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Abstract

We introduce a new simple allocation policy whishai very good approximation of the optimal
allocation policy in an inventory system with aglsproduct and two priority classes of customers.
A production facility produces new items with expatially distributed production times as long as
the inventory level is below a base-stock leveheEntory. We assume that customers arrive to the
system according to a Poisson process. They maatisfied, backlogged, or rejected depending
on their priority, the inventory level upon theirrigals, availability of products in stock, and

availability of a finite waiting area.

We define a categorized cost function to invesidhe efficiency of the new allocation policy and
several known allocation policies in the literatufée system is modeled as a combination of one-
and two-dimensional Birth-and-Death processes ufamar different allocation policies: Sharing
with Minimum Allocation (SMA) policy, Complete Parbning (CP) policy, Multilevel Rationing
(MR) policy, and Lost Sales (LS) policy. By solvirthe model and deriving the relevant

probabilities, we calculate the relative gap betweach policy and the optimal policy.

Based on the numerical results, we find that theéA$idlicy provides a very good approximation of

the optimal policy, and is applicable in practipabblems with high dimensions and static levels of
inventory and waiting areas. We show that the MR BS policies are special cases of the SMA
policy. Therefore, their performances can be evatuasing the results obtained under the SMA

allocation policy.
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Chapter 1

1.Introduction

An inventory management system with customer diffgation is a critical factor to serve
customers efficiently and obtain a good level dgfs$éaction in different industries. For example, in
the health care system, hospitals manage blooduptradventory so that some units of blood are
always available to be transfused to patients wdedrblood immediately. To keep some blood for
urgent patient arrivals, hospitals may reschedateeselective surgeries or they may place some
emergency orders to a blood bank if the inventewel is very low. The former can be considered
as backlogging some surgeries until there are énblapd products in the hospital. The latter can
be modelled as losing the opportunity of placingatine order to the blood bank, which is much

less expensive than the emergency order.

The inventory problems in the literature are moptlye backlog or pure lost sales. In pure backlog
problems, arriving customers are always servedoklbgged. In pure lost sales problems, arriving
customers are always served or rejected. Howevéei real world, keeping customers waiting for
long times may have negative effects on the totafitpof the system. Therefore, it may be

beneficial to backlog customers as long as it issgie to serve them shortly after their arrivals,

and reject new arriving customers as soon as weedhe waiting time is too long.

In this thesis, we consider an inventory systemagad under a central decision maker to examine
how considering both backlog and lost sales magcafthe known results in the literature of

inventory systems with backlogs or lost sales. \8&ime customers arrive to the system according



to a Poisson process and production times are expiaily distributed. Customers with different
priorities can be served, backlogged, or rejeced, products can be used to serve customers or be

kept in stock.

In this research, we consider three known alloaaiolicies in the literature defined in Chapter 4:
Multilevel Rationing (MR) policy, which is a pureabklog policy; Lost Sales (LS) policwhich is

a pure rejection policy without any backlog and @tete Partitioning (CP) policy which considers
both backlogging and lost sales. We also introduggew policy called Sharing with Minimum
Allocation (SMA) policy which allows both backloggy and lost sales. We model the problem
under the SMA and CP polices using the Birth-andtB&B&D) process and show that the MR
and LS policies are special cases of the SMA poliay analyze the model and determine the
optimal controls of the systems under the SMA aRdpOlicies, we break down the system to three
stages, and analyze each stage separately usirguéueing model developed by Bondi (1989).
Then, to analyze the model, we connect the stagethat they together represent the original

system.

Benjaafar et al. (2010) characterize the optimétp@nd obtain the optimal controls of the system
under the CP policy using Dynamic Programming (OPey show that the optimal policy is state-
dependent. The model we present minimizes the watst optimal static levels, which are

independent of the system’s state and more apjii¢atseal world inventory problems. Moreover,
DP modeling has the curse of dimensionality, but aodel does not have any difficulty solving
problems with high dimensions. Furthermore, ouwultssunder the CP and SMA policies are
almost the same as the DP modeling under the CPtrenaptimal policy, respectively. This

demonstrates that the SMA policy introduced in thissis is a very good approximation for the

optimal policy of the problem characterized in Bedar et al. (2010).

2



In the remainder of this thesis, we review therditere in Chapter 2. The problem is defined in
detail in Chapter 3. Different allocation policiese presented in Chapter 4 and the problem is
modeled under different policies in Chapter 5. Themnerical results, including percentage of cost
differences with respect to the optimal policy, discussed in Chapter 7. Finally, conclusions,

recommendations, and future works are presentEthapter 8.



Chapter 2

2.Literature Review

Make-to-stock inventory systems with different dweristics have been studied in the literature.
These characteristics can be seen as stock atlngadlicies, number of priority classes, number of
servers, and capacity of the buffers. From the tpoirview of the buffer allocation, the problem

can be converted into a queueing problem, whichalssbeen studied in many articles in electrical
and computer engineering. In this chapter, we veweo categories of related papers in literature:

Operation Research, and Electrical and Computein&agng.

Ha (1997) studies the inventory rationing in a makstock production system with two classes of
customers and Lost Sales (LS). In Ha's study, tliemo waiting area for backlogged customers

when there is not any product in stock. He prestdm@soptimal rationing levels for each class of

customer and compares the cost of this system tivtlone managed under the First-Come First

Served (FCFS) policy.

Considering a buffer area, de Vericourt et al. @Qfkssess the benefits of different stock-allocatio
policies for a make-to-stodd/M/1 production system. They model the system undeF@ieS, SP,
and MR policies. de Vericourt et al. (2001) detenthe rationing levels fon classes of
customers and calculate the cost. de Vericourt ¢2@00) show that the MR policy is the optimal

policy among the other policies with infinite buffgpaces.

Abouee-Mehrizi et al. (2012) analyze a centraligegjle product multi-claskl/G/1 make-to-stock

gueue. Their focus is on the customer composifiyimamic programing, which normally is used



for analyzing queueing problems, is not practicalthis case. Because of this, they model the
system by considering a series of two-prioM¥G/1 queues with high and low priority customers.
Based on their analysis the optimal cost and theniag levels have been derived. Here, the buffer

area is assumed to be infinite.

There are some other studies on multi-class systgthgationing levels. Topkis (1968) presented
an optimal rationing policy for a dynamic inventanpdel withn classes of customers. His model

does not include lost sales.

In the above studies, the inventory systems haVe the pure backlog or rejection mechanism.
Janakariam (2007) compared two systems, pure bpckital pure lost sales. He shows the

conditions under which one system or the otherahasver cost.

We can find some studies in the literature with hbdsacklog and rejection. For example,
Rabinowitz (1995) considers a system with a limibedfer area with Poisson customer arrivals.
When the waiting area is full, the arriving custemare rejected. He presents the optimal level and

the cost.

Cohen et al. (1988) present the model ofsar§(inventory system for two priority customers with
a rationing level. They present a heuristic thaha igood approximation for the system with lost
sales for excess customers. Frank et al. (2008)salgly an optimal policy for an inventory system
with priority. Deshpande et al. (2003) present hapotolution algorithm with a static threshold-

base rationing policy and a buffer.

Our problem is the same as the problem that Beanjeetf al. (2010) analyze using DP. They
consider a production-inventory system with botltki@gged and lost sales for two classes of
customers. They apply DP to analyze the systemfiaddthe optimal policy. They show that the
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optimal policy can be characterized by three stigggendent thresholds: one production base-stock
level and two admission levels, one for either cl&hey present the CP policy which assigns a
separate area for each class of customers. Bynitgethe cost of the optimal and CP policies, they
show the advantage of the optimal policy. Additibn@8enjaafar et al. (2010) compare the optimal

policy with other policies including the MR and Ip8licies numerically.

There are other articles in Electrical and Comptiegineering that concern queuing systems and
are related to our research. These papers contemmatransferring data and signals through
channels, the rate of data transfer and the capaicthe channel result in creating queues. Because
of the cost of a buffer, those authors try to oerthe cost by allocating minimum required spaces
as a buffer. Because of arriving signals with défe priorities, priority queues need to be

analyzed.

Priority and capacitated queues have been studietifferent ways in the literature since 1967,
(Basharrin, 1967). Kobotushkin and Mikhalev (19&®alyze finite capacity queues with non-
preemptive priorities under different allocationlipes. Kapadia et al. (1984) study the finite
capacity a non-preemptive priority queue with reptaent of the high priority arrival with several
service centres. They present another analysisadfapet al., 1985) with application to health care
systems. Kao and Wilson (1999) analyze a non-préeenpriority queue with multiple servers and

two priority classes.

A queue with two classes of customers under compsbtaring policy with a class-dependent

service time is analysed by Wagner and Krieger 4199



Bondi (1989) presents an analysis of finite cayaqiteuesM/M/1/K with priority under three
different buffer allocation policies for two classef customers. Specifically, he models a queueing

system under the Complete Sharing (CS), CP, and Biisies.

We use Bondi's queuing model to analyze the somis paour queueing system under the CP and

SMA policies.



Chapter 3

3.Problem Definition

We consider a centralized 2-cldgéM/1 make-to-stock system with both backlogs and lastss
where customers of class 1 have priority over gusts of class 2. Customers thus have two levels
of priority. They arrive in the system according @aoPoisson process with ratgsand A,. The
production times are exponentially distributed wihrateu. A manufacturing plant produces
products until it satisfies all backlogged custosnand fulfills the base-stock level &8 with a

holding cost oh per unit time. Each customer needs one unit optbduct to be satisfied.

The manager should decide whether to satisfy agigustomers of each class, backlog them, or
reject them. These decisions will be made baseiti@imventory level, and number of backlogs of
each class of customers. Waiting in the backloguguhas a cost &f per unit time for class

i = 1,2 customers. Based on the customers’ prioritiesasgime tha; > b,. Customers of class

1 will be satisfied as long as inventory level @ zero (i.e. there is some stock), while class 2
customers will be backlogged when the level of imtwey is less than or equal to the specific level,
R,. Due to space constraints, not all arriving cusgiamcan be backlogged; thus, the manager
rejects new arriving customers when there are 8pauimbers of each class of customers in the
backlog queue. Each lost customer has a castpdr unit for clasg = 1, 2 customers. We assume
thatc; > ¢, since class 1 customers have higher priority tblass 2 customers to receive the

product.



The objective is to minimize the total holding, kiag, and lost sales costs by controlling the base-

stock level as well as the rationing levels forkdags and lost sales.



Chapter 4

4.Stock Allocation Policies

To serve customers, we consider different allocapolicies. These policies determine how we
assign products; and backlog and reject custonfexaah class. We denote the stock level at time
by I(t), which is non-negative. We find the cost of impdéariing each policy to determine the best

one.
4.1. First-Come First-Served Policy

Under the FCFS policy, customers are served irsélggience of their arrival times. No priority is
considered under this policy. The order of servicéhe order of arrival. In the case of backlog,
whenI(t) = 0, the customer with the longest waiting time wil ®erved first. The buffer size here
is infinite; we have enough spaces to backlog miviag customers. When there is not any
backlogged customer, a new entering product igdtantil the stock level reach8sAt this point,

production is stopped.
4.2. Strict Priority Policy

Under the Strict Priority (SP) policy, as long as stock level is positive, arriving customers are
served via the FCFS policy. When the stock leveki®, arriving customers are backlogged. When
a new product enters to the system, backloggedmest are served depending on their priority. In
other words, backlogged customers of class 1 wvallsbrved using the FCFS policy; otherwise,

existing backlogged customers of class 2 will bevesgt with the FCFS policy. In the case of no

10



backlogged customers, new products are stored tinatistock level reacheés At this point, the
production ends. Note that under the SP policycadtomers who find the system out of stock are

backlogged. The following table shows how custonaeesserved under the FCFS and SP policies:

FCFS SP
Stock level Class 1 Class 2 Class 1 Class 2
0<I(t)<S Satisfied Satisfied
Backlogged (no priority) Backlogged Backlogged
I(t)=0
(Priority 1) (Priority 2)

Figure 1: Serving customers under the FCFS and SP policies.

4.3. Multilevel Rationing Policy

Under the Multilevel Rationing (MRpolicy, the system uses a non-negative rationiuagl|®,, to
decide whether customers of class 2 should be denvbe backlogged. When the stock leyét),

is greater thaik,, all customers are served under the FCFS polisytha stock level drops ®, or
lower, customers of class 2 are backlogged, bubmess of class 1 are served as long as the stock
level is positive; otherwise, they are also bacigby With the newly-produced product,
backlogged class 1 customers are served on a F&$iS, btherwise, the new products are stored
until the stock level increases Rg. Afterward, any backlogged customer of class 2 amiving
class 1 customers are served based on their gritmithe case of no backlogged customers, new
products are stored until the stock level m&etShen, the production is stopped. FigArshows

how the MR policy serves customers.
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The SP policy can be seen as a special case Mhpolicy in whichR, = 0. The MR policy is
the optimal policy, in th&1/M/1 centralized make-to-stock systems with infinitéf@ucapacity (de

Vericourt et al., 2001).

4.4. Sharing with Minimum Allocation Policy

Under the SMA policy, we define a rationing le#glto decide whether class 2 customers should
be served. Moreover, we assign a finite waitingaa®B to the system as a buffer for backlogged

customers.

Both classes of arriving customers are served BQRBS basis as long as the stock leigl), is
greater than the rationing levé&,;. When the stock level is less than or equattocustomers of
class 2 are backlogged, and only customers of &élase served, until the stock level drops to zero.
Afterward, customers of class 1 are also backloggetlB, (t) andB,(t) denote the number of

backlogged class 1 and 2 customers at timespectively.

Under this policy, the buffer is split to two partBne part of the buffer with siZf is shared
between both classes of customers and can be taitbta backlogged customers of either class.
Another part of the buffer with sizg! is reserved only for class 1 customers and usegiitain
circumstances: First, all the shared area spaeeallacated to customers of both classes on a FCFS
basis, but when this shared area is fkt) + B,(t) = B¢, class 2 customers are rejected and only
arriving class 1 customers are backlogge@’inWhenB¢ andB! are full,B;(t) + B,(t) = B¢ +

B!, class 1 customers are also rejected.

As long ad(t) = 0, only backlogged customers of class 1 are served &CFS basis by new

entering products; otherwise, entering new prodaets stored until(t)= R,. Afterward, any

12



backlogged customer of class 2 is served basedFDFS basis. It is important to consider that,
when one backlogged customer of class Bens served, any backlogged customer of class 1 in
B!, should be moved tB¢. This is due to the fact that should be kept empty as long as the

number of backlogs in the system is less tBan

The MR policy can be considered as a special casbeoSMA policy in whichB€ approaches

infinity.
4.5. Complete Partitioning Policy

Under the CP policy, a finite waiting ard#f,, is split into two separate areas, each resemved f
class of customers. Waiting areas with sizéand B? are assigned to class 1 and 2 customers,

respectively.

Customers of class 2 are served only wRer< I(t) on a FCFS basis with class 1 customers;
otherwise, class 2 customers are backloggeRfiis long as) < I(t), customers of class 1 are
served; otherwise, they are backloggedin Backlogged customers of each class wait in their
reserved area until the area becomes full. Aftedyarriving customers are rejected. This means
that if the waiting area of class 1 customers I &uriving class 1 customers are rejected, even i
there is a space in the class 2 waiting area. Vih@gw product enters the system, only backlogged
customers of class 1 are served, or the prodwtdied until the stock level reaches Afterward,
backlogged customers of class 2 are served. Ietleeno backlogged class 2 customers the new
product is stored until the stock level reacheslthge-stock level. At this point, production is

stopped.

13



4.6.Lost Sales Policy

Under the Lost Sales (LS) policy, there is no spackacklog customers of either class. In other
words, all arriving customers are served or regect¥hen the stock levé(t) is greater than the
rationing levelR,, both classes of customers are satisfied on a B@EIS; otherwise, if there is any
product in stock, only class 1 customers are satisénd class 2 customers are rejected. In thee cas
of no product in stock that it) = 0, both classes of customers are rejected. Thigyokn be

considered as a special case of the SMA policytiitlwbothB¢ andB?! are zero.

Figure 2 presents all four policies, with a rationing levéR,.

! State Indicators in Figure 2 are discussed in Girapt

14
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Chapter 5

5.Cost Function

To determine which policy is more effective, a castction needs to be developed. This cost
function should cover all holding, backlog, andtlsales costs. These costs depend on the base-

stock levelS, rationing leveR,, and buffer space’®, Bland B? under the different policies.
A general formula for the cost function is:

C*(S,R,,B¢,BY,B?) =

h.E®*(number of product in stock) + b;. E®*(number of backloged class 1 customers) +
b,.E*(number of backloged class 2 customers) +

c1- E®*(number of rejected class 1 customers per unit time) +

c,. E®*(number of rejected class 2 customers per unit time) =

hYS_,i.Ph?(S, Ry, BS, B, B?) + b, Y55 B"i. Pb? (S, Ry, BS, B, B?) +

b, YE& B i.Pb’(S,Ry, B¢, BY,B%) + c;A1,PI*(S, Ry, B¢, B, B?) + c,A,P1*(S, R,, B¢, B, B?) ,

where “e” specifies the cost and the probabilities for @cafic policy andE®(.) denotes the

expected value under a specific policy;.“The other notations are defined as follows:

- Ph}: Probability ofi units of the product in stock.
- Pb! andPb;: Probability ofi backlogged class 1 and 2 customers, respectively.

- PI* and PI*: Probabilities of rejecting arriving customersctdss 1 and 2, respectively

16



The vector(S, R,, B¢, B, B?) varies under different policies as follows:

* MR policy (S, Ry, B¢, B, B?) - (S,R3,,0,0)
« SMA policy (S, R,, B¢, B, B?) - (S,R,, B¢, B%,0)
« CP policy (S, R,, BS, B, B2) - (S,R,, 0, B!, B?)

» LS policy:(S,R,, B¢, Bt,B?) - (S,R,,0,0,0)

In order to calculate the cost, we need to analyee system under each policy to find the

probabilities required to obtain the cost functidn. analyze, we break down the system into three
stages, as presented in Figure 2. Then, we modehaalyze each stage separately. Finally, the
required probabilities are obtained by connectimg $tages such that they together represent the

original system.

17



Chapter 6

6.Modeling the Problem

In this chapter, we model the problem under difieppolicies. Based on the models, we obtain the
probabilities to calculate the cost of implementeach policy, and find the best choice among

different policies discussed in Chapter 4.

As discussed in Chapter 4, the MR and LS policiesspecial cases of the SMA policy. Therefore,
we focus here on SMA and CP policies. In order tmleh the problem, we break the system down
under SMA policy into three stages, and under ARypmto two stages, as shown in Figure 2. The
assumption of exponential production times and desisarrivals allow us to define steady state
diagrams (Birth-and-Death processes, B&D) for tiASand CP policies. We develop combined

one- and two-dimensional B&D processes to modesyséem.
6.1. Sharing with Minimum Allocation Policy

To analyze the SMA policy, each stage of the syssbown in Figure 2 is modeled as a B&D
process. Then, the stages are connected to oneeandhese stages are defined as follows under

the SMA policy:
6.1.1Modeling Stage 1

In stage 1R, < I(t) < S and customers are served on a FCFS basis. Irstdge, there are no
backlogged customers, and the only change in #te of the system is the inventory levelJ/§0

is used as a state indicator. Because no prioiftgrences exist between customers in this stage,

18



the system moves from a stdateto (-1), Birth, with the ratel = A4; + 4,. This movement
represents serving an arriving customer with omelpet from the stock, which places a new order
to the manufacturer. Death happens with the gatehich represents producing one unit of the
product. This the rate at which the number of aderthe manufacturer reduces by one. We denote
the probability of(t)=i by PM4. Therefore, to fin®®™4,i =R, + 1,..,5 — 1, S, we use the B&D
process illustrated in Figure 3. All the steadytesarobabilities in this stage can be obtained in
terms of the probability ofl(t) = R,, B,(t) = 0). Here this state is called the “reference state”

denoted by and its probability is denoted B#"4. This state is the connection point to stage 2.

Stage 1

A

A A 2
—>
e e -
I u u H

Figure 3: The steady state transition diagram for stagedeuthe SMA policy.

Based on the diagram in

Figure 3, steady state equations can be written as:

APSMA = pSMA, (1)
(u+DPMA = ApMA 4 P ™A i =Ry +2,..,5—1, 2)
-+ DPIy = AP, + uPS4, @

Then, according to equation (1),
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PSMA H PSMA PS:S‘A/IlA! (4)

wherep = % By extending the equation (2) iteS-1, and inserting it to equation (1), we obtain the

same equation fap$MA aspsMA = PSMA and in general:
PMA = PSSIVjAl, ji=0,1,..,5S— (R, +2). (5)

Then, forj = S — (R, + 2), we havePz%4 = 5 gﬁﬁ, and by substitutingz ;5 into equation (3),
we obtainPgl] = (%)1Pr5MA Therefore, we havBg¥s = ngﬁ’ﬁ = (1)2Pr5MA. By substituting
sz"ﬁ’ré into equation (5) for the rest of valuesj pive derive all steady state probabilities in teohs
PSMA as

PG = ( )pSMA. i1 =1,2,..,5 —R,. (6)
Let P3iyq. 1 denote the probability of being in stage 1. Then,

Pslige 1 = Yi=p,41 PO = BPMA RS =R, +1(; )L, (7)
6.1.2Modeling Stage 2

In stage 20 < I(t) < R, andB,(t) + B,(t) < B¢. In this stage, customers of class 2 are served
with a new entering product if and onlyRf(t) = 0 andI(t) = R,; otherwise, the product is used
to serve backlogged class 1 customers or storeel BRID process that presents this stage is two
dimensional. One dimension,is the number of products needed to serve ateotibacklogged
class 1 customers and increase the inventory tettiok levelr,. In other words, as long as we are

in Stage 2,i = B;(t) + (R, — I(t)) and the other dimensiop,is the number of orders needed to
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serve all backlogged class 2 customers. ThaspB,(t). As long as < R,, which means that
B,(t) = 0, the first dimensionj, represents the differences between the stocK lave the

rationing level ofR,, i = R, — I(t). Wheni > R,, i represent®,(t) + R,. The maximum value
for the j dimension isB¢, a value that happens when all spaces‘imre allocated to class 2
customers, which mear (t) = B¢ and B,(t) = 0. Furthermore, the maximum value for the
dimension isB€ + R,, which occurs wheB,(t) = B¢, I(t) = 0, andB,(t) = 0. Figure 4 shows

the steady state diagram of Stage 2.

J: Number of class 2 customers

i: Number of class 1 customers

Figure 4: The steady state transition diagram for staged2uthe SMA policy withR,=2 andB¢ = 3.
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Then, we need to find the two dimensional probtégiofP’'4,i = 0, .., H(j) and j = 0,1, ..., B
for state(i,j) whereH(j) is the maximum value for when the number of backlogged class 2

customers in the systemjigi(j) is defined under the SMA policy as:
max;i =H(j)) 2R, + B —j.

The state(i=0, j=0) represents the situation whé(t) = R,, and there are no backlogged
customers of class 2 in the systdip(t) = 0. This state is the reference state denoted withire
Figure 3, and is the connection point to stagellLlpbabilities in stage 2 are calculated in terms
of B4 = pgi'4 as we did in stage 1. By applying the steady sigtations of the B&D process
in Figure 4 and using the method developed by Bda889), we can find all steady state
probabilities of stage 2, in terms of the probapitf the reference statBs™4. We start with the
first column in the next section, and then the pt@umns before the last column is analyzed in
Section 6.1.2.2. That last column has a differeattgon to derive its probabilities. This column

comes separately.
6.1.2.1. Solving for the First Column

When we go through the first column in the steatifesdiagram of stage 2 to fiR§"4, the

following steady state equations can be derived:
For the state ofi = 0,j = 0):
(Ay + 2y + WPSMA = PSS + uPIYA + AP, ®)
For the rest of states in column 1 except thediate at the bottom we have
(A + A2 + Py = L, PG + uPG  or (py+ pa + DPY™ = p PG + PG
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for i=1,2,..,H0) -1, (9)
A
wherep; = 2=

The steady state equation for the last state didttem of the column is

SMA SMA
1Py ()0 = A1 Pr(0)-1,0 - (10)
Therefore,
SMA M pSMA SMA SMA
Pyuio)o = fPH(o)—l,o = P1Pu(0)-1,0 = AoPr(0)-1,0 » (11)

whered, = p;.
By substituting the equation (11) into equation (@ obtain the following equations fBg's.

When i = H(0) — 1, we have (p; + p, + DP;)_10 = P1Pii(es—20 + Pil(cyo - BY substituting

equation (11) into this equation and considepng p; + p,, we obtain the following equation:

(p1+p2 + 1)P1§%/)4—1,0 = Pngl(V(Ig—z,o + P1PI§%§—1,0 ,

S0, (p2 + 1)Pgl(\/(1)§—1,0 = Plplgl(\f)?—z,o ,
SMA P
and thenP;g) 10 = 1 Pu)-20 = A1Puc)-20 » (12)
where, 4, = —2—,
ptl-pg

Similar to Bondi (1989), we continue this method tlee other values af Wheni = H(0) — 2 in

equation (9), we have:

(p1+p2 + 1)P51(V(1)§—2,0 = P1P51(\/(I)§—3,0 + Pg%§—1,01 (13)
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PSMA

by substitutingPy;4)_1 o from equation (12) into equation (13), we obtain:

SMA SMA SMA
(p + 1)PH(0)—2,0 = p1Pu(0)-30 T A1PH(0)-2,0-

So,
SMA SMA SMA P SMA SMA
(p+1- Al)PH%)—Z,O = Plpy%)—s,o = PH%)—z,O = pTl_AlPHI(V(IJ)—&O = AZPH%)—B.O ' (14)
whered, = —2—,
p+1—A1

Fori = H(0) — 3 in equation (9), we hav@; + p, + 1Pjj(s)_s0 = P1Pii(6y-40 + Piito)-2,0- BY
substitutingP;; ¢y _ o from equation (14), we obtaiff(g)_s , as follows:
(p1+p2 + 1)P1§%/)4—3,0 = P1P5%§—4,0 + A2P5%§—3,0’

SMA P SMA SMA
Ph)-30 = (p+11—A2) Pri(0)-40 = A3Pp(0)-20: (15)

__P1
(p+1-43)

where A; =
We can apply induction to prove that by using eiqua{9), in general we get:

Pii0)-n0 = AnPii(0)n-1,0- Whered, = —F—andn = 1,2,...,H(0) - 1, (16)

which is similar to equation (A19) in Bondi (1989).

Therefore, fom = H(0) — 1, we have:

SMA _ p SMA SMA _ SMA _ pSMA
Py(o)-©0)-10 = (p_l_l_A;(o)_z))PH(O)—(H(O)—l)—l,O OrPig“ = Apoy-1Poo " = B, (7)
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As seen in equation (17975 has been calculated in terms of the probabilitthefreference state,
(0,0). As the probability of stat@,0) has been presented in terms of the probabilistati(i-1,0),
by substituting back the probability of stafel,0) into the probability of statgi,0) for
i=1,2,..,H(0) — 1, similar to equation (A18) in Bondi (1989), we aint the following equations

for probability of stat€i,0), which can be proved by induction:

PMA = PSMATINO) i Anc, i=1,2,..,H(0). (18)

Therefore, all the probabilities of the stateshe first column have been presented in terms of

P5M4 the probability of “reference state”.
6.1.2.2. Solving for Middle Columns

In order to find the probabilities of states in theldle columnspP;"4(0 < j < B — 1), in terms
of P54 as in Bondi (1989), we start with the second mwiuand move to the next columns in
order, until we reach the last column. Then, a comattern is used for columns between the first

column and the last column. The last column isyseal in the next section.

In each column in this section, we start with thst Istate(H(j), j), for 0 < j < B€. By writing the
steady state equation for the last state, similaggquation (A17) in Bondi (1989), we can derive

Pﬁ?’]’-fj in terms of the probabilites of states that arenmected to this state,

Pitit1y_1,j-1 and P/, ;, as follows:
SMA SMA SMA :
HPH(]),] = AlPH(])—l,] + A'ZPH(_]),]—l’ _] = 1, 2, ...,BC - 1, (19)
SMA _ SMA SMA -
or PH(_]),] - pl PH(_])—I,_]-'_pZPH(j),]—l’ ] - 1,2, ...,BC_ 1
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As we analyze columns in order, all probabilitiésh® previous columrﬁ,f’(‘ﬁj_l, are available in

terms ofP5M4, when we are analyzing colunminThe only unknown probability '35?%1—1,]'- By

writing steady state equations for the rest ofdfages in columf, from statg(H(j)-1, j) until (1, j),

Bondi (1989) has derived the following recursiveigpn:

p3MA . . pSMA
psMa = PUHO-@g g, HO) { _ Pjh } (20)
H()-ij B; 2 n=H(j)-i H?—=1H(j)—n+1Bk—1 )

i=012,.,Hm) —1;j=1,2,..,B°—1,
where By, =1, (22)

By =p, +1,

B, = p+1—B”1 n=1273...

n-1

As seen in equation (20), when we are calculatimogpgbilities for columr, the second term gives
us probabilities of states in the previous coluniriclv have already been derived in term#,3f4,
and the first term is the probability of the prawsostate in the same column and recursively this

term is calculated in terms 8f"4.

In order to derive the probability of the first ts&tan columnj, P;}'4, we consider the steady state

equation for the first state in the previous coluf@nj-1), similar to Section A.3 in Bondi (1989).
In the second columrj=1, we can deriv®$M4 in terms off>"4 from equation (8):

HPOS{WA =+ + IJ)PrSMA - #Pfévm - AP}%‘ZIV-IF/% : (22)
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As we havePz/ from equation (6) in stage 1 withl, andP;y’# from equation (18) witfir1, we

rewrite equation (22) gsPy" = (A, + A, + WBMA — uBMA Ay (0y-1 — A(%)lPrSMA . Then, we

can havePgM4 in terms ofPSM4 as

1
Pég{\/IA = (,0 + 1)PrSMA - PrSMAAH(O)—l - p(;)lprSMA =[p - AH(O)—l]PrSMA : (23)

In order to derive the steady state probabilitgtate(0, ), j = 2,3, ..., B¢ — 1, we write the steady

state equation of sta(@, j-1) as follows:

(A4 + 2, + WP = pP ™ + uPPt + 1P, ] =2,3,..,BS = 1. (24)

Then,uPg}'® = (A, + A, + P34 — uPy i — L Py 7%, Therfore,

P = (p + VPS4 =PI — py P34, ] =2,3,..,B° — 1. (25)

Now, we haveP;}'4 in terms of the probabilities of the states invimas columns that have already

SMA ;

been derived in terms of the probability of theerehce state;*"4. Therefore, we havey;"* in

terms ofM4. Afterward, by substituting;;"# into the first term of equation (20) for stdfe j)
we can derive®’’!"4in terms ofp$4. Then, by substituting;’/*# into equation (20) and using the
same pattern untﬁﬁ’{ﬁj, we can derive all probabilities in equation (20)témms ofPSM4, the
probability of “reference state”.

Therefore, we have derived the steady state priiiedbf P4 fori= 0, 1,...,H(j) andj=1, 2, ..,

B¢ — 1 in terms ofPSMA4,
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6.1.2.3. Solving for the Last Column

In the last column, we start to derive steady sfatababilities from stat€0, B€) until state

(H(B®), B%), Pj¢4(0 < i < H(B®), in order, similar to Section A.2.3 in Bondi (1989

By writing the steady state equation of si@ieB°), we deriveP 2 o.¢ as:

(A1 + Ay + WP = uPypé + PR | + 1Py pt . (26)
Therefore,
P(fg =+ 1)PSBC 1 PSMA 1T PlPSBC 2- (27)

So, we have ¢ in terms ofPy e, Py e, and Pyye. ,, all of which have been derived in the

previous section.

By writing the steady state equation for st@eB¢), we can derive the steady state probability of

PE¢ as follows:

Ay + OPSHE = uPSy2 + L P, . (28)
Thus, PSyé = (py + DPyyé — prPoRe ;. (29)

Py5é has been presented in equation (27), R}l ,, which is from the previous column, has

been derived in the previous section.
The steady state equation for state- 1, B€), i = 2,3, ..., H(B€) can be presented by:

(A + WP e = uP e + 4PN pe | + 1P, i =2,3,..., H(BO). (30)
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Thus, P = (py + DPM%Ge — poP M pe s — pr P ge, 0= 2,3, ..., H(BO), (31)

L

where the second term is from the previous colummh fzas been derived in termsR¥4. By
using equation (27) and (29), in addition to usegpation (31) recursively, we can derive all

probabilities ofP’;¢* for i = 2,3, ..., H(BC) in terms ofp"M4.
Therefore, we have derived all probabilities ofyst2 in terms of,SM4.

6.1.3Modeling Stage 3

WhenI(t) = 0 and B,(t) + B,(t) > B¢, the system is in stage 3. In other words, no yctsdare

in stock, and all common waiting area spaces alle lfu this situation, all arriving class 2
customers are rejected and arriving class 1 custoare backlogged or rejected depending on the
availability of the waiting area spaces Bd, which is specified just for backlogged class 1

customers.

Under the SMA policy, backlogged class 1 custonie®°andB® should be served on a FCFS
basis. Afterward, new products are stored or usesetve any backlogged class 2 customers. In
order to make the problem tractable, without angngje to the probabilities of having different
numbers of backlogged class 1 customers, we dstadtserving backlogged class 1 customers in
B¢ if there is at least one backlogged class 1 custanB. Then, as long as the system is in stage
3 and there is any class 1 customeB customers in the common waiting arB4, are not
served. Moreover, backlogged class 1 customeBs imre served on a FCFS basis. Once there are
zero backlogged class 1 customer®tnwe start serving the backlogged customeB¢ior store
new entering products in stock according to the Spdlicy. That is, backlogged customersbih

have higher priority than customersBf. We call this strategy as th8* strategy.”
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According to the above discussion, in both the Sptlicy andB?! strategy, serving backlogged
class 1 customers has higher priority than serbiacklogged class 2 customers and storing new
entering products in stock. Therefore, in termsthe number of existing backlogged class 1
customers in the system, both the SMA policy Bhstrategy act the same, even though the order
of serving customers of this class is differentughthe probabilities of havirigpacklogged class 1
customers in the system for both the SMA policy BAdtrategy are the same. Therefore, we
consider theB! strategy, which is tractable analytically, to dbtdhe probabilities of having

different numbers of class 1 customers in the gyst@en the system is in stage 3.

We specify each state in this stage by the numbebacklogged class 1 customer B} as

0 < B,(t) < B'. Thus, the B&D process of this stage is one dirogras, as presented in Figure 5:

B,(¢) = 0 and B€ is full

Stage 3

Figure 5: The steady state diagram for stage 3.
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SMA

We denote the probability of the rectangular stayeP,c"“ . This state means that there is no

customer inB1, andB¢ is full. In other words, this state is the coni@tpoint to stage 2.

In stage 3, because of accepting only class 1 mes®) the system moves from stBigt) = i to
stateB; (t) = i + 1, Birth, with the rate of arriving class 1 customdy, and moves back from
stateB; (t) = i + 1 to stateB, (t) = i, Death, with the production rate Because of accepting only
class 1 customers and rejecting class 2 custombeen BF is full and the system is in the
rectangular state, moving from this state to sBatg) = 1 happens with the ra#y, and moving
back from staté®; (t) = 1 to the rectangular state happens with thegatethe B&D process. We
denote the probability of being in stdtg(t) = i by P4, By writing steady state equations for

each state of stage 3, we can derive the prokiabibf the states in terms Bf¢'4.

The steady state equation for stBi¢t) = B andB;(t) = i can be written as:

pp 4 = A, PS5 (32)
(u+ A)PSMA = pSMA L ), pSMA . (= 2, B' —1, (33)
(U + M) BSMA = upsma 4 3, podtd., (34)

Then, according to equation (32),

~ A~ ~
Pyta — BB — p, P
By writing the equation (33) far= B! — 1, and adding it to equation (32), we obtain the esam

as pSMA pSMA

equation forP31"4 1o, = p1Pgi_,. In general, we can prove the following formula by

Bl-1

induction:
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~§iw_f}< = pl ~g]1-w_A(k+1)l k = 01 11 "-1Bl - 2' (35)

Then, fork = B! — 2, we haveP;M4 = p, PSMA, By substituting?;,M4 in equation (34) we obtain
psMA = p, PSMA = (p,)2P5M. By substituting bacR;M4 into equation (35), for the rest kf we

can use the same method and derive all steadypstatabilities in terms oPse’* as follows:
PMA = (p)tPSH, i=1,..,B'—1. (36)

The rectangular state occurs when there is no mestof class 1 iB! and the common waiting
area,B¢, is full. Having no spaces in the common waitinggahappens with different combinations
of backlogged customers in the area. For exampls,dan happen with no backlogged class 1
customer in the waiting area and all the area beaogipied by only backlogged class 2 customers,
or having one backlogged class 1 customer anddableaf the area being occupied by class 2
customers. In other words, when the system is y @are of the states with no spaces in the
common waiting area in stage 2, the system is réadyove to stage 3 with arriving a new class 1
customer and backlogging the customer in the Specifaiting area for class 1 custome®s,
Arriving class 2 customers at these states aretegeThese states can be denoteﬂ,ﬁ% » which
shows that we are in the last state in colymhherefore, the probability of the rectangular state

P3¢", can be expressed as:
c
P =3B PGS (37)

whereP,ﬁ?’]’-gf ; represents the probability of a state wittlass 2 customers aiwH(j), which means

that there ar®“ —j class 1 customers B. Figure 6 shows the rectangular state with its- sub

states and also illustrates the connection betwtges 1, 2, and 3.
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Once all the probabilities for stage 2, includ}?)ﬁﬁj, have been determined in termsPdt4, we

use equation (37}255“ in terms ofp>M4, to obtain all the steady state probabilitiesstage 3 in

terms ofPSM4,

Now, we have all possible steady state probalsliliestages 1, 2, and 3 in termsPst’4, the
probability of “reference state”. As the sum of stikady state probabilities is equal to one, and we
have all probabilities as a function B4, we find >4 which helps us to calculate the preceding

probabilities.
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Figure 6: All three stages with their states and connectiorger the SMA policy.
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6.1.4 Probabilities Required for the Cost Function

In this section, we derive the probabilities reqdito obtain the cost function under the SMA

policy.
» Holding cost-related probabilities:

WhenR, < I(t) < §, the system is in stage 1. Therefore, we can olita probability that
inventory level isR, < I(t) < S using equation (6) as given Rh3M4, in equation (38), when

R,+1<n<S.

Furthermore, wher® < I(t) < R,, the system is in stage 2, and it is possible @aveh

SMA

backlogged class 2 customers. In order to Ahg”4 whenl <n < R,, we deriveP; 2, ;, in
equation (38), using the probabilities from equai¢l8), (20), (29), and (31).
SMA c pl p2y— 27 J

» Class 2 backlogged customer-related probabilities:

Backlogging of class 2 customers occurs when tlséesyis in stage 2, as shown in Figure 2.
Note that the second element of the state s@afein stage 2 is the number of backlogs of
class 2. Thus, we can present the probability eirgen backlogged class 2 customers using the

probabilities from equations (18), (20), (29), 48dl) obtained for stage 2 as follows:

PBEMA(S, Ry, BS, BY, B?) = Y10V pSMA | 5 =0,1,..., BC. (39)
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» Class 1 backlogged customer-related probabilities:

Backlogging of class 1 customers happens in stagen® 3. Equation (40) presents the

probability of havingh backlogged class 1 customers in the system.

Class 1 customers are backlogged in both waitiegsaB¢ andB®. If there is enough space in
B¢, class 1 customers are backlogged®inwhen the system has no product in stock. Thes, th

probability of havingn backlogged class 1 customers when there is enopgbesinB€ is

YE PS4 . Here XEZ, PS¥2 - is the sum of probabilities of states wittbacklogged class 1
customers irB¢ and the rest aB¢ being occupied by class 2 customers. In the tweedsional
probabilities,i = n + R, presents the number of products needed to satibfcklogged class

1 customers and fill the stock to meet the stoukllef R,.

When there are not enough spaces‘ino accommodate afl backlogged class 1 customers,
only some of these customers can be backloggeB®iand the remainders need to be
backlogged iBt. Havingn backlogged class 1 customers occurs with diffecembinations
of backlogged class 1 customers Bt , k, and B¢, n-k, when k varies from 1 to
min{n, B'}. min{n, B'} indicates the maximum possible number of backldggéass 1
customers irB! when we haven backlogged class 1 customers in the systdiherefore, the
probability of havingh backlogged class 1 customers with backlogged class 1 customers in

B¢ , and k backlogged class 1 -customers iB! can be presented as:

min{n,B}

et (P R pe (i) PR™™). This probability indicates that of n backloggedclass 1

iRl DSMA c pSMA ic i
customers are i, P, andn-k class 1 customers B¢, P, 74" p pe_n_k+r,)- 1HIS Is the

probability that in the two-dimensional B&D procesisstage 2 = n — k + R,, which means
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n — k backlogged class 1 customesBify andj = B¢ — (n — k), which means8¢ — (n — k)
backlogged class 2 customers have occupied theinmgmaof spaces iB¢. Sincei +j =

(n—k+R,) +B°—(n—k) =B +R,, BSis full.

In the case oB¢ < n < B° + B!, we cannot backlog ati class 1 customers B¢. Therefore,
the first term, which indicates the probability ledvingn backlogged class 1 customersBify
has been removed in the second part of equation I@@he second term, the lower bound of
the summation indicates a situation in whighis full of class 1 customers and the rest of them,

n — B¢, are backlogged iB*. Therefore,

PbyMA(S, Ry, B, B, B?) =

c mln{nB } pSMA ~
270 Patity T Ly (Prlicry 5o—(neic+ry)- P ), 0 < < BE (40)
mln{n,B} 5 A
Tin-pe ( an+Rz BC—(n—k+R2)'PkMA); B¢ <n<B+B?!

Class 1 lost customers- related probabilities:

WhenB¢ andB? are full, arriving class 1 customers are rejecléts happens when the system
is in stage 3 anfl, (t) = B'. Furthermore, wheB! = 0, rejection of class 1 customers occurs
at any one of the rectangular states and the sttbe last column in stage 2 shown in Figure
6, i.e.B,(t) + B,(t) = B°. Therefore,

B4, Bl>0

Ry—1 . (42)
P, + S P, B =0

PISMA(S, Ry, B¢, BY, B?) = {Z

When B! = 0 in equation (41), the first term represents thebpbility of being in the

rectangular states, and the second term repreenpsobability of being in one of the states in

37



the last column of the steady state diagram exstep(R,, B€). That state is considered in the

first term as stat€H (B€), B€), sinceH (B€) = R,.

Because we do not have the number of rejected roestoin our model, we use the rate of
arriving class 1 customers,;, to find the class 1 customer rejection cost as

c; 1, PISMA(S, R,, B¢, B, B?).
» Class 2 lost customers-related probabilities:

When the common waiting are’s, is full, arriving class 2 costumers are rejecf€dus, all
states in the last column of the steady state dmgsf Figure 6(i, B€) for i=0,1,...,R,, and
rectangular stateH(j),j) for j=0,1,..., B¢, represent the situation that arriving class 2
customers are rejected. Moreover, when the systein any one of the states in stage 3,
B,(t) = k,fork =1,2,...,BY, arriving class 2 customers are not accepted toab&logged or

satisfied. Therefore,

PISMA(S,R,, B¢, BY,B?) = XEZ Pt 4 3Rt pSiA 4 387, pSMA, (42)

We should also consider st&ié(B¢), B) = (R,, B¢) which is calculated in the first term of

equation (42).

Based on probabilities presented in this sectiahave all required probabilities to calculate the
cost function defined in Chapter 5 under the SMAliggo with any given values of

S,R,, B¢, and B*.
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6.2. Complete Partitioning Policy

In order to analyze the CP policy, each stage e@Sifstem shown in Figure 2 is modeled as a B&D
process, and then these stages are connected tanotiger. These stages are discussed in the
following sections. We use the same approach tletused for the SMA policy to obtain the

probability of each state.
6.2.1Modeling Stage 1

In stage 1R, < I(t) < S and customers are served on a FCFS basis. Irstdge, there are no
backlogged customers, and the only change in #te of the system is the inventory level/§0

is used as a state indicator. Because of no pridifferences between customers in this stage,
“Birth” happens with the raté = A, + A,. Here, “Birth” represents serving an arriving cuser
with one product from the stock and sending a neseroto manufacturer. “Death” occurs at the
rate 4, which represents producing and storing one uritpmduct, and satisfying one
manufacturer's order. Therefore, to find the prolitgbof having “i” product in stockpPf?,i =
R,+1,..,§—1, S, we use the following B&D process (Figure 7). Ahlet steady state
probabilities in this stage can be obtained in seohprobability of(/(t) = R,, B,(t) = 0). This
state is called of the CP policy and is denoted. et denote the probability of the reference state

by B¢P. This state is the connection point to stage 2.
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Stage 1
(S
—>
u I U

Figure 7: The steady state transition diagram for stagedeuthe CP policy.

Based on the diagram in Figure 7, steady statetieqgacan be written as follows:

APEP = uPEP | (43)
(w+ NP =P + uPF, i=R,+1L,R+2,..,5—1, (44)
(u+ /UPR2+1 /'lpzca;z +upPe’ : (45)

Then, according to equation (43),
1
Pt = %Psci =7 - (46)

By extending the equation (44) iteS-1, and inserting it in equation (43), we can obthi& same

equation forPéP, asPEP =2 P, and in general:
P = % P, J=0,1,..,5S = (Ry +2). (47)

Then, forj = S — (R, +2), we haveP R P,= PR2+1, and by substltutln@R +2 INto equation

(45), we obtairPg’,; = ( 1)LpCP. Therefore, we haveg’,, = PR2+1 = (1)2P£”. By substituting
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P,§2”+2 into equation (45) for the rest of valuesjofve derive all steady state probabilities in terms

of PP as:

PSP, = (%)iPrCP, i=1,2..,5—R,. (48)
Consideringvsct’;ge , as a probability of being in stage 1, we have:

Psctl;ge 1= §=R2+1 PiCP = B** Z?=R2+1(%)i i=1,2,..,5—R,. (49)

6.2.2Modeling Stage 2

In stage 20 < I(t) < R, andB,(t) + B,(t) < B' + B?. In this stage, customers of class 2 are
served with a new entering product if and onlg,ft) = 0 andI(t) = R,; otherwise, the product

is used to serve backlogged class 1 customers sipiisd. The B&D process that represents this
stage is two dimensional. One dimensignis the number of orders needed to serve all otrre
backlogged class 1 customers and increase thetoryeio the stock levek,. As long as we are in
stage 2,i = B,(t) + (R, — I(t)) and the other dimensiop, is the number of orders needed to
serve all backlogged class 2 customers. ThesB,(t). As long as < R,, which means that
B;(t) =0, the first dimensionj, represents the differences between the stocK leve the
rationing level ofR,, i = R, — I(t). Wheni > R,, i represent®;(t) + R,. The maximum value
for the j dimension isB2, a value that occurs when all spacesBfare allocated to class 2
backlogs, which meanB,(t) = B%. Under the CP policy, the number of spaces aailédr
backlogging class 2 customers is independent ob#uoklogged class 1 customers. Furthermore,
the maximum value for thiedimension i3 + R,. This happens wheB, (t) = B!, which means

that/(t) = 0. Figure 8 shows the steady state diagram of sthgesl 2.
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i: Number of class tustomers

Figure 8: The steady state transition diagram for staged 2amder the CP policy witR, = 2, B* = 3, andB? = 3.

According to the above discussion, in stage 2 walrie find the two dimensional probabilities of
P{f,i=0,..,H()andj=0,1,..,B. Based on the definition @f(j) in Section 6.1.2H(j) is the
maximum value foi when the number of backlogged class 2 custometBersystem i$. But,
because of the independence between the numbdryackfogged orders of class 1 and class 2

customers under the CP poliéy(j) is constant. The maximum acceptable number oflbggkd

orders of class 1 customers in the CP polidy(g) = R, + B*.
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The statgi=0, j=0) represents the situation whii) = R,, and there is no backlogged customer
of class 2 in the syster,(t) = 0. This state is the reference state, denoted withim Figures 7
and 8, and is the connection point to stage 1pAdbabilities in stage 2 are calculated in terms of
PP = OCE as we did in stage 1. By applying steady statatopus of the B&D process in Figure
7 and using the method developed by Bondi (198@),can find all steady state probabilities of
stage 2, in terms of the probability of the refeestateP " . We start with the first column in the
next section, and then the other columns befor¢asgtecolumn are analyzed in Section 6.2.2.2. The

last column has a different pattern. Derivatiohef probabilities for that column comes separately.
6.2.2.1. Solving for the First Column

When we go through the first column in the steatesdiagram for stage 2, similar to Bondi

(1989), the following steady state equations arevele:
For the state ofi=0, j=0):

(A + o + PP = uPgy + pPy + APgly. (50)
For the rest of states in column 1 except thediate at the bottom:

A+ 2 + WP = MPE g +uPhy  or (py+p, + VPG = pi P o+ P,
for i=1,2,..,H(0) — 1. (51)
For the last state at the bottom of column 1, wesha
(u+ AZ)PISFO),O = Alpgﬁo)—m : (52)

C A C A C
Therefore, nyo),o = (#_l__;Z)PHé)O)—l,O = (ﬂ+,11_,12) PH€0)—1'0
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A1
Y P
T A )i/ )PIS€0) 1,0 = 1+p1_p1 Pg?o)—w =4 P H(0)-1,0" (53)

P1
p+i-py’

whereA,; =

By substituting equation (53) back into equatioh)(5ve follow the next steps to obtain thg's.

When i = H(0) — 1, we have (p; + p, + DPgoy_10 = P1Pi(0)-20 + Piito)o - BY substituting

equation (53) into this equation and considepng p; + p,, we obtain the following equation:

(p1 + p2 + Py H(O) 1,0 = P1PH(0) 20+A1P H(0)=1,0 *

SO, (p+1- 1) (o) 1,0 = Plpg%’o) 2,0 7
cP p cP
and thenPH(o)—Lo = pTl—AlPH(O)_Z'O = A2P H(0)-2,0 ° (54)
whered, = 22—
p+1—A1

Similar to Bondi (1989), we continue this method tlee other values af Wheni = H(0) — 2 in

equation (44), we have:
(b1 + pz + DPyg (o) 20 = PlPH(o) 30 T PH(O) 1,0 - (55)
By substltutlng (0) 10 from equation (47) into equation (55), we obtain:
(p+ 1)PH(O) 2,0 = p1PH(O) 30t AZPH(O) 2,0 *
So,(p+1 _Az)Pf??o)—z,o = plPﬁﬁ))_g,o = PH(O) 20 = ﬁpgfo)—so = A3 Py, H(0)-3,00 (96)

P1

whered; = .
p+1—A2
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We apply induction to prove that by using equatieh), in general we get:

Piilo)-no = An+1Pfi(e)-n_10 Whered, = erl—)m andn =1,2,...,H(0) — 1, (57)

which is similar to equation (A18) in (Bondi, 1989)

Therefore, fom = H(0) — 1, we have:

CP _ P1 CP CP _ CP _ pCP
PH©-t10-10 = Giitagery)  HO-#©-D-10 O"Pro = AnPoo = £ (58)

As seen in equation (58){¢ has been calculated in terms of the probabilitthefreference state,
(0,0). As the probability of stat@,0) has been presented in terms of the probabilitatie(i-1,0),
by substituting the probability of the latter stéi€,0) into the probability of staté,0) fori =
1,2,..,H(0) — 1, we obtain the following equations for the prolifobf state(i,0), which can be

proved by induction:

PS = PP T oy—isr Ans i=1,2,.,H(0) . (59)

Again, this is similar to equation (A18) in Bondi9g9).

Therefore, all the probabilities of states in thistfcolumn have been presented in termB%f, the

probability of the “reference state”.
6.2.2.2. Solving for the Middle Columns

In order to find the probabilities of states in thaldle columnng”(O <j < B?-1),interms of

PP, similar to Bondi (1989), we start with the secarmdumn and move to the next columns in
order, until we reach the last column. In this mectwe use a common pattern for columns

between the first column and the last column. Hsé ¢olumn is analysed in the next section.
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For each column in this section, we start withlts state(H(j), j), for 0 < j < B2. By writing the

steady state equation for the last state, we cemedits probability,PS in terms of the states

(})J’

that are connected to this sta®g;_;)_, ;_; and Pj(;)_, ; as follows:

i = 2

(1 +22)P; (J)J = hPq (1) 1,j + A2Pyg (]), v J=12,..,B°—1, (60)
or P&t M pep 4 %2 pcp 12 BZ_1
H(])] u+i, H(j)-1,j U+, H(j),j-1" ] — Ly by ey y

which is similar to equation (A7) in Bondi (1989).

As we analyze columns in order, all probabilitiésh® previous columr? H(m 1, are available in
terms ofPF, when we are analyzing columnThe only unknown probability iB HU) 1 BY

writing steady state equations for the rest ofdfages in columi, from statgH(j)-1, j) until (1, j),

Bondi (1989) has derived the following recursivei@ipn:

per PPy onG) PR (61)
H(j)-1j — Bit1 P2 Zin=h(j)-i n;c:H(])—n+1Bk ’

i=01,2.,Hm—-1;j=12..,B2—1,

where By=1, (62)
By =p; +1,
Bn=p+1— ,n=12,3...
n1

As seen in equation (61), when we are calculatiodpgbilities for columrn, the second term gives

us probabilities of states in the previous coluniriclw has already been derived in term&df.
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The first term is the probability of the previodats in the same column and recursively this term i

calculated in terms d?ocf .

In order to derive the probability of the first t&tan columnj, POC]P, we consider the steady state

equation for the first state in the previous colunj-1).

In the second columifx1, we can derivé®$! in terms ofP? from equation (50) as follows:
uPsl = (4 + A, + PP — — AP 41 (63)
which is similar to equation (A2) in Bondi (1989).

As we haveD,g from equation (41) in stage 1 withl, andP{f from equation (48) with=1, we
rewrite this equation a&P§f = (A4, + A, + WP — uPF Ay y-1 — A(%)lPrCP . So, we have§’

in terms ofP¢P:
Pl =(p+1BP - PP Apoy-1 — P(‘)lPCP [p — Apo)-1]1P*F . (64)

In order to derive the steady state probabilitgtate 0, j), j = 2,3, ..., B2 — 1, we write the steady

state equation of stat8,(j-1) as:
(A + A2 + PSSy = uPsl +pPfl + 1 P5Y 5, J=2,3,..,B> — 1. (65)
Then,uPsf = (A + A, + WP5;—y — uP;_y — P55, Therfore,

i =@+ DPsE =P —piP§E_, ] =2,3,..,B2 = 1. (66)

Now, we havePOC}’ in terms of the probabilities of the states inimas columns that have already

been derived in terms of the probability of theerefce state?‘?. Therefore, we hav. C}’ in
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terms ofP¢P. Afterward, by substitutin@ocj” into the first term of equation (50) for state |) we
derivePf in terms ofP?. Then, by substltutlng and using the same pattern uﬁ‘ﬁf])], we

derive all probabilities in equation (50) in terofspcF.

Therefore, we have derived the steady state prbtediof Pg” fori=0, 1, ..., H(j)andj=1, 2, ...,

B% — 1 in terms ofP?, the probability of the reference state.
6.2.2.3. Solving for the Last Column

In the last column, we start to derive steady sfambabilities from stat€0, B%) until state

(H(B?%),B?) = (R, + B,B?) asP 7.(0 < i < H(B?), in order, similar to Bondi (1989).

By writing the steady state equation of s@eB?), we deriveP; ..

(A + A2 + WPS o2 = uPGhz + P oy + APy 2, (67)
Therefore,

032 =@+ 1)PCBZ 1 PC32 1t plPCB2 2 (68)
So, we haveP 2 In terms OfPCBz 1,P1 52—y, and PO s2_p, all of which have been derived in the

previous section.

By writing the steady state equation for st@gB?), we can derive the steady state probability of

P{5-as follows:

(Al + /,t) 032 - ‘Ll 2+ Al 32 1" (69)

Thus, Pipe = (p1+ DPyp2 — p1Pype_y. (70)
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Ps 4> has been presented in equation (Bgf._,, which is from the previous column, has been

derived in the previous section.

The steady state equation for stéte- 1, B%), i = 2,3, ..., H(B?) can be presented as follows:

(M + WP o = uPl + P e+ M P, 2, 0=2,3,.., H(B?). (71)

Thus, P = (ps + VP g2 — poP poy — p1P oy 1=2,3,..,H(BY), (72)

L

where the second term is from the previous colunthres been derived in termsR$ . By using
equations (68) and (70), in addition to using elguaf72) recursively, we derive all probabilitiek o

Pfge fori=2,3,..,H(B?) in terms ofp¢".

Now, we have all probabilities under CP policy @ms ofP?. As we considered all possible
states, sum of all probabilities is equal to orteerT, we can obtaiR‘", and calculate probability of

the states in stages 1 and 2.

6.2.3Probabilities of the Cost Function

Now, we derive the probabilities required to obtiie cost function under the CP policy.
» Holding cost-related probabilities:

WhenR, < I(t) < S, the system is in stage 1. Therefore, we obtae pglobability that
inventory levelR, < I(t) < S using equation (48), as given in the second pa®h§’ in

equation (73).

Furthermore, wher® < I(t) < R,, the system is in stage 2, and it is possible @aveh

backlogged class 2 customers. Based on the twondiomal state space that we define in stage
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2, the first part ofPhSP is given in equation (73), using the marginal tubties from

equations (59), (61), (70), and (72).

B¢ pCP
Yj=0PRy-nj » l1=ns< R

PhEP(S,R,, B¢, B, B?) = .
n (SR ) PEP = (%)"—Rzpfp, R,+1<n<S

(73)

Class 2 backlogged customer-related probabilities:

Class 2 customers are backlogged when the systansiage 2, Figure 2. Note that the second
element of the state spa@gj) in stage 2 is the number of backlogged class ®meys. Then,
to obtain the probability of having backlogged class 2 customers, we use the marginal

probabilities from equations (59), (61), (70), did) obtained for stage 2 as follows:

PBSP (S, Ry, BS,BY, B?) = XMW pCP | 0 <n < B? (74)

Ln
whereH (n) = R, + B! is the maximum of thedimensionunder the CP policy as in Figure 8.
Class 1 backlogged customer-related probabilities:

Backlogging of class 1 customers happens in stagBeause of the definition of thie
dimension in Section 6.2.2, to consider statespghadent class 1 customers in the system, we
need to go through the row with= R, + n. That is because having backlogged class 1
customers in the class 1 customer waiting arearscaith different possible numbers of
backlogged class 2 customers. Thus, equation (T&epts the probability of having

backlogged class 1 customers in the system.

PbSP (S, Ry, B, BY,B?) = ¥P2 PYp, ;,  1<n<BL (75)
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» Class 1 lost customer-related probabilities:

WhenB! is full, arriving class 1 customers are rejectedis happens when the system is in
stage 2 and, (t) = B!. This situation corresponds to the lowest rowhim $tate diagram given
in Figure 8 under the CP policy. Under that polittye waiting area for class 1 customers is
isolated from the waiting area of class 2 customiEngn, any state in the row with= R, + B?

presents a situation that is full and arriving class 1 customers are rejgclderefore,

2
PlCP(S’ RZI BC: Bl’BZ) = 2?:0 PISF])J' (76)
whereH (j) = R, + B*.

Because we do not have the number of rejected roestoin our model, we use the rate of
arriving class 1 customer},;, to find the class 1 customer rejection cost as

¢, A, PI€P (S, R,, B¢, B, B?).
» Class 2 lost customer-related probabilities:

When the waiting area of class 2 customBfs,is full, arriving class 2 costumers are rejected.
Thus, all states in the last column of the steadyesdiagram of Figure &j, B) for i=0,

1,...,H(BY), represent situations that arriving class 2 custeraes rejected. Therefore,

— 1
PlCP(S;Rz; BC; Bl;BZ) = Efi(g ) P,fgcl (77)

whereH(B') = R, + B!,

Based on probabilities presented in this sectianhave all the probabilities required to calculate

the cost function defined in Chapter 5 under thepGlRRy, with given values o, R,, B!, and B2.
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6.3. Modeling Under the MR Policy

In this section, we analyze the system under thepdIRy. Here, the buffer space for backlogged
class 1 and 2 customers is infinite. Therefore, dee not have any rejection. As long as
R, < I(t) < S, both classes of customers are served. When thatorydevel is less than or equal

to R,, arriving class 2 customers are backlogged, kagscll customers are served as long as the
inventory level is positive. In other words, we daonk at the MR policy as a special case of the
SMA policy whenB¢ approaches infinity, or a special case of the ©kcy whenBland B2

approach infinity.

de Vericourt et al. (2001) show that the MR polgyptimal among the other policies with infinite
buffer spaces, to minimize the cost introduced m@er 5. Implementing that policy is thus more
cost effective than the SP and FCFS policies. TRepdlicy has been modeled by de Vericourt et
al. (2001) fom classes of customers wittrationing levels. They determine the optimal baseis

level and rationing levels far classes of customers so that the cost of the syistenmimized as

follows:
N p(h+b3)
. p(h+b1)+(1-p))
S=1"" e, | (78)
In— p,lzh
_ | phh+bz)+(1-p})(g1-(h+b2)R2)
Ry = In pj ’ (79)
where
= (R, - L (h+b)+p—1(h+b)R2’—k,1. do. = Y% o,
g1 =\ 1o 2 Ty 1P 5 A = ij=14i » andp, = 2,4 P;.
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Using the optimab™ andR;, de Vericourt et al. (2001) derive the minimumtaafsthe system

CMR = (5 - 1’_%);) h + (91 - (Rz - 1’_%);) (h + bz)) py 2. (80)

Therefore, we can calculate the optimal base-dtal, S*, the optimal rationing leveR;, and the

minimum cost of the systemrdMR, using equations (78), (79), and (80), respegtjvalith any
specific holding cost,h, backlog costsh,andb,, the average production tirrie,and the rates of

arrival, 1,and4,.
6.4.Modeling Under the LS Policy

Under the LS policy, the system does not have arfffebspaces. All arriving customers are thus
either served or rejected. Arriving class 1 cust@nae served as long as the inventory level is
positive. To serve class 2 customers, the inverlengl needs to be greater than the rationing level
R,. Otherwise, they are rejected. Thus, we do nosiden backlog cost in this section. As we

mentioned in Chapter 5, the LS policy performsh ¢ase ofS, R,, B¢, B, B?) - (S, R;, 0,0,0).

Ha (1997) analyses the problem under the LS potieyderives expected values of inventory level
and the probabilities of rejecting class 1 and &amersPI°F and PI¢?, to minimize the total cost

of the system(’S, as follows:

EXS (number of production in stock)

PP 1 — i — (1 - p)(5 - RpS )

(- p)( - pSF) + (1 — p)pSRe(1 — pFe*T)

M P S7R2 ¢ s-R, _ AS+1 _ _ S—Ry—1 _ S
_1-p (pl) {or PPt + (1= p)[(S = R)p, S+ Dpi]}
Rp+1

(1= p) (A —pSR) + (A = p)psFe(1— p*™") '
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(1= p)A = p)p*Fepy®
(1= p)(1 = p57F2) + (1 = p)p~Fa(1 = p* ")

PIS(S,R,,0,0,0) =

(1 - p)pS—Rz(l _ pfz+1)
(1= p) (A = pSR2) + (1 = p)p5=F2(1 = p,*™")

PIY5(S,R,,0,0,0) =

Therefore, the total cost of the system under tBedlicy for givenSandR, can be obtained as:
CLS(S’ RZ! 0;0)0)
= hE'S(number of production in stock) + A1,¢,PI*5(S, R,,0,0,0) + A,c, PI¥5(S, R;, 0,0,0).

Now, we have all required information to calcultite cost function introduced in Chapter 5 under
the SMA, CP, MR, and LS policies. In the next cleaptve present some numerical examples to

compare those policies.
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Chapter 7

7.Numerical Results

We now use the formulation of the cost functionivkt in previous chapters to investigate the
performance of each policy by calculating the resipe system cost of each. Then, we compare the
numerical results of different policies to thattbé optimal policy characterized by Benjaafar et al
(2010). Finally, we discuss the advantageous ofrmadel and the SMA policy relative to the

optimal policy.

Based on the cost functiofi? (S, R,, B¢, B, B?%), presented in Chapter 5 and the probabilities
derived under the SMA and CP policies in Chaptevéhave all requirements to calculate the cost
of the system presented in Sections 6.1.4 and.GA2ditionally, we have the exact solutions of the

MR and LS policies in Sections 6.3 and 6.4, respelgt

We do a search on the independent varialles,, B¢, B, and B2, of the cost function to find the
minimum cost under each policy. We do not searcB“uonder the SMA policy nor oB¢ under

the CP policy. To obtain the optimal values of dixi variables, we assume that the cost function
is convex and vary all variables starting from zéhte use the model of the SMA policy to obtain
numerical results of the MR and LS policies, axsdeases of the SMA policy. Those numerical

results will be the same as exact solutions frooti®es 6.3 and 6.4, respectively.

As discussed in Chapter 2, Benjaafar et al. (2€ih@)the optimal policy of the problem considered
in this research. They compare the optimal poligy wther heuristics including the MR, LS, and
CP policies numerically. They show that the optirpalicy is state-dependent, i.e., the optimal
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inventory and backlog levels depend on the statheofystem. We calculate the relative percentage

gap between the MR, LS, CP, and SMA policies aedittimal policy as follows:

CQ_COpt
cOpt

A*2 x 100.

We present the numerical results in four categane¥ables 1 to 4, similar to Benjaafar et al.

a(ll +Az)

(2010), by changing the holding cokf,the utilization of the systemp = whena varies;

the rejection cost of class 1 customets, and the backlogged cost of class 1 custonigts,
Columns 2 and 3 show the relative gap percentatyecbe the optimal policy and the MR and LS
policies, respectively. Under the CP policy, theneucal results of DP from Benjaafar et al. (2010)

and our B&D model have been presented.

Table 1 The relative gap % between heuristics and thiengptpolicy whenh varies.

h MR LS DP CPB&D Z?&ADA
0.1 241 11.19 0.18 0.18 0.00
0.2 27.22 14.07 0.29 0.29 0.00
0.3 29.11 16.43 0.21 0.21 0.00
0.4 30.44 18.92 0.24 0.24 0.00
0.5 31.41 20.5 0.3 0.3 0.00

1 33.99 29.04 0.29 0.29 0.00
15 35.20 36.45 0.35 0.35 0.00
2.0 35.77 43.39 0.32 0.32 0.00
3.0 36.37 55.92 0.32 0.32 0.00

5.0 36.83 78.39 041 041 0.00
10.0 36.82 124.29 0.46 0.46 0.00

U= 1,11 = 0.4,12 = 0.5, 1 = 500, Cy = 250, b1 = 10, bz = 5.
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Table 2 The relative gap % between heuristics and thengptpolicy whenp varies.

5 MR LS CcP SMA

DP  B&D B&D
0.6 0 110.1 0 0 0.00
0.7 0.13 86.83 0.01 0.01  0.00
0.8 3.38 5521 013 0.13 0.01

0.9 33.99 29.04 0.29 0.29 0.00
0.92 53.22 25.34 0.36 0.36 0.00
0.94 86.34 21.97 0.42 0.42 0.00
1.0 154.77 18.97 0.26 0.26 0.00
1.0 364.31 16.19 0.33 0.33 0.00
1.0 784.80 14.86 0.22 0.22 0.00

p=1,24 =042, =05, =500,c, = 250,h = 1,b, = 10,b, = 5.

Table 3 The relative gap % between heuristics and thengbtpolicy whenc, varies.

c1/c2 MR LS DP CPB&D :gg
1 36.08 18.75 0.82 0.82 0.03
1.1 34.46 19.28 0.26 0.26 0.04
1.2 34.11 20.89 0.25 0.25 0.02
1.4 33.99 24.34 0.28 0.28 0.00
1.6 33.99 25.98 0.29 0.29 0.00
1.8 33.99 27.51 0.29 0.29 0.00
2.0 33.99 29.04 0.29 0.29 0.00
3.0 33.99 33.84 0.29 0.29 0.00
4.0 33.99 36.88 0.29 0.29 0.00
5.0 33.99 39.62 0.29 0.29 0.00

10.0 33.99 45.70 0.29 0.29 0.00
u= 1,}.1 = 0.4,&2 = O.S,Cz = 250,h = 1,b1 = 10,b2 = 5.
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Table 4 The relative gap % between heuristics and thengpbtpolicy whenb, varies.

bi/b, MR LS cpP SMA
DP B&D B&D
1 3582 3507 036 036  0.00

11 35.61 34.43 0.38 0.38 0.00
1.2 35.41 33.79 0.41 041 0.00
1.4 35.01 32.54 0.39 0.39 0.00
1.6 34.61 31.3 0.36 0.36 0.00
1.8 34.23 30.09 031 031 0.00
2.0 33.99 29.04 0.29 0.29 0.00
3.0 33.03 24.64 0.53 0.36 0.06
4.0 32.33 22.48 1.36 0.35 0.12
5.0 31.72 20.45 1.39 0.27 0.09
10.0 30.60 14.77 0.99 0.30 0.30

H = 1,11 = 0.4,12 = 0.5, L = 500, Cy = 250,h = 1, bz = 5.

Referring to the numerical results in Tables 1k MR and LS policies perform poorly. The
average relative gap under the MR and LS policies68.10% and 35.55%, respectively. These
averages are much bigger than the ones under thePCihd SMA policies which are 0.38% and
0.02%, respectively. Since the MR and LS policiespaure backlog and pure lost policies, they do
not get benefit from combination of backlogging aeptcting mechanisms to reduce the cost of the
system. Performance of the MR policy deterioratesmbreasing the backlog cost as it is shown in

Table 4. From Table 3, performance of the LS podjets worse when the rejection cost is higher.

According to the numerical results presented inldsaf to 4, under the CP policy, the relative gap
of our B&D process is different from the DP modé&an in Benjaafar et al. (2010) with the

maximum of 1.12%, in only four cases, and the ayei& 0.07%; these deviations would be due to
numerical errors. The results of our modeling &ee 4ame as the ones obtained using simulation

and manual calculations. In DP, the curse of dinegradity is an important factor that makes using
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DP difficult for high-dimensional problems. Howeyeur approach can be applied to those high-

dimensional problems.

The minimum cost of the system under the SMA poiic$1% of cases is identical to the optimal
cost of the system obtained by Benjaafar et all@20The maximum relative gap is 0.3% with the
average of 0.02%. Numerical results illustrate ttat SMA policy is the closest to optimality,

compared to the other policies discussed in thasigh By considering the curse of dimensionality
and dynamic levels of the optimal policy obtaingtBenjaafar et al. (2010), we find that the SMA

policy is a very good approximation of the optirpalicy for the practical situations.
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Chapter 8

8.Conclusion

In this research, we modeled a make-to-stock gugusystem with a rationing level and two

classes of customers who can be backlogged ottedjeepending on the level of inventory and the
number of backlogged customers. Based on the agsdcatosts of the system including holding,
backlogging, and rejecting, we defined a cost fimmcfor the system. Furthermore, we applied a
combination of one- and two- dimensional B&D pramsto model the system under the SMA,
CP, MR, and LS allocation policies. Then, we detitke probabilities of the model’s states to
calculate the cost function. By minimizing that tose obtained the optimal base-stock and the

rationing level, and the optimal capacity of thetsyn buffers.

By comparing the numerical results of the cost fimmcunder each policy with the exact solutions
and DP modeling of the CP and optimal policies,deenonstrated that the SMA policy with the
static levels is a very good approximation to th&rmal policy. The SMA policy, modeled using a

B&D process, can be applied to high-dimensionabl@ms without the curse of dimensionality.

Our numerical results show that the MR and LS gatierform poorly. The reason is that the MR
policy does not get benefit from limiting backlogstomers to reduce the cost of the system. This
deteriorates the performance when the backloggosg af one or both classes of customers are
high. The LS policy is a pure lost policy. When tegection cost is high, its performance is getting

worse since this policy does not get benefit frankbogging customers.
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Future research can extend this idea in differ@ections. Our problem can be modeled for more
than two classes of customers. In this case, thi#irbe several rationing levels and specified area
of the buffer for each class of customers. Furtloeen the distributions of arrivals and the
production times can be general. For example, Abddehrizi et al. (2012) present a model for a
Multiclass make-to-stock queue with general progduactimes under the MR policy. That model

can be extended to the SMA policy.

Considering transportation time from the manufantufacility to the inventory location can be
another avenue for future research. Going towdreseal world applications, the model should be
extended to the systems with several manufactaretgetailers. Moreover, modeling systems with

batch arrivals could be another avenue for futunekw

61



References

Abouee-Mehrizi H., Balcio B., and Baron O. (201Btrategies for a Centralized Single Product

Multiclass M/G/1 Make-to-Stock Queuedperations Researcit0(4), 803-812.

Basharrin G.P. (1967). “Servicing Two Flows withl&&ve Priority in a Fully Accessible System

With a Restricted Number of Places for Waitingrigineering Cybernetic®, 72-86.

Benjaafar S., ElHafsi M., and Huang T. (2010). ‘@@ Control of a Production-Inventory

System with both Backorders and Lost Salé&Val Research Logistic57, 252-265.

Bondi A. (1989).“An Analysis of Finite Capacity Queues with Priof8gheduling and Common or

Reserved Waiting AreasComputers & Operations Researd6(3), 217-233.

Cohen M.A., Kleindorfer P.R., and Lee H.L. (1988ervice Constrained (s, S) Inventory Systems

with Priority Demand Classes and Lost Saldsahagement Sciencd4(4), 482-499.

de Vericourt F., Karaesmen F., and Dallery Y. (2000ptimal Stock Rationing for a Capacitated

Make-to-Stock Production Systentech. RepEcole Centrale, Paris, France

de Vericourt F., Karaesmen F., and Dallery Y. (200Assessing the Benefits of Different Stock-
Allocation Policies for a Make-to-Stock ProductidBystem.” Manufacturing & Service

Operations Managemer3(2), 105-121.

Deshpande V., Cohen M.A., and Donohue K. (2003)Ttkeshold Inventory Rationing Policy for

Service-Differentiated Demand Classdddnagement Sciencé9, 683-703.

Frank K.C, Zhang R.Q., and Duenyas . (2003). “@gati policies for inventory systems with

priority demand classesOperations Resear¢h1, 993-1002.

62



Ha A. (1997). “Inventory Rationing in a Make-to-8koProduction System with Several Demand

Classes and Lost Saledfanagement Sciencé3(8), 1093-1103.

Janakariam G., Seshadri S., and Shanthikumar 2087]. “A Comparison of the Optimal Costs of

Two Canonical Inventory System®perations Research5, 866-875.

Kao E.P.C. and Wilson S.D. (1999). “Analysis of ldogemptive Priority Queues with Multiple

Servers and Two Priority Classdstiropean Journal of Operational Resear@ii8, 181-193.

Kapadia A. S., Kazmi M. H., and Mitchell A. C. (108 “Analysis of a Finite Capacity Non-

preemptive Priority QueueComputers & Operations Researdi(3), 337-343.

Kapadia A.S., Chang Y.K., and Kazmi M.H. (1985).irfike Capacity Priority Queues with

Potential Health ApplicationsComputers & Operations Researd®(4), 411-420.

Kobotushkin V.A. and Mikhalev D.G. (1969). “Servig Several Flows by Fully Accessible
Clusters with Relative Priority Servicing and Reséd Queueing.’Problems of Information

Transmission5, 40-46.

Rabinowitz G.A., Mehrez A., Chull C., and PatuwdiB(1995). “A Partial Backorder Control for
Continuous Review (r, Q) Inventory System with Bois Demand and Constant Lead Time.”

Computers & Operations Resear@®g, 689-700.

Topkis D. (1968). “Optimal Ordering and Rationingliies in a Nonstationary Dynamic Inventory

Model withn Demand ClassesManagement Scienc&5, 160-176.

63



