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Abstract

Today’s advances in communication systems and VLSI circuits increases the performance
requirements and complexity of circuits. The performance of RF and mixed-signal circuits is
normally limited by the nonlinear behavior of the transistors used in the design. This makes
simulation of nonlinear circuits more important. Volterra series is a method used for simulation of
mildly nonlinear circuits. Using Volterra series the response of the nonlinear circuit is converted into
a sum of multiple linear circuit responses. Thus, using Volterra series, simulation of nonlinear circuits
in frequency-domain analysis becomes possible. However, Volterra series is not able to simulate
strongly nonlinear circuits such as saturated Power Amplifiers.

In this thesis, a new time-varying Volterra analysis is presented. The time-varying Volterra
analysis is the generalization of conventional Volterra analysis where instead of using a DC
expansion point a time-varying waveform has been used. Employing a time-varying expansion
waveform for Volterra analysis, time-varying Volterra achieves better accuracy than conventional
Volterra. The time-varying expansion waveforms are derived using a fast pre-analysis of the circuit.
Using numerical examples, it has been shown that the time-varying Volterra is capable of simulating
nonlinear circuits with better accuracy than conventional Volterra analysis. The time-varying Volterra
analysis in both time and frequency domains are discussed in this thesis. The time-varying Volterra
analysis has been used to simulate a saturated Class-F Power Amplifier in frequency-domain. The
simulation results show good agreement with ELDO® steady-state and Harmonic Balance simulation
results.

The proposed method manages to simulate nonlinear circuits, such as saturated Power Amplifier,
mixers and nonlinear microwave circuits, with good accuracy. Also, this method can be used to
simulate circuit with large number of nonlinear elements without the convergence issues of Harmonic

Balance.
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Chapter 1

Introduction

Circuit designers, before fabricating or manufacturing a design, need to ensure the functionality of their
design before settling on a final design. Thus, Computer-Aided Design (CAD) tools, as well as circuit
simulators, are important in design verification. Computation efficiency, memory resources and accuracy
are important parameters of any circuit simulator. Simulation of linear circuits has been widely
investigated and efficient methods are available in literature to simulate linear circuits in either the time or
frequency domains [1]. Recent advances in telecommunication systems and VLSI circuits, continuously
increases the complexity of circuits that need to be simulated. Also, due to stringent specifications for RF
and mixed-mode circuits, the nonlinearity of such circuits becomes increasingly important. Thus, there is
an increasing need for nonlinear circuit simulators with better efficiency and accuracy. Numerous
nonlinear circuit simulators are available which simulate nonlinear circuits in either the time or frequency
domains, e.g. [37], [38]. This thesis presents new methods for the simulation of nonlinear circuits in the

time and frequency domains.

1.1 Nonlinear Circuit Simulation

Simulation of nonlinear circuits is generally more difficult than linear circuits. Different methods are
available in literature for nonlinear circuit simulation. Time-domain numerical integration [1, 33],
Harmonic Balance [3, 34] and Shooting method [35, 36] are traditional methods for nonlinear circuit
simulation. Time-domain numerical integration and Shooting methods solve the differential algebraic
equations of the circuit directly in time-domain using the appropriate numerical integration method.
Shooting method simulates the steady-st ate response of the circuit directly, and time-domain numerical
integration is used to calculate the transient response of the circuit. Both these methods require Newton-
Raphson iterations at each step of transient simulation, which makes the simulation time-consuming.
Harmonic Balance calculates the frequency components of the linear portion of the circuit in frequency-
domain and nonlinear portion of the circuit in time-domain. Using an initial guess, the frequency
components are calculated using Newton-Raphson iterations. Harmonic Balance faces convergence issues
when dealing with large number of nonlinearities in the circuit [34]. When there is more than one tone at
the input of the circuit, multi-tone Harmonic Balance (or generalized Harmonic Balance) [3] is employed.
The simulation methods mentioned calculate only the response of the circuit and do not indicate which
part of the circuit is responsible for the nonlinear behavior of the circuit. This information is valuable to

the designer for low distortion designs [28].



Volterra series analysis is another commonly used nonlinear circuit simulation method. Volterra
analysis uses a Taylor series expansion of all nonlinearities, and simplifies the nonlinear circuit analysis
into sum of linear circuit responses [4, 5, 6]. In practical cases, Volterra analysis employs low degree
polynomial approximations, typically 3" order, due to complexity for high order polynomials [4]. This
limits the application of the Volterra analysis to mildly nonlinear circuits, such as Low Noise Amplifier
(LNA), Opamp and filter. When dealing with strongly nonlinear circuits, such as nonlinear Power
Amplifiers (PA) and mixers, the Volterra analysis fails to give accurate results [8]. Volterra analysis is
performed completely in frequency-domain because the circuit is linearized at each step of the analysis
and handles multiple input frequencies easily. This makes Volterra analysis useful for multi-tone
distortion analysis. Also, Volterra analysis can be used to separate different distortion contribution from
different nonlinear elements. An efficient numerical method has been proposed in [28] to simulate per-
element distortion analysis for nonlinear circuits using Volterra analysis. In the literature different
methods have been proposed that combine different nonlinear circuit simulation methods. For example,
by combining Harmonic Balance and Volterra analysis a simulation method for mixers has been proposed
in [20].

1.2 Proposed Method

In this thesis a new simulation method which is an extension of the conventional Volterra analysis is
presented. The proposed method uses time-varying expansion point for Taylor series, instead of a fixed
DC expansion point. Due to time-varying nature of the method, the proposed Volterra analysis manages
to simulate strongly nonlinear circuits with better accuracy than conventional Volterra. The details of the
time-varying Volterra simulation in both time and frequency domains is presented in the thesis. The time-
varying Volterra analysis can be used to simulate nonlinear circuits, such as RF/microwave mixers and
Power Amplifiers. Simulation of a nonlinear Class-F Power Amplifier using the time-varying Volterra is
presented in the thesis. It is shown that the time-varying Volterra series simulates the circuit with

comparable accuracy as ELDO® steady-state simulations, but with a reduced computational cost.

1.3 Thesis Organization

Chapter 2 reviews different simulation methods for nonlinear circuits. Common time-domain and
frequency-domain simulation methods are presented in this section. Different properties of these methods
are discussed in this chapter. Chapter 3 introduces the time-varying Volterra analysis in time-domain. The
concept of time-varying Volterra circuits and pre-analysis is discussed in this chapter. Using a numerical
example, it is shown that the proposed method handles stronger nonlinearities and its simulation results

are more accurate than conventional time-invariant Volterra. Also, this chapter presents a discussion on
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the accuracy requirements for pre-analysis for different nonlinearities. A modification of the time-varying
Volterra is also presented in this chapter which achieves better computation efficiency. Chapter 4 presents
the time-varying Volterra analysis in frequency-domain. Using the same method described in Chapter 3,
the time-varying Volterra circuits are solved in frequency-domain. The numerical results are compared
with Harmonic Balance and Shooting method. Chapter 5 presents the simulation of a Class-F RF Power
Amplifier in frequency-domain using time-varying Volterra. The simulation results show good agreement
with the Shooting method. Chapter 6 concludes the thesis with discussion on the application of the time-
varying Volterra. Also, possible future work related to per-element distortion analysis, as well as,

applications in modeling is presented.



Chapter 2

Background: Nonlinear Circuit Simulation

In this chapter different simulation methods for nonlinear circuits are reviewed. These methods are
categorized into two main groups, time-domain numerical integration methods and frequency-domain (or
series expansion) methods. Time-domain methods can (but not necessarily do) simulate both transient and
steady-state response of linear to strongly nonlinear circuits for almost all kinds of input signals. On the
other hand frequency-domain methods can only simulate the steady-state response of the circuits for
specific class of inputs. Furthermore, not all frequency-domain methods can handle strong nonlinearities
or large number of nonlinear elements in the circuits. The details of these methods and their specifications
will be discussed in more detail in the rest of this chapter.

The rest of this chapter is organized as follows. Section 2.1 deals mainly with Linear Multi-Step
Predictor-Corrector (LMS-PC) algorithms and its pros and cons as a general time-domain simulation
method. Volterra Series and Harmonic Balance are discussed in section 2.2 as two common frequency-
domain methods for simulation of nonlinear circuits. Their advantages and shortcomings are addressed in

section 2.2 as well.

2.1 Time-Domain Simulation Methods

The behavior of linear and nonlinear circuits can be modeled in time-domain using differential equations
which usually have the form of Differential Algebraic Equations (DAE). For linear circuits the systems of
Differential Algebraic Equations of the circuit are formulated using Modified Nodal Analysis (MNA) or

Tableau formulation [1],
GX(t) + C%(X(t)) =w(), X(©0)=X, (2.1)

where G and C are constant matrices, X (t) is the unknown vector with initial value X, and W (t) is the

input vector. For nonlinear circuits the circuit equations are nonlinear and more complex,

d
@) +=(ex®)) =w®, X0 =X (2.2)

where f(.) and Q(.) are, in general, nonlinear functions. By adding the charge of the nonlinear capacitors

and flux of nonlinear inductors to the unknown vector one can rewrite the system of equations as [1],



GX(t) + Ed);—it) + P(X(t)) = W(¢), (2.3)

where both G and E are constant matrices and all the nonlinearities are collected in the nonlinear function
P(.). The next step in transient simulation is the discretization of time. The derivative of the unknown
vector is replaced with a discrete-time approximation (usually a particular discrete-time approximation is
called an integration method), which results in a finite-difference equation, instead of Differential
Algebraic Equations. The resulting system of finite-difference equations can be solved using appropriate
numerical method.

A common integration method widely used in circuit simulators is the Linear Multi-Step
Predictor-Corrector (LMS-PC) algorithm. Predictor algorithm explicitly defines (predicts) the current
time point as a function of past values and derivatives. A k™ order predictor algorithm uses the past k

values and derivatives to evaluate the current time point, i.e. [1],

k k

Xenai) = ) aPXCnsie) —h ) B X (b, (2.0
j=1

j=1 j=

where af and bf are predictor constants and h = t,,; — t; is the step size. Since predictor algorithm
does not include the circuit differential equation, i.e. (2.3), the error will propagate in the algorithm and
can grow unboundedly and result in the instability of the simulation (or from another point of view, there
is no feedback in the method from the circuit). Thus, this algorithm must be used with the corrector
algorithm to correct the predicted values and control the error in the system. The corrector algorithm is an
implicit method that expresses the derivative of the current time point as a function of past values,

derivatives and current time point [1],

k
. -1 .
I EE S W (A BV S (I} (25)

j=0 j=1

where ajC and b]-C are corrector constants. Using the corrector formula and (2.3) one can solve for the

unknown vector, X, at each time point assuming the past k values and derivatives are available. In

general, this system of equation is nonlinear, thus a numerical method needs to be used. The Newton-

Raphson algorithm is commonly used to solve the system of nonlinear equations due to quadratic
5



convergence rate when the initial guess is close to the final solution [1]. Usually the predicted value using
the predictor algorithm is taken as the initial estimate for Newton-Raphson algorithm. Gear2 or second-
order Backward Difference Formula (BDF) is an integration method commonly used by different

simulators [1], [2]. Predictor and corrector of Gear2 are defined as [1],

X(tn+2) = 3X(tn+1) - 3X(tn) + X(tn—l)
(2.6)

d 3 2 1
X(tn+2) X(tn+2) X(tn+1) + X(tn)

Replacing the corrector formula in (2.3) results in,

f(tne2) = EX(tn+2) 2 EX(tn+1) + ! EX(tn) + GX(tp4o) + P(X(tn+2)) W(tnsz) = 0. (2.7)

Using the Newton-Raphson, the value of X(t,,,), the current time point, is found iteratively with the
initial guess found using predictor algorithm, i.e. X(t,4,) = 3X(t,41) — 3X(t,) + X(t,,—1). Newton-
Raphson algorithm requires the Jacobian matrix of the nonlinear function, f(t,.,), which is defined as

[1],

M, = i) 3 o 0P(H (i) 08)
0X(tn+2) 2R 0X (tn+2)
Using the Jacobian matrix one can find the next iteration value of unknown vector using,
X (tna2) = X (tnaz) + tFAX (tn42), (2.9)
where,
M 2BX* (trs2) = —f (X*(tns2)), (2.10)

and parameter t* is selected such that 0 < t* < 1. Solving for each time point using LMS-PC algorithm

requires,



- Evaluation of Jacobian matrix (2.8), (which requires the first derivative of all the
nonlinearities in the circuit)

- Solving (2.10) by LU factorization and forward/backward substitution of the Jacobian matrix,

for each iteration of the Newton-Raphson algorithm. As long as the initial guess is close to the final
solution, few Newton-Raphson iterations are sufficient to reach good accuracy. However, when dealing
with strong nonlinearities, the initial estimate will not be close to the final solution. This requires more
iterations with reduced step sizes, i.e. small h, so that the Newton-Raphson algorithm will be able to
converge. Most of the times a smaller transient simulation step is also required, i.e. small h = t;,, — t,
to avoid non-convergence in strongly nonlinear circuit simulation. In other words, the transient simulation
step should be small when dealing with fast changes at the output nodes, whereas, a larger step size is
sufficient for smoother part of the output. Thus, more sophisticated algorithms including variable step size
control are necessary in order to be able to achieve a good accuracy. An example of a variable step size
control algorithm for nonlinear circuits can be found in [1]. Variable step size control algorithms usually
require multiple solutions of the circuit for each time point, thus increasing the computation cost of each
time step significantly, especially for strongly nonlinear circuits.

It can be concluded that LMS-PC algorithms, while achieving good accuracy for nonlinear
circuits, increase the simulation complexity and cost significantly (due to complex algorithms to avoid
non-convergence when dealing with strong nonlinear circuits). Furthermore, when dealing with steady-
state response of the circuits with widely separated frequencies, e.g. mixers where input and output
frequencies can be more than a decade away from each other, LMS-PC algorithms are inefficient and
require long simulation time. On one hand, the simulation step size should be small enough to account for
the fast changes of the signals due to high frequency input component, on the other hand, the simulation
time should be long enough to account at least one period of the output signal, determined by the period
of the low frequency component. As an example, if the inputs of a mixer are two sinusoidal inputs with
frequencies f; = 1.05 GHz and f, = 1.0 GHz, with the output frequency f, = 50 MHz, the simulation
step size should be much smaller than 1/f; = 0.95 ns, e.g. 20 times smaller , also the simulation time
should be at least 1/f, = 20 ns, which increases the simulation cost significantly. Another issue when
trying to solve for steady-state response is the time that it takes for the circuit to reach steady-state, or the
time it takes for transients to die down. Large time constants in the circuit dictate the time that it takes for
transients to die (these large time constants can be due to biasing network), thus, forcing the transient
simulation to run through many periods of the input signal, sometimes thousands of cycles, for transients
to die [3].



Due to the issues discussed here, other simulation methods that eliminate these problems are
beneficial (and sometimes necessary). “Shooting method” is a time-domain simulation method that
calculates the steady-state response in time-domain using numerical integration, thus, eliminating the
need for long transient simulation times [2]. However, it still requires complex numerical integration
algorithms to overcome strong nonlinearities, as well as small step sizes to achieve good accuracy.
Frequency-domain methods eliminate some of the problems associated with the time-domain simulators
and achieve good accuracy with less computation cost. However, frequency-domain methods cannot
handle all types of inputs and face problems when dealing with large strongly nonlinear circuits, which
make it necessary to use time-domain numerical integration simulation methods. In the next section the
basics and shortcomings of two popular frequency-domain methods, i.e. Volterra Series and Harmonic

Balance, will be discussed in detail.

2.2 Frequency-Domain Simulation Methods

In this section two common frequency-domain approaches for nonlinear circuit simulation are discussed.
Frequency-domain simulation methods calculate the steady-state response of circuits and cannot handle
all types of continuous-time input sources. First, the Schetzen’s multi-linear method [4] for analyzing
weakly nonlinear circuits, which is based on the Volterra Series analysis [5], is presented. Then,

Harmonic Balance, which can handle stronger nonlinearities, will be discussed.

2.2.1 Schetzen’s Multi-Linear Method

Schetzen’s multi-linear method is based on Volterra analysis [5] and gives the same results for mildly
nonlinear circuits [4]. However, Schetzen’s multi-linear method avoids the multiple integrals and kernels
that usually appear in the original Volterra analysis, and thus gives the designer a better physical insight
of the nonlinearity and their effect on the output. The first step in the Schetzen’s method is to expand the

nonlinearity in the circuit using Taylor series. Taylor series of a nonlinear function f (x) is expressed as,

d 1 d?
FO) = fl) + -x) D] 4z G- xS 211

' —
x=x, 2! dx =1

where x, is the expansion point, typically a DC value. For example, a nonlinear resistor is represented by

[11,

vr = f(ir), (2.12)



h »
ir(t) =l ~|v
’ )
3»/ Lt lo L2 V(=R RO+
VRr(t) VR(t)=f(ir(f)  Vr(1) / >
/ =]
= +

Vo

(a) (b)

Fig. 2.1 - (a) Nonlinear resistor (b) Equivalent model for the nonlinear resistor

as shown in Fig. 2.1(a). Expanding the nonlinear function using the expansion point V, = f(I;), we have,

. . df 1 . , % f
vg = f(ig) = Vo + (ir — Io)—d. lig=1, T ?(lR —1Ip) a2 lig=1, + (2.13)
ip ! i5
Rewriting (2.13) results in,
Vg — VO = 7,7\ = Rli + Rziz + R323 + ° (2.14)

where i = iy — I, represent the changes in the current of the resistor from the expansion point, I, which

is usually the quiescent current of the resistor. The same thing can be said regarding ¥ = vz — V,, the

changes in the voltage of the resistor from the expansion point, V. Also R, = ;—,f

; is the linear (first
R

iR=I()
order) resistance of the nonlinear element, which is the same as the resistor used for small signal analysis.
1 d?f

. - . 1a3
—— is the second order coefficient of the resistance, R3 = ——,f
2! le 3! le

is the third

iRZIO

Similarly R, =

iRZIO
order coefficient and so on. The nonlinear resistor is modeled with a voltage source, Vy, current source I,

and a nonlinear resistor with the characteristic function as shown in Fig. 2.1(b),



= Z R,i™. (2.15)
n=1

Using this model we represent the nonlinear resistor by a power series. Because of linearity and
superposition, we remove the constant voltage source,V,, and current source, I,, from the model and only
discuss the nonlinear part of the model. If the independent variable of the nonlinear element, current in
case of the resistor, is scaled by the factor «, then the n" order term of the voltage of the resistor will be
scaled by a™. Using this method one can show the mechanism of the mixing and harmonic generation in a
nonlinear circuit. If the current of the resistor only contains a single tone, Asin (wgyt), then due to the
nonlinearity, or non-zero higher order terms in the resistor characteristics, the voltage of the resistor will
contain second order term, R, sin?(wyt) = R,(0.5 — 0.5cos (2w,yt)) (which contains 2w, and DC),
third order term, R3 sin®(wyt) = R3(0.75sin (wyt) — 0.25sin (3wyt)) (which contains 3w, and wy),
and so on. Thus the output will contain not only the input frequency, wg, but also the harmonics of that
frequency (theoretically infinite number of harmonics). When there is more than one tone at the input, the
output spectrum will contain the harmonics of the input frequencies as well as the mixing of these
frequencies which will result in a complex output frequency spectrum.

The next step in the Schetzen’s multi-linear method is breaking up the complete response of the

circuit into response of the circuits of different orders, i.e.,

9= 2 9, and i= Z i, (2.16)
n=1 n=1

where (74, 1,) represent the response of the first order circuit, i.e. linearized circuit, (,,1,) represent the
response of the second order circuit and so on. Replacing (2.16) in (2.15) and scaling the current of the

resistor by a, we have,

[e%9) %) [e%9) %) n
p= Z and, = Z R, = Z R, (Z a"in> . (2.17)

Expanding the summations and rewriting (2.17), it can be shown that,

10



Olﬁl + azﬁz + a363 + - = Rl(ail + aziz + a’3i3 + "')
+ Ry (al; + a?iy + adiy + -+ )? (2.18)
+ R3(0('il + 0(222 + 0(3'1,\3 + "')3 + -

Collecting the terms with the same power of a on both sides, one will get,
abd; + a’D, + a30; + - = a(Rq1y)
+a?(R,i, + R, 1%) (2.19)

+0(3(R3i3 + 2R1R2i122 + Rli%) + .

Taking into account that this is true for all values of «, it can be concluded that the coefficient of different

powers of a on both sides should be equal, i.e.,

U1 = Ryly
1,7\2 = RliZ + Rli% (220)
ﬁ3 = Rli3 + 2R1R2i1i2 + Rlii’

As it can be seen, the response of the circuit of each order is expressed as the response of a linear circuit
(D, (linear) = R41,) and a nonlinear part which depends only on the response of the circuit of lower

orders (U, (nonlinear) = f(iy,1,,,1,-1). For example, for the third order circuit we have, D5 =
R,i3 + 2R, R,1,1, + R, 13, which can be thought of as the sum of the linear part, leg, plus the nonlinear
part, 2R, R,1,1, + R, 13, that depends on i; and I, (solution of the circuit of lower orders). In other
words, the nonlinear resistor for the n™ order circuit, can be modeled as a linear resistor, Ry, in series with
a dependent voltage source, e, = f(iy,15, ", 1,-1), 8 shown in Fig. 2.2. Assuming the response

of the lower orders circuits are already available, one can solve for the response of the circuit of n™ order
by solving the n™ order circuit which is a linear circuit with nonlinear dependent sources whose value

depends on the lower order circuit responses.

11



in(t)
—

+

vi(t) +
en(t)

Fig. 2.2 - Equivalent model for the nonlinear resistor for n order circuit

The derivations above can be easily generated for a nonlinear capacitor (charge of the capacitor

expressed as a nonlinear function of the voltage, q; = f(v¢)), nonlinear inductor (flux of the inductor

expressed as a nonlinear function of the current, ¥, = f(i;)) and nonlinear dependent sources. Fig. 2.3

summarizes the nonlinear elements and their Volterra circuit model [30]. It should be mentioned that, in

case of nonlinear capacitors and inductors, it is better to add the charge of the capacitors and flux of the

inductors to the unknown vector of the circuit, instead of their current (for a capacitor) and voltage (for an

inductor). This way we can avoid numerical problems that can occur during simulation due to taking the

derivatives of charge and flux [2]. To summarize, the steps required in Schetzen’s multi-linear method

are:

First the nonlinear elements are replaced by their quiescent sources (voltage and current)
along with a nonlinear element that is represented by, ¥ = Y7 R,i". Of course the DC
simulation must be carried out before this step to calculate the quiescent currents and voltages
[1].

Next, the first order circuit is solved, since response of the first order is required for all the
higher order circuits. To construct the first order circuit, we replace all the nonlinear elements
with their first order Volterra model, i.e. a linear element with the quiescent voltage and
current source. All the inputs of the circuit should be taken into account for the first order
circuit.

After solving the first order circuit, higher order circuits are solved sequentially. This can
done by replacing all the nonlinear elements with their n™ order Volterra model, i.e. a linear
element and a dependent source as shown in Fig. 2.3, while all the inputs to the circuit are

now turned-off (they only affect the first order circuit).

12



- Finally, the response of different orders should be added to get the complete answer of the

circuit.

There are some interesting points regarding Schetzen’s method that are worth noting here. It can
be seen that, the Volterra circuits of different orders are all linear, and have the same G and C matrices.
Thus, superposition can be applied to each Volterra circuit, but not across different orders. Furthermore,
the linearity makes it easy to use frequency-domain approaches to solve the circuit [7]. In other words, the

circuit of order n can be described in frequency-domain as [1],
G+ (Ju)O)X,(jw) =T(w)X,(jw) = W,(jw), (2.21)

where, G and C are constant matrices for all the orders, and thus T (jw) do not change for different orders.
Knowing W, (jw), the input vector, the circuit is solved for different frequencies using LU factorization
of T(jw) and forward/backward substitution [1]. Calculating W, (jw) requires taking the Fourier
transform of all the sources. W, (jw) includes dependent sources of the Volterra models, which have the
formof e,, = f (11,15, -+, 1,—1), Tor a nonlinear resistor. Since f(iy,1,, -, 1,—_1) contains multiplication of
the currents of lower orders (which are known), one can find its Fourier transform by convolving the

Fourier transform of lower orders. For the third order model of a resistor we have,

e3(t) = 2R R,1; ()1, (8) + R113 (D)
(2.22)
5 (o) = 2R, R {1, j0)®F; (j)} + Ry {T; (j0) ®F (j0)®F; (j)},

where ® denotes convolution.

As it can be seen when the input contains multiple tones, the size of the frequency vector will
increase rapidly, due to inter-modulation and harmonic generation. It makes the calculation of W,,(jw),
which requires convolution, more expensive. But in case of few tones at the input, Schetzen’s method can
be performed efficiently. For mildly nonlinear circuits, it is expected that the Taylor series of the
nonlinear elements converges rapidly, thus only a few terms are needed in the Taylor series. In other
words, a few orders of Volterra circuits are sufficient to achieve good accuracy, usually 3 or 5. From
another point of view, it can be said that the rest of nonlinear terms in the Taylor series are small enough,

ie.,
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Nonlinear Elements Equivalent Time-Varying Volterra Circuits
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Fig. 2.3 - Volterra model for the nonlinear elements
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RN+12N+1 + RN+22N+2 + e R 0, (2.23)

where N is the order of the Volterra analysis. This is achieved by either employing small i, i.e. small
input, or small Ry, 4, i.e. weak nonlinearity. One might suggest using more terms in the Taylor series
when dealing with strongly nonlinear circuits. However, this approach has two main issues when dealing
with practical cases. First, as the order of Volterra series increases, the complexity of the dependent
sources for each order increases exponentially. Thus, the frequency-domain method requires lots of
convolutions to find the Fourier transform of the dependent sources, which increases the computation cost
significantly. The second issue, which is more serious, is the convergence radius of the Taylor series [8].
This issue becomes significant when dealing with exponential nonlinearities. For example, the drain

current of a MOSFET as a function of gate voltage has the form of [9],

2

Ves = V.

ip(Vgg) =In (1 + exp (%)) . (2.24)
t

Complex singularity of the nonlinearity at Vg = Vi + j2nm®, , limits the convergence radius of the
Taylor series. Thus, when the input signal is large, the Taylor series diverges, which results in large
simulation errors (especially when MOSFET’s region of operation changes). This error cannot be reduced
by using higher order Volterra circuits.

The problems discussed here, limit the application of ordinary Volterra analysis to mildly
nonlinear circuits [8]. Hence, other frequency-domain simulation methods should be considered when
dealing with strong nonlinearities. Harmonic Balance is a common method for simulation of strongly
nonlinear circuits in frequency-domain. The basics and drawbacks of Harmonic Balance are discussed in

the next section.

2.2.2 Harmonic Balance

Time-domain numerical integration is not the best choice for simulating all kinds of circuits. For
example, in cases where only the steady-state response of the circuit is of interest, frequency-domain
approaches are more efficient simulation methods comparing to time-domain integration methods.
Furthermore, microwave circuits, that contain dispersive transmission-lines and transmission-lines
discontinuity, cannot be easily handled in time-domain integration methods [10]. Time-domain
integration methods are not the best choice for simulation of microwave circuits. Mildly nonlinear circuits

are efficiently handled using Volterra analysis as described before. Since Volterra analysis can be done in
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frequency-domain, transmission-lines can be easily handled in such simulators using their S- or Y-
parameters. However, Volterra analysis faces problems when dealing with strongly nonlinear circuits.
Harmonic Balance is a common frequency-domain method which handles strongly nonlinear circuits.

The first step in Harmonic Balance is grouping the circuit into two parts. Linear part, that
contains the input sources and all the linear elements, and the nonlinear part, which contains only the
nonlinear elements. The linear part of the circuit is solved efficiently in frequency-domain. The nonlinear
part, on the other hand, is solved in the time-domain, so that it will be able to achieve good accuracy
when dealing with strongly nonlinear circuits. When dealing with nonlinear microwave circuits, usually
there are only a few nonlinear elements in the circuits, e.g. transistors, whereas in Radio-Frequency
Integrated Circuits (RFIC) the number of nonlinear elements is more as compared to microwave circuits.
Assuming there are N nonlinear elements in the circuit (e.g. in case of microwave Power Amplifier (PA)

N is as low as one or two) the nonlinear circuit is redrawn as shown in Fig. 2.4.

iN+1(t) i1(t) f1(f)
| 1 A c—
+ +
+ Z,(w)
vs(t) Viei(t) va(t) NL,
Input Port MY WY
+
va(t) NL,
Linear =
Subcircuit : :
o Nonlinear
o Subcircuit
[ ] [ ]
in+2(t) in(t) in(t)
| I 1 A e
+
+ Zi(w) +
VL(t) Vie2(t) v(t) NLy
Output Port

Fig. 2.4 - Nonlinear circuit divided into linear and nonlinear subcircuits for Harmonic Balance

analysis
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The linear part is described using admittance parameters (Y-parameters). Before proceeding further with
solution of the circuit, let’s assume the input of the circuit is a single-tone sinusoidal signal. Since the
circuit is nonlinear, the steady-state response of the circuit will contain the excitation frequency and its
harmonics. In theory, an infinite number of harmonics exist at the output. However, in practice, the first K
harmonics can describe the output, and all the node voltages and branch current, with good accuracy [10].
K depends on the nonlinearity of the circuit as well as the input power. For mild to strong nonlinearities, a
small number of harmonics, e.g. 5 harmonics, is usually sufficient, whereas when strongly nonlinear
circuits require larger number of harmonics to achieve good accuracy. For single frequency at the input,
knowing the magnitude and phase of the K harmonics of all voltages and currents, the time-domain

solution of the circuit is found using the inverse Fourier transform,

K
v(t) = Z V, efnwot (2.25)

n=-K

Thus, the solution of the circuit is now reduced to finding the magnitude and phase of the K harmonics

for all voltages and currents. Using Kirchhoff’s current law in the time-domain we have,

L) +i,(t)=0
LM +L0O) =0 (2.26)

iy (6) + ty(8) = 0

Taking the Fourier transform of (2.26), results in,

11’0 + il,O = 0
11’1 + il,l =0
Il,K + iHK = 0
] Lot {2,0 =0 , (2.27)
12,1 + 12’1 == 0
IZ,K + iZ,K - 0
IN,K + iN,K =0
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where I,, ;, represents the kth harmonic of the current i,,(¢t) and similarly, I,, , represent the kth harmonic
of the current 7,,(t). One can solve the linear part of the circuit using Y-parameters in frequency-domain.
The linear analysis must be carried out at the excitation frequency, w,, and also, at the harmonics of the

excitation frequency. The admittance equations for the linear part of the circuit at the excitation frequency
iS written as,

L1 =Y (wo)Vi1 + Vi (wo)Va 1 + o+ Yineo) (@) Viizn
Iy = Yy (wo)Vi1 + Yau(0o)Vay + =+ + Yani2) (@) Vivsa s
(2.28)
Ing = Yy1(wo)Vi1 + Y (@odVaq + - + Yyvaz) (@) Vi
Iinenn = Yve1(@odVig + Yiven)2(@odVa g + - + Yinsnyv+2) (@o) Vivez
Ive2)1 = Yive2)1(@odVig + Yiva2)2 (@od Vo1 + -+ Yinaoyiv+2) (Wo) V2,1,

where V,, ;. represent the kth harmonic of the voltage v, (t). Since we have an (N + 2) port network, the
size of the admittance equations will be (N + 2) x (N + 2). Similarly, the admittance equations for the
harmonics are written for the linear part of the circuit knowing the Y-parameters of the linear circuit at

2wy, 3wy, ... and Kw,. Combining all the admittance equations in the matrix form we’ll get,

I (Y11 Yip Yin YL+ Yiw+z) It »u

I 21 Yop Yon Yave) Yave2) v,

Iv |71 Ywa1 Yy Yvv+1) Yv,(v+2) Vy | (2.29)
[IN+1J Yov+nr o Yweon Yoo+ Yoven,w+2) lVN+1J

Itz ! Y(N+2),1 Y(N+2),N Y(N+2),(N+1) Y(N+2),(N+2)_ Vn+2

where,
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In,O Vn,O
In1 Vi
In = In'z and Vn = anz B (230)

and,

Yon(@® 0 8 1
Yoy = 0 Ynn(wo) 0 ‘ (2.31)
Ll o 0 o YKo

It can be seen that the size of the complete admittance equations is (K + 1)(N + 2) x (K + 1)(N + 2).
When solving the circuit, all the voltages and currents, except Vy ., and Vy,,, are unknown. Also, Iy

and Iy, are not of interest. Thus, taking out I, In4+2, Vy+1 and Vy,, from the unknown vector, we’ll

get,
L Yl,(N+1) Yl,(N+2) Yii Y, Yin A
=2 = ez Yove2) VN+1] + o1 Y Yo ||V,
: : : V2 5 o il
Iy YN,(N+1) YN,(N+2) Yvi Ynz - Yyn Vy (2.32)

4 1 = IS + YNXNV'

where I is the known vector due to the input sources at port N + 1 and N + 2. Replacing (2.32) in (2.27),

results in,

I + I(Nonlinear) = Is + YyxyV + I(Nonlinear) = 0, (2.33)

where [(Nonlinear) is the current of the nonlinear elements. The next step is to calculate /(Nonlinear)
as a function of the unknown vector, V. In order to be able to handle strong nonlinearities, the nonlinear

section of the circuit is solved in time-domain. Nonlinear resistors, conductances and controlled sources

are characterized by their current-voltage relation, i.e.,
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ign(®) = fu(v2 (), v2(0), -+, vy (D). (2.34)

Taking the Fourier Transform of ij ,(t), part of the I(Nonlinear) vector that is due to nonlinear

conductance and controlled sources is calculated as,

Iy [ig,l (t)] f1(1(8), v2(8), -+, vy ()
o= |12 | = 7| 5209 | < p 0200220 o) | 0.35)

vl lign@] Ly, ve(), oy ()

Nonlinear capacitors are characterized by their charge-voltage relation, i.e.,

dcn (t) = fqn (Vl (t): VU, (t): =, UN (t)),
(2.36)

- ic,n(t) = dQC,n(t)/dt-

Similarly, taking the Fourier transform of the charge in (2.36) and then taking the first derivative of

charge to get the current, we’ll get,

Q1 [qc1(D)] [fq1(171 ), v, (0), -, vy (t))]
0= Qz _F qC,Z.(t) | _F qu(vl(t)lvzgt)l"'!UN(t))

ol laen®! L, 2@, vy @) (2.37)

u

- Ic =jQQ,

where I is the part of nonlinear current due to nonlinear capacitors and,

QO 0 see O 0
0 Q 0 0}
Q= : : ,
lo 0 9 OJ (2.38)
0 0 0 0
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'QO - 0 :(D0 0
0 0 Kw,g
Replacing I; and I in (2.33), results in,
F(V) :IS+YNXNV+IG +IC =0. (2.39)

Finally, the last step in Harmonic Balance is to solve (2.39) for the unknown vector V, called Harmonic
Balance equation [10]. However, I; and I are both nonlinear functions of the unknown vector V, which
results in a nonlinear function F(V). Solving (2.39) requires iterative methods, for example Newton-
Raphson algorithm. Newton-Raphson algorithm starts with an initial guess of the solution, and then
corrects the initial guess in the next iterations based on the first derivative of the nonlinear function with
respect to all parameters (the Jacobian matrix) [1]. The Jacobian matrix for the Harmonic Balance

equation is found as,

_ 0V _ g | dlc _ o | 129
MV) = v v F 5 5 = Y + 5 AT (2.40)

Also, the next iteration value, Vi*1, is found using,
I (vt i) = —F (V). (2.41)

v ly=yi

Calculating the Jacobian matrix requires the first derivative of all the nonlinear elements which is
complex and time-consuming (especially when a close-form expression for nonlinearities is not
available). Furthermore, solving (2.41) requires considerable memory and computation when dealing with
large and/or strongly nonlinear circuits. The reader is referred to [10] for the details of the method. The
steps required to solve the Harmonic Balance equation are,
- Start with an initial guess for the time-domain unknown vector v(t) and then take its Fourier
Transform to obtain VO. If the initial guess is not close enough to the final solution, the
algorithm faces convergence issues [10].
- Find the time-domain current of nonlinear resistors and controlled sources, and the charge of
the nonlinear capacitors based on the initial guess, v°(t). Then, take the Fourier transform of

the currents and charges to find with I; and I matrices.
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- Calculate the Harmonic Balance equation, F(V°) = Ig + Yy V° + I; + I¢.

- Calculate the Jacobian matrix using (2.40).

- Calculate the next iteration value, Vi+1, using (2.41).

- Using the new value of V*1, calculate the Harmonic Balance equation, F(V'*1).

- If the error of “all” the unknowns in F(V**1) are small enough, the solution has been found.

Otherwise, use the inverse Fourier transform to find v**1(¢) and go back to the second step.

Note that, Harmonic Balance requires one Fourier Transform and Inverse Fourier Transform, calculating
Jacobian matrix and solving (2.41) per iteration. As the size of matrices increases, (due to larger circuits
and/or stronger nonlinearities), computation cost increases significantly [10]. The method described here
deals with the case where inputs contain a single tone. However, in practical situations, it is necessary to
simulate circuits with multiple tones at input. When dealing with multiple tones, not only the harmonics
of the input frequencies exist at the output, also, the inter-modulation products of the input frequencies
should be taken into account. This increases the size of matrices significantly, especially for strongly
nonlinear circuits. For example, in case of two-tone excitation (w4 and w;) the frequencies need to be

taken into account at the output are,
W = Mw; +nw,, mn=--,-2,-1,0,+1,+2,-- (2.42)

The only difference in the Harmonic Balance analysis for multi-tone inputs is larger matrices. Also, since
the input tones to the circuit are usually non-commensurate, the voltages and currents are not periodic,
which requires generation of “almost-periodic” Fourier transform. The associated problems and
algorithms regarding this issue are beyond the scope of this chapter and the reader is referred to [10] for a

detailed discussion of this problem.
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Chapter 3

Time-Varying Volterra Analysis: Time-Domain Approach

In this chapter, a new time-domain method to simulate nonlinear circuits is proposed. The method is a
modification of the conventional Volterra analysis, which enables it to simulate nonlinear circuits more
accurately. Conventional Volterra analysis is not accurate enough when analyzing strongly nonlinear
circuits, as discussed in chapter 2. The Taylor series truncation error and its limited convergence radius
are the two main sources of these issues. The proposed method changes the Taylor expansion point as the
signal varies, i.e. a time-varying expansion waveform. Hence, the truncation error of the Taylor series will
be reduced, and the convergence issue of Taylor expansion will be solved. The details of the proposed
method are discussed in this chapter. The method is particularly useful when sinusoidal waveforms are
used and frequency-domain analysis is possible. Details of the method in frequency-domain will be
discussed in the next chapter. The concept of time-varying Volterra analysis has been proposed in the
literature before [20], [21]. However, all the methods are either applicable for one specific circuit, e.g.
mixers, or should be used with another simulation method, e.g. Harmonic Balance. For example, in [20]
the application of time-varying Volterra for analysis of a FET mixer is discussed. The mixer is first
analyzed using Harmonic Balance with the presence of the larger input, i.e. local oscillator input. Then
using the result of Harmonic Balance as the expansion point for the nonlinear elements, Volterra analysis
is applied to solve the circuit. This method is only applicable for mixers where one of the inputs is much
larger than other inputs. Also, the method requires Harmonic Balance analysis to be done first, thus,
increasing the computation cost of the method.

The rest of this chapter is organized as follows. Section 3.1 describes the proposed method, gives
its properties and compares it with the other time-domain simulation methods. Section 3.2 presents the
application of the proposed method to simulate nonlinear RC circuits. Three different cases of nonlinear
RC circuits are simulated using the proposed method and conventional time-domain approaches. Section
3.3 discusses the effect of pre-analysis on the proposed method in more detail. Generalization of the
proposed method for multi-dimensional nonlinearities is presented in section 3.4. In section 3.5 a
modification of the time-varying Volterra will be presented that achieves better computation efficiency
comparing to time-varying Volterra. The advantages and shortcomings of the proposed method are

summarized in section 3.6.

3.1 Method Description

The conventional Volterra analysis uses a truncated Taylor series to express the behavior of the nonlinear
elements of the circuit. Usually the quiescent voltages/currents (DC) of the nonlinear devices are used as
23



the expansion point of the Taylor series [4]. The 3" order truncated Taylor series of a nonlinear resistor is

written as,
vr(t) = Vo + Ry (ig(t) — Ip) + R, (ig(t) — Ig)? + R3(ir(t) — Ip)3, (3.1)

where Vy = f(I,), which is a DC value, is the expansion point of the Taylor series. In order to clarify that
usually both current and voltage of the resistor are time-dependent, i, (t) and vg(t) are used in (3.1). The
truncation error of the series is approximated by, &uncation = Ra(ir(t) — I)* [11]. As the input signal
gets larger, the current and voltage of the resistor, ix(t) and vg(t), will deviate more from the expansion
point, I, and V;. In other words, |iz(t) — I,| becomes larger as the input gets stronger, which results in
larger truncation error. The truncation error can be reduced by either reducing R, or |ig(t) — I,|. The first
method is presented in [8]. Knowing that a truncated Chebyshev series is the best n™ order polynomial
approximation of a function, Chebyshev series is applied to model nonlinearities in [8]. Employing
Chebyshev series will not only reduce the truncation error of the expansion, thus increasing the accuracy
of the Volterra analysis, but also solves the convergence issue of Taylor series as discussed in [8]. The
second method, is reducing |iz(t) — I,|. In order to lower truncation error, one must reduce |iz(t) — I,|
at all times. Using a time-varying expansion point for Taylor series, vy (t) = f(io(t)), we are able to
reduce the truncation error compared to Taylor series with a fixed expansion point. As long as the time-
varying expansion point is chosen in a way so that ||iz(t) — i (t)|| < |lig(t) — I,||, the accuracy of the

expansion will improve. Using this method, the 3" order truncated Taylor series is written as,

Vr = 0o(t) + Ry (8)(ig — io(®) + R (8) (ix — io(®)” + Ry (i — io (). (3.2)

Since a time-varying expansion point is used, the resistor coefficients, i.e. R, R,, R5,..., are also time

dependent, and defined as,

_df
Ru(0) = E ip =1io(t)
_1d*f
O =07 i = i 3:3)
_1df
Rs(®) = 3133 |in = i0(®)
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Schetzen’s multi-linear method can now be applied for the nonlinear element described using
(3.2). Rewriting (3.2), we get,

vr(t) = Vo) = (1) = Ry (1)i(t) + R, ()I(6)* + Rz (D)i()* + -, (3.4)
where i(t) = ig(t) —iy(t) and D(t) = vg(t) — vo(t). The Nonlinear resistor can be modeled with two

independent sources, v,(t) and i,(t) (which are time-dependent), and a nonlinear element with the

characteristic function,
8(6) = D Ra(OIO 35)
n=1

as shown in Fig. 3.1.

+ ir(t) l

wy POQ) =R Ry .

O

Fig. 3.1 - Equivalent model for the nonlinear resistor with time-varying expansion point

The time-varying sources v, (t) and i,(t) appear in the right-hand side of the formulation equations, so
we can remove them from the model and concentrate on the nonlinear part. Breaking up the complete

response into response of different orders, as done in conventional Schetzen’s method, results in,

() = z 5.(0) and i(t) = z P(0). (3.6)
n=1 n=1
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Replacing (3.6) in (3.5) and equating terms of different orders on both sides, the response of different

orders is found as,

D1 (t) = R (D), ()

D,(t) = Ry (D)1, () + R (D11 ()2
(3.7)

D3(t) = Ry (D)13(t) + 2R, (DR, (D11 (D)1, () + R, (D)i; ()3

The response of each order contains a linear, but time-varying, part (9, (linear) = R,(t)i,(t)) and a
nonlinear time-varying part which depends only on the response of the circuit of lower orders
(Pn(nonlinear) = f(1,(£),1,(£), -+, 1,-1(£))). The response of each order is modeled using a linear
time-varying resistor, R, (t), and a dependent source, e, (t) = f(i1(t),i,(t), -, i,—1(t)), as shown in
Fig. 3.2. Since the dependent source, e, (t), depends upon the response of lower order circuits, it will

appear on the right-hand side of the formulation for each order.

in(t)
—_—
+
R1(1)
Va(t) +
en(t)

Fig. 3.2 - N™ order time-varying Volterra equivalent model for the nonlinear resistor

Generalizing the derivations above similar models is created for nonlinear capacitors, inductors and
dependent sources. Fig. 3.3 summarizes the Volterra models of different orders for nonlinear elements.
There are two issues regarding the time-varying expansion point. First, how can one find I, (t) for

any given circuit? Secondly, how close the time-varying expansion point, I,(t), should be to the exact
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response of the circuit, ir (¢)? I,(t) is chosen to get an acceptable truncation error at all times, i.e. for a 3"

order truncated Taylor series we have,

max { }= ]

where &,,,, 1S the maximum acceptable error. It should be noted, &iyncation 1S the error only due to

Etruncation

vg(t)

(3.8)

Ry(®)(ir (D) — ig ()" ..
vR (t) max’

truncation. The total simulation error is the truncation error plus the error of transient simulation. Since
the simulation accuracy is limited by the truncation error, the truncation error is a critical and important
parameter. The time-varying expansion point for all the nonlinear devices is found with the aid of a
preliminary simulation of the circuit, called pre-analysis. Unless very strongly nonlinear circuits are
considered, the pre-analysis does not need to be very accurate. It will be shown with the aid of a simple
numerical example that simulation of the linearized circuit, called linear pre-analysis, is sufficient to find
the time-varying expansion points for all the nonlinear devices. It can be easily seen that more accurate
pre-analysis results in better accuracy for the truncated Taylor series and Volterra analysis.

The derivations in equations (3.4) to (3.7) using time-varying expansion point is an extension of
the Schetzen’s original work in [4]. The model contains a time-varying resistor, which is the main
difference between this method and conventional Volterra analysis. When using time-varying expansion
point, a linear time-varying circuit must be analyzed in each order of Volterra analysis. Linear time-
varying circuits are more expensive to analyze compared to linear time-invariant circuits. The simulation
of the time-varying Volterra circuits will be discussed in more detail in section 3.2. In summary the steps
required for time-varying Volterra analysis are,

- Pre-analysis: Simulate the linearized circuit, i.e. linear pre-analysis, to find time-varying

expansion point for all nonlinear elements.

- Based on the expansion point, calculate time-varying nonlinear coefficients for all nonlinear

elements.

- Solve the time-varying Volterra circuits of different orders sequentially using the proper

numerical integration method.

- Finally, add the response of different orders to get the complete solution.

The advantages and limitations of the proposed method are discussed in the next section with the aid of a

numerical example.
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Nonlinear Elements

Equivalent Time-Varying Volterra Circuits

i)
W
~
+ v(t -

V()=R{(0i(t) +RA1F(0)+...

+ v(t) -
Q(t)=C+()V(t)+Co(t)V (D)+...

i(t) =\

.=L-rv\'r-—.
+ -
y(t)

WO=LA(QiO+LAF()+...

— —
+: +

x(t) v(t)
- -

v(t)=as(t)x(t)+at)x’(t)+...

i(t)
-— -
+i
Xt |
-— — .

i(t)=as;()x(t)+at)x*(O)+...

ﬂ R:(t) .l_e”(')_ e:(1)=0
O ez(t)=R(t)is*(t)
+ V(D) = es(t)=2R;()i1(Dix(t)+Rs(t)is ()
Cq(t
G (=0

Jo()=d/dt(Co(t)v(t))

inft)
Js(t)=a/elt(2C(t)v:(va(t)+Cs(t)v1'(6)
+ vi(t)
WO, L) e en(y=0
= m _O_' ex(t)=d/dt(Lo(t)ir’(t)
+ Wt = es(t)=d/dt(2LoOix( i +Lo(8i1(0)
>~ *
+ +
! as(t)xn(1) e:(t)=0
xn(t) | Vil exft)=az(tix (1
en(t) es(t)=2az()xs(Q)x:(0)+as()x (9
- -
>r-—
+
§ j(9=0
xaft) | 9 g=axtxi(y
A (t=2aa(tx:(txalt)as(tx: )
-

Fig. 3.3 - Nonlinear elements and their time-varying Volterra circuits

28



3.2 Numerical Example

In order to show the effectiveness of the method, a nonlinear RC circuit is simulated using the time-
varying Volterra analysis. Furthermore, a comparison between the 3" order time-varying Volterra, 3"
order and 5" order conventional Volterra and Newton-Raphson numerical integration is carried out in this
section. The test circuit contains an input voltage source, nonlinear resistor and a linear capacitor as
shown in Fig.3.4. It has been assumed that the nonlinearity of the resistor is modeled using a 3 order
polynomial. However, the results can be simply generalized for higher order nonlinearities and other

nonlinear elements.

ir(t)
_> °
2 +
+ R(t
Vin(t) VRl ==C Vot
| -

VR(1)=Rir(t)+Rair* (1) +R3ig’(t)

Fig. 3.4 - Nonlinear RC test circuit

First we analyze the circuit using conventional Volterra analysis. The circuit is broken into circuit
of different orders, as shown in Fig. 3.5. It is assumed that DC of the input signal is zero, thus, DC

operating point of the nonlinear resistor is zero. The circuits is formulated using MNA as,

dx, (t
GX,(t) +C ;t( ) = W, (¢), (3.9)
where,
[0 0 0 1 1]
o o 0 -1 o0 |
G=|1 0 0 0 0 |
l1 1 0 0 oJ (3.10)
01 -1 0 —R;
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00 0 00
o 0 ¢ o o
C=|00000|,
loooooj
00 00 O

and,

wi(@®)=[0 0 vyu() o o],

W,®)=[0 0 0 ey(t) 0],
2(0) = 2(t) 0] (3.11)
Ws)=[0 0 0 es(t) 0]
Using the 2" order BDF the circuits are solved as (with constant step-size) [1],
3 2 1
(6 + 2 €) Xaltis2) = WaBes) + 5 CXaltin) = 57 CXa8), (312)

where h = tj ., — tr4q, IS the simulation step-size. Solving (3.12) requires LU factorization of T = G +
(3/2h)C matrix once, and forward/backward substitution for each time-step. Finally, the total response is
calculated as, X(t) = X;(t) + X,(t) + X5(t) + X,(t) + X5(¢), for 5" order conventional Volterra. For
3" order conventional Volterra, the 4™ and 5™ order simulation results are not considered.

The circuit is also simulated using 3™ order time-varying Volterra with linear pre-analysis. The
first step is the linear pre-analysis. Linearizing the circuit around the DC operating point, i.e. ir_pc = 0,
the circuit is reduced to the 1% order conventional Volterra circuit. The linearized circuit is simulated
using the same 2" order BDF formulae described before. Using the result of pre-analysis for the current
of the resistor, i.e. ir_pg(t), the 3 order truncated time-varying expansion of the nonlinear resistor is

found as,

vg(t) = f(iR—PE(t)) + 1?1@)(1'12 ® - iR—PE(t))

A . , (3.13)
+R; (t)(iR () — iR—PE(t)) + RB(t)(iR ) — iR—PE(t)) )

where,
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f(iR—PE(t)) = Ryig—pp(t) + Ryif_pg(t) + R3ip_pp (D),

= af . .
R.(t) = E i = ip_pp(0) = Ry + 2R,ig_pg(t) + 3R3if_pp(t),
(3.14)
R,() = ldz—f = R, + 3R3ig_pp(t),
2! dllze iR = iR—PE(t)
Ry(t) = L&f =R
Y7314 |ig = igopp(®)
ir1(t) R4
e AAA

+"! _ ! +
+ Vri(t)
Vin(t) () C voi(t)

92“)=R21"R12(t)

1% Order Volterra Circuit 2™ Order Volterra Circuit

e5(t) eqt)
+ - -

Ry Ry

e3(t)=2Rsir:(t)ira(t) +R3fR13( 1) ey t)=R2iR22( t)+2Raig1(t)irs(t) +3R3imz( t)ira(t)
3 Order Volterra Circuit 4" Order Volterra Circuit
es(t,
(! )- R,

<+

c Vos(t)

es5(t)=2Raira(t)ira(t)+2Rairs(t)irs(t)+3Rsirs (t)irs(t)+ 3R;3irs (t)irs(t)
5" Order Volterra Gircuit

Fig. 3.5 - Volterra circuits for different orders
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Using (3.13) the 1%, 2" and 3" order time-varying Volterra circuits are constructed as shown in Fig. 3.6.
All the circuits contain linear time-varying resistors, while the rest of the circuit is similar to the
conventional Volterra circuits.

’R-PE( w)
_@_

IRT
g an

wy
+ VRf(w)- l +
+
vm(w) _|_ C Voj(w)

Vr-pe(w)

E;(w)=Ra(w)*Irs(w) *Trs(w)

1% Order Volterra Circuit 2" Order Volterra Circuit

Ej(w) Ri(w)

+
+
lm(w)T + Ves(w) ‘ . e
3(W

o

I

E3(w)=2Ry(w) " Ir1(w) *Irz(w)*Rs(w) *Ir1(w) "Tr1(w) *Irs(w)

3™ Order Volterra Circuit

Fig. 3.6 — Time-Varying Volterra circuits for different orders

Similarly, the time-varying Volterra circuits are formulated as,

GOX,(D)+C dX;t(t) =W, (v), (3.15)

where,
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(3.16)

coocoo
cooHo
co o oo
poooo

and,

Wy (t) = [iR—PE(t) —ip_pp(t) vin(t) f(iR—PE(t)) O]T,
W,(&)=[0 0 0 ey(®) 0], (3.17)
Wy;t)=[0 0 0 ez(t) 0]".

Solving the circuits using 2" order BDF, we have (with constant step-size),

1

A 3 . . 2 . A
(G(tk+2) + ﬁc> X (ties2) = Wy (tyso) + ECXn(tkH) - ﬁCXn(tk): (3.18)

where h = t,,, — tx41, 1S the simulation step-size. Solving (3.18) requires LU factorization of T(t) =
G(t) + (3/2h)C and forward/backward substitution for each time-step. The total response is calculated
as, X(t) = X, (t) + X, (t) + X3(0).

For the purpose of comparison, 3 different cases of nonlinearities for the resistor will be examined in this
section. First, a mildly nonlinear resistor is taken into account, i.e. R,, R; < R;. As it will be shown, both
time-varying Volterra and conventional Volterra analysis are capable of simulating such circuits.
However, time-varying Volterra (with linear pre-analysis) gives better accuracy comparing to
conventional Volterra. For the second and third cases stronger nonlinear resistor is considered. In these
cases the coefficients R, and R; are comparable to, or larger than R;. Conventional Volterra series cannot

simulate the circuit, whereas, time-varying Volterra manages to simulate the circuit with good accuracy.
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3.2.1 Case |

First case deals with a mildly nonlinear resistor. The input of the circuit is a sinusoidal voltage with a
unity frequency and amplitude, i.e. v;,(t) = sin(2mt). The circuit parameters along with transient

simulation parameters are summarized in Table 3.1.

Table 3.1 — Specifications of the test circuit and simulation parameters for Case |

Parameter Value
Input Frequency, f;, (Hz) 1
Input Amplitude, 4;, (Volts) 1
Resistor Parameters, R, R;, R3 1,0.05, 0.05
Capacitor Values (F) 1
Simulation Step-Size, h (sec) 5x107*
Simulation Stop-Time (sec) 10

The circuit is simulated using 3" and 5" order conventional Volterra and 3" order time-varying Volterra
(with linear pre-analysis). In order to be able to compare the accuracy of the results, the circuit is also
simulated using ELDO® [12], an all purpose circuit simulator. ELDO® uses Gear2 numerical integration
method with Newton-Raphson iterations. Variable step-size control algorithm is incorporated in the
ELDO® software to ensure a good simulation accuracy at all times [12]. Fig. 3.7 shows the output voltage
of the 3" order time-varying Volterra analysis, 3" and 5" order conventional Volterra as well as ELDO®
simulation results. The results of all the methods are in good agreement with ELDO® simulation results.
The absolute error of the 3" order time-varying Volterra and 3 and 5™ order conventional Volterra
simulation results are also shown in Fig. 3.8 to Fig. 3.10. The absolute error of the 3" order time-varying
Volterra is 3 orders of magnitude lower than the 3" order conventional Volterra. Even when conventional
Volterra with higher order is used, i.e. 5" order, the absolute error is 2 orders of magnitude higher than 3"
order time-varying Volterra (with linear pre-analysis). Better accuracy for time-varying Volterra is due to
time-varying expansion point for nonlinear resistor. 3 and 5™ order conventional Volterra analysis use
ir—pc = 0 as the expansion point, whereas time-varying Volterra uses the result of the simulation of
linearized circuit as the expansion point.

One can increase the order of conventional Volterra further to achieve the same accuracy as 3"
time-varying Volterra analysis. However, as the order of Volterra increases the complexity of the Volterra

circuit increases exponentially making the analysis too complicated and impractical. Furthermore, in
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order to ensure that the absolute error is not due to transient numerical integration and only Volterra

analysis, the simulations were repeated for smaller transient step-sizes. The absolute error remained
constant which shows that the error is dominated by the Volterra analysis error.

Comparison of Time-Varying Volterra, 3rd and 5th order Conventional Volterra and ELDO Simulation Results for Case |

025 T T T T I I T T T
—¥—Time-Varying Volterra Simulation Result
0.2- —4—3rd Order Conventional Volterra Simulation Result ||
{ 5th Order Conventional Volterra Simulation Result
0.15| 1 ! =—ELDO Simulation Result
+
= 014 r A
2 ‘0 4' Y [ [
[«H] 4 4
g 0.05 Y 1 1 3 £ Y
= 4
[=] k3 y 4 4
‘>-' ¥ Y A 1
= 4 + ¥ 4
e b 4 [ 1
=]
O .0.05- 1 1 Y Y 1 1
4 4 1
£ : 1
011 ‘1 Y Y :r L 3
] 4 4 ]
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015
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0 1 2 3 4 5 6 7 8 9 10
Time (sec)

Fig. 3.7 - Output Voltage using 3" order Time-Varying Volterra, 3" and 5" order conventional
Volterra and ELDO® for Case |
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Fig. 3.8 — Absolute error of the simulation using 3™ order Time-Varying Volterra for Case |
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x 104 3rd Order Conventional Volterra Transient Simulation Error
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Fig. 3.9 - Absolute error of the simulation using 3" order conventional Volterra for Case |

x 104 5th Order Conventional Volterra Transient Simulation Error
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Fig. 3.10 - Absolute error of the simulation using 5™ order conventional Volterra for Case |
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3.2.2 Casel ll

Second case uses a stronger nonlinear resistor, compared to Case I. This can be achieved by increasing R,
and R5, while keeping the rest of the parameters in the circuit constant. Table 3.2 shows the circuit and

simulation parameters for Case II.

Table 3.2 - Specifications of the test circuit and simulation parameters for Case 11

Parameter Value
Input Frequency, f;, (Hz) 1
Input Amplitude, 4;,, (Volts) 1
Resistor Parameters, R{, Ry, R3 1,0.5,0.5
Capacitor Values (F) 1
Simulation Step-Size, h (sec) 5x107%
Simulation Stop-Time (sec) 10

The simulation results of the 3™ order time-varying Volterra, 3" and 5" order conventional Volterra and
ELDO® are shown in Fig. 3.11. Both 3™ and 5™ order conventional Volterra fail to give accurate results
for Case II, with relative error as high as 50%. On the other hand, 3" order time-varying Volterra
manages to simulate the circuit with good accuracy, maximum relative error of 0.2%. The absolute error

of time-varying Volterra simulation is shown in Fig. 3.12.
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Comparison of Time-Varying Volterra, 3rd and 5th Order Conventional Volterra and ELDO Simulation Results for Case |l
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Fig. 3.11 - Output Voltage using 3™ order Time-Varying Volterra, 3™ and 5™ order conventional
Volterra and ELDO® for Case |1
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Fig. 3.12 - Absolute error of the simulation using 3" order Time-Varying Volterra for Case I
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3.2.3 Case lll

Finally, the third case increases the nonlinearity of the resistor further. Table 3.3 shows the circuit and

simulation parameters for Case IlI.

Table 3.3 - Specifications of the test circuit and simulation parameters for Case 111

Parameter Value
Input Frequency, f;, (Hz) 1
Input Amplitude, 4;,, (Volts) 1
Resistor Parameters, R, R, R3 1,1,1.5
Capacitor Values (F) 1
Simulation Step-Size, h (sec) 5x107*
Simulation Stop-Time (sec) 10

Since nonlinearity of the resistor is stronger than Case Il, it is evident that the conventional Volterra,
which failed in Case Il, cannot give accurate results for this nonlinear circuit. Simulation shows that the
results of the 3 and 5™ order conventional Volterra suffers from relative error as high as 400%. The
simulation results of the 3 order time-varying Volterra, 3 and 5" order conventional Volterra as well as
ELDO® simulation results are shown in Fig. 3.13. The results of 3" order time-varying Volterra shows
larger error comparing to Case 11, maximum absolute error of 14 x 1073 V, as shown in Fig. 3.14. The
accuracy of the time-varying Volterra drops as the nonlinearity becomes stronger. This is due to the fact
that the error of the pre-analysis is larger as the nonlinearity becomes stronger. Thus, the expansion point
of the resistor will be farther from the exact response of ir(t), i.e. larger |igx(t) — ir_pg(t)]|. The
simulation error can be reduced by applying a more accurate pre-analysis, e.g. 3" order \Volterra, and/or
using higher order for time-varying Volterra analysis. However, this will make the simulation more

expensive.
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Comparison of Time-Varying Volterra, 3rd and 5th Order Conventional Volterra and ELDO Simulation Results for Case lll
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Fig. 3.13 - Output Voltage using 3™ order Time-Varying Volterra, 3™ and 5™ order conventional
Volterra and ELDO® for Case ||
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Fig. 3.14 - Absolute error of the simulation using 3" order Time-Varying Volterra for Case 111
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3.2.4 Computation Cost Analysis of the method

Computation cost is an important parameter of any simulation method. Time-domain simulation of time-
varying Volterra (with linear pre-analysis) requires the LU factorization of an M X M matrix and N
forward/backward substitution for each time-step. M is the size of circuit matrix, e.g. we have M = 5 for
the nonlinear RC example, and N is the order of time-varying Volterra, e.g. we have N = 3 for the
nonlinear RC example. The cost of pre-analysis should be added to the total cost mentioned before. For
this example, linear time-domain pre-analysis has been implemented which requires one LU factorization
of a circuit with the same size, and one forward/backward substitution for each time-step. Assuming K
number of simulation steps is required, e.g. we have K = 10/5 x 10™* = 2 x 10* for the nonlinear RC

example, and the overall cost of the time-varying Volterra is calculated as,
Total COSt =KX CLU + K XN X CF/B + CPre—Analysis' (3.19)

where C;y is the cost of LU factorization, Cr/p is the cost of forward/backward substitution and
Cpre—analysis 1S the pre-analysis computation. Replacing €, = M3/3 —M/3 and Cr/p = M? [1] in
(3.19), we have,

Total Cost = KM3/3 + K x N x M?. (3.20)
Similarly, the computation cost of conventional Volterra is calculated as,
Total Cost = M3/3 + K X N x M?, (3.21)

where M is the size of matrix of the circuit and N is the order of Volterra analysis. Conventional Volterra
requires LU factorization, once, since the Volterra circuits are linear time-invariant. Thus, conventional
Volterra analysis requires less computation comparing to time-varying Volterra. However, time-varying
Volterra achieves better accuracy. Also, time-varying Volterra manages to simulate stronger
nonlinearities compared to conventional Volterra, which makes the method useful to simulate larger set of
nonlinear circuits, such as saturated Power Amplifiers. The detail of frequency-domain analysis of time-

varying Volterra will be presented in the next chapter.
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3.3 Discussion on the Accuracy of Pre-Analysis

In this section the effect of accuracy of pre-analysis on the overall performance of the method will be
discussed in more detail. In section 3.1, it was mentioned that the time-varying expansion point should be
chosen in a way to ensure small |i(t) — iy(t)| at all times, where iy(t) = ig_pg(t) is the time-varying
expansion point and i, (t) is the exact response of the circuit. A preliminary simulation, called “pre-
analysis” is used to determine the time-varying expansion point. The more accurate the pre-analysis,
smaller the |ig (t) — iy (t)|. With the aid of the numerical example, it was shown that linear pre-analysis is
sufficient for time-varying Volterra analysis. In order to clarify the effect of the error of pre-analysis on
the performance of the method, we present two examples. First, a diode (a strongly nonlinear device) is
taken into account and the second example is an MOS transistor (less nonlinearity compared to the
diode).

The current of a diode is defined as [13],

ip = f(vp) = Is exp (1;_1;) (3.22)

where Vi = kT /q is the thermal voltage, and I is the saturation current of the diode. 3 order truncated

Taylor series of the current of diode is written as,

ip = io() + g1(D)(vp — v () + g2(O) (vp — Uo(t))z + 93O (vp — Uo(t))3' (3.23)
where iy () = f(vo(t)) is the time-varying expansion point. Also,
_df s Vo (t)

5O= 0]y v =7 ()

14 S vo(t)
920 =200 vy = vo(0) = 27 <V_> (3.2

_1d’f _ I vo(£)

gs(t) 3!dvg vp = (£) = 6—VT36XP V_T .

The truncation error of this approximation is found using,
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Eouncain@) = 30100 = 90(0)" = g (52 ()~ vo ) (3.29

Assume the voltage across the diode changes in the range of —0.8 V and +0.8 V. Also, we have, I =
1071 4 and V; = 0.025 V. The time-varying expansion point should be chosen so that, the maximum

truncation error, which happens when v (t) is maximum, is acceptable. Assuming 1% is the maximum
acceptable error, we have,

{gtruncation(t)} _ Y4 (tmax)(vD (tmax) — Vo (tmax))4
max =

- - <¢ = 0.01
ip(t) ip(tmax) max
(3.26)
I V 4
5174 €XP (M> (UD (tmax) — Vo (tmax))
| 24v7 Vr
- < 0.01.
lD(tmax)
Replacing, vy (tnax) = 0.8V, and ip (tay) = Is €Xp (%’”“")) =7.9 mA, we will get,
T
1071° vo(tmax) 4
8- 9x1073<0.
24XO_0254e><p< 0025 >(08 Vo(tmax)) /7.9 X 1073 < 0.01
(3.27)

- 0.7787 < vy(tmax) < 0.8123.
As it can be seen, the acceptable error for time-varying expansion point is very small in case of strongly
nonlinear circuits, i.e. 1.54%. In other words, the pre-analysis should have a maximum error of 1.54% at

all times, which makes the pre-analysis expensive. For the second case, take an MOS transistor into

account. Using simplified EKV model, the drain current of the transistor is characterized using [9],

2
Ves — V,
ip=2xBxV2x[In 1+exp(u> , (3.28)
2V

where 8 = u,,C, W/L and Vy, is the threshold voltage of the transistor. Using Taylor series with time-
varying expansion point, the current of the transistor is approximated as,
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ip =1io(t) + gm (t)(vcs - Vo(t)) + gmz(t)(vcs - vo(t))z + Im3 (t)(vc;s - vo(t))B, (3.29)

where,

dip
gml(t) = d”_c;s |v(;5=v0(t)!
1 d?ip
Im2(t) = 2 ave, — (3.30)
1 d3i,

Imz () = 3avd, F—

Due to complexity, the symbolic formulas for g,,1, gm2 and g,,3 are not shown here. Truncation error of
(3.29) is,

Etruncation (t) = gm4(t) (VGS(t) — Vo (t))4: (3.31)

where g4 (t) =%d4iD/dv§5|vGS=v0(t). Assuming vgg swings from —0.8V to +0.8 V, maximum

truncation error, which happens at v;s(tq..) = 0.8 V, is given by,

4
max{gtruncation(t)} = gtruncatian(tmax) = gm4(tmax)(v65(tmax) - vo(tmax)) . (3.32)

Again, assuming 1% as the maximum acceptable relative truncation error, we have,

4
gtruncation(tmax) _ 94(tmax)(vas(tmax) — Vo (tmax)) _
: = > < Emax = 0.01.
ip (tmax) vec(ty ) =V, (3.33)
2XBXxXVEx(In 1+exp( L 17 th)
T

Using the symbolic formulae for g,,,(t), and substituting g = 200 x 107 V2/A, V., = 0.5V and
Vr = 0.025 V, one can solve (3.33) for vy (t;,qy). We used MATLAB® to calculate g,,4(t) and solve
(3.33) for vy (tnax)- The result shows that, assuming vy (tyax) > 0.648 V satisfies (3.33). For the case of
the transistor, the time-varying expansion point is much more relaxed and can handle larger errors for the

expansion point, i.e. 20%. This error can be easily satisfied using linear pre-analysis.
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It can be concluded that, depending on the type of nonlinearity, the required accuracy for pre-
analysis can changes significantly, from 1.54% for diode to 20% for the MOS transistor. As long as
strong nonlinear devices, such as diodes, are not considered, the simulation method tolerates large errors
for pre-analysis, up to 20%. Thus, simple and efficient pre-analysis, such as linear pre-analysis, is

appropriate to find the time-varying expansion point of the nonlinear devices.

3.4 Multi-Dimensional Nonlinearity

In this section we generalize the method described in section 3.1 for multi-dimensional nonlinearities.
Semiconductor devices are modeled using two- or three- dimensional nonlinear elements, thus, makes it
necessary to consider multi-dimensional nonlinearities as well. For example, the drain current of an MOS
transistor is modeled using a two-dimensional nonlinear voltage-controlled current source (assuming

body is connected to source) where,
ip = f(vgs, Vps)- (3.34)

Fig. 3.15 shows a two-dimensional nonlinear voltage-controlled current source. Expanding the output

current using Taylor series with time-varying expansion point, we have,

i(t) = f(va(®),vp(t)) = ig(t) + K1a(®)(va(t) — v94 (1)) + Kip(£) (vp(t) — vop (1))
+Kp4 (O (4(6) = v04(©))” + Ky (6) (05 (6) — v (©))°
+K1415(6) (v4(8) = 004 (1)) (vp (£) — vop(t))
+K34(O) (4(6) = v04(0))” + Kap () (v5(6) — v (©))’ (3.35)
+K2415 () (4 () = v04(D)) (v5(8) = vou (1))
+K1.425 () (v (D) = 264 () (v (€) = Vo5 (1))

+K1425(©) (v4 () = v04(0)) (v () — Vo5 (t))z + o,
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+
va(t) <2
- ,<;>’ i()=F (va(t),ve(t)
+ f
vs(t) .

Fig. 3.15 — Nonlinear Voltage Controlled Current Source

where, iy (t) = f(vOA (t),vpp (t)) is the expansion point. The nonlinearity coefficients are defined as,

dm+nf

Kiang(t) = ———— '
mAnB( ) dv;ndvg UOA(t),UoB(t)

(3.36)

Fig. 3.16 shows the equivalent model of the nonlinear controlled current source using the time-varying
Taylor series. Similar to one-dimensional nonlinearities, Schetzen’s multi-linear method is applied to find
time-varying Volterra circuits for different orders. Fig. 3.17 shows the time-varying Volterra models for
two-dimensional nonlinear controlled sources up to 3 order. This method can be used to find the time-

varying Volterra models for three-dimensional nonlinearities.

+
va(t)
it)
Voa(t) -—,
i(t)=K1aVa(t) HK1Va(t) HKzava(t)+
.—+. GDIO(U /@/ KzBVB(f)z"'K‘!A1BVA(t)VB(r)
vi(t)
Vos(t)

Fig. 3.16 - Equivalent model for the nonlinear controlled current source
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Nonlinear Elements Equivalent Time-Varying Volterra Circuits

— —
+ +
§ it :
xa(t) - Xan(t) .
=
— @i
+ i YKua(Oxan(OfKie(txen(t)
xg(t) l ‘ Xgn(t) .
-— .——E
J1()=0
J2A)=Kaa(t)X a1’ (8)+Kzs(O)Xa1 () +K1a1s(t) X a1()Xa1(t)

i(t)=K1a(t)xa(t)+K1a(t)Xa(t) +Kaa(t)Xa(t)?

. )+K;:((t)):;((t))2+}(1;(,i)((t‘)af(:( f);:{ f))-)l-{A( ) Jo(t)=Ksa(t)Xar (O +Ksa(t)Xar (042K 1a18(t)Xa1(t)Xs2(t)

+2K118(t) X a2(t)Xa1(t) ¥K2a18(t)X a1 (t)Xa1(t) +K1425(t)
Xa1()Xe1* () +Koa(t)Xa1(t)Xa2(t) +Kza(t) Xa1(t) Xa2(t)

*-— *~—

+ +i
| 3
Xa(t) Xan(t) ' Kia(t)Xan(t)
— V-
——! Y -— +
— v(t) — Kia®xanlt) *7(0
¥ ¥
Xs(t) — Xan(t) en(t)
- L ] -
- =i
eq(t)=0
- 2 2
VO=K1a(Oxa(t)*Krs(Oxa(t)+KaaOxa(ty* | EHI=HaallXar (*+Kas(OXa7 (+Kinsa(tXar(Xer(0
+K26(t)Xa(t)°+K 1 218(0)Xa(OX5(0)+... e3(t)=Kza(t)xas” () +Ksp(t)Xp1 (1) +2K1a18(f) X a1(1) X B2(1) +

2K1a18(0)Xa2(t)Xe1(t) +Kza1a(t)X a1 () Xa1() +K1aza(t)Xas(t
)Xa1* () +Kaa()Xa1(t)Xa2(t)+Kaa(t) Xa1(t)Xa2(t)

Fig. 3.17 — Two-dimensional nonlinear elements and their time-varying Volterra circuits

3.5 Modified time-varying Volterra

In this section a modification of the time-varying Volterra is presented. The modified time-varying
Volterra employs multiple expansion points instead of continuously time-varying expansion point for
Taylor series. Using this method the computation cost of the method is decreased, while similar accuracy
is achieved. This method is beneficial specially when the input signal is periodic and we are only

interested in the steady-state response of the circuit. Employing different expansion points for different
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time periods, nonlinear elements are approximated using different Taylor series for different time periods.

For example, for a nonlinear resistor we have,

vr(6) = vo,; + Ryi(ir(t) — ig;) + Ry (ir (D) — io,i)z + R3,; (ig (D) — io,i)3 + - (3.37)

for the time period T; < t < T}, 4, called the i"™ phase. Similar expressions are derived for the nonlinear
resistor for all other phases. Applying Schetzen multi-linear method for all the phases, Volterra circuits
can be derived for all the phases as shown in Fig. 3.18. The Volterra circuits are modeled as switched
linear circuits. The expansion points for different time periods, i.e. phases, are found using the pre-
analysis similar to time-varying Volterra analysis. The Volterra switched linear circuits are simulated in
time-domain using appropriate numerical integration method. Simple numerical integration methods, such
as BDF, face difficulties when simulating switched circuits [25]. Due to inconsistent initial condition
which happens in switching circuits, small simulation step sizes should be incorporated, especially at the
switching instants, which increase the simulation cost [25]. Here, we employ sampled-data simulation
algorithm [25, 31, 32] to simulate the Volterra circuits in time-domain. Sampled data simulation method
is based on numerical Laplace inversion [1] that achieves high accuracy while solving the issue of
inconsistent initial condition. For detailed discussion on the simulation of switched linear circuit using
sampled-data simulation, the reader is referred to [25]. Simulating the switched linear circuit using
sampled-data simulation requires calculating state transition matrix and zero-state vector of the circuit in

each phase [25]. State transition matrix and zero-state vector are calculated using numerical Laplace

inversion, which is an expensive task.

in(t) in(t) in(t)
— — e

For For For
To<t<T; Ti<t<Tjsq Tis1<t<Tjsz

Fig. 3.18 — N" order Volterra equivalent model for the nonlinear resistor in different phases
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The number of time phases is an important parameter that has major effect on the accuracy and
simulation cost of the method. As the number of time phases increases, the simulation cost also increases,
since the state transition matrix and zero-state vector should be calculated for all the time phases. The
modified time-varying Volterra is more accurate as the number of time phases increases. As the number
of time phases goes to infinity, the modified time-varying Volterra becomes identical to the time-varying
Volterra presented in section 3.1. Choosing the number of time phases depends on the input bandwidth, as
well as the nonlinearity of the circuit. It can be shown that in case of single tone input, employing 8 to 10
time phases per input period is sufficient to achieve comparable accuracy to time-varying Volterra. The
nonlinear RC example of section 3.2 is simulated using the modified time-varying Volterra with 8 time
phases per input period. The accuracy of the simulation results is similar to time-varying Volterra
analysis. For steady-state analysis, the expansion points for all nonlinear devices are also periodic. Thus,
the Volterra circuits are modeled as periodically switched linear circuits, where the switching frequency is
the same as the input frequency. Periodically switched linear circuits are simulated in frequency-domain
as described in [24], [25]. Simulation of the steady-state response of nonlinear circuits using the modified

time-varying Volterra will be discussed in the next chapter.

3.6 Summary

In this chapter a new time-domain modification of Volterra analysis was presented. The proposed method
uses a time-varying expansion point for the Volterra analysis to enable better accuracy comparing to
conventional Volterra. As long as time-varying expansion point is chosen so that the difference between
expansion point and exact response is small, the time-varying Volterra manages to give accurate results. It
was shown that using a simple preliminary simulation of the circuit, pre-analysis, time-varying expansion
point of nonlinear devices is determined. As long as strong nonlinearities are not considered, linear pre-
analysis is sufficient to achieve good accuracy, as illustrated in the numerical example. On the other hand,
when nonlinearity becomes stronger, using simple linear pre-analysis the time-varying Volterra does not
achieve accurate enough results. This can be fixed by using a more accurate pre-analysis. However, this
increases the computation of pre-analysis, which makes the overall method not suitable for simulation of

strong nonlinear circuits.
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Chapter 4

Time-Varying Volterra Analysis: Frequency-Domain Approach

In this chapter, the details of the proposed method in frequency-domain will be presented. The frequency-
domain method uses the same methodology as the method described in chapter 3, i.e. time-varying Taylor
series. Frequency-domain approach analyzes the time-varying Volterra circuits in frequency-domain.
Since the frequency-domain method uses the same time-varying Taylor series, the convergence and
accuracy properties of the method is the same as time-domain method discussed in chapter 3. Frequency-
domain analysis of time-varying Volterra circuits, as well as the advantages and shortcomings of the
method, will be discussed in this chapter.

The chapter is organized as follows. Section 4.1 describes the frequency-domain analysis of the
time-varying Volterra circuits and compares the analysis with other frequency-domain approaches, i.e.
Harmonic Balance and conventional Volterra analysis. In order to show the effectiveness of the method,
section 4.2 discusses three nonlinear RC circuits simulated using the method. Section 4.3 presents the
frequency-domain time-varying Volterra for multi-dimensional nonlinearities. Finally, section 4.4

summarizes the properties of the method comparing to other frequency-domain approaches.

4.1 Method Description

The proposed frequency-domain method employs time-varying Taylor expansion to express the behavior
of nonlinear elements, similar to the time-domain method described in chapter 3. Similarly, the simulation
procedure consists of pre-analysis and time-varying Volterra analysis. In this section we discuss time-
varying Volterra analysis in frequency-domain, together with comparison of the method with Harmonic

Balance.

4.1.1 Pre-Analysis

As discussed in chapter 3, pre-analysis is done using a fast simulation algorithm which does not need to
be very accurate. It was shown in chapter 3 that accuracy of linear pre-analysis is sufficient for time-
varying Volterra analysis. Linear pre-analysis is easily done in the frequency domain by solving the

linearized circuit using [1],

(G +jwO)F{Xpg ()} = F{Wpe(D)}. (4.1)
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where Xpg(t) and Wpg(t) are the unknown and input vectors respectively. Solving (4.1) requires LU
factorization of (G + jwC) at each frequency, and forward/backward substitution. In case of single-tone

input, (4.1) should only be solved once, i.e. for the excitation frequency.

4.1.2 Time-Varying Volterra Analysis

Recalling from chapter 3, a nonlinear resistor is described using time-varying Taylor expansion as,

vr(t) = Vo(t) = 9(t) = Ry (®)i(t) + R, ()I(t)* + R3(D)i()® + ---. (4.2)

where,

_df
R0 = E ig = io(t)

1d?f
R =900 Jig = int
(4.3)
1d3f
Rs(®) = 30di3 |ig = io(t)’

Vo(t) and I,(t) are the time-varying expansion point of Taylor series and the result of pre-analysis.
Applying Schetzen’s multi-linear method, the time-varying Volterra circuits of different orders for the
resistor are generated as shown in Fig. 4.1. The time-varying Volterra circuits are described in the
frequency-domain, assuming all the time-varying elements are periodic. This assumption is true for
periodic inputs, which results in periodic expansion point for time-varying Volterra. In case of multi-tone
inputs with non-commensurate frequencies, “almost-periodic” Fourier transform should be employed

[10]. Taking the Fourier Transform (FT) of the time-varying resistor in Fig. 4.1, we’ll get [14],

+00
FR(O}= ) Rixdlo— kay) 44)

k=—o0
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where Ty = 21/ w, is the period of the time-varying resistor, and R,  is the kth frequency component of
the time-varying resistor. Assuming the resistor is sufficiently approximated using the first K frequency

components, we have,

+K
FR, (D)} = z By 8(w — kawo). (4.5)
k=—K
in(t)
—
+
R4(t)
vn(t) +
en(t)

Fig. 4.1 - N order time-varying Volterra equivalent model for the nonlinear resistor

Similarly, time-varying capacitors, inductors and controlled sources are represented in the
frequency-domain. Fig. 4.2 summarizes time-varying Volterra models for nonlinear elements in
frequency-domain. Employing MNA, the n™ order time-varying Volterra circuit is formulated in

frequency-domain as,
FIG(OIOF (Xn ()} + jo{F{C(OIOF (X, ()}} = F{W, (D)3, (4.6)

where ® denotes convolution. It should be noted that, G(t) and C(t) are M x M matrices and X,,(t) and
W, (t) are M x 1 vectors, where M is the size of the circuit matrix. G(t) and C(t) contain the time-
varying resistors, inductors and capacitors and controlled sources, and thus are T, periodic.
Approximating F{G(t)}, F{C(t)}, F{X,(t)} and F{W, (t)} with their first K frequency components,

we’ll get,

52



Equivalent Time-Varying Volterra Circuits in

Nonlinear Elements Frequency-Domain
. E (w)
i(t) =N ln(w)  Ry(w) +~- Es(w)=0
— M, . —= ( ) .
Ex(w)=Ra(w)*l;(w)*l1(w)
+ v(‘t)\_ - + V,(w) = E3(w)=2Ry(w)"l1(w)*l(w)+

V(=R (t)i(t)+R(t)i*(t)+...

q(t) —

+ v(t) -
qO=Co(V(+Co()V () +...

i(t) =

.—_>_,.)‘y.__.
\_ -—
L)

Wt=LA(QiO+LA()F (D) +...

-— —e
+ +

x(t) | vt
- -

v(t)=as(t)x(t)+a(t)x’()+...

i(t)
— —e
+i
x(t)
-— : .

i(t)=as()x(t)+ax(t)x*(O)+...

Ri(w)*li(w)*ly(w) 11 (w)

Qu(w) Ci(w)
—

Jy(w)=0
i Jo{w)=w(Cofw)*Vi(w) *Vi(w))
In(w) J5(w)=jw(2C{w) *Vi(w)*Vofw)+
Cs(w)*Vi(w)*Vi(w)*Vi(w))

W

!,,_wL L1(w) .|.E”(w)_ E1(w)=0
y " O Ex(w)=jw(Ly(w) li(w)* i (w))

+ ¥o(w) = Es(w)=jw(2Lz(w)*h(w)l(w)+
Lo()*ly(w)*ly{(w) *11(w))

[ g
+ + -
; Aq(w)*"Xn(w) Ei(w)=0
Xo(w)' + Vi(w) Eow)=Axw) Xs(w)"Xs(w)
: En(w) Ej3(w)=2A,(w)"Xi(w) " Xz(w)+
; )= As(w)*X1(w) Xa(w)*Xs(w)
— e
In(w)
f—
T+
; Ji(w)=0
X(w) | nfw)  Jo(w)=Ax{w) X(w) Xs(w)
A () Xo(w) Ja(w)=2A(w) *Xs(w) X w)+
: As(w)*"Xs(w) X1(w)*Xs(w)
!

Fig. 4.2 - Nonlinear elements and their time-varying Volterra circuits in frequency-domain
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+K +K
Gpb(w — mw )}@{ Xni6(w — lw )}
> ofel 3. tusta=to

m=—-K

+K +K
+jw {mZK Con6(w — mwo)} ® {IZK Xn6(w— lwo)} (4.7)

+K
= ) Wb = ko),
k=—-K
where X, (kwy) and W, (kw,) represent the kth frequency component of the unknown and input vector
Simplifying (4.7) results in,

+K +K +K +K
DD G Rib@ = A Do)+ Y Y jag(n + Dl 28w = (m + Deg)
I=——K m=—K

j=—Ki=—K
. (4.8)
= Z Wn’ké‘((u - k(l)o)
k=—K
Equating the coefficients of §(w — kw), for every k, on both sides of (4.8) results in,
0
Z {Gm _ijoém}Xn,—m—k = Wn,—K:
m=—-K
+K-1
Z {ém _jwoém})?n,—m—l = Wn,—l'
m=—K
+K
Z GmXAn -m = An,Or (4'9)
m=—K
+K
{Gm +jwoém})?n,—m+1 = Wn,lr
m=—K+1
+K
Z {Gm +jK(‘)Oém}XAn,—m+K = Wn,K-
m=0
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Knowing the input vector, i.e. I/T/n,k for —K < k < +K, together with circuit matrices, the unknown

vector is calculated using the 2K + 1 equations given in (4.9), i.e. X, for —K < k < +K. Rewriting

(4.9) in the matrix form, we have,

where,

Also we have,

where,

T(wg) X )?M,n(wo) = WM,n(wO):

)?M,n(wo) = [)?n,—K Xn,—l Xn,O Xn,l
WM,n(wo) = [Wn,—l{ Wn,—l Wn,o Wn,l
T—K 0 T—K,—K+l T—K -K 0
T—l,K—l T—l,O T—l -1 T—l,—z
T (a)o ) =| Tox Tos Too To s
O T1,2 Tl 1 Tl,O
i 0 0 Tex  Teka

Tk,m = Gm +]k(1)0€m

(4.10)
Bnix]
(4.11)
Wn,+K]T-
0
0
Tox (4.12)
Tk
Tk )
(4.13)

T(w,) matrix, called the conversion matrix, is similar to the transfer function for time-invariant circuits.

However, since the circuit is time-varying, the output depends on the input at fundamental frequency and

the harmonic frequencies. For a time-invariant circuit, T(w,) is a diagonal matrix. In order to find the

unknown vector, one must solve (4.10) which require LU factorization of a (2K + 1)M x (2K + 1)M
matrix, and (2K + 1)M forward/backward substitution. It should be noted that (4.10) must be solved for

different orders of time-varying Volterra circuits. T(w,) matrix is constant for all the orders, however,

Wiy n(w) should be calculated based on the response of lower order circuits. Finally, the total response is
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calculated by summing up the response of lower orders, i.e. Xy (wo) = Xy 1(wo) + Xu2(wo) +
Ky 3(wo) + -+

The formulation presented, can be generalized for multiple-tone input signals as well. In case of
multiple-tone inputs, the output will be a function of input frequencies and their harmonics as well as
inter-modulation products of the input frequencies. This makes the size of frequency vector larger for

multiple-tone inputs.

4.1.3 Comparison with Harmonic Balance

It is useful to compare the computation cost and accuracy of the frequency-domain time-varying Volterra
with Harmonic Balance. In this section, we discuss the computation cost of the method and leave the
accuracy comparison for the next section. Frequency-domain time-varying Volterra analysis requires pre-
analysis, plus solving the time-varying Volterra circuits of different order, i.e. solving (4.10) for each

order. Assuming N™ order time-varying Volterra analysis, the computation cost is approximated by,
Total Cost = CLU + N X CF/B + N X CW—Generation + CPre—Analysis' (4-16)

where C,y is the cost of LU decomposition of T'(wg), which only needs to be done once, and Cr g is the
cost of forward/backward substitution. Cy,_generation 1S the cost of calculating the input vector, i.e.
Whn(wo), and Cpye_ analysis 1S the pre-analysis computation cost. Calculating the input vector requires
taking the Fourier Transform (FT) of the input sources and Volterra model’s dependent sources, which
involves convolution of response of lower orders. Cy_ceneration CaN become significant in case of
multiple-tone inputs. For the rest of this section, we concentrate on single-tone input. However, our
calculations can be easily generalized for multiple-tone input as well.

The conversion matrix is sparse, because G (mw,) and C(mw,) are sparse matrices for m # 0.
Thus, (4.10) is solved more efficiently using sparse matrix calculation methods [1]. Furthermore, since
the circuit parameters are real functions of time, we have G(mw,) = G*(—mw,), C(mw,) =
C*(—mwy), W,,(mwy) = W,y (—mw,) and X,,(mw,) = X;;(—mw,). Hence, the total computation cost is

reduced by a factor of two. Using (4.12) it can be shown that for circuits with real parameters we have,
T(wo) = (Tt (wp)) - (4.17)

Replacing T(wg) = L(wg)U(wgy), where L(wy) and U(w,) are lower and upper triangular matrices

respectively, we’ll get,
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*
)

T(wo) = L(wo)U(wy) = ((L(wo)U (wo))t)

(4.18)
> L(@o)U(wo) = (Ut(wy)) (L (@)
Knowing Ut(w,) and Lt (w,) are lower and upper triangular matrices respectively, we have,
L(wg) = (Ut (@p))’,
(4.19)

U(wo) = (L (wg)),

for all the non-diagonal elements. Thus, calculating either L(w,) or U(wy) is sufficient, which means half
the computation cost for LU decomposition. Similarly, the forward/backward substitution and input
vector generation cost is reduced by a factor of two. Neglecting the pre-analysis computation cost, the

overall computation cost is approximately,
Total Cost = ((K + M)’ /3 + N (K + 1M)” + Cy—generation ) (4.20)

where K is the number of harmonics, N is the order of Volterra analysis, and M is the size of circuit
matrix. In calculating (4.20), it is assumed that we do not use sparse matrix calculation algorithms. Sparse
matrix algorithms will reduce the total cost.

Recalling from chapter 2, Harmonic-Balance balances the magnitude and phase of the harmonics
for all the voltages and currents, by solving the Harmonic-Balance equation. Harmonic-Balance equation
is a nonlinear equation and needs to be solved iteratively, using Newton-Raphson algorithm. The Jacobian

matrix as well as the next iteration value should be calculated per iteration, using,

M(Vi)(VHl _ Vi) - —F(Vi),

(4.21)
_F(W)

M) RETAE
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where M(.) is the Jacobian matrix and F(.) is the nonlinear Harmonic Balance equation. Size of the
Jacobian matrix and Harmonic-Balance equation is (K + 1)M x (K + 1)M, where K is the number of
harmonics and M is the number of unknown voltages/currents. Assuming I iterations for Newton-

Raphson is required, Harmonic-Balance computation cost is calculated as,
Total Cost =1 % (CLU—]acob + CF/B + C]acob—Generation): (4-22)

where Cpy_jqacon + Cryp I the total cost of solving next iteration value per iteration, including LU
decomposition of Jacobian matrix and forward/backward substitution. C;4cop—generation 1S the cost of

generating Jacobian matrix, which is time-consuming as the number of nonlinearities increases.
Simplifying (4.23), we have,

Total Cost = I (((K + M)’ /3 + (K + M) + Cracop—generation ) (4.23)

Comparing (4.24) and (4.21), it can be seen that frequency-domain time-varying Volterra

computation cost is less than Harmonic-Balance. Cjqcop—generation iN (4.23) is usually more than

Cw—cgeneration N (4.20) for most applications, since the size of Jacobian matrix is (K + 1)M x (K +
1)M, whereas time-varying Volterra input vector is (2K + 1)M x 1. However, Harmonic-Balance
achieves better accuracy comparing to time-varying Volterra when dealing with strong nonlinearities, as it
will be discussed in the next section. It should be noted that, this is a rough comparison between the full
matrix solution of Harmonic Balance and time-varying Volterra analysis. Employing spars matrix

algorithms, the total cost of both methods can be reduced further.

4.2 Numerical Example

This section presents simulation of a nonlinear RC circuit, shown in Fig. 4.3, using time-varying Volterra
in frequency-domain. The circuit is the same as nonlinear RC circuit presented in section 3.2. The circuit
is simulated using 3™ order frequency-domain time-varying Volterra, 3 and 5" order frequency-domain
conventional Volterra, Harmonic Balance and Newton-Raphson numerical integration. A detailed

comparison between all the simulation methods will be presented in this section.
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Vin(t) vr( ==C Vo)

VR(1)=R1ir(t)+R2ir’(t)+R3ig’(t)

Fig. 4.3 - Nonlinear RC test circuit

First we discuss the conventional Volterra analysis. Circuit of different orders for conventional
Volterra will be the same as the circuits shown in chapter 3, Fig. 3.5. The Volterra circuits are formulated

in frequency-domain as,

(G + jwO)F{X, ()} = F{W, (D)}, (4.24)
where,
0O 0 0 1 1
0O 0 0 -1 0
G=|1 0 0 0 0 |
1 -1 0 O 0
01 -1 0 —-R
(4.25)
[0 0 0 0 0]
0 0 C 0 0
C=10 0 0 0 O}
0O 0 0 0 O
0O 0 0 0 O
and,
Fwi®}=[0 0 Flv,(®} o o],

FiW,(0)} = [0

o

T
.0 Fle,(©} 0], (4.26)

F{Ws(©)} = [0

(e}

0 Ffes(®} 0]
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Assuming a single-tone at the input we have,
. Ain Ain
F{vin(0)} = FlApsin(wyt)} = j—25(w — wp) — j—25(w + wo),

Flex(t)} = Ryl (w)®lgy (w),

(4.27)

Fles(t)} = 2RyIpy (w)®Ig3(w) + 2R31p1 (0)®Igs(w) + 3R31Ip; (0)®Igy (0) @Iy (w)
+ 3R31g1 (W) ®Ig1 (0)®lg3 (w).

The total response for 5" order conventional Volterra is calculated as, F{X(t)} = F{X,(t)}+
FX,(0)} + FX:(O)} + F{X,(0)} + F{Xs()}. For 3 order Volterra the 4™ and 5" order responses will
be neglected. It can be seen that the complexity of the dependent sources increases significantly as the
order of Volterra analysis increases. Also, calculating (4.27) will be expensive for multiple frequencies at
the input, due to multiple convolution operations in (4.27).

The second method is 3 order frequency-domain time-varying Volterra analysis. The first step is
linear pre-analysis, which is the same as 1% order conventional Volterra. Using the result of pre-analysis,
the time-varying Volterra circuits are created, which is the same as circuits shown in chapter 3, Fig. 3.6.
The frequency-domain Volterra circuits are found out using Fourier transform, as shown in Fig. 4.3. We

have,

vgp—pe(t) = f(iR—PE(t)) = Ryip—p(t) + Ryif_pg(t) + R3ip_pp(D),
(4.28)

= Vr_pp(w) = Rilg_pg(w) + RyIg_pg(w)®Ig_pg(w) + R3lg_pp(w)®Ig_pp(w)®Iz_pg(w).

For single-tone input, ip_pg(t) is also a single-tone, i.e. Iz_pg(w) = Iz_pp(—wo)d(w — wy) +

Ir_pp(+wg)8(w + wy), thus, we have,

+3

VR—PE((U) = Z VR_pE,k6(w - k(l)o) (4.29)
k=-3
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Also, for time-varying Volterra coefficients we have,

T{ﬁl(t)} = Ry + 2R;Ig_pg(w) + 3R31g_pp(w)®Iz_pg(w),

F{R, (D)} = Ry + 3R31z_pp(w), (4.30)

F{R;(©)} = Rs.

Vrpe(w)

Ir1(W) Ry(w
— llf.l( )
YV

VRf(LU) -

+
Vin{w)

Ej(w)=Ra(w)*lIrs(w)*Irs(w)
1°! Order Violterra Circuit 2" Order Volterra Circuit

Es(w)

Ri(w)

E3(w)=2Rz(w) *Ir1(w) *Irz(w)+R3(w) *Irs(w)*Irs(w)*Irs(w)

3™ Order Volterra Circuit

Fig. 4.4 - Varying Volterra circuits for different orders in frequency-domain

Time-varying Volterra circuits are characterized using MNA as,

dXp(t)
dt

GOX,(t)+C = W, (t), (4.31)

where,
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o
o
o
[
—_
SO =

<

1
|
|
1 -1 0 0 oJ
01 -1 0 —Ry(t)

(4.32)
0 0 0 00
0 0 Cb 0 0
C=10 0 0 0 O}
0 0 0 0 O
0O 0 00 O
Taking the Fourier transform of (4.32), we’ll get,
0 0 0 1 1
A 00 0 -1 0
Go=[1t o o0 0 0]
1 -1 0 0 0
lo 1 -1 0 —R
(4.33)
0O 0 0 O 0
[0 000 0 ]
5(kw0)=|0 0 0 0 0 |,f0rk¢0,
0 0 0 O 0
lo 0 0 0 —R,(kwy)l
and,
[0 o0 0 O 0]
. 0 0 C, 0 0
C(0)=|0 0 0 0 0|,
0O 0 0 0 O
lo 0 0 o o (4.34)

C(kwy) =0, for k # 0.

Using (4.33) and (4.34), the conversion matrix is constructed. For this example, we assume a total number
of 6 harmonics is sufficient to achieve good accuracy, which makes the size of T(w,) to be 65 X 65.

The circuit is also simulated using Harmonic Balance simulation provided in ADS® software.
ADS® uses advance algorithms to ensure convergence, as well as accuracy of the method. More

information on Harmonic Balance simulation in ADS® can be found in [15]. Another method to simulate
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the frequency-domain output of the circuit is to use transient numerical integration. The circuit is first
solved in time-domain using Newton-Raphson and numerical integration, and then the frequency-domain
response can be calculated using Fourier Transform (FT) of the steady-state part of the output voltage.
Here, we use ELDO® to find the time-domain steady-state of the output, and then use FFT to find the
output frequency spectrum. The CPU simulation time of the frequency-domain time-varying Volterra
analysis is half the simulation time of ELDO® time-domain steady-state using the same machine.
However, this is a rough comparison between the two methods, since ELDO® performs more actions
during simulation than time-varying Volterra analysis.

Similar to section 3.2, three different cases of nonlinearities for the resistor will be examined.
Case | discusses a mildly nonlinear resistor, i.e. R, R; < R;. Similar to time-domain methods, all the
methods simulate the circuit accurately. However, time-varying Volterra and Harmonic Balance are more
accurate than conventional Volterra. For case Il and Ill, the nonlinearity of the resistor is increased.
Conventional Volterra fails to give accurate results, while time-varying Volterra and Harmonic Balance
results are accurate. Harmonic Balance results are more accurate than time-varying Volterra, especially

for case IlI.

4.2.1 Case |

First case deals with a mildly nonlinear resistor. The input of the circuit is a single-tone voltage source
with a unity frequency and amplitude, i.e. v;,(t) = sin(2nt). The circuit parameters along with

frequency-domain simulation parameters are summarized in Table 4.1.

Table 4.1 - Specifications of the test circuit and simulation parameters for Case |

Parameter Value
Input Frequency, f;, (Hz) 1
Input Amplitude, 4;,, (Volts) 1
Resistor Parameters, R{, R;, R3 1,0.05,0.05
Capacitor Values (F) 1
Maximum Number of Harmonics 6

The circuit is simulated using frequency-domain conventional Volterra, frequency-domain time-varying
Volterra, Harmonic Balance and transient numerical integration in ELDO®. Table 4.2 and 4.3 summarize
the magnitude and phase of the harmonics using different simulation methods. Time-domain numerical

integration simulates the time-domain output voltage, thus, we should use FFT to find the magnitude and
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phase of harmonics. This can also be done using the steady-state analysis provided in ELDO®. Steady-
state analysis directly simulates the steady-state response of the circuit using shooting method [12].

The results of all the methods, i.e. conventional Volterra, time-varying Volterra and Harmonic-
Balance, are close to the ELDO® simulations. Table 4.4 shows the error of different simulation methods
comparing to ELDO® simulations. 3" order conventional Volterra predicts the fundamental harmonic
with acceptable accuracy, i.e. 0.8% relative error. However, the error becomes more significant for other
harmonics, e.g. 9.8% relative error for DC component. Employing higher order Volterra, i.e. 5" order, the
error is reduced one order of magnitude as shown in Table 4.4 (1.6% relative error for DC component).
3" order time-varying Volterra gives more accurate results as compared to 3" and 5" order conventional
Volterra, up to 3 orders of magnitude smaller error for DC component. Harmonic Balance simulation
result is the most accurate comparing to conventional and time-varying Volterra analysis. The
fundamental harmonic error is similar to 3 order time-varying Volterra, i.e. 0.6% relative error, while

the DC component error is one order of magnitude smaller.

Table 4.2 — Comparison of the Magnitude of Harmonics for Case |

Frequency Component 5" Order 3" Order 3" Order Time-  Harmonic Transient
Magnitude Volterra  Volterra  Varying Volterra Balance  Simulation/FFT
DC (dB) —33.22  —34.258 —33.075 —33.076 —33.076
Fundamental (dB) —22.364 —22.398 —22.368 —22.368 —22.368
2" Harmonic (dB) —61.84 —60.29 —61.567 —61.568 —61.567
3" Harmonic (dB) —72.324 —70.835 —72.098 —72.098 —72.0975
4™ Harmonic (dB) —91.055 - —93.51 —93.514 —93.518
5™ Harmonic (dB) —106.66 - —108.67 —108.712 —108.68
6™ Harmonic (dB) — — —122.31 —122.36 —122.53
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Table 4.3 - Comparison of the Phase of Harmonics for Case |

Frequency Component 5" Order 3" Order 3 Order Time-  Harmonic Transient
Phase Volterra Volterra  Varying Volterra Balance  Simulation/FFT
DC Component (deg) 180 180 180 180 180
Fundamental (deg) -171.23 —-171.27 —-171.23 —-171.23 —-171.23
2" Harmonic (deg) —68.56 —67.36 —68.25 —68.25 —68.25
3" Harmonic (deg) —151.51 -—-150.34 —-151.25 —151.24 —151.24
4™ Harmonic (deg) —47.81 = —49.34 —49.34 —49.34
5™ Harmonic (deg) —131.95 - —133.18 —133.14 —133.14
6" Harmonic (deg) — - -30.59 -30.78 -30.78
Table 4.4 — Error Comparison of Harmonics for Case | (Absolute Error)
Absolute Error of 5" Order 3" Order 3" Order Time- Harmonic
Frequency Component Volterra Volterra Varying Volterra Balance
DC (V) 36 x107* 22x1073 1.0x 1077 1.1x 1078
Fundamental (V) 47x10"* 59x107*% 48x107% 48x107%
2"! Harmonic (V) 29x107° 13x107* 1.0 x 1075 1.0 x 1075
3" Harmonic (V) 8.6x107°® 38x107° 4.7 x 107 4.6x107°
4™ Harmonic (V) 6.9 x 107° — 5.2 x 1077 5.2 x 1077
5" Harmonic (V) 9.6 x 1077 — 1.0 X 1077 1.0 x 1077
6" Harmonic (V) - - 2.7 %1078 2.6x 1078

4.2.2 Case ll

Case Il employs a stronger nonlinear resistor, compared to Case I. Using the same input source, i.e.

single-tone input, the circuit is simulated in frequency-domain with the parameters shown in Table 4.5.
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Table 4.5 - Specifications of the test circuit and simulation parameters for Case Il

Parameter Value
Input Frequency, f;, (Hz) 1
Input Amplitude, 4;,, (Volts) 1
Resistor Parameters, R{, R;, R3 1,0.5,0.5
Capacitor Values (F) 1
Maximum Number of Harmonics 6

Table 4.6 and 4.7 summarize the simulation results of the circuit using conventional Volterra, time-
varying Volterra, Harmonic Balance and ELDO®. 3" and 5" order conventional Volterra no longer give
accurate results and suffer from large errors, as large as 66% relative error in calculating DC component.
3" order time-varying Volterra is able to predict the harmonics with good accuracy, i.e. 0.7% and 0.9%
relative error for fundamental harmonic and DC component, respectively. Table 4.8 categorizes the
absolute error of different simulation methods comparing to ELDO® simulations. Similar to Case I,
Harmonic Balance simulation results are the most accurate results. Harmonic Balance and 3" order time-
varying Volterra show similar error for fundamental harmonic, i.e. 0.7% relative error, whereas,
Harmonic Balance’s simulation error for DC component is 2 orders of magnitude lower than 3™ order

time-varying Volterra.

Table 4.6 - Comparison of the Magnitude of Harmonics for Case Il

Frequency Component 5" Order 3" Order 3 Order Time-  Harmonic Transient
Magnitude Volterra Volterra  Varying Volterra Balance  Simulation/FFT
DC (dB) —-17.2 —12.258 —16.778 —16.674 —16.674
Fundamental (dB) —23.962 —24.471 —23.627 —23.66 —23.659
2" Harmonic (dB) —53.04 —40.29 —47.308 —47.208 —47.203
3" Harmonic (dB) —48.3 —71.938 —64.653 —64.014 —63.999
4™ Harmonic (dB) —56.57 = —66.017 —66.761 —66.672
5™ Harmonic (dB) —60.60 - —82.929 —83.816 —83.337
6" Harmonic (dB) — = —87.663 —88.088 —86.695
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Table 4.7 - Comparison of the Phase of Harmonics for Case |1

Frequency Component 5" Order 3" Order 3" Order Time-  Harmonic Transient
Phase Volterra Volterra  Varying Volterra Balance  Simulation/FFT
DC Component (deg) 180 180 180 180 180
Fundamental (deg) —-173.46 —173.11 —172.287 —172.313 —171.95
2" Harmonic (deg) —222.78 —67.364 —-71.56 —71.493 —70.77
3" Harmonic (deg) —141.64 124.716 —159.123 —157.488 —156.405
4™ Harmonic (deg) —51.51 - —55.34 —55.586 —54.136
5™ Harmonic (deg) 54.16 - 48.897 48.249 49.898
6" Harmonic (deg) — - —45.555 —41.906 —-39.46
Table 4.8 - Error Comparison of Harmonics for Case Il (Absolute Error)
Absolute Error of 5" Order 3" Order 3" Order Time- Harmonic
Frequency Component Volterra Volterra Varying Volterra Balance
DC (V) 9.4x 1072 9.7x107? 1.7 x 1073 1.6 x 107>
Fundamental (V) 28x107% 59x1073 45x%x107* 41x107*
2" Harmonic (V) 6.4%x 1073 53x1073 7.9 % 1075 5.5% 1075
3" Harmonic (V) 32x1073% 63x107* 5.4 x107° 1.2x107°
4™ Harmonic (V) 1.0 x 1073 - 3.7% 1075 1.2 x 107°
5" Harmonic (V) 8.6 x 1074 - 3.4%x 1076 4.1x107°
6™ Harmonic (V) - - 6.7 x 107° 7.1x 10°°

4.2.3 Casel lll

Table 4.9 summarizes the circuit and simulation parameters for case I11.
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Table 4.9 - Specifications of the test circuit and simulation parameters for Case 111

Parameter Value
Input Frequency, f;, (Hz) 1
Input Amplitude, 4;,, (Volts) 1
Resistor Parameters, R, R;, R3 1,1,1.5
Capacitor Values (F) 1
Maximum Number of Harmonics 6

Simulation results for all the simulation methods are shown in Table 4.10 and 4.11. 3" and 5" order
conventional Volterra cannot simulate the circuit with good accuracy, since the circuit is even more
nonlinear than case Il. The relative error in simulating the DC component is as large as 200% for 5"
order conventional Volterra. 3" order time-varying Volterra is capable of simulating the circuit. However,
the error is larger than the two cases before, i.e. 3.3% and 4.0% relative error for fundamental harmonic
and DC component, respectively. Harmonic Balance simulation achieves better accuracy comparing to 3"
order time-varying Volterra, especially for DC component. However, the error in predicting the
fundamental harmonic is close to 3" order time-varying Volterra simulation, i.e. 3.2% relative error for
fundamental harmonic. The absolute error of different simulation methods comparing to ELDO®

simulations is summarized in Table 4.12.

Table 4.10 - Comparison of the Magnitude of Harmonics for Case 111

Frequency Component 5" Order 3" Order 3 Order Time-  Harmonic Transient
Magnitude Volterra Volterra  Varying Volterra Balance  Simulation/FFT

DC (dB) —5.77 —6.238 —14.450 —14.315 —14.319
Fundamental (dB) —32.48  —30.037 —25.01 —25.15 —25.147
2" Harmonic (dB) —27.56 —34.27 —47.413 —46.969 —46.935
3" Harmonic (dB) —26.19  —49.713 —62.719 —60.375 —60.32

4™ Harmonic (dB) —44.43 - —-61.01 —62.538 —62.242
5" Harmonic (dB) —39.95 - —80.04 —81.658 —80.216
6" Harmonic (dB) - - —79.22 —79.054 —-77.111
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Table 4.11 - Comparison of the Phase of Harmonics for Case 111

Frequency Component 5" Order 3" Order 3 Order Time-  Harmonic Transient
Phase Volterra Volterra  Varying Volterra Balance  Simulation/FFT

DC Component (deg) 180 180 180 180 180
Fundamental (deg) —-179.2 —179.206 —173.189 —173.44 —173.08
2" Harmonic (deg) —70.35 —67.36 —74.658 —74.553 —73.84

3" Harmonic (deg) —150.34 48.14 -167.73 —159.978 —158.84
4™ Harmonic (deg) —47.81 = —60.577 —60.731 —59.4

5™ Harmonic (deg) —88.85 - 49.817 43.146 42.565

6" Harmonic (deg) — - —54.87 —47.85 —45.74

Table 4.12 - Error Comparison of Harmonics for Case 111 (Absolute Error)

Absolute Error of 5" Order 3" Order 3" Order Time- Harmonic
Frequency Component Volterra Volterra Varying Volterra Balance
DC (V) 7.0x 1071 29x1071 9.42 x 1073 1.0 x 107*
Fundamental (V) 59x 1072 2.4 x1072 1.8x 1073 1.7 x 1073
2"! Harmonic (V) 46x1072 1.5%x 1072 2.5%x 1074 43x107*
3" Harmonic (V) 48x1072 41x1073 2.6 x 1074 1.3x107*
4™ Harmonic (V) 5.2 x 1073 - 1.2 x 1074 1.3 x107*
5™ Harmonic (V) 9.9 x 1073 — 1.2x 1075 1.8 x 1074
6" Harmonic (V) - - 3.6 x 1075 43x1075

4.3 Multi-Dimensional Nonlinearity

We generalize the frequency-domain time-varying Volterra method described before for multi-
dimensional nonlinearities. Similar to time-domain time-varying Volterra, the time-varying Volterra
circuits are found using Schetzen’s multi-linear method, and then use Fourier transform to find the
frequency-domain time-varying Volterra circuits. Fig. 4.5 shows the time-varying Volterra circuits for

two-dimensional nonlinear elements in frequency-domain.
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Nonlinear Elements

Equivalent Time-Varying Volterra Circuits
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Fig. 4.5 — Two-dimensional nonlinear elements and their time-varying Volterra circuits in

4.4 Summary

frequency-domain

In this chapter the frequency-domain simulation of time-varying Volterra was presented. Similar to time-

domain approach, the method uses a time-varying expansion point for nonlinear elements and then

applies Volterra analysis to enable better accuracy. Using numerical examples it was shown that the

accuracy of the method is better than conventional Volterra, whereas Harmonic Balance results in better

accuracy for strong nonlinearities. However, the computation cost of the method is less than Harmonic

Balance and more than conventional Volterra.

70



Chapter 5
Power Amplifier Case Study

This chapter presents the application of the time-varying Volterra for simulation of a Class-F Power
Amplifier. Class-F Power Amplifiers are a class of nonlinear Power Amplifiers that use harmonic tuning
to achieve high efficiencies, theoretically 100%. This type of amplifiers cannot be simulated using
conventional Volterra analysis, since the transistor changes region of operation [8], [22]. However, time-
varying Volterra simulates the circuit with good accuracy. Basic operation of Class-F Power Amplifiers,
details of simulation of the Class-F Power-Amplifier using time-varying Volterra as well as comparison
with other simulation methods are discussed in this chapter.

The Chapter is organized as follows. Section 5.1 discusses the basics of Class-F Power
Amplifiers and its design considerations. Section 5.2 presents the formulation of the Class-F Power
Amplifier using time-varying Volterra in frequency-domain. The simulation results using conventional
Volterra, time-varying Volterra and ELDO® steady-state analysis is presented in section 5.3. Finally,

section 5.4 gives the concluding remarks.

5.1 Class-F Power Amplifier: Basics

Today’s modern portable communication systems demand for low power consumption. Since RF Power
Amplifiers dominate the power dissipation for transmitters, power efficient Power Amplifiers are
becoming more and more important [16]. Class-F Power Amplifiers are a class of high efficiency
amplifiers widely used. The goal in designing high efficiency amplifier is to minimize the dissipated
power in the amplifying transistor, i.e. Pansistor(t) = Vps(®)Ip(t), thus, increasing the overall
efficiency. Class-F Power Amplifiers load the transistor at different frequencies, i.e. fundamental and
harmonics, to ensure a pulse waveform for drain-source voltage and half sinusoidal waveform for the
drain current of the transistor, as shown in Fig. 5.1. In order to have such waveforms for the transistor,

one must have [16],

0 even N
ZL(Opt) N = 1

where Z; is the load impedance seen by the drain of the transistor and w,, is the input frequency. Z; (opt)

is the optimum load of the transistor which results in the maximum power delivered to the load.
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Fig. 5.1 — Class-F Power Amplifier

Fig. 5.2 shows the schematic of a Class-F Power Amplifier that satisfies (5.1) for first, second and
third harmonic [17]. For simplicity the input matching network is not shown here. The combination of L,
L, and Cy make sure that the impedance seen by the transistor is zero at second harmonic and infinity for

third harmonic. The values for L, L, and Cy are calculated using,

L, = L L 5L
e 6wgcout , 2T
(5.2)
12
Cp = ?Coutl

where C,,; is the output capacitance of the transistor. L3,, and C5,, are chosen to resonate at 3w,, also,
the output m-matching network ensures the proper load for the transistor at fundamental frequency for
maximum power delivered to the load. The reader is referred to [18] and [19] for detailed discussion on

the design and properties of the output -matching network.
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Fig. 5.2 — Schematic of a Class-F Power Amplifier (Input matching network is not shown for

simplicity)

5.2 Formulation of Class-F Power Amplifier

The first step in simulating the Class-F Power Amplifier shown in Fig. 5.2 is to replace the transistor with
its nonlinear equivalent model. For this case study, we have designed the Class-F Power Amplifier using
0.18um CMOS technology NMOS transistors. The NMOS transistor is modeled for this application as
shown in Fig. 5.3. The model contains two nonlinear capacitors, i.e. gate-source and drain-source
capacitances, and a two-dimensional nonlinear voltage-controlled current source. The details about the
validity, as well as, the accuracy of the model is found in Appendix A. Nonlinear elements in the model

shown in Fig. 5.3 are characterized as,

Cos(Vgs) = Cgso + Cos1Ves + Cos2Vis + -+ + Cos10Ves

(5.3)
Cps(Vps) = Cpso + Cps1Vps + CpsaVis + -+ + Cps1oVp e,
and,
Ip = f Vs, Vps) = agp + ag1Vps + ag2Vis + -+ ag10Vp3
+(a1,0 +a11Vps +ai Vi + -+ a1,1ovpl_g)VGs (5.4)

2 1011710
+(a10,0 + ay01Vps + a102Vps + - + alO,lOVDS)VGS'
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referred to

For details of calculating the coefficients of nonlinear devices, the reader is
Appendix A.
CGD
Il
]|
- Ip=f(Vs,Vps) DRAIN
. T +
) /
Cos(Ves)|= Ves /:Z Cps(Vps)  Vps

.
SOURCE

Fig. 5.3 — Nonlinear Transistor Model

Fig. 5.4 shows the Class-F Power Amplifier with the transistor replaced by the nonlinear model of Fig.
5.3. The amplifier is designed for the center frequency of 500MHz, with circuit parameters summarized

in Table 5.1.
+

50Q Vour

Ip=f(Vgs,Vps)

i —
+ " + | +
Vinlt
in{ J_ L Cos( Veﬁ Ves % Vis E/Cgs( Vbs)
8
= - = - =

- +
Ve -

T %
-

S g,__
iHH

W

Cs

Fig. 5.4 — Class-F Power Amplifier with the transistor replaced by nonlinear model

Now we discuss the simulation of the Class-F Power Amplifier using time-varying Volterra

analysis. The first step for time-varying Volterra analysis is linear pre-analysis. Pre-analysis circuit is
constructed by linearizing all the nonlinear elements around their DC operating points. DC operating

point of the transistor is easily calculated as,
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VGSO = VG = 0.5 V, VDSO = VD =09 V, IDO = f(VGSOI VDSO) =431.01 ‘UA . (5.5)

Table 5.1 — Class-F Power Amplifier Parameters

Output Matching Parameters

L (nH) 1.3786

C1, C (pF, pF) 305.83,96.73
3" Harmonic Resonator Parameters

C30 L3, (PF, nH) 11.258,1

Biasing Circuit Parameters

Lg, Ly, Ly (UH, nH, nH) 1,68.15,113.58
Cg, Cc, Chypass (PF, PF, YF) 0.5947,1,1
Ve, Vp (V,V) 0.5,0.9

Input Voltage Parameters
Input Frequency (MHz) 500
Maximum Input Amplitude (V) 0.2

Fig. 5.5 shows the pre-analysis circuit using the linearized model for all nonlinear elements. The

linearized capacitors and controlled current source are calculated using the equations below

i,
Im1 = 75— :
™ dVes |Vesor Voso
i,
9ps1 = o — :
bst dVDS VGSOIVDSO

(5.6)

Ces—Lin = CGS(VGS) Ves = VGSO’

Cps—Lin = CDS(VDS) Vps = VDSOI
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The capacitor’s linearized model contains a current source in parallel with the linear capacitor, i.e. I;5,

and I5o, Which represents capacitor’s DC operating point for charge. In other words,

d d
Igso = 7 (Qgso) = 7 (Cos-1inVGs0)s
(5.7)

d d
Ipso = a (QDso) = a (CDS—LinVDSO)-

As long as the operating point of the nonlinear capacitor is time independent, I;g, and Is, Will be zero
and thus are removed from the model.

The next step in time-varying Volterra analysis is generating the time-varying Volterra models
for all the nonlinear elements. Fig. 5.6 shows the time-varying Volterra circuits for different orders where
all nonlinear elements are replace by their time-varying Volterra model. Generating time-varying Volterra
models require calculating time-varying Volterra coefficients for all the nonlinear elements. The

nonlinear controlled source coefficients are calculated as,

dip
gma () = AVgs |Vas—-pe(6), Vog—pe(t)
Ips1(t) = :TIDDS Ves—pr (), Vps_pe(t)’
Gm2(t) = %% Ves—pe(), Vps—pg(t)’ (5.8)
9s2(t) = %% Ves—pe(t), Vps—pg (t)’
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Similarly, for the time-varying coefficients for the nonlinear capacitors we have,

c (t):dCGS(VGS)
G52 AVs  |Ves—pe(t)’

c (t)deDS(VDS)
bsz dVps Vps—pe(t)’

(5.9)

1 d?Ces(Vgs)

Cosz(t) = —— 652
653 =508 |Vas_pe(®)

1 d*Cps(Vps)
Cps3(t) = ——25D57 ,
253 =212 (Vs (®

where Vis_pp(t) and Vps_pp(t) are pre-analysis simulation results. Due to complexity, the symbolic
expressions for time-varying coefficients are not shown here. Formulating the time-varying Volterra
circuits using the method described in chapter 4, the time-varying Volterra circuits are analyzed in
frequency-domain. The simulation results along with comparison with ELDO® steady-state results are

presented in the next section.

5.3 Simulation Results

The Class-F Power Amplifier is simulated using 3™ order time-varying Volterra and ELDO® steady-state
analysis. Here, we discuss the time-varying Volterra simulation for a single-tone input. However,
multiple-tone inputs can also be simulated using this method. Table 5.2 to Table 5.4 summarizes the
frequency components of the output voltage, transistor’s drain-source voltage and supply current for 3"
time-varying Volterra and ELDO® steady-state simulation results for maximum input power. Time-
varying Volterra simulation results are in good agreement with ELDO® steady-state simulation result. The
amplifier was also simulated using 5™ order conventional Volterra. However, the simulation results show
large errors, i.e. more than 200% relative error for the output voltage of the amplifier and the simulation
results are not shown here. Fig. 5.7 to Fig. 5.9 show the output of the amplifier, transistor’s drain-source
voltage and supply current respectively in time-domain for maximum input power. The time-domain
results for time-varying Volterra are calculated using Inverse Fourier Transform. The time-varying

Volterra simulation results show less than 0.2% relative error for the output voltage of the amplifier.
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Table 5.2 — Simulation results for Drain-Source voltage of the transistor

Frequency Component 3" Order Time-Varying ELDO Steady- Error of the Frequency
Magnitude Volterra State Simulation Component

DC (dB) —0.91515 —0.91515 7.6 X 1078

Fundamental (dB) —7.09457 -7.11221 1.1x 1073

2" Harmonic (dB) —137.573 —135.6896 6.4x 1078

3" Harmonic (dB) —24.8446 —25.0862 1.574 x 1073

4™ Harmonic (dB) —61.73984 —61.24285 53%x 107>

5™ Harmonic (dB) —78.60462 —75.93401 4.5 x 107°

6" Harmonic (dB) —76.124422 —80.42946 6.1 x 1075

Table 5.3 — Simulation results for the output voltage of the Class-F Power Amplifier

Frequency Component 3" Order Time-Varying ELDO Steady- Error of the Frequency
Magnitude Volterra State Simulation Component

DC (dB) —o0 —177.99 1.2x107°

Fundamental (dB) —17.09473 -17.1123 3.6 x 1074

2"! Harmonic (dB) —174.49 -171.77 23x107°

3" Harmonic (dB) —175.85 —168.689 29x107°

4™ Harmonic (dB) —123.961 —123.473 41%x10°8

5™ Harmonic (dB) —141.795 —139.318 3.2x10°8

6" Harmonic (dB) —141.313 —145.737 3.4 x 1078
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Table 5.4 — Simulation results for the supply current of the Class-F Power Amplifier

Frequency Component 3" Order Time-Varying ELDO Steady- Error of the Frequency

Magnitude Volterra State Simulation Component
DC (dB) —58.4617 —58.4236 5.2 x 107
Fundamental (dB) —69.26997 —69.2876 8.9 x 1077
2" Harmonic (dB) —69.8163 —69.808123 4.2 %1077
3" Harmonic (dB) —77.4776 —77.7192 3.7 %107
4™ Harmonic (dB) —118.7497 —118.245 7.7 %1078
5™ Harmonic (dB) —138.219 —136.086 6.4 x 1078
6" Harmonic (dB) —76.124422 —80.42946 6.1 x 107°

Qutput Voltage (V)

0.3/ ¢ ELDO Steady State Simulation Result
= Time-Varying Volterra Simulation Result

T | | | |
0 0.5 1 1.5 2 25 3 35
Time (sec) x10

-0.4

©

Fig. 5.7 — Output voltage of the amplifier for maximum input power
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Fig. 5.8 — Transistor’s Drain-Source voltage of the amplifier for maximum input power
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Fig. 5.9 — Power supply current of the amplifier for maximum input power

Furthermore, the amplifier is simulated for 6dB back-off input power, i.e. 6dB less than the
maximum input power. The simulation results in time-domain are shown in Fig. 5.10 to Fig. 5.12.
Fig. 5.13 shows output power versus input power for the amplifier using time-varying Volterra and
ELDO® steady-state simulation results. The time-varying Volterra simulation results match ELDO®

steady-state results with good accuracy. Similarly, simulation result for the drain efficiency of the
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amplifier versus input power, shown in Fig. 5.14, are in good agreement with ELDO® steady-state

simulation results.

0.15

0.1

0.05

Output Voltage (V)

0151 ¢ ELDO Steady State Simulation Result 7
= Time-Varying Volterra Simulation Result ‘ ‘ ‘ |
_0.2 T T T
0 0.5 1 1.5 2 25 3 35 4
Time (sec) x10°

Fig. 5.10 — Output voltage of the amplifier for 6-dB back-off input power
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0.2 | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4
Time (sec) x10°

Fig. 5.11 — Transistor’s Drain-Source voltage of the amplifier for 6-dB back-off input power
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Fig. 5.12 — Power supply current of the amplifier for 6-dB back-off input power
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Fig. 5.13 — Output power vs. input power for the Class-F Power Amplifier
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Fig. 5.14 — Drain Efficiency of the amplifier vs. input power

5.4 Conclusion

In this chapter a Class-F Power Amplifier was simulated using the proposed time-varying Volterra in
frequency-domain. The simulation results show the effectiveness of the method to simulate transistor
amplifiers with good accuracy. It was shown that the results show good accuracy comparing to
ELDO® steady-state simulation results which uses shooting method [12] to simulate the steady-state

solution of the circuit. Conventional Volterra, on the other hand, cannot simulate such a circuit.
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Chapter 6

Conclusion and Future Work

This chapter presents the application of the proposed time-varying Volterra in circuit simulation.
Also, possible future research work regarding time-varying Volterra is discussed here. The work
presented in this thesis is the generalization of conventional Volterra analysis. Time-varying Volterra
analysis manages to simulate a wider range of nonlinear circuits comparing to conventional Volterra,

including saturated Power Amplifiers and mixers.

6.1 Application of Time-Varying Volterra in Circuit Simulation

Frequency-domain time-varying Volterra can be used to simulate nonlinear Power Amplifiers, mixers
and nonlinear microwave circuits. The proposed method manages to simulate nonlinear circuits with
large number of nonlinear elements without convergence issues of Harmonic Balance. Furthermore,
the method can be generalized to simulate the sensitivity of nonlinear circuits. The sensitivity
calculation would be similar to the work in [7]. Sensitivity analysis is important for performance
optimization methods [26], as well as yield optimizations where sensitivity is used to calculate the
yield gradient [27]. Another application for time-varying Volterra is for distortion decomposition
calculation. The Volterra based distortion decomposition method presented in [28] can be generalized
for time-varying Volterra analysis. Distortion decomposition is helpful to designers for low distortion
designs. Distortion decomposition can be used to find the main sources of nonlinearities in the design.
Thus designer can simplify the nonlinear models, which makes it easier to find symbolic expressions
for distortion analysis [29].
The main contributions of this thesis are:

- Presenting time-domain time-varying Volterra analysis as a simulation method for

nonlinear circuits.
- Applying the time-varying Volterra analysis in frequency-domain to simulate nonlinear

RF/microwave circuits, e.g. Power Amplifiers.

6.2 Future Work

In this section possible future work regarding time-varying Volterra is presented. The frequency-

domain time-varying Volterra method described in this thesis can be modified to achieve better
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computation efficiency. Instead of employing a continuously time-varying expansion point for Taylor
expansion, one can use multiple expansion points for Taylor series. This will be beneficial in case of
periodic inputs. One can use a finite number of expansion points in each period of the input signal,
e.g. 8 expansion points. Using the same concept, Volterra circuits of different orders can be generated
similar to time-varying Volterra. However, the circuits of different order will be periodically switched
linear circuits instead of time-varying linear. Periodically switched linear Volterra circuits for
different order are simulated in either time- or frequency-domain as described in [25]. It should be
noted that the number of expansion points determines the maximum frequency of the analysis, thus
one should choose number of expansion points based on the application.

Time-varying Volterra can also be used for modeling purposes. Using multiple expansion
points, different Volterra models can be constructed for a nonlinear circuit. Employing this method,
the nonlinear circuit is modeled using different Volterra circuits for different input ranges. Using pre-
analysis, the designer can determine the time phases in which different Volterra models are used. This
can help in more accurate modeling of nonlinear circuits, such as saturated Power Amplifiers.
Accurate modeling of saturated Power Amplifiers is an important part of linearizing Power Amplifier
using pre-distortion algorithms [16].

Furthermore, the time-varying Volterra analysis may be modified to simulate harsher nonlinearities
such as diodes. This may be achieved by employing a more sophisticated pre-analysis using a more
sophisticated model for nonlinear elements in pre-analysis. For example harsh nonlinear elements
may be replaced by a piecewise linear model, instead of the linearized model. Then time-varying

Volterra can be applied using the result of pre-analysis.
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Appendix A

Transistor Modeling

The model for CMOS transistors used in this thesis is based on polynomial fitting. There are different
models for CMOS transistors in literature which some are physical-based and some are empirical
models. BSIM3 [23] and EKV model [9] are two widely used physical-based models available for
CMOS transistors. BSIM3 model is based on physical behavior of CMOS transistors with hundreds
of empirical parameters added for accurate modeling. For this application we create our own
empirical model for an NMOS transistor. The model includes a nonlinear voltage-controlled current
source, which models the nonlinear drain current of the transistor, and nonlinear capacitors between
gate, drain and source, as shown in Fig. A.1. It has been assumed that bulk of the transistor is
connected to the source, thus the transistor can be modeled as a three-terminal device. The model,

however, can be generalized to four-terminal device as well.

Cop
1]

- Ip=f(Vgs,Vps) DRAIN
T 3

CGS(VG?‘:Z Vs ,é>/ / =|Cps(Vps)  Vps

)
SOURCE

Fig. A.1 — Nonlinear transistor model

A.1 Drain Current Modeling

The drain current of an NMOS transistor is a nonlinear function of both gate-source and drain-source

voltages, as shown below.
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Ip = f(Vgs, Vps)- (A1)

vp—vs\ 2
In the EKV model [9] the drain current is modeled using the functions of the form, In (1 +e " ) .

However, for this thesis we model the drain current using a 10™ order two-dimensional polynomial as

illustrated below.

Ip = f(Vgs,Vps) = ago + ag1Vps + ag2Vis + -+ ag10Vpe
+(a1,0 +ay1Vps + a1 Vi + - + al,lOVDl.(S))VGS

+(a2,o +a,,Vps + az,ngs + ot az,lovz}g)vczs (A2)
+(a10_0 + a101Vps + a10,2V55 +-+ alO,lOVL%g)V(}.SQ'

This modeling requires 121 coefficients to be calculated, which can be done using polynomial fitting.
The DC current of the transistor is first simulated using ELDO® for 0.1 < Vg < 0.9 and 0 < Vps <
1.8. ELDO® uses BSIM3v3 model for the transistors. Then using polynomial fitting function in

MATLAB® all the coefficients in (A.2) are calculated to achieve minimum error.

A.2 Capacitor Modeling

The capacitors used in transistor modeling are usually multi-dimensional nonlinear capacitors. In

other words,
Ces = f1(Vss, Vps),
Cps = f2(Vgs, Vps), (A.3)
Cep = f3(Vgs, Vips)-

However, for this thesis application we assume that the capacitors can be modeled with enough

accuracy using a linear gate-drain capacitor and two one-dimensional nonlinear capacitors between

gate-source and drain-source as shown in Fig. A.1.
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Ces = f1(Vgs),

Cps = f2(Vps), (A.4)

Cqp = Constant.

It should be noted that as the frequency of application increases the effect of capacitor become more
and more important and more accurate modeling is needed. Similar to the drain current, we

approximate the nonlinear gate-source and drain-source capacitances using 10" order polynomials.

Cos = fr(Ves) = Cgso + Cs1Vis + CosaVis + -+ + Ces10Ves,
(A.5)

Cps = f2(Vps) = Cpso + Cps1Vps + Cps2Viys + -+ + Cps10Vps,

Extracting the capacitor values from BSIM3v3 model for different gate-source and drain-source

biasing, the coefficients in (A.5) are determined using polynomial fitting function in MATLAB®.

A.3 Simulation Results

For this thesis we calculate the model in Fig. A.1 for an NMQOS transistor in 0.18um technology with
W = 240um and L = 0.18um. Fig. A.2 shows the drain current of the transistor using the 10" order
two-dimensional polynomial model as well as BSIM3v3 model. As it can be seen the results of
polynomial model are in good agreement with BSIM3v3 model. The 10" order two-dimensional

polynomial model shows a maximum of 0.6% relative error for the drain current.
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Fig. A.2 — Drain current of the transistor using 10" order two-dimensional polynomial model
and BSIM3v3 model

The gate-source and drain-source capacitances of the transistor using the 10" order polynomial model
and BSIM3v3 model are shown in Fig. A.3 and Fig. A.4. The 10" order polynomial model shows a
relative error of less than 0.8% for the gate-source and drain-source capacitances comparing to
BSIM3v3 model. It can be concluded that the circuit in Fig. A.1 with the polynomial models

presented can model the transistor with good accuracy. For this thesis we use this model for the
simulation of the Class-F Power Amplifier.
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Fig. A.3 — Gate-Source capacitance of the transistor using 10" order polynomial model and
BSIM3v3 model
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Fig. A.4 — Drain-Source capacitance of the transistor using 10" order polynomial model and
BSIM3v3 model
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