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Abstract

We explore ways to embed a ternary tree in an integer coordinate grid such that the width
of the drawing is minimized. We provide upper and lower bounds on the width requirement
of planar, straight-line, upward, order-preserving drawings of ternary trees in an octagonal
grid. We present a linear-time algorithm for constructing such octagonal grid drawings of
any n-node ternary tree with O(n0.68) width. (This bound can be improved to O(n0.631)
width in the so-called HVA-model.) For ideal octagonal grid drawings of complete n-node
ternary trees, we provide an Ω(n0.411) width lower bound.
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Chapter 1

Introduction

1.1 Graph drawing

Graphs (made up of nodes and edges such as the Facebook social network graph) are
frequently found in our daily lives and help us understand better the relationship among
interconnected objects. Using a graph drawing algorithm, we can plot the graph by embed-
ding the nodes in an integer coordinate grid, thereby producing a pictorial representation.
Graph visualization allows us to see complicated relationships within a system such as clus-
ters in social networks, disease spreading in biology, and semantic hierarchy in linguistics.
Moreover, the analysis and design of graph drawing algorithms offers combinatorial and
geometric open problems interesting in their own right.

Figure 1.1: Various types of tree drawings are shown: (a) radial drawing, (b) orthogonal
drawing, (c) ideal drawing, (d) octagonal drawing.
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Among the different types of graphs, (rooted/directed) trees are most suited for repre-
senting hierarchical or acyclic relationships. The parent/child nodes associated with each
edge and the designated root node provide some orientation and order among the nodes
in the tree. Drawing trees is an extensively studied area in graph drawing first initiated
by D. E. Knuth [11]. The study of area minimization for drawing binary trees began with
a hierarchical style, using a typewriter as a drawing tool, and later inspired the Reingold-
Tilford algorithm [12]. Subsequently, different styles of tree drawings emerged (see Figure
1.1) including radial drawings for applications in social sciences, and orthogonal drawings
motivated by VLSI circuits. We discuss below the styles considered in this thesis and then
give a survey of existing results.

1.2 Ideal drawings

In graph drawing, we first select a set of aesthetically pleasing properties we wish to enforce
in the drawing and then select a cost function such as area, width, or aspect ratio (of the
bounding box of the resulting drawing) that we wish to minimize. The criteria for an ideal
drawing vary depending on the type of graph and its application and is left to the author
to define. In this thesis, we select the following properties to be necessary for an ideal
drawing (these properties are commonly used in tree drawing literature [6]). Throughout
the thesis, we identify a vertex/edge with the point/straight-line segment that represents
it.

1. grid drawing
All vertices are drawn as points with integer coordinates.

2. straight-line
An edge between two vertices is drawn as a straight-line segment between the points
representing the vertices.

3. planar
No two edges cross each other.

4. upward
The parent vertex has same or larger y-coordinate than its child vertex.

5. order-preserving
The line segments from a node to all of its children are sorted by slope from left to
right.
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The above are required properties in our drawing. It is also possible to enforce a stronger
restriction on the upward/order-preserving properties of drawings. Since we discuss some
results in strictly upward and/or strictly order-preserving drawings in the background
section, we give the definitions here.

1. strictly upward
The parent vertex has strictly larger y-coordinate than its child vertex.

2. strictly order-preserving
The line segment from a node to its leftmost/rightmost child is monotone decreas-
ing/increasing in the x-direction. The line segments from a node to all of its children
are sorted by slope from left to right.

Our objective is to minimize the width of the drawing. We measure height, width, and
area of a drawing by the number of columns, rows, and grid points in its bounding box
(i.e., smallest axes-parallel rectangle). Since it is not possible to produce upward ternary
tree drawings with o(n) height in general (consider a chain of nodes where each node in
the chain has three children), we choose to minimize the width.

1.3 Drawing models

In this section, we present two drawing models: octagonal and HVA. The octagonal drawing
model is particularly attractive since the restriction on angle allows the output to be
displayed as an ASCII file (using the three characters —, /, and \ for the edges). Our
main results are in the octagonal drawing model; the HVA drawing model does not have a
restriction on angle and serves as a warm up to the construction of the width upper bound
for the octagonal drawing model.

Definition 1. A drawing of a rooted tree is an octagonal drawing (see Figure 1.2) if the
angle between every pair of edges incident to the same node is a multiple of 45 degrees. In
particular, we may assume that every edge is either vertical, horizontal, or on one of the
two 45 degree diagonals.

Recently, Batzill and Biedl [3] proposed the so-called HVA model for tree drawing.
They used this to achieve (non-upward) tree drawings of small area. We will use this
model as well, because our construction is easier to explain for HVA drawings than for
octagonal drawings.
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Figure 1.2: (a) An octagonal drawing of a complete ternary tree where the root node is
labeled vp. (b) An octagonal drawing of a complete ternary tree using ASCII characters.

Definition 2. A drawing of a rooted tree is an HVA drawing (see Figure 1.3) if for all
edges in the rooted tree, the child vertex is one of the following:

1. horizontal:
The child vertex is drawn with the same y-coordinate as its parent vertex.

2. vertical:
The child vertex is drawn with the same x-coordinate as its parent vertex.

3. adjacent:
The child vertex is drawn with an y-coordinate one less than its parent vertex (i.e.,
drawn one row below its parent vertex).

Figure 1.3: An example HVA drawing where the parent vertex vp has five children
vc1 , . . . , vc5 . Vertex vc5 is horizontal, vc2 is vertical, and vc1 , vc3 , vc4 are adjacent.
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1.4 Background

In the literature, the area requirements for planar straight-line drawings of ternary trees
varies depending on the restriction on the angle between edges and whether the drawing
is upward and/or order-preserving. For tree drawings with arbitrary angles, Chan [6] has
shown an upper bound on the area requirement of a planar straight-line upward order-
preserving grid drawing of an n-node k-ary tree, namely O(n4

√
2 logn), which was later

improved by Biedl to O(kn log n) [4]. Relaxing the upward requirement, Garg and Rusu
have shown that any n-node k-ary tree admits a planar straight-line non-upward order-
preserving grid drawing with area O(n log n) [10].

Readability and aesthetics of tree drawings improve with restrictions on angle and this
has sparked interest in orthogonal, hexagonal, and octagonal grids drawings (where the
angle between any two edges connected to the same parent node is a multiple of 90, 60, and
45 degrees respectively). Straight-line orthogonal drawings of binary trees are well-studied
[7, 8, 9]. For straight-line octagonal drawings of binary trees, Chan has shown O(n1.48) area
for upward order-preserving drawings [6]. For straight-line orthogonal drawings of ternary
trees, the upward requirement cannot be met since all four directions on the orthogonal grid
are required for complete ternary trees [8]. Frati has shown a tight area bound of Θ(n2) for
straight-line orthogonal non-upward order-preserving drawings for n-node ternary trees [8].
For straight-line orthogonal non-upward non-order-preserving drawings, Frati has shown
an upper bound of O(n1.262) and O(n1.631) area for complete and arbitrary n-node ternary
trees [8].

Figure 1.4: An example of an n-node ternary tree composed of three chains which results
in Ω(n2) area in straight-line hexagonal upward order-preserving drawings.
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Angle Upward Area Bound Ref.
Complete Ternary orthogonal O(n2 log3 2) = O(n1.262) [8]
Complete Ternary hexagonal X Θ(n2 log3 2) = O(n1.262) [1]

Complete Ternary octagonal O(n(log3 100)/4) = O(n1.048) [2]
Complete Ternary octagonal X Ω(n0.411) width Thm. 6

Table 1.1: Summary of area bounds for planar straight-line drawings of complete ternary
trees.

Angle Upward Order-preserving Width Bound Ref.
Ternary any X(strictly) X O(log n) [4]
Ternary any (HVA) X O(log n) [3]
Ternary orthogonal O(nlog3 2) = O(n0.631) [8]
Ternary orthogonal X Θ(n) [8]
Ternary hexagonal X Θ(nlog3 2) = O(n0.631) [1]
Ternary any (HVA) X(strictly) X(strongly) O(nlog3 2) = O(n0.631) Thm. 1
Ternary octagonal X X(strongly) O(n0.68) Thm. 3

Table 1.2: Summary of width bounds for planar straight-line drawings of arbitrary ternary
trees.

As we wish to avoid arbitrary angles, the natural next step is hexagonal or octagonal
grid drawings. Bachmaier et al. [1] have shown that a ternary tree admits a planar
straight-line upward non-order-preserving hexagonal grid drawing with area O(n1.262) and
O(n1.631) for complete and arbitrary n-node ternary trees. It can be seen in Figure 1.4 that
enforcing upward and order-preserving properties for hexagonal drawings of ternary trees
require Ω(n2) area. In the octagonal case, Bachmaier and Matzner showed that an n-node
complete ternary tree admits a planar straight-line non-upward order-preserving octagonal
grid drawing in O(n1.048) area with aspect ratio 1 [2]. There are no previous results on
ideal octagonal drawings of arbitrary ternary trees.

Table 1.1 compares best known area bounds for complete ternary trees with results
presented in this thesis. While our lower bound result is in the width of a complete ternary
tree (as opposed to the area), we can easily extend Theorem 6 to obtain a lower bound on
the area of some ternary tree using a simple construction (see Figure 1.5). In a similar way,
it is always possible to enforce Ω(n) height for arbitrary trees; therefore we focus on results
on bounding the width for arbitrary ternary trees. Table 1.2 compares best known width
bounds with results presented in this thesis. We present worst-case asymptotic upper and
lower bounds on width as a function of n.
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Figure 1.5: A ternary tree that requires Ω(n1.411) area where a single chain and a complete
ternary tree are attached to the root node.

1.5 Our results

We present the first sublinear upper bound and the first nontrivial lower bound on the
width of ideal octagonal drawings of arbitrary ternary trees. Our results are organized as
follows:

• Section 2.1: Any ternary tree admits a planar straight-line strictly upward order-
preserving HVA drawing of width O(nlog3 2) = O(n0.631).

• Section 2.2: Any ternary tree admits a planar straight-line upward order-preserving
octagonal grid drawing of width O(n0.68).

• Chapter 3: For complete ternary trees, the width of any planar straight-line upward
order-preserving octagonal grid drawing is Ω(n0.411).

The techniques used in this thesis are a mix of new approaches as well as modifications
of existing methods in the literature. For example, in the upper bound (Chapter 2), we
use a recursive algorithm to draw an HVA/octagonal grid drawing which is inspired from
a previous paper by Biedl [4]. We modify the existing algorithm and introduce vertically
stretchable drawings which allows us to take advantage of their small width. In the lower
bound (Chapter 3), we use a counting argument to argue the minimum width of a ternary
tree drawing. Unlike many of the previous results, the exponent that arises in this width
upper bound O(n0.68) and width lower bound Ω(n0.411) are determined numerically.
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Chapter 2

Width Upper Bound

What is the best way to draw ternary trees with minimum width? In the case of complete
ternary trees, we can achieve O(nlog3 2) ≈ O(n0.631) width quite easily for ideal octagonal
drawings: Let T be the given complete ternary tree with root v. Suppose we have already
constructed ideal octagonal drawings of the left subtree L, middle subtree M , and right
subtree R. We can combine the three drawings into an ideal octagonal drawing of T by
vertically aligning v with the root of M , placing the bounding box of L immediately to the
left of v using a diagonal edge, placing the bounding box of R immediately to the right of
v using a diagonal edge, and placing the bounding box of M immediately below that of L
and R (see Figure 2.1).

Figure 2.1: We can easily achieve O(n0.631) width for ideal octagonal drawings of complete
ternary trees.

Then the width satisfies the recurrence

W (n) = 2W
(n

3

)
+ 1
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which can be solved as W (n) ∈ O(nlog3 2) ⊆ O(n0.631). In Section 2.1, we show that
achieving O(nlog3 2) width for unbalanced ternary trees is trickier albeit possible for HVA
drawings. In Section 2.2, we study octagonal drawings of unbalanced ternary trees; here we
could not achieve width O(nlog3 2) but came close. We present two versions of the so-called
Overhang Algorithm: the first version constructs an ideal HVA drawing for any n-node
ternary tree with O(nlog3 2) width and the second version constructs an ideal octagonal
drawing for any n-node ternary tree with O(n0.68) width.

The Overhang Algorithm uses the divide-and-conquer paradigm; in each recursive step,
the algorithm breaks the given ternary tree T into several subtrees, draws each subtree
recursively using either the Overhang Algorithm or the L-Algorithm (to be defined), and
then combines their drawings to obtain a final drawing overhang(T ) of T . The L-Algorithm
is a tree drawing algorithm which produces a so-called L-drawing (defined formally below)
of a given ternary tree.

Figure 2.2: An example of an L-drawing. The bounding box of the neck, the bounding box
of the foot, the vertical edges connecting the neck and foot, and horizontal line separating
the neck and the foot are shown. Since all edges connecting the neck and foot are vertical,
an L-drawing is vertically stretchable while preserving width.

Definition 3. A tree drawing is an L-drawing if there exists a horizontal line that intersects
the drawing such that the horizontal line only crosses vertically drawn edges of the tree
drawing. The part above this line is called the neck and the part below the line is called the
foot of this drawing.

Note that the bounding box of the neck sits strictly above the bounding box of the foot
(i.e. all y-coordinates are larger) (see Figure 2.2). L-drawings are desirable since we can
draw the foot an arbitrary vertical distance below the neck without changing the width of
the drawing.

Due to the recursive and asymmetric structure of the Overhang Algorithm, the user can
specify the Overhang Algorithm to produce either a left-corner drawing overhang-left(T )
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of T , or a right-corner drawing overhang-right(T ) of T . Here a left-corner drawing is one
in which the root of the tree is drawn on the top-left corner of the bounding box of the
drawing. Right-corner drawing is symmetrically defined.

Figure 2.3: For a chosen drawing model (either HVA or octagonal), the Overhang Al-
gorithm can either produce a right-corner overhang drawing or a left-corner overhang
drawing. The L-Algorithm can either produce an L-right drawing or L-left drawing. Both
algorithms recursively call each other as a subroutine. The arrow A→ B means algorithm
which draws A uses algorithm which draws B as a subroutine.

As with the Overhang algorithm, the L-Algorithm uses a divide-and-conquer paradigm
where in each recursive step, subtrees are drawn using either the Overhang Algorithm or
the L-Algorithm, then combined to obtain the final drawing. The user can specify the
L-Algorithm to produce either an L-right-drawing or an L-left-drawing and the two are
symmetrically equivalent. Here, an L-right drawing is an L-drawing where no node in the
foot of the drawing has an x-coordinate larger than any of the nodes in the neck of the
drawing and an L-left drawing is an L-drawing where no node in the foot of the drawing has
an x-coordinate smaller than any of the nodes in the neck of the drawing. For L-drawings,
the root does not have to be placed anywhere specific as long as it is placed in the top row.
See Figure 2.3.

Below we give common definitions used in this chapter then we describe the Overhang
Algorithm and L-Algorithm for HVA drawings.

Definition 4. For any node v that is not a leaf node, the heavy child of v is the child of
v with the largest subtree size, breaking ties arbitrarily.
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Definition 5. The heavy path of the ternary tree T is the root-to-leaf path obtained by
starting at the root and always taking the heavy child until we reach a leaf.

2.1 Overhang Algorithm for HVA Drawings

In this section, the Overhang Algorithm and L-Algorithm refer to the version that produces
an HVA drawing (as opposed to the version that produces an octagonal drawing).

The L-Algorithm

We will give here only the description of the L-right algorithm, i.e, the version of the
L-Algorithm which produces an L-right-drawing; the other algorithm is symmetric.

Let T be the given ternary tree with root vertex v, left subtree T`, middle subtree Tm,
and right subtree Tr. The L-right algorithm uses the left rule, middle rule, and right rule
to combine ideal drawings of T`, Tm, and Tr into an ideal drawing of T . (See Figure 2.4.)

First, we describe which rule to apply at the current root, and which algorithm to use
to recursively draw the three subtrees. Let L-right(T ) denote the drawing of ternary tree
T obtained by using the L-right algorithm. Let overhang-right(T ) denote the right-corner
drawing of T obtained by using the Overhang Algorithm.

• If |T | ≤ 1, return the trivial drawing. Otherwise, compare the sizes of subtrees T`,
Tm, and Tr.

• If the heavy child is the root of T`, recursively compute L-right(Tm), L-right(Tr), and
overhang-right(T`). Then combine the drawings using the left rule (explained below).

• If the heavy child is the root of Tm, recursively compute L-right(T`), L-right(Tr), and
overhang-right(Tm). Then combine the drawings using the middle rule.

• If the heavy child is the root of Tr, recursively compute L-right(T`), L-right(Tm), and
overhang-right(Tr). Then combine the drawings using the right rule.

Now we describe how to combine the three drawings for the left rule, middle rule, and
right rule. For a subtree T , let D(T ) denote the drawing of subtree T . (When we describe
where to place the y-position of the neck drawing, we refer to the y-position of the top row
of the neck.)
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Figure 2.4: L-right uses the left rule, middle rule, and right rule. Dark grey denotes
subtrees drawn using L-right and light grey denotes subtrees drawn using the Overhang
Algorithm.

• In the left rule, we place the neck of D(Tm) one unit below and immediately to the
right of v and place the neck of D(Tr) one unit below v and immediately to the right
of the neck of D(Tm). Then we place the root of D(T`) below the necks of D(Tm)
and D(Tr) and vertically aligned with v (since we used a right-corner drawing, this
puts all of D(T`) in the column of v or further left). We place the foot of D(Tm)
immediately below D(T`), and place the foot of D(Tr) immediately below the foot of
D(Tm).

• In the middle rule, we place the neck of D(T`) one unit below and one unit to the left
of v and we place the neck of D(Tr) one unit below and one unit to the right of v.
We place the foot of D(T`) below the necks of D(T`) and D(Tr). We place the root
of D(Tm) immediately below the foot of D(T`) and vertically aligned with v. Then
we place the foot of D(Tr) immediately below D(Tm).

• In the right rule, we place the neck of D(Tm) one unit below and one unit to the left
of v and we place the neck of D(T`) one unit below v and immediately to the left of
the neck of D(Tm). Then, we place the foot of D(T`) below the necks of D(T`) and
D(Tm) and place the foot of D(Tm) immediately below the foot of D(T`). We place
the root of D(Tr) immediately below the foot of D(Tm) and vertically aligned with
v.

It is easy to see that the left rule, middle rule, and right rule produce an ideal HVA drawing
since the resulting drawing is planar, straight-line, strictly upward, order-preserving, and
only uses vertical or adjacent edges.
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Let the neck width, denoted Wneck(n), be the maximum possible width of the neck and
let the foot width, denoted Wfoot(n), be the maximum possible width of the foot that could
be created with this L-drawing algorithm on a ternary tree with n nodes.

Lemma 1. Any ordered ternary tree of size n admits an HVA L-drawing of neck width
O(nlog3 2).

Proof. The left rule, middle rule, and right rule give rise to a sequence where Wneck(0) = 0,
Wneck(1) = 1 and

Wneck(n) ≤ Wneck(n1) +Wneck(n2) + 1, where n1 + n2 ≤ b
2n

3
c

since the largest of the three subtrees uses an Overhang right-corner drawing and therefore
contributes only one unit to the neck width. Note that Hölder’s inequality states

m∑
k=1

|xkyk| ≤
( m∑

k=1

|xk|p
) 1

p
( m∑

k=1

|yk|q
) 1

q

, for p, q ≥ 1 with
1

p
+

1

q
= 1

and using Hölder’s inequality with values m = 2, (x1, x2) = (n1
log3 2, n2

log3 2), (y1, y2) =

(1, 1), p = 1
log3 2

, q = 1
1−log3 2

, we can show that n1 +n2 ≤ 2n
3

implies n
log3 2
1 +n

log3 2
2 ≤ nlog3 2

as follows:

n
log3 2
1 + n

log3 2
2 ≤

(
(n

log3 2
1 )

1
log3 2 + (n

log3 2
2 )

1
log3 2

)log3 2
·
(

1 + 1
)1−log3 2

≤ (n1 + n2)
log3 2 · 21−log3 2

≤ (
2n

3
)log3 2 · 2

2log3 2

=
(2n)log3 2

2log3 2

= nlog3 2.

Now we will prove by induction that for all n ≥ 1,

Wneck(n) ≤ 2nlog3 2 − 1. (2.1)

Base case: When n = 1, the left side of (2.1) is Wneck(1) = 1 and the right side is
2(1log3 2)− 1 = 1.
When n = 2, the left side of (2.1) is Wneck(2) = 1 and the right side is 2(2log3 2)− 1 ≥ 1.
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Inductive step: Let N ≥ 3 and assume (2.1) is true for 1 ≤ n < N . Then,

Wneck(N) ≤ Wneck(n1) +Wneck(n2) + 1 where n1 + n2 ≤ b
2N

3
c

≤ 2n
log3 2
1 − 1 + 2n

log3 2
2 − 1 + 1

≤ 2(n
log3 2
1 + n

log3 2
2 )− 1

≤ 2N log3 2 − 1.

Therefore by induction, Wneck(n) ≤ 2nlog3 2 − 1 and Wneck(n) ∈ O(nlog3 2).

We cannot yet analyze the foot width of L-drawings since it depends on the width obtained
with the Overhang Algorithm. However we state the recurrence here for future reference
for Wfoot(n):

Observation 1. The left rule, middle rule, and right rule give rise to the following recur-
rence for n > 1.

Wfoot(n) ≤ Wneck(n2) +Wneck(n3) + max
{
Woverhang(n1),Wfoot(n2),Wfoot(n3)

}
for some n1, n2, n3 where n1+n2+n3 ≤ n, n2 ≤ n1, and n3 ≤ n1 and Woverhang(n1) denotes
the maximum possible width of the Overhang drawing for a ternary tree with n1 nodes.

The Overhang Algorithm

We now describe the Overhang Algorithm. In this algorithm, some subtrees are recursively
drawn using the Overhang Algorithm and some subtrees are recursively drawn using the
L-Algorithm. The Overhang Algorithm can either produce a left-corner drawing or a right-
corner drawing depending on whether we want the root vertex to be on the top-left corner
or the top-right corner of the bounding box of the drawing. We describe here only the
algorithm to produce overhang-left(T ), the left-corner drawing of T obtained by using the
Overhang Algorithm; the other algorithm is symmetric.

The algorithm proceeds by labeling each vertex in the heavy path as one of left-knee,
right-knee, ordinary-left, ordinary-right, switch-left, or switch-right. Based on the label of
vi, the algorithm determines how to draw and place the left subtree Li of vi, middle subtree
Mi of vi, and right subtree Ri of vi. Then the algorithm decides on the label of the heavy
child vi+1 of vi.

In the labelling of nodes in the heavy path, we will ensure that the following holds:
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Figure 2.5: The labelling of nodes in the heavy path. Label A can follow label B if there
is an in-bounding edge from A to B.

Invariant (I) An ordinary-left node does not have children to the left of its heavy child.
Similarly, an ordinary-right node does not have children to the right of its
heavy child.

Invariant (II) A switch-left node has a non-heavy child as a leftmost child. Similarly, a
switch-right node has a non-heavy child as a rightmost child.

Invariant (III) The order of labels in the heavy path follows the restrictions shown in
Figure 2.5.

To readers familiar with the literature, we remark that these labels have different defini-
tions from Garg and Rusu’s paper [10]. Our Overhang Algorithm is inspired by [10] in that
we combine already constructed drawings of subtrees around the heavy path. Our method,
however, is different in that we benefit from using vertically stretchable L-drawings.

1. If T is a single node, return the trivial drawing. Else, let P = 〈v0, v1, v2, . . . , vm〉
be the heavy path (recall Definition 5) of the ternary tree T . For ease of notation,
we assume that all nodes on the heavy path have exactly three children where the
non-heavy children may be present or be empty subtrees.

2. Case for v0.

(a) First, assign v1 as a right-knee node.
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Figure 2.6: An HVA drawing produced by the Overhang Algorithm where the heavy path
is drawn using black edges.

(b) If v1 is a left child, call L-right(M0) and L-right(R0).
If v1 is a middle child, call overhang-left(L0) and L-right(R0) (this case is illus-
trated in Figure 2.7).
If v1 is a right child, call L-left(L0) and L-left(M0).

3. Now consider vertex vi for some i > 0. Omit this step if vi is the leaf of the heavy
path.

(a) vi is an ordinary-left node:
We know that vi has no child to the left of its heavy child.

i. Construct L-left(Mi) and overhang-left(Ri).
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Figure 2.7: An HVA drawing produced by the Overhang Algorithm where the root v0 is
drawn in the top-left corner.

ii. If vi+2 does not exist or has no left sibling, then assign vi+1 as an ordinary-
left node, else assign vi+1 as a switch-left node (note that this obeys Invariant
(II)).

(b) vi is a switch-left node:

i. Assign vi+1 as a right-knee node (note that this obeys Invariant (III)).

ii. If vi+1 is a right child, construct overhang-left(Mi) and L-left(Li).
If vi+1 is a middle child, construct overhang-left(Li) and L-right(Ri).
Note that vi cannot have vi+1 as a left child, since this will violate Invariant
(II).

(c) vi is a left-knee node:

i. If vi+1 is a left child, construct L-left(Mi), and overhang-left(Ri).
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If vi+1 is a middle child, construct L-left(Li), and overhang-left(Ri).
If vi+1 is a right child, construct L-left(Li), and L-left(Mi).

ii. If vi+2 has no left sibling, then assign vi+1 as an ordinary-left node (note
that this obeys Invariant (I)), else assign vi+1 as a switch-left node.

(d) vi is an ordinary-right, right-knee node, switch-right node: Do the same as in the
cases, where vi is an ordinary-left, left-knee node, or switch-left node, respectively
with “left” exchanged with “right”.

Figure 2.8: Grid structure used in the Overhang Algorithm for constructing HVA drawings.

4. Let Woverhang be the maximum width among the Overhang drawings constructed in
Step 3. Let WL be the maximum neck width among the L-drawings constructed in
Step 3 and let Wf be the maximum foot width among the L-drawings constructed in
Step 3. Set Wbody = max{Woverhang + WL + 2, Wf + 2}, then imagine the following
grid structure: Five channels of width WL, followed by a single channel of width
Wbody, followed by five channels of width WL (see Figure 2.8). Denote Colbody and
Col′body to be the leftmost column and rightmost column within the channel Cbody.
The idea is to draw the heavy path within the channel Cbody, and place the neck of
L-drawings in the channels Ci and C ′i where i = 1, . . . , 5.

5. Initialize two stacks which can hold up to six drawings each. We will use each stack to
store pending-left drawings, and pending-right drawings. Pending-left drawings and
pending-right drawings are either the foot of an L-drawing or an Overhang drawing
and for each drawing, the x-coordinate (of some reference point of the bounding box)
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is known at the time of push, however the y-coordinate (of the root of the drawing)
is determined at the time of pop.

Figure 2.9: Placement of non-heavy subtrees of v0 when (a) v1 is the left child, (b) v1 is
the middle child, (c) v1 is the right child.

In the following steps, we construct the Overhang drawing of T by drawing the heavy path
and appropriately placing the subtree drawings around the heavy path. For each vi in the
heavy path, let D(Li), D(Mi), and D(Ri) denote the drawings of subtree Li, Mi, and Ri

respectively.

6. Place the root v0 at the origin (since we are constructing a left-corner overhang
drawing, this would be the top-left corner of channel C5). Place v1 one unit below
v0 and in Col′body. Then we distinguish the following cases:

(a) v1 is a left child (see Figure 2.9a):
Since D(M0) and D(R0) are both L-drawings, they are composed of a neck and
a foot. Place the neck of D(M0) one unit below v0 and within channel C ′4. Place
the neck of D(R0) one unit below v0 and within channel C ′5. Push the foot of
D(R0), then the foot of D(M0) onto the stack of pending-right drawings.

(b) v1 is a middle child (see Figure 2.9b):
Fix the x-position of the root of D(L0) to be the same as v0 and push D(L0) onto
the stack of pending-left drawings. Since D(R0) is an L-drawing, it is composed
of a neck and a foot. Place the neck of D(R0) one unit below v0 and within
channel C ′4. Push the foot of D(R0) onto the stack of pending-right drawings.

(c) v1 is a right child (see Figure 2.9c):
Place the neck of D(L0) one unit below v0 and within channel C5. Place the
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neck of D(M0) one unit below v0 and within channel C4. Push the foot of D(L0),
then the foot of D(M0) onto the stack of pending-left drawings.

7. Let Hi be the horizontal row corresponding to the node placed lowest in the drawing
of T constructed so far. For i = 1, . . . ,m, depending on the label of vi, do:

(a) vi is an ordinary-left node (see Figure 2.10a):
Place vi one unit below Hi and vertically aligned with vi−1. Then place the neck
of D(Mi) one unit below and to the right of vi and place D(Ri) one unit to the
right of the neck of D(Mi). Place the foot of D(Mi) in the same vertical channel
as the neck of D(Mi) and immediately below the bounding box of D(Ri) and
the neck of D(Mi).

Figure 2.10: (a) vi is an ordinary-left node. (b) vi is a switch-left node and vi+1 is the right
child. (c) vi is a switch-left node and vi+1 is the middle child.

(b) vi is a switch-left node:
While the stack of pending-right drawings is not empty, pop one drawing and
place it one unit below Hi. Note that the x-position of the drawing is known
at the time of push and only the y-position need be decided at the time of pop.
Once the stack of pending-right drawings is empty, place vi in the same column
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as vi−1 and one unit below the new Hi. Place vi+1 one unit below vi and in
Col′body. Then

i. if vi+1 is a right child (see Figure 2.10b):
Place the neck of D(Li) one unit below vi and within channel C1. Push the
foot of D(Li) onto the stack of pending-left drawings. Fix the x-position of
the root of D(Mi) to be the same as vi and push D(Mi) onto the stack of
pending-left drawings.

ii. Else by the invariant of switch-left nodes, vi+1 is a middle child (see Figure
2.10c):
Fix the x-position of the root of D(Li) to be the same as vi and push D(Li)
onto the stack of pending-left drawings. Place the neck of D(Ri) one unit
below vi and within channel C ′4. Push the foot of D(Ri) onto the stack of
pending-right drawings.

Figure 2.11: (a) vi is a left-knee node and vi+1 is the right child. (b) vi is a left-knee node
and vi+1 is the middle child. (c) vi is a left-knee node and vi+1 is the left child.

(c) vi is a left-knee node:
Depending on whether vi+1 is the right, middle, or left child, do:

i. vi+1 is a right child (see Figure 2.11a):
Place the neck of D(Mi) one unit below vi and within channel C2. Place the
neck of D(Li) one unit below vi and within channel C3. Push the foot of
D(Li), then push the foot of D(Mi) onto the stack of pending-left drawings.

ii. vi+1 is a middle child (See Figure 2.11b):
Place the neck of D(Li) one unit below vi and within channel C2. Then
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push the foot of D(Li) onto the stack of pending-left drawings. Place D(Ri)
one unit below and to the right of vi.

iii. vi+1 is a left child (see Figure 2.11c):
Place the neck of D(Mi) one unit below and to the right of vi. Place D(Ri)
one unit below vi and immediately to the right of the neck of D(Mi). Place
the foot of D(Mi) in the same vertical channel as the neck of D(Mi) and
immediately below the bounding box of D(Ri) and the neck of D(Mi).

(d) vi is an ordinary-right, right-knee node, switch-right node:
These cases are the same as the cases where vi is an ordinary-left, left-knee
node, or switch-left node respectively, with “left” exchanged with “right” and
Ci exchanged with C ′i for i = 1, . . . , 5.

Note that the stack of pending-right drawings empty every time we process a switch-left
node (similarly, the stack of pending-left drawings empty every time we process a switch-
right node). We argue that we push at most six drawings onto the stack of pending-right
drawings while processing a sequence of labels beginning from a switch-left node and ending
in the next switch-left node. In this sequence of labels, the labels that could push drawings
on to the pending-right stack include, in order along the heavy path, the switch-left, the
right-knee, and the switch-right node. The switch-left node may use channels C1, C

′
4 and

column Colbody. The right-knee node may use channels C ′3, C
′
2. The switch-right node

uses channel C ′1, C4 and column Col′body. All in all, we push at most six drawings onto the
stack of pending-right and each corresponds to a channel/column in order from right to
left. (Note that channel C ′5 is only used by the root node in a special case (Case 6.a). See
Figure 2.9a.) Hence these drawings can be extracted and placed when handling the next
switch-left node.

Theorem 1. Any ordered ternary tree of size n admits an ideal HVA drawing of width
O(nlog3 2).

Proof. As seen from the grid structure of the Overhang Algorithm, the width of the drawing
follows a sequence where Woverhang(1) = 1 and

Woverhang(n) ≤ 10WL +Wbody

≤ 10Wneck(n1) + max
{
Woverhang(n2) +Wneck(n1) + 2, Wfoot(n3) + 2

}
≤ max

{
11Wneck(n1) +Woverhang(n2), 10Wneck(n1) +Wfoot(n3)

}
+ 2

for some n1, n2, n3 where n1, n2, n3 ≤ bn2 c.
We will prove by induction that for all n ≥ 1,

Woverhang(n) ≤ 40nlog3 2 (2.2)
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and

Wfoot(n) ≤ 42nlog3 2. (2.3)

Base case: When n = 1, the left side of (2.2) is Woverhang(1) = 1 and the right side is
40(1log3 2) = 40.
When n = 1, the left side of (2.3) is Wfoot(1) = 1 and the right side is 42(1log3 2) = 42.

Inductive step: Let N > 1 and assume (2.2) and (2.3) are true for 1 ≤ n < N .
We refer to Observation 1 (on page 14) and solve the following recurrence where n2 ≤ n1

and n3 ≤ n1 and n1 + n2 + n3 ≤ N .

Wfoot(N) ≤ Wneck(n2) +Wneck(n3) + max
{
Woverhang(n1),Wfoot(n2),Wfoot(n3)

}
(by Equation 2.1)

≤ (2n
log3 2
2 − 1) + (2n

log3 2
3 − 1) + max

{
40n

log3 2
1 , 42n

log3 2
2 , 42n

log3 2
3

}
≤ 2N log3 2 − 2 + max

{
40N log3 2, 42

(N
2

)log3 2}
(using Hölder’s inequality since n2, n3 ≤ n1 and therefore n2 + n3 ≤

2N

3
)

≤ max
{

42N log3 2, (2 + 42
(1

2

)log3 2
)N log3 2

}
≤ 42N log3 2.

By induction, Wfoot(n) ≤ 42nlog3 2.
Now we solve the recurrence for Woverhang(N) where n1, n2, n3 ≤ bN2 c.

Woverhang(N) ≤ max
{

11Wneck(n1) +Woverhang(n2), 10Wneck(n1) +Wfoot(n3)
}

+ 2

≤ max
{

22
(N

2

)log3 2
− 11 + 40

(N
2

)log3 2
,

20
(N

2

)log3 2
− 10 + 42

(N
2

)log3 2}
+ 2

≤ 62
(N

2

)log3 2
≤ 40N log3 2.

Therefore by induction, Woverhang(n) ≤ 40nlog3 2 ∈ O(nlog3 2).
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Each part of our construction has respected the order of children and drawn children
below their parent. In fact, one immediately verifies that the drawing is strictly upward
(there are no horizontal edges) and strictly order-preserving.

Since the algorithm uses a constant number of operations per node, the running time
for the Overhang Algorithm is O(n).

Generalizing the Overhang Algorithm for k-ary trees

We can extend the Overhang Algorithm to construct HVA drawings of general k-ary trees
(Figure 2.12 illustrates a drawing produced by the Overhang Algorithm for k = 5). For
HVA drawings, this is easy to do because there are no natural grid restrictions. We note
here that our Overhang algorithm is different from [10] in that the strictly-upward property
(i.e. for every edge, the parent node has a y-coordinate greater than the child node) holds
even when we generalize the algorithm from drawing ternary trees to k-ary trees. Given
an L-drawing of a k-ary tree with n nodes, let W k

neck(n) denote the width of the neck and
let W k

foot(n) denote the width of the foot.

Lemma 2. Any ordered k-ary tree of size n admits an ideal HVA L-drawing of neck width
O(nlogk (k−1)).

Proof. The L-algorithm for k-ary trees follows rules similar to the ones seen in the ternary
tree case, except there will be k rules instead of three. In each rule, the subtree rooted at
the heavy child will be drawn recursively using the Overhang algorithm and the subtrees
rooted at the non-heavy children will be drawn recursively using the L-algorithm. Hence,
the neck width of k-ary L-drawings follows the recurrence

W k
neck(n) ≤

k−1∑
i=1

W k
neck(ni) + 1 where

k−1∑
i=1

ni ≤
(k − 1)n

k
.

Using Hölder’s inequality, one can show that
∑k−1

i=1 ni ≤
(k−1)n

k
implies

∑k−1
i=1 n

logk (k−1)
i ≤

nlogk k−1. By induction, then W k
neck(n) ≤ cnlogk k−1 − b for some constants c and b.

Observation 2. The foot width of k-ary HVA L-drawings follows the recurrence

W k
foot(n) ≤

k∑
i=2

W k
neck(ni) + max

i∈{2,...,k}

{
W k

overhang(n1),W
k
foot(ni)

}
where n1 ≥ ni for i ∈ {2, . . . , k} and W k

overhang(n) denotes the width of the drawing created
by the Overhang algorithm for a tree with n1 nodes.
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Figure 2.12: An HVA drawing of a k-ary tree produced by the Overhang Algorithm where
k = 5.

Theorem 2. Any ordered k-ary tree of size n admits an ideal HVA drawing of width
O(knlogk (k−1)).

Proof. The grid structure of the Overhang Algorithm can be extended with 6k− 8 ∈ O(k)
channels to accommodate k-ary trees, resulting in the recurrence

W k
overhang(n) ≤ max

{
W k

overhang(n1) +O(k)W k
neck(n2), W

k
foot(n3) +O(k)W k

neck(n2)
}

+ 2

where n1, n2, n3 ≤ n
2
. Using Lemma 2 and Observation 2, we can simplify the recurrence

as

W k
overhang(n) ≤ W k

overhang

(n
2

)
+O(k)

(
n

2

)logk(k−1)

+ 2

which solves to W k
overhang(n) ∈ O(knlogk(k−1)) .
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2.2 Overhang Algorithm for Octagonal Drawings

In this section, the Overhang Algorithm and L-Algorithm refer to the versions that produce
an octagonal drawing.

The L-Algorithm

As opposed to HVA drawings, octagonal drawings are restricted to horizontal, vertical, or
diagonal edges. The old left-rule draws an edge neither horizontal nor diagonal and the
same split seen in the old left-rule is not possible for octagonal drawings since we cannot
make the edge horizontal unless the L-drawing has the root in the right place. Therefore
we need a new set of rules for the L-Algorithm to produce an octagonal drawing.

The L-right algorithm (for octagonal drawings) uses the left rule, more-left rule, middle
rule, right rule, and more-right rule, to construct ideal drawings of its subtrees and to
combine into an ideal drawing of T . (See Figure 2.13.)

First, we describe which rule to apply at the current root, and which algorithm to use to
recursively draw the various subtrees. Let L-right(T ) denote the drawing of ternary tree T
obtained by using the L-right algorithm and let overhang-right(T ) denote the right-corner
drawing of T obtained by using the Overhang Algorithm.

The algorithms depend on two constants α and c0; we will see later that c0 = 0.2783297
and α = log 2

1−c0
2 ≤ 0.68 are suitable values for them (this choice of c0 will be motivated

by Lemma 4 which we will state later).

Let T be a given ternary tree with root vertex v, left subtree L, middle subtree M , and
right subtree R. Let v` denote the left child of v and vr denote the right child of v. Let
L`, Lm, and Lr denote the left, middle, and right subtree of v`. Similarly denote the left,
middle, and right subtree of vr by R`, Rm, and Rr. Let v`′ denote the left child of v` and
L``, L`m, and L`r denote the left, middle, and right subtrees of v`′ . Similarly, let vr′ denote
the right child of vr and let Rr`, Rrm, and Rrr denote the left, middle, and right subtree
of v′r.

• If |T | ≤ 1, return the trivial drawing. Otherwise, compare the size of subtrees L, M ,
and R.

• If |M | ≥ c0n, recursively compute L-right(L), L-right(R), and overhang-right(M).
Then combine the drawings using the middle rule (we define these rules below). (See
Figure 2.13)
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Figure 2.13: The L-right algorithm uses the left rule, more-left rule, middle rule, right
rule, and more-right rule. Dark grey denotes subtrees drawn using L-right and light grey
denotes subtrees drawn using the Overhang Algorithm.

• Else, assume |R| ≥ |L| (which implies |R| ≥ c0n since c0 ≤ 1
3
). Define aM := |M |

n
,

aLm := |Lm|
n

, aL`` := |L``|
n

, aL`r := |L`r|
n

, and test whether

aαLm + aαL`` + aαL`r + aαM > 1. (∗)

i. If (∗) is satisfied, recursively compute the drawings L-right(L`), L-right(Lr),
L-right(M), overhang-right(Lm), and overhang-right(R). Then combine the
drawings using the right rule.

ii. Else ((∗) is not satisfied), recursively compute the drawings L-right(L``), L-
right(L`r), L-right(Lm), L-right(M), overhang-right(L`m), overhang-right(Lr),
and overhang-right(R). Then combine the drawings using the more-right rule.

• Else, assume |L| ≥ |R| (which implies |L| ≥ c0n). Define bM := |M |
n

, bRm := |Rm|
n

,
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bRr` := |Rr`|
n

, bRrr := |Rrr|
n

, and test whether

bαRm + bαRr` + bαRrr + bαM > 1. (∗∗)

i. If (∗∗) is satisfied, then recursively compute L-right(M), L-right(R`), L-right(Rr),
overhang-right(L), and overhang-right(Rm). Then combine the drawings using
the left rule.

ii. Else ((∗∗) is not satisfied), recursively compute L-right(M), L-right(Rrm), L-
right(Rr`), L-right(Rrr), overhang-right(L), overhang-right(R`), and overhang-
right(Rrm). Then combine the drawings using the more-left rule.

Now we describe how to combine the drawings for the left rule, more-left rule, middle
rule, right rule, and more-right rule. Note that since we are dealing with octagonal draw-
ings, when describing where to place a subtree drawing which is connected to its parent
node using a diagonal edge, it suffices to describe only the x-position of the bounding
box of the subtree drawing in relation to its parent node. Further, due to the vertically
stretchable nature of L-drawings, the x-position of the neck fixes the x-position of the foot,
while we have freedom in choosing the y-position of the foot. For a subtree T , let D(T )
denote the drawing of subtree T .

• In the left rule, we place the neck of D(M) immediately to the right of v using a
diagonal edge and place the neck of D(R`) immediately to the right of the neck of
D(M) using a diagonal edge such that vr is placed immediately to the right of the
neck of D(R`) and horizontally aligned with v. Place the neck of D(Rr) one unit
to the right of vr using a diagonal edge. Place the root of L immediately below the
necks of D(M), D(R`), and D(Rr) and vertically aligned with v. Place the foot of
D(M) immediately below the bounding box of D(L) and place the foot of D(R`)
immediately below the foot of D(M). Place the root of Rm immediately below the
foot of D(R`) and vertically aligned with vr. Place the foot of D(Rr) immediately
below the bounding box of D(Rm).

• In the more-left rule, we place the neck of D(M) one unit to the right of v using a
diagonal edge, place vr immediately to the right of the neck of D(M) and horizontally
aligned with v, and place the neck of D(Rm) immediately to the right of vr using
a diagonal edge. Place the neck of D(Rr`) immediately to the right of the neck of
D(Rm) using a diagonal edge such that vr′ is placed immediately to the right of the
neck of D(Rr`) and horizontally aligned with vr. Place the neck of D(Rrr) one unit
to the right of vr′ using a diagonal edge. Place the root of L immediately below the

28



necks of D(M), D(Rm), D(Rr`), and D(Rrr) and vertically aligned with v. Place
the foot of D(M) immediately below the bounding box of D(L), place the root of R`

immediately below the foot of D(M) and vertically aligned with vr. Place the foot of
D(Rm) immediately below the bounding box of D(R`) and place the foot of D(Rr`)
immediately below the foot of D(Rm). Place the root of Rrm immediately below the
foot of D(Rr`) and vertically aligned with vr′ and place the foot of drawing D(Rrr)
immediately below the bounding box of D(Rrm).

• The middle rule is almost exactly as for HVA drawings except that we use diagonal
edges. Thus, place the neck of D(L) one unit to the left of v using a diagonal edge
and place the neck of D(R) one unit to the right of v using a diagonal edge. Place the
foot of D(L) below the necks of D(L) and D(R). We place the root of M immediately
below the foot of D(L) and vertically aligned with v. Then place the foot of D(R)
immediately below D(M).

• The right rule and more-right rule is symmetric to the left rule and more-left rule.

Let the neck width, denoted Wneck(n), be the maximum possible width of the neck and
let the foot width, denoted Wfoot(n), be the maximum possible width of the foot that could
be created with this L-drawing algorithm on a ternary tree with n nodes.

Lemma 3. Any ordered ternary tree of size n admits an octagonal L-drawing of neck width
O(n0.68).

Proof. Since α ≤ 0.68, it suffice to prove by induction that for all n ≥ 1,

Wneck(n) ≤ cnα − 1 for a suitable constant c. (2.4)

This holds in the base case for a suitable choice of c. Since different rules give rise to
different neck width recurrences, we break up the proof into the middle rule, right rule,
and more-right rule. (We omit the left rule and more-left rule since they are symmetric to
right rule and more-right rule respectively.)

i. The middle rule gives rise to the following recurrence:

Wneck(n) ≤ Wneck(|L|) +Wneck(|R|) + 1

where, since |M | ≥ c0n and |L|+ |M |+ |R| ≤ n, we can deduce |L|+ |R| ≤ (1− c0)n.

Using Hölder’s Inequality, |L| + |R| ≤ (1 − c0)n implies |L|
log 2

1−c0
2

+ |R|
log 2

1−c0
2
≤

n
log 2

1−c0
2

and by induction, Wneck(n) ≤ cn
log 2

1−c0
2
− 1. The claim now holds since we

chose α = log 2
1−c0

2.
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ii. The more-right rule gives rise to the recurrence:

Wneck(n) ≤ Wneck(|L``|) +Wneck(|L`r|) +Wneck(|Lm|) +Wneck(|M |) + 3

≤ c(|L``|α + |L`r|α + |Lm|α + |M |α)− 1

Recall that we defined aM , aLm , aL`` , aL`r such that |M | = aMn, |Lm| = aLmn,
|L``| = aL``n, and |L`r| = aL`rn. Therefore

Wneck(n) ≤ c(aαL`` + aαL`r + aαLm + aαM)nα − 1.

The algorithm chooses the more-right rule when the following is satisfied

aαLm + aαL`` + aαL`r + aαM ≤ 1,

which implies Wneck(n) ≤ cnα− 1 whenever the algorithm chooses the more-right rule.

iii. The right rule gives rise to the recurrence:

Wneck(n) ≤ Wneck(|L`|) +Wneck(|Lr|) +Wneck(|M |) + 2

Define aLr := |Lr|
n

, aL` := |L`|
n

and recall that we defined aM , aLm such that |M | = aMn,
|Lm| = aLmn. Therefore

Wneck(n) ≤ Wneck(aL`n) +Wneck(aLrn) +Wneck(aMn) + 2.

Since |L| + |R| ≤ (1 − aM)n and |L| ≤ |R|, we can deduce that |L| ≤ (1−aM
2

)n.
Furthermore, we have |L`| = aL`n ≤ (1−aM

2
− aLr − aLm)n. Therefore

Wneck(n) ≤ Wneck(aL`n) +Wneck

((1− aM
2

− aL` − aLm
)
n
)

+Wneck(aMn) + 2.

Applying the induction hypothesis, we get

Wneck(n) ≤ c
[
aαM + aαL` +

(1− aM
2

− aL` − aLm
)α]

nα − 1. (†)

Recall that the algorithm chooses the right rule when the following is satisfied

aαLm + aαL`` + aαL`r + aαM > 1.

Using Hölder’s inequality with values m = 2, (x1, x2) = (aαL`` , a
α
L`r

), (y1, y2) = (1, 1),
p = 1

α
, q = 1

1−α , we can show that aL`` + aL`r ≤ aL` implies aαL`` + aαL`r ≤ 21−αaαL` .
This implies that the algorithm chooses the right rule when

aαLm > 1− 21−αaαL` − a
α
M .
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Now we can rewrite (†) as

Wneck(n) ≤ c
[
aαM + aαL` +

(1− aM
2

− aL` −max{1− 21−αaαL` − a
α
M , 0}

1
α

)α]
nα − 1.

Using Lemma 4 (see below), the following holds

aαM + aαL` +
(1− aM

2
− aL` −max{1− 21−αaαL` − a

α
M , 0}

1
α

)α
≤ 1

for 0 ≤ aL` ≤
1−aM

2
and 0 ≤ aM ≤ c0. Therefore we can conclude Wneck(n) ≤ cnα − 1.

Figure 2.14: Surface plot of F (x, y)

Lemma 4. Let c0 = 0.2783297, α = log 2
1−c0

2 < 0.68, and

F (x, y) = xα + yα + max
{1− x

2
− y −max{1− 21−αyα − xα, 0}

1
α , 0

}α
Then maxF (x, y) ≤ 1 over all x, y where 0 ≤ x ≤ c0 and 0 ≤ y ≤ 1−x

2
.

Proof. The statement has been verified by writing a Mathematica program using interval
arithmetic. See Figure 2.14 for a surface plot of F (x, y).
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We cannot yet analyze the foot width of L-drawings since it depends on the width
obtained with the Overhang Algorithm. However we state the recurrence here for future
reference.

Observation 3. We can observe that the left rule, more-left rule, middle rule, right rule,
and more-right rule give rise to the following recurrence.

Wfoot(n) ≤
(∑4

i=1Wneck(ni)
)

+ max
{
Wfoot(n5),Woverhang(n6)

}
for some ni where

∑6
i=1 ni ≤ n, n5 ≤ (1− c0)n, and Woverhang(n6) denotes the width of the

Overhang drawing with n6 nodes.

The Overhang Algorithm

We now describe the Overhang Algorithm. Similar to the one for HVA drawings, some
subtrees are recursively drawn using the Overhang Algorithm and some subtrees are re-
cursively drawn using the L-Algorithm. As before the Overhang Algorithm can either
produce a left-corner drawing or a right-corner drawing depending on whether we want the
root vertex to be on the top-left corner or the top-right corner of the bounding box of the
drawing. We describe here only the algorithm to produce overhang-left(T ), the left-corner
drawing of T obtained by using the Overhang Algorithm; the other algorithm is symmetric.

The algorithm proceeds again by labeling each vertex in the heavy path as one of
left-knee, right-knee, ordinary-left, ordinary-right, switch-left, or switch-right. In fact, the
labelling of nodes in the heavy path is identical to the HVA drawing model except at the
root node, and the same invariants as in Section 2.1 hold. However, deciding between the
L-Algorithm and the Overhang Algorithm to recursively draw the non-heavy subtrees and
deciding where to place the already constructed drawings of non-heavy subtrees is different
in this version of the Overhang Algorithm.

1. If T is a single node, return the trivial drawing. Else, let P = 〈v0, v1, v2, . . . , vm〉 be
the heavy path of the ternary tree T . We will need names for the subtrees for each
vi, i ≥ 0. To avoid index-overload, we will not indicate the index i for these names.
Thus let L,M , and R denote the left, middle, and right subtree of vi. Further, let
R`, Rm, and Rr denote the left, middle, and right subtrees of R and let L`, Lm, and
Lr denote the left middle and right subtrees of L respectively. For ease of notation,
we assume that all nodes on the heavy path have exactly three children where the
non-heavy children may be present or be an empty subtree.
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Figure 2.15: An octagonal drawing produced by the Overhang Algorithm where the heavy
path is drawn using black edges.

2. The root case. Since we are constructing a drawing which has the root at the top-left
corner, treatment of the root node (and possibly some of its descendants) requires a
little more care. Let vi be the root (initially i = 0).

(a) If vi+1 is a left child, construct overhang-left(M), overhang-left(Rm), L-left(R`),
and L-left(Rr). Repeat Step 2 with vi+1 as new root.

(b) If vi+1 is a middle child, construct overhang-left(L), overhang-right(Rm), L-
right(R`), and L-right(Rr). Assign vi+1 as a right-knee node. Move to Step 3.
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(c) If vi+1 is a right child, construct overhang-left(L) and L-left(M). Then, if vi+1

has the leftmost child as a heavy child, assign vi+1 as an ordinary-left node.
Else, assign vi+1 has a switch-left node. Move to Step 3.

3. Now consider vertex vi for some i > 0 that is not treated by the root case. Omit this
step if vi is the leaf of the heavy path. Consider the labelling of vi:

(a) vi is an ordinary-left node:
We know that all non-heavy children are to the right of the heavy child.

i. Construct overhang-left(R), and L-left(M).

ii. If vi+2 does not exist or has no left sibling, then assign vi+1 as an ordinary-
left node, else assign vi+1 as a switch-left node.

(b) vi is a switch-left node:
We know that the heavy child vi+1 has a left sibling.

i. Assign vi+1 as a right-knee node.

ii. If vi+1 is a right child, construct overhang-left(M) and L-left(L).
If vi+1 is a middle child, construct overhang-left(L), overhang-right(Rm),
L-right(R`), and L-right(Rr).

(c) vi is a left-knee node:

i. If vi+1 is a left child, construct overhang-left(R), and L-left(M).
If vi+1 is a middle child, construct L-left(L), and overhang-left(R).
If vi+1 is a right child, construct L-left(M), overhang-left(Lm), L-left(L`),
and L-left(Lr).

ii. If vi+2 does not exist or has no left sibling, then assign vi+1 as an ordinary-
left node, else assign vi+1 as a switch-left node.

(d) vi is an ordinary-right, right-knee node, switch-right node: Do the same as in the
cases, where vi is an ordinary-left, left-knee node, or switch-left node, respectively
with “left” exchanged with “right” (also in the naming of subtrees).

4. Let Woverhang be the maximum width among the Overhang drawings constructed in
Step 3. Let WL be the maximum neck width among the L-drawings constructed in
Step 3 and let Wf be the maximum foot width among the L-drawings constructed in
Step 3. Set Wbody = max{Woverhang+WL+2, Wf+2}, then imagine the following grid
structure: Six channels C1, . . . , C6 of width WL (with an extra column Col4,3 to the
left of C3 and another column Col6,5 to the left of C5), followed by a single channel
Cbody of width Wbody, followed by six channels C ′1, . . . , C

′
6 of width WL (with an extra
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Figure 2.16: Grid structure used in the Overhang Algorithm for constructing octagonal
drawings.

column Col′3,4 to the right of C ′3 and another column Col′5,6 to the right of C ′5.) See
Figure 2.16. Let Col1,body and Col′body,1 be the leftmost column and rightmost column
within the channel Cbody. The idea is to draw the heavy path within the channel
Cbody, and place the neck of L-drawings in the channels Ci, C

′
i where i = 1, . . . , 6.

5. Initialize two stacks which can hold up to nine drawings each. We will use each
stack to store pending-left drawings, and pending-right drawings. Each drawing in
the stack will either be the foot of an L-drawing or an Overhang drawing and for
each drawing in the stack, the x-coordinate (some reference point of the bounding
box) is known at the time of push, however the y-coordinate (of the top row of the
drawing) is determined at the time of pop.

In the following steps, we construct the Overhang drawing of T by drawing the heavy path
and appropriately placing the subtree drawings around the heavy path. For a subtree T ,
let D(T ) denote the drawing of subtree T . Let Hi be the horizontal row corresponding to
the node placed lowest in the drawing of T constructed so far.

6. The root phase. Let vi be the root (initially i = 0). Place vi one unit below Hi and
in the leftmost column within channel C6, and distinguish cases:

(a) If vi+1 is a left child (see Figure 2.17a):
Place the right child of vi in Col4,3 and horizontally aligned with vi. Place the
neck of D(Rr) within channel C3 using a diagonal edge and place the neck of
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Figure 2.17: (a) v1 is the left child. (b) v1 is the middle child. (c) v1 is the right child.

D(R`) within channel C4 using a diagonal edge. Place the neck of D(M) within
channel C5 using a diagonal edge. Place the foot of D(Rr) immediately below
the necks of D(Rr) and D(R`). Place the root of Rm immediately below the
foot of D(Rr). Place the foot of D(R`) immediately below the bounding box of
D(Rm) and place the foot of D(M) immediately below the neck of D(M) and
foot of D(R`). Repeat Step 7 with vi+1 as the new root case.

(b) If vi+1 is a middle child (see Figure 2.17b):
Place the right child of vi in Col′5,6 and horizontally aligned with vi. Place the
neck of D(Rr) within channel C ′6 using a diagonal edge and place the neck of
D(R`) within channel C ′5 using a diagonal edge. Push the foot of D(Rr), then
the foot of D(R`) onto the stack of pending-right drawings. Fix the x-position
of the root of D(L) to be the same as vi and push D(L) onto the stack of
pending-left drawings. Move to Step 7.

(c) If vi+1 is a right child (see Figure 2.17c):
Place the neck of D(M) within channel C5 using a diagonal edge. Fix the x-
position of the root of D(L) to be the same as vi. Push D(L), then the foot
of D(M) onto the stack of pending-left drawings. Place vi+1 in column C1,body

and horizontally aligned with vi. Move to Step 7.

7. Now consider vertex vi for some i > 0 that is not treated by the root phase. Depend-
ing on the label of vi, do:

(7a) vi is an ordinary-left node (see Figure 2.18a):
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Place vi one unit below Hi and vertically aligned with vi−1. Place the neck
of D(M) one unit to the right of vi using a diagonal edge and place D(R)
immediately to the right of the neck of D(M) horizontally aligned with vi.
Place the foot of D(M) immediately below the neck of D(M) and D(R).

Figure 2.18: (a) vi is an ordinary-left node and vi+1 is the left child. (b) vi is a switch-left
node and vi+1 is the middle child. (c) vi is a switch-left node and vi+1 is the right child.

(7b) vi is a switch-left node:
While the stack of pending-right drawings is not empty, pop one drawing and
place it one unit below Hi. Note that the x-position of the drawing is known
at the time of push and only the y-position need be decided at the time of
pop. Once the stack of pending-right drawings is empty, place vi in the same
vertical channel as vi−1 and one unit below the new Hi. Place vi+1 in the column
Col′body,1 using a diagonal edge from vi.

i. vi+1 is a middle child (see Figure 2.18c):
Fix the x-position of the root of D(L) to be the same as vi and push D(L)
onto the stack of pending-left drawings. Place the right child of vi in Col′5,6
and horizontally aligned with vi. Place the neck of D(R`) within channel
C ′5 using a diagonal edge. Place the neck of D(Rr) within channel C ′6 using
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a diagonal edge. Push the foot of D(Rr) onto the stack of pending-right
drawings. Fix the x-position of the root of D(Rm) to be the same as the
right child of vi and push D(Rm) onto the stack of pending-right drawings.
Push the foot of D(R`) onto the stack of pending-right drawings.

ii. vi+1 is a right child (see Figure 2.18b):
Place the neck of D(L) within channel C1 using a diagonal edge. Push the
foot of D(L) onto the stack of pending-left drawings. Fix the x-position of
the root of D(M) to be the same as vi and push D(M) onto the stack of
pending-left drawings.

Figure 2.19: (a) vi is a left-knee node, vi+1 is the right child (b) vi is a left-knee node, vi+1

is the middle child. (c) vi is a left-knee node, vi+1 is the left child.

(7c) vi is a left-knee node:
Depending on whether vi+1 is the right, middle, or left child, do:

i. vi+1 is a right child (see Figure 2.19a):
Place the left child of vi in Col4,3 and horizontally aligned with vi. Place
the neck of D(L`) within channel C4 using a diagonal edge and place the
neck of D(Lr) within channel C3 using a diagonal edge. Place the neck of
D(M) within the channel C2 using a diagonal edge. Fix the x-position of
the root of D(Lm) to be Col4,3. Push the foot of D(L`), then D(Lm), then
the foot of D(Lr), then the foot of D(M) onto the stack of pending-left
drawings.

ii. vi+1 is a middle child (see Figure 2.19b):
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Place the neck of D(L) within channel C2 using a diagonal edge. Then
push the foot of D(L) onto the stack of pending-left drawings. Place D(R)
one unit below and to the right of vi.

iii. vi+1 is a left child (see Figure 2.19c):
Place D(M) and D(R) in the same fashion as the case where vi is an
ordinary-left node.

(7d) vi is an ordinary-right, right-knee node, switch-right node:
These cases are the same as the cases where vi is an ordinary-left, left-knee node,
or switch-left node respectively, with “left” exchanged with “right”.

Note that we empty the stack of pending-right drawings every time we process a switch-
left node (similarly, we empty the stack of pending-left drawings every time we process
a switch-right node). We argue that we push at most nine drawings onto the stack of
pending-right drawings while processing a sequence of labels beginning from a switch-left
node and ending in the next switch-left node. In this sequence of labels, the labels that
could push drawings on to the pending-right stack include, in order along the heavy path,
the switch-left, the right-knee, and the switch-right node. The switch-left node may use
channels C1, C

′
5, C

′
6, and columns Col1,body, Col′5,6. The right-knee node may use channels

C ′2, C
′
3, C

′
4 and column Col′3,4. The switch-right node uses channel C ′1 and column Col′body,1.

All in all, we push at most nine drawings onto the pending-right and each corresponds to
a channel/column in order from right to left. Hence these drawings can be extracted and
placed when handling the next switch-left node.

Theorem 3. Any ordered ternary tree of size n admits an ideal octagonal drawing of width
O(n0.68).

Proof. As seen from the grid structure of the Overhang Algorithm, the width of the drawing
follows a sequence where Woverhang(1) = 1 and

Woverhang(n) ≤ 12WL +Wbody + 4

≤ 12Wneck(n1) + max

{
Woverhang(n2) +Wneck(n1) + 2,

Wfoot(n3) + 2

}
+ 4

≤ max
{

13Wneck(n1) +Woverhang(n2), 12Wneck(n1) +Wfoot(n3)
}

+ 6

for some n1, n2, n3 where n1, n2, n3 ≤ bn2 c (this is because n1, n2, and n3 are sizes of subtrees
not rooted at a node in the heavy path).
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By Lemma 3, we know that Wneck(n) ≤ cn0.68 − 1 for some constant c. Now we will prove
by induction that for all n ≥ 1,

Woverhang(n) ≤ c1n
0.68 where c1 = 29c (2.5)

and
Wfoot(n) ≤ c2n

0.68 where c2 = 33c. (2.6)

Base case: When n = 1, the left side of (2.5) is Woverhang(1) = 1 and the right side is
c1(1

0.68) = c1.
When n = 1, the left side of (2.6) is Wfoot(1) = 1 and the right side is c2(1

0.68) = c2.

Inductive step: Let N > 1 and assume (2.5) and (2.6) is true for 1 ≤ n < N .
We refer to Observation 3 (page 32) and solve the following recurrence where

∑6
i=1 ni ≤ N ,

and n5 ≤ (1− c0)N .

Wfoot(N) ≤
( 4∑
i=1

Wneck(ni)
)

+ max
{
Wfoot(n5), Woverhang(n6)

}
≤
( 4∑
i=1

(cn0.68
i − 1)

)
+ max

{
c2n

0.68
5 , c1n

0.68
6

}
≤
( 4∑
i=1

(cN0.68 − 1)
)

+ max
{
c2((1− c0)N)0.68, c1N

0.68
}

= (4cN0.68 − 4) + max
{
c2((1− c0)N)0.68, c1N

0.68
}

≤ max
{

(4c+ c2(1− c0)0.68)N0.68, (4c+ c1)N
0.68
}

= max
{

(4c+ 33c(1− c0)0.68)N0.68, (4c+ 29c)N0.68
}

(Note that 33c(1− c0)0.68 ≤ 29c since c0 = 0.2783297.)

≤ 33cN0.68

≤ c2N
0.68.
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So by induction, Wfoot(n) ≤ c2n
0.68. Now we solve the recurrence for Woverhang(N) where

n1, n2, n3 ≤ bN2 c.

Woverhang(N) ≤ max
{

13Wneck(n1) +Woverhang(n2), 12Wneck(n1) +Wfoot(n3)
}

+ 6

≤ max


13c
(N

2

)0.68
− 13 + c1

(N
2

)0.68
,

12c
(N

2

)0.68
− 12 + c2

(N
2

)0.68
+ 6

≤ max
{

(13c+ c1)
(N

2

)0.68
, (12c+ c2)

(N
2

)0.68}
= max

{
(13c+ 29c)

(N
2

)0.68
, (12c+ 33c)

(N
2

)0.68}
= max

{( 42c

20.68

)
N0.68,

( 45c

20.68

)
N0.68

}
≤ 29cN0.68

= c1N
0.68.

Therefore by induction, Woverhang(n) ≤ c1n
0.68 ∈ O(n0.68).

Since the algorithm uses a constant number of operations per node, the running time
for the Overhang Algorithm is O(n).

41



Chapter 3

Width Lower Bounds

In this chapter, we present asymptotic lower bounds on the width of octagonal drawings
of complete ternary trees. In our approach, we consider drawings of complete ternary
trees and show the width lower bound as a function of the number of leaves in the tree.
(In this chapter, n will denote the number of leaves, rather than the number of nodes,
because some formulas then simplify, e.g., the height is log3 n. Since the number of leaves
is proportional to the number of nodes in a complete ternary tree, this assumption does
not affect asymptotic bounds.) The results are derived through a series of improvements
where we define a rectangle R with respect to the given drawing of the tree, obtain a
lower bound on the minimum number of nodes that must be drawn inside R, then use the
Pigeonhole principle to derive a lower bound on the minimum width of R which in turn
is a lower bound on the minimum width of the drawing. In each iteration of the proof,
we improve the lower bound by redefining the rectangle R and obtaining asymptotically
stronger bounds on the number of nodes that must lie inside R. This comes at the cost of
smaller constant factors, making the latter bounds to be of mostly theoretical interest.

Throughout this chapter, let D(T ) be an ideal octagonal drawing of a complete ternary
tree T with n leaves and height ` = log3 n.

3.1 Method 0

Since we measure the area of a drawing by the number of grid points occupied by the
bounding box of the drawing, we define w to be the maximum integer such that some
two nodes are drawn w − 1 columns apart (say, after translation all nodes of D(T ) have
x-coordinate in {1, . . . , w}).
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Definition 6. For i = 1, . . . , `, let Ri be the rectangle consisting of the topmost w · i rows
of the bounding box of D(T ).

Definition 7. Let n0 = 1 and for i = 1, . . . , `, let ni denote the number nodes at tree depth
i that appear in Ri (the root has tree depth 0).

Lemma 5. ni ≥ 2ni−1 for i = 1, . . . , `.

Proof. For i ≥ 2, consider some node vi−1 that has tree depth i − 1 and is drawn inside
Ri−1. Since D(T ) is an ideal octagonal drawing, at least two children of vi−1 are drawn
with a horizontal or diagonal edge. Note that any horizontal or diagonal edge spans a
vertical distance of at most w − 1. So node vi−1 can have at most one child (namely the
vertical child) which has vertical distance greater than w − 1 from vi−1. Since the height
of Ri is w units more than the height of Ri−1

1, at least two children of vi−1 are in Ri,
and the bound follows. For i = 1, we argue similarly that n1 ≥ 2 since the root is on the
topmost row in R1 and the root must have at least two children in R1.

Theorem 4. A complete ternary tree T with n leaves requires
√

nlog3 2

log3 n
width in any ideal

octagonal drawing.

Proof. Since there are n` ≥ 2` nodes in R`, the number of grid points in R` must be at
least 2`. Since R` has w(w`) grid points and ` = log3 n, the following is true:

w2 log3 n ≥ 2log3 n = nlog3 2.

We solve for w and achieve a lower bound on the width:

w ≥

√
nlog3 2

log3 n
∈ Ω(n0.315).

3.2 Method 1

Define again w to be the maximum integer such that some two nodes are drawn w − 1
columns apart. We also use the same rectangle definition as before, i.e., Ri has width w
and height w · i. The main difference from Method 0 is that we find a second lower bound
on ni, and use it to obtain better bounds. We need a definition.

1It would have been enough to use height i · (w− 1)+ 1 for rectangle Ri for this bound to hold, but for
ease of notation we use height i · w.
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Definition 8. Fix i ∈ {1, . . . , `} and a node vi−1 at tree depth i − 1. We say that vi−1 is
good if

i. all three children of vi−1 are in Ri and

ii. either i = 1 or vi−1 is in Ri−1.

Else vi−1 is bad.

Let vi−1 be a node at depth i − 1 that is either the root or inside Ri−1. Assume that
vi−1 is bad. Then at least one child of vi−1 is outside Ri. Since Ri is w rows taller than
Ri−1, this is possible only if this child is a vertical child of vi−1, and the edge from vi−1 to
this child intersects the bottom of Ri−1. This allows us to develop a better bound on ni as
follows:

Figure 3.1: (a) Node vi−1 is good since all three children are drawn inside Ri and vi−1 is
drawn inside Ri−1. (b) Node vi−1 is bad since it has a vertical child v drawn outside Ri.

Lemma 6. ni ≥ 3ni−1 − w for i = 1, . . . , `.

Proof. For i ≥ 2, consider a node vi−1 at depth i− 1 and drawn in Ri−1. If vi−1 is a good
node then all three of its children are in Ri. If vi−1 is a bad node, then (as in the proof of
Lemma 5) at least two of its children are in Ri. Hence, ni ≥ 3ni−1 − nb where nb is the
number of bad nodes at tree depth i− 1 drawn inside Ri−1. Every such bad node uses up
one grid point on the bottom side of Ri−1 for the edge to its vertical child. Since there are
w such points, we have nb ≤ w and so ni ≥ 3ni−1 − w. For i = 1, we argue similarly that
n1 ≥ 3− w since the root is on the topmost row in R1 and the root can either be a good
node and have three children in R1, or be a bad node and have only two children in R1,
hence n1 ≥ 2 = 3n0 − 1 ≥ 3− w.
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Lemma 7. Let ni be a sequence that satisfies the following recurrence:

i. n0 = 1

ii. ni ≥ 2ni−1 for i = 1, . . . , `

iii. ni ≥ 3ni−1 − w for i = 1, . . . , `.

Then n` ≥ 1
6
nw1−log2 3.

Proof. Define k = dlog2we. Using i. and ii., we have nk ≥ 2k ≥ 2log2 w = w. Therefore,
(with iii.) nk+1 ≥ 3w−w, nk+2 ≥ 32w−3w−w and generally nk+i ≥ 3iw− (

∑i−1
m=0 3m)w =

3iw − 3i−1
2
w ≥ 3i

2
w. Using i = `− k, we get n` ≥ w

2
3`−k = w

2
3log3 n

3dlog2 we
≥ w

2
n

3log2 w+1 = n
6

w
wlog2 3

as desired.

Theorem 5. A complete ternary tree T with n leaves requires Ω
((

n
log3 n

) log3 2
log3 2+1

)
width in

any ideal octagonal drawing.

Proof. Since the number of grid points in R` must be no smaller than n`, the following is
true:

w(w log3 n) ≥ 1

6
nw1−log2 3, hence w1+log2 3 ≥ 1

6

n

log3 n
.

Since 1 + log2 3 = log3 2+1
log3 2

, this gives

w ≥
(

1

6

n

log3 n

) log3 2
log3 2+1

∈ Ω
(( n

log3 n

) log3 2
log3 2+1

)
⊆ Ω

(
n0.386

)
.

The constant hidden in the asymptotic notation is 1
6

which makes this bound better
than the one of Theorem 4 when n ≥ 22.
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3.3 Method 2

For our next bound, we need a much more complicated definition of rectangles, and the
idea of “trapped subtrees”. We state the main result first.

Theorem 6. A complete ternary tree T with n leaves requires Ω

((
n

log3 n

) 1
1+3 log10 3

)
⊆

Ω
(
n0.411

)
width in any ideal octagonal drawing.

The rest of this section gives the proof of Theorem 6, which is by induction on n. Let
w = c0(

n
log3 n

)α where α = 1
1+3 log10 3

> 0.411 and c0 < 0.000279. So in contrast to the pre-

vious proofs, w is not necessarily exactly the width of D(T ). Instead we show a stronger
statement: there exist two grid points within rows 1, . . . , dc1w`e and with horizontal dis-
tance at least w − 1 that are both occupied by (a vertex or an edge of) D(T ). Here, c1 is
a suitable constant (c1 = 4 should do).

Base case: We prove the base case for all n with ` = log3 n < 12 and all n with
c1w` = c1c0(

n
log3 n

)α log3 n < 1, since we need these assumptions on n in the induction step.

We need to show that within dc1w`e rows we use width at least w. This holds since the
root needs a column and w ≤ 1 for this range of n.

Inductive step: Assume for contradiction (∗∗) that D(T ) has width less than w for the
first dc1w`e grid rows.

We use a different rectangle definition than before where the height is a more compli-
cated function Bi.

Definition 9. For i = 1, . . . , `, let

Bi =
i∑

j=1

bj

where

bj =

{
3w + c1w`(

1
3j

)α if j > 11

w if j ≤ 11.

Lemma 8. Assume that ` ≥ 12. Then B` is at most dc1w`e.
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Proof. In essence, this holds because the bj-terms form a geometric series that can be
upper-bounded. More precisely, we have

B` =
∑̀
j=1

bj

= 11w + 3(`− 11)w +
[ ∑̀
j=12

c1w`(
1

3j
)α
]

≤ 3w`+ c1w`

∞∑
j=12

1

(3j)α

= 3w`+ c1w`
( 1

312α

)( 1

1− 1
3α

)
= w`

[
3 + c1

( 1

312α

)( 3α

3α − 1

)]
≤ c1w`

≤ dc1w`e.

The next-to-last inequality holds since for c1 ≥ 3.04, we have

3 + c1

( 1

312α

)( 3α

3α − 1

)
≈ 3 + c1(0.00443)(2.752) ≤ c1.

Definition 10. For i = 1, . . . , `, let R′i be the rectangle that is the bounding box of the first
Bi rows of D(T ).

By assumption (∗∗) and Lemma 8, rectangle R′i has width less than w.

Definition 11. Let n0 = 1 and for i = 1, . . . , `, let ni denote the number of nodes at tree
depth i that appear in R′i.

We use the same definition for good and bad nodes as in the first method (Definition
8), applied for rectangles R′i in place of Ri.

Definition 12. For i ≥ 14, let vi−3 be a node at tree depth i− 3 that is inside R′i−3. Then
a subtree rooted at some descendant v of vi−3 is trapped by vi−3 if all of the following are
satisfied:
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Figure 3.2: By the definition of trapped, the subtree rooted at some descendant v of vi−3
is trapped by vi−3.

1. v has tree depth i, i− 1, or i− 2.

2. There exists a bad node vb1 at tree depth i−1, i−2, or i−3 with a smaller x-coordinate
than v and greater or equal y-coordinate than v.

3. There exists a bad node vb2 at tree depth i−1, i−2, or i−3 with a larger x-coordinate
than v and greater or equal y-coordinate than v.

4. Nodes vb1 and vb2 are descendants of vi−3.

5. The path from vi−3 to v does not include any vertical edges.

For ease of wording, we may say ‘node v is trapped by vi−3’ as an equivalent statement to
‘the subtree rooted at v is trapped by vi−3’.

Figure 3.2 illustrates these concepts. In essence, because vb1 and vb2 are bad, they have
vertical edges that reach “far below”. By choice of the coordinates, the drawing of Tv
is “between” these vertical edges, at least for some parts and because we know a lower
bound on the width of D(Tv), this will allow us to develop a tighter bound on ni. The
following lemmas discuss properties of trapped nodes, and then make the above argument
more precise.

Observation 4. For i ≥ 14, consider some node vi−3 that is at tree depth i−3 in T and is
drawn inside R′i−3. Let v be a descendant of vi−3 that is trapped by vi−3. Then v is inside
R′i−2 and has vertical distance at most 3w from vi−3. Moreover, the vertical edges of the
nodes vb1 and vb2 that trap v intersect the bottom of R′i−2.
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Proof. We know that vi−3 is inside R′i−3 which by (∗∗) has width at most w. Since the path
from vi−3 to v does not include any vertical edges by Condition 5 of “trapped”, and the
path length from vi−3 to v is at most 3 by Condition 1, v has vertical distance at most 3w
from vi−3. By definition of bi−2 therefore v is inside R′i−2. By Conditions 2 and 3, vertices
vb1 and vb2 have y-coordinates no smaller than that of v, and so are inside R′i−2. But they
are bad and at depth i− 3 or more, so their vertical children are outside R′i−2 by definition
of “bad”.

Lemma 9. For i ≥ 14, let vi−3 be a node at tree depth i− 3 that is drawn inside R′i−3 and
let Tv be a subtree rooted at node v that is trapped by vi−3. Then node v is drawn at least
dc0c1|Tv|α(log3 |Tv|)1−αe rows above the bottom of R′i−2.

Proof. By Observation 4, v has vertical distance at most 3w from vi−3. Rectangle R′i−2 has
bi−2 units more height than R′i−3 where bi−2 = 3w+c1w`(

1
3i−2 )α, so v is at least c1w`(

1
3i−2 )α

above the bottom of R′i−2. The largest |Tv| is achieved when v is a child of vi−3, therefore
|Tv| ≤ n

3i−2 . Since c1w`(
1

3i−2 )α = c0c1(
n

3i−2 )α(log3 n)1−α ≥ c0c1|Tv|α(log3 |Tv|)1−α and since
both v and the bottom of R′i−2 are at integer coordinates, v is at least
dc0c1|Tv|α(log3 |Tv|)1−αe rows above the bottom of R′i−2.

Definition 13. We say node vj is a non-vertical child/grandchild of node vi if vj is a
child/grandchild of vi and the path from vi to vj does not include any vertically drawn
edges.

Lemma 10. For i ≥ 14, let vi−3 be a node at tree depth i−3 that is drawn inside R′i−3. Let
n′i denote the number of descendants of vi−3 at tree depth i that appear in R′i. If n′i < 10,
then there exists a descendant of vi−3 that is trapped by vi−3.

Proof. By Observation 4, the four non-vertical grandchildren of vi−3 are inside R′i−2. Since
there are at least two non-vertical children for each grandchild and R′i ⊃ R′i−2, there are
at least eight nodes that contribute to n′i (these nodes are shown as diamond shapes in
Figure 3.3). We now present a case analysis on the drawing configurations of the subtree
rooted at vi−3 to find either two more nodes that contribute to n′i, or to find a trapped
descendant:

Case 1. vi−3 is a good node:
Since vi−3 is a good node, the vertical child of vi−3 is drawn inside R′i−2, which
guarantees that the four non-vertical grandchildren of the vertical child of vi−3 are
in R′i−1 by Observation 4 (these nodes are shown as circular shapes in Figure 3.3).
Since R′i ⊃ R′i−1, we can conclude n′i ≥ 12.
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Figure 3.3: Case 1.

Note that Case 1 applies whenever all children of vi−3 are non-vertical, so for all
following cases we know that vi−3 has a vertical child.

Case 2. vi−3 is a bad node and at least one of the two non-vertical children of vi−3 is a
good node:
Let vi−2 denote the non-vertical child of vi−3 which is a good node and let v′i−2
denote another non-vertical child of vi−3. Since vi−3 is drawn inside R′i−3, v

′
i−2 has

at least four grandchildren in R′i−2 ⊂ R′i by Observation 4 (these nodes are shown
as diamond shapes in Figure 3.4). Moreover since vi−2 is a good node, vi−2 must
have at least six grandchildren in R′i−1 ⊂ R′i (these nodes are shown as circular
shapes in Figure 3.4). Therefore, we can conclude that n′i ≥ 10.

Figure 3.4: (Left) Case 2. (Right) Case 3.
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Case 3. vi−3 is a bad node, and the non-vertical children of vi−3 are bad nodes, and at
least two non-vertical grandchildren of vi−3 are good nodes:
Since vi−3 is drawn inside R′i−3, each non-vertical grandchild of vi−3 that is a good
node has three children in R′i and therefore each such grandchild contributes three
nodes to n′i (these nodes are shown in as diamond shapes in Figure 3.4). Moreover,
each non-vertical grandchild of vi−3 that is a bad node has at least two non-vertical
children which are in R′i−2 ⊂ R′i by Observation 4, so it contributes at least two
nodes to n′i (these nodes are shown as circular shapes in Figure 3.4). Since there
are at least two non-vertical grandchildren of vi−3 that are good nodes and at least
four non-vertical grandchildren, we can conclude that n′i ≥ 10.

Case 4. vi−3 is a bad node, and all non-vertical children of vi−3 are bad nodes, and at most
one non-vertical grandchild of vi−3 is a good node:
We consider all possible drawing configurations where there is at most one non-
vertical grandchild of vi−3 that is a good node and show the existence of a node v
where the subtree rooted at v is trapped by vi−3. We have the following subcases:

Figure 3.5: Case 4(a) is shown with the diamond shaped node denoting node v. (We show
the existence of node v where the subtree rooted at v is trapped by vi−3.)

a) vi−3 is drawn with the left child as the vertical child. See Figure 3.5(a). Define
v to be the middle child of vi−3. We claim that v is trapped and verify the
conditions as follows:
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1. v has tree depth i− 2.

2. Use vb1 := vi−3. By case assumption vi−3 has smaller x-coordinate than its
middle child v. Since we have an upward drawing, vi−3 has y-coordinate
greater than or equal to v.

3. Set vb2 to be the right child of vi−3. By case assumption (vi−3, vb2) is drawn
horizontally, thus vb2 has y-coordinate greater than or equal to v. Also by
case assumption vb2 is bad, so its vertical child is outside R′i−1. Thus the
vertical edge from vb2 must bypass v (which is in R′i−2), so the x-coordinate
of vb2 is bigger than v.

4. Holds by choice of vb1 and vb2.

5. Holds by our assumption.

(The case where vi−3 is drawn with the right child as the vertical child is
symmetric.)

Figure 3.6: Labelling of good and bad nodes for describing subcases of Case 4. We do not
necessarily have children appear in the order labelled above, e.g., vg could be the leftmost
child.

b) vi−3 is drawn with the middle child as the vertical child. Let vg be the non-
vertical grandchild of vi−3 that is good (set vg to be an arbitrary grandchild
if there is none that is good). Let vi−2 be the parent of vg and let vi−1 be a
sibling of vg that is a non-vertical child of vi−2. By assumption vi−1 is bad.
Let v′i−2 denote a non-vertical sibling of vi−2. See Figure 3.6. We may assume
that v′i−2 is the left child and vi−2 is the right child of vi−3, the other case is
symmetric. In this subcase we must consider drawing configurations of the two
non-vertical children of v′i−2. Let v′i−1 be the leftmost non-vertical child of v′i−2;
by case assumption and choice of v′i−2, node v′i−1 is bad.
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b1) v′i−2 is drawn with the right child as the vertical child. See Figure 3.7(b1).
Set v to be the middle child of v′i−2 and verify that it is trapped using
vb1 := v′i−1, vb2 := v′i−2. (Details are left to the reader.)

b2) v′i−2 is drawn with the middle child as the vertical child. See Figure 3.7(b2).
Set v to be the right child of v′i−2 and verify that it is trapped using
vb1 := v′i−2, vb2 := vi−3.

b3) v′i−2 is drawn with the left child as the vertical child. See Figure 3.7(b3).
Set v to be the middle child of v′i−2 and verify that it is trapped using
vb1 := v′i−2, vb2 := vi−3.

Figure 3.7: Subcases of case 4(b) are shown.

By case analysis, we have shown the existence of a node v in R′i−2 where the
subtree rooted at v is trapped. Note that in each subcase, we only show a single
node v such that subtree rooted at v is trapped. However, in most cases there can
be many such vertices.

Lemma 11. ni ≥ 10ni−3 − 2(3iα) for i = 14, . . . , `.

Proof. For i = 14, . . . , `, consider a node vi−3 at depth i−3 and drawn in R′i−3. By Lemma
10, if the number of descendants of vi−3 at tree depth i that are located in R′i is less than 10,
then there exists a descendant of vi−3 that is trapped by vi−3. Further, Lemma 5 implies
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that any vi−3 has at least eight descendants with tree depth i inside R′i. Therefore we can
deduce the following.

ni ≥ 10ni−3 − 2
(

# of subtrees trapped by a node at level i− 3
)

Since the vertical lines that separate trapped subtrees all intersect the bottom of R′i−2,
trapped subtrees are disjoint and the maximum number of trapped subtrees in R′i−2 can
be bounded by the width of the R′i−2 which is at most w by (∗∗), divided by the minimum
width of a trapped subtree. We can bound the width of each trapped subtree by induction.
Let v be the root of a trapped subtree; we know that v is at level i−2, i−1, or i. Therefore
Tv contains at least n

3i
nodes. By Lemma 9, node v is drawn at least dc0c1|Tv|α(log3 |Tv|)1−αe

grid rows above the bottom of R′i−2. This is at least c1wv`v, where wv := c0

(
|Tv |

log3 |Tv |

)α
and

`v := log3(|Tv|) are the width requirement and height of subtree Tv. We know by induction

that Tv requires width at least c0

(
|Tv |

log3 |Tv |

)α
≥ c0

(
n/3i

log3(n/3
i)

)α
within the first c1wv`v rows

therefore it requires this width between the two vertical lines that trap it until the bottom
of R′i−2. Thus,

ni ≥ 10ni−3 − 2

(
w

c0

(
n/3i

log3(n/3
i)

)α)

≥ 10ni−3 −
2
(

n
log3 n

)α
(

n/3i

log3(n/3
i)

)α
≥ 10ni−3 − 2(3iα) since log3(n/3

i) ≤ log3 n.

Lemma 12. Let ni be a sequence that satisfies the following recurrence:

i. n0 = 1

ii. ni ≥ 2ni−1 for i = 1, . . . , `

iii. ni ≥ 10ni−3 − 2(3iα) for i = 14, . . . , `

iv. ni ≥ 3ni−1 − w for i = 1, . . . , `

where ` = log3 n. Then for n sufficiently large, n` ≥ c3nw
1−3 log10 3 for some constant c3.
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Proof. Define k = 11. Then by using i. and ii., we have nk−2 ≥ 2k−2 ≥ 2(3α(k+1)) since
29 > 452 = d2 · 3(0.411·12)e ≥ 2 · 3(0.411·12) ≥ 2 · 3α(k+1). Therefore, (with iii.)

nk+1 ≥ 10 · 2 · 3α(k+1) − 2 · 3α(k+1)

nk+4 ≥ 102 · 2 · 3α(k+1) − 10 · 2 · 3α(k+1) − 2 · 3α(k+4)

and generally for i− 1 a multiple of 3:

nk+i ≥ 2 · 3α(k+1) · 10
i+2
3 − 2 · 3α(k+i)

[ i−1
3∑

m=0

( 10

33α

)m]
We have

i−1
3∑

m=0

( 10

33α

)m
=

( 10
33α

)
i−1
3

+1 − 1
10
33α
− 1

≥ 10
i+2
3 · 3−(i+2)α

10
33α
− 1

and therefore

nk+i ≥ 2 · 3α(k+1) · 10
i+2
3 − 2 · 3α(k+i) · 3−(i+2)α · 10

i
3

( 10
2
3

10
33α
− 1

)
≥ 2 · 3α(k+1) · 10

i
3

[
10

2
3 − 3−3α

( 10
2
3

10
33α
− 1

)]
.

Define c2 := 2 · 3α(k+1)

[
10

2
3 − 3−3α

(
10

2
3

10
33α
−1

)]
≈ 1751, we hence have nk+i ≥ c210

i
3 . (†)

Define t to be the smallest integer such that t ≥ 3 log10w + k − 3 log10 c2 and t− k − 1 is
a multiple of 3. We have

t ≤ 3 log10w + k + 3− 3 log10 c2.

Using i = t− k in (†), we get

nt ≥ c210
3 log10 w−3 log10 c2

3 = c2
10log10 w

10log10 c2
= w.

Therefore (with iv), nt+1 ≥ 3w − w, ni+2 ≥ 32w − 3w − w and generally

nt+i ≥ 3iw − (
∑i−1

m=0 3i)w = 3iw − 3i−1
2
w ≥ 3i

2
w. Using i = `− t, we get

n` ≥
w

2
3`−t ≥ w

2

3log3 n

33 log10 w+k+3−3 log10 c2
= c3nw

1−3 log10 3
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where c3 = 1
2

1
3k+3−3 log10 c2

≈ 0.00459.

We now continue the proof of Theorem 6. Since the number of grid points in R′` must
be larger than n` and since R′` has height at most dc1w`e (by Lemma 8), width at most w
by (∗∗), and ` = log3 n, the following is true:

w(dc1w log3 ne) ≥ c3nw
1−3 log10 3.

Assume that n is large enough that c1w log3 n ≥ 1 (and therefore 2c1w log3 n ≥ dc1w log3 ne).
Then solving for w gives the lower bound

w ≥
( c3

2c1

n

log3 n

) 1
1+3 log10 3

.

This contradicts our assumption (∗∗) since w = c0(
n

log3 n
)

1
1+3 log10 3 and

c0 <
(
c3
2c1

) 1
1+3 log10 3 ≈ 0.0464. Therefore, the complete ternary tree T requires at least

c0(
n

log3 n
)α width within R′`. Since R′` has height B` ≤ dc1w`e by Lemma 8, the induction

hypothesis holds and Theorem 6 is proved. �

Note that the constant in Theorem 6 is c0 < 0.000279, so only for very large values of
n is this bound bigger than the bound of Theorem 5.
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3.4 Beyond Method 2

In this section, we give ideas that may be used to further improve Theorem 6. Recall that
we considered a sequence that satisfies the following recurrence:

i) n0 = 1

ii) ni ≥ 2ni−1 for i = 1, . . . , `

iii) ni ≥ 10ni−3 − 2(3iα) for i = 14, . . . , `

iv) ni ≥ 3ni−1 − w for i = 1, . . . , `

where ` = log3 n and give a lower bound for n`.

We believe that we can improve the lower bound on n` by replacing recurrence iii) with

ni ≥ 26ni−4 − 10(3iα) (3.1)

by considering subtrees of height four instead of subtrees of height three in the context of
trapped subtrees. This will require redefining our rectangles and proving lemmas similar
to Lemma 10 and 11 from Method 2. In particular, one would have to show that any
node at depth i − 4 inside rectangle R′i−4 has either at least 26 descendants at depth i,
or at least one trapped descendant within levels i − 3, . . . , i. Pushing this further, we
can iteratively increase the height of the subtrees used in the context of trapped subtrees
(thereby iteratively improving (3.1)) and we believe we can achieve a width lower bound of

Ω

((
n

log3 n

) 1
1+log2.617 3

)
≈ Ω

(
n0.4668

)
. Since the details of these ideas require further work,

they are not included in this thesis.
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Chapter 4

Conclusions and Open Problems

In this thesis, we have studied octagonal drawings of ternary trees. We have shown an upper
bound (Theorem 3) concerning the width requirement of ideal octagonal grid drawings of
arbitrary ternary trees and some lower bounds (Theorems 4, 5, and 6) concerning the width
requirement of ideal octagonal grid drawings of complete ternary trees.

We have not analyzed the height of the octagonal drawing produced by our algorithm in
Chapter 2. We believe that a modification of the algorithm can achieve near-linear height,
but the details may require further work and are not included in this thesis.

The upper and lower bounds for octagonal drawings are not asymptotically tight, leav-
ing space for improvement. The exponent in the width upper bound was determined
numerically and can likely be improved slightly by expanding the five rules of the L-
algorithm into more cases. However, it is unclear how to improve the upper bound for
octagonal drawings to match the O(nlog3 2) upper bound for HVA drawings.

In terms of the lower bound, while we were able to improve the width lower bound
iteratively, there are limitations to this method. Suppose in any version of this approach,
we let w denote the width of our rectangle and w log3 n be the height of our rectangle. Even
if we can show that the entire complete ternary tree is drawn inside our rectangle (which
has w2 log3 n grid points), our best lower bound for width w, will still only be Ω(( n

log3 n
)0.5),

which is not near our best known width upper bound which is O(n0.68) for ideal octagonal
ternary tree drawings. In order to show matching width upper and lower bounds for ideal
octagonal ternary tree drawings, a different approach for lower bounds seems necessary.

For future work, we are interested in related open problems such as

• What are the width upper and lower bounds for k-ary trees using O(k) slopes?
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• How small can you draw a complete ternary tree in an octagonal grid while main-
taining the upward property?

• What is the computational complexity of finding ideal octagonal drawings of mini-
mum width?
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