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Abstract 

Today’s advances in communication systems and VLSI circuits increases the performance 

requirements and complexity of circuits. The performance of RF and mixed-signal circuits is 

normally limited by the nonlinear behavior of the transistors used in the design. This makes 

simulation of nonlinear circuits more important. Volterra series is a method used for simulation of 

mildly nonlinear circuits. Using Volterra series the response of the nonlinear circuit is converted into 

a sum of multiple linear circuit responses. Thus, using Volterra series, simulation of nonlinear circuits 

in frequency-domain analysis becomes possible. However, Volterra series is not able to simulate 

strongly nonlinear circuits such as saturated Power Amplifiers.  

In this thesis, a new time-varying Volterra analysis is presented. The time-varying Volterra 

analysis is the generalization of conventional Volterra analysis where instead of using a DC 

expansion point a time-varying waveform has been used. Employing a time-varying expansion 

waveform for Volterra analysis, time-varying Volterra achieves better accuracy than conventional 

Volterra. The time-varying expansion waveforms are derived using a fast pre-analysis of the circuit. 

Using numerical examples, it has been shown that the time-varying Volterra is capable of simulating 

nonlinear circuits with better accuracy than conventional Volterra analysis. The time-varying Volterra 

analysis in both time and frequency domains are discussed in this thesis. The time-varying Volterra 

analysis has been used to simulate a saturated Class-F Power Amplifier in frequency-domain. The 

simulation results show good agreement with ELDO® steady-state and Harmonic Balance simulation 

results.  

The proposed method manages to simulate nonlinear circuits, such as saturated Power Amplifier, 

mixers and nonlinear microwave circuits, with good accuracy. Also, this method can be used to 

simulate circuit with large number of nonlinear elements without the convergence issues of Harmonic 

Balance. 
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Chapter 1 
Introduction 

Circuit designers, before fabricating or manufacturing a design, need to ensure the functionality of their 

design before settling on a final design. Thus, Computer-Aided Design (CAD) tools, as well as circuit 

simulators, are important in design verification. Computation efficiency, memory resources and accuracy 

are important parameters of any circuit simulator. Simulation of linear circuits has been widely 

investigated and efficient methods are available in literature to simulate linear circuits in either the time or 

frequency domains [1]. Recent advances in telecommunication systems and VLSI circuits, continuously 

increases the complexity of circuits that need to be simulated. Also, due to stringent specifications for RF 

and mixed-mode circuits, the nonlinearity of such circuits becomes increasingly important. Thus, there is 

an increasing need for nonlinear circuit simulators with better efficiency and accuracy. Numerous 

nonlinear circuit simulators are available which simulate nonlinear circuits in either the time or frequency 

domains, e.g. [37], [38]. This thesis presents new methods for the simulation of nonlinear circuits in the 

time and frequency domains. 

1.1 Nonlinear Circuit Simulation 

Simulation of nonlinear circuits is generally more difficult than linear circuits. Different methods are 

available in literature for nonlinear circuit simulation. Time-domain numerical integration [1, 33], 

Harmonic Balance [3, 34] and Shooting method [35, 36] are traditional methods for nonlinear circuit 

simulation. Time-domain numerical integration and Shooting methods solve the differential algebraic 

equations of the circuit directly in time-domain using the appropriate numerical integration method. 

Shooting method simulates the steady-st ate response of the circuit directly, and time-domain numerical 

integration is used to calculate the transient response of the circuit. Both these methods require Newton-

Raphson iterations at each step of transient simulation, which makes the simulation time-consuming. 

Harmonic Balance calculates the frequency components of the linear portion of the circuit in frequency-

domain and nonlinear portion of the circuit in time-domain. Using an initial guess, the frequency 

components are calculated using Newton-Raphson iterations. Harmonic Balance faces convergence issues 

when dealing with large number of nonlinearities in the circuit [34]. When there is more than one tone at 

the input of the circuit, multi-tone Harmonic Balance (or generalized Harmonic Balance) [3] is employed. 

The simulation methods mentioned calculate only the response of the circuit and do not indicate which 

part of the circuit is responsible for the nonlinear behavior of the circuit. This information is valuable to 

the designer for low distortion designs [28].  
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Volterra series analysis is another commonly used nonlinear circuit simulation method. Volterra 

analysis uses a Taylor series expansion of all nonlinearities, and simplifies the nonlinear circuit analysis 

into sum of linear circuit responses [4, 5, 6]. In practical cases, Volterra analysis employs low degree 

polynomial approximations, typically 3rd order, due to complexity for high order polynomials [4]. This 

limits the application of the Volterra analysis to mildly nonlinear circuits, such as Low Noise Amplifier 

(LNA), Opamp and filter. When dealing with strongly nonlinear circuits, such as nonlinear Power 

Amplifiers (PA) and mixers, the Volterra analysis fails to give accurate results [8]. Volterra analysis is 

performed completely in frequency-domain because the circuit is linearized at each step of the analysis 

and handles multiple input frequencies easily. This makes Volterra analysis useful for multi-tone 

distortion analysis. Also, Volterra analysis can be used to separate different distortion contribution from 

different nonlinear elements. An efficient numerical method has been proposed in [28] to simulate per-

element distortion analysis for nonlinear circuits using Volterra analysis. In the literature different 

methods have been proposed that combine different nonlinear circuit simulation methods. For example, 

by combining Harmonic Balance and Volterra analysis a simulation method for mixers has been proposed 

in [20]. 

1.2 Proposed Method 

In this thesis a new simulation method which is an extension of the conventional Volterra analysis is 

presented. The proposed method uses time-varying expansion point for Taylor series, instead of a fixed 

DC expansion point. Due to time-varying nature of the method, the proposed Volterra analysis manages 

to simulate strongly nonlinear circuits with better accuracy than conventional Volterra. The details of the 

time-varying Volterra simulation in both time and frequency domains is presented in the thesis. The time-

varying Volterra analysis can be used to simulate nonlinear circuits, such as RF/microwave mixers and 

Power Amplifiers. Simulation of a nonlinear Class-F Power Amplifier using the time-varying Volterra is 

presented in the thesis. It is shown that the time-varying Volterra series simulates the circuit with 

comparable accuracy as ELDO® steady-state simulations, but with a reduced computational cost.  

1.3 Thesis Organization 

Chapter 2 reviews different simulation methods for nonlinear circuits. Common time-domain and 

frequency-domain simulation methods are presented in this section. Different properties of these methods 

are discussed in this chapter. Chapter 3 introduces the time-varying Volterra analysis in time-domain. The 

concept of time-varying Volterra circuits and pre-analysis is discussed in this chapter. Using a numerical 

example, it is shown that the proposed method handles stronger nonlinearities and its simulation results 

are more accurate than conventional time-invariant Volterra. Also, this chapter presents a discussion on 
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the accuracy requirements for pre-analysis for different nonlinearities. A modification of the time-varying 

Volterra is also presented in this chapter which achieves better computation efficiency. Chapter 4 presents 

the time-varying Volterra analysis in frequency-domain. Using the same method described in Chapter 3, 

the time-varying Volterra circuits are solved in frequency-domain. The numerical results are compared 

with Harmonic Balance and Shooting method. Chapter 5 presents the simulation of a Class-F RF Power 

Amplifier in frequency-domain using time-varying Volterra. The simulation results show good agreement 

with the Shooting method. Chapter 6 concludes the thesis with discussion on the application of the time-

varying Volterra. Also, possible future work related to per-element distortion analysis, as well as, 

applications in modeling is presented.  
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Chapter 2 
Background: Nonlinear Circuit Simulation 

In this chapter different simulation methods for nonlinear circuits are reviewed. These methods are 

categorized into two main groups, time-domain numerical integration methods and frequency-domain (or 

series expansion) methods. Time-domain methods can (but not necessarily do) simulate both transient and 

steady-state response of linear to strongly nonlinear circuits for almost all kinds of input signals. On the 

other hand frequency-domain methods can only simulate the steady-state response of the circuits for 

specific class of inputs. Furthermore, not all frequency-domain methods can handle strong nonlinearities 

or large number of nonlinear elements in the circuits. The details of these methods and their specifications 

will be discussed in more detail in the rest of this chapter.  

The rest of this chapter is organized as follows. Section 2.1 deals mainly with Linear Multi-Step 

Predictor-Corrector (LMS-PC) algorithms and its pros and cons as a general time-domain simulation 

method. Volterra Series and Harmonic Balance are discussed in section 2.2 as two common frequency-

domain methods for simulation of nonlinear circuits. Their advantages and shortcomings are addressed in 

section 2.2 as well. 

2.1 Time-Domain Simulation Methods 

The behavior of linear and nonlinear circuits can be modeled in time-domain using differential equations 

which usually have the form of Differential Algebraic Equations (DAE). For linear circuits the systems of 

Differential Algebraic Equations of the circuit are formulated using Modified Nodal Analysis (MNA) or 

Tableau formulation [1], 

 

ሻݐሺܺܩ ൅ ܥ
݀
ݐ݀

൫ܺሺݐሻ൯ ൌ ܹሺݐሻ, ܺሺ0ሻ ൌ ܺ଴  (2.1) 

 

where ܩ and ܥ are constant matrices, ܺሺݐሻ is the unknown vector with initial value ܺ଴ and ܹሺݐሻ is the 

input vector. For nonlinear circuits the circuit equations are nonlinear and more complex, 

 

݂൫ܺሺݐሻ൯ ൅
݀
ݐ݀

ቀܳ൫ܺሺݐሻ൯ቁ ൌ ܹሺݐሻ, ܺሺ0ሻ ൌ ܺ଴  (2.2) 

 

where ݂ሺ. ሻ and ܳሺ. ሻ are, in general, nonlinear functions. By adding the charge of the nonlinear capacitors 

and flux of nonlinear inductors to the unknown vector one can rewrite the system of equations as [1], 
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ሻݐሺܺܩ ൅ ܧ
݀ܺሺݐሻ

ݐ݀
൅ ܲሺܺሺݐሻሻ ൌ ܹሺݐሻ,  (2.3) 

 

where both ܩ and ܧ are constant matrices and all the nonlinearities are collected in the nonlinear function 

ܲሺ. ሻ. The next step in transient simulation is the discretization of time. The derivative of the unknown 

vector is replaced with a discrete-time approximation (usually a particular discrete-time approximation is 

called an integration method), which results in a finite-difference equation, instead of Differential 

Algebraic Equations. The resulting system of finite-difference equations can be solved using appropriate 

numerical method. 

A common integration method widely used in circuit simulators is the Linear Multi-Step 

Predictor-Corrector (LMS-PC) algorithm. Predictor algorithm explicitly defines (predicts) the current 

time point as a function of past values and derivatives. A ݇th order predictor algorithm uses the past ݇ 

values and derivatives to evaluate the current time point, i.e. [1], 

 

ܺሺݐ௡ା௞ሻ ؆ ෍ ௝ܽ
௉ܺሺݐ௡ା௞ି௝ሻ

௞

௝ୀଵ

െ ݄ ෍ ௝ܾ
௉ ሶܺ ሺݐ௡ା௞ି௝ሻ

௞

௝ୀଵ

,  (2.4) 

 

where ௝ܽ
௉ and ௝ܾ

௉ are predictor constants and ݄ ൌ ௞ାଵݐ െ  ௞ is the step size. Since predictor algorithmݐ

does not include the circuit differential equation, i.e. (2.3), the error will propagate in the algorithm and 

can grow unboundedly and result in the instability of the simulation (or from another point of view, there 

is no feedback in the method from the circuit). Thus, this algorithm must be used with the corrector 

algorithm to correct the predicted values and control the error in the system. The corrector algorithm is an 

implicit method that expresses the derivative of the current time point as a function of past values, 

derivatives and current time point [1], 

 

ሶܺ ሺݐ௡ା௞ሻ ؆
െ1
݄

ቐ෍ ௝ܽ
஼ܺሺݐ௡ା௞ି௝ሻ

௞

௝ୀ଴

െ ݄ ෍ ௝ܾ
஼ ሶܺ ሺݐ௡ା௞ି௝ሻ

௞

௝ୀଵ

ቑ,  (2.5) 

 

where ௝ܽ
஼  and ௝ܾ

஼ are corrector constants. Using the corrector formula and (2.3) one can solve for the 

unknown vector, ܺ, at each time point assuming the past ݇ values and derivatives are available. In 

general, this system of equation is nonlinear, thus a numerical method needs to be used. The Newton-

Raphson algorithm is commonly used to solve the system of nonlinear equations due to quadratic 
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convergence rate when the initial guess is close to the final solution [1]. Usually the predicted value using 

the predictor algorithm is taken as the initial estimate for Newton-Raphson algorithm. Gear2 or second-

order Backward Difference Formula (BDF) is an integration method commonly used by different 

simulators [1], [2]. Predictor and corrector of Gear2 are defined as [1], 

  

ܺሺݐ௡ାଶሻ ൌ 3ܺሺݐ௡ାଵሻ െ 3ܺሺݐ௡ሻ ൅ ܺሺݐ௡ିଵሻ 

  

݀
ݐ݀

ܺሺݐ௡ାଶሻ ൌ
3

2݄
ܺሺݐ௡ାଶሻ െ

2
݄

ܺሺݐ௡ାଵሻ ൅
1

2݄
ܺሺݐ௡ሻ. 

(2.6) 

 

Replacing the corrector formula in (2.3) results in, 

 

݂ሺݐ௡ାଶሻ ൌ
3

2݄
௡ାଶሻݐሺܺܧ െ

2
݄

௡ାଵሻݐሺܺܧ ൅
1

2݄
௡ሻݐሺܺܧ ൅ ௡ାଶሻݐሺܺܩ ൅ ܲ൫ܺሺݐ௡ାଶሻ൯ െ ܹሺݐ௡ାଶሻ ൌ 0. (2.7) 

 

Using the Newton-Raphson, the value of ܺሺݐ௡ାଶሻ, the current time point, is found iteratively with the 

initial guess found using predictor algorithm, i.e. ܺሺݐ௡ାଶሻ ൌ 3ܺሺݐ௡ାଵሻ െ 3ܺሺݐ௡ሻ ൅ ܺሺݐ௡ିଵሻ. Newton-

Raphson algorithm requires the Jacobian matrix of the nonlinear function, ݂ሺݐ௡ାଶሻ, which is defined as 

[1], 

 

௡ାଶܯ ൌ
߲݂ሺݐ௡ାଶሻ
߲ܺሺݐ௡ାଶሻ

ൌ
3

2݄
ܧ ൅ ܩ ൅

߲ܲ൫ܺሺݐ௡ାଶሻ൯
߲ܺሺݐ௡ାଶሻ

.  (2.8) 

 

Using the Jacobian matrix one can find the next iteration value of unknown vector using, 

 

ܺ௞ାଵሺݐ௡ାଶሻ ൌ ܺ௞ሺݐ௡ାଶሻ ൅  ,௡ାଶሻݐ௞∆ܺ௞ሺݐ (2.9) 

 

where, 

 

௡ାଶሻݐ௡ାଶ∆ܺ௞ሺܯ ൌ െ݂ ቀܺ௞ሺݐ௡ାଶሻቁ,  (2.10) 

 

and parameter ݐ௞ is selected such that 0 ൏ ௞ݐ ൑ 1. Solving for each time point using LMS-PC algorithm 

requires, 
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‐ Evaluation of Jacobian matrix (2.8), (which requires the first derivative of all the 

nonlinearities in the circuit) 

‐ Solving (2.10) by LU factorization and forward/backward substitution of the Jacobian matrix, 

for each iteration of the Newton-Raphson algorithm. As long as the initial guess is close to the final 

solution, few Newton-Raphson iterations are sufficient to reach good accuracy. However, when dealing 

with strong nonlinearities, the initial estimate will not be close to the final solution. This requires more 

iterations with reduced step sizes, i.e. small ݄, so that the Newton-Raphson algorithm will be able to 

converge. Most of the times a smaller transient simulation step is also required, i.e. small ݄ ൌ ௞ାଵݐ െ  ,௞ݐ

to avoid non-convergence in strongly nonlinear circuit simulation. In other words, the transient simulation 

step should be small when dealing with fast changes at the output nodes, whereas, a larger step size is 

sufficient for smoother part of the output. Thus, more sophisticated algorithms including variable step size 

control are necessary in order to be able to achieve a good accuracy. An example of a variable step size 

control algorithm for nonlinear circuits can be found in [1]. Variable step size control algorithms usually 

require multiple solutions of the circuit for each time point, thus increasing the computation cost of each 

time step significantly, especially for strongly nonlinear circuits.  

It can be concluded that LMS-PC algorithms, while achieving good accuracy for nonlinear 

circuits, increase the simulation complexity and cost significantly (due to complex algorithms to avoid 

non-convergence when dealing with strong nonlinear circuits). Furthermore, when dealing with steady-

state response of the circuits with widely separated frequencies, e.g. mixers where input and output 

frequencies can be more than a decade away from each other, LMS-PC algorithms are inefficient and 

require long simulation time. On one hand, the simulation step size should be small enough to account for 

the fast changes of the signals due to high frequency input component, on the other hand, the simulation 

time should be long enough to account at least one period of the output signal, determined by the period 

of the low frequency component. As an example, if the inputs of a mixer are two sinusoidal inputs with 

frequencies ଵ݂ ൌ and ଶ݂ ݖܪܩ 1.05 ൌ with the output frequency ଴݂ ,ݖܪܩ 1.0 ൌ  the simulation ,ݖܪܯ 50

step size should be much smaller than 1 ଵ݂⁄ ൌ  e.g. 20 times smaller , also the simulation time ,ݏ݊ 0.95

should be at least 1 ଴݂⁄ ൌ  which increases the simulation cost significantly. Another issue when ,ݏ݊ 20

trying to solve for steady-state response is the time that it takes for the circuit to reach steady-state, or the 

time it takes for transients to die down. Large time constants in the circuit dictate the time that it takes for 

transients to die (these large time constants can be due to biasing network), thus, forcing the transient 

simulation to run through many periods of the input signal, sometimes thousands of cycles, for transients 

to die [3].  
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Due to the issues discussed here, other simulation methods that eliminate these problems are 

beneficial (and sometimes necessary). “Shooting method” is a time-domain simulation method that 

calculates the steady-state response in time-domain using numerical integration, thus, eliminating the 

need for long transient simulation times [2]. However, it still requires complex numerical integration 

algorithms to overcome strong nonlinearities, as well as small step sizes to achieve good accuracy. 

Frequency-domain methods eliminate some of the problems associated with the time-domain simulators 

and achieve good accuracy with less computation cost. However, frequency-domain methods cannot 

handle all types of inputs and face problems when dealing with large strongly nonlinear circuits, which 

make it necessary to use time-domain numerical integration simulation methods. In the next section the 

basics and shortcomings of two popular frequency-domain methods, i.e. Volterra Series and Harmonic 

Balance, will be discussed in detail.  

2.2 Frequency-Domain Simulation Methods 

In this section two common frequency-domain approaches for nonlinear circuit simulation are discussed. 

Frequency-domain simulation methods calculate the steady-state response of circuits and cannot handle 

all types of continuous-time input sources. First, the Schetzen’s multi-linear method [4] for analyzing 

weakly nonlinear circuits, which is based on the Volterra Series analysis [5], is presented. Then, 

Harmonic Balance, which can handle stronger nonlinearities, will be discussed.  

2.2.1 Schetzen’s Multi-Linear Method 

Schetzen’s multi-linear method is based on Volterra analysis [5] and gives the same results for mildly 

nonlinear circuits [4]. However, Schetzen’s multi-linear method avoids the multiple integrals and kernels 

that usually appear in the original Volterra analysis, and thus gives the designer a better physical insight 

of the nonlinearity and their effect on the output. The first step in the Schetzen’s method is to expand the 

nonlinearity in the circuit using Taylor series. Taylor series of a nonlinear function ݂ሺݔሻ is expressed as, 

 

݂ሺݔሻ ൌ ݂ሺݔ଴ሻ ൅ ሺݔ െ ଴ሻݔ
݂݀
ݔ݀

ฬ
௫ୀ௫బ

൅
1
2!

ሺݔ െ ଴ሻଶݔ ݀ଶ݂
ଶቤݔ݀

௫ୀ௫బ

൅  ,ڮ (2.11) 

 

where ݔ଴ is the expansion point, typically a DC value. For example, a nonlinear resistor is represented by 

[1], 

 

ோݒ ൌ ݂ሺ݅ோሻ,  (2.12) 
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Fig. 2.1 - (a) Nonlinear resistor (b) Equivalent model for the nonlinear resistor 

 

as shown in Fig. 2.1(a). Expanding the nonlinear function using the expansion point ଴ܸ ൌ ݂ሺܫ଴ሻ, we have, 

 

ோݒ ൌ ݂ሺ݅ோሻ ൌ ଴ܸ ൅ ሺ݅ோ െ ଴ሻܫ
݂݀
݀݅ோ

|௜ೃୀூబ ൅
1
2!

ሺ݅ோ െ ଴ሻଶܫ ݀ଶ݂
݀݅ோ

ଶ |௜ೃୀூబ ൅  .ڮ (2.13) 

 

Rewriting (2.13) results in,  

 

ோݒ െ ଴ܸ ൌ ොݒ ൌ ܴଵଓ̂ ൅ ܴଶଓ̂ଶ ൅ ܴଷଓ̂ଷ ൅  ,ڮ (2.14) 

 

where ଓ̂ ൌ ݅ோ െ  ଴, whichܫ ,଴ represent the changes in the current of the resistor from the expansion pointܫ

is usually the quiescent current of the resistor. The same thing can be said regarding ݒො ൌ ோݒ െ ଴ܸ, the 

changes in the voltage of the resistor from the expansion point, ଴ܸ. Also ܴଵ ൌ ௗ௙
ௗ௜ೃ

ቚ
௜ೃୀூబ

 is the linear (first 

order) resistance of the nonlinear element, which is the same as the resistor used for small signal analysis. 

Similarly ܴଶ ൌ ଵ
ଶ!

ௗమ௙
ௗ௜ೃ

మ ቚ
௜ೃୀூబ

is the second order coefficient of the resistance, ܴଷ ൌ ଵ
ଷ!

ௗయ௙
ௗ௜ೃ

య ฬ
௜ೃୀூబ

 is the third 

order coefficient and so on. The nonlinear resistor is modeled with a voltage source, ଴ܸ, current source ܫ଴ 

and a nonlinear resistor with the characteristic function as shown in Fig. 2.1(b), 
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ොݒ ൌ ෍ ܴ௡ଓ̂௡
ஶ

௡ୀଵ

.  (2.15) 

 

Using this model we represent the nonlinear resistor by a power series. Because of linearity and 

superposition, we remove the constant voltage source, ଴ܸ, and current source, ܫ଴, from the model and only 

discuss the nonlinear part of the model. If the independent variable of the nonlinear element, current in 

case of the resistor, is scaled by the factor ߙ, then the ݊th
 order term of the voltage of the resistor will be 

scaled by ߙ௡. Using this method one can show the mechanism of the mixing and harmonic generation in a 

nonlinear circuit. If the current of the resistor only contains a single tone, ܣsin ሺ߱଴ݐሻ, then due to the 

nonlinearity, or non-zero higher order terms in the resistor characteristics, the voltage of the resistor will 

contain second order term, ܴଶ sinଶሺ߱଴ݐሻ ൌ ܴଶሺ0.5 െ 0.5cos ሺ2߱଴ݐሻሻ (which contains 2߱଴ and DC), 

third order term, ܴଷ sinଷሺ߱଴ݐሻ ൌ ܴଷሺ0.75sin ሺ߱଴ݐሻ െ 0.25sin ሺ3߱଴ݐሻሻ  (which contains 3߱଴ and ߱଴), 

and so on. Thus the output will contain not only the input frequency, ߱଴, but also the harmonics of that 

frequency (theoretically infinite number of harmonics). When there is more than one tone at the input, the 

output spectrum will contain the harmonics of the input frequencies as well as the mixing of these 

frequencies which will result in a complex output frequency spectrum. 

The next step in the Schetzen’s multi-linear method is breaking up the complete response of the 

circuit into response of the circuits of different orders, i.e., 

 

ොݒ ൌ ෍ ො௡ݒ

ஶ

௡ୀଵ

ܽ݊݀ ଓ̂ ൌ ෍ ଓ௡̂

ஶ

௡ୀଵ

,  (2.16) 

 

where ሺݒොଵ, ଓଵ̂ሻ represent the response of the first order circuit, i.e. linearized circuit, ሺݒොଶ, ଓଶ̂ሻ represent the 

response of the second order circuit and so on. Replacing (2.16) in (2.15) and scaling the current of the 

resistor by ߙ, we have, 

 

ොݒ ൌ ෍ ො௡ݒ௡ߙ

ஶ

௡ୀଵ

ൌ ෍ ܴ௡ଓ̂௡
ஶ

௡ୀଵ

ൌ ෍ ܴ௡ ൭෍ ௡ଓ௡̂ߙ

ஶ

௡ୀଵ

൱
௡ஶ

௡ୀଵ

.  (2.17) 

 

Expanding the summations and rewriting (2.17), it can be shown that, 
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ොଵݒߙ ൅ ොଶݒଶߙ ൅ ොଷݒଷߙ ൅ ڮ ൌ ܴଵሺߙଓଵ̂ ൅ ଶଓଶ̂ߙ ൅ ଷଓଷ̂ߙ ൅ ڮ ሻ 

                                                                                      ൅ ܴଶሺߙଓଵ̂ ൅ ଶଓଶ̂ߙ ൅ ଷଓଷ̂ߙ ൅ ڮ ሻଶ 

                                                                                      ൅ ܴଷሺߙଓଵ̂ ൅ ଶଓଶ̂ߙ ൅ ଷଓଷ̂ߙ ൅ ڮ ሻଷ ൅  .ڮ

(2.18) 

 

Collecting the terms with the same power of ߙ on both sides, one will get, 

 

ොଵݒߙ ൅ ොଶݒଶߙ ൅ ොଷݒଷߙ ൅ ڮ ൌ  ሺܴଵଓଵ̂ሻߙ

                                                                                               ൅ߙଶሺܴଶଓଶ̂ ൅ ܴଵଓଵ̂
ଶሻ  

                                                                                               ൅ߙଷሺܴଷଓଷ̂ ൅ 2ܴଵܴଶଓଵ̂ଓଶ̂ ൅ ܴଵଓଵ̂
ଷሻ ൅  .ڮ

(2.19) 

 

Taking into account that this is true for all values of ߙ, it can be concluded that the coefficient of different 

powers of ߙ on both sides should be equal, i.e.,  

 

ොଵݒ ൌ ܴଵଓଵ̂ 

ොଶݒ              ൌ ܴଵଓଶ̂ ൅ ܴଵଓଵ̂
ଶ 

ොଷݒ                                      ൌ ܴଵଓଷ̂ ൅ 2ܴଵܴଶଓଵ̂ଓଶ̂ ൅ ܴଵଓଵ̂
ଷ 

(2.20) 

 

As it can be seen, the response of the circuit of each order is expressed as the response of a linear circuit 

ሻݎො௡ሺ݈݅݊݁ܽݒ) ൌ ܴଵଓ௡̂) and a nonlinear part which depends only on the response of the circuit of lower 

orders (ݒො௡ሺ݊ݎ݈ܽ݁݊݅݊݋ሻ ൌ ݂ሺଓଵ̂, ଓଶ̂, ڮ , ଓ௡̂ିଵ). For example, for the third order circuit we have, ݒොଷ ൌ

ܴଵଓଷ̂ ൅ 2ܴଵܴଶଓଵ̂ଓଶ̂ ൅ ܴଵଓଵ̂
ଷ, which can be thought of as the sum of the linear part, ܴ1መ݅3, plus the nonlinear 

part, 2ܴଵܴଶଓଵ̂ଓଶ̂ ൅ ܴଵଓଵ̂
ଷ, that depends on መ݅1 and መ݅2 (solution of the circuit of lower orders). In other 

words, the nonlinear resistor for the ݊th order circuit, can be modeled as a linear resistor, ܴଵ, in series with 

a dependent voltage source, ݁௡ ൌ ݂ሺଓଵ̂, ଓଶ̂, ڮ , ଓ௡̂ିଵሻ, as shown in Fig. 2.2. Assuming the response 

of the lower orders circuits are already available, one can solve for the response of the circuit of ݊th order 

by solving the ݊th order circuit which is a linear circuit with nonlinear dependent sources whose value 

depends on the lower order circuit responses.  
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Fig. 2.2 - Equivalent model for the nonlinear resistor for nth order circuit 

 

The derivations above can be easily generated for a nonlinear capacitor (charge of the capacitor 

expressed as a nonlinear function of the voltage, ݍ஼ ൌ ݂ሺݒ஼ሻ), nonlinear inductor (flux of the inductor 

expressed as a nonlinear function of the current, Ψ௅ ൌ ݂ሺ݅௅ሻ) and nonlinear dependent sources. Fig. 2.3 

summarizes the nonlinear elements and their Volterra circuit model [30]. It should be mentioned that, in 

case of nonlinear capacitors and inductors, it is better to add the charge of the capacitors and flux of the 

inductors to the unknown vector of the circuit, instead of their current (for a capacitor) and voltage (for an 

inductor). This way we can avoid numerical problems that can occur during simulation due to taking the 

derivatives of charge and flux [2]. To summarize, the steps required in Schetzen’s multi-linear method 

are:  

‐ First the nonlinear elements are replaced by their quiescent sources (voltage and current) 

along with a nonlinear element that is represented by, ݒො ൌ ∑ ܴ௡ଓ̂௡ஶ
௡ୀଵ . Of course the DC 

simulation must be carried out before this step to calculate the quiescent currents and voltages 

[1]. 

‐ Next, the first order circuit is solved, since response of the first order is required for all the 

higher order circuits. To construct the first order circuit, we replace all the nonlinear elements 

with their first order Volterra model, i.e. a linear element with the quiescent voltage and 

current source. All the inputs of the circuit should be taken into account for the first order 

circuit.    

‐ After solving the first order circuit, higher order circuits are solved sequentially. This can 

done by replacing all the nonlinear elements with their ݊th order Volterra model, i.e. a linear 

element and a dependent source as shown in Fig. 2.3, while all the inputs to the circuit are 

now turned-off (they only affect the first order circuit). 
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‐ Finally, the response of different orders should be added to get the complete answer of the 

circuit. 

There are some interesting points regarding Schetzen’s method that are worth noting here. It can 

be seen that, the Volterra circuits of different orders are all linear, and have the same ܩ and ܥ matrices. 

Thus, superposition can be applied to each Volterra circuit, but not across different orders. Furthermore, 

the linearity makes it easy to use frequency-domain approaches to solve the circuit [7]. In other words, the 

circuit of order ݊ can be described in frequency-domain as [1], 

 

ሺܩ ൅ ሺ݆߱ሻܥሻܺ௡ሺ݆߱ሻ ൌ ܶሺ݆߱ሻܺ௡ሺ݆߱ሻ ൌ ௡ܹሺ݆߱ሻ,  (2.21) 

 

where, ܩ and ܥ are constant matrices for all the orders, and thus ܶሺ݆߱ሻ do not change for different orders. 

Knowing ௡ܹሺ݆߱ሻ, the input vector, the circuit is solved for different frequencies using LU factorization 

of ܶሺ݆߱ሻ and forward/backward substitution [1]. Calculating ௡ܹሺ݆߱ሻ requires taking the Fourier 

transform of all the sources. ௡ܹሺ݆߱ሻ includes dependent sources of the Volterra models, which have the 

form of ݁௡ ൌ ݂ሺଓଵ̂, ଓଶ̂, ڮ , ଓ௡̂ିଵሻ, for a nonlinear resistor. Since ݂ሺଓଵ̂, ଓଶ̂, ڮ , ଓ௡̂ିଵሻ contains multiplication of 

the currents of lower orders (which are known), one can find its Fourier transform by convolving the 

Fourier transform of lower orders. For the third order model of a resistor we have,  

 

݁ଷሺݐሻ ൌ 2ܴଵܴଶଓଵ̂ሺݐሻଓଶ̂ሺݐሻ ൅ ܴଵଓଵ̂
ଷሺݐሻ 

 

࣠
՜ ଷሺ݆߱ሻܧ ൌ 2ܴଵܴଶ൛ܫଵ෡ሺ݆߱ሻ۪ܫଶ෡ ሺ݆߱ሻൟ ൅ ܴଵ൛ܫଵ෡ሺ݆߱ሻ۪ܫଵ෡ሺ݆߱ሻ۪ܫଵ෡ሺ݆߱ሻൟ, 

(2.22) 

 

where ۪  denotes convolution.  

As it can be seen when the input contains multiple tones, the size of the frequency vector will 

increase rapidly, due to inter-modulation and harmonic generation. It makes the calculation of ௡ܹሺ݆߱ሻ, 

which requires convolution, more expensive. But in case of few tones at the input, Schetzen’s method can 

be performed efficiently. For mildly nonlinear circuits, it is expected that the Taylor series of the 

nonlinear elements converges rapidly, thus only a few terms are needed in the Taylor series. In other 

words, a few orders of Volterra circuits are sufficient to achieve good accuracy, usually 3 or 5. From 

another point of view, it can be said that the rest of nonlinear terms in the Taylor series are small enough, 

i.e., 
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Fig. 2.3 - Volterra model for the nonlinear elements 
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ܴேାଵଓ̂ேାଵ ൅ ܴேାଶଓ̂ேାଶ ൅ ڮ ൎ 0,  (2.23) 

 

where ܰ is the order of the Volterra analysis. This is achieved by either employing small መ݅, i.e. small 

input, or small ܴேାଵ, i.e. weak nonlinearity. One might suggest using more terms in the Taylor series 

when dealing with strongly nonlinear circuits. However, this approach has two main issues when dealing 

with practical cases. First, as the order of Volterra series increases, the complexity of the dependent 

sources for each order increases exponentially. Thus, the frequency-domain method requires lots of 

convolutions to find the Fourier transform of the dependent sources, which increases the computation cost 

significantly. The second issue, which is more serious, is the convergence radius of the Taylor series [8]. 

This issue becomes significant when dealing with exponential nonlinearities. For example, the drain 

current of a MOSFET as a function of gate voltage has the form of [9], 

 

݅஽ሺܸீ ௌሻ ൌ ݈݊ ൭1 ൅ ݌ݔ݁ ൬
ܸீ ௌ െ ்ܸ

2ηΦ୲
൰൱

ଶ

.  (2.24) 

 

Complex singularity of the nonlinearity at ܸீ ௌ ൌ ்ܸ ൅  ηΦ୲ , limits the convergence radius of theߨ2݆

Taylor series. Thus, when the input signal is large, the Taylor series diverges, which results in large 

simulation errors (especially when MOSFET’s region of operation changes). This error cannot be reduced 

by using higher order Volterra circuits.  

 The problems discussed here, limit the application of ordinary Volterra analysis to mildly 

nonlinear circuits [8]. Hence, other frequency-domain simulation methods should be considered when 

dealing with strong nonlinearities. Harmonic Balance is a common method for simulation of strongly 

nonlinear circuits in frequency-domain. The basics and drawbacks of Harmonic Balance are discussed in 

the next section.  

2.2.2  Harmonic Balance 

Time-domain numerical integration is not the best choice for simulating all kinds of circuits. For 

example, in cases where only the steady-state response of the circuit is of interest, frequency-domain 

approaches are more efficient simulation methods comparing to time-domain integration methods. 

Furthermore, microwave circuits, that contain dispersive transmission-lines and transmission-lines 

discontinuity, cannot be easily handled in time-domain integration methods [10]. Time-domain 

integration methods are not the best choice for simulation of microwave circuits. Mildly nonlinear circuits 

are efficiently handled using Volterra analysis as described before. Since Volterra analysis can be done in 



 

16 

 

frequency-domain, transmission-lines can be easily handled in such simulators using their S- or Y-

parameters. However, Volterra analysis faces problems when dealing with strongly nonlinear circuits. 

Harmonic Balance is a common frequency-domain method which handles strongly nonlinear circuits. 

The first step in Harmonic Balance is grouping the circuit into two parts. Linear part, that 

contains the input sources and all the linear elements, and the nonlinear part, which contains only the 

nonlinear elements. The linear part of the circuit is solved efficiently in frequency-domain. The nonlinear 

part, on the other hand, is solved in the time-domain, so that it will be able to achieve good accuracy 

when dealing with strongly nonlinear circuits. When dealing with nonlinear microwave circuits, usually 

there are only a few nonlinear elements in the circuits, e.g. transistors, whereas in Radio-Frequency 

Integrated Circuits (RFIC) the number of nonlinear elements is more as compared to microwave circuits. 

Assuming there are ܰ nonlinear elements in the circuit (e.g. in case of microwave Power Amplifier (PA) 

ܰ is as low as one or two) the nonlinear circuit is redrawn as shown in Fig. 2.4. 

 

 

 

Fig. 2.4 - Nonlinear circuit divided into linear and nonlinear subcircuits for Harmonic Balance 

analysis 
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The linear part is described using admittance parameters (Y-parameters). Before proceeding further with 

solution of the circuit, let’s assume the input of the circuit is a single-tone sinusoidal signal. Since the 

circuit is nonlinear, the steady-state response of the circuit will contain the excitation frequency and its 

harmonics. In theory, an infinite number of harmonics exist at the output. However, in practice, the first ܭ 

harmonics can describe the output, and all the node voltages and branch current, with good accuracy [10]. 

 depends on the nonlinearity of the circuit as well as the input power. For mild to strong nonlinearities, a ܭ

small number of harmonics, e.g. 5 harmonics, is usually sufficient, whereas when strongly nonlinear 

circuits require larger number of harmonics to achieve good accuracy. For single frequency at the input, 

knowing the magnitude and phase of the ܭ harmonics of all voltages and currents, the time-domain 

solution of the circuit is found using the inverse Fourier transform, 

 

ሻݐሺݒ ൌ ෍ ௡ܸ݁௝௡ఠబ௧
௄

௡ୀି௄

.  (2.25) 

 

Thus, the solution of the circuit is now reduced to finding the magnitude and phase of the ܭ harmonics 

for all voltages and currents. Using Kirchhoff’s current law in the time-domain we have, 

 

൞

݅ଵሺݐሻ ൅ ଓଵ̂ሺݐሻ ൌ 0
݅ଶሺݐሻ ൅ ଓଶ̂ሺݐሻ ൌ 0

ڭ
݅ேሺݐሻ ൅ ଓே̂ሺݐሻ ൌ 0

.  (2.26) 

 

Taking the Fourier transform of (2.26), results in, 

 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ ଵ,଴ܫ ൅ መଵ,଴ܫ ൌ 0

ଵ,ଵܫ ൅ መଵ,ଵܫ ൌ 0
ڭ

ଵ,௄ܫ ൅ መଵ,௄ܫ ൌ 0
ଶ,଴ܫ ൅ መଶ,଴ܫ ൌ 0
ଶ,ଵܫ ൅ መଶ,ଵܫ ൌ 0

ڭ
ଶ,௄ܫ ൅ መଶ,௄ܫ ൌ 0

ڭ
ே,௄ܫ ൅ መே,௄ܫ ൌ 0

,  (2.27) 
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where ܫ௡.௞ represents the ݇th harmonic of the current ݅௡ሺݐሻ and similarly, ܫመ௡.௞ represent the ݇th harmonic 

of the current ଓ௡̂ሺݐሻ. One can solve the linear part of the circuit using Y-parameters in frequency-domain. 

The linear analysis must be carried out at the excitation frequency, ߱଴, and also, at the harmonics of the 

excitation frequency. The admittance equations for the linear part of the circuit at the excitation frequency 

is written as, 

 

ଵ,ଵܫ ൌ ଵܻଵሺ߱଴ሻ ଵܸ,ଵ ൅ ଵܻଶሺ߱଴ሻ ଶܸ,ଵ ൅ ڮ ൅ ଵܻሺேାଶሻሺ߱଴ሻ ேܸାଶ,ଵ

 

ଶ,ଵܫ ൌ ଶܻଵሺ߱଴ሻ ଵܸ,ଵ ൅ ଶܻଶሺ߱଴ሻ ଶܸ,ଵ ൅ ڮ ൅ ଶܻሺேାଶሻሺ߱଴ሻ ேܸାଶ,ଵ 

 

 ڭ

 

ே,ଵܫ ൌ ேܻଵሺ߱଴ሻ ଵܸ,ଵ ൅ ேܻଶሺ߱଴ሻ ଶܸ,ଵ ൅ ڮ ൅ ேܻሺேାଶሻሺ߱଴ሻ ேܸାଶ,ଵ 

 

ሺேାଵሻ,ଵܫ ൌ ሺܻேାଵሻଵሺ߱଴ሻ ଵܸ,ଵ ൅ ሺܻேାଵሻଶሺ߱଴ሻ ଶܸ,ଵ ൅ ڮ ൅ ሺܻேାଵሻሺேାଶሻሺ߱଴ሻ ேܸାଶ,ଵ 

 

ሺேାଶሻ,ଵܫ ൌ ሺܻேାଶሻଵሺ߱଴ሻ ଵܸ,ଵ ൅ ሺܻேାଶሻଶሺ߱଴ሻ ଶܸ,ଵ ൅ ڮ ൅ ሺܻேାଶሻሺேାଶሻሺ߱଴ሻ ேܸାଶ,ଵ, 

(2.28) 

 

where ௡ܸ.௞ represent the ݇th harmonic of the voltage ݒ௡ሺݐሻ. Since we have an ሺܰ ൅ 2ሻ port network, the 

size of the admittance equations will be ሺܰ ൅ 2ሻ ൈ ሺܰ ൅ 2ሻ. Similarly, the admittance equations for the 

harmonics are written for the linear part of the circuit knowing the Y-parameters of the linear circuit at 

2߱଴, 3߱଴, … and ߱ܭ଴. Combining all the admittance equations in the matrix form we’ll get, 

 

ۏ
ێ
ێ
ێ
ێ
ۍ

ଵܫ
ଶܫ
ڭ

ேܫ
ேାଵܫ
ےேାଶܫ

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵܻ,ଵ ଵܻ,ଶ

ଶܻ,ଵ ଶܻ,ଶ
ڮ ଵܻ,ே ଵܻ,ሺேାଵሻ ଵܻ,ሺேାଶሻ

ଶܻ,ே ଶܻ,ሺேାଵሻ ଶܻ,ሺேାଶሻ
ڭ ڰ ڭ

ேܻ,ଵ

ሺܻேାଵሻ,ଵ

ሺܻேାଶሻ,ଵ

ڮ
ேܻ,ே ேܻ,ሺேାଵሻ ேܻ,ሺேାଶሻ

ሺܻேାଵሻ,ே ሺܻேାଵሻ,ሺேାଵሻ ሺܻேାଵሻ,ሺேାଶሻ

ሺܻேାଶሻ,ே ሺܻேାଶሻ,ሺேାଵሻ ሺܻேାଶሻ,ሺேାଶሻے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ ଵܸ

ଶܸ
ڭ
ேܸ

ேܸାଵ
ேܸାଶے

ۑ
ۑ
ۑ
ۑ
ې

,  (2.29) 

 

where, 
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௡ܫ ൌ

ۏ
ێ
ێ
ێ
ۍ
௡,଴ܫ
௡,ଵܫ
௡,ଶܫ

ڭ
ے௡,௄ܫ

ۑ
ۑ
ۑ
ې

      and      ௡ܸ ൌ

ۏ
ێ
ێ
ێ
ۍ ௡ܸ,଴

௡ܸ,ଵ

௡ܸ,ଶ
ڭ

௡ܸ,௄ے
ۑ
ۑ
ۑ
ې

,  (2.30) 

 

and, 

 

௠ܻ,௡ ൌ

ۏ
ێ
ێ
ێ
ۍ ௠ܻ௡ሺ0ሻ 0

0 ௠ܻ௡ሺ߱଴ሻ ڮ
0
0
0

ڭ ڰ ڭ
  0 0 ڮ ௠ܻ௡ሺ߱ܭ଴ሻے

ۑ
ۑ
ۑ
ې
.  (2.31) 

 

It can be seen that the size of the complete admittance equations is ሺܭ ൅ 1ሻሺܰ ൅ 2ሻ ൈ ሺܭ ൅ 1ሻሺܰ ൅ 2ሻ. 

When solving the circuit, all the voltages and currents, except ேܸାଵ and ேܸାଶ, are unknown. Also, ܫேାଵ 

and ܫேାଶ, are not of interest. Thus, taking out ܫேାଵ, ܫேାଶ, ேܸାଵ and ேܸାଶ from the unknown vector, we’ll 

get, 

 

ܫ ൌ ൦

ଵܫ
ଶܫ
ڭ

ேܫ

൪ ൌ

ۏ
ێ
ێ
ۍ ଵܻ,ሺேାଵሻ

ଶܻ,ሺேାଶሻ

ଵܻ,ሺேାଶሻ

ଶܻ,ሺேାଶሻ
ڭ ڭ

ேܻ,ሺேାଵሻ ேܻ,ሺேାଶሻے
ۑ
ۑ
ې

൤ ேܸାଵ
ேܸାଶ

൨ ൅ ൦

ଵܻ,ଵ ଵܻ,ଶ

ଶܻ,ଵ ଶܻ,ଶ
ڮ ଵܻ,ே

ଶܻ,ே
ڭ ڰ ڭ

ேܻ,ଵ ேܻ,ଶ ڮ ேܻ,ே

൪ ൦
ଵܸ
ଶܸ
ڭ
ேܸ

൪, 

 

՜ ܫ ൌ ௌܫ ൅ ேܻൈேܸ, 

(2.32) 

 

where ܫௌ is the known vector due to the input sources at port ܰ ൅ 1 and ܰ ൅ 2. Replacing (2.32) in (2.27), 

results in, 

 

ܫ ൅ ሻݎ݈ܽ݁݊݅݊݋መሺܰܫ ൌ ௌܫ ൅ ேܻൈேܸ ൅ ሻݎ݈ܽ݁݊݅݊݋መሺܰܫ ൌ 0,  (2.33) 

 

where ܫመሺܰݎ݈ܽ݁݊݅݊݋ሻ is the current of the nonlinear elements. The next step is to calculate ܫመሺܰݎ݈ܽ݁݊݅݊݋ሻ 

as a function of the unknown vector, ܸ. In order to be able to handle strong nonlinearities, the nonlinear 

section of the circuit is solved in time-domain. Nonlinear resistors, conductances and controlled sources 

are characterized by their current-voltage relation, i.e.,  
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݅௚,௡ሺݐሻ ൌ ௡݂൫ݒଵሺݐሻ, ,ሻݐଶሺݒ ڮ ,   .ሻ൯ݐேሺݒ (2.34) 

 

Taking the Fourier Transform of ݅௚,௡ሺݐሻ, part of the ܫመሺܰݎ݈ܽ݁݊݅݊݋ሻ vector that is due to nonlinear 

conductance and controlled sources is calculated as, 

 

ܫீ ൌ ൦

ܫீ ଵ
ܫீ ଶ

ڭ
ܫீ ே

൪ ൌ ࣠

ۏ
ێ
ێ
ۍ
݅௚,ଵሺݐሻ
݅௚,ଶሺݐሻ

ڭ
݅௚,ேሺݐሻے

ۑ
ۑ
ې

ൌ ࣠ ൦
ଵ݂ሺݒଵሺݐሻ, ,ሻݐଶሺݒ ڮ , ሻሻݐேሺݒ
ଶ݂ሺݒଵሺݐሻ, ,ሻݐଶሺݒ ڮ , ሻሻݐேሺݒ

ڭ
ே݂ሺݒଵሺݐሻ, ,ሻݐଶሺݒ ڮ , ሻሻݐேሺݒ

൪.  (2.35) 

 

Nonlinear capacitors are characterized by their charge-voltage relation, i.e., 

 

ሻݐ௖,௡ሺݍ ൌ ௤݂௡൫ݒଵሺݐሻ, ,ሻݐଶሺݒ ڮ ,  ,ሻ൯ݐேሺݒ

 

՜ ݅௖,௡ሺݐሻ ൌ ሻݐ௖,௡ሺݍ݀ ⁄ݐ݀ .  

(2.36) 

 

Similarly, taking the Fourier transform of the charge in (2.36) and then taking the first derivative of 

charge to get the current, we’ll get, 

 

 

ܳ ൌ ൦

ܳଵ
ܳଶ
ڭ

ܳே

൪ ൌ ࣠

ۏ
ێ
ێ
ۍ
ሻݐ௖,ଵሺݍ
ሻݐ௖,ଶሺݍ

ڭ
ےሻݐ௖,ேሺݍ

ۑ
ۑ
ې

ൌ ࣠

ۏ
ێ
ێ
ۍ ௤݂ଵሺݒଵሺݐሻ, ,ሻݐଶሺݒ ڮ , ሻሻݐேሺݒ

௤݂ଶሺݒଵሺݐሻ, ,ሻݐଶሺݒ ڮ , ሻሻݐேሺݒ
ڭ

௤݂ேሺݒଵሺݐሻ, ,ሻݐଶሺݒ ڮ , ےሻሻݐேሺݒ
ۑ
ۑ
ې
, 

 

՜ ஼ܫ ൌ ݆Ωܳ, 

(2.37) 

 

where ܫ஼  is the part of nonlinear current due to nonlinear capacitors and, 

 

Ω ൌ

ۏ
ێ
ێ
ێ
ۍ
Ω଴ 0
0 Ω଴

ڮ 0 0
0 0

ڭ ڰ ڭ
0 0
0 0 ڮ Ω଴ 0

0 Ω଴ے
ۑ
ۑ
ۑ
ې
, 

 

(2.38) 
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Ω଴ ൌ ൦

0 0
0 ω଴

ڮ 0
0

ڭ ڰ ڭ
0 0 ڮ ω଴ܭ

൪. 

 

Replacing ீܫ  and ܫ஼  in (2.33), results in, 

 

ሺܸሻܨ ൌ ௌܫ ൅ ேܻൈேܸ ൅ ܫீ ൅ ஼ܫ ൌ 0.  (2.39) 

 

Finally, the last step in Harmonic Balance is to solve (2.39) for the unknown vector ܸ, called Harmonic 

Balance equation [10]. However, ீܫ  and ܫ஼  are both nonlinear functions of the unknown vector ܸ, which 

results in a nonlinear function ܨሺܸሻ. Solving (2.39) requires iterative methods, for example Newton-

Raphson algorithm. Newton-Raphson algorithm starts with an initial guess of the solution, and then 

corrects the initial guess in the next iterations based on the first derivative of the nonlinear function with 

respect to all parameters (the Jacobian matrix) [1]. The Jacobian matrix for the Harmonic Balance 

equation is found as, 

 

ሺܸሻܯ   ൌ డிሺ௏ሻ
డ௏

ൌ ேܻൈே ൅ డூಸ
డ௏

൅ డூ಴
డ௏

ൌ ேܻൈே ൅ డூಸ
డ௏

൅ ݆Ω డொ
డ௏

.  (2.40) 

 

Also, the next iteration value, ܸ௜ାଵ, is found using, 

 

  
డிሺ௏ሻ

డ௏
ቚ

௏ୀ௏೔
൫ܸ௜ାଵ െ ܸ௜൯ ൌ െܨ൫ܸ௜൯.  (2.41) 

 

Calculating the Jacobian matrix requires the first derivative of all the nonlinear elements which is 

complex and time-consuming (especially when a close-form expression for nonlinearities is not 

available). Furthermore, solving (2.41) requires considerable memory and computation when dealing with 

large and/or strongly nonlinear circuits. The reader is referred to [10] for the details of the method. The 

steps required to solve the Harmonic Balance equation are, 

‐ Start with an initial guess for the time-domain unknown vector ݒሺݐሻ and then take its Fourier 

Transform to obtain ܸ଴. If the initial guess is not close enough to the final solution, the 

algorithm faces convergence issues [10].  

‐ Find the time-domain current of nonlinear resistors and controlled sources, and the charge of 

the nonlinear capacitors based on the initial guess, ݒ଴ሺݐሻ. Then, take the Fourier transform of 

the currents and charges to find with ீܫ  and ܫ஼  matrices. 
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‐ Calculate the Harmonic Balance equation, ܨሺܸ଴ሻ ൌ ௌܫ ൅ ேܻൈேܸ଴ ൅ ܫீ ൅ ஼ܫ .  

‐ Calculate the Jacobian matrix using (2.40).  

‐ Calculate the next iteration value, ܸ௜ାଵ, using (2.41). 

‐ Using the new value of ܸ௜ାଵ, calculate the Harmonic Balance equation, ܨ൫ܸ௜ାଵ൯.  

‐ If the error of “all” the unknowns in  ܨ൫ܸ௜ାଵ൯ are small enough, the solution has been found. 

Otherwise, use the inverse Fourier transform to find ݒ௜ାଵሺݐሻ and go back to the second step. 

Note that, Harmonic Balance requires one Fourier Transform and Inverse Fourier Transform, calculating 

Jacobian matrix and solving (2.41) per iteration. As the size of matrices increases, (due to larger circuits 

and/or stronger nonlinearities), computation cost increases significantly [10]. The method described here 

deals with the case where inputs contain a single tone. However, in practical situations, it is necessary to 

simulate circuits with multiple tones at input. When dealing with multiple tones, not only the harmonics 

of the input frequencies exist at the output, also, the inter-modulation products of the input frequencies 

should be taken into account. This increases the size of matrices significantly, especially for strongly 

nonlinear circuits. For example, in case of two-tone excitation (߱1 and ߱2) the frequencies need to be 

taken into account at the output are, 

 

  ߱௞ ൌ ݉߱ଵ ൅ ݊߱ଶ , ݉, ݊ ൌ ڮ , െ2, െ1,0, ൅1, ൅2,  ڮ (2.42) 

 

The only difference in the Harmonic Balance analysis for multi-tone inputs is larger matrices. Also, since 

the input tones to the circuit are usually non-commensurate, the voltages and currents are not periodic, 

which requires generation of “almost-periodic” Fourier transform. The associated problems and 

algorithms regarding this issue are beyond the scope of this chapter and the reader is referred to [10] for a 

detailed discussion of this problem. 
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Chapter 3 
Time-Varying Volterra Analysis: Time-Domain Approach 

In this chapter, a new time-domain method to simulate nonlinear circuits is proposed. The method is a 

modification of the conventional Volterra analysis, which enables it to simulate nonlinear circuits more 

accurately. Conventional Volterra analysis is not accurate enough when analyzing strongly nonlinear 

circuits, as discussed in chapter 2. The Taylor series truncation error and its limited convergence radius 

are the two main sources of these issues. The proposed method changes the Taylor expansion point as the 

signal varies, i.e. a time-varying expansion waveform. Hence, the truncation error of the Taylor series will 

be reduced, and the convergence issue of Taylor expansion will be solved. The details of the proposed 

method are discussed in this chapter. The method is particularly useful when sinusoidal waveforms are 

used and frequency-domain analysis is possible. Details of the method in frequency-domain will be 

discussed in the next chapter. The concept of time-varying Volterra analysis has been proposed in the 

literature before [20], [21]. However, all the methods are either applicable for one specific circuit, e.g. 

mixers, or should be used with another simulation method, e.g. Harmonic Balance. For example, in [20] 

the application of time-varying Volterra for analysis of a FET mixer is discussed. The mixer is first 

analyzed using Harmonic Balance with the presence of the larger input, i.e. local oscillator input. Then 

using the result of Harmonic Balance as the expansion point for the nonlinear elements, Volterra analysis 

is applied to solve the circuit. This method is only applicable for mixers where one of the inputs is much 

larger than other inputs. Also, the method requires Harmonic Balance analysis to be done first, thus, 

increasing the computation cost of the method.  

The rest of this chapter is organized as follows. Section 3.1 describes the proposed method, gives 

its properties and compares it with the other time-domain simulation methods. Section 3.2 presents the 

application of the proposed method to simulate nonlinear RC circuits. Three different cases of nonlinear 

RC circuits are simulated using the proposed method and conventional time-domain approaches. Section 

3.3 discusses the effect of pre-analysis on the proposed method in more detail. Generalization of the 

proposed method for multi-dimensional nonlinearities is presented in section 3.4. In section 3.5 a 

modification of the time-varying Volterra will be presented that achieves better computation efficiency 

comparing to time-varying Volterra. The advantages and shortcomings of the proposed method are 

summarized in section 3.6.  

3.1 Method Description  

The conventional Volterra analysis uses a truncated Taylor series to express the behavior of the nonlinear 

elements of the circuit. Usually the quiescent voltages/currents (DC) of the nonlinear devices are used as 
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the expansion point of the Taylor series [4]. The 3rd order truncated Taylor series of a nonlinear resistor is 

written as, 

 

ሻݐோሺݒ ؆ ଴ܸ ൅ ܴଵሺ݅ோሺݐሻ െ ଴ሻܫ ൅ ܴଶሺ݅ோሺݐሻ െ ଴ሻଶܫ ൅ ܴଷሺ݅ோሺݐሻ െ  ,଴ሻଷܫ (3.1) 

 

where ଴ܸ ൌ ݂ሺܫ଴ሻ, which is a DC value, is the expansion point of the Taylor series. In order to clarify that 

usually both current and voltage of the resistor are time-dependent, ݅ோሺݐሻ and ݒோሺݐሻ are used in (3.1). The 

truncation error of the series is approximated by, ߝ௧௥௨௡௖௔௧௜௢௡ ؆ ܴସሺ݅ோሺݐሻ െ  ଴ሻସ [11]. As the input signalܫ

gets larger, the current and voltage of the resistor, ݅ோሺݐሻ  and ݒோሺݐሻ, will deviate more from the expansion 

point, ܫ଴ and ଴ܸ. In other words, |݅ோሺݐሻ െ  ଴| becomes larger as the input gets stronger, which results inܫ

larger truncation error. The truncation error can be reduced by either reducing ܴସ or |݅ோሺݐሻ െ  ଴|. The firstܫ

method is presented in [8]. Knowing that a truncated Chebyshev series is the best ݊th order polynomial 

approximation of a function, Chebyshev series is applied to model nonlinearities in [8]. Employing 

Chebyshev series will not only reduce the truncation error of the expansion, thus increasing the accuracy 

of the Volterra analysis, but also solves the convergence issue of Taylor series as discussed in [8]. The 

second method, is reducing |݅ோሺݐሻ െ ሻݐ଴|. In order to lower truncation error, one must reduce |݅ோሺܫ െ  |଴ܫ

at all times. Using a time-varying expansion point for Taylor series, ݒ଴ሺݐሻ ൌ ݂൫݅଴ሺݐሻ൯, we are able to 

reduce the truncation error compared to Taylor series with a fixed expansion point. As long as the time-

varying expansion point is chosen in a way so that ԡ݅ோሺݐሻ െ ݅଴ሺݐሻԡ ൏ ԡ݅ோሺݐሻ െ  ଴ԡ, the accuracy of theܫ

expansion will improve. Using this method, the 3rd order truncated Taylor series is written as, 

 

ோݒ ؆ ሻݐ଴ሺݒ ൅ ܴଵሺݐሻ൫݅ோ െ ݅଴ሺݐሻ൯ ൅ ܴଶሺݐሻ൫݅ோ െ ݅଴ሺݐሻ൯ଶ ൅ ܴଷሺݐሻ൫݅ோ െ ݅଴ሺݐሻ൯ଷ.  (3.2) 

 

Since a time-varying expansion point is used, the resistor coefficients, i.e. ܴଵ, ܴଶ, ܴଷ,…, are also time 

dependent, and defined as, 

 

ܴଵሺݐሻ ൌ
݂݀
݀݅ோ

ቤ
݅ோ ൌ ݅଴ሺݐሻ 

ܴଶሺݐሻ ൌ
1
2!

݀ଶ݂
݀݅ோ

ଶ ቤ
݅ோ ൌ ݅଴ሺݐሻ 

ܴଷሺݐሻ ൌ
1
3!

݀ଷ݂
݀݅ோ

ଷ ቤ
݅ோ ൌ ݅଴ሺݐሻ 

 ڭ

(3.3) 
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Schetzen’s multi-linear method can now be applied for the nonlinear element described using 

(3.2). Rewriting (3.2), we get, 

 

ሻݐோሺݒ െ ଴ܸሺݐሻ ൌ ሻݐොሺݒ ൌ ܴଵሺݐሻଓ̂ሺݐሻ ൅ ܴଶሺݐሻଓ̂ሺݐሻଶ ൅ ܴଷሺݐሻଓ̂ሺݐሻଷ ൅  .ڮ (3.4) 

 

where ଓ̂ሺݐሻ ൌ ݅ோሺݐሻ െ ݅଴ሺݐሻ and ݒොሺݐሻ ൌ ሻݐோሺݒ െ  ሻ. The Nonlinear resistor can be modeled with twoݐ଴ሺݒ

independent sources, ݒ଴ሺݐሻ and ݅଴ሺݐሻ (which are time-dependent), and a nonlinear element with the 

characteristic function, 

 

ሻݐොሺݒ ൌ ෍ ܴ௡ሺݐሻଓ̂ሺݐሻ௡
ஶ

௡ୀଵ

,  (3.5) 

 

as shown in Fig. 3.1.  

 

 

Fig. 3.1 - Equivalent model for the nonlinear resistor with time-varying expansion point 

 

The time-varying sources ݒ଴ሺݐሻ and ݅଴ሺݐሻ appear in the right-hand side of the formulation equations, so 

we can remove them from the model and concentrate on the nonlinear part. Breaking up the complete 

response into response of different orders, as done in conventional Schetzen’s method, results in, 

 

ሻݐොሺݒ ൌ ෍ ሻݐො௡ሺݒ
ஶ

௡ୀଵ

ܽ݊݀ ଓ̂ሺݐሻ ൌ ෍ ଓ௡̂ሺݐሻ
ஶ

௡ୀଵ

.  (3.6) 
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Replacing (3.6) in (3.5) and equating terms of different orders on both sides, the response of different 

orders is found as, 

 

ሻݐොଵሺݒ ൌ ܴଵሺݐሻଓଵ̂ሺݐሻ 

 

ሻݐොଶሺݒ              ൌ ܴଵሺݐሻଓଶ̂ሺݐሻ ൅ ܴଵሺݐሻଓଵ̂ሺݐሻଶ 

 

ሻݐොଷሺݒ                                      ൌ ܴଵሺݐሻଓଷ̂ሺݐሻ ൅ 2ܴଵሺݐሻܴଶሺݐሻଓଵ̂ሺݐሻଓଶ̂ሺݐሻ ൅ ܴଵሺݐሻଓଵ̂ሺݐሻଷ 

 

 ڭ

(3.7) 

 

The response of each order contains a linear, but time-varying, part (ݒො௡ሺ݈݅݊݁ܽݎሻ ൌ ܴଵሺݐሻଓ௡̂ሺݐሻ) and a 

nonlinear time-varying part which depends only on the response of the circuit of lower orders 

ሻݎ݈ܽ݁݊݅݊݋ො௡ሺ݊ݒ) ൌ ݂൫ଓଵ̂ሺݐሻ, ଓଶ̂ሺݐሻ, ڮ , ଓ௡̂ିଵሺݐሻ൯). The response of each order is modeled using a linear 

time-varying resistor, ܴଵሺݐሻ, and a dependent source, ݁௡ሺݐሻ ൌ ݂൫ଓଵ̂ሺݐሻ, ଓଶ̂ሺݐሻ, ڮ , ଓ௡̂ିଵሺݐሻ൯, as shown in 

Fig. 3.2. Since the dependent source, ݁௡ሺݐሻ, depends upon the response of lower order circuits, it will 

appear on the right-hand side of the formulation for each order. 

 

 

Fig. 3.2 - Nth order time-varying Volterra equivalent model for the nonlinear resistor 

 

Generalizing the derivations above similar models is created for nonlinear capacitors, inductors and 

dependent sources. Fig. 3.3 summarizes the Volterra models of different orders for nonlinear elements. 

There are two issues regarding the time-varying expansion point. First, how can one find ܫ଴ሺݐሻ for 

any given circuit? Secondly, how close the time-varying expansion point, ܫ଴ሺݐሻ, should be to the exact 
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response of the circuit, ݅ோሺݐሻ? ܫ଴ሺݐሻ is chosen to get an acceptable truncation error at all times, i.e. for a 3rd 

order truncated Taylor series we have, 

 

max ൜ฬ
௧௥௨௡௖௔௧௜௢௡ߝ

ሻݐோሺݒ ฬൠ ؆ ݔܽ݉ ൝อ
ܴସሺݐሻ൫݅ோሺݐሻ െ ݅଴ሺݐሻ൯ସ

ሻݐோሺݒ อൡ ൏  ,௠௔௫ߝ (3.8) 

 

where ߝ௠௔௫ is the maximum acceptable error. It should be noted, ߝ௧௥௨௡௖௔௧௜௢௡ is the error only due to 

truncation. The total simulation error is the truncation error plus the error of transient simulation. Since 

the simulation accuracy is limited by the truncation error, the truncation error is a critical and important 

parameter. The time-varying expansion point for all the nonlinear devices is found with the aid of a 

preliminary simulation of the circuit, called pre-analysis. Unless very strongly nonlinear circuits are 

considered, the pre-analysis does not need to be very accurate. It will be shown with the aid of a simple 

numerical example that simulation of the linearized circuit, called linear pre-analysis, is sufficient to find 

the time-varying expansion points for all the nonlinear devices. It can be easily seen that more accurate 

pre-analysis results in better accuracy for the truncated Taylor series and Volterra analysis. 

The derivations in equations (3.4) to (3.7) using time-varying expansion point is an extension of 

the Schetzen’s original work in [4]. The model contains a time-varying resistor, which is the main 

difference between this method and conventional Volterra analysis. When using time-varying expansion 

point, a linear time-varying circuit must be analyzed in each order of Volterra analysis. Linear time-

varying circuits are more expensive to analyze compared to linear time-invariant circuits. The simulation 

of the time-varying Volterra circuits will be discussed in more detail in section 3.2. In summary the steps 

required for time-varying Volterra analysis are, 

‐ Pre-analysis: Simulate the linearized circuit, i.e. linear pre-analysis, to find time-varying 

expansion point for all nonlinear elements. 

‐ Based on the expansion point, calculate time-varying nonlinear coefficients for all nonlinear 

elements. 

‐ Solve the time-varying Volterra circuits of different orders sequentially using the proper 

numerical integration method.  

‐ Finally, add the response of different orders to get the complete solution. 

The advantages and limitations of the proposed method are discussed in the next section with the aid of a 

numerical example. 
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Fig. 3.3 - Nonlinear elements and their time-varying Volterra circuits 
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3.2 Numerical Example 

In order to show the effectiveness of the method, a nonlinear RC circuit is simulated using the time-

varying Volterra analysis. Furthermore, a comparison between the 3rd order time-varying Volterra, 3rd 

order and 5th order conventional Volterra and Newton-Raphson numerical integration is carried out in this 

section. The test circuit contains an input voltage source, nonlinear resistor and a linear capacitor as 

shown in Fig.3.4. It has been assumed that the nonlinearity of the resistor is modeled using a 3rd order 

polynomial. However, the results can be simply generalized for higher order nonlinearities and other 

nonlinear elements.  

 

 

Fig. 3.4 - Nonlinear RC test circuit 

  

First we analyze the circuit using conventional Volterra analysis. The circuit is broken into circuit 

of different orders, as shown in Fig. 3.5. It is assumed that DC of the input signal is zero, thus, DC 

operating point of the nonlinear resistor is zero. The circuits is formulated using MNA as, 

 

ሻݐ௡ሺܺܩ ൅ ܥ
݀ܺ௡ሺݐሻ

ݐ݀
ൌ ௡ܹሺݐሻ,  (3.9) 

 

where, 

 

ܩ ൌ

ۏ
ێ
ێ
ێ
ۍ

0 0
0 0

0 1
0 െ1

1
0

1 0
1 െ1

0 0
0 0

0
0

0 1 െ1 0 െܴଵے
ۑ
ۑ
ۑ
ې
, 

 

(3.10) 
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ܥ ൌ

ۏ
ێ
ێ
ێ
0ۍ 0
0 0

0 0
଴ܥ 0

0
0

0 0
0 0

0 0
0 0

0
0

0 0 0 0 ے0
ۑ
ۑ
ۑ
ې
, 

 

and, 

 

ଵܹሺݐሻ ൌ ሾ0 0 ሻݐ௜௡ሺݒ 0 0ሿ், 

ଶܹሺݐሻ ൌ ሾ0 0 0 ݁ଶሺݐሻ 0ሿ்,  

 ڭ

ହܹሺݐሻ ൌ ሾ0 0 0 ݁ହሺݐሻ 0ሿ். 

(3.11) 

 

Using the 2nd order BDF the circuits are solved as (with constant step-size) [1], 

 

൬ܩ ൅
3

2݄
൰ܥ ܺ௡ሺݐ௞ାଶሻ ൌ ௡ܹሺݐ௞ାଶሻ ൅

2
݄

௞ାଵሻݐ௡ሺܺܥ െ
1

2݄
 ,௞ሻݐ௡ሺܺܥ (3.12) 

 

where ݄ ൌ ௞ାଶݐ െ ܶ ௞ାଵ, is the simulation step-size. Solving (3.12) requires LU factorization ofݐ ൌ ܩ ൅

ሺ3 2݄⁄ ሻܥ matrix once, and forward/backward substitution for each time-step. Finally, the total response is 

calculated as, ܺሺݐሻ ൌ ଵܺሺݐሻ ൅ ܺଶሺݐሻ ൅ ܺଷሺݐሻ ൅ ܺସሺݐሻ ൅ ܺହሺݐሻ, for 5th order conventional Volterra. For 

3rd order conventional Volterra, the 4th and 5th order simulation results are not considered. 

The circuit is also simulated using 3rd order time-varying Volterra with linear pre-analysis. The 

first step is the linear pre-analysis. Linearizing the circuit around the DC operating point, i.e. ݅ோି஽஼ ൌ 0, 

the circuit is reduced to the 1st order conventional Volterra circuit. The linearized circuit is simulated 

using the same 2nd order BDF formulae described before. Using the result of pre-analysis for the current 

of the resistor, i.e. ݅ோି௉ாሺݐሻ, the 3rd order truncated time-varying expansion of the nonlinear resistor is 

found as, 

 

ሻݐோሺݒ ؆ ݂൫݅ோି௉ாሺݐሻ൯ ൅ ෠ܴଵሺݐሻ൫݅ோሺݐሻ െ ݅ோି௉ாሺݐሻ൯ 

                                             ൅ ෠ܴଶሺݐሻ൫݅ோሺݐሻ െ ݅ோି௉ாሺݐሻ൯ଶ ൅ ෠ܴଷሺݐሻ൫݅ோሺݐሻ െ ݅ோି௉ாሺݐሻ൯ଷ, 
(3.13) 

 

where, 
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݂൫݅ோି௉ாሺݐሻ൯ ൌ ܴଵ݅ோି௉ாሺݐሻ ൅ ܴଶ݅ோି௉ா
ଶ ሺݐሻ ൅ ܴଷ݅ோି௉ா

ଷ ሺݐሻ, 

 
 

෠ܴଵሺݐሻ ൌ
݂݀
݀݅ோ

ቤ
݅ோ ൌ ݅ோି௉ாሺݐሻ ൌ ܴଵ ൅ 2ܴଶ݅ோି௉ாሺݐሻ ൅ 3ܴଷ݅ோି௉ா

ଶ ሺݐሻ, 

 
 

෠ܴଶሺݐሻ ൌ
1
2!

݀ଶ݂
݀݅ோ

ଶ ቤ
݅ோ ൌ ݅ோି௉ாሺݐሻ ൌ ܴଶ ൅ 3ܴଷ݅ோି௉ாሺݐሻ, 

 

෠ܴଷሺݐሻ ൌ
1
3!

݀ଷ݂
݀݅ோ

ଷ ቤ
݅ோ ൌ ݅ோି௉ாሺݐሻ ൌ ܴଷ. 

(3.14) 

 

 

Fig. 3.5 - Volterra circuits for different orders 
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Using (3.13) the 1st, 2nd and 3rd order time-varying Volterra circuits are constructed as shown in Fig. 3.6. 

All the circuits contain linear time-varying resistors, while the rest of the circuit is similar to the 

conventional Volterra circuits.  

 

Fig. 3.6 – Time-Varying Volterra circuits for different orders 

 

Similarly, the time-varying Volterra circuits are formulated as, 

 

ሻݐሻܺ௡ሺݐ෠ሺܩ ൅ መܥ
݀ܺ௡ሺݐሻ

ݐ݀
ൌ ෡ܹ௡ሺݐሻ,  (3.15) 

 

where, 
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ሻݐ෠ሺܩ ൌ

ۏ
ێ
ێ
ێ
ۍ

0 0
0 0

0 1
0 െ1

1
0

1 0
1 െ1

0 0
0 0

0
0

0 1 െ1 0 െ ෠ܴଵሺݐሻے
ۑ
ۑ
ۑ
ې
, 

 

መܥ ൌ

ۏ
ێ
ێ
ێ
0ۍ 0
0 0

0 0
଴ܥ 0

0
0

0 0
0 0

0 0
0 0

0
0

0 0 0 0 ے0
ۑ
ۑ
ۑ
ې
, 

(3.16) 

 

and, 

 

෡ܹଵሺݐሻ ൌ ൣ݅ோି௉ாሺݐሻ െ݅ோି௉ாሺݐሻ ሻݐ௜௡ሺݒ ݂൫݅ோି௉ாሺݐሻ൯ 0൧், 

෡ܹଶሺݐሻ ൌ ሾ0 0 0 ݁ଶሺݐሻ 0ሿ்,  
෡ܹଷሺݐሻ ൌ ሾ0 0 0 ݁ଷሺݐሻ 0ሿ்.  

(3.17) 

 

Solving the circuits using 2nd order BDF, we have (with constant step-size), 

 

൬ܩ෠ሺݐ௞ାଶሻ ൅
3

2݄
መ൰ܥ ܺ௡ሺݐ௞ାଶሻ ൌ ෡ܹ௡ሺݐ௞ାଶሻ ൅

2
݄

௞ାଵሻݐመܺ௡ሺܥ െ
1

2݄
 ,௞ሻݐመܺ௡ሺܥ (3.18) 

 

where ݄ ൌ ௞ାଶݐ െ ሻݐ௞ାଵ, is the simulation step-size. Solving (3.18) requires LU factorization of ܶሺݐ ൌ

ሻݐ෠ሺܩ ൅ ሺ3 2݄⁄ ሻܥመ and forward/backward substitution for each time-step. The total response is calculated 

as, ܺሺݐሻ ൌ ଵܺሺݐሻ ൅ ܺଶሺݐሻ ൅ ܺଷሺݐሻ.  

For the purpose of comparison, 3 different cases of nonlinearities for the resistor will be examined in this 

section. First, a mildly nonlinear resistor is taken into account, i.e. ܴଶ, ܴଷ ا ܴଵ. As it will be shown, both 

time-varying Volterra and conventional Volterra analysis are capable of simulating such circuits. 

However, time-varying Volterra (with linear pre-analysis) gives better accuracy comparing to 

conventional Volterra. For the second and third cases stronger nonlinear resistor is considered. In these 

cases the coefficients ܴଶ and ܴଷ are comparable to, or larger than ܴଵ. Conventional Volterra series cannot 

simulate the circuit, whereas, time-varying Volterra manages to simulate the circuit with good accuracy.  
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3.2.1 Case I 

First case deals with a mildly nonlinear resistor. The input of the circuit is a sinusoidal voltage with a 

unity frequency and amplitude, i.e. ݒ௜௡ሺݐሻ ൌ sinሺ2ݐߨሻ. The circuit parameters along with transient 

simulation parameters are summarized in Table 3.1.   

 

Table 3.1 – Specifications of the test circuit and simulation parameters for Case I 

Parameter  Value 

Input Frequency, ࢔࢏ࢌ (Hz)  1 

Input Amplitude, ࢔࢏࡭ (Volts)  1 

Resistor Parameters, ࡾ૚, ,૛ࡾ  ૜ࡾ 1, 0.05, 0.05 

Capacitor Values (F)  1 

Simulation Step‐Size, ࢎ (sec)  5 ൈ 10ିସ 

Simulation Stop‐Time (sec)  10 

  

The circuit is simulated using 3rd and 5th order conventional Volterra and 3rd order time-varying Volterra 

(with linear pre-analysis). In order to be able to compare the accuracy of the results, the circuit is also 

simulated using ELDO® [12], an all purpose circuit simulator. ELDO® uses Gear2 numerical integration 

method with Newton-Raphson iterations. Variable step-size control algorithm is incorporated in the 

ELDO® software to ensure a good simulation accuracy at all times [12]. Fig. 3.7 shows the output voltage 

of the 3rd order time-varying Volterra analysis, 3rd and 5th order conventional Volterra as well as ELDO® 

simulation results. The results of all the methods are in good agreement with ELDO® simulation results. 

The absolute error of the 3rd order time-varying Volterra and 3rd and 5th order conventional Volterra 

simulation results are also shown in Fig. 3.8 to Fig. 3.10. The absolute error of the 3rd order time-varying 

Volterra is 3 orders of magnitude lower than the 3rd order conventional Volterra. Even when conventional 

Volterra with higher order is used, i.e. 5th order, the absolute error is 2 orders of magnitude higher than 3rd 

order time-varying Volterra (with linear pre-analysis). Better accuracy for time-varying Volterra is due to 

time-varying expansion point for nonlinear resistor. 3rd and 5th order conventional Volterra analysis use 

݅ோି஽஼ ൌ 0 as the expansion point, whereas time-varying Volterra uses the result of the simulation of 

linearized circuit as the expansion point. 

One can increase the order of conventional Volterra further to achieve the same accuracy as 3rd 

time-varying Volterra analysis. However, as the order of Volterra increases the complexity of the Volterra 

circuit increases exponentially making the analysis too complicated and impractical. Furthermore, in 
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order to ensure that the absolute error is not due to transient numerical integration and only Volterra 

analysis, the simulations were repeated for smaller transient step-sizes. The absolute error remained 

constant which shows that the error is dominated by the Volterra analysis error.  

 

 

Fig. 3.7 – Output Voltage using 3rd order Time-Varying Volterra, 3rd and 5th order conventional 

Volterra and ELDO® for Case I 

 

Fig. 3.8 – Absolute error of the simulation using 3rd order Time-Varying Volterra for Case I 



 

36 

 

 

 

Fig. 3.9 - Absolute error of the simulation using 3rd order conventional Volterra for Case I 

 

Fig. 3.10 - Absolute error of the simulation using 5th order conventional Volterra for Case I 
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3.2.2 Case II 

Second case uses a stronger nonlinear resistor, compared to Case I. This can be achieved by increasing ܴଶ 

and ܴଷ, while keeping the rest of the parameters in the circuit constant. Table 3.2 shows the circuit and 

simulation parameters for Case II.  

 

Table 3.2 - Specifications of the test circuit and simulation parameters for Case II 

Parameter  Value 

Input Frequency, ࢔࢏ࢌ (Hz)  1 

Input Amplitude, ࢔࢏࡭ (Volts)  1 

Resistor Parameters, ࡾ૚, ,૛ࡾ  ૜ࡾ 1, 0.5, 0.5 

Capacitor Values (F)  1 

Simulation Step‐Size, ࢎ (sec)  5 ൈ 10ିସ 

Simulation Stop‐Time (sec)  10 

 

The simulation results of the 3rd order time-varying Volterra, 3rd and 5th order conventional Volterra and 

ELDO® are shown in Fig. 3.11. Both 3rd and 5th order conventional Volterra fail to give accurate results 

for Case II, with relative error as high as 50%. On the other hand, 3rd order time-varying Volterra 

manages to simulate the circuit with good accuracy, maximum relative error of 0.2%. The absolute error 

of time-varying Volterra simulation is shown in Fig. 3.12. 
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Fig. 3.11 - Output Voltage using 3rd order Time-Varying Volterra, 3rd and 5th order conventional 

Volterra and ELDO® for Case II 

 

 

Fig. 3.12 - Absolute error of the simulation using 3rd order Time-Varying Volterra for Case II 
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3.2.3 Case III 

Finally, the third case increases the nonlinearity of the resistor further. Table 3.3 shows the circuit and 

simulation parameters for Case III. 

 

Table 3.3 - Specifications of the test circuit and simulation parameters for Case III 

Parameter  Value 

Input Frequency, ࢔࢏ࢌ (Hz)  1 

Input Amplitude, ࢔࢏࡭ (Volts)  1 

Resistor Parameters, ࡾ૚, ,૛ࡾ  ૜ࡾ 1, 1, 1.5 

Capacitor Values (F)  1 

Simulation Step‐Size, ࢎ (sec)  5 ൈ 10ିସ 

Simulation Stop‐Time (sec)  10 

 

Since nonlinearity of the resistor is stronger than Case II, it is evident that the conventional Volterra, 

which failed in Case II, cannot give accurate results for this nonlinear circuit. Simulation shows that the 

results of the 3rd and 5th order conventional Volterra suffers from relative error as high as 400%. The 

simulation results of the 3rd order time-varying Volterra, 3rd  and 5th order conventional Volterra as well as 

ELDO® simulation results are shown in Fig. 3.13. The results of 3rd order time-varying Volterra shows 

larger error comparing to Case II, maximum absolute error of 14 ൈ 10ିଷ ܸ, as shown in Fig. 3.14. The 

accuracy of the time-varying Volterra drops as the nonlinearity becomes stronger. This is due to the fact 

that the error of the pre-analysis is larger as the nonlinearity becomes stronger. Thus, the expansion point 

of the resistor will be farther from the exact response of ݅ோሺݐሻ, i.e. larger |݅ோሺݐሻ െ ݅ோି௉ாሺݐሻ|. The 

simulation error can be reduced by applying a more accurate pre-analysis, e.g. 3rd order Volterra, and/or 

using higher order for time-varying Volterra analysis. However, this will make the simulation more 

expensive. 

 



 

40 

 

 

Fig. 3.13 - Output Voltage using 3rd order Time-Varying Volterra, 3rd and 5th order conventional 

Volterra and ELDO® for Case III 

 

Fig. 3.14 - Absolute error of the simulation using 3rd order Time-Varying Volterra for Case III 
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3.2.4 Computation Cost Analysis of the method  

Computation cost is an important parameter of any simulation method. Time-domain simulation of time-

varying Volterra (with linear pre-analysis) requires the LU factorization of an ܯ ൈ  ܰ matrix and ܯ

forward/backward substitution for each time-step. ܯ is the size of circuit matrix, e.g. we have ܯ ൌ 5 for 

the nonlinear RC example, and ܰ is the order of time-varying Volterra, e.g. we have ܰ ൌ 3 for the 

nonlinear RC example. The cost of pre-analysis should be added to the total cost mentioned before. For 

this example, linear time-domain pre-analysis has been implemented which requires one LU factorization 

of a circuit with the same size, and one forward/backward substitution for each time-step. Assuming ܭ 

number of simulation steps is required, e.g. we have ܭ ൌ 10 5 ൈ 10ିସ ൌ 2⁄ ൈ 10ସ for the nonlinear RC 

example, and the overall cost of the time-varying Volterra is calculated as, 

 

ݐݏ݋ܥ ݈ܽݐ݋ܶ ൌ ܭ ൈ ௅௎ܥ ൅ ܭ ൈ ܰ ൈ ி/஻ܥ ൅  ,௉௥௘ି஺௡௔௟௬௦௜௦ܥ (3.19) 

 

where ܥ௅௎ is the cost of LU factorization, ܥி/஻ is the cost of forward/backward substitution and 

௅௎ܥ ௉௥௘ି஺௡௔௟௬௦௜௦ is the pre-analysis computation. Replacingܥ ൌ ଷܯ 3⁄ െ ܯ 3⁄  and ܥி/஻ ൌ  ଶ [1] inܯ

(3.19), we have, 

 

ݐݏ݋ܥ ݈ܽݐ݋ܶ ؆ ܭ ଷܯ 3⁄ ൅ ܭ ൈ ܰ ൈ  .ଶܯ (3.20) 

 

Similarly, the computation cost of conventional Volterra is calculated as, 

 

ݐݏ݋ܥ ݈ܽݐ݋ܶ ؆ ଷܯ 3⁄ ൅ ܭ ൈ ܰ ൈ  ,ଶܯ (3.21) 

 

where ܯ is the size of matrix of the circuit and ܰ is the order of Volterra analysis. Conventional Volterra 

requires LU factorization, once, since the Volterra circuits are linear time-invariant. Thus, conventional 

Volterra analysis requires less computation comparing to time-varying Volterra. However, time-varying 

Volterra achieves better accuracy. Also, time-varying Volterra manages to simulate stronger 

nonlinearities compared to conventional Volterra, which makes the method useful to simulate larger set of 

nonlinear circuits, such as saturated Power Amplifiers. The detail of frequency-domain analysis of time-

varying Volterra will be presented in the next chapter.  
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3.3 Discussion on the Accuracy of Pre-Analysis 

In this section the effect of accuracy of pre-analysis on the overall performance of the method will be 

discussed in more detail. In section 3.1, it was mentioned that the time-varying expansion point should be 

chosen in a way to ensure small |݅ோሺݐሻ െ ݅଴ሺݐሻ| at all times, where ݅଴ሺݐሻ ൌ ݅ோି௉ாሺݐሻ is the time-varying 

expansion point and ݅ோሺݐሻ is the exact response of the circuit. A preliminary simulation, called “pre-

analysis” is used to determine the time-varying expansion point. The more accurate the pre-analysis, 

smaller the |݅ோሺݐሻ െ ݅଴ሺݐሻ|. With the aid of the numerical example, it was shown that linear pre-analysis is 

sufficient for time-varying Volterra analysis. In order to clarify the effect of the error of pre-analysis on 

the performance of the method, we present two examples. First, a diode (a strongly nonlinear device) is 

taken into account and the second example is an MOS transistor (less nonlinearity compared to the 

diode). 

The current of a diode is defined as [13], 

 

݅஽ ൌ ݂ሺݒ஽ሻ ൌ ௦ܫ exp ൬
஽ݒ

்ܸ
൰,  (3.22) 

 

where ்ܸ ൌ ݇ܶ ⁄ݍ  is the thermal voltage, and ܫ௦ is the saturation current of the diode. 3rd order truncated 

Taylor series of the current of diode is written as, 

 

݅஽ ؆ ݅଴ሺݐሻ ൅ ݃ଵሺݐሻ൫ݒ஽ െ ሻ൯ݐ଴ሺݒ ൅ ݃ଶሺݐሻ൫ݒ஽ െ ሻ൯ଶݐ଴ሺݒ ൅ ݃ଷሺݐሻ൫ݒ஽ െ  ,ሻ൯ଷݐ଴ሺݒ (3.23) 

 

where ݅଴ሺݐሻ ൌ ݂൫ݒ଴ሺݐሻ൯ is the time-varying expansion point. Also, 

 

݃ଵሺݐሻ ൌ
݂݀

஽ݒ݀
ቤ
஽ݒ ൌ ሻݐ଴ሺݒ ൌ

௦ܫ

்ܸ
exp ቆ

ሻݐ଴ሺݒ
்ܸ

ቇ, 

 

݃ଶሺݐሻ ൌ
1
2!

݀ଶ݂
஽ݒ݀

ଶ ቤ
஽ݒ ൌ ሻݐ଴ሺݒ ൌ

௦ܫ

2்ܸଶ exp ቆ
ሻݐ଴ሺݒ

்ܸ
ቇ, 

 

݃ଷሺݐሻ ൌ
1
3!

݀ଷ݂
஽ݒ݀

ଷ ቤ
஽ݒ ൌ ሻݐ଴ሺݒ ൌ

௦ܫ

6்ܸଷ exp ቆ
ሻݐ଴ሺݒ

்ܸ
ቇ. 

(3.24) 

 

The truncation error of this approximation is found using, 
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ሻݐ௧௥௨௡௖௔௧௜௢௡ሺߝ ൎ ݃ସሺݐሻ൫ݒ஽ሺݐሻ െ ሻ൯ସݐ଴ሺݒ ൌ
௦ܫ

24்ܸସ exp ቆ
ሻݐ଴ሺݒ

்ܸ
ቇ ൫ݒ஽ሺݐሻ െ  .ሻ൯ସݐ଴ሺݒ (3.25) 

 

Assume the voltage across the diode changes in the range of െ0.8 ܸ and ൅0.8 ܸ. Also, we have, ܫ௦ ൌ

10ିଵ଺ ܣ and ்ܸ ൌ 0.025 ܸ. The time-varying expansion point should be chosen so that, the maximum 

truncation error, which happens when ݒ஽ሺݐሻ is maximum, is acceptable. Assuming 1% is the maximum 

acceptable error, we have, 

 

max ቊ
ሻݐ௧௥௨௡௖௔௧௜௢௡ሺߝ

݅஽ሺݐሻ ቋ ൌ
݃ସሺݐ௠௔௫ሻ൫ݒ஽ሺݐ௠௔௫ሻ െ ௠௔௫ሻ൯ସݐ଴ሺݒ

݅஽ሺݐ௠௔௫ሻ ൏ ௠௔௫ߝ ൌ 0.01 

 

՜

௦ܫ
24்ܸସ exp ൬ ଴ܸሺݐ௠௔௫ሻ

்ܸ ൰ ൫ݒ஽ሺݐ௠௔௫ሻ െ ௠௔௫ሻ൯ସݐ଴ሺݒ

݅஽ሺݐ௠௔௫ሻ ൏ 0.01. 

(3.26) 

 

Replacing, ݒ஽ሺݐ௠௔௫ሻ ൌ 0.8 ܸ, and ݅஽ሺݐ௠௔௫ሻ ൌ ௦ܫ exp ቀ௩ವሺ௧೘ೌೣሻ
௏೅

ቁ ൌ  ,we will get ,ܣ݉ 7.9

 

10ିଵ଺

24 ൈ 0.025ସ exp ቆ
௠௔௫ሻݐ଴ሺݒ

0.025
ቇ ൫0.8 െ ௠௔௫ሻ൯ସݐ଴ሺݒ 7.9 ൈ 10ିଷൗ ൏ 0.01 

 

՜ 0.7787 ൏ ௠௔௫ሻݐ଴ሺݒ ൏ 0.8123. 

(3.27) 

 

As it can be seen, the acceptable error for time-varying expansion point is very small in case of strongly 

nonlinear circuits, i.e. 1.54%. In other words, the pre-analysis should have a maximum error of 1.54% at 

all times, which makes the pre-analysis expensive. For the second case, take an MOS transistor into 

account. Using simplified EKV model, the drain current of the transistor is characterized using [9], 

 

݅஽ ൌ 2 ൈ ߚ ൈ ்ܸଶ ൈ ቆln ቆ1 ൅ ݌ݔ݁ ൬
ௌீݒ െ ௧ܸ௛

2்ܸ
൰ቇቇ

ଶ

,  (3.28) 

 

where ߚ ൌ ௢௫ܥ௡ߤ ܹ ⁄ܮ  and ௧ܸ௛ is the threshold voltage of the transistor. Using Taylor series with time-

varying expansion point, the current of the transistor is approximated as, 
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݅஽ ൌ ݅଴ሺݐሻ ൅ ݃௠ଵሺݐሻ൫ீݒௌ െ ሻ൯ݐ଴ሺݒ ൅ ݃௠ଶሺݐሻ൫ீݒௌ െ ሻ൯ଶݐ଴ሺݒ ൅ ݃௠ଷሺݐሻ൫ீݒௌ െ  ,ሻ൯ଷݐ଴ሺݒ (3.29) 

 

where, 

 

݃௠ଵሺݐሻ ൌ
݀݅஽

ௌீݒ݀
|௩ಸೄୀ௩బሺ௧ሻ, 

݃௠ଶሺݐሻ ൌ
1
2!

݀ଶ݅஽

ௌீݒ݀
ଶ |௩ಸೄୀ௩బሺ௧ሻ, 

݃௠ଷሺݐሻ ൌ
1
3!

݀ଷ݅஽

ௌீݒ݀
ଷ |௩ಸೄୀ௩బሺ௧ሻ. 

(3.30) 

 

Due to complexity, the symbolic formulas for ݃௠ଵ, ݃௠ଶ and ݃௠ଷ are not shown here. Truncation error of 

(3.29) is, 

 

ሻݐ௧௥௨௡௖௔௧௜௢௡ሺߝ ؆ ݃௠ସሺݐሻ൫ீݒௌሺݐሻ െ  ,ሻ൯ସݐ଴ሺݒ (3.31) 

 

where ݃௠ସሺݐሻ ൌ ଵ
ସ!

݀ସ݅஽ ௌீݒ݀
ସ⁄ |௩ಸೄୀ௩బሺ௧ሻ. Assuming ீݒௌ swings from െ0.8 ܸ to ൅0.8 ܸ, maximum 

truncation error, which happens at ீݒௌሺݐ௠௔௫ሻ ൌ 0.8 ܸ, is given by, 

 

maxሼߝ௧௥௨௡௖௔௧௜௢௡ሺݐሻሽ ൌ ௠௔௫ሻݐ௧௥௨௡௖௔௧௜௢௡ሺߝ ؆ ݃௠ସሺݐ௠௔௫ሻ൫ீݒௌሺݐ௠௔௫ሻ െ  .௠௔௫ሻ൯ସݐ଴ሺݒ (3.32) 

 

Again, assuming 1% as the maximum acceptable relative truncation error, we have, 

 

௠௔௫ሻݐ௧௥௨௡௖௔௧௜௢௡ሺߝ
݅஽ሺݐ௠௔௫ሻ ൌ

݃ସሺݐ௠௔௫ሻ൫ீݒௌሺݐ௠௔௫ሻ െ ௠௔௫ሻ൯ସݐ଴ሺݒ

2 ൈ ߚ ൈ ்ܸଶ ൈ ቆln ቆ1 ൅ ݌ݔ݁ ൬ீݒௌሺݐ௠௔௫ሻ െ ௧ܸ௛
2்ܸ ൰ቇቇ

ଶ ൏ ௠௔௫ߝ ൌ 0.01. 
(3.33) 

 

Using the symbolic formulae for ݃௠ସሺݐሻ, and substituting ߚ ൌ 200 ൈ 10ି଺  ܸଶ ⁄ܣ , ௧ܸ௛ ൌ 0.5 ܸ and 

்ܸ ൌ 0.025 ܸ, one can solve (3.33) for ݒ଴ሺݐ௠௔௫ሻ. We used MATLAB® to calculate ݃௠ସሺݐሻ and solve 

(3.33) for ݒ଴ሺݐ௠௔௫ሻ. The result shows that, assuming ݒ଴ሺݐ௠௔௫ሻ ൐ 0.648 ܸ satisfies (3.33). For the case of 

the transistor, the time-varying expansion point is much more relaxed and can handle larger errors for the 

expansion point, i.e. 20%. This error can be easily satisfied using linear pre-analysis.  
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 It can be concluded that, depending on the type of nonlinearity, the required accuracy for pre-

analysis can changes significantly, from 1.54% for diode to 20% for the MOS transistor. As long as 

strong nonlinear devices, such as diodes, are not considered, the simulation method tolerates large errors 

for pre-analysis, up to 20%. Thus, simple and efficient pre-analysis, such as linear pre-analysis, is 

appropriate to find the time-varying expansion point of the nonlinear devices. 

3.4 Multi-Dimensional Nonlinearity 

In this section we generalize the method described in section 3.1 for multi-dimensional nonlinearities. 

Semiconductor devices are modeled using two- or three- dimensional nonlinear elements, thus, makes it 

necessary to consider multi-dimensional nonlinearities as well.  For example, the drain current of an MOS 

transistor is modeled using a two-dimensional nonlinear voltage-controlled current source (assuming 

body is connected to source) where, 

 

݅஽ ൌ ݂ሺீݒௌ,  .஽ௌሻݒ (3.34) 

 

Fig. 3.15 shows a two-dimensional nonlinear voltage-controlled current source. Expanding the output 

current using Taylor series with time-varying expansion point, we have, 

 

݅ሺݐሻ ൌ ݂൫ݒ஺ሺݐሻ, ሻ൯ݐ஻ሺݒ ؆ ݅଴ሺݐሻ ൅ ሻݐ஺ሺݒሻ൫ݐଵ஺ሺܭ െ ሻ൯ݐ଴஺ሺݒ ൅ ሻݐ஻ሺݒሻ൫ݐଵ஻ሺܭ െ  ሻ൯ݐ଴஻ሺݒ

                       ൅ܭଶ஺ሺݐሻ൫ݒ஺ሺݐሻ െ ሻ൯ଶݐ଴஺ሺݒ ൅ ሻݐ஻ሺݒሻ൫ݐଶ஻ሺܭ െ ሻ൯ଶݐ଴஻ሺݒ
 

     ൅ܭଵ஺ଵ஻ሺݐሻ൫ݒ஺ሺݐሻ െ ሻݐ஻ሺݒሻ൯൫ݐ଴஺ሺݒ െ  ሻ൯ݐ଴஻ሺݒ

                       ൅ܭଷ஺ሺݐሻ൫ݒ஺ሺݐሻ െ ሻ൯ଷݐ଴஺ሺݒ ൅ ሻݐ஻ሺݒሻ൫ݐଷ஻ሺܭ െ ሻ൯ଷݐ଴஻ሺݒ
 

       ൅ܭଶ஺ଵ஻ሺݐሻ൫ݒ஺ሺݐሻ െ ሻݐ஻ሺݒሻ൯ଶ൫ݐ଴஺ሺݒ െ  ሻ൯ݐ଴஻ሺݒ

       ൅ܭଵ஺ଶ஻ሺݐሻ൫ݒ஺ሺݐሻ െ ሻݐ஻ሺݒሻ൯൫ݐ଴஺ሺݒ െ ሻ൯ଶݐ଴஻ሺݒ
 

                 ൅ܭଵ஺ଶ஻ሺݐሻ൫ݒ஺ሺݐሻ െ ሻݐ஻ሺݒሻ൯൫ݐ଴஺ሺݒ െ ሻ൯ଶݐ଴஻ሺݒ ൅  ,ڮ

(3.35) 
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Fig. 3.15 – Nonlinear Voltage Controlled Current Source 

 

where, ݅଴ሺݐሻ ൌ ݂൫ݒ଴஺ሺݐሻ,  ,ሻ൯ is the expansion point. The nonlinearity coefficients are defined asݐ଴஻ሺݒ

 

ሻݐ௠஺௡஻ሺܭ ൌ
݀௠ା௡݂

஺ݒ݀
௠݀ݒ஻

௡ ቤ
,ሻݐ଴஺ሺݒ  ,ሻݐ଴஻ሺݒ (3.36) 

 

Fig. 3.16 shows the equivalent model of the nonlinear controlled current source using the time-varying 

Taylor series. Similar to one-dimensional nonlinearities, Schetzen’s multi-linear method is applied to find 

time-varying Volterra circuits for different orders. Fig. 3.17 shows the time-varying Volterra models for 

two-dimensional nonlinear controlled sources up to 3rd order. This method can be used to find the time-

varying Volterra models for three-dimensional nonlinearities. 

 

 

Fig. 3.16 - Equivalent model for the nonlinear controlled current source  
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Fig. 3.17 – Two-dimensional nonlinear elements and their time-varying Volterra circuits 

 

3.5 Modified time-varying Volterra 

In this section a modification of the time-varying Volterra is presented. The modified time-varying 

Volterra employs multiple expansion points instead of continuously time-varying expansion point for 

Taylor series. Using this method the computation cost of the method is decreased, while similar accuracy 

is achieved. This method is beneficial specially when the input signal is periodic and we are only 

interested in the steady-state response of the circuit. Employing different expansion points for different 
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time periods, nonlinear elements are approximated using different Taylor series for different time periods. 

For example, for a nonlinear resistor we have, 

 

ሻݐோሺݒ ൌ ଴,௜ݒ ൅ ܴଵ,௜൫݅ோሺݐሻ െ ݅଴,௜൯ ൅ ܴଶ,௜൫݅ோሺݐሻ െ ݅଴,௜൯ଶ ൅ ܴଷ,௜൫݅ோሺݐሻ െ ݅଴,௜൯ଷ ൅  ,ڮ (3.37) 

 

for the time period ௜ܶ ൏ ݐ ൏ ௜ܶାଵ, called the ݅th phase. Similar expressions are derived for the nonlinear 

resistor for all other phases. Applying Schetzen multi-linear method for all the phases, Volterra circuits 

can be derived for all the phases as shown in Fig. 3.18. The Volterra circuits are modeled as switched 

linear circuits. The expansion points for different time periods, i.e. phases, are found using the pre-

analysis similar to time-varying Volterra analysis. The Volterra switched linear circuits are simulated in 

time-domain using appropriate numerical integration method. Simple numerical integration methods, such 

as BDF, face difficulties when simulating switched circuits [25]. Due to inconsistent initial condition 

which happens in switching circuits, small simulation step sizes should be incorporated, especially at the 

switching instants, which increase the simulation cost [25]. Here, we employ sampled-data simulation 

algorithm [25, 31, 32] to simulate the Volterra circuits in time-domain. Sampled data simulation method 

is based on numerical Laplace inversion [1] that achieves high accuracy while solving the issue of 

inconsistent initial condition. For detailed discussion on the simulation of switched linear circuit using 

sampled-data simulation, the reader is referred to [25]. Simulating the switched linear circuit using 

sampled-data simulation requires calculating state transition matrix and zero-state vector of the circuit in 

each phase [25]. State transition matrix and zero-state vector are calculated using numerical Laplace 

inversion, which is an expensive task.  

 

Fig. 3.18 – Nth order Volterra equivalent model for the nonlinear resistor in different phases 
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The number of time phases is an important parameter that has major effect on the accuracy and 

simulation cost of the method. As the number of time phases increases, the simulation cost also increases, 

since the state transition matrix and zero-state vector should be calculated for all the time phases. The 

modified time-varying Volterra is more accurate as the number of time phases increases. As the number 

of time phases goes to infinity, the modified time-varying Volterra becomes identical to the time-varying 

Volterra presented in section 3.1. Choosing the number of time phases depends on the input bandwidth, as 

well as the nonlinearity of the circuit. It can be shown that in case of single tone input, employing 8 to 10 

time phases per input period is sufficient to achieve comparable accuracy to time-varying Volterra. The 

nonlinear RC example of section 3.2 is simulated using the modified time-varying Volterra with 8 time 

phases per input period. The accuracy of the simulation results is similar to time-varying Volterra 

analysis. For steady-state analysis, the expansion points for all nonlinear devices are also periodic. Thus, 

the Volterra circuits are modeled as periodically switched linear circuits, where the switching frequency is 

the same as the input frequency. Periodically switched linear circuits are simulated in frequency-domain 

as described in [24], [25]. Simulation of the steady-state response of nonlinear circuits using the modified 

time-varying Volterra will be discussed in the next chapter.  

3.6 Summary 

In this chapter a new time-domain modification of Volterra analysis was presented. The proposed method 

uses a time-varying expansion point for the Volterra analysis to enable better accuracy comparing to 

conventional Volterra. As long as time-varying expansion point is chosen so that the difference between 

expansion point and exact response is small, the time-varying Volterra manages to give accurate results. It 

was shown that using a simple preliminary simulation of the circuit, pre-analysis, time-varying expansion 

point of nonlinear devices is determined. As long as strong nonlinearities are not considered, linear pre-

analysis is sufficient to achieve good accuracy, as illustrated in the numerical example. On the other hand, 

when nonlinearity becomes stronger, using simple linear pre-analysis the time-varying Volterra does not 

achieve accurate enough results. This can be fixed by using a more accurate pre-analysis. However, this 

increases the computation of pre-analysis, which makes the overall method not suitable for simulation of 

strong nonlinear circuits. 

 

 

 

  



 

50 

 

Chapter 4 
Time-Varying Volterra Analysis: Frequency-Domain Approach 

In this chapter, the details of the proposed method in frequency-domain will be presented. The frequency-

domain method uses the same methodology as the method described in chapter 3, i.e. time-varying Taylor 

series. Frequency-domain approach analyzes the time-varying Volterra circuits in frequency-domain. 

Since the frequency-domain method uses the same time-varying Taylor series, the convergence and 

accuracy properties of the method is the same as time-domain method discussed in chapter 3. Frequency-

domain analysis of time-varying Volterra circuits, as well as the advantages and shortcomings of the 

method, will be discussed in this chapter.  

The chapter is organized as follows. Section 4.1 describes the frequency-domain analysis of the 

time-varying Volterra circuits and compares the analysis with other frequency-domain approaches, i.e. 

Harmonic Balance and conventional Volterra analysis. In order to show the effectiveness of the method, 

section 4.2 discusses three nonlinear RC circuits simulated using the method. Section 4.3 presents the 

frequency-domain time-varying Volterra for multi-dimensional nonlinearities. Finally, section 4.4 

summarizes the properties of the method comparing to other frequency-domain approaches.  

4.1 Method Description  

The proposed frequency-domain method employs time-varying Taylor expansion to express the behavior 

of nonlinear elements, similar to the time-domain method described in chapter 3. Similarly, the simulation 

procedure consists of pre-analysis and time-varying Volterra analysis. In this section we discuss time-

varying Volterra analysis in frequency-domain, together with comparison of the method with Harmonic 

Balance. 

4.1.1 Pre-Analysis 

As discussed in chapter 3, pre-analysis is done using a fast simulation algorithm which does not need to 

be very accurate. It was shown in chapter 3 that accuracy of linear pre-analysis is sufficient for time-

varying Volterra analysis. Linear pre-analysis is easily done in the frequency domain by solving the 

linearized circuit using [1], 

 

 ሺܩ ൅ ሻሽݐሻ࣠ሼܺ௉ாሺܥ݆߱ ൌ ࣠ሼ ௉ܹாሺݐሻሽ.  (4.1) 

 



 

51 

 

where ܺ௉ாሺݐሻ and ௉ܹாሺݐሻ are the unknown and input vectors respectively. Solving (4.1) requires LU 

factorization of ሺܩ ൅  ሻ at each frequency, and forward/backward substitution. In case of single-toneܥ݆߱

input, (4.1) should only be solved once, i.e. for the excitation frequency.  

4.1.2 Time-Varying Volterra Analysis 

Recalling from chapter 3, a nonlinear resistor is described using time-varying Taylor expansion as, 

 

ሻݐோሺݒ െ ଴ܸሺݐሻ ൌ ሻݐොሺݒ ൌ ܴଵሺݐሻଓ̂ሺݐሻ ൅ ܴଶሺݐሻଓ̂ሺݐሻଶ ൅ ܴଷሺݐሻଓ̂ሺݐሻଷ ൅  .ڮ (4.2) 

 

where,  

 

ܴଵሺݐሻ ൌ
݂݀
݀݅ோ

ቤ
݅ோ ൌ ݅଴ሺݐሻ, 

 

ܴଶሺݐሻ ൌ
1
2!

݀ଶ݂
݀݅ோ

ଶ ቤ
݅ோ ൌ ݅଴ሺݐሻ, 

 

ܴଷሺݐሻ ൌ
1
3!

݀ଷ݂
݀݅ோ

ଷ ቤ
݅ோ ൌ ݅଴ሺݐሻ, 

 

 ڭ

(4.3) 

 

଴ܸሺݐሻ and ܫ଴ሺݐሻ are the time-varying expansion point of Taylor series and the result of pre-analysis. 

Applying Schetzen’s multi-linear method, the time-varying Volterra circuits of different orders for the 

resistor are generated as shown in Fig. 4.1. The time-varying Volterra circuits are described in the 

frequency-domain, assuming all the time-varying elements are periodic. This assumption is true for 

periodic inputs, which results in periodic expansion point for time-varying Volterra. In case of multi-tone 

inputs with non-commensurate frequencies, “almost-periodic” Fourier transform should be employed 

[10]. Taking the Fourier Transform (FT) of the time-varying resistor in Fig. 4.1, we’ll get [14], 

 

࣠ሼܴଵሺݐሻሽ ൌ ෍ ෠ܴଵ,௞ߜሺ߱ െ ݇߱଴ሻ
ାஶ

௞ୀିஶ

,  (4.4) 
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where ଴ܶ ൌ ߨ2 ߱଴⁄  is the period of the time-varying resistor, and ෠ܴଵ,௞ is the ݇th frequency component of 

the time-varying resistor. Assuming the resistor is sufficiently approximated using the first ܭ frequency 

components, we have, 

 

࣠ሼܴଵሺݐሻሽ ؆ ෍ ෠ܴଵ,௞ߜሺ߱ െ ݇߱଴ሻ
ା௄

௞ୀି௄

.  (4.5) 

 

 

Fig. 4.1 - Nth order time-varying Volterra equivalent model for the nonlinear resistor 

 

Similarly, time-varying capacitors, inductors and controlled sources are represented in the 

frequency-domain. Fig. 4.2 summarizes time-varying Volterra models for nonlinear elements in 

frequency-domain. Employing MNA, the ݊th order time-varying Volterra circuit is formulated in 

frequency-domain as, 

 

࣠ሼܩሺݐሻሽ۪࣠ሼܺ௡ሺݐሻሽ ൅ ݆߱൛࣠ሼܥሺݐሻሽ۪࣠ሼܺ௡ሺݐሻሽൟ ൌ ࣠ሼ ௡ܹሺݐሻሽ,  (4.6) 

 

where ۪ denotes convolution. It should be noted that, ܩሺݐሻ and ܥሺݐሻ are ܯ ൈ  ሻ andݐmatrices and ܺ௡ሺ ܯ

௡ܹሺݐሻ are ܯ ൈ 1 vectors, where ܯ is the size of the circuit matrix. ܩሺݐሻ and ܥሺݐሻ contain the time-

varying resistors, inductors and capacitors and controlled sources, and thus are ଴ܶ periodic. 

Approximating ࣠ሼܩሺݐሻሽ, ࣠ሼܥሺݐሻሽ, ࣠ሼܺ௡ሺݐሻሽ and ࣠ሼ ௡ܹሺݐሻሽ with their first ܭ frequency components, 

we’ll get, 
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Fig. 4.2 - Nonlinear elements and their time-varying Volterra circuits in frequency-domain 
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൝ ෍ ሺ߱ߜ෠௠ܩ െ ݉߱଴ሻ
ା௄

௠ୀି௄

ൡ ۪ ൝ ෍ ෠ܺ௡,௟ߜሺ߱ െ ݈߱଴ሻ
ା௄

௟ୀି௄

ൡ 

൅݆߱ ൝ ෍ ሺ߱ߜመ௠ܥ െ ݉߱଴ሻ
ା௄

௠ୀି௄

ൡ ۪ ൝ ෍ ෠ܺ௡,௟ߜሺ߱ െ ݈߱଴ሻ
ା௄

௟ୀି௄

ൡ 

ൌ ෍ ෡ܹ௡,௞ߜሺ߱ െ ݇߱଴ሻ
ା௄

௞ୀି௄

, 

(4.7) 

 

where ෠ܺ௡ሺ݇߱଴ሻ and ෡ܹ௡ሺ݇߱଴ሻ represent the ݇th frequency component of the unknown and input vector. 

Simplifying (4.7) results in, 

 

෍ ෍ ෠௠ܩ

ା௄

௠ୀି௄

෠ܺ௡,௟ߜሺ߱ െ ሺ݉ ൅ ݈ሻ߱଴ሻ
ା௄

௟ୀି௄

൅ ෍ ෍ ݆߱଴ሺ݉ ൅ ݈ሻܥመ௠

ା௄

௜ୀି௄

෠ܺ௡,௟ߜሺ߱ െ ሺ݉ ൅ ݈ሻ߱଴ሻ
ା௄

௝ୀି௄

 

ൌ ෍ ෡ܹ௡,௞ߜሺ߱ െ ݇߱଴ሻ
ା௄

௞ୀି௄

. 

(4.8) 

 

Equating the coefficients of ߜሺ߱ െ ݇߱଴ሻ, for every ݇, on both sides of (4.8) results in, 

 

෍ ൛ܩ෠௠ െ መ௠ൟܥ଴߱ܭ݆ ෠ܺ௡,ି௠ି௞

଴

௠ୀି௄

ൌ ෡ܹ௡,ି௄, 

 ڭ

෍ ൛ܩ෠௠ െ ݆߱଴ܥመ௠ൟ ෠ܺ௡,ି௠ିଵ

ା௄ିଵ

௠ୀି௄

ൌ ෡ܹ௡,ିଵ, 

෍ ෠௠ܩ

ା௄

௠ୀି௄

෠ܺ௡,ି௠ ൌ ෡ܹ௡,଴, 

෍ ൛ܩ෠௠ ൅ ݆߱଴ܥመ௠ൟ ෠ܺ௡,ି௠ାଵ

ା௄

௠ୀି௄ାଵ

ൌ ෡ܹ௡,ଵ, 

 ڭ

෍ ൛ܩ෠௠ ൅ መ௠ൟܥ଴߱ܭ݆ ෠ܺ௡,ି௠ା௄

ା௄

௠ୀ଴

ൌ ෡ܹ௡,௄. 

(4.9) 
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Knowing the input vector, i.e. ෡ܹ௡,௞ for െܭ ൑ ݇ ൑ ൅ܭ, together with circuit matrices, the unknown 

vector is calculated using the 2ܭ ൅ 1 equations given in (4.9), i.e. ෠ܺ௡,௞ for െܭ ൑ ݇ ൑ ൅ܭ. Rewriting 

(4.9) in the matrix form, we have, 

 

ܶሺ߱଴ሻ ൈ ෠ܺெ,௡ሺ߱଴ሻ ൌ ෡ܹெ,௡ሺ߱଴ሻ,  (4.10) 

 

where,  

 

෠ܺெ,௡ሺ߱଴ሻ ൌ ൣ ෠ܺ௡,ି௄ … ෠ܺ௡,ିଵ ෠ܺ௡,଴ ෠ܺ௡,ଵ … ෠ܺ௡,ା௄൧், 

 

෡ܹெ,௡ሺ߱଴ሻ ൌ ൣ ෡ܹ௡,ି௄ … ෡ܹ௡,ିଵ ෡ܹ௡,଴ ෡ܹ௡,ଵ … ෡ܹ௡,ା௄൧். 

(4.11) 

 

Also we have, 
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ω   (4.12) 

 

where, 

 

௞ܶ,௠ ൌ ෠௠ܩ ൅ ݆݇߱଴ܥመ௠.  (4.13) 

 

ܶሺ߱଴ሻ matrix, called the conversion matrix, is similar to the transfer function for time-invariant circuits. 

However, since the circuit is time-varying, the output depends on the input at fundamental frequency and 

the harmonic frequencies. For a time-invariant circuit, ܶሺ߱଴ሻ  is a diagonal matrix. In order to find the 

unknown vector, one must solve (4.10) which require LU factorization of a ሺ2ܭ ൅ 1ሻܯ ൈ ሺ2ܭ ൅ 1ሻܯ 

matrix, and ሺ2ܭ ൅ 1ሻܯ forward/backward substitution. It should be noted that (4.10) must be solved for 

different orders of time-varying Volterra circuits. ܶሺ߱଴ሻ matrix is constant for all the orders, however, 
෡ܹெ,௡ሺ߱଴ሻ should be calculated based on the response of lower order circuits. Finally, the total response is 
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calculated by summing up the response of lower orders, i.e. ෠ܺெሺ߱଴ሻ ൌ ෠ܺெ,ଵሺ߱଴ሻ ൅ ෠ܺெ,ଶሺ߱଴ሻ ൅

෠ܺெ,ଷሺ߱଴ሻ ൅  .ڮ

 The formulation presented, can be generalized for multiple-tone input signals as well. In case of 

multiple-tone inputs, the output will be a function of input frequencies and their harmonics as well as 

inter-modulation products of the input frequencies. This makes the size of frequency vector larger for 

multiple-tone inputs.  

4.1.3 Comparison with Harmonic Balance 

It is useful to compare the computation cost and accuracy of the frequency-domain time-varying Volterra 

with Harmonic Balance. In this section, we discuss the computation cost of the method and leave the 

accuracy comparison for the next section. Frequency-domain time-varying Volterra analysis requires pre-

analysis, plus solving the time-varying Volterra circuits of different order, i.e. solving (4.10) for each 

order. Assuming ܰth order time-varying Volterra analysis, the computation cost is approximated by, 

 

ݐݏ݋ܥ ݈ܽݐ݋ܶ ൌ ௅௎ܥ ൅ ܰ ൈ ி/஻ܥ ൅ ܰ ൈ ௐିீ௘௡௘௥௔௧௜௢௡ܥ ൅  ,௉௥௘ି஺௡௔௟௬௦௜௦ܥ (4.16) 

 

where ܥ௅௎ is the cost of LU decomposition of ܶሺ߱଴ሻ, which only needs to be done once, and ܥி/஻ is the 

cost of forward/backward substitution. ܥௐିீ௘௡௘௥௔௧௜௢௡ is the cost of calculating the input vector, i.e. 
෡ܹெ,௡ሺ߱଴ሻ, and ܥ௉௥௘ି஺௡௔௟௬௦௜௦ is the pre-analysis computation cost. Calculating the input vector requires 

taking the Fourier Transform (FT) of the input sources and Volterra model’s dependent sources, which 

involves convolution of response of lower orders. ܥௐିீ௘௡௘௥௔௧௜௢௡ can become significant in case of 

multiple-tone inputs. For the rest of this section, we concentrate on single-tone input. However, our 

calculations can be easily generalized for multiple-tone input as well. 

The conversion matrix is sparse, because ܩ෠ሺ݉߱଴ሻ and ܥመሺ݉߱଴ሻ are sparse matrices for ݉ ് 0. 

Thus, (4.10) is solved more efficiently using sparse matrix calculation methods [1]. Furthermore, since 

the circuit parameters are real functions of time, we have ܩ෠ሺ݉߱଴ሻ ൌ መሺ݉߱଴ሻܥ ,ሺെ݉߱଴ሻכ෠ܩ ൌ

ሺെ݉߱଴ሻ, ෡ܹ௡ሺ݉߱଴ሻכመܥ ൌ ෡ܹ௡
ሺെ݉߱଴ሻ and ෠ܺ௡ሺ݉߱଴ሻכ ൌ ෠ܺ௡

 ሺെ݉߱଴ሻ. Hence, the total computation cost isכ

reduced by a factor of two. Using (4.12) it can be shown that for circuits with real parameters we have, 

 

ܶሺ߱଴ሻ ൌ ൫ܶ௧ሺ߱଴ሻ൯כ.  (4.17) 

 

Replacing ܶሺ߱଴ሻ ൌ  ሺ߱଴ሻ and ܷሺ߱଴ሻ are lower and upper triangular matricesܮ ሺ߱଴ሻܷሺ߱଴ሻ, whereܮ

respectively, we’ll get, 
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ܶሺ߱଴ሻ ൌ ሺ߱଴ሻܷሺ߱଴ሻܮ ൌ ቀ൫ܮሺ߱଴ሻܷሺ߱଴ሻ൯௧ቁ
כ
, 

 

՜ ሺ߱଴ሻܷሺ߱଴ሻܮ ൌ ൫ܷ௧ሺ߱଴ሻ൯כ൫ܮ௧ሺ߱଴ሻ൯כ. 

(4.18) 

 

Knowing  ܷ௧ሺ߱଴ሻ and ܮ௧ሺ߱଴ሻ are lower and upper triangular matrices respectively, we have, 

 

ሺ߱଴ሻܮ ൌ ൫ܷ௧ሺ߱଴ሻ൯כ, 

 

ܷሺ߱଴ሻ ൌ ൫ܮ௧ሺ߱଴ሻ൯כ, 

(4.19) 

 

for all the non-diagonal elements. Thus, calculating either ܮሺ߱଴ሻ or ܷሺ߱଴ሻ is sufficient, which means half 

the computation cost for LU decomposition. Similarly, the forward/backward substitution and input 

vector generation cost is reduced by a factor of two. Neglecting the pre-analysis computation cost, the 

overall computation cost is approximately, 

 

ݐݏ݋ܥ ݈ܽݐ݋ܶ ؆ ൫ሺܭ ൅ 1ሻܯ൯ଷ 3ൗ ൅ ܰ ቀ൫ሺܭ ൅ 1ሻܯ൯ଶ ൅  ,ௐିீ௘௡௘௥௔௧௜௢௡ቁܥ (4.20) 

 

where ܭ is the number of harmonics, ܰ is the order of Volterra analysis, and ܯ is the size of circuit 

matrix. In calculating (4.20), it is assumed that we do not use sparse matrix calculation algorithms. Sparse 

matrix algorithms will reduce the total cost. 

Recalling from chapter 2, Harmonic-Balance balances the magnitude and phase of the harmonics 

for all the voltages and currents, by solving the Harmonic-Balance equation. Harmonic-Balance equation 

is a nonlinear equation and needs to be solved iteratively, using Newton-Raphson algorithm. The Jacobian 

matrix as well as the next iteration value should be calculated per iteration, using,  

 

൫ܸ௜൯൫ܸ௜ାଵܯ   െ ܸ௜൯ ൌ െܨ൫ܸ௜൯, 

 

ሺܸሻܯ ൌ
ሺܸሻܨ߲

߲ܸ
, 

(4.21) 
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where ܯሺ. ሻ is the Jacobian matrix and ܨሺ. ሻ is the nonlinear Harmonic Balance equation. Size of the 

Jacobian matrix and Harmonic-Balance equation is ሺܭ ൅ 1ሻܯ ൈ ሺܭ ൅ 1ሻܯ, where ܭ is the number of 

harmonics and ܯ is the number of unknown voltages/currents. Assuming ܫ iterations for Newton-

Raphson is required, Harmonic-Balance computation cost is calculated as, 

 

ݐݏ݋ܥ ݈ܽݐ݋ܶ ൌ ܫ ൈ ൫ܥ௅௎ି௃௔௖௢௕ ൅ ி/஻ܥ ൅  ,௃௔௖௢௕ିீ௘௡௘௥௔௧௜௢௡൯ܥ (4.22) 

 

where ܥ௅௎ି௃௔௖௢௕ ൅  ி/஻ is the total cost of solving next iteration value per iteration, including LUܥ

decomposition of Jacobian matrix and forward/backward substitution. ܥ௃௔௖௢௕ିீ௘௡௘௥௔௧௜௢௡ is the cost of 

generating Jacobian matrix, which is time-consuming as the number of nonlinearities increases. 

Simplifying (4.23), we have, 

 

ݐݏ݋ܥ ݈ܽݐ݋ܶ ؆ ܫ ቀ൫ሺܭ ൅ 1ሻܯ൯ଷ 3ൗ ൅ ൫ሺܭ ൅ 1ሻܯ൯ଶ ൅  .௃௔௖௢௕ିீ௘௡௘௥௔௧௜௢௡ቁܥ (4.23) 

 

Comparing (4.24) and (4.21), it can be seen that frequency-domain time-varying Volterra 

computation cost is less than Harmonic-Balance. ܥ௃௔௖௢௕ିீ௘௡௘௥௔௧௜௢௡ in (4.23) is usually more than 

ܭௐିீ௘௡௘௥௔௧௜௢௡ in (4.20) for most applications, since the size of Jacobian matrix is ሺܥ ൅ 1ሻܯ ൈ ሺܭ ൅

1ሻܯ, whereas time-varying Volterra input vector is ሺ2ܭ ൅ 1ሻܯ ൈ 1. However, Harmonic-Balance 

achieves better accuracy comparing to time-varying Volterra when dealing with strong nonlinearities, as it 

will be discussed in the next section. It should be noted that, this is a rough comparison between the full 

matrix solution of Harmonic Balance and time-varying Volterra analysis. Employing spars matrix 

algorithms, the total cost of both methods can be reduced further. 

4.2 Numerical Example  

This section presents simulation of a nonlinear RC circuit, shown in Fig. 4.3, using time-varying Volterra 

in frequency-domain. The circuit is the same as nonlinear RC circuit presented in section 3.2. The circuit 

is simulated using 3rd order frequency-domain time-varying Volterra, 3rd and 5th order frequency-domain 

conventional Volterra, Harmonic Balance and Newton-Raphson numerical integration. A detailed 

comparison between all the simulation methods will be presented in this section. 
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Fig. 4.3 - Nonlinear RC test circuit 

 

 First we discuss the conventional Volterra analysis. Circuit of different orders for conventional 

Volterra will be the same as the circuits shown in chapter 3, Fig. 3.5. The Volterra circuits are formulated 

in frequency-domain as, 

 

ሺܩ ൅ ሻሽݐሻ࣠ሼܺ௡ሺܥ݆߱ ൌ ࣠ሼ ௡ܹሺݐሻሽ,  (4.24) 

 

where, 

 

ܩ ൌ

ۏ
ێ
ێ
ێ
ۍ

0 0
0 0

0 1
0 െ1

1
0

1 0
1 െ1

0 0
0 0

0
0

0 1 െ1 0 െܴଵے
ۑ
ۑ
ۑ
ې
, 

 

ܥ ൌ

ۏ
ێ
ێ
ێ
0ۍ 0
0 0

0 0
଴ܥ 0

0
0

0 0
0 0

0 0
0 0

0
0

0 0 0 0 ے0
ۑ
ۑ
ۑ
ې
, 

(4.25) 

 

and,  

 

࣠ሼ ଵܹሺݐሻሽ ൌ ሾ0 0 ࣠ሼݒ௜௡ሺݐሻሽ 0 0ሿ், 

࣠ሼ ଶܹሺݐሻሽ ൌ ሾ0 0 0 ࣠ሼ݁ଶሺݐሻሽ 0ሿ்,  

 ڭ

࣠ሼ ହܹሺݐሻሽ ൌ ሾ0 0 0 ࣠ሼ݁ହሺݐሻሽ 0ሿ். 

(4.26) 
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Assuming a single-tone at the input we have, 

 

࣠ሼݒ௜௡ሺݐሻሽ ൌ ࣠ሼܣ௜௡݊݅ݏሺ߱଴ݐሻሽ ൌ
௜௡ܣ

݆2
ሺ߱ߜ െ ߱଴ሻ െ

௜௡ܣ

݆2
ሺ߱ߜ ൅ ߱଴ሻ, 

 

࣠ሼ݁ଶሺݐሻሽ ൌ ܴଶܫோଵሺ߱ሻ۪ܫோଵሺ߱ሻ, 

 

 ڭ

 

࣠ሼ݁ହሺݐሻሽ ൌ 2ܴଶܫோଶሺ߱ሻ۪ܫோଷሺ߱ሻ ൅ 2ܴଶܫோଵሺ߱ሻ۪ܫோସሺ߱ሻ ൅ 3ܴଷܫோଶሺ߱ሻ۪ܫோଶሺ߱ሻ۪ܫோଵሺ߱ሻ

൅ 3ܴଷܫோଵሺ߱ሻ۪ܫோଵሺ߱ሻ۪ܫோଷሺ߱ሻ. 

(4.27) 

 

The total response for 5th order conventional Volterra is calculated as, ࣠ሼܺሺݐሻሽ ൌ ࣠ሼ ଵܺሺݐሻሽ ൅

࣠ሼܺଶሺݐሻሽ ൅ ࣠ሼܺଷሺݐሻሽ ൅ ࣠ሼܺସሺݐሻሽ ൅ ࣠ሼܺହሺݐሻሽ. For 3rd order Volterra the 4th and 5th order responses will 

be neglected. It can be seen that the complexity of the dependent sources increases significantly as the 

order of Volterra analysis increases. Also, calculating (4.27) will be expensive for multiple frequencies at 

the input, due to multiple convolution operations in (4.27). 

 The second method is 3rd order frequency-domain time-varying Volterra analysis. The first step is 

linear pre-analysis, which is the same as 1st order conventional Volterra. Using the result of pre-analysis, 

the time-varying Volterra circuits are created, which is the same as circuits shown in chapter 3, Fig. 3.6. 

The frequency-domain Volterra circuits are found out using Fourier transform, as shown in Fig. 4.3. We 

have, 

 

ሻݐோି௉ாሺݒ ൌ ݂൫݅ோି௉ாሺݐሻ൯ ൌ ܴଵ݅ோି௉ாሺݐሻ ൅ ܴଶ݅ோି௉ா
ଶ ሺݐሻ ൅ ܴଷ݅ோି௉ா

ଷ ሺݐሻ, 

 

՜ ோܸି௉ாሺ߱ሻ ൌ ܴଵܫோି௉ாሺ߱ሻ ൅ ܴଶܫோି௉ாሺ߱ሻ۪ܫோି௉ாሺ߱ሻ ൅ ܴଷܫோି௉ாሺ߱ሻ۪ܫோି௉ாሺ߱ሻ۪ܫோି௉ாሺ߱ሻ. 

(4.28) 

 

For single-tone input, ݅ோି௉ாሺݐሻ is also a single-tone, i.e. ܫோି௉ாሺ߱ሻ ൌ ሺ߱ߜመோି௉ாሺെ߱଴ሻܫ െ ߱଴ሻ ൅

ሺ߱ߜመோି௉ாሺ൅߱଴ሻܫ ൅ ߱଴ሻ, thus, we have, 

 

ோܸି௉ாሺ߱ሻ ൌ ෍ ෠ܸோି௉ா,௞ߜሺ߱ െ ݇߱଴ሻ
ାଷ

௞ୀିଷ

.  (4.29) 
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Also, for time-varying Volterra coefficients we have, 

 

࣠൛ ෠ܴଵሺݐሻൟ ൌ ܴଵ ൅ 2ܴଶܫோି௉ாሺ߱ሻ ൅ 3ܴଷܫோି௉ாሺ߱ሻ۪ܫோି௉ாሺ߱ሻ, 

 

࣠൛ ෠ܴଶሺݐሻൟ ൌ ܴଶ ൅ 3ܴଷܫோି௉ாሺ߱ሻ, 

 

࣠൛ ෠ܴଷሺݐሻൟ ൌ ܴଷ. 

(4.30) 

 

 

Fig. 4.4 - Varying Volterra circuits for different orders in frequency-domain 

 

Time-varying Volterra circuits are characterized using MNA as, 

 

ሻݐሻܺ௡ሺݐሺܩ ൅ ܥ
݀ܺ௡ሺݐሻ

ݐ݀
ൌ ௡ܹሺݐሻ,  (4.31) 

 

where, 
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ሻݐሺܩ ൌ
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ܥ ൌ

ۏ
ێ
ێ
ێ
0ۍ 0
0 0

0 0
଴ܥ 0

0
0

0 0
0 0

0 0
0 0

0
0

0 0 0 0 ے0
ۑ
ۑ
ۑ
ې
, 

(4.32) 

 

Taking the Fourier transform of (4.32), we’ll get, 

 

෠ሺ0ሻܩ ൌ

ۏ
ێ
ێ
ێ
ۍ

0 0
0 0

0 1
0 െ1

1
0

1 0
1 െ1

0 0
0 0

0
0

0 1 െ1 0 െܴଵے
ۑ
ۑ
ۑ
ې
, 

 

෠ሺ݇߱଴ሻܩ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 0
0 0

0 0
0 0

0
0

0 0
0 0

0 0
0 0

0
0

0 0 0 0 െ ෠ܴଵሺ݇߱଴ሻے
ۑ
ۑ
ۑ
ې

, ݇ ݎ݋݂ ് 0, 

(4.33) 

 

and,  

 

መሺ0ሻܥ ൌ

ۏ
ێ
ێ
ێ
0ۍ 0
0 0

0 0
଴ܥ 0

0
0

0 0
0 0

0 0
0 0

0
0

0 0 0 0 ے0
ۑ
ۑ
ۑ
ې
, 

 

መሺ݇߱଴ሻܥ ൌ 0, ݎ݋݂ ݇ ് 0. 

(4.34) 

 

Using (4.33) and (4.34), the conversion matrix is constructed. For this example, we assume a total number 

of 6 harmonics is sufficient to achieve good accuracy, which makes the size of ܶሺ߱଴ሻ to be 65 ൈ 65. 

 The circuit is also simulated using Harmonic Balance simulation provided in ADS® software. 

ADS® uses advance algorithms to ensure convergence, as well as accuracy of the method. More 

information on Harmonic Balance simulation in ADS® can be found in [15]. Another method to simulate 
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the frequency-domain output of the circuit is to use transient numerical integration. The circuit is first 

solved in time-domain using Newton-Raphson and numerical integration, and then the frequency-domain 

response can be calculated using Fourier Transform (FT) of the steady-state part of the output voltage. 

Here, we use ELDO® to find the time-domain steady-state of the output, and then use FFT to find the 

output frequency spectrum. The CPU simulation time of the frequency-domain time-varying Volterra 

analysis is half the simulation time of ELDO® time-domain steady-state using the same machine. 

However, this is a rough comparison between the two methods, since ELDO® performs more actions 

during simulation than time-varying Volterra analysis. 

  Similar to section 3.2, three different cases of nonlinearities for the resistor will be examined. 

Case I discusses a mildly nonlinear resistor, i.e. ܴଶ, ܴଷ ا ܴଵ. Similar to time-domain methods, all the 

methods simulate the circuit accurately. However, time-varying Volterra and Harmonic Balance are more 

accurate than conventional Volterra. For case II and III, the nonlinearity of the resistor is increased. 

Conventional Volterra fails to give accurate results, while time-varying Volterra and Harmonic Balance 

results are accurate. Harmonic Balance results are more accurate than time-varying Volterra, especially 

for case III.  

4.2.1 Case I 

First case deals with a mildly nonlinear resistor. The input of the circuit is a single-tone voltage source 

with a unity frequency and amplitude, i.e. ݒ௜௡ሺݐሻ ൌ sinሺ2ݐߨሻ. The circuit parameters along with 

frequency-domain simulation parameters are summarized in Table 4.1.   

 

Table 4.1 - Specifications of the test circuit and simulation parameters for Case I 

Parameter  Value 

Input Frequency, ࢔࢏ࢌ (Hz)  1 

Input Amplitude, ࢔࢏࡭ (Volts)  1 

Resistor Parameters, ࡾ૚, ,૛ࡾ  ૜ࡾ 1, 0.05, 0.05 

Capacitor Values (F)  1 

Maximum Number of Harmonics  6 

 

The circuit is simulated using frequency-domain conventional Volterra, frequency-domain time-varying 

Volterra, Harmonic Balance and transient numerical integration in ELDO®. Table 4.2 and 4.3 summarize 

the magnitude and phase of the harmonics using different simulation methods. Time-domain numerical 

integration simulates the time-domain output voltage, thus, we should use FFT to find the magnitude and 
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phase of harmonics. This can also be done using the steady-state analysis provided in ELDO®. Steady-

state analysis directly simulates the steady-state response of the circuit using shooting method [12]. 

The results of all the methods, i.e. conventional Volterra, time-varying Volterra and Harmonic-

Balance, are close to the ELDO® simulations. Table 4.4 shows the error of different simulation methods 

comparing to ELDO® simulations. 3rd order conventional Volterra predicts the fundamental harmonic 

with acceptable accuracy, i.e. 0.8% relative error. However, the error becomes more significant for other 

harmonics, e.g. 9.8% relative error for DC component. Employing higher order Volterra, i.e. 5th order, the 

error is reduced one order of magnitude as shown in Table 4.4 (1.6% relative error for DC component). 

3rd order time-varying Volterra gives more accurate results as compared to 3rd and 5th order conventional 

Volterra, up to 3 orders of magnitude smaller error for DC component. Harmonic Balance simulation 

result is the most accurate comparing to conventional and time-varying Volterra analysis. The 

fundamental harmonic error is similar to 3rd order time-varying Volterra, i.e. 0.6% relative error, while 

the DC component error is one order of magnitude smaller.  

 

Table 4.2 – Comparison of the Magnitude of Harmonics for Case I 

Frequency Component 

Magnitude 

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

Transient 

Simulation/FFT 

DC (dB)  െ33.22  െ34.258  െ33.075  െ33.076  െ33.076 

Fundamental (dB)  െ22.364  െ22.398  െ22.368  െ22.368  െ22.368 

2nd Harmonic (dB)  െ61.84  െ60.29  െ61.567  െ61.568  െ61.567 

3rd Harmonic (dB)  െ72.324  െ70.835  െ72.098  െ72.098  െ72.0975 

4th Harmonic (dB)  െ91.055  െ  െ93.51  െ93.514  െ93.518 

5th Harmonic (dB)  െ106.66  െ  െ108.67  െ108.712  െ108.68 

6th Harmonic (dB)  െ  െ  െ122.31  െ122.36  െ122.53 
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Table 4.3 - Comparison of the Phase of Harmonics for Case I 

Frequency Component 

Phase 

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

Transient 

Simulation/FFT 

DC Component (deg)  180  180  180  180  180 

Fundamental (deg)  െ171.23  െ171.27  െ171.23  െ171.23  െ171.23 

2nd Harmonic (deg)  െ68.56  െ67.36  െ68.25  െ68.25  െ68.25 

3rd Harmonic (deg)  െ151.51  െ150.34  െ151.25  െ151.24  െ151.24 

4th Harmonic (deg)  െ47.81  െ  െ49.34  െ49.34  െ49.34 

5th Harmonic (deg)  െ131.95  െ  െ133.18  െ133.14  െ133.14 

6th Harmonic (deg)  െ  െ  െ30.59  െ30.78  െ30.78 

 

Table 4.4 – Error Comparison of Harmonics for Case I (Absolute Error) 

Absolute Error of  

Frequency Component  

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

DC (V)  3.6 ൈ 10ିସ  2.2 ൈ 10ିଷ  1.0 ൈ 10ି଻  1.1 ൈ 10ି଼ 

Fundamental (V)  4.7 ൈ 10ିସ  5.9 ൈ 10ିସ  4.8 ൈ 10ିସ  4.8 ൈ 10ିସ 

2nd Harmonic (V)  2.9 ൈ 10ିହ  1.3 ൈ 10ିସ  1.0 ൈ 10ିହ  1.0 ൈ 10ିହ 

3rd Harmonic (V)  8.6 ൈ 10ି଺  3.8 ൈ 10ିହ  4.7 ൈ 10ି଺  4.6 ൈ 10ି଺ 

4th Harmonic (V)  6.9 ൈ 10ି଺  െ  5.2 ൈ 10ି଻  5.2 ൈ 10ି଻ 

5th Harmonic (V)  9.6 ൈ 10ି଻  െ  1.0 ൈ 10ି଻  1.0 ൈ 10ି଻ 

6th Harmonic (V)  െ  െ  2.7 ൈ 10ି଼  2.6 ൈ 10ି଼ 

 

4.2.2 Case II 

Case II employs a stronger nonlinear resistor, compared to Case I. Using the same input source, i.e. 

single-tone input, the circuit is simulated in frequency-domain with the parameters shown in Table 4.5.  

 

 

 

 



 

66 

 

Table 4.5 - Specifications of the test circuit and simulation parameters for Case II 

Parameter  Value 

Input Frequency, ࢔࢏ࢌ (Hz)  1 

Input Amplitude, ࢔࢏࡭ (Volts)  1 

Resistor Parameters, ࡾ૚, ,૛ࡾ  ૜ࡾ 1, 0.5, 0.5 

Capacitor Values (F)  1 

Maximum Number of Harmonics  6 

 

Table 4.6 and 4.7 summarize the simulation results of the circuit using conventional Volterra, time-

varying Volterra, Harmonic Balance and ELDO®. 3rd and 5th order conventional Volterra no longer give 

accurate results and suffer from large errors, as large as 66% relative error in calculating DC component. 

3rd order time-varying Volterra is able to predict the harmonics with good accuracy, i.e. 0.7% and 0.9% 

relative error for fundamental harmonic and DC component, respectively. Table 4.8 categorizes the 

absolute error of different simulation methods comparing to ELDO® simulations. Similar to Case I, 

Harmonic Balance simulation results are the most accurate results. Harmonic Balance and 3rd order time-

varying Volterra show similar error for fundamental harmonic, i.e. 0.7% relative error, whereas, 

Harmonic Balance’s simulation error for DC component is 2 orders of magnitude lower than 3rd order 

time-varying Volterra. 

 

Table 4.6 - Comparison of the Magnitude of Harmonics for Case II 

Frequency Component 

Magnitude 

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

Transient 

Simulation/FFT 

DC (dB)  െ17.2  െ12.258  െ16.778  െ16.674  െ16.674 

Fundamental (dB)  െ23.962  െ24.471  െ23.627  െ23.66  െ23.659 

2nd Harmonic (dB)  െ53.04  െ40.29  െ47.308  െ47.208  െ47.203 

3rd Harmonic (dB)  െ48.3  െ71.938  െ64.653  െ64.014  െ63.999 

4th Harmonic (dB)  െ56.57  െ  െ66.017  െ66.761  െ66.672 

5th Harmonic (dB)  െ60.60  െ  െ82.929  െ83.816  െ83.337 

6th Harmonic (dB)  െ  െ  െ87.663  െ88.088  െ86.695 
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Table 4.7 - Comparison of the Phase of Harmonics for Case II 

Frequency Component 

Phase 

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

Transient 

Simulation/FFT 

DC Component (deg)  180  180  180  180  180 

Fundamental (deg)  െ173.46  െ173.11  െ172.287  െ172.313  െ171.95 

2nd Harmonic (deg)  െ222.78  െ67.364  െ71.56  െ71.493  െ70.77 

3rd Harmonic (deg)  െ141.64  124.716  െ159.123  െ157.488  െ156.405 

4th Harmonic (deg)  െ51.51  െ  െ55.34  െ55.586  െ54.136 

5th Harmonic (deg)  54.16  െ  48.897  48.249  49.898 

6th Harmonic (deg)  െ  െ  െ45.555  െ41.906  െ39.46 

 

Table 4.8 - Error Comparison of Harmonics for Case II (Absolute Error) 

Absolute Error of  

Frequency Component 

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

DC (V)  9.4 ൈ 10ିଶ  9.7 ൈ 10ିଶ  1.7 ൈ 10ିଷ  1.6 ൈ 10ିହ 

Fundamental (V)  2.8 ൈ 10ିଷ  5.9 ൈ 10ିଷ  4.5 ൈ 10ିସ  4.1 ൈ 10ିସ 

2nd Harmonic (V)  6.4 ൈ 10ିଷ  5.3 ൈ 10ିଷ  7.9 ൈ 10ିହ  5.5 ൈ 10ିହ 

3rd Harmonic (V)  3.2 ൈ 10ିଷ  6.3 ൈ 10ିସ  5.4 ൈ 10ିହ  1.2 ൈ 10ିହ 

4th Harmonic (V)  1.0 ൈ 10ିଷ  െ  3.7 ൈ 10ିହ  1.2 ൈ 10ିହ 

5th Harmonic (V)  8.6 ൈ 10ିସ  െ  3.4 ൈ 10ି଺  4.1 ൈ 10ି଺ 

6th Harmonic (V)  െ  െ  6.7 ൈ 10ି଺  7.1 ൈ 10ି଺ 

 

4.2.3 Case III 

Table 4.9 summarizes the circuit and simulation parameters for case III.  
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Table 4.9 - Specifications of the test circuit and simulation parameters for Case III 

Parameter  Value 

Input Frequency, ࢔࢏ࢌ (Hz)  1 

Input Amplitude, ࢔࢏࡭ (Volts)  1 

Resistor Parameters, ࡾ૚, ,૛ࡾ  ૜ࡾ 1, 1, 1.5 

Capacitor Values (F)  1 

Maximum Number of Harmonics  6 

 

Simulation results for all the simulation methods are shown in Table 4.10 and 4.11. 3rd and 5th order 

conventional Volterra cannot simulate the circuit with good accuracy, since the circuit is even more 

nonlinear than case II. The relative error in simulating the DC component is as large as 200% for 5th 

order conventional Volterra. 3rd order time-varying Volterra is capable of simulating the circuit. However, 

the error is larger than the two cases before, i.e. 3.3% and 4.0% relative error for fundamental harmonic 

and DC component, respectively. Harmonic Balance simulation achieves better accuracy comparing to 3rd 

order time-varying Volterra, especially for DC component. However, the error in predicting the 

fundamental harmonic is close to 3rd order time-varying Volterra simulation, i.e. 3.2% relative error for 

fundamental harmonic. The absolute error of different simulation methods comparing to ELDO® 

simulations is summarized in Table 4.12. 

 

Table 4.10 - Comparison of the Magnitude of Harmonics for Case III 

Frequency Component 

Magnitude 

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

Transient 

Simulation/FFT 

DC (dB)  െ5.77  െ6.238  െ14.450  െ14.315  െ14.319 

Fundamental (dB)  െ32.48  െ30.037  െ25.01  െ25.15  െ25.147 

2nd Harmonic (dB)  െ27.56  െ34.27  െ47.413  െ46.969  െ46.935 

3rd Harmonic (dB)  െ26.19  െ49.713  െ62.719  െ60.375  െ60.32 

4th Harmonic (dB)  െ44.43  െ  െ61.01  െ62.538  െ62.242 

5th Harmonic (dB)  െ39.95  െ  െ80.04  െ81.658  െ80.216 

6th Harmonic (dB)  െ  െ  െ79.22  െ79.054  െ77.111 
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Table 4.11 - Comparison of the Phase of Harmonics for Case III 

Frequency Component 

Phase 

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

Transient 

Simulation/FFT 

DC Component (deg)  180  180  180  180  180 

Fundamental (deg)  െ179.2  െ179.206 െ173.189  െ173.44  െ173.08 

2nd Harmonic (deg)  െ70.35  െ67.36  െ74.658  െ74.553  െ73.84 

3rd Harmonic (deg)  െ150.34  48.14  െ167.73  െ159.978  െ158.84 

4th Harmonic (deg)  െ47.81  െ  െ60.577  െ60.731  െ59.4 

5th Harmonic (deg)  െ88.85  െ  49.817  43.146  42.565 

6th Harmonic (deg)  െ  െ  െ54.87  െ47.85  െ45.74 

 

Table 4.12 - Error Comparison of Harmonics for Case III (Absolute Error) 

Absolute Error of  

Frequency Component 

5th Order 

Volterra 

3rd Order 

Volterra 

3rd Order Time‐

Varying Volterra 

Harmonic 

Balance 

DC (V)  7.0 ൈ 10ିଵ  2.9 ൈ 10ିଵ  9.42 ൈ 10ିଷ  1.0 ൈ 10ିସ 

Fundamental (V)  5.9 ൈ 10ିଶ  2.4 ൈ 10ିଶ  1.8 ൈ 10ିଷ  1.7 ൈ 10ିଷ 

2nd Harmonic (V)  4.6 ൈ 10ିଶ  1.5 ൈ 10ିଶ  2.5 ൈ 10ିସ  4.3 ൈ 10ିସ 

3rd Harmonic (V)  4.8 ൈ 10ିଶ  4.1 ൈ 10ିଷ  2.6 ൈ 10ିସ  1.3 ൈ 10ିସ 

4th Harmonic (V)  5.2 ൈ 10ିଷ  െ  1.2 ൈ 10ିସ  1.3 ൈ 10ିସ 

5th Harmonic (V)  9.9 ൈ 10ିଷ  െ  1.2 ൈ 10ିହ  1.8 ൈ 10ିସ 

6th Harmonic (V)  െ  െ  3.6 ൈ 10ିହ  4.3 ൈ 10ିହ 

 

4.3 Multi-Dimensional Nonlinearity 

We generalize the frequency-domain time-varying Volterra method described before for multi-

dimensional nonlinearities. Similar to time-domain time-varying Volterra, the time-varying Volterra 

circuits are found using Schetzen’s multi-linear method, and then use Fourier transform to find the 

frequency-domain time-varying Volterra circuits. Fig. 4.5 shows the time-varying Volterra circuits for 

two-dimensional nonlinear elements in frequency-domain. 
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Fig. 4.5 – Two-dimensional nonlinear elements and their time-varying Volterra circuits in 

frequency-domain 

 

4.4 Summary  

In this chapter the frequency-domain simulation of time-varying Volterra was presented. Similar to time-

domain approach, the method uses a time-varying expansion point for nonlinear elements and then 

applies Volterra analysis to enable better accuracy. Using numerical examples it was shown that the 

accuracy of the method is better than conventional Volterra, whereas Harmonic Balance results in better 

accuracy for strong nonlinearities. However, the computation cost of the method is less than Harmonic 

Balance and more than conventional Volterra.  
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Chapter 5 
Power Amplifier Case Study 

This chapter presents the application of the time-varying Volterra for simulation of a Class-F Power 

Amplifier.  Class-F Power Amplifiers are a class of nonlinear Power Amplifiers that use harmonic tuning 

to achieve high efficiencies, theoretically 100%. This type of amplifiers cannot be simulated using 

conventional Volterra analysis, since the transistor changes region of operation [8], [22]. However, time-

varying Volterra simulates the circuit with good accuracy. Basic operation of Class-F Power Amplifiers, 

details of simulation of the Class-F Power-Amplifier using time-varying Volterra as well as comparison 

with other simulation methods are discussed in this chapter.  

The Chapter is organized as follows. Section 5.1 discusses the basics of Class-F Power 

Amplifiers and its design considerations. Section 5.2 presents the formulation of the Class-F Power 

Amplifier using time-varying Volterra in frequency-domain. The simulation results using conventional 

Volterra, time-varying Volterra and ELDO® steady-state analysis is presented in section 5.3. Finally, 

section 5.4 gives the concluding remarks.  

5.1 Class-F Power Amplifier: Basics 

Today’s modern portable communication systems demand for low power consumption. Since RF Power 

Amplifiers dominate the power dissipation for transmitters, power efficient Power Amplifiers are 

becoming more and more important [16]. Class-F Power Amplifiers are a class of high efficiency 

amplifiers widely used. The goal in designing high efficiency amplifier is to minimize the dissipated 

power in the amplifying transistor, i.e. ௧ܲ௥௔௡௦௜௦௧௢௥ሺݐሻ ൌ ஽ܸௌሺݐሻܫ஽ሺݐሻ, thus, increasing the overall 

efficiency. Class-F Power Amplifiers load the transistor at different frequencies, i.e. fundamental and 

harmonics, to ensure a pulse waveform for drain-source voltage and half sinusoidal waveform for the 

drain current of the transistor, as shown in Fig. 5.1. In order to have such waveforms for the transistor, 

one must have [16], 

 

ܼ௅ሺܰ߱଴ሻ ൌ ൝
0 ݊݁ݒ݁ ܰ
∞ ݀݀݋ ܰ

ܼ௅ሺݐ݌݋ሻ ܰ ൌ 1
,  (5.1) 

 

where ܼ௅ is the load impedance seen by the drain of the transistor and ߱଴ is the input frequency. ܼ௅ሺݐ݌݋ሻ 

is the optimum load of the transistor which results in the maximum power delivered to the load.  
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Fig. 5.1 – Class-F Power Amplifier 

 

Fig. 5.2 shows the schematic of a Class-F Power Amplifier that satisfies (5.1) for first, second and 

third harmonic [17]. For simplicity the input matching network is not shown here. The combination of ܮଵ, 

 ஻ make sure that the impedance seen by the transistor is zero at second harmonic and infinity forܥ ଶ andܮ

third harmonic. The values for ܮଵ, ܮଶ and ܥ஻ are calculated using, 

 

ଵܮ ൌ
1

6߱଴
ଶܥ௢௨௧

, ଶܮ ൌ
5
3

 ,ଵܮ

 

஻ܥ ൌ
12
5

 ,௢௨௧ܥ

(5.2) 

 

where ܥ௢௨௧ is the output capacitance of the transistor. ܮଷఠ and ܥଷఠ are chosen to resonate at 3߱଴, also, 

the output ߨ-matching network ensures the proper load for the transistor at fundamental frequency for 

maximum power delivered to the load. The reader is referred to [18] and [19] for detailed discussion on 

the design and properties of the output ߨ-matching network. 
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Fig. 5.2 – Schematic of a Class-F Power Amplifier (Input matching network is not shown for 

simplicity) 

 

5.2 Formulation of Class-F Power Amplifier  

The first step in simulating the Class-F Power Amplifier shown in Fig. 5.2 is to replace the transistor with 

its nonlinear equivalent model. For this case study, we have designed the Class-F Power Amplifier using 

 CMOS technology NMOS transistors. The NMOS transistor is modeled for this application as ݉ߤ0.18

shown in Fig. 5.3. The model contains two nonlinear capacitors, i.e. gate-source and drain-source 

capacitances, and a two-dimensional nonlinear voltage-controlled current source. The details about the 

validity, as well as, the accuracy of the model is found in Appendix A. Nonlinear elements in the model 

shown in Fig. 5.3 are characterized as, 

 

ௌሺܸீீܥ ௌሻ ൌ ௌ଴ீܥ ൅ ௌଵܸீீܥ ௌ ൅ ௌଶܸீீܥ ௌ
ଶ ൅ ڮ ൅ ௌଵ଴ܸீீܥ ௌ

ଵ଴, 

 

஽ௌሺܥ ஽ܸௌሻ ൌ ஽ௌ଴ܥ ൅ ஽ௌଵܥ ஽ܸௌ ൅ ஽ௌଶܥ ஽ܸௌ
ଶ ൅ ڮ ൅ ஽ௌଵ଴ܥ ஽ܸௌ

ଵ଴, 

(5.3) 

 

and, 

 

஽ܫ ൌ ݂ሺܸீ ௌ, ஽ܸௌሻ ൌ ܽ଴,଴ ൅ ܽ଴,ଵ ஽ܸௌ ൅ ܽ଴,ଶ ஽ܸௌ
ଶ ൅ ڮ ൅ ܽ଴,ଵ଴ ஽ܸௌ

ଵ଴ 

                                         ൅൫ܽଵ,଴ ൅ ܽଵ,ଵ ஽ܸௌ ൅ ܽଵ,ଶ ஽ܸௌ
ଶ ൅ ڮ ൅ ܽଵ,ଵ଴ ஽ܸௌ

ଵ଴൯ܸீ ௌ                        

 ڭ

                                                  ൅൫ܽଵ଴,଴ ൅ ܽଵ଴,ଵ ஽ܸௌ ൅ ܽଵ଴,ଶ ஽ܸௌ
ଶ ൅ ڮ ൅ ܽଵ଴,ଵ଴ ஽ܸௌ

ଵ଴൯ܸீ ௌ
ଵ଴. 

(5.4) 
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For  details  of  calculating  the  coefficients  of  nonlinear  devices,  the  reader  is  referred  to

Appendix A. 

 

 

 

Fig. 5.3 – Nonlinear Transistor Model 

 

Fig. 5.4 shows the Class-F Power Amplifier with the transistor replaced by the nonlinear model of Fig. 

5.3. The amplifier is designed for the center frequency of 500ݖܪܯ, with circuit parameters summarized 

in Table 5.1.  

 

 

Fig. 5.4 – Class-F Power Amplifier with the transistor replaced by nonlinear model 

 

Now we discuss the simulation of the Class-F Power Amplifier using time-varying Volterra 

analysis. The first step for time-varying Volterra analysis is linear pre-analysis. Pre-analysis circuit is 

constructed by linearizing all the nonlinear elements around their DC operating points. DC operating 

point of the transistor is easily calculated as, 
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ܸீ ௌ଴ ൌ ܸீ ൌ 0.5 ܸ, ஽ܸௌ଴ ൌ ஽ܸ ൌ 0.9 ܸ, ஽଴ܫ ൌ ݂ሺܸீ ௌ଴, ஽ܸௌ଴ሻ ൌ  . ܣߤ 431.01 (5.5) 

 

Table 5.1 – Class-F Power Amplifier Parameters 

Output Matching Parameters 

 (nH) ࡸ 1.3786 

,૚࡯  ૛ (pF, pF)࡯ 305.83, 96.73 

3rd Harmonic Resonator Parameters 

,૜࣓࡯  ૜࣓ (pF, nH)ࡸ 11.258, 1 

Biasing Circuit Parameters 

,࡮ࡸ ,૚ࡸ  ૛ (μH, nH, nH)ࡸ 1, 68.15, 113.58 

,࡮࡯ ,࡯࡯  (pF, μF, μF) ࢙࢙ࢇ࢖࢟࢈࡯ 0.5947,1, 1 

,ࡳࢂ  (V, V) ࡰࢂ 0.5, 0.9 

Input Voltage Parameters 

Input Frequency (MHz)  500 

Maximum Input Amplitude (V)  0.2 

 

Fig. 5.5 shows the pre-analysis circuit using the linearized model for all nonlinear elements. The 

linearized capacitors and controlled current source are calculated using the equations below  

 

݃௠ଵ ൌ
஽ܫ݀

ܸ݀ீ ௌ
ቤ
ܸீ ௌ଴, ஽ܸௌ଴

, 

 

݃஽ௌଵ ൌ
஽ܫ݀

݀ ஽ܸௌ
ቤ
ܸீ ௌ଴, ஽ܸௌ଴

, 

 

ௌି௅௜௡ீܥ ൌ ௌሺܸீீܥ ௌሻ ቤ
ܸீ ௌ ൌ ܸீ ௌ଴

, 

 

஽ௌି௅௜௡ܥ ൌ ஽ௌሺܥ ஽ܸௌሻ ቤ
஽ܸௌ ൌ ஽ܸௌ଴

. 

(5.6) 
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The capacitor’s linearized model contains a current source in parallel with the linear capacitor, i.e. ீܫ ௌ଴ 

and ܫ஽ௌ଴, which represents capacitor’s DC operating point for charge. In other words, 

 

ܫீ  ௌ଴ ൌ ௗ
ௗ௧

ሺܳீௌ଴ሻ ൌ ௗ
ௗ௧

ሺீܥௌି௅௜௡ܸீ ௌ଴ሻ, 

 

஽ௌ଴ܫ ൌ
݀
ݐ݀

ሺܳ஽ௌ଴ሻ ൌ
݀
ݐ݀

ሺܥ஽ௌି௅௜௡ ஽ܸௌ଴ሻ. 

(5.7) 

 

As long as the operating point of the nonlinear capacitor is time independent, ீܫ ௌ଴ and ܫ஽ௌ଴ will be zero 

and thus are removed from the model. 

The next step in time-varying Volterra analysis is generating the time-varying Volterra models 

for all the nonlinear elements. Fig. 5.6 shows the time-varying Volterra circuits for different orders where 

all nonlinear elements are replace by their time-varying Volterra model. Generating time-varying Volterra 

models require calculating time-varying Volterra coefficients for all the nonlinear elements. The 

nonlinear controlled source coefficients are calculated as, 

 

݃௠ଵሺݐሻ ൌ
஽ܫ݀

ܸ݀ீ ௌ
ቤ
ܸீ ௌି௉ாሺݐሻ, ஽ܸௌି௉ாሺݐሻ, 

 

݃஽ௌଵሺݐሻ ൌ
஽ܫ݀

݀ ஽ܸௌ
ቤ
ܸீ ௌି௉ாሺݐሻ, ஽ܸௌି௉ாሺݐሻ, 

 

݃௠ଶሺݐሻ ൌ
1
2!

݀ଶܫ஽

ܸ݀ீ ௌ
ଶ ቤ

ܸீ ௌି௉ாሺݐሻ, ஽ܸௌି௉ாሺݐሻ, 

 

݃஽ௌଶሺݐሻ ൌ
1
2!

݀ଶܫ஽

݀ ஽ܸௌ
ଶ ቤ

ܸீ ௌି௉ாሺݐሻ, ஽ܸௌି௉ாሺݐሻ, 

 

 ڭ

 

 

(5.8) 
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Similarly, for the time-varying coefficients for the nonlinear capacitors we have, 

 

ሻݐௌଶሺீܥ ൌ
ௌሺܸீீܥ݀ ௌሻ

ܸ݀ீ ௌ
ቤ
ܸீ ௌି௉ாሺݐሻ, 

 

ሻݐ஽ௌଶሺܥ ൌ
஽ௌሺܥ݀ ஽ܸௌሻ

݀ ஽ܸௌ
ቤ

஽ܸௌି௉ாሺݐሻ, 

 

ሻݐௌଷሺீܥ ൌ
1
2!

݀ଶீܥௌሺܸீ ௌሻ
ܸ݀ீ ௌ

ଶ ቤ
ܸீ ௌି௉ாሺݐሻ, 

 

ሻݐ஽ௌଷሺܥ ൌ
1
2!

݀ଶܥ஽ௌሺ ஽ܸௌሻ
݀ ஽ܸௌ

ଶ ቤ
஽ܸௌି௉ாሺݐሻ, 

(5.9) 

 

where  ܸீ ௌି௉ாሺݐሻ and ஽ܸௌି௉ாሺݐሻ are pre-analysis simulation results. Due to complexity, the symbolic 

expressions for time-varying coefficients are not shown here. Formulating the time-varying Volterra 

circuits using the method described in chapter 4, the time-varying Volterra circuits are analyzed in 

frequency-domain. The simulation results along with comparison with ELDO® steady-state results are 

presented in the next section.  

5.3 Simulation Results  

The Class-F Power Amplifier is simulated using 3rd order time-varying Volterra and ELDO® steady-state 

analysis. Here, we discuss the time-varying Volterra simulation for a single-tone input. However, 

multiple-tone inputs can also be simulated using this method. Table 5.2 to Table 5.4 summarizes the 

frequency components of the output voltage, transistor’s drain-source voltage and supply current for 3rd 

time-varying Volterra and ELDO® steady-state simulation results for maximum input power. Time-

varying Volterra simulation results are in good agreement with ELDO® steady-state simulation result. The 

amplifier was also simulated using 5th order conventional Volterra. However, the simulation results show 

large errors, i.e. more than 200% relative error for the output voltage of the amplifier and the simulation 

results are not shown here. Fig. 5.7 to Fig. 5.9 show the output of the amplifier, transistor’s drain-source 

voltage and supply current respectively in time-domain for maximum input power. The time-domain 

results for time-varying Volterra are calculated using Inverse Fourier Transform. The time-varying 

Volterra simulation results show less than 0.2% relative error for the output voltage of the amplifier.  
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Table 5.2 – Simulation results for Drain-Source voltage of the transistor  

Frequency Component 

Magnitude 

3rd Order Time‐Varying 

Volterra 

ELDO Steady‐

State Simulation

Error of the Frequency 

Component 

DC (dB)  െ0.91515  െ0.91515  7.6 ൈ 10ି଼ 

Fundamental (dB)  െ7.09457  െ7.11221  1.1 ൈ 10ିଷ 

2nd Harmonic (dB)  െ137.573  െ135.6896  6.4 ൈ 10ି଼ 

3rd Harmonic (dB)  െ24.8446  െ25.0862  1.574 ൈ 10ିଷ 

4th Harmonic (dB)  െ61.73984  െ61.24285  5.3 ൈ 10ିହ 

5th Harmonic (dB)  െ78.60462  െ75.93401  4.5 ൈ 10ିହ 

6th Harmonic (dB)  െ76.124422  െ80.42946  6.1 ൈ 10ିହ 

 

Table 5.3 – Simulation results for the output voltage of the Class-F Power Amplifier 

Frequency Component 

Magnitude 

3rd Order Time‐Varying 

Volterra 

ELDO Steady‐

State Simulation

Error of the Frequency 

Component 

DC (dB)  െ∞  െ177.99  1.2 ൈ 10ିଽ 

Fundamental (dB)  െ17.09473  െ17.1123  3.6 ൈ 10ିସ 

2nd Harmonic (dB)  െ174.49  െ171.77  2.3 ൈ 10ିଽ 

3rd Harmonic (dB)  െ175.85  െ168.689  2.9 ൈ 10ିଽ 

4th Harmonic (dB)  െ123.961  െ123.473  4.1 ൈ 10ି଼ 

5th Harmonic (dB)  െ141.795  െ139.318  3.2 ൈ 10ି଼ 

6th Harmonic (dB)  െ141.313  െ145.737  3.4 ൈ 10ି଼ 
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Table 5.4 – Simulation results for the supply current of the Class-F Power Amplifier 

Frequency Component 

Magnitude 

3rd Order Time‐Varying 

Volterra 

ELDO Steady‐

State Simulation

Error of the Frequency 

Component 

DC (dB)  െ58.4617  െ58.4236  5.2 ൈ 10ି଺ 

Fundamental (dB)  െ69.26997  െ69.2876  8.9 ൈ 10ି଻ 

2nd Harmonic (dB)  െ69.8163  െ69.808123  4.2 ൈ 10ି଻ 

3rd Harmonic (dB)  െ77.4776  െ77.7192  3.7 ൈ 10ି଺ 

4th Harmonic (dB)  െ118.7497  െ118.245  7.7 ൈ 10ି଼ 

5th Harmonic (dB)  െ138.219  െ136.086  6.4 ൈ 10ି଼ 

6th Harmonic (dB)  െ76.124422  െ80.42946  6.1 ൈ 10ିହ 

 

 

Fig. 5.7 – Output voltage of the amplifier for maximum input power 
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Fig. 5.8 – Transistor’s Drain-Source voltage of the amplifier for maximum input power 

 

 

Fig. 5.9 – Power supply current of the amplifier for maximum input power 

 

Furthermore, the amplifier is simulated for 6݀ܤ back-off input power, i.e. 6݀ܤ less than the 

maximum input power. The simulation results in time-domain are shown in Fig. 5.10 to Fig. 5.12. 

Fig. 5.13 shows output power versus input power for the amplifier using time-varying Volterra and 

ELDO® steady-state simulation results. The time-varying Volterra simulation results match ELDO® 

steady-state results with good accuracy. Similarly, simulation result for the drain efficiency of the 



 

83 

 

amplifier versus input power, shown in Fig. 5.14, are in good agreement with ELDO® steady-state 

simulation results. 

 

 

Fig. 5.10 – Output voltage of the amplifier for 6-dB back-off input power 

 

 

Fig. 5.11 – Transistor’s Drain-Source voltage of the amplifier for 6-dB back-off input power 
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Fig. 5.12 – Power supply current of the amplifier for 6-dB back-off input power 

 

 

Fig. 5.13 – Output power vs. input power for the Class-F Power Amplifier 
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Fig. 5.14 – Drain Efficiency of the amplifier vs. input power 

 

5.4 Conclusion  

In this chapter a Class-F Power Amplifier was simulated using the proposed time-varying Volterra in 

frequency-domain. The simulation results show the effectiveness of the method to simulate transistor 

amplifiers with good accuracy. It was shown that the results show good accuracy comparing to 

ELDO® steady-state simulation results which uses shooting method [12] to simulate the steady-state 

solution of the circuit. Conventional Volterra, on the other hand, cannot simulate such a circuit. 
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Chapter 6 
Conclusion and Future Work 

This chapter presents the application of the proposed time-varying Volterra in circuit simulation. 

Also, possible future research work regarding time-varying Volterra is discussed here. The work 

presented in this thesis is the generalization of conventional Volterra analysis. Time-varying Volterra 

analysis manages to simulate a wider range of nonlinear circuits comparing to conventional Volterra, 

including saturated Power Amplifiers and mixers.  

6.1 Application of Time-Varying Volterra in Circuit Simulation 

Frequency-domain time-varying Volterra can be used to simulate nonlinear Power Amplifiers, mixers 

and nonlinear microwave circuits. The proposed method manages to simulate nonlinear circuits with 

large number of nonlinear elements without convergence issues of Harmonic Balance. Furthermore, 

the method can be generalized to simulate the sensitivity of nonlinear circuits. The sensitivity 

calculation would be similar to the work in [7]. Sensitivity analysis is important for performance 

optimization methods [26], as well as yield optimizations where sensitivity is used to calculate the 

yield gradient [27]. Another application for time-varying Volterra is for distortion decomposition 

calculation. The Volterra based distortion decomposition method presented in [28] can be generalized 

for time-varying Volterra analysis. Distortion decomposition is helpful to designers for low distortion 

designs. Distortion decomposition can be used to find the main sources of nonlinearities in the design. 

Thus designer can simplify the nonlinear models, which makes it easier to find symbolic expressions 

for distortion analysis [29]. 

The main contributions of this thesis are: 

‐ Presenting time-domain time-varying Volterra analysis as a simulation method for 

nonlinear circuits. 

‐ Applying the time-varying Volterra analysis in frequency-domain to simulate nonlinear 

RF/microwave circuits, e.g. Power Amplifiers. 

6.2 Future Work 

In this section possible future work regarding time-varying Volterra is presented. The frequency-

domain time-varying Volterra method described in this thesis can be modified to achieve better 
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computation efficiency. Instead of employing a continuously time-varying expansion point for Taylor 

expansion, one can use multiple expansion points for Taylor series. This will be beneficial in case of 

periodic inputs. One can use a finite number of expansion points in each period of the input signal, 

e.g. 8 expansion points. Using the same concept, Volterra circuits of different orders can be generated 

similar to time-varying Volterra. However, the circuits of different order will be periodically switched 

linear circuits instead of time-varying linear. Periodically switched linear Volterra circuits for 

different order are simulated in either time- or frequency-domain as described in [25]. It should be 

noted that the number of expansion points determines the maximum frequency of the analysis, thus 

one should choose number of expansion points based on the application.  

Time-varying Volterra can also be used for modeling purposes. Using multiple expansion 

points, different Volterra models can be constructed for a nonlinear circuit. Employing this method, 

the nonlinear circuit is modeled using different Volterra circuits for different input ranges. Using pre-

analysis, the designer can determine the time phases in which different Volterra models are used. This 

can help in more accurate modeling of nonlinear circuits, such as saturated Power Amplifiers. 

Accurate modeling of saturated Power Amplifiers is an important part of linearizing Power Amplifier 

using pre-distortion algorithms [16].  

Furthermore, the time-varying Volterra analysis may be modified to simulate harsher nonlinearities 

such as diodes. This may be achieved by employing a more sophisticated pre-analysis using a more 

sophisticated model for nonlinear elements in pre-analysis. For example harsh nonlinear elements 

may be replaced by a piecewise linear model, instead of the linearized model. Then time-varying 

Volterra can be applied using the result of pre-analysis.  
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Appendix A 
Transistor Modeling 

The model for CMOS transistors used in this thesis is based on polynomial fitting. There are different 

models for CMOS transistors in literature which some are physical-based and some are empirical 

models. BSIM3 [23] and EKV model [9] are two widely used physical-based models available for 

CMOS transistors. BSIM3 model is based on physical behavior of CMOS transistors with hundreds 

of empirical parameters added for accurate modeling. For this application we create our own 

empirical model for an NMOS transistor. The model includes a nonlinear voltage-controlled current 

source, which models the nonlinear drain current of the transistor, and nonlinear capacitors between 

gate, drain and source, as shown in Fig. A.1. It has been assumed that bulk of the transistor is 

connected to the source, thus the transistor can be modeled as a three-terminal device. The model, 

however, can be generalized to four-terminal device as well.  

 

 

Fig. A.1 – Nonlinear transistor model 

 

A.1 Drain Current Modeling 

The drain current of an NMOS transistor is a nonlinear function of both gate-source and drain-source 

voltages, as shown below. 

 



 

89 

 

஽ܫ ൌ ݂ሺܸீ ௌ, ஽ܸௌሻ.  (A.1) 

 

In the EKV model [9] the drain current is modeled using the functions of the form, ln ൬1 ൅ ݁
ೡ೛షೡೞ

మ ൰
ଶ
. 

However, for this thesis we model the drain current using a 10th order two-dimensional polynomial as 

illustrated below. 

 

஽ܫ ൌ ݂ሺܸீ ௌ, ஽ܸௌሻ ൌ ܽ଴,଴ ൅ ܽ଴,ଵ ஽ܸௌ ൅ ܽ଴,ଶ ஽ܸௌ
ଶ ൅ ڮ ൅ ܽ଴,ଵ଴ ஽ܸௌ

ଵ଴ 

                                               ൅൫ܽଵ,଴ ൅ ܽଵ,ଵ ஽ܸௌ ൅ ܽଵ,ଶ ஽ܸௌ
ଶ ൅ ڮ ൅ ܽଵ,ଵ଴ ஽ܸௌ

ଵ଴൯ܸீ ௌ 

                                                ൅൫ܽଶ,଴ ൅ ܽଶ,ଵ ஽ܸௌ ൅ ܽଶ,ଶ ஽ܸௌ
ଶ ൅ ڮ ൅ ܽଶ,ଵ଴ ஽ܸௌ

ଵ଴൯ܸீ ௌ
ଶ  

 ڭ

                                                         ൅൫ܽଵ଴,଴ ൅ ܽଵ଴,ଵ ஽ܸௌ ൅ ܽଵ଴,ଶ ஽ܸௌ
ଶ ൅ ڮ ൅ ܽଵ଴,ଵ଴ ஽ܸௌ

ଵ଴൯ܸீ ௌ
ଵ଴. 

(A.2) 

 

This modeling requires 121 coefficients to be calculated, which can be done using polynomial fitting. 

The DC current of the transistor is first simulated using ELDO® for 0.1 ൏ ܸீ ௌ ൏ 0.9 and 0 ൏ ஽ܸௌ ൏

1.8. ELDO® uses BSIM3v3 model for the transistors. Then using polynomial fitting function in 

MATLAB® all the coefficients in (A.2) are calculated to achieve minimum error.  

A.2 Capacitor Modeling 

The capacitors used in transistor modeling are usually multi-dimensional nonlinear capacitors. In 

other words, 

 

ௌீܥ ൌ ଵ݂ሺܸீ ௌ, ஽ܸௌሻ, 

 

஽ௌܥ ൌ ଶ݂ሺܸீ ௌ, ஽ܸௌሻ, 

 

஽ீܥ ൌ ଷ݂ሺܸீ ௌ, ஽ܸௌሻ. 

(A.3) 

 

However, for this thesis application we assume that the capacitors can be modeled with enough 

accuracy using a linear gate-drain capacitor and two one-dimensional nonlinear capacitors between 

gate-source and drain-source as shown in Fig. A.1.  
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ௌீܥ ؆ ଵ݂ሺܸீ ௌሻ, 

 

஽ௌܥ ؆ ଶ݂ሺ ஽ܸௌሻ, 

 

஽ீܥ ൌ  .ݐ݊ܽݐݏ݊݋ܥ

(A.4) 

 

It should be noted that as the frequency of application increases the effect of capacitor become more 

and more important and more accurate modeling is needed. Similar to the drain current, we 

approximate the nonlinear gate-source and drain-source capacitances using 10th order polynomials. 

 

ௌீܥ ൌ ଵ݂ሺܸீ ௌሻ ൌ ௌ଴ீܥ ൅ ௌଵܸீீܥ ௌ ൅ ௌଶܸீீܥ ௌ
ଶ ൅ ڮ ൅ ௌଵ଴ܸீீܥ ௌ

ଵ଴, 

 

஽ௌܥ ൌ ଶ݂ሺ ஽ܸௌሻ ൌ ஽ௌ଴ܥ ൅ ஽ௌଵܥ ஽ܸௌ ൅ ஽ௌଶܥ ஽ܸௌ
ଶ ൅ ڮ ൅ ஽ௌଵ଴ܥ ஽ܸௌ

ଵ଴, 

(A.5) 

 

Extracting the capacitor values from BSIM3v3 model for different gate-source and drain-source 

biasing, the coefficients in (A.5) are determined using polynomial fitting function in MATLAB®. 

A.3 Simulation Results 

For this thesis we calculate the model in Fig. A.1 for an NMOS transistor in 0.18݉ߤ technology with 

ܹ ൌ ܮ and ݉ߤ240 ൌ  Fig. A.2 shows the drain current of the transistor using the 10th order .݉ߤ0.18

two-dimensional polynomial model as well as BSIM3v3 model. As it can be seen the results of 

polynomial model are in good agreement with BSIM3v3 model. The 10th order two-dimensional 

polynomial model shows a maximum of 0.6% relative error for the drain current. 
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Fig. A.2 – Drain current of the transistor using 10th order two-dimensional polynomial model 

and BSIM3v3 model 

 

The gate-source and drain-source capacitances of the transistor using the 10th order polynomial model 

and BSIM3v3 model are shown in Fig. A.3 and Fig. A.4. The 10th order polynomial model shows a 

relative error of less than 0.8% for the gate-source and drain-source capacitances comparing to 

BSIM3v3 model. It can be concluded that the circuit in Fig. A.1 with the polynomial models 

presented can model the transistor with good accuracy. For this thesis we use this model for the 

simulation of the Class-F Power Amplifier. 
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Fig. A.3 – Gate-Source capacitance of the transistor using 10th order polynomial model and 

BSIM3v3 model 

 

 

Fig. A.4 – Drain-Source capacitance of the transistor using 10th order polynomial model and 

BSIM3v3 model 
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