
reductions is countable, each rK degree is countable).

For a cl-chain ever to be uncountable, it must climb through uncountably many
Turing degrees, all the while managing to avoid the ill-behaved and ill-understood
quasi-maximal sets. Challenging though this may seem, there is such a chain; we
shall see this first for the simpler ibT reducibility.

Proposition 3.8. There is an uncountable chain of ibT-degrees.

Proof. We shall specify a substructure P of the ibT degrees and verify that it meets
the hypotheses of Lemma 3.4. We restrict ourselves to a certain class of very sparse
sets, such that none is maximal—using a warped variant of the construction in
Proposition 2.1—and that every ascending chain has an upper bound not unlike
the infinite join.

For a given set A ∈ 2ω, we may decompose it into segments

A = (20 − 1 + σ0) ∪ (21 − 1 + σ1) ∪ (22 − 1 + σ2) ∪ · · ·

with each σn ⊆ {0, 1, . . . , 2n − 1}. That is, A may be written as

A = A(0)︸ ︷︷ ︸
σ0

A(1)A(2)︸ ︷︷ ︸
σ1

A(3)A(4)A(5)A(6)︸ ︷︷ ︸
σ2

A(7)A(8)A(9)A(10)A(11)A(12)A(13)A(14)︸ ︷︷ ︸
σ3

· · ·

Defining the maximum of the empty set to be −1, let

P =
{
A ∈ 2ω : A non-computable, lim

n

maxσn
2n = 0

}
.

This condition describes sets that are, in a very strong sense, asymptotically non-
dense. Such sets do exist: for any non-computable set B, we may define an A by
this decomposition:

σn =

 {0} if n ∈ B
∅ if not

Then A is in P .

We can define a successor function on P as follows. Given A ∈ P , let N be such
that (∀n ≥ N)[maxσn

2n ≤ 1
2]. Define a leftward shift S on A by

S(A) = (2N − 1 + σN+1) ∪ (2N+1 − 1 + σN+2) ∪ · · · .

25

Then we clearly have S(A) ∈ P . Our condition on N guarantees that each of the
σn+1 we use is of length at most 2n, so that they never overlap in the expansion
of S(A). Hence, for any n > N , we can ibT-compute A ∩ [2n, 2n+1) = 2n + σn

from S(A) ∩ [2n−1, 2n) = 2n−1 + σn. As in previous shifting arguments, to have
S(A)≤ibTA would force A to be computable. Therefore, A<ibTS(A).

Given an ascending chain A0<ibTA1<ibTA2<ibT · · · in P , with respective decom-
positions

Ak = (20 − 1 + σk0) ∪ (21 − 1 + σk1) ∪ (22 − 1 + σk2) ∪ · · · ,

we construct a certain new set Aω by

Aω = (20 − 1 + σω0) ∪ (21 − 1 + σω1) ∪ (22 − 1 + σω2) ∪ · · · .

For each n ∈ ω, let Nn ≤ n be the largest such that

(∀k < Nn)(∀` ≥ n)
[

maxσk`
2` ≤ 1

2Nn

]
.

Define
σωn = {m < Nn} ∪

⋃
k<Nn

(
Nn + 1 + k · 2Nn + σkn+1

)
In other words, σωn contains Nn in unary, followed by a zero, followed by each of
σkn+1 for k < Nn. It is worth noting that the σωn can spill out of its allotted 2n

spaces for n ≤ 3. This will not be a problem, however, as we can discount those
first few entries.

We clearly have Ak≤ibTAω for each k. In particular, Aω is not computable. As
well, for sufficiently large n, maxσωn ≤ Nn+1+Nn ·2n−Nn ≤ 2n−Nn+1, and Nn →∞.
Hence limn

maxσωn
2n = 0. So Aω is in P .

Therefore, P contains an uncountable chain.

The construction ofAω does not actually require thatA1, A2, . . . be ibT-comparable.
Hence on P it can bound any countable set in a way analogous to the infinite join⊕ on the Turing degrees.

Corollary 3.9. There is an uncountable chain of cl-degrees, and there is an un-
countable chain of rK-degrees.

26

Proof. Take an uncountable ibT-chain (Aα)α<ℵ1 , and let (aα)α<ℵ1 be the associ-
ated cl- or rK-degrees. We still have a total ordering on (aα), and each degree is
countable; so if (aα)α<ℵ1 were a countable collection, we must have had a countable
number of sets in the first place, a contradiction.

27

Chapter 4

Incomparable c.e. Sets

We wish to continue our examination of the relationships between the ibT, cl,
and wtt degrees. We already know a fair bit about linear orderings embedded
between them. What about nonlinear ones? On the ibT degrees, for example,
which countable partial orderings can be embedded into a single cl degree, and
which can be embedded into any non-trivial cl degree? We produce a satisfying
answer to the first of these questions in Section 4.2. In order to decide whether
the second question even makes sense, we first must decide: Does there exist a cl
degree in which all sets are ibT-comparable? In this chapter, we grope towards a
definitive answer.

As usual, it is interesting and useful to consider the restriction to the c.e. sets.
In order to construct c.e. sets from other c.e. sets, we make heavy use of the classical
techniques of priority and permitting. This chapter will therefore have much more
pungent a computability-theoretic flavour than those that came before.

4.1 Basic techniques and results

This section is meant mainly as an exposition of the techniques we shall be using
later. Each of the results here will be subsumed under another in Section 4.2 or
Section 4.3. The reader should bear in mind that many of the results we shall be
proving are very similar to one another, and will have long, boiler-plate verifications

29

that differ only slightly from theorem to theorem—but that one or two of these
proofs is enough to gain a strong intuition for the methods and why they work.

The first technique we introduce is the finite-injury priority method. Recall
Cantor’s diagonal argument for the existence of multiple infinite cardinalitites. Tak-
ing a sequence (re)e∈ω of real numbers, we can construct a new number s subject
to the requirements

Ne : s 6= re

by performing a sequence of diagonalisations ensuring that the e-th digit s(e) in
the decimal expansion of s is not the same as as the e-th digit re(e) of re, by setting
s(e) = 9− re(e). Then s is a real number not in the list, leading to the conclusion
that the sequence (re)e∈ω of real numbers was not exhaustive.

This argument works out of the box because the diagonalisation neatly sidesteps
any possible conflict between different requirements. Each Ne is allocated one digit
in the expansion, and performs its job without worry of external interference. It is
a common goal, in computability theory and in other fields, to construct an object
satisfying restraints that might interfere with one another. In this case, we assign
each of the requirements a unique priority, with the understanding that, in the
event of a conflict, the higher-priority requirement will take precedence, and with
the hope that, in the end, each of the requirements will be satisfied. The first and
canonical example of a priority argument is the Friedberg-Muchnik Theorem:

Theorem 4.1 (Friedberg [8]-Muchnik [12]). There exists a pair U, V of c.e. sets
such that U |TV .

Because it resembles future arguments more closely, we content ourselves with
proving a weakened version:

Proposition 4.2. There exists a pair U, V of c.e. sets such that U |ibTV .

Proof. Let (Φ̂e)e∈ω be an effective enumeration of ibT functionals. In order to
have U≤ibTV , there must be a Φ̂e such that U = Φ̂V

e , and similarly for V≤ibTU .
Therefore our U and V must satisfy the countable set of requirements:

N2e : U 6= Φ̂V
e

N2e+1 : V 6= Φ̂U
e

30

Of these, the requirement N0 is considered to have the highest priority, followed by
N1, N2, and so on.

Were we to assign to each Ne a fixed spot in U and V , in the manner of Cantor’s
diagonalisation, then we should easily run into conflicts. For example, suppose we
wish to diagonalise at U(0) against U = Φ̂V

0 and at V (1) against V = Φ̂U
0 . If at

stage s we have determined that Φ̂Us
0,s(1)↓ = 0, it will be tempting to enumerate 1

into V and declare requirement N1 fulfilled. If we do so, at stage s + 1 we may
notice that Φ̂Vs+1

0,s+1(0)↓ = 0 and so enumerate 0 into U . But this enumeration would
injure our previous diagonalisation, re-opening the possibility that Φ̂U

0 (1)↓ = 1. We
could try again and again to diagonalise, but there is no reason to believe that one
of our attempts will escape injury. On the other hand, if we do not enumerate 1
into V but rather wait to see whether Φ̂V

0 (0)↓ = 0, we may well be waiting forever.

The solution is, at each stage, to diagonalise against the highest-priority unsat-
isfied requirement that we can, without disturbing the fulfilled requirements of still
higher priority. At each stage s, each requirement Nk is given a restraint r(k, s)
such that, if ` > k, then we cannot explicitly act on Us��r(k, s) or Vs��r(k, s) to
satisfy N`. This protects the work done to meet requirement Nk. We view all m in
the range r(k − 1, s) < m ≤ r(k, s) as candidate witnesses to Nk. This particular
argument will be simple enough that, at any given stage s, the entry r(k, s) is our
only candidate witness.

Construction

Assign to each requirement Nk and each stage s a witness r(k, s). Begin by
letting r(k, 0) = k for each k ∈ ω. Then proceed by stages.

At stage s+ 1, let i—if it exists—be the smallest natural number smaller than
s such that Φ̂Vs

i,s(r(2i, s))↓ = 0 and r(2i, s) 6∈ Us. Similarly, let j be the smallest
natural number smaller than s such that Φ̂Us

j,s(r(2j+1))↓ = 0 with r(2j+1, s) 6∈ Vs.
If i is defined and i ≤ j or j is not defined, enumerate r(2i, s) into Us+1. Otherwise,
if j is defined, enumerate r(2j + 1, s) into Vs+1. Then recalculate the restrictions

31

for each e ≤ s:

r(0, s+ 1) = 0
r(2e+ 1, s+ 1) = (µn > r(2e, s+ 1))

[
n 6∈ Vs ∨ Φ̂Us+1

e,s (n)↓ = 0
]

r(2e+ 2, s+ 1) = (µn > r(2e+ 1, s+ 1))
[
n 6∈ Us ∨ Φ̂Vs+1

e,s (n)↓ = 0
]

Verification

We have defined (r(0, s))s∈ω to be the sequence of all zeroes. We claim that,
for any i even or odd, the sequence (r(i, s))s∈ω is eventually constant. Suppose
otherwise. If a sequence of natural numbers is not eventually constant, then it must
be increasing at infinitely many stages. Let j be the smallest such that, for infinitely
many s, r(j, s + 1) > r(j, s). Assume that j = 2e + 1 is odd, the other case being
similar. Choose s0 such that s ≥ s0 implies, for each k < j, that r(k, s+1) = r(k, s),
and Us��r(j, s) = Us+1��r(j, s), and there is some stage t > s0, r(j, t + 1) > r(j, t).
This implies that r(j, s) ∈ Vt+1 \ Vt. The only case where we might enumerate
r(j, s) into Vt+1 would be if Φ̂Ut

e,t(r(j, t))↓ = 0. But Ut��r(j, t) = Ut+1��r(j, t), so we
must have Φ̂Ut+1

e,t (r(j, t))↓ = 0, giving r(j, t+ 1) ≤ r(j, t), a contradiction.

Because each (r(2e + 1, s))s∈ω eventually settles, we must have requirement
N2e+1 met. If we let r(2e+ 1) = lims r(2e+ 1, s), then we know either r(2e+ 1) 6∈
V or Φ̂V

e (r(2e + 1))↓ = 0. In the former case, we never needed to perform the
diagonalisation, meaning either Φ̂V

e (r(2e+1))↓ = 1 or Φ̂V
e (r(2e+1))↑. In the latter,

we must have performed the diagonalisation. The same holds for even requirements
N2e+2. The special case of N0 also works, since V ��0 will never change, and so any
diagonalisation we may perform at U(0) will remain uninjured.

The permitting method is common in situations where we want to build a non-
computable c.e. set W that is Turing below another non-computable c.e. set A
using a c.e. approximation (As)s∈ω of the latter. In the case of identity-bounded
permitting, the idea is to build a c.e. approximation (Ws)s∈ω such that Ws+1��n 6=
Ws��n implies As+1��n 6= As��n. Then, if we know the final value of A��n, we can find
s such that As��n = A��n, and hence recover W ��n = Ws��n. Thus W≤ibTA. The
tricky part is that we may want W to have some additional distinguishing property
P , but we may be not be able to impose it more quickly than (As)s∈ω converges and

32

cuts us off. In this case, we can trace our steps through the approximation (As)s∈ω
and our computation of (Ws)s∈ω and gather enough evidence of failed attempts at
P to prove that A was actually computable. (The same sort of argument can be
used on ∆2 sets in general, and with particular success on c.e. reals.)

For the next construction, we combine priority and permitting strategies.

Proposition 4.3. Each nonzero c.e. wtt-degree contains a pair U, V of c.e. sets
such that U |ibTV .

Proof. Suppose A is a non-computable c.e. set with c.e. approximating sequence
(As)s∈ω. We shall construct two new sets U, V such that U≡wttA≡wttV but U |ibTV .

Let (Φ̂e)e∈ω denote a computable enumeration of ibT functionals.

Requirements

P : A≤wttU, V
R : U, V≤wttA
N2e : U 6= Φ̂V

e

N2e+1 : V 6= Φ̂U
e

We achieve P by coding a spread-out version of A directly into U and V ; we
prevent U≤ibTV and V≤ibTU by diagonalising against each such ibT-reduction.
We assign priorities to the Ne in the usual, descending order; R will be guaranteed
through permitting. Note that, among plain c.e. permitting arguments, ours is
somewhat non-standard in that, rather than waiting for any k ≤ n to enter A
before allowing n to enter U or V , we wait for one of a very specific set of k.

To govern the finite-injury priority argument, we create, for each Ne and each
stage s, a restraint r(e, s) that shall bound any diagonalisation against Ne at stage
s. If, at stage s, Ne appears to be satisfied, and Ni is satisfied and has stopped
acting for all i < e, subsequent r(e, t) shall be less than or equal to r(e, s). Because
we are constructing c.e. approximations, this means that, once satisfied, Ne will
act on its witnesses only a finite number of times, and hence, by induction, any
requirement will be injured only a finite number of times.

33

Our construction is further complicated by the need to provide an adequate
number of witnesses, in the appropriate positions, to each Ne. We are forced to
introduce them slowly. Denote the coding position of A(n) in U and V by λ(n), so
that for all n we have U(λ(n)) = A(n) = V (λ(n)). We insert one witness position
(for N0) before λ(0), two (one for N0 and one for N1) between λ(0) and λ(1), . . .,
and n + 2 (one for each Ne, e ≤ n + 1) between λ(n) and λ(n + 1). A simple
calculation gives the closed form λ(n) = n2+5n+2

2 ; for convenience, we also assign
λ(−1) = −1. As for the witnesses, we just allotted one to Ne between λ(n−1) and
λ(n) for every n ≥ e. We write the coding positions for Ne as the partial function
Λe : ω≥e → ω, Λe(n) = λ(n − 1) + e. Note that Λ0(0) < λ(0) < Λ0(1) < Λ1(1) <
λ(1) < Λ0(2) < Λ1(2) < Λ2(2) < λ(2) < · · · .

Here are the necessary restraints:

r(−1, s) = −1
r(2e, s) = (µk > r(2e− 1, s))

[
¬
(
Φ̂Vs
e,s(Λ2e(k))↓ = Us(Λ2e(k))

)]
r(2e+ 1, s) = (µk > r(2e− 1, s))

[
¬
(
Φ̂Us
e,s(Λ2e+1(k))↓ = Vs(Λ2e+1(k))

)]
By convention, before halting, each oracle computation ΦX

e (n) will take at least n
steps to halt. Hence each r(`, s) is defined and r(`, s) ≤ s.

Construction

When n ∈ As \ As−1, enumerate Us(λ(n)) = Vs(λ(n)) = 1.

When such an n enters with r(2e − 1, s) ≤ n < r(2e, s), define Us(Λ2e(n)) =
1−̇Φ̂Vs

e,s(Λ2e(n)). That is, if Φ̂Vs
e,s(Λ2e(n))↓ = 0, then enumerate Λ2e(n) into Us, and

do nothing otherwise.

When such an n enters with r(2e, s) ≤ n < r(2e + 1, s), let Vs(Λ2e+1(n)) =
1−̇Φ̂Us

e,s(Λ2e+1(n)).

Verification

Because of the direct coding of A into U and V by λ, P is immediate. Because
n enters U or V only if some k ≤ n enters A, R is also satisfied. U and V are
c.e. because they are built by stages, and each entry, being in the image of exactly
one of λ and {Λ`}, is changed during at most one stage. We establish Ne by
induction.

34

For each i, let r(i) = lims r(i, s). We claim that this limit exists for all i.
Suppose, for contradiction, that ` is the smallest such that lims r(`, s) does not
exist. Assume further that ` = 2e is even, the odd case being symmetrical. Let s0

be such that s ≥ s0 implies (∀i < `)[r(i, s) = r(i)] and As��r(`− 1) = A��r(`− 1).

Case 1. Suppose there is a t0 ≥ s0 such that Φ̂Vt0
e,t0 (Λ`(r(`, t0))) ↓ 6= Ut0 (Λ`(r(`, t0))).

We shall show that the limit r(`) exists. The only way r(`, t) can then differ from
r(`, t0), with t > t0, is if, at stage t, some new element n ≤ Λ`(r(`, t0)) enters
Vt \ Vt−1. Either n = λ(k) or n = Λi(k) for some i < `, k ≤ r(`, t); in either case,
there is a k ≤ r(`, t) entering At \At−1. We cannot have k < r(`− 1) = r(`− 1, t),
by our choice of s0. We thus have r(` − 1, t) ≤ k < r(`, t). Our construction
dictates that, at stage t, we diagonalise at Ut(Λ`(k)); thus, at the next stage,
r(`, t + 1) ≤ k ≤ r(`, t). This means that the sequence (r(`, s))s≥t0 is decreasing
and bounded below by r(`− 1); therefore, the limit r(`) exists, a contradiction.

Case 2. Suppose next that there is no such t0—that is, (∀s ≥ s0)
[
Φ̂Vs
e,s (Λ`(r(`, s))) ↑

]
.

Again, we wish to show that r(`) exists. Say there is some stage t1 ≥ s0 where (∀t ≥
t1)
[
Φ̂Vt
e,t (Λ`(r(`, t1))) ↑

]
. In this case, we know that (∀t ≥ t1) [r(`, t) ≤ r(`, t1)]. De-

fine the least modulus or settling time of (As)s∈ω to be the function:

m(n) = (µt)(∀s ≥ t) [A��n = As��n] .

Then, for all t ≥ m(r(`, t1)), we have r(`, t + 1) = r(`, t), so that the limit r(`)
exists, a contradiction.

Case 3. If there are no t0 or t1, then we can define a computable function
f(x) = (µs ≥ s1)[r(`, s) ≥ x]. Then, (∀∞x)[m(x) ≤ f(x)]—since otherwise we
would be performing a diagonalisation after step s0, bringing us to Case 1—so that
(∀∞x)[A(x) = Af(x)(x)]. But then A is computable, a contradiction.

Therefore, each sequence (r(`, s))s∈ω converges. Then, by definition of r(`, s),
we must have

(∀∞s)
[
¬
(
Φ̂Vs
e,s(Λ`(r(`)))↓ = Us(r(`))

)]
,

and in particular
¬
(
Φ̂V
e (Λ`(r(`)))↓ = U(r(`))

)
.

Hence, each requirement N` is eventually satisfied.

35

This result quickly gives way to a stronger one:

Corollary 4.4. Within any nonzero c.e. wtt-degree there exist two c.e. sets X, Y
such that X|ibTY but X≡clY .

Proof. Take the U and V from Proposition 4.3. Let X = U ⊕ V—that is, viewed
as sets, X = 2U ∪ (2V + 1)—and Y = V ⊕ U . Since U and V are wtt-equivalent,
we have X≡wttU≡wttV≡wttY . As well, we know that X≡clY , since, for each n,
X(2n) = Y (2n + 1) and X(2n + 1) = Y (2n). Assume that X≤ibTY . Then there
is some Γ that computes X(2n) from Y ��2n, and hence there is a Γ1 that computes
U(n) from V ��n and U��(n − 1), and hence, iterating Γ1 on each k ≤ n, there is a
Γ2 that computes U(n) from just V ��n. This Γ witnesses U≤ibTV , a contradiction.
Hence X 6≤ibTY , and by a similar argument Y 6≤ibTX.

Corollary 4.5. Within any nonzero c.e. wtt-degree there exist two c.e. sets X, Y
such that X|clY .

Proof. Again take U and V from Proposition 4.3. Define X by X(n·(n+1)
2) = U(n)

for each n and X(k) = 0 for all other k. Define Y analogously from V . Then
X≡wttU≡wttV≡wttY . Suppose that X≤clY by functional Γ with constant c. Then,
for all n ≥ c, Γ can compute X(n·(n+1)

2) from Y ��n·(n+1)
2 + c = Y ��n·(n+1)

2 . So there is
a Γ1 that can compute U(n) from V ��n. Iterating this Γ1, we can obtain a Γ2 that
ibT-computes all U from V using the finite information in U��c—which contradicts
Proposition 4.3. So X 6≤clY , and by a similar argument we must have Y 6≤clX.

4.2 Arbitrary countable partially-ordered sets

We now wish to use these techniques to decide what sort of partially-ordered sub-
structures we can find in the cl or the ibT degrees.

Definition 4.6. If (P,≤) and (Q,≤) are partially-ordered sets, then we say f :
P → Q is a (strong) embedding of P into Q if, for all p1, p2 ∈ P, q1, q2 ∈ Q,
we have p1 ≤P p2 ⇐⇒ q1 ≤Q q2.

36

A countable partially-ordered set (P,≤P) is called countably universal if it
contains an order-isomorphic copy of every countable partially ordered set. Clearly,
then, if such a set can be embedded into a given degree structure, then any countable
partially-ordered set can be embedded into that structure. It is possible to produce
a computable, countably universal set;

Theorem 4.7. There exists a computable, countably universal, partially-ordered
set (P,≤P)—that is, one on which the relation (≤P) is computable.

Hence, to see that any countable partial ordering can be embedded into a de-
gree structure, it suffices to prove that any computable partial ordering can so be
embedded. It has been observed that any countable partially-ordered set can be
embedded into the Turing degrees using a countable collection {Aj ∈ 2ω : j ∈ ω}
of independent sets, i.e.,

(∀j)
Aj 6≤T ⊕

i 6=j
Ai

 .

Such a collection of sets was first exhibited by Kleene and Post [9]. An appropriate
embedding would then be

P → 2ω

q 7→ Mq := ⊕
p≤P q Aq

as the computability of the relation (≤P) and of the⊕ operation guaranteeMp≤TMq

if p ≤P q, and our independence condition on {Aj}j∈ω ensures the converse.

This well-known proof carries through immediately on the wtt-degrees, but not
on the cl- or ibT-degrees, as ⊕ tends to spread information too far. The solution
is to create sets that are already sufficiently spread out, and replace ⊕ with ⋃.

The following result does exactly that to produce a computable, countably uni-
versal structure in the ibT degrees. Its immediate consequence, Corollary 4.9, in
some ways eclipses our earlier result in Proposition 3.1. It should be noted, how-
ever, that this result has some disadvantages, as it does not guarantee that any
c.e. set is part of such a structure, nor is the proof nearly as elementary.

Proposition 4.8. If A ∈ 2ω is non-computable and c.e., and (P,≤P) is a countable
partially-ordered set, then we can embed (P,≤P) into the c.e. ibT degrees within the
wtt-degree of A.

37

Proof. We may assume that P = ω and that (≤P) is computable. We wish to find
an infinite collection of ibT-incomparable c.e. sets within the wtt-degree of A. Take
a c.e. approximation (As)s∈ω of A.

Our construction here will be a refined version of that in Proposition 4.3 whereby
we produce an infinite number of ibT-independent sets, rather than just two. As in
the proof of that proposition, here we use a combination of coding and permitting
to ensure wtt-equivalence.

To control ibT reducibility, we partition ω into an infinite number of computable
subsets S and {Ti}i∈ω. We code a W ⊆ S such that W≡wttA, and within each of the
Ti we build a corresponding Ci ⊆ Ti such that, for each i, W ∪Ci 6≤ibTW ∪

⋃
j 6=iCj.

These sets can therefore be used to build the desired copy of (P,≤P). If we define
B = W ∪ ⋃p∈P Tp, these requirements can be summed up:

Requirements

P : A≤wttB ∩ S
R : B≤wttA
N〈p,e〉 : B ∩ (Tp ∪ S) 6= Φ̂B\Tp

e

Suppose we have satisfied all these requirements. For any q ∈ P , let Mq =
B ∩ (S ∪⋃p≤P q Tp). If q ≤P r, then {p : p ≤P q} is a computable set, so Mq≤ibTMr

through the restriction map. On the other hand, if q 6≤P r, we have Mr≤ibT (B \Tq)
by the restriction map, giving Mq 6≤ibTMr by requirements {N〈q,e〉 : e ∈ ω}. As well,
because B ∩ S is wtt-computable from each Mq, and Mq is wtt-computable from
B by computable restriction, if P and R are met, then we must have Mq≡wttA for
each q ∈ P .

Then q 7→Mq is an embedding, as desired.

Construction

Much like in the proof of Proposition 4.3, we wish to have coding locations λ(x)
for A and diagonalisation witnesses Λ〈p,e〉(x) such that

Λ0(0) < λ(0) < Λ0(1) < Λ1(1) < λ(1) < · · · .

38

It is enough to let λ(x) = (x+2)(x+3)
2 −2 and, for x ≥ 〈p, e〉, let Λ〈p,e〉(x) = (x+1)·(x+2)

2 +
〈p, e〉 − 1. Then we have our computable partition:

S = λ(ω)
Tp = ⋃

e∈ω Λ〈p,e〉(ω)

Assign beginning restraints:

r(−1, 0) = 0
r(〈p, e〉 , 0) = 0 for each e ≥ 0, p ∈ ω

At each stage s+ 1:

Step 1. Take n ∈ As+1 \ As. There is at most one such n; if no such n exists,
skip to Step 3. Otherwise, find ` = 〈p, e〉 such that r(` − 1, s) ≤ n < r(`, s) and
` < n. If no such ` exists, proceed to Step 2. Otherwise, enumerate Λ`(n) into
Bs+1 ∩ Tp for diagonalisation.

Step 2. Enumerate λ(n) into Bs+1 ∩ S for coding.

Step 3. Recalculate the restraints for each ` = 〈p, e〉 ≤ s:

r(−1, s+ 1) = 0
r(`, s+ 1) = (µk > r(`− 1, s+ 1))

[
¬
(
Φ̂Bs+1\Tp
e,s (Λ`(k))↓ = Bs+1(Λ`(k))

)]
Verification

We defined (r(−1, s))s∈ω to be the constant sequence of all zeroes. For each
`, let r(`) = lims r(`, s). We claim that each of these limits exists. Suppose that
` = 〈p, e〉 is the smallest for which the limit does not exist. Choose s0 large enough
that i < ` and s ≥ s0 imply r(i, s) = r(i) and As0��r(`− 1) = A��r(`− 1).

Case 1. Suppose there is a t0 ≥ s0 such that Φ̂Bt0\Tp
e,t0 (Λ`(r(`, t0))) ↓ 6= Bt0 (Λ`(r(`, t0))).

We shall show that the limit r(`) exists. The only way r(`, t) can then differ from
r(`, t0), with t > t0, is if, at stage t, some new element n ≤ Λ`(r(`, t0)) enters
Bt \ Bt−1. Either n = λ(k) or n = Λi(k) for some i < `, k ≤ r(`, t); in either case,
there is a k ≤ r(`, t) entering At \At−1. We cannot have k < r(`− 1) = r(`− 1, t),
by our choice of s0. We thus have r(` − 1, t) ≤ k < r(`, t). Then, at stage t, we
diagonalise at Bt(Λ`(k)); thus, at the next stage, r(`, t + 1) ≤ k ≤ r(`, t). This

39

means that the sequence (r(`, s))s≥t0 is decreasing and bounded below by r(`− 1);
therefore, the limit r(`) exists, a contradiction.

Case 2. Suppose that there is no such t0. We wish to show that r(`) exists. Say
there is some stage t1 ≥ s0 where (∀t ≥ t1)

[
Φ̂Bt\Tp
e,t (Λ`(r(`, t1))) ↑

]
. In this case,

we know that (∀t ≥ t1) [r(`, t) ≤ r(`, t1)]. Then, for all t ≥ m(r(`, t1)), we have
r(`, t+ 1) = r(`, t), so that the limit r(`) exists, a contradiction.

Case 3. If there are no t0 or t1, then we can define a computable function f(x) =
(µs ≥ s1)[r(`, s) ≥ x]. Then, (∀∞x)[m(x) ≤ f(x)], so that (∀∞x)[A(x) = Af(x)(x)].
But then A is computable, a contradiction.

Therefore, each sequence (r(`, s))s∈ω converges. Then, by definition of r(`, s),
we must have

(∀∞s)
[
¬
(
Φ̂Bs\Tp
e,s (Λ`(r(`)))↓ = Bs(r(`))

)]
,

and in particular

¬
(
Φ̂B\Tp
e (Λ`(r(`)))↓ = B(r(`))

)
.

Hence, each requirement N` is eventually satisfied.

We satisfy R by permitting and P by coding into S.

Spreading the sets out further, as in Corollary 4.5, gives a similar result on the
cl-degrees:

Corollary 4.9. If A ∈ 2ω is non-computable and c.e., and (P,≤P) is a countable
partially-ordered set, then we can embed (P,≤P) into the c.e. cl degrees within the
wtt-degree of A.

Proof. Take the sets S, Tp, and B constructed in Proposition 4.8. Create new sets

S? =
{
n · (n+ 1)

2 : n ∈ S
}

T ?p =
{
n · (n+ 1)

2 : n ∈ Tp
}

B? =
{
n · (n+ 1)

2 : n ∈ B
}

40

Then we have, for every 〈e, p〉 and every cl-functional Φ̃e,

A≤clB? ∩ S?

B?≤clA
B? ∩ (T ?p ∪ S?) 6= Φ̃B?\T ?p

e

giving the desired construction.

To get Corollary 4.4 from Proposition 4.3, we simply interleaved the two sets
U and V to get a cl-equivalence. We can do the same to any finite number of sets
built in Proposition 4.8:

Corollary 4.10. If A ∈ 2ω is non-computable and c.e. , and (P,≤P) is a finite
partially-ordered set, then we can embed (P,≤P) into the c.e. ibT degrees within a
single cl-degree inside the wtt-degree of A.

Proof. Suppose P = n = {0, 1, . . . , n − 1}. Construct B exactly as in Proposi-
tion 4.8. For each q < n, let Mq = B ∩ (S ∪⋃p<n,p≤P q Tp). Then, as before, p ≤P q
if and only if Mp≤ibTMq.

Weave these sets together as a sort of n-tuple join, with conspicuous blank
spaces every (n+ 1)-th entry:

X = ((n+ 1) ·M0 + 1) ∪ ((n+ 1) ·M1 + 2) ∪ · · · ∪ ((n+ 1) ·Mn−1 + n)

and fill those spaces in n different ways:

N0 = (n+ 1) ·M0 ∪X
N1 = (n+ 1) ·M1 ∪X
...

Nn−1 = (n+ 1) ·Mn−1 ∪X

ThenN0≡clN1≡cl · · · ≡clNn−1, and each is wtt-equivalent toA. Moreover,Mp≤ibTMq

if and only if Np≤ibTNq, in the obvious way.

41

4.3 Compression and c.e. reals

In general, it is easy to construct different sorts of c.e. reals, and ∆2 sets in general,
from a c.e. approximation. The relaxed requirements of an approximating sequence
give us a good deal of freedom, in particular allowing us to compress the information
from a segment of size 2n−1 from a c.e. set A to segment n of a c.e. real B as follows.
Identify a finite binary string σ of length n with the natural number Σn−1

i=0 σ(i) · 2i.
Given a c.e. set A with approximating sequence (As)s∈ω, and any choice of n,
construct a new sequence (Bs)s∈ω by letting Bs��n be the size |As��(2n − 1)| as a
binary number of length n. Then (Bs)s∈ω is a c.e. real approximation whose limit
B encodes A��2n in a way dual to our “counting” construction in Lemma 1.16.
Encoding more and more segments of A can result in a c.e. real B from which A is
ibT-computable, but which still has room for coding.

To demonstrate, we construct a structure of ∆2 sets.

Corollary 4.11. If A ∈ 2ω is non-computable and c.e. , and (P,≤P) is a finite
partially-ordered set, then we can embed (P,≤P) into the ∆2 ibT-degrees within the
cl-degree of A.

Proof. We may assume that the set P is {0, 1, 2, . . . , n − 1}. Further assume that
n ≥ 2, the other cases being trivial. Take a c.e. approximation (As)s∈ω. Take
an enumeration (Φ̂e)e∈ω of ibT functionals. Let 〈·, ·〉 be a Gödel numbering from
P × ω → ω.

We compress A to give room for our diagonalisations. Since we want consecutive
strings of n witnesses, we’ll need to compress segments by more than n positions.
It will be sufficient, if somewhat wasteful, to take segments of size 3n.

For each p = 0, 1, . . . , n− 1, let Tp = {x · 3n + p}x∈ω. Define Λp(x) = x · 3n + p.
Let S = {x · 3n + k : n ≤ k < 3n} be the coding locations. The intervals are large
enough, since log2 3 < 2. Then the Tp and S do not form a partition of ω, but they
are disjoint, computable sets, which is all we need.

Requirements

42

P : A≤clB ∩ S
R : B≤clA
N〈p,e〉 : B ∩ (Tp ∪ S) 6= Φ̂B\Tp

e

Using the S and Tp as before, we can then make an embedding of the finite lattice
(P,≤) into the cl-degree of A.

Because we wish to satisfy R through permitting, we’ll need, between each
two witnesses for N〈p,e〉, some maximum distance c to bound the use of the cl-
reduction. Because there are infinitely many e, this will cause some complications:
we must re-use the same witnesses for different e. The weaker requirements of a ∆2

approximation allow us to reverse a diagonalisation when a small element enters
A. Though our argument will be slightly more complicated, we shall see in the
verification that, as in previous arguments, a c.e. set A that does not eventually
allow us to satisfy each N〈p,e〉 must be computable.

Construction

Assign beginning restraints:

r(−1, 0) = 0
r(〈p, e〉 , 0) = 0 for each e ≥ 0, p ∈ ω

At each stage s+ 1:

Step 1. Take x ∈ As+1\As. There is at most one such x; if no such x exists, skip
to Step 3. Otherwise, find numbers m, k such that x = m · 2n + k with 0 ≤ k < 3n.
Find ` = 〈p, e〉 such that r(` − 1, s) < n < r(`, s) and ` < m. If no such ` exists,
proceed to Step 2. Otherwise, let Λp(m) = 1−̇Φ̂Bs+1∩Tp

e,s for diagonalisation.

Step 2. Code |As ∩ [(m+ 2) · 3n, (m+ 3) · 3n)| into Bs∩ [m ·3n+n,m ·3n+3n).

Step 3. Recalculate the restraints for each ` = 〈p, e〉 ≤ s:

r(−1, s+ 1) = 0
r(`, s+ 1) = (µk > r(`− 1, s+ 1))

[
k ≥ s ∨ ¬

(
Φ̂Bs+1\Tp
e,s (Λp(k))↓ = Bs+1(Λp(k))

)]

Verification

43

The verification will be similar to previous arguments. For each `, we let r(`)
be the limit of (r(`, s)s∈ω). Supposing that ` = 〈p, e〉 is the smallest for which this
limit does not exist, choose a stage s0 after which, for all smaller i < ` and all
subsequence s ≥ s0, we have r(i, s) = r(i) and

As�� ((r(`− 1) + 2) · 3n) = A�� ((r(`− 1) + 2) · 3n) .

Case 1. Suppose there is a t0 ≥ s0 such that Φ̂Bt0\Tp
e,t0 (Λp(r(`, t0))) ↓ 6= Bt0 (Λp(r(`, t0))).

We shall show that the limit r(`) exists. The only way r(`, t) can then differ from
r(`, t0), with t > t0, is if, at stage t, some new element m ≤ Λp(r(`, t0)) enters
Bt \ Bt−1. Either m = Λp(k) for some i < `, k ≤ r(`, t) or m is entering to code
some change in A��(3n · (r(`, t) + 2)); in either case, there is a k ≤ r(`, t) entering
At \ At−1. We cannot have k < r(` − 1) = r(` − 1, t), by our choice of s0. We
thus have r(` − 1, t) ≤ k < r(`, t). Then, at stage t, we diagonalise at Bt(Λp(k));
thus, at the next stage, r(`, t + 1) ≤ k ≤ r(`, t). This means that the sequence
(r(`, s))s≥t0 is decreasing and bounded below by r(` − 1); therefore, the limit r(`)
exists, a contradiction.

Case 2. Suppose that there is no such t0. We wish to show that r(`) exists. Say
there is some stage t1 ≥ s0 where (∀t ≥ t1)

[
Φ̂Bt\Tp
e,t (Λp(r(`, t1))) ↑

]
. In this case,

we know that (∀t ≥ t1) [r(`, t) ≤ r(`, t1)]. Then, for all t ≥ m(r(`, t1)), we have
r(`, t+ 1) = r(`, t), so that the limit r(`) exists, a contradiction.

Case 3. If there are no t0 or t1, then we can define a computable function f(x) =
(µs ≥ s1)[r(`, s) ≥ x]. Then, (∀∞x)[m(x) ≤ f(x)], so that (∀∞x)[A(x) = Af(x)(x)].
But then A is computable, a contradiction.

Therefore, each sequence (r(`, s))s∈ω converges. Then, by definition of r(`, s),
we must have

(∀∞s)
[
¬
(
Φ̂Bs\Tp
e,s (Λp(r(`)))↓ = Bs(r(`))

)]
,

and in particular
¬
(
Φ̂B\Tp
e (Λp(r(`)))↓ = B(r(`))

)
.

Hence, each requirement N` is eventually satisfied.

We satisfy R by permitting and P by coding into S.

44

Finally, we show that, although it is easy to find ∆2 sets cl-equivalent to a given
c.e. set, and in contrast to the result in Lemma 1.16, there is a ∆2 set—a c.e. real,
in fact—strictly cl-above every c.e. set.

Proposition 4.12. There is a c.e. real A such that, for each c.e. set W , W≤ibTA
but A6≤rKW . In particular, W<ibTA, W<clA, and W<rKA.

Proof. Let (We)e∈ω be an effective enumeration of c.e. sets. Let (fi)i∈ω be an
effective listing of binary partial computable functions in ω×ω → ω, and for each i
let (fi,s)s∈ω be the sequence of s-step approximations to fi. Let 〈·, ·, ·〉 : ω×ω×ω →
ω be a ternary Gödel numbering such that, for any a, b, c, we have 〈a, b, c〉 ≥ a, b, c.

Requirements

Pe : We≤ibTA
N〈e,i,k〉 : A is not rK-below We via fi(·, 0), . . . , fi(·, k)

In order to code each of the c.e. sets into A, we shall introduce them one by one
and code longer and longer (and hence more compressed) segments into A. That
is, we shall start by coding an initial segment of W0 into A; then a longer segment
of W0 and a segment of W1; then, longer still, W0, W1, and W2; and so on. Because
the length of a coded segment in A is logarithmic in that of the original segment
in We, it will not be difficult to choose an appropriate length at each step to fit in
each We and have some space left over to use for the N〈e,i,k〉.

The way we fulfill requirement N〈e,i,k〉 is by simple diagonalisation. We reserve
k entries of A for this purpose, say A∩ [n, n+k), and make sure that, if fi(We��(n+
k − 1), j)↓ = σ, then A(n + j) 6= σ(n + j). We can ensure that this is a c.e. real
by requiring that We��(n + k − 1) be coded into A��(n− 1)—so that whenever one
of our diagonalisations is injured by a change to We, there will be a change to the
coding somewhere in A��(n − 1), allowing us to reset A ∩ [n, n + k) and perform
each diagonalisation again.

More precisely, when n ≥ e, we can use A∩[2n+e·(n+2), 2n+e·(n+2)+n+2) to
code We��2n+2−1. We then have the leftover space in A∩ [2n+(n+1) ·(n+2), 2n+1)

45

for other coding. Supposing that we want this last interval to have length at least
n, we need n ≥ 6.

Construction

For each e, let (We,s)s∈ω be the natural enumeration of We.

At stage s ≥ 6:

Step 1. For each n, e with e ≤ n ≤ s, code

As ∩ [2n + e · (n+ 2), 2n + e · (n+ 2) + n+ 2) =
∣∣∣We,s��2n+2 − 1

∣∣∣ .
Step 2. For each n ≤ s, take e, i, k such that n = 〈e, i, k〉. For each j ≤ k, let

As(2n +(n+1) · (n+2)+ j) =


1 if fi,s(We,s��(2n+1 − 1), j)↓ = σ

with σ(2n + (n+ 1) · (n+ 2) + j) = 0
0 otherwise

Let A = limsAs.

Verification

If an element is removed from A at stage s in step 1, then, by place-value, some
smaller element must at the same time enter A. If an element is removed in step 2,
then there must have been some injury of the formWe,s��(2n+2−1) 6= We,s−1��(2n+2−
1) to the corresponding computation, in which case—because e ≤ 〈e, i, k〉 = n—a
smaller element was added to As ∩ [2n + e · (n+ 2), 2n + e · (n+ 2) + n+ 2) in step
1. Therefore, A is indeed a c.e. real.

Requirement Pe is met simply enough: for each e,m, with m ≥ 26+2 = 256, let
` = dlog2(m+1)e. Then m ≤ 2`−1; if e ≤ `−2, we can compute We(m) simply by
running the approximation (We,s(m))s∈ω and waiting for an s with

∣∣∣We,s��(2` − 1)
∣∣∣ =

A∩ [2`−2 + e · (`−2+2), 2`−2 + e · (`−2+2)+ `−2+2). Hence We(m) is computed
from A��2`−1, and 2`−1 ≤ 2log2(m+1) − 1 ≤ m, so this is an ibT reduction.

For each n = 〈e, i, k〉, and any j such that 0 ≤ j ≤ k, we know by Step 2 of the
construction that A��(2n+1 − 1) 6= fi(We��(2n+1 − 1), j). Hence Nn is met.

46

References

[1] George Barmpalias. Computably enumerable sets in the solovay and the strong
weak truth table degrees. In S. Barry Cooper, Benedikt Löwe, and Leen
Torenvliet, editors, CiE, volume 3526 of Lecture Notes in Computer Science,
pages 8–17. Springer, 2005.

[2] George Barmpalias and Andrew E. M. Lewis. The ibT degrees of computably
enumerable sets are not dense. Ann. Pure Appl. Logic, 141(1-2):51–60, 2006.

[3] S. Barry Cooper. Computability theory. Chapman & Hall/CRC, Boca Raton,
FL, 2004.

[4] R. G. Downey. ∆0
2 degrees and transfer theorems. Illinois J. Math., 31(3):419–

427, 1987.

[5] Rod Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Com-
plexity. Springer-Verlag, 2010 (To appear).

[6] Rod Downey, Denis R. Hirschfeldt, André Nies, and Sebastiaan A. Terwĳn.
Calibrating randomness. Bull. Symbolic Logic, 12(3):411–491, 2006.

[7] Rod G. Downey, Denis R. Hirschfeldt, and Geoff LaForte. Randomness and
reducibility. J. Comput. System Sci., 68(1):96–114, 2004.

[8] Richard M. Friedberg. Two recursively enumerable sets of incomparable de-
grees of unsolvability (solution of Post’s problem, 1944). Proc. Nat. Acad. Sci.
U.S.A., 43:236–238, 1957.

[9] S. C. Kleene and Emil L. Post. The upper semi-lattice of degrees of recursive
unsolvability. Ann. of Math. (2), 59:379–407, 1954.

47

[10] Andrew E. M. Lewis and George Barmpalias. Randomness and the linear
degrees of computability. Ann. Pure Appl. Logic, 145(3):252–257, 2007.

[11] Per Martin-Löf. The definition of random sequences. Information and Control,
9:602–619, 1966.

[12] A. A. Muchnik. Negative answer to the problem of reducibility of the theory
of algorithms. Dokl. Akad. Nauk SSSR, 108:194–197, 1956. (in Russian).

[13] André Nies. Computability and Randomness. Oxford University Press, 2009.

[14] Alexander Raichev. Relative Randomness via rK-Reducibility. PhD thesis,
University of Wisconsin–Madison, 2006.

[15] Gerald E. Sacks. The recursively enumerable degrees are dense. Ann. of Math.
(2), 80:300–312, 1964.

[16] J. R. Shoenfield. On degrees of unsolvability. Ann. of Math. (2), 69:644–653,
1959.

[17] Robert I. Soare. Computability Theory and Applications. Springer-Verlag
Monograph, to appear.

[18] Robert I. Soare. Computability theory and differential geometry. Bull. Sym-
bolic Logic, 10(4):457–486, 2004.

[19] Clifford Spector. On degrees of recursive unsolvability. Ann. of Math. (2),
64:581–592, 1956.

[20] Michiel van Lambalgen. Random sequences. PhD thesis, University of Ams-
terdam, 1987.

[21] Liang Yu and Decheng Ding. There is no SW -complete c.e. real. J. Symbolic
Logic, 69(4):1163–1170, 2004.

48

