
Time-triggered Program Monitoring

By

Johnson J. Thomas

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Johnson J. Thomas 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Johnson J. Thomas

ii

Abstract

Debugging is an important phase in the embedded software development cycle because
of its high proportion in the overall cost in the product development. Debugging is difficult
for real-time applications as such programs are time-sensitive and must meet deadlines in
often a resource constrained environment.

A common approach for real-time systems is to monitor the execution instead of step-
ping through the program, because stepping will usually violate all deadline constraints.
Runtime monitoring aims at analyzing the well-being of a system at run time in order
to detect errors and steer the system towards a healthy behavior. Such monitoring is a
complementary technique to other approaches for ensuring correctness, such as formal ver-
ification and testing. We consider a time-triggered approach for program monitoring at
runtime, resulting in bounded and predictable overhead. Gaining such characteristics for
overhead is highly desirable for designing and engineering time-critical applications, such
as safety-critical embedded systems.

The two techniques, which we investigate in this work are, time-triggered execution
monitoring and time-triggered self-monitoring. In time-triggered execution monitoring, a
monitor runs as a separate process in parallel with an application program under scrutiny
and samples the program’s state periodically to evaluate a set of properties. Applying
this technique in computing systems, results in bounded and predictable overhead. How-
ever, the time-triggered approach can easily have high overhead depending on the length
of branches and the granularity of the monitoring effort. To reduce this overhead, we
instrument the program with markers that will permit us to sample less frequently and
thus reduce the overhead. This leads to the interesting problems of (a) where to place the
markers in the code and (b) how to manipulate the markers. While related work [27] in-
vestigates the first part, in this work, we investigate the second component of the problem.
We investigate different instrumentation schemes and propose two new schemes based on
bitvectors that significantly reduce the overhead for time-triggered execution monitoring.

Although time-triggered execution monitoring results in bounded and predictable over-
head, it suffers from several drawbacks. Some of the drawbacks are; the time-triggered
monitor requires certain synchronization features at the operating system level and may

iii

suffer from various concurrency and synchronization dependencies and overheads as well
as possible unreliability of synchronization primitives in a real-time setting. Furthermore,
the time-triggered execution monitoring scheme requires the embedded environment to
provide multi-tasking features, which might not always be readily available (eg. TinyOS).
To address the problems associated with time-triggered external monitoring, we propose a
new method, where the program under inspection is instrumented, so that it self-samples
its state in a periodic fashion without requiring assistance from an external monitor or
an internal timer. We call this technique time-triggered self-monitoring. We formulate
an optimization problem for minimizing the number of points in a program, where self-
sampling instrumentation instructions must be inserted. We show that this problem is
NP-complete. Consequently, we propose a SAT-based solution and a heuristic to cope
with the exponential complexity. The experimental results show that a time-triggered self-
monitored program performs significantly better in terms of execution time, binary code
size, and context switches when compared to the same program monitored by an external
time-triggered monitor.

iv

Acknowledgements

I am grateful and thankful to my God and Saviour Jesus Christ for helping me reach
until this stage of my life. I would like to thank all the people who made this work possible.
Firstly, I would like to thank Dr Sebastian Fischmeister who mentored and guided me
through my masters. I thank him for his support, advice, technical guidance and help
which facilitated me in performing the work presented in this thesis. I would also like to
thank Dr Borzoo Bonakdarpour for his guidance and support for the two papers that we
had worked together.

I would like thank the members of Real-Time Embedded Software Group (RESG) for
their support and motivation during the tough times of my masters. I would also like to
thank my friends Samaneh Navabpour, Chirag Ravishankar, Aayush Prakash, Katy Desai,
Wallace Wu and Jithu Sam for making my time in Waterloo, an enjoyable experience. I
would also like to thank Mr Somit Gupta for his guidance and help during the initial stages
of moving and settling in Waterloo.

Lastly but not the least, I would like to thank my parents and siblings for motivating
and encouraging me during the tough and distressing times during my masters. I simply
would not be the person that I am today without their unflinching help and unconditional
love. I thank my parents for the awesome education that they have provided me and
guidance through every step of my life.

v

Dedication

Dedicated to my supporting and caring family; My parents, Jojee and Anitha Thomas,
my siblings, Jobin and Anna Thomas; my grandparents M.G.Kurian and Aleyamma

Kurian and my uncle and aunt, Anil and Ashwathy Kurian.

Fear not, for I am with you;
Be not dismayed, for I am your God.

I will strengthen you.
Yes, I will help you.

I will uphold you with my righteous right hand.

Isaiah 41:10

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of Contributions . 4

1.3 Thesis Organization . 5

2 Background and Related Works 7

2.1 Trace-based Debugging . 7

2.2 Monitoring and Runtime Verification . 9

2.3 Time-triggered Monitoring . 11

3 Time-triggered Execution Monitoring 13

3.1 Overview . 13

3.2 Time-triggered Execution Monitoring & Problem Motivation 15

3.3 System Model & Terminology . 16

3.4 Expressiveness of Instrumentation Schemes 19

vii

3.4.1 Overview of Different Schemes . 19

3.4.2 Comparison in Expressiveness . 21

3.5 Two Instrumentation Schemes based on Bit Vectors 25

3.5.1 bitvec . 25

3.5.2 bitvec+ . 29

3.6 Framework . 33

3.7 Experimental Method . 33

3.7.1 Instrumentation Performance Metric 34

3.7.2 Monotonicity Metric . 34

3.7.3 Memory Use in the Instrumented Program 35

3.8 Experimental Results and Analysis . 35

3.9 Inference & Discussion . 42

4 Time-triggered Self Monitoring with Minimum Instrumentation 44

4.1 Overview . 45

4.2 Time-triggered Self-monitoring with Minimum Instrumentation 48

4.2.1 Problem Description . 48

4.2.2 Complexity Analysis . 50

4.3 Coping with the Exponential Complexity 54

4.3.1 A SAT-based Solution . 54

4.3.2 A Greedy Algorithm . 57

4.4 Framework . 58

4.5 Experimental Methods and Setting . 59

4.5.1 Execution time of the instrumented program 59

viii

4.5.2 Context Switches . 60

4.5.3 Code Size . 60

4.5.4 Number of vertices picked for Self-Monitoring 60

4.6 Experimental Results and Analysis . 60

4.6.1 Performance of the SAT-based and Greedy Techniques 60

4.6.2 Analysis of Self-monitoring Overhead 62

4.7 Inference & Discussion . 63

5 Conclusion 65

5.1 Future Work . 66

References 68

APPENDICES 76

A Copyright Notices 77

A.1 ACM . 77

A.2 IEEE . 78

ix

List of Tables

3.1 Comparison table for different schemes . 21

3.2 Comparing when one technique is superior than the other in the empirical
data . 41

4.1 Comparing the number and percentage of vertices chosen for instrumenta-
tion for SAT-based and greedy techniques. 61

x

List of Figures

3.1 Example of a single instrumentation to extend ∆t 17

3.2 Counter example 1: self loop. 21

3.3 Timing diagram for Figure 3.2. 22

3.4 Counter example 2: Timing diagram that shows a permutation. 22

3.5 Counter example 3: delay. 23

3.6 Counter example 4: diamond. 24

3.7 Timing diagram for Figure 3.6. 24

3.8 Two paths that cannot be instrumented using bitvec 29

3.9 Two paths that cannot be instrumented using bitvec+ 32

3.10 Comparing achieved sampling period of different schemes 36

3.11 Comparing achieved sampling period of different schemes 37

3.12 Progressive gain of sampling period over adding memory 38

3.13 Interference of different heuristics relative to Bitvec 39

3.14 All schemes leading to almost same sampling period 40

3.15 Single marker showing erratic behaviour. 41

3.16 bitvec+ and bitvec instrumenting “smarter" than single increment scheme 42

3.17 bitvec+ far superior than the others. 43

xi

4.1 A simple C program . 49

4.2 Control flow-graph (CFG) for the program in Figure 4.1 50

4.3 Example of a 3-depth first tree. 57

4.4 Results on reduction of context switching (in log scale). 62

4.5 Results on reduction of execution time (in log scale). 63

xii

Chapter 1

Introduction

1.1 Motivation

In computing systems, correctness refers to the assertion that a system satisfies its spec-
ification. Verification is a technique for checking such an assertion. Runtime verification
[22, 57, 11, 12, 34, 31] refers to a lightweight technique, where a monitor checks at run
time whether or not the execution of a system under inspection satisfies a given correct-
ness property. Runtime verification complements exhaustive verification methods, such as
model checking and theorem proving, as well as incomplete solutions, such as testing and
debugging. This is because exhaustive verification often requires developing a rigorous,
abstract model of the system and suffers from the state-explosion problem. Testing and
debugging, on the other hand, provide us with under-approximated confidence about the
correctness of a system. These methods only check for the presence of defects under specific
scenarios.

Most monitoring approaches in runtime verification are event-triggered. In these ap-
proaches, the occurrence of new events (e.g., change of value of a variable) trigger the
monitor. This constant invocation of the monitor leads to unpredictable overhead and
potentially bursts of monitoring intervention at run time. These defects can cause se-
rious issues especially in real-time embedded safety/mission-critical systems. To tackle

1

these drawbacks, in [27], the authors propose time-triggered execution monitoring, where a
time-triggered monitor runs in parallel with the program and samples the program’s state
periodically to evaluate a set of properties. Employing such a monitor results in observing
bounded and predictable overhead at runtime, which are critical design parameters for a
developer of embedded time-sensitive systems. Traditional approaches to monitoring such
as the one used by GNU gprof [32], insert tracing code in the program. Once completed, it
is impossible to estimate the impact of the profiling code on the system. This is especially
inconvenient for real-time programs where the application must meet deadlines or follow
specific periodic behaviour.

Despite the advantage of predictability, the major problem with the time-triggered
approach is that it can incur high overhead. The sampling period essentially defines the
overhead as it specifies how frequently the tracer investigates the program status. The
more frequently this happens, the higher the overhead. While as long as the tasks meet the
deadline, such overhead may not necessarily pose a problem for real-time systems however,
it may still limit the applicability to those systems and real-time applications that have
sufficient slack. The less slack an application has with respect to the deadlines, the less
overhead it can tolerate. Thus, reducing the overhead increases the range of applicability
of this approach.

The common approach, as proposed in related work [27], is to introduce markers in
the program to be able to differentiate among similarly looking paths when considering
the taken samples. This concept introduces two interesting problems: (a) where to place
the markers in the code and (b) how to manipulate the markers. While related works
has investigated the problem of where to place markers [27], it is interesting to investigate
different marker schemes and functions that could increase the sampling period, hence re-
ducing the overhead incurred on the program. Some of the marker schemes considered were
single increment scheme, multiple increment scheme, bitvec+ schemes, etc. The single
increment scheme requires using a monitoring variable to be initialized at the start of the
program and incremented once for every instrumentation. The multiple increment scheme
has a monitoring variable which can be incremented several times. bitvec+ scheme, on
the other hand uses a combination of setting and clearing bits as well as increments. We
discuss these marker schemes and functions in Chapter 3. Experimental results explained

2

in Section 3.8 indicate that using different marker schemes could increase the sampling
period or reduce overhead incurred on the program.

Apart from the overhead associated with time-triggered monitoring, there are certain
other complexities, as well. For example, the monitor needs to run as a separate process
or thread. The first drawback of such a structure is the high cost of context switching
and synchronization. Moreover, synchronization data structures require the underlying
operating system to provide kernel-level system call primitives and inter-process commu-
nication features. In fact, some of the widely used embedded environments (e.g., TinyOS)
lack such multi-tasking features. Moreover, if the program under scrutiny becomes blocked
(e.g., for I/O), the monitor continues trying to sample the program periodically. This will
waste system resources. Furthermore, a monitor process coupled with a program creates
a tight dependency between them at run time. For instance, if the monitor crashes while
evaluating properties, it may never resume the program’s normal operation. Finally, since
the monitor cannot directly read the state of the program, it will keep taking samples from
the program even if no new events have occurred between two samples.

In Chapter 4, we introduce a new concept called time-triggered self-monitoring to ad-
dress the aforementioned problems. The idea is to instrument the program under scrutiny
with instructions in such a way that it self-samples (i.e., records the program’s state) itself
periodically without maintaining an internal timer. In order to facilitate the program to
self-sample itself, we analyze the control-flow graph of the program and compute locations
where self-sampling instructions are inserted. The approach adopted in this work applies
only to sequential programs.

To ensure optimal instrumentation, we require that the number of instrumented ver-
tices in the control-flow graph are minimum. We show that the corresponding optimization
decision procedure is NP-complete in the size of the program’s control-flow graph in Sec-
tion 4.2.2. To remedy the exponential complexity, we follow two approaches. First, we
propose a mapping from our optimization problem to the Boolean satisfiability problem
in Section 4.3.1. This mapping enables us to utilize powerful SAT-solvers to solve our
optimization problem. Secondly, we propose a heuristic that finds nearly optimal solutions
to the problem in Section 4.3.2.

3

In order to find the optimal instrumentation using the techniques mentioned above,
we implemented a toolchain. The tool takes a C program and sampling period as inputs
and computes the instrumentation locations where self-sampling instructions have to be
inserted so that the program will self-sample itself, on execution. The experimental results
discussed in Section 4.6, show that self-monitored programs perform significantly better
than externally monitored programs in terms of execution time, code size, context switches,
etc. This is simply due to the elimination of the cost of synchronization and context
switching for programs monitored by an external process.

1.2 Summary of Contributions

The summary of contributions stated in this thesis are as follows:

• Lowering the overhead of Time-triggered Execution Monitoring [64]: The
major contributions associated with this work are:

– Evaluating expressiveness of different schemes for instrumentation markers. Four
different schemes with different mechanisms for markers to see whether one of
them is strictly more expressive than the others. This was also part of the
learning experience that lead to the design of bitvec+ .

– Two new, expressive instrumentation marker schemes. Based on the experi-
ence looking at the different schemes, two new, expressive schemes for handling
markers called bitvec and bitvec+ . Each of them can be used in different
applications.

– Theorems for failure conditions of the new schemes. Related work [27] showed
that instrumentation schemes might result in livelock situations where the scheme
cannot make progress or cannot solve the instrumentation problem. Analogous
to this concept, failure conditions for the two proposed schemes.

– Improvement over related work. In general, bitvec+ and bitvec result in bet-
ter performance than related work by a factor of two after 50 instrumentations.

4

Also, the two schemes reduce interference [27] and thereby increase monotonicity
by a factor of two over related approaches with similar memory demands.

• Time-triggered Program Self-monitoring [15]: The major contributions associ-
ated with this work are:

– Time-triggered Self-monitoring. A new proposed monitoring technique known
as Time-triggered Self-monitoring, whereby we instrument the program under
inspection such that it self-samples its state in a periodic fashion without re-
quiring assistance from an external monitor or internal timer.

– Formulation of an optimization problem. We formulated an optimization prob-
lem known as Self-Monitoring Instrumentation problem (SMI) which minimizes
the number of points in a program, where self-sampling instrumentation instruc-
tions must be inserted.

– Complexity of SMI and reduction to SAT. We discovered that SMI belongs
to the NP-Complete class of problems. In order to cope with the exponential
complexity, we proposed a SAT-based solution and a heuristic.

– Improvement over time-triggered monitoring using an external monitor. Ex-
perimental results show that a time-triggered self-monitored program performs
significantly better in terms of execution time, binary code size and number
of context switches, compared to the same program monitored by an external
time-triggered monitor.

1.3 Thesis Organization

Chapter 2 presents the background work and related work on various monitoring schemes,
event-based monitoring schemes, etc. Chapter 3 introduces Time-triggered Execution Mon-
itoring. It consists of the system model, various instrumentation schemes, two new instru-
mentation schemes bitvec and bitvec+ . We also discuss experimental results of bitvec
and bitvec+ to compare its performance against other schemes. Chapter 4 introduces
Time-triggered Self-monitoring with Minimum Instrumentation. It consists of the problem

5

description, complexity analysis, two solutions (SAT-based and heuristic) to cope with the
exponential complexity. We also discuss experimental results to compare time-triggered
self-monitoring with time-triggered monitoring using an external time-triggered monitor.
In Chapter 5, we discuss the Conclusion and Future work.

6

Chapter 2

Background and Related Works

In this chapter, we discuss the necessary background on time-triggered program monitoring
and summarize various related works. This chapter is organized as follows; in Section 2.1,
we discuss related work on trace-based debugging. In Section 2.2, we discuss the related
works on monitoring and runtime verification. Finally, we discuss the work conducted on
time-triggered monitoring in Section 2.3.

2.1 Trace-based Debugging

A large body of work exists in the area of tracing with general work on trace-based debug-
ging [20, 46, 53]. In [20], the authors propose a debugging technique known as Flowback
Analysis, which allows programmers to inspect dynamic dependencies in a program ex-
ecution history without the need to re-execute the program. Flowback analysis uses a
traced-based approach to ensure low overhead in terms of execution time and space con-
sumption. In [46], the authors propose a technique for efficiently tracing programs. The
work proposes a technique known as Abstract Execution in which, a small set of events
recorded during the traced program’s execution, are used to generate a complete trace by
re-executing certain regions of the original program. This technique reduces both cost of
tracing in terms of the execution time overhead incurred on the original program and size

7

of the generated trace files. Another work on trace-based debugging proposed in [53] uses
checkpoints to incrementally replay or restart from intermediate points in the program
execution. This technique is useful when debugging process involves a lot of replays of the
execution of the program and for long-running programs. Since introducing checkpoints
into a program incurs high time and space costs, the authors propose adaptive tracing
techniques that provide bounded replay times and reduced overhead on the execution of
the program.

The wide use of trace-based debugging leads to a common problem regarding the place-
ments of probes and counters optimally in a program. In [29], we see that the placement
of such probes and counters efficiently in a program is hard and this results in many in-
teresting variations of the tracing problems [9]. Different approaches to instrument and
reduce the overhead incurred on the program do exist. In [44], the authors propose 3
methods of reducing overhead in terms of 1) cost of instrumentation points, 2) number
of executed instrumentation points and 3) cost of the instrumentation code. The authors
propose techniques such as coalescing instrumentation probes, partial in-lining to select
between minimal and maximal versions of the runtime instrumentation code and partial
register context storing and restoring to facilitate efficient instrumentation code. In [10],
the authors propose an approach that labels execution paths in order to efficiently profile
execution paths of the program. In [47], Larus and Schnarr propose a machine independent
executable editing technique that provides flexibility in setting probes and hides much of
the complexity involved in editing executables. In [7, 61], proposed techniques indicate
flexibility in setting probes and thus reduces overhead.

Another interesting area of instrumentation to reduce overhead is dynamic binary
rewriting which changes the instrumentation at run time. Pin [49] is a popular tool used
for dynamic instrumentation. Pin provides an architectural independent set of API’s for
performing instrumentation. In [8], Bala et al. propose Dynamo which is a dynamic
optimization system that is capable of improving the performance of native code while
executing on the processor. DynamoRIO [1] is a tool built on the work proposed in [8].
In [17], Bruening et al. implements an interface for building external components for Dy-
namoRIO [1]. This interface abstracts many low level details of DynamoRIO and provides
a comprehensive application interface. In [51], Misurda et al. proposes a demand-driven

8

technique based on execution paths to improve test coverage. This approach uses dy-
namic instrumentation that can be included whenever needed, to maintain low overhead.
Some of the other approaches of reducing overhead as a result of instrumentation include
simulator-based approaches [66], time-aware instrumentation [28], and code duplication [5].

Tracing can also be implemented in hardware. Solutions such as JTAG [21], Nexus [48],
and ARM CoreSight [54] with, for instance, the ETM permit inspecting and tracing the
system at a hardware level.

2.2 Monitoring and Runtime Verification

Throughout the years, monitoring has become a popular area of interest and research.
Monitoring techniques developed include the use of frameworks, code instrumentation,
better understanding of the application and quality assurance. Of these techniques, a few
studies discussed include the works of Bertino et al. work on event-based temporal objects,
Janusz Sosnowski et al’s work on online monitoring framework combining hardware and
software and Mohlalefi Sefika et al’s work on the original/intended design of software being
deviated from during implementation. We will also touch on monitoring semantics by
Amir Kishon et al, software tomography by Jim Bowing et al, and lastly the development
of AIMS by Jerry C. Yan.

Bertino et al [13] introduced the concept of event-based temporal object model. This
concept is one that is a cost efficient approach to monitoring applications and can be
accomplished through selectively recording information, instead of storing the entire history
of data. An approach to accomplishing this concept is to use a monitoring framework. A
monitoring framework will record the history of a data object at the point which a specific
event occurs.

The next study discussed is that of Janusz Sosnowski et al [60]. Sosnowski developed
the idea of using both hardware and software monitoring creating an online monitoring
framework. In the work, he discusses in detail three techniques which largely encompassed
the online monitoring framework.

9

Research done by Mohlalefi Sefika et al. [59] discusses how software system implementa-
tion often results in a system that is divergent from the envisioned design. Sefika discusses
the benefits of using codified design principles alongside regular updates and checkups in
order to ensure that it meets the intended design and functionality. Sefika introduces the
idea of using visualizations and logic-based static analysis in order to help ensure deviation
occurs as infrequently as possible. This approach also enables the ability to view code from
many different standpoints.

The next study that will be momentarily looked at is based on monitoring semantics.
The notion of monitoring semantics by Amir Kishon suggests using an extension of lan-
guage’s ordinary semantics in order to observe activity [43]. Kishon proposes that the
monitoring of semantics be implemented into a program as it allows for modularity and
safety.

A subsequent technique for monitoring is that of software tomography presented by
Jim Bowring et al [16]. The idea behind software tomography is that it creates a means of
monitoring which is nominally invasive and does not present much impact. The technique
creates subtasks out of tasks and disperses the subtasks to one instance of software for
monitoring purposes. The retrieval of monitoring information is then generated by fusing
together the information from each subtask.

Another interesting work on monitoring is that of Jerry C. Yan who indicated that seiz-
ing and viewing the execution of an application can be a valuable source of information [68].
To validate his findings, Yan created a parallel monitoring system by the name of AIMS,
which captures a collection of data for MPI programs. In order to monitor the sections of
an application which are of interest, instrumentation must be done before execution. This
enables the AIMS application to generate performance data, which Yan claims is important
for understanding and observing the behavior of an application. It also allows the user to
trace the sequence of events and operations that occur in the application, if needed.

Another closely related area of research linked to the work presented in this thesis is
runtime verification. In classic runtime verification [57], a system consists of an external
observer, called the monitor. This monitor is normally a finite state automaton based on a
set of properties. Most of the monitors used for runtime verfication are event-triggered [45]

10

in the sense that, any change in the state of the system invokes the monitor for analysis.

From the logical and language points of view, runtime verification has mostly been
studied in the context of Linear Temporal Logic (LTL) [11, 35, 38, 31, 36, 63] and in partic-
ular safety properties [58, 37]. Other languages and frameworks have also been developed
for facilitating specification of temporal properties [70, 41, 42]. Runtime verification of
ω-languages was considered in [23]. In [26], the authors address runtime verification of
safety-progress [50, 19] properties.

Overall, the techniques and concepts mentioned above only begin to scratch the surface
on the work developed throughout the years. Being aware of the research done in the field
of monitoring allows us to both apply the knowledge we have gained as well as further
the discussion to explore and enhance different monitoring methods, two of which will be
discussed in-depth later.

2.3 Time-triggered Monitoring

Time-triggered approaches are popularly used in areas where full accuracy for recreating
execution flows as necessary for debugging and monitoring is not needed. Some of the
related works that use a time-triggered approach are discussed as follows. In [32], the
authors propose gprof, a call graph execution profiler which uses a time-triggered approach
to profile the routines in the program. In [67], the author proposes a time-triggered based
profiler for Java Virtual Machines (JVM). The time-triggered profiler facilitates the com-
piler in making better informed optimization decisions by providing it with continuous
system performance measurements in real time. In [69], Zhong and Chang propose an
improved systematic sampling approach to overcome the high overhead associated with
reuse distance measurements used in program analysis and optimizations. In [4], Ander-
son et al. describes a continuous profiling infrastructure which performs its profiling in
a sampling-based approach. The continuous profiler infrastructure supports a wide va-
riety of systems and uses high sampling rates while maintaining low overhead to profile
the system. Analysis tools augmented with the continuous profiler system produce precise
and accurate sampled measurement data which helps users to easily identify performance

11

bottlenecks in their application. In [24], Dean et al. propose a hardware solution for
facilitating sampling-based instruction level profiling for out-of-order processors. The re-
sulting profiled data is useful in analyzing latencies and concurrency issues, cache miss
data, branch history, etc. Other works that use a time-triggered approach include flexible
value sampling [18], approximating the calling context tree [6].

Time-triggered monitoring approaches are used in real-time systems due to the pre-
dictable and bounded overhead incurred on the program under inspection. In [27, 64, 14],
the authors introduce a time-triggered execution monitoring and runtime verification tech-
niques. They propose a framework that allows quantitative analysis of issues tackled in
time-triggered techniques. In the same context, in [55, 56], the authors propose the lan-
guage Copilot for developing hard real-time monitors. The goal of this language is to
develop programs where the monitor does not affect the functionality of the program with
minimal overhead incurred to the program

Finally, in [39], the authors propose a technique that uses control theory for discrete
event systems to control the overhead of software monitoring. In this work [39], overhead
is controlled by temporarily disabling/enabling the invoking of the monitor so that the
overhead is within the bounds of user specified threshold. Another relevant work to this line
of research is [62], where the authors propose runtime verification using state estimation.
In particular, they use Hidden Markov Models (HMM) to check whether states that were
missed due to disabling/enabling of the invoking of the monitor based on the technique
used in [39], resulted in violation of user-specified properties.

12

Chapter 3

Time-triggered Execution Monitoring

In this chapter, we introduce Time-triggered Execution Monitoring and compare various
schemes used to effectively reduce the overhead incurred on an application program as
a result of monitoring the program in a time-triggered fashion [64]. The organization
of this chapter is as follows: in Section 3.1, we present the overview and background of
time-triggered execution monitoring, We introduce time-triggered execution monitoring
and discuss the problem motivation in Section 3.2. In Section 3.3, we discuss the system
model used to formalize time-triggered execution monitoring and terminology used in the
model. We discuss the various instrumentation schemes and its measure of expressiveness
in Section 3.4. We introduce the two new novel instrumentation schemes based on bit
vectors in Section 3.5. Finally, we discuss the framework used to compare the various
instrumentation schemes, experimental method and results in Section 3.6, 3.7 and 3.8,
respectively.

3.1 Overview

In software development, debugging is the phase where developers remove software defects
from the program. Studies show that 30 to 50 percent of the development cost is spent on
testing and debugging hence suggesting that debugging is costly [30]. Consequently, it is
important to investigate new methods for debugging to increase productivity.

13

It is a popular practice to use software instrumentation as the debugging technique to
perform tracing. In this context, the developer instruments a control flow graph and then
executes the instrumented control flow graph to produce a trace. The developer uses the
generated trace to determine the execution path that the program had taken and hence
helping in resolving conflicts that had happened during the program execution.

Recently, sampling-based debugging was suggested [27] as a method to trace program
execution especially for real-time systems. The key advantage of this approach is that it
provides bounded overhead when tracing programs. The sampling period of the tracer is
inversely proportional with the overhead for debugging and tracing. Traditional approaches
to monitoring, such as the approach by GNU(gprof) [32], insert tracing code into the
program. This makes it impossible to estimate the impact of the profiling code on the
system. This is especially inconvenient for real-time programs where the application must
meet deadlines or follow specific periodic behaviour.

Despite the gain in predictability, time-triggered monitoring approach could incur high
overhead on the program under inspection. The sampling period, which specifies how
often the tracer investigates the program status, defines the overhead incurred on the
program. The program incurs more overhead as the tracer interrupts the program more
frequently. In real-time systems, the amount of slack available to the program with respect
to the deadline determines the overhead that the program can tolerate. The more slack a
program has with respect to its deadline, the more overhead is tolerable to the program.
Hence, time-triggered monitoring approach with short sampling periods or high overheads
limits its applicability to those systems and real-time applications that have sufficient slack.
Thus, reducing the overhead of the time-triggered monitoring approach increases its range
of applicability.

Related work [27] proposes an approach where markers are introduced in the program to
be able to differentiate among similarly looking paths when considering the taken samples.
This concept introduces two interesting problems: (a) where to place the markers in the
code and (b) how to manipulate the markers. While related works has investigated the
problem of where to place markers [27], the work presented in this chapter looks into
different marker schemes and functions to increase the sampling period, hence reducing
the overhead incurred on the program under inspection. For example, we introduce a

14

new instrumentation marker scheme known as bitvec+ scheme, which uses a combination
of setting and clearing bits, as well as increments. Based on the given set of paths to
instrument, the scheme uses the mechanism that is more appropriate or feasible. This
property helped achieve higher sampling periods compared to related approaches and hence
having the least overhead when compared to the related approaches.

3.2 Time-triggered Execution Monitoring & Problem
Motivation

In execution monitoring, the developer wants to record an execution trace of the program
under test for the purpose of, for instance, debugging, profiling, testing, or runtime veri-
fication. In the current setting, the system consists of two parts: the executing program,
and a monitor. The monitor observes the executing program and needs to log the pro-
gram’s execution path. In a sampling-based approach, the monitor periodically examines
the state of the program and stores the state in a file. For example, the monitor will store
the program counter and time stamp each time it takes a sample.

The key advantage of time-triggered execution monitoring is the bounded overhead of
the monitoring system. The overhead linearly decreases with the sampling period and
sample size. The result is a high sampling period which generally leads to lower overhead
Ð in comparison to low sampling periods, assuming the sample sizes are the same.

The key problem in sampling-based execution monitoring is to increase the sampling
period. Notorious cases, such as programs with short conditional branches, will result in a
low sampling period, if the resolution needs to be given at the granularity of basic blocks.

Listing 3.1 shows a simple C program with three basic blocks labeled A, B, and C.
Figure 3.1(a) shows the resulting control flow graph. If the developer wants to monitor
the execution using the sampling-based method, then the monitor will have to execute at
the speed of shortest best-case execution time of A+B or A+C; otherwise, the developer
might be unable to reconstruct the execution flow assuming that it records the basic block
id (vertex A, B, or C) and a time stamp. Figure 3.1(b) shows the timing diagram for the

15

example. It demonstrates that, assuming all basic blocks take an execution time of 1 time
unit, after two time units, it will be impossible to decide whether the program took the
path A → B → A or A → C → A. Thereby the sampling period for the program will be
∆t = 2 (more details on the formal model are in Section 3.3).

To increase the sampling period and thereby reduce the overhead, we introduce markers
in the program. A marker is a normal variable that the monitor and the program together
control to permit the developer to decide which paths the program executed even with
long sampling periods.

1 A : i f (x < 5) {
B : x ++

3 goto A ;
} else {

5 C : x−=10;
goto A ;

7 }

Listing 3.1: Illustrative example.

In the example, a marker m1 is used to instrument the vertex C. Figure 3.1(c) shows
the instrumented control flow graph. Vertex C will increment the value of the marker m1.
The monitoring program will store the basic block id (vertex A, B, or C), the current value
of m1, and a time stamp. The timing diagram in Figure 3.1(d) shows that introducing the
marker increases the sampling period to ∆t = 4, because only after four time units will
the program have two or more paths with the same number of increments of m1 and the
same basic block ids.

3.3 System Model & Terminology

The following describes the system model and terminology. The model closely follows
the one presented in [27]. However, we extend the model with a generic instrumentation
function to manipulate markers.

16

A”

B

A

C

B

C

A

c)

A B A
AC

Reaching A
with m1 = 1
at ∆t = 4

a)

d)

b)

inc(m1)

at ∆t = 2
Reaching A

A
B A

C A’

B
C
B’
C’

A
A’
A’

Figure 3.1: Example of a single instrumentation to extend ∆t

To analyze and reconstruct the execution path of the application, we convert a source
program to a directed graph, representing the program’s control flow. The resulting control-
flow graph is defined as G := 〈V,E〉. Each vertex v ∈ V represents a basic block in
the program. An edge e := 〈vs, vd〉 represents a transition from a source vertex vs to a
destination vertex vd. The transition itself takes no time. Each basic block has a best-
case execution time (i.e., the shortest time that it takes to execute the program block
considering all software and hardware side effects). The best case execution time of blocks
can be calculated using either static analysis tools or standard measurement-based analysis
tools [2]. We define this execution time via c(v) and in our graphical presentation show
c(v) on the outgoing edges of v whenever necessary. If an edge lacks an annotation, we
will assume an execution time of one (i.e., if the edge e = 〈vs, vd〉 has no annotation, then
c(vs) = 1).

A path is a walk vi → vi+1 → . . .→ vk in the graph G with a start vertex vi and a end
vertex vk. The execution time of a path, denoted as cp(p), is the sum of execution times
of all vertices along that path (i.e., cp(p) =

∑
c(vi) for all vi ∈ p).

To bound overhead, our approach samples the executing program on a periodic basis.
We define a sample as a tuple s := 〈t, v, state〉 with t being the time stamp when the

17

sample has been taken, v being the basic block (vertex), and state being some additional
program state information such as stack variables, history, etc. We take a sample in
periodic intervals based on the sampling period ∆t.

Two paths p1 and p2 intersect with respect to a sampling period ∆t, iff after taking
two samples, one at time t1 and one at time t2 = t1 + ∆t, the two samples for both paths
are identical with respect to timing and state.

In our approach, the state recorded in a sample is one or multiple marker variables. We
will insert code in the program to manipulate the marker variables at run time and thus
distinguish among different paths (see Section 3.2 for the example). We will use different
schemes that change a marker’s value. The marker function I specifies how the marker
changes. In a simple case, the function might be an increment: I(m) = m + 1; however,
we will also discuss complex functions. A vertex will be able to apply the marker function
several times in sequence, if the scheme permits this. The result is a simple composition
of the function resulting in (I ◦ I)(x).

The instrumentation problem for a pair of paths is as follows: Given a control flow
graph G and a set of intersecting paths, p1 and p2 with respect to ∆t, where to apply the
marker function I such that the two paths no longer intersect.

We solve the instrumentation problem in an instrumentation step. It consists of the
following sub steps: (a) finding a set of paths that intersect and need to be differentiated,
(b) deciding which vertices to instrument along these paths, and (c) inserting the marker
function I in these vertices. For example, Figures 3.1(a), 3.1(b), and 3.1(c) show an
instrumentation step. Figure 3.1(a) shows the original control flow graph. In Phase (a) of
the instrumentation step, we find the path pairs shown in Figure 3.1(b). An algorithm then
decides to increment vertex C (Phase (b)), and finally applies the marker function to C.
Figure 3.1(c) shows the resulting control-flow graph after completing the instrumentation
step.

We call an instrumentation successful, if it solves the present instrumentation problem,
meaning that it can apply the marker function in vertices to differentiate between the given
intersecting paths.

Obviously, the instrumentation problem occurs iteratively for a given control flow graph.

18

Figure 3.1(b) shows the instrumentation problem for ∆t = 2. After successfully instrument-
ing the graph, a new instrumentation problem occurs for ∆t = 4 as shown in Figure 3.1(d).

3.4 Expressiveness of Instrumentation Schemes

The underlying idea is to insert markers in the program and including them in the sam-
ple. If these markers are well placed in the program, then it will drastically increase the
optimal sampling period [27]. A longer sampling period translates into less overhead for a
monitoring system.

A good instrumentation depends on both, choice of type of changes to be made to
the marker and places in the software where these changes occur. In a particular scheme
of instrumentation, we make a particular type of change to marker. We now investigate
different schemes to manipulate the marker and compare their expressiveness with each
other.

3.4.1 Overview of Different Schemes

Single Increment Scheme. The first scheme is the single increment scheme (proposed
in [27]). In this scheme, a marker is a single value initially set to zero. We define a function
I as I(m) = m+ 1, which increments the marker’s value by one.

Multiple Increment Scheme. The second scheme called multiple increment scheme
(proposed in [27]) extends the single increment scheme by permitting multiple applications
of the marker function I in a vertex. The scheme also uses a single variable which is initially
set to zero and the marker function I(m) = m + 1; however, a vertex can increment the
marker multiple times. The key strength of the the two different increment schemes is that
it can maintain history information. We will see in the examples that we can construct
cases that require such history information.

Assignment Scheme. Our next scheme for instrumentation is the assignment scheme
(similar scheme proposed in [10]). This scheme assumes the marker to be a single variable,

19

and it assigns values to markers rather than incrementing them. As such, the marker
function is I(m) = k where k is an arbitrary value that might differ in each vertex.

Assigning a new value to the marker implies that the last assigned value, which repre-
sents history information, is lost. This is unlike the single and multiple increment schemes
in which the history of previous applications of the marker function is preserved. As we
will show later, the assignment scheme solves some simple instrumentation problems which
have no solution using increment scheme.

Bit vector Scheme. The bit vector scheme uses markers as a bit fields instead of variables.
The scheme assumes that the bit fields are initially set to zero. The marker function then
sets and clears bits at a specific location in the bit field. For example, a marker function
can be I(x) = x[1] ↑ & x[0] ↓, which will set bit two and clear bit one in the bit vector
x. Every vertex can have a different version of the marker function and thus set and clear
different bits.

This scheme is interesting because it can maintain but also selectively clear history
information. For example, if each vertex sets a different bit, then the scheme will maintain
history information. If one vertex clears a bit that has been set in a previous vertex, then
the scheme will selectively clear the history that the execution has passed through that
vertex. Yet a salient part is that the scheme falls behind the increment-based schemes when
it comes to building history, because the bit vector scheme, as we use it, requires the marker
function to know what bits to set and clear and thus the history is finite with respect to
the defined marker functions. In the increment-based schemes, the history is infinite as
the marker value can always be incremented. In other words, increment-based schemes
can count to infinity while the bit vector scheme can only count up to the point that the
marker function has been defined. The length of the bit vector at any instant would be
equal to the number of instrumentation steps performed, since every instrumentation step
would use a single bit of the bit vector to distinguish the paths that intersect. We will
demonstrate examples that show the difference between the increment scheme and the bit
vector scheme.

20

3.4.2 Comparison in Expressiveness

Table 3.1 summarizes the results for the different schemes and points to the counter exam-
ples for the different schemes. The table is read in a way that the row indicates the scheme
under scrutiny and the column indicates the scheme to which we compare it to. So for
example, the element in row one, column three points to Figure 3.2 which is the counter
example in which the single increment scheme is superior to the assignment scheme.

Single Multiple Assignment Bit Vector
Increment Increment

Single Increment - Less powerful Figure 3.2 Figure 3.2
Multiple Increment Figure 3.4 - Figure 3.5 Figure 3.2

Assignment Figure 3.4 Figure 3.6 - Less powerful
Bit vector Figure 3.4 Figure 3.6 Figure 3.5 -

Table 3.1: Comparison table for different schemes

The table also contains the entry less powerful when comparing the single increment
scheme to the multiple increment scheme. This means that any case which can be instru-
mented by single increment, can also be instrumented by multiple increment.

Figure 3.2 presents the counter example with the self loop. The assignment and bit
vector schemes are unable to successfully instrument this control flow graph, while, the
single and multiple increment-based schemes can find an instrumentation. The reason is
that the example requires to build history by repetitively applying the marker function I,
as the execution repeatedly passes through B.

. . .A B C
4

Figure 3.2: Counter example 1: self loop.

Figure 3.3 shows the timing diagram for the example. As stated in the model, all edges

21

with no annotation have a delay of one. The edge leaving C has a delay of 4; thus the path
A→ B → C intersects with A→ B → B → C at ∆t = 4.

C

B B BA

C

B

C

Figure 3.3: Timing diagram for Figure 3.2.

Increment-based schemes can successfully instrument this graph, because no marker
value is a fix-point for the marker function I(x) = x + 1, whereas they are fix points for
assignment and the bit vector scheme.

D

A

B C

DC E

B

Figure 3.4: Counter example 2: Timing diagram that shows a permutation.

Figure 3.4 shows a counter example that lists the weakness of the single increment
scheme over other schemes. The example has already been presented in previous work [27],
and we list it here for the sake of completeness.

The graph contains three paths p1 = A → B → C → E, p2 = A → C → D →
E, and p3 = A → D → B → E. To distinguish the path pair {p1, p2} we have to
instrument either B or D but not both, similarly for {p2, p3} either C or B and for p3, p1

either D or C. Clearly there is no successful instrumentation with the single increment
scheme because it produces the same value at the end of both the paths of the pathpair. We
can instrument the above graph with multiple increment scheme by incrementing marker
once at B and twice at C. Same problem can be solved with the assignment or bit-vector

22

based scheme by assigning different values to the marker or setting different bits of the
marker at vertices B,C,D respectively.

4

B

C

A D E . . .

Figure 3.5: Counter example 3: delay.

Figure 3.5 shows a problem for the assignment scheme for the marker function. In the
first instance of the instrumentation problem at ∆t = 3, we have two intersecting paths
p1 = A→ B → D and p2 = A→ C → D. These two paths can be distinguished using the
assignment scheme by assigning a marker value in either B or C.

Let’s assume that the scheme assigns the value m1 = xB at B and we proceed. Having
resolved this path pair, now we get a set of intersecting paths {p3, p4, p5} with p3 = A →
B → D → E, p4 = A → C → D → E, and p5 = A → B → C → D → E. Paths p3 and
p5 have the same value for m1 = xB and need to be differentiated.

At this point, the assignment-based scheme faces a problem, because it can neither
instrument D or C. Vertex D is shared in both paths and any instrumentation of D in
the future will overwrite the value of m1. Therefore, it will decrease the sampling period
again to ∆t = 3 as the current paths p1 and p2 will become indistinguishable again. The
assignment-based scheme also cannot instrument C, because then paths p4 and p5 will be
indistinguishable. Thus, the assignment-based scheme fails at this example.

Other schemes can easily instrument this by incrementing the marker in B and C or
by setting different bits at B and C.

Figure 3.6 demonstrate problem associated with the increment-based schemes. Basic
idea is that, although we may be incrementing a marker at different vertices on different
paths, at the end, the aggregated value of the marker is similar. This property makes the
increment-based scheme ineffective when one path in a path pair is just the permutation of

23

B

C

A D

Figure 3.6: Counter example 4: diamond.

vertices in the other path of path pair, in such case any instrumentation (single or multiple
increment, whereas Figure 3.4 only applies to single increment) will lead to the same value
of the marker at the end. Figure 3.6 generate this kind of path pairs which are shown in
Figure 3.7.

D

B

C

D

D

B

C

. . .

. . .

C
A

B

D

Figure 3.7: Timing diagram for Figure 3.6.

There are two types of intersecting path pairs: one with odd path length and other
with even path length. If we consider a path pair having paths of odd length, then we
can instrument the paths. If we consider a path pair having paths of even length, then
one path will be the permutation of vertices of another path. Paths A → B → C → D

and A → C → B → D form a pair of intersecting paths of that kind. Obviously no
instrumentation using single or multiple increments can solve this instrumentation problem,
but simply assigning two different values to the marker at vertex B and C successfully
differentiates the paths.

The above examples clearly suggest that none of the methods when applied individually

24

are expressive enough to make the paths of a path pair distinguishable in all cases.

3.5 Two Instrumentation Schemes based on Bit Vectors

Based on the insights gained from observing the expressiveness of different schemes as
discussed in Section 3.4 and especially Table 3.1, we now investigate two schemes based on
bit vectors. bitvec is the direct implementation of a bit vector scheme and bitvec+ is a
hybrid of increment and a bit vector scheme.

3.5.1 bitvec

The bitvec algorithm follows a greedy approach in finding the vertices that can be instru-
mented in order to distinguish them at the time of sampling. It tries to find the distinct
vertices on the paths or set of vertices that can manipulate a bit either by setting or
clearing, so that the paths are distinguishable at the time of sampling.

Terminology and Definitions. G is the control flow graph. p1 and p2 are the two
intersecting paths. G′ is the instrumented control flow graph that has successfully solved
the instrumentation problem. We denote V (p) to represent the set of vertices that lie on
the path p.

The function ftlo#
p : V (p) → Z+ (f inish time of last occurrence) is a hash function

that maps each unique vertex v that lies on path p to the finish time of the last occurrence
of v on path p. For example, let p = [A → B → B → A] and each basic block have a
BCET of 1 time unit, ftlo#

p (A) = 4 and ftlo#
p (B) = 3, implying that the finish time of

last occurrence of A on path p is 4 and finish time of last occurrence of B on path p is 3.

Function 1 shows the algorithm for bitvec . We first calculate δ, which is the set
difference between the union set of V (p1) and V (p2) and the intersection set of V (p1) and
V (p2). If the set δ contains elements, then we pick one of the vertices from δ for instru-
mentation; otherwise, we need to investigate whether bitvec can successfully instrument
the path pair.

25

If δ is empty, then we check C
|V (p)|
2 combinations of vertices on path p where p can

be either p1 or p2 and store all pairs of vertices that satisfy the condition that one vertex
distinctively occurs last on one path and the other distinctively occurs last on the other
path, into a temporary set Vable. On completion of checking all C |V (p)|

2 combinations of
vertices, if Vable is empty, then bitvec is unable to instrument the path pair (following
Theorem 1). If Vable contains vertices, then we pick the first two of them since these were
the first two vertices that differed.

The complexity of the algorithm is polynomial with respect to the number of vertices
in V . Calculating δ is linear because represent each of the paths p1 and p2 as an array
of bits of size |V | and perform bit operations to obtain union, intersection and difference
operations. The nested for loop used for comparing C |V (p)|

2 combinations of vertices on path
p where p is either p1 or p2 results in O(|V |2) complexity.

Theorem 1 (bitvec Failure Condition). For two intersecting paths, p1 and p2, bitvec
will be unsuccessful in distinguishing the paths, if and only if the following conditions hold:

1. (V (p1) ∪ V (p2))− (V (p1) ∩ V (p2)) = ∅

2. @v1, v2 ∈ {V (p1) ∪ V (p2)} such that: ftlo#
p1

(v1) < ftlo#
p1

(v2):
ftlo#

p2
(v2) < ftlo#

p2
(v1) for v1 6= v2

Proof. Proof is in the form of two parts: if and only if.

if: We use a proof by contradiction method for one and two vertices. Assuming that the
graph can be instrumented with the conditions mentioned above being true.

We assume to instrument one vertex. Assume that you find one instrumentable vertex
that after instrumentation will distinguish the two paths. This vertex must be unique for
the two paths. This clearly cannot hold, because condition one in the theorem states that
such a vertex does not exist.

We assume to instrument two vertices. Assume that you find two instrumentable
vertices that after instrumentation will distinguish the two paths. First, the two vertices

26

Function 1 Instrument graph with bitvec
Input: Control flow graph G, paths p1, p2

Output: Instrumented control flow graph G′

1: δ ⇐ (V (p1) ∪ V (p2))− (V (p1) ∩ V (p2))

2: if δ = ∅ then
3: V ← V (p1)

4: for i = 0 to |V| do
5: for j = i+ 1 to |V| do
6: if [ftlo#

p1
(V [i]) < ftlo#

p1
(V [j]) && ftlo#

p2
(V [j]) < ftlo#

p2
(V [i])] ||

7: [ftlo#
p1

(V [i]) > ftlo#
p1

(V [j]) && ftlo#
p2

(V [j]) > ftlo#
p2

(V [i])] then
8: add V [i] and V [j] to Vable
9: end if

10: end for
11: end for
12: if Vable = ∅ then
13: bitvec terminates
14: else
15: add first two vertices added to Vable to Vinstr
16: end if
17: else
18: add one vertex of δ to Vinstr
19: end if
20:

21: if |Vinstr| = 2 then
22: set a bit in one vertex, clear the same bit in the other vertex
23: end if
24: if |Vinstr| = 1 then
25: set a bit for the vertex
26: end if

27

must be shared between the paths (c.f., condition 1 in the Theorem). If you still find two
such vertices, then the two vertices must set and clear a bit at distinct positions in the
paths with no other vertex overwriting the bit in the remaining parts of the paths. There
exist no such two vertices, because of condition 2 in the theorem.

We assume to instrument n vertices. Trying to instrument n vertices is similar to
instrumenting one or two vertices. If the remainder of n

2
is 1, then if we can instrument

the paths, we will be able to also instrument them with one vertex only. If the remainder
of n

2
is 0, then if we can instrument the paths, with two vertices only. The argument for

both cases is that if the nth vertex makes the difference, the algorithm would have found
it as the first vertex to try; and if the n − 1th and nth vertices make the different, the
algorithm would have found them when trying to instrument with two vertices.

only if: We use a proof by contradiction for the ‘only if’ part. We assume that either
(V (p1)∪V (p2))− (V (p1)∩V (p2)) 6= ∅ or ∃v1, v2 ∈ {V (p1)∪V (p2)} such that [ftlo#

p1
(v1) <

ftlo#
p1

(v2)] ∧ [ftlo#
p2

(v2) < ftlo#
p2

(v1)] for v1 6= v2 or both.

• Case 1 (V (p1)∪V (p2))− (V (p1)∩V (p2)) 6= ∅: (V (p1)∪V (p2)) is the union of the set
of vertices on paths p1 and p2. If (V (p1)∪V (p2))− (V (p1)∩V (p2)) 6= ∅ then we have
vertices present on either only p1 or p2. We can instrument any of these vertices to
distinguish the two paths.

• Case 2 ∃v1, v2 ∈ {V (p1) ∪ V (p2)} such that [ftlo#
p1

(v1) < ftlo#
p1

(v2)] ∧ [ftlo#
p2

(v2) <

ftlo#
p2

(v1)] for v1 6= v2: Since two such vertices exist, we can instrument one of these
vertices to set a bit and instrument the other vertex to clear the same bit with the
assurance that one wont overwrite the other, hence making it distinguishable at the
time of sampling.

• Case 3 (V (p1) ∪ V (p2)) − (V (p1) ∩ V (p2)) 6= ∅ and ∃v1, v2 ∈ {V (p1) ∪ V (p2)} such
that [ftlo#

p1
(v1) < ftlo#

p1
(v2)]∧ [ftlo#

p2
(v2) < ftlo#

p2
(v1)] for v1 6= v2: From Case 1 and

Case 2, it follows that in Case 3, the paths can be instrumented.

28

From cases 1 to 3, it follows that if any of the two conditions in the theorem is true,
then the paths can be instrumented and hence contradict the initial fact that the graph
cannot be instrumented.

C

A B

A

B C

B

Figure 3.8: Two paths that cannot be instrumented using bitvec .

Example 1. Figure 3.8 shows two paths that cannot be instrumented using bitvec . Note
that vertex A and C has a delay of two, while B has a delay of 1. Given the two paths, we
can compute the following elements:

V (p1) = {A,B,C}
V (p2) = {A,B,C}
V (p1) ∪ V (p2) = {A,B,C}
V (p1) ∩ V (p2) = {A,B,C}
(V (p1) ∪ V (p2))− (V (p1) ∩ V (p2)) = ∅ (Condition 1 in Theorem 1)

As seen in Figure 3.8, condition 2 of Theorem 1 also holds as @v1, v2 ∈ {V (p1)∪V (p2)}
such that [ftlo#

p1
(v1) < ftlo#

p1
(v2)] ∧ [ftlo#

p2
(v2) < ftlo#

p2
(v1)] for v1 6= v2. Since both

conditions hold, the example cannot be instrumented with bitvec .

Note that for example, the increment-based scheme is able to instrument this by simply
incrementing a marker at B.

3.5.2 bitvec+

bitvec+ also follows a greedy approach similar to bitvec in finding vertices that can
be instrumented so that the paths are distinguishable at the time of sampling. The only
difference between bitvec+ and bitvec is that bitvec+ uses increment based scheme
for those cases where bitvec fails. The advantage of bitvec+ is a further increase in

29

the sampling period compared to bitvec but introduces interference due to the use of
increment based schemes.

Terminology and Definitions. The inputs, outputs and ftlo#
p (v) are similar in

structure to Function 1. The function δfreq(p1, p2) of two paths calculates the set of vertices
that occur differently often on the two paths considering also the state information in the
vertex (in our case the marker values).

Function 2 shows the algorithm for bitvec+ . We first calculate the δfreq(p1, p2) and
then remove all vertices shared between the two paths under consideration and assign this
to δ′. If the δ′ set still contains elements, then we can pick one of the vertices for instru-
mentation; otherwise, we need to investigate whether bitvec+ can successfully instrument
the path pair.

If δ′ is empty, then we check C |V (p)|
2 combinations of vertices on path p where p can be

either path p1 or path p2 and store all pairs of vertices that satisfy the condition that one
vertex distinctively occurs last on one path and the other distinctively occurs last on the
other path, into a temporary set Vable. On completion of checking all C |V (p)|

2 combinations
of vertices, if Vable is empty, then we check to see whether δ is an empty set or not. If δ is
an empty set then bitvec+ is unable to instrument the path pair (following Theorem 2)
otherwise, we pick up one vertex in δ, initialize a marker i at the starting vertex of G and
instrument this vertex with i++ . If Vable contains vertices, then we pick the first two of
them.

The complexity of the algorithm is polynomial with respect to the number of vertices
in V . Calculating δfreq is linear, because it involves executing a single pass over both paths
and counts how often vertices occur. It then subtracts the shared vertices between the paths
and returns the delta set. The nested for loop used for comparing C |V (p)|

2 combinations of
vertices on path p where p is either p1 or p2 results in O(|V |2) complexity.

Theorem 2 (bitvec+ Failure Condition). For two intersecting paths, p1 and p2, bitvec+

will be unsuccessful in distinguishing the paths, if and only if the following conditions hold:

1. δfreq(p1, p2) = ∅

30

Function 2 Instrument graph with bitvec+

Input: Control flow graph G, paths p1, p2

Output: Instrumented control flow graph G′

1: δ ⇐ δfreq(p1, p2)

2: δ′ ⇐ δ − {V (p1) ∩ V (p2)}
3: if δ′ = ∅ then
4: V ← V (p1)

5: for i = 0 to |V| do
6: for j = i+ 1 to |V| do
7: if [ftlo#

p1
(V [i]) < ftlo#

p1
(V [j]) && ftlo#

p2
(V [j]) < ftlo#

p2
(V [i])] ||

8: [ftlo#
p1

(V [i]) > ftlo#
p1

(V [j]) && ftlo#
p2

(V [j]) > ftlo#
p2

(V [i])] then
9: add V [i] and V [j] to Vable

10: end if
11: end for
12: end for
13: if Vable = ∅ then
14: if δ = ∅ then
15: bitvec+ terminates
16: else
17: add one vertex of δ to Vinstr and set increment_flag to true
18: end if
19: else
20: add first two vertices added to Vable to Vinstr
21: end if
22: else
23: add one vertex of δ′ to Vinstr
24: end if

31

25: if increment_flag is true then
26: initialize marker i at the starting vertex of G
27: perform i++ at v ∈ Vinstr
28: else
29: if |Vinstr| = 2 then
30: set a bit in one vertex, clear the same bit in the other vertex
31: end if
32: if |Vinstr| = 1 then
33: set a bit for the vertex
34: end if
35: end if

2. @v1, v2 ∈ {V (p1) ∪ V (p2)} such that: ftlo#
p1

(v1) < ftlo#
p1

(v2):
ftlo#

p2
(v2) < ftlo#

p2
(v1) for v1 6= v2

Proof. The condition δfreq(p1, p2) = ∅ signifies that the order of vertices on the path p1 is a
permutation of the order of vertices on path p2. Hence, (V (p1)∪V (p2))−(V (p1)∩V (p2)) =

∅. The proof trivially follows by combining Theorem 1 and the theorem on single path pair
termination in [27].

A

B C

C B

B

Figure 3.9: Two paths that cannot be instrumented using bitvec+ .

Example 2. Figure 3.9 shows two paths that cannot be instrumented using bitvec+ .
Note that all the vertices have a delay of 1. Given the two paths, we can compute the
following elements: δfreq(p1, p2) = ∅ (Condition 1 in Theorem 2).

32

As seen in Figure 3.9, condition 2 of Theorem 2 also holds as @v1, v2 ∈ {V (p1)∪V (p2)}
such that [ftlo#

p1
(v1) < ftlo#

p1
(v2)] ∧ [ftlo#

p2
(v2) < ftlo#

p2
(v1)] for v1 6= v2. Since both

conditions hold, the example cannot be instrumented with bitvec+ .

3.6 Framework

To validate the theorems and the concepts of this work, we extended an existing instru-
mentation engine [27]. The instrumentation engine provides a framework to test different
instrumentation schemes for the instrumentation problem defined above. We have added
the bitvec and bitvec+ schemes to the instrumentation engine. The implementation of
these schemes is as easy or as difficult as implementing a counter or the single increment
scheme. The outputs of this engine are the instrumented vertices, the required execu-
tion time, the resulting sampling period, and the amount of extra memory used in the
instrumented program.

3.7 Experimental Method

In this section, we discuss the parameters, metrics and the experimental setup used to
compare the performance of bitvec and bitvec+ over the schemes introduced in related
work [27].

For the input set, we generated about 5000 control flow graphs using a modified version
of Task Graphs For Free [25]. Each control flow graph has on an average 114 basic blocks
and 218 edges. The control flow graphs follow C program flows [65]. Control flow graphs of
real programs from test benchmarks are future currently in progress. The parameters used
for comparing bitvec and bitvec+ with other schemes are the input control flow graph
and the instrumentation scheme (either increment based with 10 or 25 markers, bitvec ,
or bitvec+). One experiment run works as follows: we first select a control flow graph
and a scheme (either increment based with 10 or 25 markers, bitvec , or bitvec+) and
then pass them to the instrumentation engine. The engine computes the instrumented

33

control flow graph and returns the sampling period, vertices to instrument, the required
execution time, and the amount of extra memory. We performed the computation on a
standard dual-core workstation with 2GB of memory and the simulations took reasonable
execution time (tens of seconds per step). Since the instrumentation process is performed
offline, the actual execution time is negligible as long as it is tolerable for the developer.

The data successfully passed the integrity checks of the engine which were: (1) in
bitvec the increase in sampling period is strong monotonically increasing and (2) on
average, the sampling period increases with the increase in the number of instrumentation
steps.

The various metrics used for this experimentation are similar to those chosen in related
work [27]; except that we chose the name monotonicity instead of usability. We describe
the metrics in the sections below.

3.7.1 Instrumentation Performance Metric

To compare the performance of bitvec and bitvec+ over the increment schemes with 10
or 25 markers, we take the maximum sampling period achieved in each run per algorithm
and sum them up: P =

∑
max(Ti). This metric is robust against direct and indirect

interference defined in [27].

3.7.2 Monotonicity Metric

Monotonicity describes how often the sampling period decreases after an instrumentation
step. This is important to know, because it means that although the instrumentation
takes place (and overhead increases), the sampling period actually decreased. Related
work calls this property usability. We use the following monotonicity metric to evaluate
various heuristics: M = N∑

di
with

di =

{
0 if runi − runi+1 ≤ 0

runi − runi+1 otherwise

34

The term di denotes the decrement between two instrumentation steps runi and runi+1,
if the sampling period of runi is greater than the subsequent runi+1.

∑
di denotes the sum

of decrements in the entire instrumentation steps for a test case. N denotes the number
of the instrumentation steps. The decrement represents the interference introduced by
instrumenting the vertices. Since monotonicity is the reciprocal of the sum of decrements,
the lesser the sum of decrements, the greater the monotonicity of the strategy used.

3.7.3 Memory Use in the Instrumented Program

In contrast to related work, we also evaluate memory use in the instrumented program.
As the schemes instrument the program, they progressively need more memory as they use
new markers. While using more memory not necessarily invalidates approaches, we use
this metric to evaluate the performance especially for schemes with low memory demands
(e.g., single increment scheme). We compute the metric as follows: mu = ∆t

mem
.

3.8 Experimental Results and Analysis

We used the experimental methods as discussed in Section 3.7 to compare the results of
the bitvec and bitvec+ with the increment based schemes discussed in [27].

The instrumentation performance of bitvec and bitvec+ are much better than the
single and multi-increment schemes even if they use multiple markers. Figure 3.10 shows
the comparison of instrumentation performance for different schemes relative to the single
increment scheme, according to the performance metric defined in Subsection 3.7.1. The
higher the sampling period, the better, resulting in lower overhead incurred. As seen in
the graph, the bitvec and bitvec+ perform nearly 1.75 and 2 times, respectively, faster
than the single increment scheme.

Figure 3.11 shows the comparison of the sampling period of different schemes with
the increase in the number of instrumentation steps. The x-axis shows the number of
instrumentation steps (i.e., 50 times solving an instrumentation problem to increase the
sampling period). The y-axis shows the achieved sampling period. The higher the sampling

35

Comparison of Instrumentation Performance of various heuristics
 normalized to Single Increment Scheme

S
um

 o
f (

m
ax

 s
am

pl
in

g
pe

rio
d/

ru
n)

re

la
tiv

e
to

 S
in

gl
e

In
cr

em
en

t s
ch

em
e

0.0

0.5

1.0

1.5

2.0

S
in

gl
e

In
cr

em
en

t

M
ul

tii
nc

re
m

en
t

(1
0

m
ar

ke
rs

)

M
ul

tii
nc

re
m

en
t

(2
5

m
ar

ke
rs

)

B
itv

ec

B
itv

ec
+

Figure 3.10: Comparing achieved sampling period of different schemes

period, the better, because it results in lower overhead. The graph clearly shows the
improvement in the sampling period using bitvec+ and bitvec schemes over the other
schemes as they level off much earlier. This is due to the fact that in bitvec scheme, only
the last change made to a bit on a path will be visible at the time of sampling and we try
to find two different vertices that can be instrumented (one vertex to be assigned to set a
bit and other vertex assigned to clear the same bit) such that one does not overwrite the
bit once set or cleared by the other. Another reason for the increase in sampling period for
bitvec is the use of multiple bits to remember the past traces. bitvec+ shows further
improvement compared to bitvec due to the fact that bitvec+ can instrument more

36

Comparison of Heuristics

Instrumentation Steps

S
am

pl
in

g
P

er
io

d

2000

3000

4000

5000

6000

7000

10 20 30 40 50

Schemes

Single Increment

Multi Increment(10 markers)

Multi Increment(25 markers)

Bitvec

Bitvec+

Figure 3.11: Comparing achieved sampling period of different schemes

cases than bitvec . The consequence of this result is that we can lower the overhead of
sampling-based monitoring with the new schemes bitvec and bitvec+ .

Figure 3.12 shows the progressive gain of sampling period over adding memory. The
x-axis shows the number of instrumentation steps. The y-axis shows the ratio of sampling
period to memory used. The higher the value, the more sampling period we receive for
using memory in the instrumented application. In other words, the higher the value, the
more efficiently we are using the available memory.

As the graph indicates, the single marker scheme performs best. The main reason
is that, in the single marker scheme, the memory used for each instrumentation step is

37

Progressive Gain of Sampling Period Over Adding Memory

Instrumentation Steps

S
am

pl
in

g
P

er
io

d/
m

em
or

y
us

e

500

1000

1500

2000

2500

3000

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

●
●

●

● ●
● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●

●

●
●

●
●

● ●

● ●
● ●

● ●
● ●

●

●

●

●
●

● ●

●

●

●

●
●

● ●

10 20 30 40 50

Schemes

●●●●● Single Increment

●●●●● Multi Increment(10 markers)

●●●●● Multi Increment(25 markers)

●●●●● Bitvec

●●●●● Bitvec+

Figure 3.12: Progressive gain of sampling period over adding memory

constant (one marker). Also, the sampling period increases as the instrumentation steps
increases; hence, an increase in the ratio of sampling period to memory used. bitvec and
bitvec+ attain lower values, as the number of instrumentation steps increases. This is due
to the fact that bitvec and bitvec+ uses one bit of the bit vector in each instrumentation
step. Interestingly, the multi-marker scheme also uses about the same amount of memory
as bitvec and bitvec+ ; however, it fails to achieve similar performance (c.f., Figure 3.11).
This experimentation result shows that the bitvec and bitvec+ scheme should be used
in those systems where sufficient memory can be allotted for the bit vector.

The interference level of bitvec is very low or none because bitvec eliminates direct

38

Interference of Heuristics relative to Bitvec

In
te

rf
er

en
ce

 r
el

at
iv

e
to

 B
itv

ec

0.0

0.5

1.0

1.5

2.0

2.5
M

ul
tii

nc
re

m
en

t
(2

5
m

ar
ke

rs
)

B
itv

ec

B
itv

ec
+

M
ul

tii
nc

re
m

en
t

(1
0

m
ar

ke
rs

)

S
in

gl
e

In
cr

em
en

t
Figure 3.13: Interference of different heuristics relative to Bitvec

as well as indirect interference to a great extent as conjectured in Section 3.5. Figure 3.13
shows the comparison of the interference levels of different schemes relative to bitvec
. The x-axis shows the different schemes. The y-axis shows the interference relative to
bitvec . The black bars in Figure 3.13 show the standard error of the mean. The figure
shows that bitvec has very good monotonicity as it eliminates all interference. This makes
it useful for tooling, because users will never experience a drop in the sampling period as
they use the tool.

The monotonicity of bitvec is high because bitvec eliminates both direct as well as
indirect interference. The lesser the interference, the more is the monotonicity. Figure 3.14

39

Monotonicity of Test Case 140

Instrumentation step

S
am

pl
in

g
pe

rio
d

1200

1400

1600

1800

2000

2200

2400

●

● ● ●

● ●

● ● ● ● ●

●
● ● ●

● ●
● ● ● ●

●
● ●

● ●

●
●

● ● ● ● ●
●

● ● ●
●

●

● ● ● ● ● ● ● ● ●

●

●

10 20 30 40 50

Name

●●●●● Single Increment

Multiple Increment(10 markers)

Multiple Increment(25 markers)

Bitvec

Bitvec+

Figure 3.14: All schemes leading to almost same sampling period

to 3.17 shows the monotonicity of certain interesting test cases. The x-axis shows the
number of instrumentation steps. The y-axis shows the sampling period.

Figure 3.14 shows the monotonic increase in test case 140. Figure 3.14 shows a case
where all the schemes attain the sampling period at the end of 50 steps. It can also be
observed that the single increment scheme encounters more interference compared to other
schemes as indicated by the two downward spikes.

Figure 3.15 shows test case 14. The case is interesting, because it shows the erratic
behaviour of single increment schemes (see steps 10 to 50). Figure 3.15 shows that the
bitvec and bitvec+ both follow the technique until bitvec must terminate. bitvec ’s
termination is due to its inability to further instrument. bitvec+ can continue, because it
uses the single increment method for that particular problem. Since bitvec+ sometimes
uses increment, one can see a drop in monotonicity in the scheme.

Figure 3.16 shows a case where the bitvec and bitvec+ terminate at early instru-
mentation steps while single increment scheme continues to solve instrumentation problems
upto 50 steps. One can reason out the occurrence of such a test case by the argument that,
the instrumentations that bitvec and bitvec+ pick while solving initial instrumentation
problems were “smarter" than the instrumentations made by the single increment scheme,
hence resulting in high sampling periods within 30 instrumentation steps. Another evi-

40

Monotonicity of Test Case 14

Instrumentation step

S
am

pl
in

g
pe

rio
d

4000

6000

8000

10000

12000

●
● ● ● ● ● ●

●
●

●
● ●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

10 20 30 40 50

Name

●●●●● Single Increment

Multiple Increment(10 markers)

Multiple Increment(25 markers)

Bitvec

Bitvec+

Figure 3.15: Single marker showing erratic behaviour.

dence of the “smart" decisions made by bitvec and bitvec+ over the single increment
scheme is the high interference in the sampling period of the single increment scheme from
steps 10 to 50.

Figure 3.17 shows a test case where bitvec+ is far superior to the other techniques.
bitvec follows the same path as bitvec+ until some point after which it can no longer
instrument the paths. The single marker and 10 markers techniques are the almost the
same with single marker having more interference.

Name Absolute Ratio Overall
1 Bitvec 205592 0.987 0.180
2 Increment 2621 0.013 0.0023

Table 3.2: Comparing when one technique is superior than the other in the empirical data

Table 3.2 shows the comparison of the number of test cases where bitvec was better
than the increment scheme and vice versa. As shown in the table, bitvec is superior to
increment in 98.7% of the test cases used during experimentation while increment was su-
perior in the remaining 1.3%. The reason behind the superiority of bitvec over increment
is that bitvec can empirically instrument more cases than the single increment scheme

41

Monotonicity of Test Case 45

Instrumentation step

S
am

pl
in

g
pe

rio
d

2000

3000

4000

5000

6000

7000

8000

●
●

● ●
●

● ● ● ●
● ●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

10 20 30 40 50

Name

●●●●● Single Increment

Multiple Increment(10 markers)

Multiple Increment(25 markers)

Bitvec

Bitvec+

Figure 3.16: bitvec+ and bitvec instrumenting “smarter" than single increment scheme

(See Theorem 1 vs the path pair termination in [27]). This result shows that bitvec is re-
liable in producing higher sampling periods and hence reducing the overhead for sampling
based monitoring.

3.9 Inference & Discussion

Some interesting observations can be made from the results obtained. We study the mono-
tonic behaviour of bitvec and bitvec+ and observe that these schemes on an average
make better decisions (Figure 3.16) which solve a number of hidden paths, as mentioned
in related work [27], hence suggesting that these schemes result in low overhead incurred
on the application program.

The applicability of the bitvec and bitvec+ schemes depend on the trade off between
interference and sampling periods. If the user rejects the notion that applying more instru-
mentation may decrease the sampling period, then bitvec is the primary choice for the
algorithm. Whereas if the user accepts this behaviour, then bitvec+ is more suitable, be-
cause it will achieve better overall results. As clearly indicated in Figure 3.15, the graphs
of bitvec and bitvec+ are the same until a certain instrumentation step after which

42

Monotonicity of Test Case 102

Instrumentation step

S
am

pl
in

g
pe

rio
d

2000

4000

6000

8000

10000

12000

14000

● ● ●
● ● ●

●

● ●
●

●
●

●

● ●
●

●

●

●
● ● ●

●
●

● ●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●
●

●
●

●

● ●

10 20 30 40 50

Name

●●●●● Single increment

Multi(10 markers)

Multi(25 markers)

Bitvec

Bitvec+

Figure 3.17: bitvec+ far superior than the others.

bitvec can no longer instrument while bitvec+ uses increment based scheme to further
instrument the graph. However, Figure 3.11 also shows that although bitvec+ can achieve
higher sampling periods compared to bitvec , but it can introduce interference as indi-
cated by a drop in Figure 3.15. Also, another observation is that adding a marker incurs
only negligible overhead in code size and execution time since these are single statements,
however, investigating the influence of these markers on different metrics is a potential area
for future work.

43

Chapter 4

Time-triggered Self Monitoring with
Minimum Instrumentation

In this chapter, we introduce time-triggered self-monitoring [15], a technique that facili-
tates the program under inspection to self-sample itself periodically without maintaining
an internal timer. In order to evaluate the effectiveness of the self-monitoring scheme, we
compare the overhead incurred on the application program due to monitoring using the
self-monitoring scheme and monitoring using the external time-triggered monitor. The
organization of this chapter is as follows: in Section 4.1, we present the overview and
background of time-triggered self monitoring. In Section 4.2, we formally define the notion
of time-triggered self-monitoring and analyze the complexity of identifying the minimum
number of instrumentation points for enabling self-monitoring. In Section 4.3, we introduce
our SAT-based solution and the heuristic. We describe the framework used to instrument
programs in order to facilitate it to self-sample itself periodically in Section 4.4. In Sec-
tion 4.5, we discuss the experimental methods and settings. The results of experiments
are analyzed in Section 4.6. Finally, in Section 4.7, we discuss the inference obtained as a
result of studying time-triggered self-monitoring scheme.

44

4.1 Overview

Runtime monitoring aims at analyzing the well-being of a system at run time in order
to detect errors and steer the system towards a healthy behavior. Such monitoring is a
complementary technique to other approaches for ensuring correctness, such as exhaustive
verification methods, model checking and theorem proving, as well as incomplete solu-
tions, such as testing and debugging. This is because exhaustive verification often requires
developing a rigorous, abstract model of the system and suffers from the state-explosion
problem. Testing and debugging, on the other hand, provide us with under-approximated
confidence about the correctness of a system, as these methods only check for the presence
of defects under specific scenarios.

Most monitoring approaches in runtime verification are event-triggered. In these ap-
proaches, the occurrence of new events (e.g., change of value of a variable) triggers the
monitor. This constant invocation of the monitor leads to unpredictable overhead and po-
tentially bursts of monitoring intervention at run time. These defects can cause serious
issues especially in real-time embedded safety/mission-critical systems. To tackle these
drawbacks, in [14, 27], the authors propose time-triggered runtime verification and exe-
cution monitoring, where a time-triggered monitor runs as a separate process in parallel
with an application program under scrutiny and samples the program’s state periodically
to evaluate a set of properties. Applying this technique in a computing system results
in obtaining bounded and predictable overhead. Gaining such characteristics for over-
head is highly desirable for designing and engineering time-critical applications, such as
safety-critical embedded systems.

Although time-triggered monitoring results in obtaining a monitor with predictable
overhead and probe effects, it introduces certain complexities as well. For example, the
monitor needs to run as a separate process or thread. The first drawback of such a struc-
ture is the high cost of context switching and synchronization. Moreover, synchronization
data structures require the underlying operating system to provide kernel-level system call
primitives and inter-process communication features. In fact, some of the widely used
embedded environments (e.g., TinyOS) lack such multitasking features. Moreover, if the
program under scrutiny is blocked (e.g., for I/O), the monitor continues trying to sam-

45

ple the program periodically. This will waste system resources. Furthermore, a monitor
process coupled with a program creates a tight dependency between them at run time.
For instance, if the monitor crashes while evaluating properties, it may never resume the
program’s normal operation. Finally, since the monitor cannot directly read the state of
the program, it will keep taking samples from the program even if no new events have
occurred between two samples.

To address the aforementioned problems, in this chapter, we introduce a new concept
called time-triggered self-monitoring. Our idea is to instrument the program under scrutiny
with instructions in such a way that it self-samples (i.e., records the program’s state) itself
periodically without maintaining an internal timer. In other words, the time-triggered
monitor is weaved into the program. The main challenges in instrumenting the program
for enabling self-monitoring are the following:

1. (Correctness) How should the program be instrumented such that the time interval
between two successive self-sampling points does not exceed the desired sampling
period? We assume that the sampling period is provided by the system designer
based on the structure of the program under inspection and properties of interest
(e.g., determined by the automated methods in [14, 27, 64, 52]).

2. (Instrumentation optimality) How can we minimize the overhead of instrumentation
at run time while enabling time-triggered self-monitoring that respects the correctness
condition?

3. (Minimum deviation) How should the program be instrumented such that execution
of sampling instructions are as close as possible to the given sampling period in all
execution paths?

Our approach works as follows for sequential programs. We formally define the concept
of time-triggered self-monitoring in terms of the correctness and instrumentation optimality
constraints mentioned above. In order to ensure correctness, we construct the program’s
control-flow graph (CFG), where the weight of a vertex is its best-case execution time
(BCET). Computing the sampling period of a CFG based on BCET of basic blocks is quite

46

realistic, as (1) all hardware vendors publish the BCET of their instruction set in terms of
clock cycles, and (2) BCET is a conservative approximation and no execution occurs faster
than that. Using vertex weights, one can design simple algorithms that identify vertices
where self-sampling instructions should be added. These instructions simply read the state
of the program (e.g., variable values, contents of stacks, register values, etc) and pass the
state to a monitor function in the program for evaluating properties.

A naive approach to facilitate programs to self-sample itself is by instrumenting all the
vertices in the control-flow graph of the program. Although this is an acceptable solution,
it is desirable to have minimal impact of instrumentation on the code size and execution
time of the program under scrutiny. To ensure optimal instrumentation, we require that
the number of instrumented vertices in the control-flow graph is minimum. It is shown
that the corresponding optimization decision procedure is NP-complete in the size of the
program’s control-flow graph. To remedy the exponential complexity, we propose two
approaches. First, we propose a mapping from our optimization problem to the Boolean
satisfiability problem. This mapping enables us to utilize powerful SAT-solvers to solve our
optimization problem. Secondly, we propose a heuristic that finds nearly optimal solutions
to the problem.

We emphasize that we do not address the third constraint introduced above (i.e., min-
imum deviation) in this work. Also, our current approach works only for sequential pro-
grams. This is because enabling self-monitoring with optimal instrumentation requires
analysis of the causal order of occurrence of events in a concurrent program for identifying
optimal instrumentation points. We consider this to be part of the future work related
to self-monitoring. Our method is fully implemented in a tool chain. The tool takes a C
program as input and computes the instrumentation locations. We have conducted a set
of experiments to compare the behavior of self-monitoring programs with their counter-
parts monitored by an external process. The experimental results show that self-monitored
programs perform significantly faster than externally monitored programs. This is simply
due to the elimination of the cost of synchronization and context switching for programs
monitored by an external process.

It can be noted that instrumenting a program to add self-checking instructions is a
commonly applied exercise by system designers and developers. Examples include asser-

47

tion instructions, exception handling, and even simple conditional statements to check the
state of the program. The technique proposed in this work ensures that such instructions
are executed within a certain time period at run time and that the number of inserted
instructions is minimum.

4.2 Time-triggered Self-monitoring with Minimum In-
strumentation

4.2.1 Problem Description

Time-triggered runtime monitoring [27, 14] consist of a monitor and an application program
under inspection. The monitor runs in parallel with the application program and interrupts
the program execution at regular time intervals to observe the state of the program. This
state could be formed by some variable values, stack values, register values, etc. The key
advantage of this technique is obtaining bounded and predictable overhead incurred on
the program execution. This overhead is inversely proportional to the sampling period at
which the monitor samples the state of the program.

Although time-triggered monitors with interruptions have widely been used, they suffer
from two main drawbacks:

• time-triggered interruptions introduce a large number of context switches to the
system,

• if the program under inspection is blocked (e.g., waiting for I/O) the monitor keeps
waking up to take samples from the program, and

• incorporating external monitors requires communication between at least two pro-
cesses and synchronization data structures require the underlying operating system to
provide kernel-level system call primitives and inter-process communication features.

48

A: if (x < 5) {
B: x++;

goto A

}
else {

C: x -= 10;

goto A;

}

Figure 4.1: A simple C program

These issues introduce additional but unnecessary overhead to the system. In addition, in
the latter case, such primitives may possibly be unreliable in real-time settings. Moreover,
some embedded environments such as TinyOS do not provide such primitives at all.

In order to eliminate the aforementioned overheads, we introduce the concept of time-
triggered self-monitoring. Our idea is to remove the external time-triggered monitor and
instrument the program under inspection by augmenting the program with instructions
that self-sample the state of the program periodically for inspection without using an
internal timer. Specifically, these instructions read the state of the program (e.g., a set
of variables, registers, path markers, stack contents, etc) and call a function within the
program for monitoring purposes. Moreover, the program execution time between each
two successive samples must be at most the desired sampling period, given as an input
parameter. For instance, for the program in Figure 4.1, where the sampling period is
SP = 2, the goal is to augment the program with instructions that take a sample from the
value of variable x, such that the execution time between each two successive samples is
at most 2 time units.

We emphasize that, we assume that the sampling period be given as part of the inputs
to an instrumentation algorithm for self-monitoring. The sampling period is provided by
the system designer using automated techniques such markers, history variables, etc as
described in related work [14, 27, 64, 52]. Thus, the process of obtaining a sampling period

49

A

B

C

1

1
1

1

Figure 4.2: Control flow-graph (CFG) for the program in Figure 4.1

is irrelevant to the algorithms that generate instrumentation schemes for enabling self-
monitoring for a program. In other words, such algorithms only take a control-flow graph
and a desired sampling period as input and return a set of vertices of the control-flow graph
that need to be instrumented.

A naive solution to instrument a program for self-monitoring is as follows. One can
insert self-sampling instructions at every vertex of the CFG, which take samples within
the sampling period. However, in order to minimize the impact of instrumentation, it
is desirable to insert the minimum number of self-sampling instructions in the program.
Next, we formalize an optimization problem that captures minimum instrumentation that
enables self-monitoring in a program for a given sampling period.

4.2.2 Complexity Analysis

Let G = 〈V, v0, A, w〉 be the control-flow graph of a program and SP be the sampling
period at which the program has to be sampled. We define a control-flow graph (CFG) as
follows:

Definition 1. The control-flow graph of a program P is a weighted directed simple graph
CFGP = 〈V, v0, A, w〉, where:

50

• V is a set of vertices, each representing a basic block of P . Each basic block consists
of a sequence of instructions in P .

• v0 is the initial vertex with in degree 0, which represents the initial basic block of P .

• A is a set of arcs of the form (u, v), where u, v ∈ V . An arc (u, v) exists in A, if and
only if the execution of basic block u can immediately lead to the execution of basic
block v.

• w is a function w : A→ N, which defines a weight for each arc in A. The weight of
an arc is the best-case execution time (BCET) of the source basic block.

For example, Figure 4.1 shows a simple C program with three basic blocks labeled A,
B, and C. Figure 4.2 shows the control-flow graph of the program.

Let Πv,v′ denote the set of all simple paths between two vertices v and v′ in V and Π

be the set of all paths in G. The length of a path π (denoted Length(π)) is calculated as
the sum of the weights of arcs present on π using the function w.

Now, let V : Π → 2V be the function that obtains the set of vertices on a path except
the source and end vertices. Our goal is to find the minimum set of vertices V ′ ⊆ V , such
that for any two vertices v, v′ ∈ V ′, the length of the longest path from v to v′ that does
not pass through a vertex v′′ ∈ V ′, where v′′ 6= v, v′, is at most SP . The initial vertex v0

is by default always present in V ′. The set V ′ identifies the basic blocks that need to be
instrumented to augment the program with self-sampling instructions. We now show that
this minimization problem is NP-complete.

Instance. A control-flow graph G = 〈V, v0, A, w〉, a sampling period SP , and a positive
integer k, where k ≤ |V |.

Self-monitoring instrumentation decision problem (SMI). Does there exist a set
V ′ ⊆ V of vertices such that:

• |V ′| ≤ k

51

• v0 ∈ V ′

• ∀v, v′ ∈ V ′ : ∀π ∈ Πv,v′ :

6 ∃v′′ ∈ (V(π) ∩ V ′) :

Length(π) ≤ SP .

Lemma 1. SMI is in NP.

Proof. We need to show that given a solution to the problem, one can verify its correctness
in polynomial-time. Given an instance of SMI and a set V ′ of vertices as a certificate, we
verify whether or not V ′ solves the decision problem as follows. The first two conditions of
SMI can be verified trivially. For the third condition, for every vertex v ∈ V ′, we construct
an SP -depth first tree (SPDFT) as follows. An SP -depth first tree of a vertex v is a
spanning tree rooted at v obtained by applying depth-first search exploration on G, such
that the length of any path of the tree that starts from v and ends at a leaf is at most
SP . Also, all forward and cross edges are preserved when a depth first search exploration
is applied on G to obtain the SPDFT of a vertex v.

Now, given a SPDFT rooted at vertex v ∈ V ′, we check if there exists a path from v

to one of the leaves, such that this path does not include a vertex v′ ∈ V ′, where v′ 6= v.
If so, it means that after self-sampling in basic block v, there exists an execution path
of the program where self-sampling does not occur within the given sampling period SP .
Hence, the answer to the verification question is negative. Otherwise, starting from v, in
all execution paths the program self-samples within SP time units.

We repeat this procedure for all vertices in V ′. If all vertices pass this verification
successfully, the answer to the verification problem is affirmative. The complexity of the
algorithms is O(V 2) and, hence, SMI is a member of the class NP.

Lemma 2. SMI is NP-hard.

Proof. Now, we show that SMI is NP-hard. To this end, we reduce the Minimum Vertex
Cover Problem (VC) to SMI. The minimum vertex cover problem is as follows [40]. Given
a (directed or undirected) graph G = 〈V,E〉 and a positive integer K, the problem is to
find a set U ⊆ V , such that |U | ≤ K and each edge in E is incident to at least one vertex

52

in U .

Mapping. Let directed graph Gvc = 〈Vvc, Evc〉 and a positive integer K be an instance
of VC. We assume that the graph has a vertex v0

vc with in degree zero. This assumption
does not change the complexity of VC. We can obtain an instance of SMI as follows:

• Graph Gsmi = 〈Vsmi , v
0
smi , Asmi , w〉, where

– Vsmi = Vvc

– v0
smi = v0

vc

– Asmi = Avc

– w(a) = 1 for all a ∈ Asmi

• Sampling period SP = 2, and

• k = K.

Reduction. We now prove that a solution to VC exists if and only if a solution to the
obtained instance of SMI as prescribed above exists:

• (⇒) Let U ⊆ V be a solution to VC for graph Gvc = 〈Vvc, Evc〉, such that |U | ≤ K.
Let V ′ identical to U be the solution to SMI for graph Gsmi =

〈Vsmi , v
0
smi , Asmi , w〉 and sampling period SP = 2. Thus, self-sampling instructions

are added to the end of basic blocks in U . We now show that this solution is valid
for SMI. First, we have |U | ≤ k, as k = K and |U | ≤ K. Secondly, for any edge
e = (u, v) ∈ E, either one of the incident vertices u or v must belong to U or both u
and v belong to U . In the former case, the number of edges on a path from either u
or v to another vertex v′ ∈ V ′ will be 2. In the latter case, the number of edges on a
path from either u or v to another vertex in V ′ will be 1 since that would either be
v or u, respectively. Likewise, the number of edges between any two vertices in V ′

53

is at most 2 by applying the same analogy to all edges in E. Hence, the set U is an
answer to the instance of SMI.

• (⇐) Let V ′ be a solution to the instance of SMI (i.e., the graphGsmi = 〈Vsmi , v
0
smi , Asmi , w〉

and sampling period SP = 2). We show that U identical to V ′ is a solution to VC
for the graph Gvc = 〈Vvc, Evc〉. First, notice that we have |V ′| ≤ K, as K = k and
|V ′| ≤ k. Secondly, for any two vertices v, v′ ∈ V ′, the number of arcs on a path from
v to v′ that does not include a third vertex v′′ ∈ V ′ must be is at most 2. Otherwise,
U is a not a valid solution to SMI. For the case of length 2, one of the edges will be
incident to v and the other will be incident to v′. Since v0

smi ∈ V ′, it can be seen
that all the arcs in Evc will be incident to at least one of the vertices in U using the
same analogy applied to all vertices in U taken as pairs. Hence, U is a vertex cover
for graph Gvc.

Theorem 3. SMI is NP-complete.

Proof. The proof of the theorem trivially follows from Lemmas 1 and 2.

4.3 Coping with the Exponential Complexity

As we showed in Section 4.2, the problem of identifying minimum set of instrumentation
for a program to enable self-monitoring is NP-complete. To remedy the exponential com-
plexity, in this section, we propose a SAT-based solution that finds an optimal solution to
our problem and a greedy algorithm. We present these solutions in Subsections 4.3.1 and
4.3.2, respectively.

4.3.1 A SAT-based Solution

In this subsection, we propose a transformation from the optimization problem presented
in Section 4.2 (SMI) into the Boolean satisfiability problem (SAT); i.e., the problem of

54

assigning truth values to variables of a given Boolean formula to make the formula evaluate
to logical true.

Let G = 〈V, v0, A, w〉 be a control-flow graph and SP be a desired sampling period. We
construct a SAT formula as follows. The set of Boolean variables in our SAT formula is:

X = {xv | v ∈ V }.

Our intention is that, if xv = true, then basic block v in G will be instrumented with
self-sampling instructions. Otherwise, basic block v remains unchanged.

We now identify the constraints of the SAT formula. Let v be a vertex in V with
out degree greater than 0. We construct the SP -depth first tree as described in the proof
of Lemma 1 (i.e., a spanning tree rooted at v obtained by applying depth first search
exploration on graph G while preserving all forward and cross edges, such that the length
of any path from v to its leaves is at most SP). Let Ch : V → 2V denote a function that
computes the set of child vertices of a vertex. The Boolean formula representing vertex v
is of the form:

Fv = (xv ⇒
∧

u∈Ch(v)

GSP−1
u) (4.1)

Intuitively, Fv captures the constraint that if a basic block v is instrumented, then in all
execution branches, a basic block within SP − 1 steps needs to be instrumented, as well.
The latter proposition is specified by the conjunction of GSP−1

u formulas. For example,
consider the 3-depth tree rooted at vertex v1 in Figure 4.3. For this tree, by applying
Constraint 4.1, we have Fv1 = (xv1 ⇒ G2

v2
∧ G2

v3
).

Formula G is recursively defined as follows:

Giu = (xu ∨
∧

w∈Ch(u)

Gi−1
w) (4.2)

i.e., either basic block u is instrumented or in all execution branches starting from u, a
basic block within i− 1 steps is instrumented. The termination condition of this formula

55

is G0
w = xw. For example, by applying Constraint 4.2, we have G2

v2
= xv2 ∨ [(xv4 ∨ (xv7 ∧

xv8)) ∧ (xv5 ∨ xv9)] and G2
v3

= xv3 ∨ xv6 .

We add identical constraints for each vertex in the control-flow graph. Thus, our
complete SAT formula is the following:

F =
∧
v∈V

Fv (4.3)

Finally, our objective to minimize the number of instrumentations for self-sampling is
the following (assuming that logical true has an integer value 1 and logical false has an
integer value 0):

minimize
∑
v∈V

xv (4.4)

i.e., by finding the minimum number of Boolean variables (respectively, vertices) whose
truthfulness (respectively, instrumentation) makes the SAT formula true (respectively, en-
ables self-monitoring in the control-flow graph). We note that although Constraint 4.4 is
not a normal SAT constraint, one can implement such a constraint in modern solvers for
satisfiability modulo theory (SMT) efficiently using a simple binary search algorithm.

Special Case. A special case occurs when the required sampling period is greater than
the length of the longest execution path of the program. In such a case, both SAT − based
and Greedy algorithms instrument only the root and the leaves of the program’s CFG.
This results in the possibility that an execution path with length greater than the required
sampling period exists if the CFG has any cycles or loops. The main reason for such a
case to occur is due to the fact that the loop bound is not taken into consideration in the
building of the CFG of the program. We solve this special case by instrumenting at least
one vertex that lies on the execution path that constitutes the loop. We perform the same
procedure for all the loops that exist in the program.

56

v1

v2 v3

v4 v5

v6

v7 v8

v9

1
1

1
1

1

1
1

1

Figure 4.3: Example of a 3-depth first tree.

4.3.2 A Greedy Algorithm

In addition to our SAT-based solution, we also propose a simple greedy algorithm for
instrumenting a given control-flow graph G = 〈V, v0, A, w〉 with sampling period SP . The
algorithm works as follows:

1. Initially, we let U = {v0} and W = {v0}.

2. We construct SP -depth first trees (SPDFT) rooted at vertices in U and set U = ∅.

3. Let T be the set of all vertices and R be the leaves of the tree constructed in Step 2.

4. We instrument the vertices in R and we let
U = U ∪ R and W = W ∪ T .

5. We repeat Steps 2 and 3 until W = V .

57

The only case where this algorithm may not instrument correctly is when a control-
flow graph has cycles. To deal with cycles, one can find back-arcs and instrument vertices
on cycles. The special case discussed in Subsection 4.3.1 also applies for the heuristic
presented in this subsection.

4.4 Framework

In order to compare the performance of time-triggered self-monitoring with the widely
used external monitored time-triggered monitoring scheme, we have implemented the self-
monitoring scheme as a toolchain. The toolchain consists of 3 modules, CFG_Generator,
Solution_Generator and Instrumentation_Generator. The inputs to the toolchain include
the C program and the sampling period. The output is an instrumented program. The
CFG_Generator takes the C program and generates the control-flow graph of the program.
The control-flow graph and the sampling period are passed as inputs to the next module
Solution_Generator. Depending on the optimality of the solution required, this module
transforms the control-flow graph either to a SAT expression using the method described
in Subsection 4.3.1 or uses the heuristic described in Subsection 4.3.2 to obtain an optimal
or suboptimal solution, respectively. We utilize the SMT-solver Yices [3] to solve the SAT
expression. In either case, we obtain the set of vertices of the control-flow graph that need to
be instrumented with self-sampling instructions. Finally, we again pass the C program and
the set of vertices of the CFG that needs to be instrumented with self-sampling instructions
to the Instrumentation_Generator module. This module instruments the required vertices
with self-sampling instructions and outputs the final instrumented code. The self-sampling
instructions could be any verification task that the designer requires. For the purpose
of experimentation, we assign the self-sampling instrumentation instructions to include
storing the value of the most frequently used variable to an array to emulate a property
verification task. The 3 modules described above are implemented in Java. Bash scripting
is used to connect the inputs and outputs of the modules.

58

4.5 Experimental Methods and Setting

In this section, we present the experimental settings used for experimentation to evaluate
the effectiveness and efficiency of time-triggered self-monitoring. In Section 4.6, we present
the experimental results and analyze the results.

In order to compare our self-monitoring technique with external time-triggered moni-
toring, we deploy a time-triggered external monitor as follows. We use shared memory for
the program and the monitor to exchange data between them. This data is basically the
value of variables that change the truthfulness of a property in the program under inspec-
tion. The program is instrumented such that it writes the value of the most frequently
used variable to the shared memory whenever the variable gets modified. The monitor
periodically reads the shared memory and stores the values in an array, performing the
same monitoring task as for the self-monitored program.

Our case studies are drawn from the Mälardalen [33] benchmark suite. All experiments
in this section are conducted on a Dual-core ARM Cortex-A9 MPCore with Symmetric
Multiprocessing (SMP) at 1 GHz each and 1 GB low-power DDR2 RAM under Ubuntu
Linux with the default scheduling policy. Each case study is run in a loop of 1000 iterations
for measurements and we ran each experiment 50 times to ensure that the collected data
is sound and exhibits reliable confidence intervals.

The parameters used in performing the experimentation were input control-flow graph,
required sampling period and the scheme used for solving the self-monitoring optimization
problem. The various metrics considered for the experimentation are as follows:

4.5.1 Execution time of the instrumented program

In order to compare the self-monitoring scheme with the external time-triggered monitoring
scheme, we compare the execution time of the program instrumented with self-sampling in-
structions against the execution time of the program monitored using an external monitor.
Also, we compare the execution time of the monitored version of the program against the
unmonitored version of the program in order to evaluate the overhead of the monitoring.

59

4.5.2 Context Switches

Since external time-triggered monitoring scheme requires an external monitor to run in
parallel with the program, it is interesting the observe the number of context switches that
occur as a result of monitoring a program using an external monitor. The context switches
of the external time-triggered monitoring scheme are compared against the number of
context switches encountered by the time-triggered self-monitoring scheme.

4.5.3 Code Size

We use this metric to compare the impact of instrumentation on the time-triggered self-
monitoring scheme. This metric compares the code size of the program instrumented with
self-sampling instructions against the code size of the time-triggered monitoring scheme
using an external monitor.

4.5.4 Number of vertices picked for Self-Monitoring

We use this metric to compare the effectiveness of the heuristic with the optimal solu-
tion produced by the SAT-based solution. This metric compares the number of vertices
instrumented with self-sampling instructions using the SAT-based solution described in
Subsection 4.3.1 versus the heuristic described in Subsection 4.3.2.

4.6 Experimental Results and Analysis

In this section, we present the experimental results and subsequent analysis of the results
applying the experimental methods described in Section 4.5.

4.6.1 Performance of the SAT-based and Greedy Techniques

First, we analyze the performance of our SAT-based (i.e., optimal) and greedy solution in
terms of their capability in handling input control-flow graphs. Table 4.1 shows the chosen

60

SAT-based Greedy
Case Sampling Size of Solution Algorithm
Study Period CFG No. of % of No. of % of

(ns) (Vertices) Vertices Vertices Vertices Vertices

CNT 1000 28 5 17.85 7 25

InsertSort 1000 11 4 36.36 4 36.36

MATMULT 1000 29 7 24.13 9 31.03

FIBCALL 25 9 7 77.77 7 77.77

QURT 100 30 8 26.67 20 66.67

ADPCM 1000 158 29 18.35 70 44.3

Table 4.1: Comparing the number and percentage of vertices chosen for instrumentation for
SAT-based and greedy techniques.

sampling periods and the size of the input control-flow graph in terms of the number of
vertices. We note that the sampling periods are chosen based on two criteria, namely,
the internal structure of the case studies and the requirement that the programs should
be sampled at least once. It can be observed that on average, the size of the solution
set obtained by using the greedy algorithm is nearly double the size of the solution set
obtained by using the SAT-based method.

The time spent in obtaining the solution sets using the SAT-based approach and the
greedy algorithm (not shown in Table 4.1) are comparable in most cases. The only ex-
ception was ADPCM with sampling period 1000ns. We ran the SAT-based method on
ADPCM with sampling period 1000ns and it took nearly 4 hours to obtain a solution. This
special case highlights the fact that in some cases, obtaining a near-optimal solution is
more feasible than the optimal solution. For the cases where the data (number of vertices
instrumented) for different sampling periods are equal, the corresponding row is omitted
in Table 4.1. Obtaining equal data for different sampling periods is due to the fact that
the sampling period is greater than the execution time of the program. In this case, only

61

the root, leaves, and at least one vertex for each loop that lies on the execution path that
constitutes the loop, of the program’s CFG would be instrumented. Thus, increasing the
sampling period results in obtaining the same size of vertices for instrumentation.

Context Switches

C
on

te
xt

 S
w

itc
he

s

100

101

102

103

cnt insertsort matmult fibcall qurt adpcm

Algorithm

External

Greedy

SMSAT

Original

Figure 4.4: Results on reduction of context switching (in log scale).

4.6.2 Analysis of Self-monitoring Overhead

We now analyze the impact of instrumentation on performance in terms of the number of
context switches and execution time of programs under inspection. Figure 4.4 compares
the number of context switches in execution of our case studies using the external monitor
against the self-monitored programs instrumented by the SAT-based approach and the
greedy algorithm. Note that the bar chart in Figure 4.4 is in logarithmic scale. As can
be seen, the number of context switches incurred using external monitoring is higher than
self-monitoring in orders of magnitude. This result simply shows that self-monitoring is
highly preferred in a real-time setting, where non-determinism is not desirable. Also,
the number of context switches incurred in the original unmonitored program and self-
monitored programs instrumented by SAT-based and greedy approaches are very close. In
other words, self-monitoring can significantly assist in preserving the predictability of the
program under inspection. Note that in Figure 4.4 the error bars represent the standard
error of mean (SEM).

62

Execution Time

T
im

e[
us

]

100

101

102

103

104

105

106

cnt insertsort matmult fibcall qurt adpcm

Algorithm

External

Greedy

SMSAT

Original

Figure 4.5: Results on reduction of execution time (in log scale).

Figure 4.5 compares the total execution time of our case studies (in microseconds) for
the original unmonitored program and three different monitoring techniques: (1) using an
external monitor, (2) self-monitoring program instrumented by the SAT-based approach
(SMSAT), and (3) self-monitoring program instrumented by our greedy algorithm. Note
that the bar chart in Figure 4.5 is also in logarithmic scale. As can be seen in Figure 4.5, the
total execution time of programs monitored by an external process is significantly higher
than the execution of their self-monitored counterparts. More specifically, self-monitored
programs instrumented using the SAT-based method are on average 2 times faster than
externally monitored programs. And, self-monitored programs instrumented using the
greedy approach are on average 1.6 times faster than externally monitored versions. It can
also be observed that self-monitored programs instrumented using the SAT-based method
run on an average 2 times slower than their unmonitored counterparts. Also, note that in
Figure 4.5 the error bars represent the standard error of mean (SEM).

4.7 Inference & Discussion

In this chapter, we proposed a new technique for runtime monitoring called time-triggered
self-monitoring. This technique aims at reducing the overheads incurred at time-triggered
monitoring using an external monitor process. In time-triggered external monitoring, the

63

monitor runs in parallel with the program and samples the program state periodically to
evaluate a set of properties. Incorporating such an external process increases the overhead
due to inter-process communication and context switching costs. Moreover, self-monitoring
remedies the tight dependency between the program and monitor at run time, making it
more resilient to faults and unreliability of kernel-level synchronization system calls in real-
time settings. Furthermore, self-monitoring can be deployed in embedded environments,
where multi-tasking features are not necessarily assumed (e.g., in TinyOS). Moreover, since
time-triggered monitoring provides us with bounded and predictable overhead, it is suitable
for time-sensitive platforms, where violation of timing constraints may lead to catastrophic
consequences.

Our self-monitoring technique instruments a program under scrutiny with instructions
in such a way that the program self-samples itself periodically. Moreover, self-sampling
instrumentation ensures that (1) the time interval between two successive self-sampling
points does not exceed the desired sampling period, and (2) minimum number of self-
sampling points is introduced to the program. Our experiments show that self-monitored
programs perform significantly faster than their counterparts monitored by an external
monitor. Moreover, the binary code size and the number of context switches occurred in
self-monitored programs are substantially less than externally monitored programs.

Some of the interesting next steps include self-monitoring in the context of concurrent
programs. Our current method cannot handle concurrent programs, as identifying self-
sampling points in the program require causal relation analysis of the program’s threads
and processes. Another direction is to strengthen our optimization problem such that self-
sampling instructions use their time budget optimally (see the minimum deviation criterion
in Section 4.1); i.e., the instructions execute as close as possible to the intended sampling
points. Developing more sophisticated heuristics to tackle the exponential complexity of
our optimization problem is also an interesting research problem.

64

Chapter 5

Conclusion

In software development, debugging is an important phase where developers detect and
remove software defects from the program. It is a popular practice to use software in-
strumentation as the debugging technique in order to perform tracing and monitoring.
Recently time-triggered based debugging has been suggested and is useful in performing
tracing and runtime verification. Most of the current monitoring approaches used for run-
time verification are event-triggered. The disadvantage of event-triggered monitoring is
the constant invocation of the monitor leading to unpredictable overhead and potentially
bursts of monitoring intervention at runtime.

Monitoring execution and tracing using sampling is an important technique for real-
time embedded applications that need to meet the timing deadlines. The sampling-based
approach permits computing the overhead and thus permits engineering the system. In
the sampling-based approach, the major drawback is the overhead that originates from
required high sampling rates. In the work proposed in Chapter 3, we have investigated
several schemes for using markers to reduce the required sampling rate and thus reduce the
overhead. Specifically, we have proposed the bitvec and bitvec+ schemes, established
their failure conditions, and showed that they provide superior performance than related
work with respect to increasing the sampling period and monotonicity.

Although, time-triggered external monitoring results in bounded overhead incurred on
the program under inspection, it suffers several drawbacks. In time-triggered external

65

monitoring, the monitor runs in parallel with the program and samples the program state
periodically to evaluate a set of properties. Incorporating such an external process increases
the overhead due to inter-process communication and context switching costs. Moreover,
there is a tight dependency between the program and monitor at run time, making it more
resilient to faults and unreliability of kernel-level synchronization system calls in real-time
settings. Furthermore, time-triggered external monitoring scheme requires the embedded
environments to provide multi-tasking features.

To address the above aforementioned problems with time-triggered external monitoring,
we proposed a new technique called time-triggered self-monitoring in Chapter 4. This
technique aims at reducing the overheads incurred at time-triggered monitoring using an
external monitor. Our self-monitoring technique instruments a program under scrutiny
with instructions in such a way that the program self-samples itself periodically without
maintaining an internal timer. Moreover, self-sampling instrumentation ensures that (1)
the time interval between two successive self-sampling points does not exceed the desired
sampling period, and (2) minimum number of self-sampling points is introduced to the
program. We showed that solving this minimization problem is NP-complete in the size
of the program’s control-flow graph. We subsequently proposed a SAT-based method that
finds optimal solutions and a polynomial-time greedy algorithm that finds near-optimal
solutions. Our experiments show that self-monitored programs perform significantly better
than their counterparts monitored by an external monitor. Moreover, the binary code size
and the number of context switches occurred in self-monitored programs are substantially
less than externally monitored programs.

In general, developers can use any of the time-triggered monitoring schemes discussed
in the work presented in this thesis, to debug and monitor their embedded systems for
safety-critical as well as other properties of interest.

5.1 Future Work

Future work with respect to time-triggered execution monitoring would include investigat-
ing a new technique where different instrumentation schemes are used based on the best

66

applicability given the current instrumentation problem to be solved. It would be inter-
esting to observe the impact of such an instrumentation scheme on the gain of sampling
period and monotonicity.

For future work with respect to time-triggered self-monitoring, we are considering sev-
eral research directions. An important direction is self-monitoring in the context of con-
current programs. Our current method cannot handle concurrent programs, as identifying
self-sampling points in the program require causal relation analysis of the program’s threads
and processes. Another direction is to strengthen our optimization problem such that self-
sampling instructions use their time budget optimally (see the minimum deviation criterion
in Section 4.1); i.e., the instructions execute as close as possible to the intended sampling
points. Developing more sophisticated heuristics to tackle the exponential complexity of
our optimization problem is also an interesting research problem.

‘

67

References

[1] Dynamorio: Dynamic instrumentation tool platform. http://www.dynamorio.org/.

[2] RapiTime. web page. http://www.rapitasystems.com/rapitime.

[3] Yices: An SMT Solver. http://yices.csl.sri.com.

[4] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.-T.A. Leung,
R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Continuous pro-
filing: Where have all the cycles gone? ACM Trans. Comput. Syst., 15(4):357–390,
1997.

[5] M. Arnold and B.G. Ryder. A framework for reducing the cost of instrumented code.
In Proc. of the ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation (PLDI), pages 168–179, 2001.

[6] M. Arnold and P.F. Sweeney. Approximating the calling context tree via sampling.
Technical Report RC 21789, IBM T.J. Watson Research Center, July 200.

[7] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and E. Witchel. Traceback:
First fault diagnosis by reconstruction of distributed control flow. ACM SIGPLAN
Not., 40(6):201–212, 2005.

[8] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic Opti-
mization System. In Proc. of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (PLDI), pages 1–12, 2000.

68

http://www.dynamorio.org/
http://www.rapitasystems.com/rapitime
http://yices.csl.sri.com

[9] T. Ball and J.R. Larus. Optimally profiling and tracing programs. ACM Trans.
Program. Lang. Syst., 16(4):1319–1360, 1994.

[10] T. Ball and J.R. Larus. Efficient path profiling. In Proc. of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, pages 46–57, 1996.

[11] A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology (TOSEM), 2009. in
press.

[12] A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation, 20(3):651–674, 2010.

[13] E. Bertino, E. Ferrari, and G. Guerrini. An approach to model and query event-based
temporal data. In Temporal Representation and Reasoning, 1998. Proceedings. Fifth
International Workshop on, pages 122 –131, may 1998.

[14] B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Sampling-based runtime veri-
fication. In Formal Methods (FM), pages 88–102, 2011.

[15] B. Bonakdarpour, J. J. Thomas, and S. Fischmeister. Time-triggered program
self-monitoring. In IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 260–269, 2012.

[16] Jim Bowring, Alessandro Orso, and Mary Jean Harrold. Monitoring deployed software
using software tomography. In Proceedings of the 2002 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, PASTE ’02, pages
2–9, New York, NY, USA, 2002. ACM.

[17] D. Bruening, T. Garnett, and S. Amarasinghe. An Infrastructure for Adaptive Dy-
namic Optimization. In Proc. of the International Symposium on Code Generation
and Optimization (CGO), pages 265–275, 2003.

[18] M. Burrows, U. Erlingsson, S.-T. A. Leung, M. T. Vandevoorde, C. A. Waldspurger,
K. Walker, and W. E. Weihl. Efficient and flexible value sampling. ACM SIGPLAN
Not., 35(11):160–167, 2000.

69

[19] E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of Temporal Property
Classes. In Automata, Languages and Programming (ICALP), pages 474–486, 1992.

[20] J.-D. Choi, B.P. Miller, and R.H.B. Netzer. Techniques for debugging parallel pro-
grams with flowback analysis. ACM Trans. Program. Lang. Syst., 13(4):491–530,
1991.

[21] I. Chun and C. Lim. Es-debugger: the flexible embedded system debugger
based on jtag technology. Proc. of the 7th International Conference on Advanced
Communication Technology (ICACT), 2:900–903, 0-0 2005.

[22] S. Colin and L. Mariani. Run-Time Verification, chapter 18. Springer-Verlag LNCS
3472, 2005.

[23] M. d’Amorim and G. Rosu. Efficient Monitoring of omega-Languages. In Computer
Aided Verification (CAV), pages 364–378, 2005.

[24] J. Dean, J.E. Hicks, C.A. Waldspurger, W.E. Weihl, and G. Chrysos. Profileme: Hard-
ware support for instruction-level profiling on out-of-order processors. In Proc. of the
30th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO),
1997.

[25] R.P. Dick, D.L. Rhodes, and W. Wolf. Tgff: Task Graphs for Free. In
Hardware/Software Codesign (CODES/CASHE), pages 97–101, 1998.

[26] Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime Verification of Safety-Progress
Properties. In Runtime Verification (RV), pages 40–59, 2009.

[27] S. Fischmeister and Y. Ba. Sampling-based Program Execution Monitoring. In Proc.
of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 133–142, 2010.

[28] S. Fischmeister and P. Lam. Time-aware Instrumentation of Embedded Software.
IEEE Transactions on Industrial Informatics, 2010.

70

[29] I.R. Forman. On the time overhead of counters and traversal markers. In Proc. of the
5th International Conference on Software Engineering (ICSE), pages 164–169, 1981.

[30] M.P. Gallaher and B.M. Kropp. The Economic Impacts of Inadequate Infrastructure
for Software Testing. National Institute of Standards & Technologg Planning Report
02–03, May 2002.

[31] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Automated Software Engineering (ASE), pages
412–416, 2001.

[32] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call graph execution profiler.
ACM SIGPLAN Not., 17(6):120–126, 1982.

[33] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET bench-
marks – past, present and future. In WCET2010, pages 137–147, 2010.

[34] K. Havelund and A. Goldberg. Verify your Runs. Verified Software: Theories, Tools,
Experiments (VSTTE), pages 374–383, 2008.

[35] K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Automated
Software Engineering (ASE), pages 135–143, 2001.

[36] K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 342–356,
2002.

[37] K. Havelund and G. Rosu. Efficient Monitoring of Safety Properties. Software Tools
and Technology Transfer (STTT), 6(2):158–173, 2004.

[38] K. Havelund and Gr. Rosu. Monitoring Java Programs with Java PathExplorer.
Electronic Notes in Theoretical. Computer Science, 55(2), 2001.

[39] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S. A. Smolka, S. D. Stoller,
and E. Zadok. Software monitoring with controllable overhead. Software tools for
technology transfer (STTT), 14(3):327–347, 2012.

71

[40] R. M. Karp. Reducibility Among Combinatorial Problems. In Symposium on
Complexity of Computer Computations, pages 85–103, 1972.

[41] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Monitoring, Checking, and
Steering of Real-Time Systems. Electronic. Notes in Theoretical Computer Science,
70(4), 2002.

[42] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A Run-
Time Assurance Approach for Java Programs. Formal Methods in System Design
(FMSD), 24(2):129–155, 2004.

[43] Amir Kishon, Paul Hudak, and Charles Consel. Monitoring semantics: a formal
framework for specifying, implementing, and reasoning about execution monitors. In
Proceedings of the ACM SIGPLAN 1991 conference on Programming language design
and implementation, PLDI ’91, pages 338–352, New York, NY, USA, 1991. ACM.

[44] N. Kumar, B.R. Childers, and M.L. Soffa. Low overhead program monitoring and pro-
filing. In Proc. of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE), pages 28–34, 2005.

[45] O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In Computer
Aided Verification (CAV), pages 172–183, 1999.

[46] J. R. Larus. Abstract execution: a technique for efficiently tracing programs. Softw.
Pract. Exper., 20(12):1241–1258, 1990.

[47] J.R. Larus and E. Schnarr. EEL: Machine-Independent Executable Editing. In
Proc. of the ACM SIGPLAN 1995 Conference on Programming Language Design
and Implementation (PLDI), pages 291–300, 1995.

[48] Ashling Microsystems Ltd. IEEE-ISTO 5001TM-1999, The Nexus 5001 Forum Standard.
Nexus 5001 Forum, 2000.

[49] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi,
and K. Hazelwood. Pin: Building Customized Program Analysis Tools with Dynamic

72

Instrumentation. In Proc. of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 190–200, 2005.

[50] Z. Manna and A. Pnueli. A Hierarchy of Temporal Properties. In Principles of
Distributed Computing (PODC), pages 377–410, 1990.

[51] J. Misurda, J.A. Clause, J.L. Reed, B.R. Childers, and M.L. Soffa. Demand-driven
structural testing with dynamic instrumentation. In ICSE ’05: Proc. of the 27th
International Conference on Software Engineering, pages 156–165, 2005.

[52] S. Navabpour, C. W. Wu, B. Bonakdarpour, and S. Fischmeister. Efficient tech-
niques for near-optimal instrumentation in time-triggered runtime verification. In
International Conference on Runtime Verification (RV), pages 208–222, 2011.

[53] R.H.B. Netzer and M.H. Weaver. Optimal tracing and incremental reexecution for
debugging long-running programs. In PLDI ’94: Proc. of the ACM SIGPLAN 1994
conference on Programming language design and implementation, pages 313–325, New
York, NY, USA, 1994. ACM.

[54] W. Orme. Debug and Trace for Multicore SoCs. ARM, September 2008.

[55] L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A Hard Real-Time Runtime
Monitor. In Runtime Verification (RV), 2010. 345-359.

[56] L. Pike, S. Niller, and N. Wegmann. Runtime verification for ultra-critical systems.
In Runtime Verification (RV), pages 310–324, 2011.

[57] A. Pnueli and A. Zaks. PSL Model Checking and Run-Time Verification via Testers.
In Symposium on Formal Methods (FM), pages 573–586, 2006.

[58] G. Rosu, F. Chen, and T. Ball. Synthesizing Monitors for Safety Properties: This
Time with Calls and Returns. In Runtime Verification (RV), pages 51–68, 2008.

[59] Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Monitoring compliance of a soft-
ware system with its high-level design models. In Proceedings of the 18th international
conference on Software engineering, ICSE ’96, pages 387–396, Washington, DC, USA,
1996. IEEE Computer Society.

73

[60] J. Sosnowski and M. Poleszak. On-line monitoring of computer systems. In Electronic
Design, Test and Applications, 2006. DELTA 2006. Third IEEE International
Workshop on, page 5 pp., jan. 2006.

[61] A. Srivastava and A. Eustace. ATOM: A System for Building Customized Program
Analysis Tools. ACM SIGPLAN Not., 39:528–539, 2004.

[62] S. Stoller, E. Bartocci, J Seyster, R. Grosu, K. Havelund, S. Smolka, and E. Zadok.
Runtime verification with state estimation. In Runtime Verification (RV), pages 193–
207, 2011.

[63] V. Stolz and E. Bodden. Temporal Assertions using Aspectj. Electronic Notes in
Theoretical Computer Science, 144(4), 2006.

[64] J. J. Thomas, S. Fischmeister, and D. Kumar. Lowering overhead in sampling-based
execution monitoring and tracing. In Languages, compilers, and tools for embedded
systems (LCTES), pages 101–110, 2011.

[65] M. Thorup. All structured programs have small tree width and good register alloca-
tion. Inf. Comput., 142(2):159–181, 1998.

[66] B.L. Titzer and J. Palsberg. Nonintrusive precision instrumentation of microcontroller
software. In LCTES ’05: Proc. of the 2005 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, pages 59–68, 2005.

[67] J. Whaley. A portable sampling-based profiler for java virtual machines. In Proc. of
the ACM 2000 Conference on Java Grande, pages 78–87, 2000.

[68] J.C. Yan. Performance tuning with aims/spl minus/an automated instrumentation
and monitoring system for multicomputers. In System Sciences, 1994. Proceedings of
the Twenty-Seventh Hawaii International Conference on, volume 2, pages 625 –633,
jan. 1994.

[69] Y. Zhong and W. Chang. Sampling-based program locality approximation. In Proc.
of the 7th International Symposium on Memory Management (ISMM), pages 91–100,
2008.

74

[70] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. MaC: Distributed Monitoring and
Checking. In Runtime Verification (RV), pages 184–201, 2009.

75

APPENDICES

76

Appendix A

Copyright Notices

The material contained in this work are subject to the following copyright notices and
agreements.

A.1 ACM

J. J. Thomas, S. Fischmeister, and D. Kumar. "Lowering overhead in sampling-based
execution monitoring and tracing". In Languages, compilers, and tools for embedded
systems (LCTES), pages 101-110, 2011, c©2011 Association for Computing Machinery,
Inc. Reprinted by permission. http://doi.acm.org/10.1145/1967677.1967692

"Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee."

Note: This work is used from the above mentioned citation is based on the rights retained
to the authors under the Copyright Transfer section of the ACM Conference Copyright
form and Audio/Video Release form, specifically clause 4 stated as follows "The right to

77

http://doi.acm.org/10.1145/1967677.1967692

post author-prepared versions of the Work covered by the ACM copyright in a personal
collection on their own home page, on a publicly accessible server of their employer and
in a repository legally mandated by the agency funding the research on which the Work
is based. Such posting is limited to noncommercial access and personal use by others,
and must include the following notice both embedded within the full text file and in the
accompanying citation display as well".

A.2 IEEE

c©2012 IEEE. Reprinted, with permission, from B.Bonakdarpour, J.J. Thomas, and S.
Fischmeister, Time-triggered Program Self-monitoring, IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), and Au-
gust/2012.

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Citation: B.Bonakdarpour, J.J. Thomas, and S. Fischmeister. Time-triggered Program
Self-monitoring. In IEEE International Conference on Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), pages 260-269, 2012 [15]

DOI: 10.1109/RTCSA.2012.16

Link on IEEE Xplore:

• http://dx.doi.org/10.1109/RTCSA.2012.16

• http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6300158&isnumber=
6300034

Note: This work is used from the above mentioned citation is based on the rights retained
to the authors under the Retained Rights/Terms and Conditions section of the IEEE Copy-

78

http://dx.doi.org/10.1109/RTCSA.2012.16
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6300158&isnumber=6300034
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6300158&isnumber=6300034

right and Consent Form, specifically clause 6 stated as follows "Personal Servers. Authors
and/or employers shall have the right to post the accepted version of IEEE-copyrighted ar-
ticles on their own personal servers or the servers of their institutions or employers without
permission from IEEE, provided that the posted version includes a prominently displayed
IEEE copyright notice and, when published, a full citation to the original IEEE publication,
including a link to the article abstract in IEEE Xplore. Authors shall not post the final,
published versions of their papers.".

79

	List of Tables
	List of Figures
	Introduction
	Motivation
	Summary of Contributions
	Thesis Organization

	Background and Related Works
	Trace-based Debugging
	Monitoring and Runtime Verification
	Time-triggered Monitoring

	Time-triggered Execution Monitoring
	Overview
	Time-triggered Execution Monitoring & Problem Motivation
	System Model & Terminology
	Expressiveness of Instrumentation Schemes
	Overview of Different Schemes
	Comparison in Expressiveness

	Two Instrumentation Schemes based on Bit Vectors
	bitvec
	bitvec+

	Framework
	Experimental Method
	Instrumentation Performance Metric
	Monotonicity Metric
	Memory Use in the Instrumented Program

	Experimental Results and Analysis
	Inference & Discussion

	Time-triggered Self Monitoring with Minimum Instrumentation
	Overview
	Time-triggered Self-monitoring with Minimum Instrumentation
	Problem Description
	Complexity Analysis

	Coping with the Exponential Complexity
	A SAT-based Solution
	A Greedy Algorithm

	Framework
	Experimental Methods and Setting
	Execution time of the instrumented program
	Context Switches
	Code Size
	Number of vertices picked for Self-Monitoring

	Experimental Results and Analysis
	Performance of the SAT-based and Greedy Techniques
	Analysis of Self-monitoring Overhead

	Inference & Discussion

	Conclusion
	Future Work

	References
	APPENDICES
	Copyright Notices
	ACM
	IEEE

