
Techniques for creating
ground-truthed sketch corpora

by

Scott MacLean

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Scott MacLean 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The problem of recognizing handwritten mathematics notation has been studied
for over forty years with little practical success. The poor performance of math
recognition systems is due, at least in part, to a lack of realistic data for use in
training recognition systems and evaluating their accuracy. In fields for which such
data is available, such as face and voice recognition, the data, along with objectively-
evaluated recognition contests, has contributed to the rapid advancement of the
state of the art.

This thesis proposes a method for constructing data corpora not only for hand-
written math recognition, but for sketch recognition in general. The method con-
sists of automatically generating template expressions, transcribing these expres-
sions by hand, and automatically labelling them with ground-truth. This approach
is motivated by practical considerations and is shown to be more extensible and
objective than other potential methods.

We introduce a grammar-based approach for the template generation task. In
this approach, random derivations in a context-free grammar are controlled so as
to generate math expressions for transcription. The generation process may be
controlled in terms of expression size and distribution over mathematical semantics.

Finally, we present a novel ground-truthing method based on matching terminal
symbols in grammar derivations to recognized symbols. The matching is produced
by a best-first search through symbol recognition results. Experiments show that
this method is highly accurate but rejects many of its inputs.

iii

Acknowledgements

Thanks to my supervisor, George Labahn, for giving me the opportunity to
develop and evaluate my own ideas for many of the problems we have investigated,
and for giving me guidance and support along the way. Thanks also to Ed Lank
who has provided invaluable suggestions and advice regarding many aspects of my
work and my attempts to communicate it clearly. As well, I wish to thank Michael
Terry for making time to read my thesis and see my presentation.

This thesis would not have been possible without help from my MathBrush
colleagues. Thanks to Mirette for sympathizing with my bug-ridden code and at
least pretending to believe that my software would eventually work, and also to
Dave not only for helping to run the collection study, but also for always being
available to discuss ideas, give feedback, and head down to the Grad Club.

Thanks to my parents and Sarah, who have always supported me no matter
how many years I spend in school. Knowing they will be behind any decision I
make has been important to me these last few years. Finally, thanks to my good
friends Nate, Kim, Karl, Colin - all the time we waste is time well spent.

iv

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Math recognition . 1

1.2 MathBrush . 3

1.3 Corpora for training and evaluation 5

1.4 Contributions . 7

1.5 Thesis organization . 8

2 Related work 9

2.1 Math recognition systems . 9

2.1.1 Chan and Yeung . 9

2.1.2 MathPad . 10

2.1.3 Garain and Chaudhuri . 10

2.1.4 Freehand Formula Entry System 11

2.1.5 MathBrush . 12

2.1.6 Microsoft Math Recognition Panel 12

2.2 Ground-truth generation . 13

2.3 The value of our corpus . 13

3 Corpus creation 15

3.1 Requirements for corpus creation 15

3.1.1 Capturing relevant domain properties 16

3.1.2 Correct ground-truth . 16

v

3.2 Tasks in corpus creation . 17

3.2.1 Selection . 18

3.2.2 Rendering . 19

3.2.3 Labeling . 20

3.3 Proposed methodology . 21

3.4 Transcription process . 22

4 Template expression generation 25

4.1 Fuzzy relational context-free grammars 25

4.2 Fuzzy set theory . 26

4.3 Fuzzy relational context-free grammars 26

4.3.1 Definition . 27

4.3.2 Examples . 28

4.3.3 Derivations . 28

4.4 Grammar representation . 29

4.5 Random derivations . 30

4.5.1 Managing expression length 31

4.5.2 Managing semantic distribution 32

4.5.3 Managing bounding-box shape 33

4.6 Examples . 33

4.7 Output formats . 33

5 Automatic ground-truthing 34

5.1 Algorithm . 34

5.1.1 Example . 35

5.2 Experiments and results . 37

5.2.1 Experimental scenarios . 37

5.2.2 Measures of accuracy . 38

5.3 Discussion . 40

6 Conclusions 42

6.1 Future work . 42

6.1.1 Template expression generation 42

6.1.2 Ground-truthing mathematical sketches 43

6.1.3 Recognition accuracy evaluation 44

6.2 Conclusions . 45

vi

References 45

vii

List of Tables

5.1 Partial symbol recognition results during ground-truthing. 36

5.2 Score summary for occurences of —. 37

viii

List of Figures

1.1 A short yet ambiguous handwritten math expression 2

3.1 An expression where ground-truth assignment is arbitrary. 17

3.2 Our collection software in action. 22

3.3 A hand-drawn, randomly generated expression. 23

3.4 A hand-drawn, predetermined expression. 23

3.5 A prepared expression . 23

3.6 A discarded, illegible expression. 24

4.1 Generated expressions . 33

5.1 Ink collected from a study participant. 36

5.2 Exact bounding-box accuracy. 39

5.3 Bounding-box overlap accuracy. 39

5.4 Automatic annotation accuracy . 40

ix

Chapter 1

Introduction

Two present technology trends are the constant growth in power of modern com-
puters and the increasing ubiquity of pen-based devices. The former trend has fa-
cilitated sophisticated software for modeling and solving scientific problems, while
the latter has enabled users to easily sketch diagrams and equations on computers.
It is natural to desire a bridge between these two developments: that is, a facil-
ity for interpreting users’ sketches and using them to formulate input to software
programs.

This bridge is a primary goal of the sketch recognition community. Over the past
several decades, several recognition techniques have been invented and investigated,
and systems have been developed for a variety of sketching domains, including flow
charts [1], electrical schematics [14], molecular structures [25], UML diagrams [24],
musical scores [5], etc.

This thesis focuses on mathematical expression recognition, the problem of de-
ciding what math expression is represented by a sequence of digital ink strokes.
There are many challenges in this recognition task, many of which are addressed
by a recognizer under development as part of the MathBrush project. However,
some challenges may be more easily addressed through the use of a ground-truthed
corpus of handwritten math expressions. Other recognition domains, such as voice
recognition, commonly make use of corpora for training and evaluating recognizer
technologies, but they have not been used on a large scale in math recognition
research. This thesis will describe the creation of a math expression corpus and
some new techniques developed for its construction. As well, it explores some of
the larger issues in corpus creation and corpus use, particularly as applied to math
recognition.

1.1 Math recognition

Math recognition research has a history dating back at least forty years (e.g. [3,
30, 31]). In that time, many math recognition systems have been constructed

1

(see Chapter 2), but they have generally enjoyed little practical success. There
is currently no recognizer available that is capable of interpreting a wide range of
written mathematics. When contrasted with the remarkable success of conceptually
similar technologies such as voice recognition, optical character recognition (OCR),
and facial recognition, this lack of quality recognizers is all the more striking.

It is true that math recognition, and sketch recognition in general, poses sig-
nificant technical challenges. Some challenges are shared with all recognition tasks
involving symbols: for example, each user has a unique writing style, so symbols
may be drawn in many different ways. Some symbols may be virtually indistin-
guishable (e.g. l,1,| or o,O,0). However, English text recognition is greatly aided
by the fact that text is written from left-to-right, top-to-bottom. In this case,
symbols can be linearized easily and there is a clear traversal order through the
digital ink. Sketches, and math expressions in particular, tend to have much more
complicated two-dimensional layouts. Linearization in these domains is extremely
difficult, as the order in which symbols should be traversed is not obvious, and there
are exponentially many possibilities. These difficulties are exacerbated by the un-
certainty inherent in symbol recognition – different symbols may require different
linearization strategies, leading to ambiguity and conflicting strategies.

Ambiguity is an issue common to all handwriting recognition tasks, but the
difficulties it presents are exacerbated in math recognition. In text recognition, one
can assume that the user has written words of some kind, and dictionary-based
heuristics can be combined with grammar models incorporating verb conjugations,
subject-verb agreement, etc. to narrow the range of feasible interpretations consid-
erably. In math recognition, these techniques are applicable up to a point – one
might consider the surrounding context of a symbol in order to restrict the number
of feasible recognition results. However, the large-scale structures of written math
are not as well-defined as for English grammar, so the available context is neces-
sarily smaller. Math writing is also a concise notation lacking the redundancy that
simplifies text recognition.

Figure 1.1: A short yet ambiguous handwritten math expression

For example, the math expression appearing in Figure 1.1 may be interpreted
in at least six distinct ways: ax + b, aX + b, ax + b, axtb, aXtb, axtb. It could be
argued that knowing whether the “x” symbol was upper- or lower-case might help
a recognizer to resolve the ambiguity between multiplication and exponentiation,
but any of these six interpretations could conceivable fit equally well into a larger
expression. Nothing is gained by expanding the notion of expression context be-
yond the size of local subexpressions, except perhaps to say that if the “t” symbol
occurs elsewhere in the expression, the interpretations including “t” may become

2

more likely. On the other hand, the writer may still have intended to write an ad-
dition expression. Such assumptions about symbol reoccurence can be risky from
a recognition point of view.

One encounters ambiguity in mathematical writing even in the absence of un-
certain symbol recognition. For example, the symbol identities in the expression
u(x + y) are clear, but the intended interpretation is not: is u a function being
applied to x+ y, or is the expression a multiplication? Without knowing the inten-
tion of the writer, or having external information available (e.g. the user previously
wrote u : R→ R, effectively declaring u’s “type”), it is impossible to disambiguate
between these interpretations because the syntax used to express them is identical.

This type of ambiguity is uncommon in other recognition domains. In text
recognition, one finds the same syntax expressing different ideas – for example,
“horse” the animal versus “horse” the gymnast’s apparatus – but the goal of text
recognition is typically to simply input the syntax of the language as a replacement
for typing, not to communicate to the computer some notion of animals or sports.
However, in math recognition, it is exactly this kind of communication of higher-
level concepts that is often desired: it may be convenient to simply input math
syntax using a pen rather than a keyboard, but it is more useful to have the
computer interpret these inputs mathematically, so that it can actually perform
the indicated mathematical operations for users. Indeed, this level of recognition
is exactly what is required for the MathBrush project, described in Section 1.2.

Math recognition is a difficult problem, and difficulties arise at two distinct
levels. Syntactic challenges include symbol classification and recognition of com-
plicated two-dimensional expression structures. These difficulties have been well-
studied and addressed by many different approaches to math recognition (see Chap-
ter 2). Semantic challenges involve the resolution of ambiguities arising not only
from the uncertainty inherent in the process of recognizing symbols and expres-
sion structures, but also from the overloading of math syntax. These difficulties
are, at present, perhaps best addressed by incorporating intuitive and flexible user
interfaces into recognition systems so that users can easily select the correct math-
ematical interpretation of their writing.

1.2 MathBrush

MathBrush is an experimental pen-based system for interactive mathematics. The
system ([21]) allows users to write mathematical expressions as they would using
a pen and paper, and to edit and manipulate the mathematical expressions using
computer algebra system (CAS) functionality invoked by pen-based interaction. In
order to formulate correct input for a CAS, MathBrush must resolve any ambiguities
in symbol identity and semantic interpretation, as outlined in Section 1.1.

A major component of MathBrush is its math recognition engine. While it can-
not currently disambiguate between mathematical interpretations having identical

3

syntax (e.g. u(x+y)), it does use local contextual information to guide and restrict
possible symbol identity and subexpression semantics. To do so, the recognizer
models well-formed math expressions using a formal grammar, and models the un-
certainty arising during recognition by representing symbols and subexpressions
as fuzzy sets. Each set member is a different interpretation of the same writing.
Larger expressions are built up from smaller expressions by means of spatial rela-
tions satisfied by the expressions’ constituent ink strokes.

This paradigm is intended to mimic one view of how humans interpret mathe-
matics: by “chunking” a large expression into subexpressions, and assembling the
whole expression by observing how those subexpressions are related to one another.
Ambiguities in subexpression structures or symbol identity do not necessarily ob-
scure the general structure of the whole expression. So it is with our math recognizer
– large-scale expression structures can still be identified even if particular subex-
pressions cannot be accurately recognized. We currently rely on the user to select
the correct interpretation in such cases of ambiguity.

During the creation of this math recognizer, we have found several potential
uses for a corpus of math expressions, such as:

1. Training/evaluating the symbol recognizer component,

2. Training/evaluating the relation classifiers,

3. Comparing different techniques for symbol and relation classification,

4. Evaluating overall recognition accuracy,

5. Regression testing to ensure consistent recognition accuracy,

6. Comparing our recognizer to other current systems.

However, to the best of our knowledge, no publicly-available corpus of hand-
drawn math expressions exists. We have therefore undertaken to create a large
ground-truthed corpus of hand-drawn mathematical expressions to use for training
and evaluating the math recognition component of MathBrush. In order to be of
most use in improving our recognizer, our corpus possesses the following properties:

1. Broad coverage of symbol shapes (e.g. 1, R, θ versus c, a, e versus ρ, q, y, etc.)
and combinations of shapes.

2. Broad coverage of combinations of mathematical semantics.

3. Broad coverage of combinations of spatial relations.

4. Wide range of expression size and complexity.

4

Clearly, our corpus tends more toward a broader coverage of notation rather
than a more accurate reflection of the notation’s use in the real world. This tendency
is due to our rule-based approach to recognition. It has some advantages in terms of
training recognizers similar to MathBrush, but also limits the potential usefulness
of our corpus for other recognition paradigms. These issues are addressed in Section
2.3.

Our corpus may find use outside of the MathBrush project as training and test-
ing data for other math recognition systems. It may also be used as a common
basis of comparison in order to evaluate the relative strengths and weaknesses of
various approaches to math recognition. To date, researchers have generally re-
ported recognition accuracy results using private data sets and their own particular
evaluation criteria. Under these conditions, it is challenging to assess the benefits
of a given recognition algorithm. Any common data set facilitating comparative
evaluation of recognizers is useful.

1.3 Corpora for training and evaluation

Section 1.1 outlined some of the important challenges facing math recognition re-
searchers. However, other recognition domains have their own unique challenges,
yet they have been solved to the extent that their technology has been deployed on
a large scale. Face, voice, and document recognition software programs are com-
monly used by governments and other large organizations. What lessons can be
learned from their success?

It is interesting to note that each of these fields has enjoyed the availablility
of large, high-quality corpora of data accurately labelled with ground-truth infor-
mation (“ground-truthed”). For example, speech recognition corpora are available
from the Linguistic Data Consortium (http://www.lds.upenn.edu), the National
Institute for Standards and Technology (NIST) (http://www.itl.nist.gov/iad/mig),
the European Language Resources Association (http://www.elra.info), and others.
NIST operates yearly standardized evaluations in a variety of application domains
(e.g. language identification, speaker identification, content extraction, etc.) As an
authoritative and objective third party, these evaluations promote friendly compe-
tition between research groups.

The Facial Recognition Technology (FERET) Database comprises over 14000
images for training and evaluation of facial recognizers. It was collected by NIST,
which also manages standardized evaluations, as with its speech recognition pro-
gramme. The evaluation methodology for the 1996 evaluation consisted of a stan-
dardized protocol in which the tester specifies a training set and a testing set, the
testee generates a matrix of values representing the similarity between each train-
ing and testing image, and the tester computes evaluation scores from this matrix
based on a number of criteria reflecting various use cases [33]. (For example, “is the
top match correct?”, “is the correct answer in the top n matches?”, etc.) Other,
smaller corpora are also available (e.g. [16], [34]).

5

NIST also offers OCR databases (http://nist.gov/srd/optical.htm). At the Uni-
versity of Washington, an initiative led by Phillips, Chanda, and Haralick produced
three ground-truthed corpora for recognition of technical documents. The first in-
cluded a large number of English articles, the second included English and Japanese
articles, and the third comprised technical drawings and mathematical equations.
Unlike speech and facial recognition, there is no standardized, external evaluation
process for document analysis systems.

These examples demonstrate that researchers in other fields have found it useful
to:

1. Create large, ground-truthed corpora to use for training and testing recogni-
tion technology,

2. Standardize the problem statement for recognition, and

3. Hold competitions to evaluate the absolute and relative performance of a
variety of approaches to the recognition problem.

These steps have not been taken in the math recognition community, nor in the
sketch recognition community at large. While math recognition systems have been
designed and evaluated largely on an ad-hoc basis, available corpora in other areas
have given researchers in other fields the ability to:

1. Train sophisticated machine-learning techniques and parametrized models on
real, representative data, rather than choosing parameters experimentally or
using small or machine-generated data sets; and

2. Objectively measure recognition accuracy against well-established benchmarks,
facilitating comparison against the state of the art and easy identification of
areas of weakness.

These two steps may be performed only through the use of large, ground-truthed
corpora. Furthermore, they are crucial to the development of highly-accurate recog-
nition systems. Step 1 enables system adaptation; without it, a recognition system
is likely to perform poorly for many users, even if it works well for others. Step 2
fosters continual improvement in the state of the art and encourages cooperation
amongst researchers. Without it, researchers are more inclined to create a new rec-
ognizer from the ground up rather than to build on proven technology and address
its shortcomings. Large datasets and benchmarks for evaluating and comparing
recognizers have helped many recognition domains to achieve real-world success;
there is no reason to suppose they would not be helpful to math recognition.

Creating these datasets and benchmarks requires research into three key ques-
tions:

6

1. How can correct and incorrect recognition can be measured independently of
the technical details of a specific approach?

2. What would a corpus useful as a common basis of comparison need to consist
of?

3. How can the recognition problem be phrased to ensure appropriate experi-
mental conditions and to enable comparison between approaches?

The present work does not address these questions in their full generality. In-
deed, it is beyond the scope of a single recognition project to do so. The corpus
we have created is naturally biased toward the requirements of our own recognizer.
However, other researchers may still find our corpus useful. The corpus can be used
to train recognizers using a similar recognition paradigm (i.e. based on expression
geometry) and as a testing suite for any recognizer. It can act as a publicly-available
common test set, facilitating comparison between recognizers.

1.4 Contributions

This thesis provides some theoretical tools and practical observations to aid in
the creation of large, ground-truthed corpora that are generated by transparent
mechanisms.

One main contribution is a theoretical technique for automatically generating
template expressions, applicable to any domain that can be expressed by a general
class of grammars.

Another main contribution is a publicly-available corpus of hand-drawn math
expressions, fully annotated with ground-truth. This corpus was created using the
techniques described in this thesis. It is available at the URL:

http://www.cs.uwaterloo.ca/scg/mathbrush/mathdata

Secondary contributions include:

• A general methodology for creating sketch corpora based on theoretical and
practical considerations, and

• A simple technique for ground-truthing mathematical expressions.

7

1.5 Thesis organization

The remainder of this thesis is organized as follows:

The next chapter reviews previous work in math recognition and evaluation
metrics used by different authors. It also surveys related work in automatic ground-
truthing from other fields.

Chapter 3 proposes a general process for corpus creation and argues for its
legitimacy by comparison with alternative methods. It goes on to illustrate how
this process was used in our creation of a large corpus of mathematical expressions.

Chapter 4 details our approach to automatically generating template expres-
sions. It introduces a general grammar formalism and shows how unbiased expres-
sions can be obtained by deriving random parse trees.

Chapter 5 gives a simple but accurate algorithm for ground-truthing mathe-
matical expressions. The algorithm is illustrated with examples, and its accuracy
is measured and discussed.

Finally, Chapter 6 explores some limitations to the techniques presented and
identifies areas requiring further research. The thesis concludes with a summary of
our contributions and observations.

8

Chapter 2

Related work

Mathematical expression recognition has a rich history of active research. Under
various guises (visual languages, sketch recognition, system-construction projects,
etc.), the problem has been tackled from many angles by many researchers. That
so many have tried so much with relatively little practical success until recent years
(likely more due to faster hardware than to any other factor) speaks to the chal-
lenge of formulating a computationally-feasible solution giving adequate recognition
accuracy. In this chapter, we survey some approaches taken by existing math recog-
nition systems, review their evaluation methodologies, and describe related work in
ground-truthing corpora from other fields.

2.1 Math recognition systems

More exhaustive surveys of the many approaches to math recognition can be found
in [9] and [4]. Here, we focus on recent research, particularly those publications in
which metrics for evaluating recognition accuracy were introduced.

2.1.1 Chan and Yeung

Chan and Yeung proposed a rule-based approach to mathematics recognition based
on Definite Clause Grammars [7]. Their approach combines rewriting techniques
with heuristics such as operator dominance and hard decisions about subexpression
boundaries.

Chan and Yeung used 60 expressions manually transcribed from a table of com-
mon formulae to evaluate their system. In [8], they analyze the many classes of
errors that may arise in their parsing scheme, and introduce heuristics for repairing
some common recognition errors they encountered. They go on to propose an eval-
uation metric integrating symbol recognition with structural recognition, namely
the ratio of the sum of correctly recognized symbols and mathematical operators

9

to the total number of symbols and operators. This metric assigns equal weight
to symbol recognition and structural recognition, and assumes that every error is
equally important.

2.1.2 MathPad

The MathPad project at Brown University ([28, 43]) is one of the products of a long-
running research programme for creating math sketching systems. Its high-level
goals differ from those of MathBrush in that the Brown project aims to facilitate
learning and problem-solving through interactive sketches controlled by mathemat-
ical formulae, while MathBrush intends to be a research tool for mathematicians
and students. However, many software features required to attain each of these
goals are similar, and so MathPad includes a math recognition system.

MathPad’s recognition system may be viewed as an informal application of
grammar-based parsing. Rules governing how symbols are arranged into math
expressions are explicitly coded into the program. Input is processed in a way
analagous to how a particular organization of grammar productions could be naively
parsed. The recognition system includes sophisticated heuristics specialized to par-
ticular mathematical structures (eg. fractions, integrals, etc.). While this approach
is highly tunable, it is less flexible than less explicitly-specified approaches.

A study of the recognition accuracy of MathPad was presented by LaViola [26].
In the study, 11 subjects individually provided the system’s symbol recognizer with
20 samples of their handwriting for each supported symbol. Each subject then
provided 12 additional samples of each symbol as well as drawings of 36 particular
math expressions as test data. The expressions were partly taken from Chan and
Yeung’s collection [8] and partly designed by the author. This data was used to
test MathPad’s symbol recognizer and math expression parser, respectively.

LaViola used a different accuracy metric for each of these two systems. To
measure symbol recognition accuracy, the number of correctly-identified symbols
was divided by the total number of symbols. To measure parser accuracy, the
number of correct parsing decisions was divided by the total number of parsing
decisions. A parsing decision arises in LaViola’s system whenever symbols must be
grouped together (or not) into a subexpression (e.g. tan as multiplication versus
the function name tan), or a choice must be made about the type of a subexpression
(e.g. superscript vs. inline).

2.1.3 Garain and Chaudhuri

In [17], Garain and Chaudhuri describe an online math recognizer along with
an evaluation scheme. Their recognizer combines chain-code and Hidden Markov
Model symbol recognizers with a two-stage exprssion parser. The first stage uses
symbol positions to extract baseline information and identify certain non-nested

10

subexpressions. In the second stage, these subexpressions are segmented using pro-
jection profiles. LATEX markup is generated for the expression as the segments are
merged. A grammar is used to ensure that the generated LATEX, and hence the
recognized expression, is syntactically valid.

To evaluate their system, Garain and Chaudhuri collected a corpus of 5500
expressions in which each unique expression is duplicated 20 or 40 times (written
twice by either 10 or 20 writers). They selected expressions for transcription from
a number of pre-University textbooks and one Ph.D. thesis. The selections were
transcribed by students and math researchers using an external writing tablet. Of
the transcriptions, roughly 80% were used for training their recognizer, with the
rest used for testing. Unfortunately, this corpus does not seem to be generally
available.

Garain and Chaudhuri argue that recognition errors in highly-nested subexpres-
sions are not as critical as those on the main expression baseline. They propose an
integrated evaluation metric in which structural recognition accuracy is weighted
based on subexpression nesting level. Under their metric, a subexpression at level i
has weight 1/(i+ 1), so errors in more deeply-nested subexpressions are considered
“less incorrect” than errors closer to the main expression baseline. To determine
recognition accuracy on an expression, the sum of the number of symbol recognition
errors and (weighted) structural errors is divided by the total number of symbols
and (weighted) structural components at each level. The average value of these
ratios over all nesting levels in the expression is called the “performance index” of
the recognizer on the expression.

Using this metric, Garain and Chaudhuri present impressive recognition results,
but the correct interpretation of their results is not obvious. The definition of “level”
used by the authors is quite specific to the authors’ own recognition technique.
Furthermore, as the number of levels in sample expressions increases (from 1 to
11), so too increases the gap between percentage of samples correctly recognized
and average performance index (from roughly 10% to 70%).

2.1.4 Freehand Formula Entry System

The Freehand Formula Entry System (FFES) was developed over several years by
Zanibbi, Smithies, and others [38, 41, 42]. In multiple parsing passes, FFES identi-
fies baselines in math input and uses operator dominance and tree transformation
rules to convert linearized baselines into trees representing spatial layout, math
syntax, and finally math semantics.

Zanibbi et al evaluated the recognition component of FFES, DRACULAE,
against typeset data using the UW-III database of technical documents [42]. They
measured two types of errors: incorrect baselines, meaning any baseline contain-
ing incorrect tokens, nested relative to an incorrect token, or at the wrong level of
nesting; and misplaced tokens, meaning any token appearing on the wrong baseline
(e.g. inline rather than a superscript).

11

With these types of errors, DRACULAE was shown to to have a moderate
error rate with respect to misplaced symbols (roughly 10%) while recognizing less
than 40% of expressions completely correctly. This gap is somewhat less than that
of Garain and Chaudhuri, but the interpretation of these error rates is similarly
unclear.

2.1.5 MathBrush

DRACULAE inspired an expression parser developed by Ian Rutherford [36]. Ruther-
ford streamlined the approach taken by FFES by supporting single-pass parsing,
eliminating the tree transformation step, and attempting to correct symbol recog-
nition errors. This error correction used a notion of structural confidence, which
measures the fit of a particular symbol into a parse tree based on the symbol’s
position and idealized shape. MathBrush uses Rutherford’s parser in conjunction
with a symbol recognizer tailored for mathematics, a user interface supporting in-
teractive mathematical operations and expression plotting, and tools to integrate
with computer algebra systems [22].

Accuracy evaluation of MathBrush’s math recognizer has largely been performed
independently on the symbol recognizer and expression parser. MacLean described
a comparison of several symbol recognition algorithms [29]. Two scenarios were
tested: in the first, the training and testing sets contained samples from the same
writer; in the second, both sets contained samples from multiple writers. The eval-
uation used two accuracy measurements: top-1, in which the top-ranked candidate
must be correct, and top-5, in which the correct symbol label must appear within
the 5 most highly-ranked candidates.

Rutherford reported parsing accuracy under several scenarios designed to isolate
the parser from symbol recognition errors. Rutherford’s uses a pass/fail evaluation
metric in which an expression must be parsed completely correctly to be correct,
otherwise it is counted as incorrect. The test corpus is not described in detail,
but its average expression size was 6.5 symbols, so the results are not useful for
predicting recognition accuracy on typical math inputs.

Through experimentation with MathBrush, we have found approaches to math
recognition using only baseline extraction to be fragile and difficult to implement
effectively. Exclusive reliance on global baseline information means that small local
variations in symbol placement can lead to poor recognition, or even failure to
generate a candidate expression at all. Recognition errors of this type were shown
to create usability problems for users, particularly new users [23].

2.1.6 Microsoft Math Recognition Panel

The upcoming release of Microsoft Corporation’s Windows 7 operating system will
include the Math Recognition Panel [6]. This Panel uses a sophisticated mathemat-
ics recognition engine which combines grammar-based parsing of expression layouts

12

with machine learning-based symbol and subexpression relation classifiers. We are
not aware of any publications describing the training or evaluation procedures for
this system, or of the metrics used.

2.2 Ground-truth generation

We are not aware of any work on tools and algorithms to aid in the generation
and automatic ground-truthing of large, varied, on-line sketch corpora. However,
Schwarz and Matousek used grammar-based methods to generate template expres-
sions for use in training an automated telephone dialogue system [37]. As spoken
language is much less formal than handwritten mathematics and their application
was somewhat specialized, they were more concerned with handling a large amount
of ambiguity within a small coverage area than with ensuring broad coverage of an
entire domain.

Automatic ground truthing has generally not been attempted in sketch recog-
nition domains, but OCR researchers have developed several techniques for auto-
matically generating ground-truthed training and testing data. These techniques
generally either generate perfectly ground-truthed synthetic data (eg. [18], [32]),
or match real inputs to separate ground-truth created by hand, potentially with
mistakes in both matching and ground-truthing (eg. [2]). Occasionally aspects of
both approaches are combined as in [20].

As noted in the introduction, research in handwritten mathematics recognition
has been ongoing for decades and the field is still an active area of research. It is
becoming standard practice to study accuracy and usability by asking participants
to transcribe a collection of expressions, as in [27], [38], and [23]. However, we
are not aware of any large, publicly-available corpora of handwritten mathematical
expressions. Most studies have collected a modest set of predetermined expressions,
making it difficult to predict the recognizer’s capacity to generalize to more varied
expression sets.

2.3 The value of our corpus

The recognition systems described in Section 2.1 are representative in that they
were evaluated on unavailable and largely unknown data sets using correctness
metrics specific to the authors. Under these conditions, it is very difficult to make
meaningful observations about the strengths or weaknesses of a particular recogni-
tion technique. Our corpus of math expressions facilitates the comparison of math
recognition systems by providing a common set of testing data available to all re-
searchers. Using the same test data will make published accuracy figures more
transparent to the research community and will enable conclusions to be drawn
more objectively about the benefits and drawbacks of any particular approach to
recognition.

13

Our corpus may also be used during the construction of new recognition systems
as training data. The systems cited above use geometric and spatial information to
analyze the layout of math expressions. The expressions in our corpus can provide
useful examples for training and testing such systems. However, we will see in
Chapter 4 that the math expressions present in our corpus are uniformly distributed
over different mathematical semantics. For this reason, it is not practical to use our
corpus with recognition systems that rely on approximating the real distribution of
math expressions (e.g., an adaptation of Chou’s stochastic grammar approach [11]
to handwritten input, or an application after [19] using Markov models).

During the creation of our corpus, we were careful to ensure that many combi-
nations of symbol and expression shapes were represented. These varied expression
shapes may allow researchers to develop more sophisticated models of expression
layout taking into consideration how the shape of one part of an expression influ-
ences the position of another. (For example, the relative placement of the n in
An versus en, or of the x in

∫
x dx versus

∫
1−cos(t)

x dx.) The researchers cited in

this chapter generally created their own corpora by extracting math content from
books, so the variations in expression and symbol shape in their corpora depend
upon the contents of the particular books they used. In our corpus, this breadth
of coverage is built-in by design.

Although our corpus may not be directly useful for training and evaluating
all math recognizers, the techniques developed to create it are broadly applicable.
The distribution of math semantics in corpus expressions may be tuned to be more
realistic or to satisfy particular needs of individual researchers (for example, to test
deeply-nested fractions). Our techniques may also be used to generate corpora for
other structured sketching domains such as circuit diagrams, molecular diagrams,
UML, etc.

14

Chapter 3

Corpus creation

As described in Chapter 1, the math recognition community currently suffers from
a lack of corpora of ground-truthed expressions. This lack has led to ad-hoc train-
ing strategies and opaque accuracy measurements, making it difficult to directly
compare the strengths and weaknesses of various approaches to recognition. In this
chapter, we investigate the requirements of corpus creation, showing that they are
contradictory and that no corpus can satisfy them perfectly. We evaluate a num-
ber of potential corpus creation methodologies, proposing some general strategies
which offer the best available balance between practical and theoretical consider-
ations. Finally, we illustrate one strategy through its concrete application to our
own corpus creation project, which produced a publicly-available, ground-truthed
collection of nearly 5000 hand-drawn mathematical expressions.

3.1 Requirements for corpus creation

The purpose of a corpus of hand-drawn sketches is threefold:

1. To provide training data during the construction of recognition systems.

2. To provide testing data during the evaluation of recognition systems.

3. To facilitate comparison of systems through a common set of testing data.

The generality of a recognition system is thus constrained by the domain cover-
age of the corpus used for training, as is the validity of an accuracy evaluation. For
both training and testing, the corpus is taken to represent objective truth, so any
errors in the corpus may lead to errors in recognition or evaluation results. These
observations suggest that, to be of use in training and evaluating recognizers, a
corpus must posess two properties:

1. It must capture the relevant properties of the sketch domain and the natural
variations on those properties in a complete and representative way.

15

2. It must be ground-truthed with very high accuracy so that it may be taken
to be objectively “correct”.

Both of these requirements merit further discussion.

3.1.1 Capturing relevant domain properties

Within a sketch domain, the “relevant properties” which must be captured may
differ between recognizers. For example, the math recognizer used in MathBrush
is based largely on spatial analysis of input expressions, so the relevant properties
include the relative positions of symbols and subexpressions. A math recognizer
based on statistical models may use symbol co-occurrence rates and other frequen-
tist measurements as relevant properties. Ideally, a corpus would be so complete
that all possible properties could be reliably extracted from it; in practice, a corpus
will have maximum utility with respect to one particular set of properties based on
the methods used to construct it.

Furthermore, there is a natural conflict between the requirements of a “com-
plete” and “representative” corpus. To be complete implies that a corpus contains
all variations and combinations of syntax for a particular domain, but to be repre-
sentative implies that a corpus reflects the natural distribution of these syntactic
elements in real-world usage. Time and price considerations constrain the extent
to which these two properties can co-exist within a corpus; however, a more repre-
sentative corpus may lack examples of uncommon syntactic patterns, while a more
complete corpus may be unrealistic. The appropriate balance of these two concerns,
again, depends significantly on the recognition techniques the corpus is to be used
with.

These points demonstrate that, in practice, a single corpus is unlikely to satisfy
the requirements of all its potential users. This observation points out the utility of
techniques for automating corpus creation. By reducing the costs associated with
generating corpora, we may reduce the value of keeping them private and encourage
the proliferation of several public corpora for different use cases, enabling standard-
ized training procedures for recognition systems, and increasing the transparency
of accuracy evaluations.

3.1.2 Correct ground-truth

It is obvious that the ground-truth labels in a corpus should be correct. However,
in complex domains like mathematical expressions, what the correct label is can
often be ambiguous. In part, this ambiguity is due to the aforementioned issues
with selection of relevant properties, as these are the properties which must be
identified in ground-truth labels. (e.g. symbol identity, spatial relationship between
subexpressions, etc.) However, ambiguity also arises due to the complexity of the
domain itself.

16

Figure 3.1: An expression where ground-truth assignment is arbitrary.

For example, the expression shown in Figure 3.1 was intended to be
√
QB.

However, exactly which strokes comprise the B symbol is not clear. Ground-truth,
if assigned at all, is somewhat arbitrary at best. In our corpus, ground-truth
was assigned whenever the math expression was deemed legible by the operator
providing the ground-truth. Expressions such as the one shown in Figure 3.1 thus
have some arbitrariness in their labels.

Another source of ambiguity in ground-truth is the ambiguity inherent in writ-
ten mathematics, described in Section 1.1. If an expression, like the one in Fig-
ure 1.1, has multiple valid interpretations, how should they be represented in the
ground-truth? If a person is unable to uniquely identify the written expression, is
it reasonable to assume that the ground-truth labels are objectively correct? The
approach that we have taken is to assume that the writer’s intentions represent ob-
jective truth (i.e. if they intended to write ax+b, then what they wrote objectively
represents that expression). This approach means that our corpus is self-consistent
even if it does contain only a single “correct” interpretation for expressions which
may have multiple reasonable interpretations.

3.2 Tasks in corpus creation

Corpus creation is complicated – limited resources and conflicting requirements
make it impossible to create a perfect general-purpose corpus for a complex sketch
domain. It is therefore worthwhile breaking the overall process of corpus creation
into general steps so that effective methodologies can be proposed. It is likely
that many corpora will be required for domains like math recognition, and such
methodologies can ease the creation of good-quality corpora.

A corpus consists of examples labeled with ground-truth. There are three gen-
eral tasks required to attain these labeled examples:

1. The (abstract) sketches which will comprise the corpus must be selected.

2. The selected sketches must be rendered into concrete drawings.

17

3. The drawings must be annotated with ground-truth labels.

We will refer to these tasks as selection, rendering, and labeling, respectively.

Each of these tasks may be implemented by either manual or automatic pro-
cedures. For each task, we will evaluate the general characteristics of these two
implementation styles with respect to criteria derived from the requirements for
corpus creation from Section 3.1. Using these evaluations, we will propose some
generally useful methodologies for corpus creation.

Note that another possibility is to use an interactive task implementation. That
is, an automatic technique that is guided or honed by an operator (e.g. an auto-
matic ground-truthing program in which a user resolves ambiguities or interactively
corrects errors). We do not investigate these hybrid approaches here.

3.2.1 Selection

The selection task is the process by which sketches are chosen to be part of the
corpus. In manual approaches, such as the one taken by Garain and Chaudhuri
(as cited in Chapter 2), one typically amasses a collection of source materials (e.g.
books, papers, etc.) and extracts the relevant sketches from the sources. Automatic
approaches entail the synthesis of sketches from an abstract model of the sketch
domain by some generative procedure.

Breadth of coverage can be difficult to achieve with manual approaches because
sketches are taken from existing materials with their own biases. Each source
provides only limited domain coverage, and the source selection may be biased by
the corpus designer’s own domain expertise or knowledge of recognizer tendencies.
These biases can subtly and unintentionally affect the utility of selected sketches.

Conversely, an automatic approach can be designed so as to ensure that as
many syntactic variations and combinations as possible are represented in the cor-
pus. Such an approach cannot be said to be unbiased since bias is inherent in the
generative models and algorithms used. However, this systematic bias is easily dis-
cerned by examining the generation algorithm. Such transparency makes it easier
for researchers to evaluate the suitability of a particular corpus for use with their
own recognizer.

Manually-selected sketches will naturally be realistic because they are taken
from real-world examples, and this suggests that they are more representative of
the sketch domain than their automatically-generated counterparts. This is not nec-
essarily the case. Representativeness should be judged with respect to the “relavent
properties” captured by the corpus, not by superficial similarity to natural exam-
ples. For example, the math recognizer in MathBrush considers only the overall
shape of expressions, so unrealistic expressions can still be representative examples.
But a stochastic approach may require that subexpression occurence rates in the

18

corpus are similar to those rates in real-world practice – in such a case, realism and
representativeness coincide.

So, although manual sketch selection yields more realistic expressions, it does
not necessarily yield more representative expressions. Representativeness is also
difficult to achieve by automatic processes because to do so would require an accu-
rate model of sketch domain properties on a very large scale. These properties are
best determined by empirical evaluation, which would likely require a large corpus
of real-world sketches. In other words, there is a bootstrapping problem.

The selection task is the most difficult of the three tasks to evaluate because it is
where the complexities detailed in Section 3.1 are most prevalent. Sketch selection
is where the tradeoff between breadth and realism must be made. The criteria for
evaluating whether a particular method is appropriate will therefore depend on the
indended uses for the corpus.

Based on the analysis above, we may draw some general conclusions. in cases
where realism coincides with representativeness, it is preferable to use a manual ap-
proach to ensure that the corpus is suitable. In other cases, an automatic approach
is preferable because it guarantees broad coverage. It is most preferable of all to
use an automatic approach which can be tuned to approximate any distribution of
sketches. With such an approach, one can generate sketches more and more repre-
sentatively as knowledge of the large-scale properties of the sketch domain become
clearer.

Automatic selection processes have some other, less crucial, advantages over
manual processes. It is fast and easy to generate arbitrarily many unique sketches
using an algorithm, but tedious and time-consuming to do so manually. The use of
unique sketches can have an effect on training and testing with a particular corpus.
If some form of user-omission is used to test, i.e. train on n − 1 users and test on
the remaining user, then using multiple drawing of the same sketch means that the
system has been tested on sketches (from one user), but it has experienced each
of these sketches before as training data from the other n − 1 users. Leaving out
sketches rather than users means that the system has been trained on that specific
user’s handwriting, which may also provide a higher than realistic performance
measure.

Automatic processes can also be easier to extend. If new areas of the sketch
domain need to be represented in an existing corpus, it may be easier to adjust the
generation model than to gather a new collection of source materials and extract
more sketches manually.

3.2.2 Rendering

Rendering is the process by which an abstract sketch is converted into a concrete
drawing. In a manual approach, this process is transcription (i.e. a person draws a
copy of the sketch). Automatic approaches would use an algorithm to convert an
abstract sketch representation into a pictorial representation.

19

For this task, realism is the most important consideration: the rendered sketches
must resemble how they might be drawn by hand. Clearly, the manual approach
is ideal here, as the sketches are drawn by hand. It has also been shown that
whether a person is transcribing a predetermined sketch or synthesizing a novel
sketch has little effect on the utility of the sketch for training and testing purposes
[15], strengthening the validity of a transcription-based approach.

Generally, automatic sketch generation is faster than manual transcription. Us-
ing an automatic approach also obviates the labeling task, as ground-truth can be
generated along with the sketch rendering itself. However, we are not aware of any
work in rendering sketches from a complex domain – it is very difficult to create a
generative sketching model that produces realistic output. Furthermore, models for
synthesizing handwritten symbols are often “reversible” in the sense that the same
models can also be used to recognize symbols (e.g. [13], [10]). This fact suggests
that using synthesized data to train a recognizer will not gain any new recognition
capacity beyond that already posessed by the generative model.

For these reasons, it is preferable to be sure that rendered sketches are real-
istic by using manual transcription, at least until synthesis models can effectively
produce a wide range of complex, realistic sketches.

3.2.3 Labeling

Labeling is the process of annotating a rendered sketch with ground-truth. Manual
approaches entail the examination of each rendered sketch by a human operator who
labels the appropriate parts of each sketch with the pertinent information, while an
algorithm provides these labels in an automatic approach. In our study, the ground-
truth labels identify symbols as well as the spatial relations connecting symbols
and subexpressions together to form the entire math expression (e.g. containment,
super-/sub-script relations, adjacency, etc.)

The most important consideration for this task is correctness. Ground-truth
labels are taken to be objectively correct by training and testing procedures, so any
errors may have far-reaching consequences affecting a recognizer’s performance.

In this respect, manual approaches are preferable because people are experts at
making sense of visual information and can therefore provide very accurate ground-
truth. Manual labeling sketches with ground-truth is time-consuming, tedious work,
though, and no labeler is perfectly accurate, so automatic approaches which can
achieve near-human levels of accuracy are helpful as a time-saving measure.

Care is needed when using automatic approaches. If a recognizer R is used to
analyze rendered sketches and label them with ground-truth, only sketches recog-
nizable by R will be labeled, and some labels may be incorrect if R makes errors.
Then the following situations may arise:

1. A recognizer trained on the labeled data will be trained on errors where R
made errors.

20

2. When evaluating a recognizer on the labeled data, the recognizer’s output
will be compared against erroneous data where R made errors, invalidating
the evaluation to some extent.

3. A recognizer trained on the labeled data will have incomplete domain coverage
in the areas where R was unable to provide labeling.

4. A recognizer trained on the labeled data will not have significantly more
recognition capacity than R.

So long as an automatic labeler’s error rates are close to human standards, the
first two situations are avoided somewhat, as they would naturally occur when
human labelers make mistakes as well. The third situation is avoided if there is
no particular domain area where the labeler consistently makes errors or fails to
find a labeling. The fourth situation is more problematic as it suggests that it is
unsuitable to use a sketch recognizer to label sketches.

One way to avoid the fourth situation is to change the labeling problem by intro-
ducing new input. For example, Chapter 5 describes a ground-truthing algorithm
which takes as input a rendered sketch as well as a complete description of the
idealized layout of the sketch. The algorithm would not be usable as a recognizer
as it simply finds a matching between elements in the layout description and parts
of the sketch. Any argument about degrading recognition capacity is moot.

In order to maintain correctness, manual ground-truthing is preferable unless an
automatic approach is available which achieves near-human standards of accuracy.

3.3 Proposed methodology

Taking into consideration the analyses of the three tasks for corpus creation de-
scribed above, we propose the following general methodology for creating sketch
corpora:

1. Automatically select sketches using as flexible an approach as possible.

2. Manually transcribe the selected sketches.

3. Manually label the transcribed sketches with ground-truth, unless a viable
automatic approach is available.

This is the process which we have endeavoured to follow in the creation of our
mathematical corpus. Chapter 4 describes a flexible grammar-based approach for
generating random mathematical expressions. The technique is applicable to any
domain which can be modeled by a context-free grammar. Chapter 5 details our
experiments with automatic ground-truthing using a simple matching algorithm.

21

This algorithm was highly accurate, but was not quite as accurate or complete
as manually-generated ground truth, so the ground-truth published with our cor-
pus was provided manually. The next section describes our manual transcription
process.

3.4 Transcription process

To aid in the development of accurate math recognizers as a part of the MathBrush
project (see Section 1.2), we created a large corpus of hand-drawn, ground-truthed
mathematical expressions following the methodology outlined above. To obtain a
large amount of data, we recruited students to transcribe math expressions for us.
20 participants transcribed expressions for roughly one hour each. Participants
were reimbursed with a $10 Tim Horton’s gift certificate. This study was reviewed
by the Office of Research Ethics and received clearance to proceed (#15232).

The transcription process was carried out using various models of Tablet PCs
running custom collection software on Windows XP. A screen shot of our data
collection software is shown in Figure 3.2. After a sketch was generated by the
automatic method described in Chapter 4, the resulting parse tree was converted
to a LATEX string, and then on to an image. This image was displayed to the
participant for transcription, as shown in the screen shot. Participants’ transcrip-
tions were saved along with the grammar derivations, parse trees, LATEX strings,
and images files created during the sketch generation process. Examples of typical
transcribed expressions are shown in Figures 3.3 and 3.4.

Figure 3.2: Our collection software in action.

22

Figure 3.3: A hand-drawn, randomly generated expression.

Figure 3.4: A hand-drawn, predetermined expression.

Fifty-three predetermined expressions from high-school and early University-
level mathematics were also transcribed by each participant in the first 150 expres-
sions displayed to them. These expressions were not automatically generated and
provided a data set to “fall back on” in case the automatic processes failed to work
well. An example of a predetermined expression is shown in Figure 3.5.

−b+
√

b2−4ac
2a

Figure 3.5: A prepared expression

As well as a short tutorial describing how to use the collection program, partici-
pants were given two instructions along before beginning the transcription process:

1. To write reasonably neatly (as if preparing an assignment for submission),
and

2. To write math expressions and symbols as they naturally would, not neces-
sarily how they were rendered in the image.

Many people have handwriting that is illegible to others and even to them-
selves. The first instruction was intended to reduce the effects of this illegibility.
Guidelines were provided in our collection program to further encourage neatness.
The second instruction was intended to improve the realism of our collected data
and to discourage participants from simply copying the shapes of the symbols and
expressions in the LATEX rendering. Any transcription task must start with some
initial rendering which may subtly influence participants’ writing styles – by asking
participants to consciously not copy the rendering style, we hope to have minimized
this influence.

As can be expected in such a study, a number of samples were discarded. Our
basic discard policy was that if an equation was incomplete or illegible to a human
expert, it was discarded. An example of a discarded equation is shown in Figure

23

Figure 3.6: A discarded, illegible expression.

3.6. We felt it was unreasonable to expect an automated system to correctly infer
the expected equation if a human expert was unable to do the same.

In all, 5119 transcriptions were collected from 20 users. Of these, 109 were blank
and 355 were discarded, resulting in 4655 usable hand-drawn expressions. Com-
prising these expression are 25963 symbols drawn and 21264 relationships between
subexpressions. This is a substantial amount of data and it was attained with a
direct cost of only $200. Our collection study has shown that large and diverse
corpora can be generated at a modest cost by using automated techniques.

24

Chapter 4

Template expression generation

To generate math expressions for transcription, we use an automated technique that
performs a constrained walk through a context-free grammar describing mathemat-
ical equations. This approach has many advantages. First, expressions are created
based on random sampling of symbols and relationships, ensuring that rare symbol
combinations are reflected in the collected data. Secondly, this approach limits
biases that a researcher may have in selecting testing data. Finally, this technique
provides a limitless source of equations for participants to transcribe.

Our approach to math recognition uses a fuzzy relational context-free grammar
to model the spatial structure of handwritten math. This chapter defines fuzzy
relational context-free grammars and gives examples to illustrute how they may be
applied to recognition and generation problems in the context of math expressions.
It then shows how random derivations can be used to generate template expressions,
and how the biases of the generation processes can be controlled.

4.1 Fuzzy relational context-free grammars

A natural approach to any parsing problem is to use a formal grammar to model
the structure of the input. To model mathematical structure, we use a variant of
the relational context-free grammars used by many authors ([39, 12, 35], etc.). This
variant is called a fuzzy relational context-free grammar (fuzzy r-CFG).

In this scheme, a relational grammar models the visual structure of math ex-
pressions, and fuzzy sets model the uncertainty inherent in the recognition prob-
lem caused by special ambiguities. The grammar formalizes the spatial patterns
encoding information in the input, ensuring recognition only produces valid math-
ematical interpretations. Fuzzy sets provide a formalism for representing the parse
confidence of many alternative interpretations, helping to resolve ambiguities. We
will review the basics of fuzzy set theory, then proceed to describe fuzzy r-CFGs.

25

4.2 Fuzzy set theory

The material in this section is introductory and is based on the original description
of fuzzy sets by Zadeh in [40].

Definition 1. A fuzzy set X̃ is a pair (X,µ), where X is some underlying set and
µ : X → [0, 1] is a function giving the membership grade in X̃ of each element
x ∈ X.

A regular (ie. not fuzzy) set is called crisp and is equivalent to the universal set
equipped with the membership function

µ (x) =

{
1 if x ∈ X
0 o.w.

Note that fuzzy sets are typically denoted by the application of ˜ to the name
of the underlying set, as in the X̃ above. Here, the ˜ symbol will be omitted
whenever it is clear that a set is fuzzy.

Definition 2. A fuzzy relation on the fuzzy sets X̃1, . . . , X̃n (where X̃i = (Xi, µi))
is a fuzzy set (X,µ), where X = X1 × · · · ×Xn and µ : X → [0, 1].

We will use fuzzy relations extensively to represent the spatial relationships
between the symbols and subexpressions contained within any particular math
expression.

The common set operations – union, intersection, and Cartesian product – can
be applied in a fuzzy context. Letting M denote the set of all fuzzy membership
functions, these are defined as follows:

Definition 3. Let Ã = (A,α) , B̃ = (B, β) be fuzzy sets. Then:

Ã ∪ B̃ = (A ∪B, u (α, β))

Ã ∩ B̃ = (A ∩B, n (α, β))

Ã× B̃ = (A×B, c (α, β))

where u, n, c :M×M→M.

Typical choices for u, n, c are max,min,max, respectively, although many other
possibilities exist.

4.3 Fuzzy relational context-free grammars

The formal definition of a fuzzy r-CFG is given below. A more comprehensible
interpretation in the context of math recognition follows.

26

4.3.1 Definition

Definition 4. A fuzzy relational context-free grammar (fuzzy r-CFG) G is a tuple
(Σ, N, S, T,R, rΣ, P), where:

• Σ is a finite set of terminal symbols,

• N is a finite set of nonterminal symbols,

• S ∈ N is the start symbol,

• T is the set of observables,

• R is a set of fuzzy relations on (T, T),

• rΣ is a fuzzy relation on (Σ, T), and

• P is a set of productions, each of the form

A0
r⇒ A1A2 · · ·An

where A0 ∈ N , r ∈ R, A1, . . . , An ∈ Σ ∪N .

Whereas typical context-free grammars deal with strings, the objects generated
by fuzzy r-CFGs will be called expressions. Let us investigate the definition from
the point of view of representing mathematical expressions.

Σ and N are similar to their namesakes in “regular” context-free grammars.
They provide an alphabet out of which expressions can be constructed, and a set of
labels for various types of subexpressions. S is a label for a valid math expression.

The productions in P have the same fundamental structure as the productions of
regular context-free grammars in which the left-hand element derives the sequence
of right-hand elements. However, the fuzzy relation r appearing above the ⇒ pro-
duction symbol indicates a requirement that the relation r is satisfied by adjacent
elements of the RHS. More specifically, if t(i) denotes the set of input elements used
while parsing Ai, then to parse A0 requires that (t(i), t(i+ 1)) ∈ r, i = 1, . . . , n− 1.

In our application, T is the set of all possible sketches that a user can draw. The
set R is the set of all fuzzy relations that appear as constraints in P . These relations
act on sketches: they model spatial or conceptual relationships between sketch ele-
ments. In particular, for math recognition, we use five spatial relations: Right-to,
Up-right-to, Down-right-to, Down-to, and Contains. For brevity, these
will be denoted as → , ↗ , ↘ , ↓ , and � , respectively. The membership grades
of pairs of sketches in these relations represent recognition confidence in a particu-
lar spatial arrangement. The grades are combined with symbol recognition results
to obtain confidence scores for parse trees.

The relation rΣ models the relationship between sketches and terminal sym-
bols: it is a symbol recognizer. By including symbol recognition into the grammar
formalism, the integration of recognition and structural analysis in our recognition
system is made explicit.

27

4.3.2 Examples

We illustrate the use of this grammar formalism through some examples.

1. Suppose that [ADD] and [EXPR] are nonterminals, + is a terminal, and → is
a relation. Then the meaning of the production

[ADD]
→⇒ [EXPR] + [EXPR]

is clear: [ADD] derives two instances of [EXPR] separated by +, all connected
by the → relation.

2. In the superscript production,

[SUP]
↗⇒ [EXPR] [EXPR],

the first RHS token represents the base of the exponentiation, and the second
represents the exponent.

3. The following pair of productions represent an integral expression.

[LIMITS]
↓⇒ [EXPR]

∫
[EXPR]

[INTEGRAL]
→⇒ [LIMITS][EXPR]d[VAR]

This example demonstrates how expressions using more than one writing di-
rection can be modeled. An integral expression ([INT]) is constructed by
attaching the integral sign and limits of integration to the integrand and vari-
able of integration using the→ relation. The limits ([LIMITS]) are connected
with the ↓ relation and consist of an upper limit, the integration symbol, and
the lower limit.

4.3.3 Derivations

Recall that, for regular CFGs, a derivation sequence describes the order in which
nonterminal symbols were expanded and what those expansions were. For example,
in the simple grammar

[S] ⇒ a [S] b | ab,

[S] ⇒ a [S] b ⇒ aa [S] bb ⇒ aaabbb is a valid derivation sequence.

In fuzzy r-CFGs, these sequences are extended to describe subexpression struc-
ture using parentheses. The sequence above is written as [S] ⇒ (a [S] b) ⇒ a(a
[S] b)b ⇒ (a(a(ab)b)b).

28

A more useful example is the math expression ab+b
2

. Suppose we are using the
toy grammar defined by:

[S]
↓⇒ [S]—[S]

[S]
→⇒ [S] + [S]

[S]
→⇒ [S][S]

[S] ⇒ a|b|2

Then the derivation

[S] ⇒ ([S] ↓ — ↓ [S])

⇒ (([S]→ +→ [S]) ↓ — ↓ [S])

⇒ ((([S]→ [S])→ +→ [S]) ↓ — ↓ [S])

⇒∗ (((a→ b)→ +→ b) ↓ — ↓ 2)

uniquely captures the structure of the example expression.

This expression demonstrates how any expression which can be modeled using
a particular grammar is associated with a derivation which has a unique fully-
parenthesized form.

4.4 Grammar representation

In our implementation of the grammar described in section 4.3, each grammar pro-
duction is associated with a tree generator and a string generator. The tree genera-
tor produces an expression tree that describes how terminal symbols are combined
using mathematical operations to represent the syntax of the math expression.
The string generator produces a string representation (e.g. LATEX, MathML) of the
expression tree.

For extensibility, the grammar and associated generators are encoded in an
external text file. For example, the following defines the grammar production for
addition:

ADD :: [AT0] <R> plus <R> [RT]

{ADD_EXPR(%1 ’EXPR_LHS’, %3 ’EXPR_RHS’)}

‘%1 + %3‘ ;

In this example, on the first line, ADD is the name of the production’s LHS
nonterminal, AT0 and RT are two other nonterminals, plus is a terminal name, and R

is the relation code for the right relation. The second and third lines represent the

29

tree and string generators, respectively. The second line of the production, between
the braces, describes a tree with root label “ADD EXPR” with two children. The first
child is labeled “EXPR LHS” (the left hand operand of the addition operation) and
is linked to the tree output by the tree generator for AT0. The second child is
labeled “EXPR RHS” (the right hand operand) and is linked to the tree output by
the generator for RT. The string generator is described on line 3 (between the back
ticks). As with tree generation, the %n notation indicates where to insert the output
of string generators associated with the left hand operand AT0 and the right hand
operand RT.

In our grammar, semantic content is described by the root labels produced by
tree generators. The ADD production above therefore has semantic type ADD EXPR.
Not all productions include tree generators, however. For example, consider the
following three productions: (Pipe symbols are used on the RHS to separate distinct
productions.)

RT :: [ADD] | [SUB] | [AT0] ;

The nonterminal symbol RT represents a collection of expression types with
the same level of precedence, in this case, addition, subtraction, and an isolated
addition term.

In this example, each of the three nonterminals that the symbol RT can produce
have distinct semantic types. Specifically, ADD always produces an addition expres-
sion having semantic type ADD EXPR, SUB always produces a subtraction expression
having semantic type SUB EXPR, and AT0 may produce many types of expressions
(e.g. exponentiation, integration, multiplication, etc.), so it’s semantic content is
not known a priori.

Therefore, RT itself does not have a fixed semantic type. As parsing proceeds
and trees are formed, any valid parse of RT inherits the expression tree (and hence
the semantic type) given by the tree generator for the particular nonterminal it
produces at that point in the parse.

Unlabelled nonterminals like RT therefore represent different semantic types in
different contexts. Unlabelled nonterminals can derive other unlabelled nontermi-
nals (such as AT0 in the above example), so the semantic types they can assume
are not always immediately apparent from their productions.

4.5 Random derivations

A random expression generator must balance two properties to be useful. It must
generate samples typical of math expressions written on tablet computers (so that
machine learning algorithms have a representative training set). It must also gener-
ate as many combinations as possible of bounding box shapes and relative positions

30

(so that algorithms can be trained on low-probability spatial relationships). How-
ever, only a relatively small number of examples can be collected from any subject.
In our experience, approximately 225 equations can be written by a subject in a one
hour session. As a result, there exists a tradeoff between accurately representing the
frequency of various mathematical relationships and providing a broad enough cov-
erage of various mathematical relationships to fully train and test a recognizer. Our
approach opts for broader coverage at the expense of reflecting the true frequency
with which particular mathematical relationships occur in real-world expressions.
This means, for example, that in our generated expressions, exponents, subscripts,
and fractions are more common than one would normally encounter.

Random expressions are generated using the r-CFG for mathematical expres-
sions described above. Fuzzy relationship values are not relevant when using a
grammar to generate expressions. The essential idea of generating a random equa-
tion is quite basic: given a current symbol, choose a grammar production arbitrarily
and recurse on each nonterminal in the RHS. However, care must be taken to avoid
three problems:

1. Recursing blindly may generate extremely large expressions. Expression length
must be constrained since the expressions are to be transcribed by human
users.

2. The structure of productions in the grammar definition can bias the distri-
bution of mathematical structures generated when productions are chosen at
random. We must take care to eliminate this bias.

3. Ascender (e.g. upper-case symbols, some lower-case symbols such as ‘b’), de-
scender (e.g. ‘p’), and baseline (e.g. ‘a’, ‘o’) symbols provide different bound-
ing box profiles for relationships. We must ensure that no type of symbol
(ascender, descender, baseline) is over-represented in spatial relationships.

We address each of these issues in turn.

4.5.1 Managing expression length

To limit expression length, we introduce a parameter 0 < pinc ≤ 1. The algorithm
begins with p = 0. Instead of simply choosing a production, it draws x from a
uniform distribution on [0, 1]. If x < p, a derivation leading to a single terminal
symbol is selected if possible; otherwise p is incremented by pinc, a random pro-
duction is selected, and the algorithm recurses. This process does not guarantee
a maximum expression size, but, by varying the value of pinc, we can control the
expected output size while still allowing a degree of variability in expression length.

31

4.5.2 Managing semantic distribution

The structure of a grammar can bias the distribution of generated expressions. To
see why, consider the following toy grammar:

[ADD]
→⇒ [TERM] + [ADD]

[ADD] ⇒ [TERM]

[TERM]
→⇒ [VAR][TERM]

[TERM]
↓⇒ [ADD]—[ADD]

[TERM] ⇒ [VAR]

[VAR] ⇒ a|b| · · ·

In this grammar, [ADD] is the start symbol. The grammar is capable of gen-
erating four distinct types of mathematical expressions: addition (from [ADD]),
multiplication and fractions (from [TERM]), and variables (from [VAR]).

Assume that the template generation algorithm chooses productions from a
given nonterminal uniformly at random. Then, starting from [ADD], it will generate
an addition expression half the time. But, to generate a multiplication expression,
it must first produce [TERM] (with probability 1/2), and then produce [VAR][TERM]
(with probability 1/3, since there are three productions with LHS [TERM]). Thus,
multiplication expressions will only be generated 1/6 of the time. Clearly, we cannot
rely on a mechanism like this to reflect a reasonable distribution of mathematical
structures.

We do not attempt to model the “real” distribution of mathematical expres-
sions. Instead, we take the following approach which distributes uniformly over
all supported expression types. For each nonterminal symbol N , the template
generator constructs a list of all mathematical expression types derivable from N .
Then, whenever it needs to expand an instance of N , it selects an expression type
uniformly at random, rather than a production.

To repeat the example above, suppose an instance of [ADD] requires expan-
sion during template generation. Rather than choosing randomly between the two
productions with LHS [ADD], we now randomly select one of the expression types
derivable from [ADD] (i.e. one of “addition”, “multiplication”, “fraction”, or “vari-
able”) and create the intermediate derivation steps all at once. Suppose we choose
“fraction”. Then the derivation sequence

[ADD]⇒ [TERM]
↓⇒ [ADD]—[ADD]

replaces the single instance of [ADD] in the derivation being generated.

By decoupling mathematical semantics from the syntactic description provided
by a grammar, we achieve a uniform distribution over expression types. This ap-
proach can easily be extended so as to generate non-uniform distributions over

32

mathematical semantics or to generate expressions according to some other statis-
tical process.

4.5.3 Managing bounding-box shape

Finally, to obtain broader coverage of relative bounding box positions, the Latin
and Greek letter symbols in the grammar were grouped into classes based on their
characteristic shape with respect to a baseline (ascender, descender, baseline). The
grammar was modified so that each class is produced by a single non-terminal.
In this way, we obtained a uniform distribution over symbol shapes rather than
symbols.

4.6 Examples

Below are two examples of expressions generated by the above process.

[
B

7

]N+6

β +
z− L (v)√

s

∫
24dXh

Figure 4.1: Generated expressions

4.7 Output formats

The algorithm sketched above generates random derivations from a grammar. Us-
ing the tree generator, one can produce and serialize parse trees for use in recognizer
testing. Using the string generator, one can generate LATEX strings, which can be
converted to images and displayed to subjects for transcription. Strings repre-
senting generated expressions for use in a computer algebra system such as Maple
or Mathematica can also be generated. The latter is particularly useful for au-
tomatically evaluating recognizer accuracy via simple, built-in arithmetic. These
structures are generated for each randomly-derived expression.

The algorithm also creates a derivation string describing the spatial layout gen-
erated by the derivation in the form described by Section 4.3.3. For example,
suppose the expression 2 + ma + b

3
is generated. The corresponding derivation

string is 2 _R_ plus _R_ (m _AR_ a) _R_ plus _R_ (b _B_ horzline _B_ 3).
Here, the parentheses indicate nested subexpressions and the underscores delimit
relation codes (_R_=right, _AR_=above-right, _B_=below). The derivation
strings are used to guide the automatic ground-truthing process which we will de-
scribe in section 5.

33

Chapter 5

Automatic ground-truthing

When generating a corpus of ground-truthed data to train and/or validate recog-
nition systems, it is convenient to use a program to automatically ground-truth
at least part of the collected data. In Section 3.2, we noted the existence of a
“bootstrapping problem” associated with this approach and stated that one way
to avoid this problem is to use additional layout description data associated with
a hand-drawn expression. In our experiment, we have this data available: we com-
putationally generated each template expression along with the derivation strings
described in Section 4.7, which fully describe the expected spatial layout of tran-
scribed expressions.

However, we do not know which strokes the participants drew correspond to
which symbols in the derivation string. Ground-truthing is, therefore, a constrained
recognition task in which the symbol labels appearing in the derivation string must
be matched to groups of strokes in a handwriting sample. Because of the constraints
on possible recognizer output, a weak recognition engine should generate useful
ground-truth.

This chapter describes a simple algorithm that we developed to label hand-
drawn math expressions with ground truth by matching groups of ink to elements
in derivation strings. The algorithm’s accuracy is evaluated with respect to three
different measurement criteria, each applicable for different uses of corpus data.

5.1 Algorithm

We devised a naive greedy algorithm for matching strokes to derivation strings. At
a high level, the algorithm may be viewed as a heuristic best-first search through
symbol recognition results, with backtracking. To compute the heuristic, the al-
gorithm combines confidence scores computed by a symbol recognizer and spatial
relation classifiers. These tools were trained on a small bootstrap data set which
was manually annotated with ground-truth. This bootstrap data is independent of
our main corpus and was obtained by having several researchers in our group draw a

34

small set of expressions. The ground- truthing algorithm is based on an inaccurate
but somewhat useful heuristic: given a derivation string, remove all the parenthe-
ses and match the derivation string to sketched equation symbol by symbol. For
example, the derivation string from section 4.7,

2 _R_ plus _R_ (m _AR_ a) _R_ plus _R_ (b _B_ horzline _B_ 3)

is interpreted as

2 _R_ plus _R_ m _AR_ a _R_ plus _R_ b _B_ horzline _B_ 3

The algorithm considers a derivation string of the form S1r1S2r2 . . . rnSn where
the Si are names of terminal symbols and the ri are any of the spatial relations.
Given such a string, suppose that symbols S1, . . . , Sm−1 have been matched to ink
with confidence z that the match is correct. The ink used by symbols S0, . . . , Sm−1

is marked “used”. All other ink is currently “unused”. To match symbol Sm, the
algorithm proceeds as follows:

Order all possible occurrences of Sm in the input ink in decreasing order of
confidence
for each possible occurrence of Sm do

Let c be the local confidence of Sm

Mark ink strokes comprising this occurence “used”
Recurse at Sm+1 with score zc
if a match was found then

return the match
Mark ink strokes comprising this occurence “unused”

return failure

In the m = 1 case (i.e. when the algorithm is matching against the first symbol),
we match to the occurence of S1 having the minimal sum of spatial relationship
scores from all other possible symbols. That occurence is taken to be the “starting-
point” of the expression and is, loosely speaking, the top-left symbol in the drawing.
This choice works because the spatial relations used are unidirectional (e.g. we use
a Right relation but not Left), so the matching process consumes symbols roughly
in a top-left to bottom-right order.

The local confidence c computed by the algorithm is the product of relational
and symbol recognition confidences.

This algorithm may take exponential time to report failure in the worst case.
During testing the algorithm was stopped if it had not reported a match after two
minutes.

5.1.1 Example

To make the algorithm more concrete, we demonstrate it on an actual handwriting
sample collected in our study.

35

1
2 6 7

3 4 5
Figure 5.1: Ink collected from a study participant.

In this example, the automatically generated expression was

C −H − q

This corresponds to the derivation string

(C _R_ horzline _R_ (H _R_ horzline _R_ q))

Figure 5.1 shows the transcription submitted by a study participant. Note that
the boxed numbers serve only as a way to identify symbols in the ink; they are not
part of the transcription.

Using the algorithm’s notation, we have S1 = C, S2 = —, S3 = H, S4 = —,
S5 = q. Partial symbol recognition results are shown in Table 5.1, with recognition
scores indicated in parentheses.

1 2 3 4 3,4
C (1.0) — (1.0) 1 (0.20) — (0.12) t (0.19)
c (0.98)

√
(0.25) l (0.18)

√
(0.04) + (0.14)

q (0.76) w (0.14)
∫

(0.09) w (0.02) f (0.13)

5 4,5 3,4,5 6 7
1 (0.23) + (0.37) H (0.77) — (1.0) q (1.0)
l (0.14) t (0.23) Π (0.30)

√
(0.21) ε (0.72)∫

(0.12) T (0.22) n/a w (0.11) [(0.69)

Table 5.1: Partial symbol recognition results during ground-truthing.

We begin with m = 1. The only occurence of C is at symbol 1 with score 1.0.
Symbol 1 is marked “used” and we recurse.

m = 2. There are three occurences of —: at symbols 2, 4, and 6. The recognition
and→ relation scores for each symbol are computed and summarized in Table 5.2.

36

Stroke(s) Reco. score Rel. score Product
2 1.0 0.95 0.95
4 0.12 0 0
6 1.0 0 0

Table 5.2: Score summary for occurences of —.

Based on the score summary, stroke 2 is the best match. Stroke 2 is marked
“used” and we recurse.

m = 3. The only occurence of H comprises symbols 3, 4, and 5 and has recog-
nition score 0.77. The → relation score from symbol 2 is 0.88, so the symbol is
usable. Symbol 3 is marked “used” and we recurse.

m = 4. The only remaining occurence of — is at symbol 6 with score 1.0.
Notice that the other occurences (at symbols 2 and 4) have already been marked
“used” in steps 2 and 3. The → relation score from symbols 3,4,5 is 0.78. Symbol
6 is marked “used” and we recurse.

m = 5. The only occurence of q is at symbol 7 with score 1.0, as symbol 1
(which also has an occurence) was marked “used” in step 1. The → relation score
from symbol 6 is 0.4, so the symbol is usable. As this is last symbol, the current
match is returned with score

1.0 ∗ 1.0 ∗ 0.95 ∗ 0.77 ∗ 0.88 ∗ 1.0 ∗ 0.78 ∗ 1.0 ∗ 0.4 = 0.2

This example demonstrates that the ground-truthing algorithm is efficient and
accurate for expressions with basic spatial layouts, provided that symbol recognition
is correct.

5.2 Experiments and results

To test the accuracy of our algorithm, the entire corpus of 4655 expressions was
annotated manually. Automatically-annotated data was then compared to the
manually-annotated data using two scenarios.

5.2.1 Experimental scenarios

1. The algorithm described in Section 5.1.

2. Pre-training the symbol recognizer for each user on approximately 20% of
their input data, selected randomly, and then running the algorithm from
Section 5.1.

37

Scenario 2 was introduced because the algorithm frequently failed when it could
not match a hand-drawn symbol to a symbol in the specified input string. The
second scenario ensures that the symbol recognizer has the greatest possible chance
to match user-drawn symbols against symbols in the generated expression tree.

5.2.2 Measures of accuracy

We plan to use parts of our expression corpus to aid in the development of classifiers
for the relations in our grammar formalism. Our relational classifiers are based on
bounding-box geometry, so it is natural to measure the accuracy of our ground-
truthing algorithm by considering how similar labeled bounding boxes are between
automatically- and manually- ground-truthed expressions.

Due to issues of ambiguity described in Section 3.1, manually-annotated samples
occasionally had ground-truth assigned somewhat arbitrarily. Although it is un-
reasonable to expect a recognition system to correctly identify such transcriptions,
their bounding boxes can still be useful from the point of view of training relational
classifiers. In these cases, it is not always obvious when an automatically-annotated
relation should be considered correct, so we have elected to use three accuracy
measurements which permit varying degrees of differentiation in ground-truth as-
signment, as detailed below. For each scenario, three accuracy measurements are
reported, normalized to give percentages:

1. Full expression: In this measurement, an annotated sample is considered cor-
rect if all symbols and relations are correctly annotated and all subexpression
bounding boxes exactly match their counterparts in the manually-annotated
ground-truth.

2. Exact bounding-box: This measurement concerns individual relations aris-
ing from the randomly-generated derivation. A relation between any two
subexpressions is considered correct if its constituent symbols are correct and
the automatically-annotated bounding boxes of both subexpressions exactly
match their counterparts in the manually-annotated ground-truth.

3. Bounding-box overlap: This measurement also concerns individual relations.
In it, each relation is assigned a score between 0 and 1. The score is com-
puted by averaging bounding-box similarity measurements from each of the
automatically-annotated relation’s constituent subexpressions to their coun-
terparts in the manually-annotated ground-truth. We define bounding-box
similarity as the ratio of the area of intersection of the two boxes to the area
of the larger box. Two boxes thus have similarity 0 if they are disjoint and
similarity 1 if they are identical, with a range of possible values in between.

Figures 5.2 and 5.3 illustrate the difference between exact and overlap bounding-
box accuracy.

38

score = 1.0 score = 0 score = 0

Figure 5.2: Exact bounding-box accuracy.

score = 1.0 score = 0.5 score = 0

Figure 5.3: Bounding-box overlap accuracy.

These three measurements are defined in increasing order of permissiveness of
match. Full expression accuracy requires every symbol, relation, and bounding box
in an entire sample to be annotated precisely the same as in the manual ground-
truth, while bounding-box similarity accuracy allows symbol bounding boxes to
disagree slightly but still count as a close match.

The ground-truthing algorithm produces highly accurate ground-truth for hand-
drawn input when compared to manual ground-truth, as shown by Figure 5.4 For
scenario 1, the algorithm achieved 90% full expression accuracy. Exact bounding-
box accuracy was 93.6% and overlap accuracy was 97.7%. The accuracy rates for
scenario 2 are about the same. The error bars in the graph indicate the algorithm’s
accuracy on the data of the most- and least- accurately annotated subjects.

Scenarios 1 and 2 differ significantly in their reject rates. The algorithm either
produces highly-accurate ground-truth or rejects the entire expression. For scenario
1, the reject rate was 55.1%, while for scenario 2, it dropped to 46.5%. This reject
rate will be discussed in more detail in Section 5.3.

The most appropriate measure of annotation accuracy depends on one’s appli-
cation. If annotated data is used to train spatial relation classifiers on bounding
box information, it is appropriate to count similar, but not identical, bounding-box
annotations as partially correct because they may still provide useful training data.
On the other hand, if one uses automatically-generated ground-truth to test the
accuracy of an isolated symbol recognition system, then full expression or exact
bounding-box accuracy may be a more appropriate measurement.

39

Figure 5.4: Automatic annotation accuracy

5.3 Discussion

Our automatic ground-truthing method has a high accuracy rate but suffers from
a high reject rate. It is important to note that the accuracy of this annotation
technique remained high through all experiments. While it would be preferable
to maintain accuracy with a lower reject rate, the present algorithm is far more
useful than it would be if both accuracy and reject rates were lower. Accurately
ground-truthing even half of a large corpus automatically would obviate a significant
amount of manual annotation.

It is not clear how to further reduce the rejection rate of the ground-truthing
algorithm. In scenario 1, described in section 5.2, a number of samples were rejected
due to symbol classification errors. The errors arose because the generic models
in the symbol classifier differed from particular users’ handwriting styles. By pre-
training on 20% of samples, the rejection rate was reduced from 55.1% to 46.5%,
as is shown in the results of scenario 2. However, experiments pre-training the
symbol recognizer on a larger proportion of samples did not demonstrate significant
improvement.

One approach to lowering the reject rate is to incorporate manual intervention
directly into the ground-truthing application. In cases currently rejected due to low
recognition scores, an operator could manually annotate the problem symbols and
let the automatic procedure handle the rest. We expect such an approach would
handle the majority of the cases rejected by the current system while requiring
only a fraction of the time required for full manual annotation. Other approaches

40

to reducing the reject rate may also be possible. Our corpus includes the entire
set of expressions, and other researchers are free to experiment with algorithms to
perform symbol identification and subexpression relation assignment.

It is interesting to note that in order to verify our accuracy claims, we manually
ground-truthed the entire corpus. Unfortunately, with any new technique, some
measure of its effectiveness is necessary. In this case, to test how well we could
ground-truth data, we needed ground-truthed data against which to compare our
algorithm’s output. However, we now have the confidence that, should we expand
our corpus, we can automate the ground-truthing and still expect high accuracy in
the data we generate.

41

Chapter 6

Conclusions

This thesis has presented some tools that we have used to generate a large, accu-
rately ground-truthed corpus of hand-drawn mathematical expressions. The corpus
is publicly available, and opens new possibilities for applying statistical techniques
to math recognition and evaluating recognition accuracy. In this chapter, we de-
scribe some ways that the present work could be extended and refined, then sum-
marize the highlights of the thesis.

6.1 Future work

We believe that the general corpus collection method outlined in Chapter 3 en-
sures broad, representative coverage while saving researcher time whenever possi-
ble through automated processes. Extensions to this work therefore fall into two
categories: extensions to the template expression generation technique presented
in Chapter 4, and improvements to the math expression ground-truthing algorithm
from Chapter 5.

6.1.1 Template expression generation

The algorithm presented in Chapter 4 worked very well for generating syntactically-
correct mathematical expressions from a relational context-free grammar. We can
see two possible directions for immediate extension:

1. Construct grammars and template expressions for different types of sketches,
and

2. Make the semantic content of generated expressions more “realistic”.

We discuss each of these extensions briefly.

42

New sketch types

Grammar-based generation and recognition approaches are amenable to any sketch
domain which can be described by a formal grammar. These may include course-
of-action diagrams, flowcharts, electrical schematics, chemistry formulas, etc. So
long as the information content can be described in a structured way, a grammar
can be used to formalize that structure.

Although our template generation technique was demonstrated by generating
mathematical expressions, it is more broadly applicable and could be used as the
starting point for corpus creation in many other sketch domains.

Realistic semantics

The examples of generated expressions in Section 4.6 show that, while the math
expressions constructed using our automatic approach are syntactically correct,
they do not look “natural” to transcribers or observers. Variable and operation
selection occurs at random, so variable names do not match one another within
expressions, operations are combined in ways not arising in common mathematical
use, and subexpressions which are commonly short (such as limits of summation)
often contain abnormally many symbols.

These artifacts of randomized generation weaken any arguments we make that
generated expressions are representative of the sketch domain. The argument would
be more solid if our technique incorporated some logic making generated expressions
more “natural-looking”. There are several simple tools one could use to achieve this:

1. Assign prior probabilities to variables, operators, and expression types to
reflect their natural rate of occurence.

2. After variable or operator selection, re-weight the distribution so as to reflect
the natural co-occurence rate with other variables and operators.

These techniques would cause the distribution of automatically-generated ex-
pressions to more closely resemble that of human-generated expressions, rather
than that uniform distribution over symbol shapes and operations that we cur-
rently emulate. Whether such a resemblance is necessary or even desirable is an
open question.

6.1.2 Ground-truthing mathematical sketches

As described in Section 5.3, the simple ground-truthing algorithm we devised was
very accurate, but rejected roughly half of its inputs as unrecognizable. Clearly,
we would like to reduce this rejection rate while maintaining high accuracy. Such
a reduction will likely require more sophisticated techniques than those we have

43

developed here, but two simple extensions may prove useful: to incorporate subex-
pression grouping information present in the grammar derivations, and to perform
targeted symbol recognizer pre-training.

Subexpression group information

Our ground-truthing algorithm discards all subexpression nesting information and
attempts to match a two-dimensional grammar derivation as a linear string. This
approach is simple, but often fails, especially in larger expressions with more com-
plicated two-dimensional structure. It may be possible to reduce the rejection rate
by keeping this nesting information and constructing a more accurate programmatic
model of the expression’s spatial layout.

Targeted recognizer pre-training

Scenario 2 in Section 5.2.1 involved randomized pre-training of a symbol recognizer
on each user’s handwriting prior to running the ground-truthing algorithm. The
goal of this process was to isolate the errors and rejections made during ground-
truthing to any errors and rejections made by the symbol recognizer. However,
randomized pre-training is not the most effective way to achieve this isolation.

The symbol recognizer we used includes a database of known symbol types and
shapes. Input symbols are compared to database symbols to determine matches,
which are returned in ranked order. Some symbols drawn by study participants are
similar to symbols already present in the database. Pre-training on such symbols
accomplishes nothing. Ideally, pre-training should be performed only on symbols
drawn by participants which are different from any model symbols in the database.

To determine which symbols should be pre-trained on, the recognizer must be
used and its results compared with manually-generated ground-truth information.
Any recognition mismatches can be collected and used to generate a set of symbols
to use for pre-training. In this way, maximum isolation can be achieved to distin-
guish between recognition errors and ground-truthing errors, allowing more realistic
rejection and error rates to be determined for the ground-truthing algorithm.

6.1.3 Recognition accuracy evaluation

The mathematical corpus we created will be used to evaluate recognizer accuracy.
Objective accuracy metrics are therefore another avenue for investigation. This is
an area which has not received much attention in the past, possibly due to the lack
of standardized testing corpora.

Among the papers describing accuracy cited in Chapter 2, there is substantial
variation in the size of the testing suite, the number of writers, the types of expres-
sions, and the number of recognized symbols. Furthermore, there are differences in

44

the criteria used to determine correctness. Is an expression correct if all the sym-
bols are recognized correctly? If the system infers the correct expression despite
misclassified symbols? If a recognizer produces multiple interpretations, must the
first result be correct? If not, how many incorrect interpretations are tolerable?

There are many open questions which must be resolved to create a standardized,
objective evaluation framework. It is likely that the answers to these questions will
differ based on application domain and use cases. Therefore, a general framework
allowing recognition systems to be compared and evaluated under differing metrics
would be ideal. In this way, application designers could select the technology most
appropriate to their own problem domains, and researchers could focus their work
on improving specific weaknesses in existing technology.

6.2 Conclusions

In this thesis, we presented a number of useful tools for constructing large, accu-
rately ground-truthed corpora of hand-drawn sketches. These tools were illustrated
through the creation of a corpus of mathematical expressions, but some of the tech-
niques used are broadly applicable to corpus creation in general.

Chapter 3 gave a general framework for corpus creation. It proposed to auto-
matically generate a large number of template sketches, transcribe these sketches by
hand, and ground-truth them manually unless viable automatic procedures existed.
This process prevents designer bias from affecting expression selection, ensures that
the expressions are drawn in a way that reflects natural use, and saves researcher
time as much as possible through automated ground-truthing. The process was
exemplified through a collection project which created a corpus of roughly 5000
hand-drawn math expressions.

Next, Chapter 4 detailed our novel technique for automatically generating tem-
plate expressions from a relational context-free grammar. The technique extracts
a random derivation from a grammar modeling the sketch domain, and it manages
expression length and nonterminal selection so as to produce expressions which are
easily transcribed by human users, but still provide broad domain coverage.

Finally, Chapter 5 presented an algorithm for ground-truthing hand-drawn
mathematical expressions. The algorithm is naive but highly accurate, although
it has a very high rejection rate of about 50%. Ground-truthing accuracy was de-
termined both with and without symbol recognizer pre-training, and the accuracy
and reject rate of the algorithm were discussed.

These tools have proven to be useful in the creation of our mathematical corpus,
and we believe that similar techniques can be used in many sketch recognition
domains. It is our hope that other researchers will use the corpus we have collected
in their own research.

45

References

[1] S.K. Bandyopadhyay, Flowchart recognition - a syntactic approach, Int. J. Elec-
tron. 67 (1989), no. 2, 179–185.

[2] Joost van Beusekom, Faisal Shafait, and Thomas M. Breuel, Automated ocr
ground truth generation, Document Analysis Systems, 2008. DAS ’08. The
Eighth IAPR International Workshop on, Sept. 2008, pp. 111–117.

[3] Frederick W. Blackwell and Robert H. Anderson, An on-line symbolic math-
ematics system using hand-printed two-dimensional notation, Proceedings of
the 1969 24th national conference (New York, NY, USA), ACM, 1969, pp. 551–
557.

[4] D. Blostein and A. Grbavec, Recognition of mathematical notation, 1996.

[5] D. Blostein and L. Haken, The lime music editor: a diagram editor involving
complex translations, Softw. Pract. Exper. 24 (1994), no. 3, 289–306.

[6] Radakovic Bogdan, Goran Predovic, and Bodin Dresevic, Geometric parsing of
mathematical expressions, U.S. Patent Application #20080253657, Filed 2007,
Microsoft Corporation.

[7] Kam-Fai Chan and Dit-Yan Yeung, An efficient syntactic approach to struc-
tural analysis of on-line handwritten mathematical expressions, Pattern Recog-
nition 33 (1998), 375–384.

[8] , Error detection, error correction and performance evaluation in on-
line mathematical expression recognition, in On-Line Mathematical Expression
Recognition, Pattern Recognition, 1999.

[9] , Mathematical expression recognition: A survey, International Journal
on Document Analysis and Recognition 3 (1999), 3–15.

[10] Hyunil Choi, Sung-Jung Cho, and J.H. Kim, Generation of handwritten char-
acters with bayesian network based on-line handwriting recognizers, Document
Analysis and Recognition, 2003. Proceedings. Seventh International Confer-
ence on, Aug. 2003, pp. 995–999.

46

[11] P.A. Chou, Recognition of equations using a two-dimensional stochastic
context-free grammar, SPIE Visual Communications and Image Processing IV
1199 (1989), 852–863.

[12] Gennaro Costagliola, Masaru Tomita, and Shi-Kuo Chang, A generalized
parser for 2-d languages, Visual Languages, 1991, pp. 98–104.

[13] J. Dolinsky and H. Takagi, Synthesizing handwritten characters using natural-
ness learning, Computational Cybernetics, 2007. ICCC 2007. IEEE Interna-
tional Conference on, Oct. 2007, pp. 101–106.

[14] B. Edwards and V. Chandran, Machine recognition of hand-drawn circuit di-
agrams, Acoustics, Speech, and Signal Processing, 2000. ICASSP ’00. Pro-
ceedings. 2000 IEEE International Conference on, vol. 6, 2000, pp. 3618–3621
vol.6.

[15] Martin Field, Sam Gordon, Eric Peterson, Raquel Robinson, Tom Stahovich,
and Christine Alvarado, The effect of task on classification accuracy: Us-
ing gesture recognition techniques in free-sketch recognition, Sixth Eurograph-
ics Workshop on Sketch-Based Interfaces and Modeling (SBIM), ACM, 2009,
p. nn.

[16] Julian Fierrez, Javier Ortega-Garcia, Doroteo Torre Toledano, and Joaquin
Gonzalez-Rodriguez, Biosec baseline corpus: A multimodal biometric database,
Pattern Recognition 40 (2007), no. 4, 1389 – 1392.

[17] U. Garain and B.B. Chaudhuri, Recognition of online handwritten mathemat-
ical expressions, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 34 (2004), no. 6, 2366–2376.

[18] P. Heroux, E. Barbu, S. Adam, and E. Trupin, Automatic ground-truth genera-
tion for document image analysis and understanding, Document Analysis and
Recognition, 2007. ICDAR 2007. Ninth International Conference on, vol. 1,
Sept. 2007, pp. 476–480.

[19] G.E. Kopec and P.A. Chou, Document image decoding using markov source
models, Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993
IEEE International Conference on, vol. 5, Apr 1993, pp. 85–88 vol.5.

[20] Anand Kumar, A. Balasubramanian, Anoop Namboodiri, and C.V. Jawahar,
Model-Based Annotation of Online Handwritten Datasets, Tenth International
Workshop on Frontiers in Handwriting Recognition (Guy Lorette, ed.), Uni-
versité de Rennes 1, Suvisoft, Oct. 2006.

[21] G. Labahn, E. Lank, S. MacLean, M. Marzouk, and D. Tausky, Mathbrush: A
system for doing math on pen-based devices, The Eighth IAPR Workshop on
Document Analysis Systems (DAS) (2008).

47

[22] , Mathbrush: A system for doing math on pen-based devices, Proc. of
the Eighth IAPR Workshop on Document Analysis Systems, 2008.

[23] G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean, and D. Tausky, Math-
brush: A case study for interactive pen-based mathematics, Fifth Eurographics
Workshop on Sketch-Based Interfaces and Modeling (SBIM) (2008).

[24] E. Lank, J. Thorley, S. Chen, and D. Blostein, On-line recognition of uml
diagrams, Document Analysis and Recognition, International Conference on 0
(2001), 0356.

[25] E.H. Lank, A retargetable framework for interactive diagram recognition, Docu-
ment Analysis and Recognition, 2003. Proceedings. Seventh International Con-
ference on, Aug. 2003, pp. 185–189 vol.1.

[26] Joseph J. Laviola, Jr., Mathematical sketching: a new approach to creating
and exploring dynamic illustrations, Ph.D. thesis, Providence, RI, USA, 2005,
Adviser-Dam, Andries Van.

[27] Joseph J. LaViola, Jr., An initial evaluation of a pen-based tool for creating
dynamic mathematical illustrations, Third Eurographics Workshop on Sketch-
Based Interfaces and Modeling (SBIM) (New York, NY, USA), ACM, 2006,
pp. 157–164.

[28] Joseph J. LaViola, Jr. and Robert C. Zeleznik, Mathpad2: a system for the
creation and exploration of mathematical sketches, SIGGRAPH ’04: ACM SIG-
GRAPH 2004 Papers (New York, NY, USA), ACM, 2004, pp. 432–440.

[29] Scott MacLean, Matching techniques for mathematical symbol recognition,
Tech. report, Symbolic Computation Group - University of Waterloo, 2007.

[30] William A. Martin, Computer input/output of mathematical expressions, SYM-
SAC ’71: Proceedings of the second ACM symposium on Symbolic and alge-
braic manipulation (New York, NY, USA), ACM, 1971, pp. 78–89.

[31] Reiner Marzinkewitsch, Operating computer algebra systems by handprinted in-
put, ISSAC ’91: Proceedings of the 1991 international symposium on Symbolic
and algebraic computation (New York, NY, USA), ACM, 1991, pp. 411–413.

[32] O. Okun and M. Pietikainen, Automatic ground-truth generation for skew-
tolerance evaluation of document layout analysis methods, Pattern Recognition,
2000. Proceedings. 15th International Conference on, vol. 4, 2000, pp. 376–379
vol.4.

[33] P.J. Phillips, Hyeonjoon Moon, P. Rauss, and S.A. Rizvi, The feret evalua-
tion methodology for face-recognition algorithms, Computer Vision and Pattern
Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on,
Jun 1997, pp. 137–143.

48

[34] V. Popovici, J. Thiran, E. Bailly-Bailliere, S. Bengio, F. Bimbot, M. Hamouz,
J. Kittler, J. Mariethoz, J. Matas, K. Messer, B. Ruiz, and F. Poiree, The
BANCA Database and Evaluation Protocol, 4th International Conference on
Audio- and Video-Based Biometric Person Authentication, Guildford, UK
(Berlin), Lecture Notes in Computer Science, vol. 2688, SPIE, 2003, pp. 625–
638.

[35] D. Prusa and V. Hlavac, Mathematical formulae recognition using 2d gram-
mars, Document Analysis and Recognition, 2007. ICDAR 2007. Ninth Inter-
national Conference on, vol. 2, Sept. 2007, pp. 849–853.

[36] I. Rutherford, Structural analysis for pen-based math input systems, Master’s
thesis, David R. Cheriton School of Computer Science, University of Waterloo,
2005.

[37] Jana Schwarz and Václav Matousek, Creation of a corpus of training sen-
tences based on automated dialogue analysis, TSD ’01: Proceedings of the
4th International Conference on Text, Speech and Dialogue (London, UK),
Springer-Verlag, 2001, pp. 418–426.

[38] Steve Smithies, Kevin Novins, and James Arvo, A handwriting-based equation
editor, Graphics Interface, 1999, pp. 84–91.

[39] K. Wittenburg, L. Weitzman, and J. Talley, Unification-based grammars and
tabular parsing for graphical languages, Journal of Visual Languages and Com-
puting 2 (1991), 347–370.

[40] L.A. Zadeh, Fuzzy sets, Information Control 8 (1965), 338–353.

[41] R. Zanibbi, D. Blostein, and J.R. Cordy, Baseline structure analysis of hand-
written mathematics notation, Document Analysis and Recognition, 2001. Pro-
ceedings. Sixth International Conference on, 2001, pp. 768–773.

[42] , Recognizing mathematical expressions using tree transformation, Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on 24 (2002),
no. 11, 1455–1467.

[43] Robert Zeleznik, Timothy Miller, Chuanjun Li, and Joseph J. Laviola, Jr.,
Mathpaper: Mathematical sketching with fluid support for interactive compu-
tation, SG ’08: Proceedings of the 9th international symposium on Smart
Graphics (Berlin, Heidelberg), Springer-Verlag, 2008, pp. 20–32.

49

	List of Tables
	List of Figures
	Introduction
	Math recognition
	MathBrush
	Corpora for training and evaluation
	Contributions
	Thesis organization

	Related work
	Math recognition systems
	Chan and Yeung
	MathPad
	Garain and Chaudhuri
	Freehand Formula Entry System
	MathBrush
	Microsoft Math Recognition Panel

	Ground-truth generation
	The value of our corpus

	Corpus creation
	Requirements for corpus creation
	Capturing relevant domain properties
	Correct ground-truth

	Tasks in corpus creation
	Selection
	Rendering
	Labeling

	Proposed methodology
	Transcription process

	Template expression generation
	Fuzzy relational context-free grammars
	Fuzzy set theory
	Fuzzy relational context-free grammars
	Definition
	Examples
	Derivations

	Grammar representation
	Random derivations
	Managing expression length
	Managing semantic distribution
	Managing bounding-box shape

	Examples
	Output formats

	Automatic ground-truthing
	Algorithm
	Example

	Experiments and results
	Experimental scenarios
	Measures of accuracy

	Discussion

	Conclusions
	Future work
	Template expression generation
	Ground-truthing mathematical sketches
	Recognition accuracy evaluation

	Conclusions

	References

