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Abstract

This thesis investigates TCP connection management mechanisms in order to under-

stand the behaviour and improve the performance of Internet servers during overload condi-

tions such as flash crowds. We study several alternatives for implementing TCP connection

establishment, reviewing approaches taken by existing TCP stacks as well as proposing new

mechanisms to improve server throughput and reduce client response times under overload.

We implement some of these connection establishment mechanisms in the Linux TCP stack

and evaluate their performance in a variety of environments. We also evaluate the cost

of supporting half-closed connections at the server and assess the impact of an abortive

release of connections by clients on the throughput of an overloaded server. Our evaluation

demonstrates that connection establishment mechanisms that eliminate the TCP-level re-

transmission of connection attempts by clients increase server throughput by up to 40%

and reduce client response times by two orders of magnitude. Connection termination

mechanisms that preclude support for half-closed connections additionally improve server

throughput by up to 18%.
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Chapter 1

Introduction

1.1 Thesis Statement

The goal of this thesis is to understand the behaviour of overloaded Internet servers, and to

improve their throughput and reduce client response times by examining implementation

choices for TCP connection establishment and termination.

1.2 Motivation

The demand for Internet-based services has exploded over the last decade. Many organi-

zations use the Internet and particularly the World Wide Web (often referred to as “the

web”) as their primary medium for communication and business. This phenomenal growth

has dramatically increased the performance requirements for Internet servers.

The ubiquitous nature of web browsers has given rise to the occurrence of flash crowds1,

where a large number of users simultaneously access a particular web site. Flash crowds

are characterized by a rapid and dramatic surge in the volume of requests arriving at a

web site, prolonged periods of overload (i.e., load in excess of the server’s capacity), and

are often triggered without advance warning. In the hours following the September 11th

1The term “flash crowd” was coined by Larry Niven in a science fiction short story, where huge crowds

would materialize in places of interesting events with the availability of cheap teleportation [5].
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terrorist attacks, many media web sites such as CNN and MSNBC were overwhelmed with

more than an order of magnitude increase in traffic, pushing their availability to 0% and

their response time to over 47 seconds [38, 25, 68]. A previously unpopular web site can

see a huge influx of requests after being mentioned in well-known newsfeeds or discussion

sites, resulting in saturation and unavailability – this is popularly known as the Slashdot

effect [2].

In many web systems, once client demand exceeds the server’s capacity, the server

throughput drops sharply, and the client response time increases significantly. Ironically, it

is precisely during these periods of high demand that a web site’s quality of service matters

the most. For example, an earthquake monitoring web site will often see significant user

traffic only in the aftermath of an earthquake [87]. Over-provisioning the capacity in web

systems is often inadequate. Server capacity needs to be increased by at least 4-5 times

to deal with even moderate flash crowds, and the added capacity tends to be more than

82% idle during normal loads [5]. Bhatti and Friedrich summarize the case against over-

provisioning to protect against flash crowds, “brute force server resource provisioning is

not fiscally prudent since no reasonable amount of hardware can guarantee predictable

performance for flash crowds” [15].

Web servers thus form a critical part of the Internet infrastructure and it is imperative

to ensure that they provide reasonable performance during overload conditions such as

flash crowds. The client-server interaction on the web is based on HTTP, which uses TCP

connections to transfer data between the end-points. Past work [47] has reported that the

escalation in traffic during flash crowds occurs largely because of an increase in the number

of clients, resulting in an increase in the number of TCP connections that a server has to

handle.

In this thesis, we study several different implementation choices for TCP connection

management in order to understand their impact on server throughput and client response

times under overload. In particular, we examine different approaches to implementing TCP

connection establishment (i.e., the three-way handshake) at the server. We also investigate

alternatives to the standard four-way TCP connection termination at both end-points.

We evaluate the cost of supporting half-closed connections at the server and assess the

impact of an abortive release of connections by clients on server throughput. Some of the
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connection management mechanisms examined in this thesis not only increase the server

throughput significantly, but they also reduce the client response time2 by more than

two orders of magnitude under overload. While we use web servers to evaluate different

connection management mechanisms, the results presented in this thesis also apply to other

TCP-based, connection-oriented Internet servers that can get overloaded.

1.3 Contributions

This thesis is concerned with servers that are subjected to overload conditions and makes

the following contributions:

1. We provide a better understanding of server behaviour during overload. We describe

some of the causes of the drop in server throughput and the increase in client response

times.

2. TCP stack developers in Linux, various flavours of UNIX, and Windows have taken

different approaches toward implementing connection establishment. It is not clear

to a systems programmer, an administrator, or even a TCP stack developer, which

of these approaches provide better server performance. We examine different imple-

mentation choices for TCP connection establishment, reviewing their advantages and

disadvantages. In the process, we demonstrate that the default implementation of

connection establishment in the Linux kernel can result in a disconnect between the

TCP states at the client and the server, causing unnecessary traffic in the network

and at the server.

3. We propose two new connection establishment mechanisms intended to alleviate

server traffic under overload. Our mechanisms require modifications only to the

TCP stack implementation at the server. No changes are required to the protocol

specifications, client-side TCP stacks and applications, or server-side applications.

We have implemented both of these alternatives in Linux, along with some of the

2Note that we use the term “client response time” in this thesis to denote the average response time

measured at the clients.
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connection establishment mechanisms currently in place in TCP stacks on UNIX and

Windows. We evaluate the performance of these mechanisms in a variety of envi-

ronments – using two different web servers (a traditional user-space server as well

as a high-performance kernel-space server). We demonstrate that mechanisms that

eliminate the retransmission of connection attempts by the client-side TCP stacks

significantly improve server throughput and reduce client response times by more

than two orders of magnitude.

4. We describe a mechanism that allows an early discard of client connection establish-

ment packets under overload. This mechanism relies only on existing data structures

available in the Linux TCP stack, does not require an external admission control

technique, and ensures that the server is never under-utilized.

5. We evaluate the cost of supporting half-closed TCP connections (which occur when

client applications initiate connection termination, for example, on a timeout) on

server throughput. We show how supporting half-closed TCP connections can result

in an imprudent use of resources at the server and describe a connection termina-

tion mechanism that disables the support for half-closed connections. Some web

browsers, in particular Internet Explorer, terminate their TCP connections using an

abortive release (i.e., by sending a reset (RST) to terminate connections). We exam-

ine whether the abortive release of connections by client applications has an impact

on server throughput. Our evaluation indicates that disabling support for half-closed

connections as well as an abortive release of connections by clients improves server

throughput by more than 15%.

1.4 Outline

Chapter 2 provides background information for this thesis and reviews related research.

Chapter 3 describes the experimental environment, workloads, and the methodology used

in this thesis. Chapter 4 outlines the problems with the existing TCP connection estab-

lishment mechanism in Linux. It examines solutions to address these problems, reviews

approaches implemented in other TCP stacks, and introduces two novel connection es-
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tablishment mechanisms. Chapter 4 also examines the alternatives to the existing TCP

connection termination mechanism. It includes the evaluation of different connection es-

tablishment and termination mechanisms on a workload representative of flash crowds.

Chapter 5 presents additional evaluation of some of these mechanisms in different environ-

ments, namely, with different workloads, client timeouts, and server platforms, as well as

under bursty traffic. It also presents a mechanism that allows an early discard of connec-

tion establishment packets from clients during overload. Chapter 6 contains a summary of

our findings and outlines some ideas for future work.
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Chapter 2

Background and Related Work

In this chapter, we review information required for the rest of this thesis and discuss previ-

ous related research. We first describe how TCP connection establishment and termination

is currently implemented in most TCP stacks, examining the Linux implementation in de-

tail. We then discuss previous research efforts to improve Internet server performance and

address server overload during flash crowds.

2.1 Background – TCP Connection Management

Application-layer Internet protocols such as HTTP use TCP as a reliable transport for

exchanging data between the client and the server. A typical HTTP interaction between

a client and a server consists of the client establishing a TCP connection with the server,

sending an HTTP request, receiving the server response, and terminating the connection.

Multiple rounds of request-response transactions can take place over a single TCP con-

nection if both of the end-points use persistent connections available in HTTP 1.1. In the

following sections, we describe how connection establishment and termination is currently

implemented in the Linux TCP stack.
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2.1.1 TCP Connection Establishment

TCP is a connection-oriented protocol that requires a connection to be established be-

fore end-points can exchange data. TCP connection establishment involves a three-way

handshake between the end-points [73, 80]. The handshake has three steps to reduce the

possibility of false connections [73]1. Figure 2.1 illustrates the implementation of the three-

way handshake in Linux. We use the implementation of TCP connection establishment in

Linux as a representative example, other TCP stacks implement connection establishment

in a similar fashion. Note that the TCP connection states at the end-points appear in bold

letters in Figure 2.1.

A server-side application, for example, a web server, creates a socket and binds it to

a well-known port. It then executes the listen() system call to notify the server TCP

stack2 of its willingness to accept incoming connections on the listening socket.

A client-side application, for example, a web browser, initiates a connection by creating

a socket and issuing the connect() system call. This causes the client TCP stack to send

a SYN segment to the specified server. Upon receiving a SYN, the server TCP stack

creates an entry identifying the client’s connection request in the listening socket’s SYN

queue (sometimes called the SYN backlog). It then acknowledges the SYN by sending a

SYN/ACK segment. The handshake is complete when the client TCP stack acknowledges

the SYN/ACK with an ACK, which signifies that both sides have completed connection

establishment. We will refer to the ACK sent by the client in response to a SYN/ACK as

SYN/ACK ACK to distinguish it from other ACK segments used by TCP.

Upon receiving the SYN/ACK ACK, the server TCP stack creates a new socket, adds

it to the listening socket’s listen queue (sometimes called the accept queue), and removes

the associated entry from the SYN queue. In order to communicate with the client, the

server application has to issue the accept() system call, which removes the socket from

the listen queue and returns an associated socket descriptor to the application. Both sides

can thereafter use read() and write() calls3 to exchange data. Note that in most socket

1As described in RFC 793 [73], “The principle reason for the three-way handshake is to prevent old

duplicate connection initiations from causing confusion” with new connection attempts.
2The terms “server TCP stack” and “client TCP stack” to used to imply the server-side and client-side

functionality provided by the TCP stack in an operating system.
3We use read() and write() to refer to the entire family of system calls to read and write data to/from
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Figure 2.1: TCP connection establishment procedure in Linux
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API implementations, the three-way connection establishment procedure is completed by

the server TCP stack before the application issues an accept() call4.

As shown in Figure 2.1, the server TCP stack uses two separate queues per listening

socket to keep track of client segments used for connection establishment. The SYN queue5

stores information (including the peer’s IP address and port number, the TCP options used

in the SYN, as well as the timestamp) about incomplete (half-open) connections, which

are in the SYN RECV TCP state.

The listen queue contains ESTABLISHED connections that are waiting for an accept()

call from the server application. It is important to note that although we use terms such as

“the SYN queue” and “the listen queue” in this thesis, these queues are in fact maintained

on a per-listening-socket basis in the Linux TCP stack. The sizes of both of these queues

are fixed and each entry consumes a portion of the available kernel memory.

Figure 2.2 summarizes the flow of TCP segments used for connection establishment.

SYN segments arrive at the server based on the aggregate client connection rate. The

server TCP stack creates entries for these connections in the SYN queue and responds

with SYN/ACKs (provided there is space in the SYN and listen queues). An entry is

normally retained in the SYN queue for the duration of one round trip time (RTT) to the

client. That is, entries occupy space in the SYN queue while the server’s SYN/ACK and

the corresponding SYN/ACK ACK from the client are in transit in the network. Upon

receiving a SYN/ACK ACK, the associated connection entry is removed from the SYN

queue, and a new socket is created and added to the tail of the listen queue (provided

there is space in the listen queue). When the server application issues an accept() system

call (the frequency of which depends on the application’s connection acceptance rate), the

entry at the head of the listen queue is removed and a socket descriptor identifying the

connection is returned to the application.

The server TCP stack might not always be in a position to accommodate a SYN or a

SYN/ACK ACK, this happens primarily when the SYN or the listen queue is full. The

queues may become full because the rate of incoming client connection attempts is higher

a socket.
4We will discuss the exceptions in Section 4.1.2.
5The SYN queue is actually implemented as a hash table to allow for an efficient lookup of the associated

incomplete connection when a SYN/ACK arrives – the term “queue” is used for historical reasons.
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Figure 2.2: Flow of TCP segments used for connection establishment

than the rate at which the server application is able to accept and process new connections

(i.e., the server is under overload). A SYN or SYN/ACK ACK segment that cannot be

accommodated has to be dropped, we refer to this scenario as a queue drop. By our

definition, queue drops occur only during the TCP connection establishment phase, either

at the SYN stage (i.e., upon receiving a SYN) or the ACK stage (i.e., upon receiving a

SYN/ACK ACK). Note the distinction between queue drops and generic packet drops,

which may occur at any step during packet processing in the networking stack or even

before the packet reaches the server. We now detail the causes of queue drops in the Linux

TCP stack.

When a well-formed SYN segment is received (i.e., excluding segments which do not

satisfy the TCP Protect Against Wrapped Sequences (PAWS) check, or those with incor-

rectly set flags such as IP broadcast), queue drops may occur only for one of the following

reasons.

1. The SYN queue is full.

2. The listen queue is full and there are at least two entries in the SYN queue whose

SYN/ACK timers have not expired.

3. The kernel cannot allocate memory to create an entry in the SYN queue.

4. The SYN queue is three-quarters full and TCP SYN cookies6 are not enabled.

5. The TCP stack is unable to transmit a SYN/ACK because it cannot find a route to

the destination.

We have found that in practice in our environment, SYN segments are dropped under

high loads only because of two reasons – the SYN queue is three-quarters full (we refer to

6We discuss SYN cookies in Section 4.1.6.
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this rule as SynQ3/4Full) or the listen queue is full (we refer to this rule as ListenQFul-

lAtSyn).

When a well-formed SYN/ACK ACK segment arrives, queue drops may occur only for

one of the following reasons.

1. The lookup for a network route to the destination fails.

2. The listen queue is full.

3. The kernel cannot allocate memory while attempting to create a new socket.

In our environment, SYN/ACK ACK segments are dropped under high loads only be-

cause the listen queue is full (we refer to this rule as ListenQOverflow). Note the distinction

between ListenQFullAtSyn and ListenQOverflow – the former rule is enforced at the SYN

stage while the later rule is invoked at the ACK stage. The kernel TCP code does not

have special names for any of the queue drops. We chose the names for these rules for

clarity and we will use them throughout this thesis. The Linux TCP stack takes a conser-

vative approach when the listen queue is full, and tries to drop connection establishment

attempts earlier (at the SYN stage through the ListenQFullAtSyn rule) rather than later

(at the ACK stage through the ListenQOverflow rule). A similar approach can be found in

other open-source TCP stacks such as FreeBSD. The early drop of SYN segments when the

SYN queue is only three-quarters full, as opposed to waiting for it to be completely full,

is a simple measure against SYN flood attacks in the absence of SYN cookies. While the

effectiveness of dropping SYN segments when the SYN queue is just three-quarters full is

unclear, the only way to disable it is by modifying the kernel TCP stack code. Since many

existing production Linux systems operate without any custom TCP stack modifications,

we run all of our experiments without any modifications to the SynQ3/4Full rule. Note

that in our discussion of TCP connection establishment, we do not consider the possibility

of simultaneous opening of connections by the end-points. In this thesis, we are primarily

concerned with a typical client-server environment, such as a web browser interacting with

a web server, there are no simultaneous connection openings in this environment.

TCP stack developers in different operating systems have taken different approaches to

implementing TCP connection establishment. Most TCP stacks use per-socket SYN and
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listen queues, and implement rules similar to the ones used in Linux to effect queue drops.

Others utilize techniques such as SYN cookies [14] or SYN cache [54] to reduce the state

information about incomplete connections stored at the server. However, implementations

differ most significantly in how they handle queue drops at the server [45]. In Linux,

SYN segments as well as SYN/ACK ACK segments are dropped silently when they trigger

a queue drop. That is, no notification is sent to clients about these dropped segments.

Most 4.2 BSD-derived TCP stacks, such as those in FreeBSD, HP-UX, and Solaris, only

drop SYN segments silently [45]. That is, whenever a SYN/ACK ACK is dropped due

to ListenQOverflow, a TCP reset (RST) segment is sent to the client notifying it of the

server’s inability to continue with the connection. In contrast, some Windows TCP stacks

do not drop either of these connection establishment segments silently, sending a RST to

the client every time there is a queue drop. Note that in TCP, segments (except RSTs) that

are not acknowledged by the server within a particular amount of time are retransmitted

by the client.

In this thesis, we describe and critique several different approaches to handling queue

drops. We are interested in answering the following question – TCP stack developers in

Linux, various flavours of UNIX7 and Windows have taken different approaches to im-

plementing connection establishment. Which of these approaches, if any, result in better

Internet server performance under overload? We also present two novel mechanisms de-

signed to eliminate the retransmission of TCP connection establishment segments in order

to increase server throughput and reduce client response times.

2.1.2 TCP Connection Termination

A TCP connection is full-duplex and both sides can terminate their end of the connection

independently through a “FIN-ACK” handshake after they finish sending data [73]. That

is, an end-point transmits a FIN to indicate that it is not going to send any more data

on a connection. The other end-point sends an ACK confirming the FIN. This method of

connection termination is called “graceful close”.

7Unless otherwise specified, we refer to the TCP stacks in various commercial as well as open-source

UNIX variants as UNIX TCP stacks.
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Graceful connection closure is implemented with either half-closed (also called full-

duplex) or half-duplex termination semantics. The terms “half-closed” and “half-duplex”

are described in RFC 1122 [17]. The CLOSE operation outlined in RFC 793 allows for

a connection to be “half closed”, that is, closed in only one direction, allowing an end-

point that sends a FIN to receive data from its peer in the other direction. Some socket

APIs provide the shutdown() system call to provide half-closed connection semantics,

enabling applications to shutdown the sending side of their connection, while allowing

activity on the receiving side through subsequent read() calls to obtain data sent by the

peer. Figure 3.1(a) illustrates the half-closed connection termination process.

Most applications, however, use the close() system call to terminate both the sending

as well as the receiving directions of the connection by treating the connection as if it is half-

duplex [80]. RFC 1122, which “amends, corrects and supplements” RFC 793, specifies –

“A host may implement a ‘half-duplex’ TCP close sequence, so that an application that

has called CLOSE cannot continue to read data from the connection. If such a host

issues a CLOSE call while received data is still pending in TCP, or if new data is received

after CLOSE is called, its TCP should send a RST to show that data was lost.” [17].

Figure 3.1(b) illustrates half-duplex connection termination. A close() call typically

returns immediately [1] (unless certain SO LINGER options have been set) and destroys

the socket descriptor (assuming no other process holds a reference to it), so the application

loses its reference to the TCP connection. Thus, the half-duplex semantics entailed by the

close() call imply that any data received from a peer after sending a FIN will not be read

by the application, but will result in a RST instead.

As shown in Figure 2.3, any client-initiated graceful connection termination, either with

half-closed or half-duplex connection semantics, results in a FIN being sent to the server.

Upon receiving a FIN segment, most server TCP stacks, including Linux, assume that

the client uses half-closed semantics. That is, they support half-closed client connections

by default. However, most HTTP clients (e.g., web browsers) do not terminate connec-

tions using half-closed connection semantics. Instead, they use the close() system call to

terminate both ends of a connection. Thus, server TCP stacks assume that client applica-

tions are using the shutdown() system call to terminate connections, however, most client

applications in fact use the close() system call. In this thesis, we demonstrate how sup-
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(a) Half-Closed Termination (b) Half-Duplex Termination

Figure 2.3: TCP connection termination procedures

porting half-closed connections can result in an imprudent use of resources at the server,

especially during overload. The effort spent by the server to generate and write replies

after receiving a FIN from a client is wasted when a client application does not read those

replies. We present an alternative connection termination mechanism that disables support

for half-closed connections. This allows us to evaluate the cost of supporting half-closed

connections when the server is overloaded.

Instead of graceful closure, an application can force a connection to be terminated

through an abortive release, which causes the TCP stack to send a reset (RST) segment to

its peer. RFC 793 and RFC 2616 [32] strongly discourage the use of an abortive release to

terminate connections as a part of normal operations. However, some client applications, in

particular, Internet Explorer 5 and 6 (which are currently the most popular web browsers),

terminate all of their connections by forcing the client TCP stack to send a RST [8]. The

reason why Internet Explorer uses an abortive release to terminate connections is not clear.

In this thesis, we examine whether the abortive release of connections can improve server
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throughput under high loads.

2.2 Related Work – Improving Server Performance

under Overload

Research in Internet server performance over the years has included application and op-

erating system interface improvements, networking subsystem enhancements, as well as

techniques to address server overload during flash crowds. In this section, we review past

work in this area as it relates to this thesis.

2.2.1 Application and Operating System Improvements

Modern Internet servers have to handle thousands of simultaneous connections [13]. Re-

searchers have proposed different server architectures for efficiently handling this high level

of concurrency. These8 include – (i) event-driven architectures [70, 19], where connections

are multiplexed over a few event-driven server processes (often just a single process), which

use an event notification mechanism such as the select() system call to work on mul-

tiple connections without blocking for I/O, (ii) multi-threaded or multi-process architec-

tures [70, 86], in which the server associates each connection with a thread or a process,

and relies on the operating system or a library to continue processing connections that

are not blocked, and (iii) hybrid architectures such as the Staged Event Driven Architec-

ture [88]. Other researchers have suggested modifications in operating system interfaces

and mechanisms for efficiently delivering information about the state of socket and file

descriptors to user-space Internet servers [13, 22, 53, 29, 67]. Past research has also exam-

ined techniques to improve server performance by reducing the data copied between the

kernel and user-space applications [69], implementing the transmission of data with zero

copying [82, 66], and reducing the number of kernel boundary crossings [66, 67]. In light

of the considerable demand placed on operating systems, some researchers have sought to

improve the performance of Internet servers by migrating part or all of their functionality

into the kernel [84, 39, 46].

8This taxonomy of server architectures is provided by Pai et al. [70].

15



The connection management mechanisms examined in this thesis operate at a lower

level (i.e., at the networking stack implementation level) and are complementary to these

application and operating system interface improvements. These application and operating

system improvements take effect only after a connection is established. They also have no

impact on connection termination. In fact, we use many of these improvements, which

constitute current “best practices”, in our evaluation of different connection management

mechanisms.

Event Scheduling in Internet Servers

Recent research has identified the scheduling of events as an important issue in the de-

sign of Internet servers. Note the distinction between connection scheduling and event

scheduling. Connection scheduling mechanisms seek to minimize the average response

time for client connections by applying techniques such as Shortest-Remaining-Processing-

Time-first (SRPT) to connections in a user-space server [28] and size-based scheduling in

network transmit queues [76]. Ruan and Pai [74] have challenged the effectiveness of these

mechanisms, suggesting that connection scheduling opportunities are an artifact of locking

and blocking implementations in the operating system. Since connection scheduling takes

effect only after a connection has been established and operates at a lower priority than

network packet processing, we do not expect it to have any impact on the mechanisms

considered in this thesis.

Event scheduling seeks to improve server throughput by maintaining a balance between

accepting new connections and making forward progress on existing connections [22, 19,

72, 86]. Such mechanisms typically modify the accept strategy used by Internet servers

to drain the listen queue aggressively, whenever the server accepts new connections. By

accepting new connections aggressively, servers that are under overload can reduce (but

not eliminate) queue drops arising from ListenQFullAtSyn or ListenQOverflow [19, 72]. In

our evaluation, we use two web servers configured to aggressively accept new connections.

We expect that the connection establishment mechanisms reviewed in this thesis will have

an even greater impact on the throughput and the response time provided by servers such

as Apache, which do not drain the listen queue aggressively, and consequently have more

queue drops (in Linux as well as other UNIX TCP stacks).
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It is important to maintain a balance between accepting new connections and com-

pleting work on existing connections – a mechanism that accepts new connections too

aggressively can result in degraded server throughput. Ostrowski [67] describes a mech-

anism called auto-accept, which operates in the framework of a special kernel subsystem

called Scalable Event Notification and Delivery (SEND). In this mechanism, the networking

subsystem in the kernel automatically accepts a connection on behalf of an application af-

ter the three-way handshake has been completed, without requiring an explicit accept()

system call. Unfortunately, a strategy such as auto-accept accepts connections too ag-

gressively under overload and causes the kernel to spend most of its time completing the

three-way TCP handshake and accepting connections, thereby preventing the server appli-

cation from making forward progress on accepted connections. The use of auto-accept also

results in a virtually unbounded listen queue, ensuring that there are no queue drops due

to ListenQOverflow or ListenQFullAtSyn9. An unbounded listen queue can create memory

pressure at the server because the kernel has to allocate socket entries to track the state of

each accepted connection. We believe that the auto-accept mechanism is responsible for

the lack of good performance in the SEND subsystem [18]. The size of the listen queue is

bounded in most TCP stacks for good reason – as indicated by queueing theory, limiting

the queue size acts as an implicit admission control mechanism that ensures that server

applications have access to resources to complete work on accepted connections under high

loads.

2.2.2 Networking Subsystem Improvements

In this section we review research proposing modifications to the TCP/IP networking sub-

system in order to improve Internet server performance. We discuss both implementation

changes as well as protocol modifications proposed in past work.

9The auto-accept mechanism can thus eliminate all queue drops when used in conjunction with tech-

niques such as SYN cookies, which provide an unbounded SYN queue.
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Implementation Improvements

In traditional networking stacks, whenever a network card in the server receives a packet, it

signals an (hardware) interrupt, and the operating system runs an interrupt service routine,

which is typically part of the device driver. The device driver then creates a buffer (called

skbuff in Linux and mbuf in BSD) encapsulating the packet, places it on the IP queue,

and posts a software interrupt. Later on, a kernel thread is run (in the software interrupt

context) to pull packets from the IP queue, process them (e.g., reassemble fragmented

packets), and pass them on to the transport layer, which performs further processing (e.g.,

places the data in a TCP segment in an appropriate socket queue). Thus, the protocol

processing for an incoming packet occurs at a higher priority than user-space applications

(e.g., web servers). This can result in receive livelock [63] under high load, where the

server spends all its time processing interrupts, without giving user-space applications any

opportunity to run. Receive livelock drives the overall system throughput to zero because

no progress can be made on received packets. Various solutions have been proposed to

address the receive livelock problem, these include interrupt throttling (also known as

interrupt batching or interrupt coalescence), resorting to interrupt-initiated polling during

overload [63], and early packet demultiplexing accompanied with protocol packet processing

at the priority of the receiving process [30].

Linux implements interrupt-initiated polling through the NAPI (New API) frame-

work [75]. With NAPI, a driver registers a device (e.g., the network card) for work following

a hardware interrupt, and disables further interrupts from that device. A kernel thread

later polls all registered devices for packets, and enables interrupts only when the device

does not have more packets to send10. NAPI implements many of the ideas proposed by

Mogul and Ramakrishnan [63] including the elimination of the IP queue and an early dis-

card of packets on the network card under overload. NAPI also ensures that other tasks in

the system (e.g., the web server) get an opportunity to run by making the polling thread

preemptible. We use NAPI in the evaluation in this thesis because it is a well-known solu-

tion to prevent receive livelock at an overloaded server. While NAPI obviates the need for

10For fairness, each device is allocated a quota on how many packets it can send, however, polling is still

used as long as the device has more packets to send.
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techniques such as interrupt throttling, our preliminary results using interrupt throttling11

were qualitatively similar to those using NAPI.

Clark et al. [24] provide insight into why TCP processing can be slow and describe

optimizations to make it fast. The improvements outlined include “fast path” processing

to optimize the common case of data transfer while a connection is established, TCP input

and output header prediction, and low-overhead timer management. Clark et al. suggest

that the protocol aspects of TCP do not cause a significant packet-processing overhead.

That is, it is not necessary to revise TCP, it is only necessary to implement TCP efficiently

to support high performance. Many of the implementation improvements outlined by Clark

et al. have been since implemented in production TCP stacks. Kay and Pasquale [50] mea-

sure processing overhead of the TCP/IP implementation in Ultrix. They report that the

processing time for long TCP messages is dominated by data touching operations (e.g.,

copying and checksum computation), and propose a checksum redundancy avoidance algo-

rithm to disable checksum computation whenever the link layer provides cyclic redundancy

check in LAN environments. They also show that it is difficult to significantly reduce the

processing costs for short TCP messages (which are common in HTTP). Processing time

for such messages is spread over many non-data-touching operations, whose overhead costs

are relatively constant. Their work suggests that it is important to design application-layer

protocols to reduce the number of short TCP messages. While Clark et al. and Kay and

Pasquale assess the overhead of common operations on established connections in TCP im-

plementations, in this thesis, we evaluate the overhead of TCP connection establishment

and termination during periods of heavy load such as flash crowds.

Early networking stacks did not handle large number of TCP connections efficiently.

McKenney and Dove [57] demonstrated the superiority of hash table based approaches

over linked-list implementations for connection state (Protocol Control Block) lookup.

The Linux TCP stack uses hash tables to demultiplex incoming TCP segments in a similar

fashion. Previous work [31, 9] has reported a degradation in throughput due to the memory

and CPU overheads arising from the management of a large number of connections in the

TIME WAIT state at the server TCP stack. Faber et al. [31] propose protocol modifications

to TCP as well as HTTP to shift the TIME WAIT state to the clients. Aron and Druschel [9]

11We used the e1000 device driver. Note that not all drivers support interrupt throttling.
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propose TCP implementation modifications to reduce the overhead from connections in the

TIME WAIT state. Note that the server TCP stack has to enter the TIME WAIT state only

for those connections whose termination is initiated by the server application. While the

server-initiated termination is typical for HTTP 1.0 connections, HTTP 1.1 connections

are typically terminated by the client12. In this thesis, we focus on client-initiated con-

nection termination in order to highlight the issues related to supporting half-closed TCP

connections at the server and to evaluate the performance impact of an abortive release of

connections by client applications. Consequently, there are no connections in TIME WAIT

state at the server.

Researchers have argued for offloading part or all of the functionality in a TCP stack

on to a network card [4, 62, 36]. Modern network cards include support for the offloading

of checksum computation and segmentation for large packet sends. We use checksum of-

floading in our evaluation and segmentation is not required for our workloads. Freimuth

et al. [36] describe an architecture that offloads the entire TCP stack on to the network

card, providing the server operating system with a high level interface (i.e., sockets) to the

network card. This facilitates large data transfers, eliminates interrupts and bus crossings

resulting from “uninteresting” transport-level events (e.g., TCP window updates), and im-

proves memory reference behaviour in the operating system. Turner et al. [83] describe a

networking stack architecture to improve the throughput and latency of TCP-based server

applications. In their architecture, one or more processor cores in the server are dedi-

cated to packet processing and communication data structures are exposed to applications

through an asynchronous interface, allowing them to bypass the operating system for most

I/O operations. Kaashoek et al. [48] introduce the notion of server operating systems,

which are a set of abstractions and runtime support for specialized, high-performance

server applications. Although these alternatives for the networking stack implementation

at the server are interesting, the connection management mechanisms studied in this thesis

operate at the protocol level and can be easily integrated with an offloaded or a specialized

implementation of the TCP stack. We believe that the implementation choices for TCP

connection management will continue to have an impact on server throughput and client

12However, the server can also terminate connections in HTTP 1.1, for example, when they are idle for

a long time.
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response times when implemented in dedicated or offloaded packet-processing stacks. As

indicated by Mogul [36], connection-management costs are either unsolved or worsened by

TCP offloading.

Researchers have proposed modifications to the conventional networking stack and

socket API implementations to support differentiated quality of service. These include

novel operating system abstractions [12], new operating system architectures [78], net-

working subsystem improvements [85], and new server architectures [15]. Voigt et al. [85]

describe a prioritized listen queue mechanism that supports different service classes by re-

ordering the listen queue based on the priorities assigned to incoming connections. While

the aggressive connection acceptance strategy used by our user-space server (which drains

the listen queue completely on every accept() call) obviates the effect of any reordering,

TCP stack or web server implementations could split the listen queue into multiple priority

queues [12, 15]. We do not take into account differentiated quality of service in this thesis,

treating all client TCP segments uniformly. That is, we assume that the overload at the

server is caused by clients who have the same priority. Since the connection management

mechanisms discussed in this thesis operate at the protocol level, they can be incorporated

into other networking stack implementations that provide better support for differentiated

service under overload.

Protocol Improvements

Nahum et al. [66] describe optimizations to reduce the per-TCP-connection overhead in

small HTTP exchanges. They propose a modification to system calls that write data to

notify the TCP stack of an impending connection termination to allow the piggybacking of

a FIN on the last data segment. The client TCP stack can also delay sending a SYN/ACK

ACK for 200 ms – within this time window, most HTTP client applications send a data

request, on which the SYN/ACK ACK can then be piggybacked. Similarly, a TCP stack

can delay the acknowledgement of the remote peer’s FIN for 200 ms to allow the piggy-

backing of its own FIN if the application issues a close() call within that time. All of

these optimizations reduce the number of TCP segments required for an HTTP transac-

tion, and improve server throughput by up to 18%. However, these optimizations do not

alleviate server load resulting from the retransmission of TCP connection establishment
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segments or preclude server support for half-closed connections. Hence, they complement

the implementation choices for TCP connection establishment and termination studied in

this thesis. We do note that both abortive connection release as well as our mechanism

for disabling support for half-closed connections at the server reduce the number of TCP

segments required for HTTP transactions.

Balakrishnan et al. [10] present a detailed analysis of TCP behaviour from traces ob-

tained from a busy web server. They conclude that existing TCP loss recovery mechanisms

are not effective in dealing with packet losses arising from short web transfers, and report

that web clients use parallel connections aggressively because throughput is positively cor-

related with the number of connections used. They provide server-side TCP modifications

to address these problems, including an enhanced loss recovery mechanism, and an inte-

grated approach to congestion control that treats simultaneous connections from a client

as a single unit to improve bandwidth sharing across all clients. Congestion control for

established TCP connections is still an area of active research. Congestion control and

loss recovery mechanisms are in effect only while a TCP connection is established. The

mechanisms studied in this thesis take effect before a TCP connection is established and

during its termination.

Following work by Mogul [61], the HTTP 1.1 specification [32] advocates the use of

persistent connections in order to alleviate server load as well as reduce network congestion

arising from the use of a separate TCP connection for every web request. It recommends

that a client application should maintain no more than 2 persistent connections with any

server. Unfortunately, as reported by Balakrishnan et al. [10] and Jamjoom and Shin [45],

current web clients open multiple simultaneous TCP connections in parallel with a server

in order to improve their overall throughput (by obtaining more than their “fair share” of

bandwidth), and reduce the client response time (since many web servers do not currently

support pipelining). The average number of requests per connection ranges between 1.2 to

2.7 in popular browsers [45], which indicates that current browsers do not issue too many

requests on a single HTTP 1.1 connection. Thus, servers have to handle significantly more

TCP connection establishment and termination attempts than envisioned when HTTP 1.1

was introduced.

TCP for Transactions (known as T/TCP) [16, 81] is a backwards-compatible extension
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of TCP for efficient transaction (request-response) oriented service. By using a monoton-

ically increasing connection count (CC) value in the options field of a TCP segment and

caching the last CC used at both the end-points, T/TCP allows the three-way handshake

mechanism to be bypassed while establishing connections. That is, a minimal T/TCP

request-response sequence requires of just 3 TCP segments – (i) a single segment from the

client containing the SYN, FIN, CC and the data request, (ii) the server acknowledgement

of the SYN, FIN and CC, which also includes its data response and its CC, and (iii) a final

segment from the client acknowledging that it has received the server’s data and FIN. Thus,

T/TCP allows application-layer protocols such as HTTP to connect to an end-point, send

data and close the connection using a TCP single segment, without resorting to HTTP

1.1-style persistent connections. The CC option in T/TCP also allows for the truncation

of the TIME WAIT TCP state. Unfortunately, T/TCP requires modifications to the TCP

stack at both the end-points and has not seen widespread deployment in the Internet. The

introduction of persistent connections in HTTP 1.1 as well as vulnerability to SYN flood

denial of service attacks due to a lack of compatibility with SYN cookies have inhibited

the widespread deployment of T/TCP. The lack of deployment of T/TCP implies that the

overhead of TCP connection establishment and termination is still high in current Internet

servers.

2.2.3 Addressing Server Overload during Flash Crowds

Many research efforts and commercial products implement admission control to improve

server performance during overload conditions such as flash crowds. Cherkasova et al. [23]

present a session-based admission control mechanism to ensure longer sessions are com-

pleted during overload. Welsh et al. [89] describe adaptive admission control techniques

to improve client response time in the Staged Event Driven Architecture [88]. Many web

servers return a “server busy” message if their application-level queues get full [40]. Bhatti

and Friedrich [15] describe a quality of service aware admission control mechanism that al-

lows an overloaded web server to focus on premium requests by dropping all other requests.

Unfortunately, all of these techniques perform admission control at the application-level.

That is, a client connection attempt requires copying and processing overhead in the driver,

the networking stack, and in some cases in the application, before it is dropped. Hence,
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these mechanisms often fail to improve the performance of overload servers [85, 40].

More sophisticated web systems use a server farm with a node at the front that performs

admission control. Such a front-end node13 can be a (hardware or software based) load

balancer, Layer-4 or Layer-7 switch, or traffic shaper. A number of web sites that face

overload due to flash crowds do not use a sophisticated web-farm architecture because

their normal load can be easily handled by a single web server. Additionally, most web-

farm architectures simply shift the burden of addressing overload to the front-end node.

The TCP connection management mechanisms examined in this thesis can be deployed

at either an overloaded front-end node or an individual web server to enhance system

throughput and reduce client response times.

Voigt et al. [85] describe a kernel-level mechanism called TCP SYN policing to allow

admission control and service differentiation when the server is overloaded. SYN policing

controls the acceptance rate of new connections (i.e., SYN segments) as well as the max-

imum number of concurrent connections based on connection attributes (e.g., the client

IP address) by using a token bucket based policer. SYN segments are dropped silently

by the policer. In fact, the authors rule out the possibility of sending a RST when a

SYN is dropped because it “incurs unnecessary extra overhead” and because some client

TCP stacks (particularly, those on Windows) do not follow the recommendations of RFC

793 and immediately send a new SYN after receiving a RST for a previous SYN. In this

thesis, we examine this assertion and evaluate the impact of both silent and explicit (i.e.,

accompanied with a RST) SYN drops on server throughput and response time with RFC

793-compliant as well as Windows-like client TCP stacks. We demonstrate that sending

a RST whenever a SYN is dropped reduces client response times by two orders of magni-

tude. While it increases server throughput with RFC 793-compliant TCP stacks, sending

a RST in response to a SYN fails to improve throughput with Windows-like client TCP

stacks, corroborating the hypothesis of Voigt et al. To counter this problem, we describe

a new connection establishment mechanism in this thesis that prevents the retransmission

of connection attempts, even in Windows client TCP stacks. This mechanism can be used

to enhance the effectiveness of SYN policing.

13While it is possible to use multiple front-ends with techniques such as round-robin DNS, we discuss a

single front-end scenario without loss of generality.
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Iyer et al. [40] describe an overload control mechanism that drops incoming requests at

the network card. They use a user-space monitoring application that instructs an intelligent

network card to drop TCP connection attempts from clients upon detecting overload. In

this thesis, we describe an early-discard mechanism that allows connection attempts from

clients to be dropped at any stage of the networking stack in response to queue drops,

without requiring additional user-space monitoring. Unfortunately, we do not have access

to a network card that can selectively drop packets. We do believe that our early-discard

mechanism can be used to drop packets directly on such an intelligent network card. Iyer

et al. also point out that it is currently unclear as to what protocol changes are required

in the implementation of TCP and HTTP to allow efficient overload control in Internet

servers. In this thesis, we explore this design space at the TCP connection establishment

and termination stages.

End-systems or (intermediate network nodes) can apply techniques such as Active

Queue Management (e.g., Random Early Drop) [33] or adaptive control [43] to imple-

ment admission control during TCP connection establishment. Some of the connection

establishment mechanisms proposed and studied in this thesis can provide better system

throughput and response time by explicitly notifying clients who are not admitted at an

overloaded server. These mechanisms can be used in conjunction with techniques that ac-

tually effect client admission. Voigt et al. [85] point out a common shortcoming in predictive

admission control techniques – it is difficult to arrive at optimal control parameters (e.g.,

load-shedding threshold) that do not under-utilize the server. In contrast to predictive

admission control, the mechanisms studied in this thesis rely on queue drops when SYN

or SYN/ACK ACK segments are received to implement admission control. That is, they

use the SYN and the listen queues in the networking stack to perform reactive admission

control only when the server is overloaded.

Mahajan et al. [56] introduced the notion of an aggregate to describe the network

congestion and high bandwidth utilization resulting from an increase in traffic due to

denial of service attacks and flash crowds. They focus on protecting the network from

congestion resulting from aggregates by proposing two mechanisms – a local aggregate

identification and rate-control algorithm, and a push back mechanism to allow a router

to request adjacent upstream routers to perform rate limiting on links responsible for the
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aggregate. In this thesis, we focus on alleviating end-system (server) load during flash

crowds. Our work complements efforts to protect network links during flash crowds. In

fact, some of the connection management mechanisms discussed in this thesis eliminate

the introduction of unnecessary packets into the network during flash crowds.

Jamjoom and Shin [45] describe a mechanism called persistent dropping designed to

reduce the client delay during a flash crowd. Persistent dropping randomly chooses a

portion of SYN segments received from the clients (based on a target reduction rate), and

systematically drops them on every retransmission. That is, under overload, a subset of new

client SYNs received are dropped with a non-zero probability and all retransmitted client

SYNs are always dropped. Persistent dropping relies on techniques to distinguish between

new and retransmitted SYN segments and requires the server TCP stack to either maintain

additional state information about clients14 or compromise on fairness by discriminating

against a fixed set of clients for a length of time. Persistent dropping can be deployed

by either routers or end-systems. While it does not seek to improve server (end-system)

throughput during flash crowds, persistent dropping does reduce the mean client response

times by up to 60%. In this thesis, we examine alternatives to persistent dropping, which

allow the server to prevent the retransmission of TCP connection establishment segments

by clients, without requiring any server-side state and forgoing fairness. We describe a

connection establishment mechanism that is not only as effective as persistent dropping in

reducing the client response time, it also improves the throughput of an overloaded server.

Jamjoom and Shin propose an ICMP extension called Reject message [44] to improve

a server’s ability to control the rate of incoming TCP connections. An ICMP Reject mes-

sage can be sent to clients whose SYN segments are dropped. It contains information to

notify a client to abort a connection attempt or to modify its next SYN retransmission

timeout. Jamjoom and Shin do not provide an evaluation of this mechanism, in particular,

its implication on the throughput and the response time of an overloaded server is unclear.

Additionally, before it can take effect, the Reject message extension requires modifications

to the ICMP implementation at client networking stacks. To our knowledge, the Reject

message extension is not deployed in any production networking stacks. In this thesis, we

14Note that storing client state for incoming SYN segments increases server vulnerability to SYN flood

denial of service attacks.
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study TCP connection establishment mechanisms that can be implemented on server TCP

stacks without requiring any extensions to existing Internet protocols, modifications to

currently deployed TCP stacks at the clients, or changes to client-side or server-side appli-

cations. We also provide a detailed evaluation of the impact of several different connection

establishment mechanisms, some of which allow the server to notify clients to abort their

connection attempts, on server throughput and client response times during overload. The

results presented in this thesis do make a strong case for developing a standard mechanism

at the client-side socket API to inform client applications of overload at the server (e.g.,

through an error code such as ESERVEROVRLD) upon receiving a notification from the server.

Solutions such as HTTP proxy caching often fail to alleviate load at the server during

flash crowds because of the geographical and organizational dispersion of clients [68] and

because current cache consistency mechanisms fail to significantly reduce the number of

requests that a web server has to handle during periods of extreme user interest [6]. Content

Distribution Networks (CDNs) like Akamai [3] provide the infrastructure to ensure good

performance and high availability during flash crowds15. However, most web sites have

enough capacity to handle their normal load and experience flash crowds infrequently. As

reported by Ari et al. [5], capacity added to handle flash crowds is more than 82% under-

utilized during normal loads, hence, over-provisioning is not a cost-effective solution. It is

also unlikely that all web sites can afford the services of a commercial CDN. This thesis

studies mechanisms to improve server throughput at such web sites during flash crowds.

Padmanabhan and Sripanidkulchai [68] propose Cooperative Networking (CoopNet), a

peer-to-peer caching solution, where end-hosts cooperate to improve performance perceived

by all. As with the pseudo-serving approach introduced by Kong and Ghosal [51], CoopNet

addresses flash crowds by utilizing clients that have already downloaded content, to serve

that content to other clients, thereby alleviating load at the server. This cooperation

among clients is invoked only for the duration of a flash crowd, and thus complements

the traditional client-server communication. Backslash [79] and Coral cache [35] refine the

peer-to-peer content distribution approach by using a distributed hash table overlay for

15Incidentally, in the aftermath of the September 11th terrorist attacks, Akamai saw traffic jump 350%

above its normal load [25], suggesting that flash crowds can pose a threat to even well-provisioned distri-

bution networks.
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automatically replicating content of volunteer sites to alleviate load at the origin server.

While pseudo-serving and CoopNet require modifications to existing client applications,

Backslash and Coral leverage DNS redirection to work with existing web browsers. Note

that all of these peer-to-peer systems require web sites to participate before a flash crowd

occurs. Many web sites may not use peer-to-peer solutions for economic reasons (e.g.,

loss of ad revenue) or due to lack of awareness. Unauthorized mirroring of content may

constitute a breach of copyright and might inhibit the widespread deployment of these

solutions. In this thesis, we focus on trying to improve server throughput and response

time in the traditional client-server communication model that is currently pervasive in

the Internet. The connection management mechanisms discussed in this thesis can also

improve the performance of overloaded content distribution networks.

Both flash crowds and denial of service attacks are characterized by a large surge in

traffic and result in overload at the server. While flash crowds are caused by legitimate

clients, who seek “interesting” content at a web site, denial of service attacks are caused

by malicious attackers, and represent “an explicit attempt by attackers to prevent legit-

imate users of a service from using that service” [21]. A server should handle as many

requests as possible during flash crowds, but need not handle requests originating from

denial of service attacks. Recent work has presented techniques to distinguish between

flash crowds and denial of service attacks. Jung et al. [47] study the characteristics of flash

crowds and denial of service attacks, and propose a network-aware clustering mechanism

to identify and drop packets (including TCP SYN segments) from IP addresses that are

likely to represent malicious clients. Kandula et al. [49] present a kernel extension called

Kill-Bots to protect servers from denial of service attacks that masquerade as flash crowds.

Kill-Bots uses graphical tests16 to identify and block IP addresses of the attack machines.

In addition to authentication, the Kill-Bots work also examines admission control in the

context of malicious clients. Although Kill-Bots modifies the TCP stack to avoid stor-

ing any connection state related to unauthenticated clients, the authentication procedure

is implemented after a TCP connection is established17. In this thesis, we demonstrate

16Graphical puzzles called CAPTCHAs are also used by free web mail providers for identifying human

users while creating accounts.
17 Note that two TCP connections need to be established for every new HTTP request from an unau-

thenticated legitimate client in Kill-Bots, thereby increasing the connection management overhead.
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that some implementation choices for TCP connection establishment can improve server

throughput during overload. While our evaluation focuses on flash crowds (i.e., legitimate

requests), the mechanisms examined can be used along with techniques such as network-

aware clustering or Kill-Bots for admission control, authentication, or for rejecting requests

from malicious clients during denial of service attacks.

In the next chapter, we describe the experimental environment and the methodology

used in this thesis.
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Chapter 3

Experimental Environment,

Workloads, and Methodology

In this chapter we describe the hardware and software environment, including the web

servers, used in our evaluation. We also discuss the workloads, the overload model, and

the methodology used in this thesis to evaluate different TCP connection management

mechanisms.

3.1 Experimental Environment

3.1.1 Web Servers

We use web (HTTP) servers to illustrate the impact that implementation choices for TCP

connection management can have on server throughput and response time under over-

load. Web servers form the front-end of many Internet applications and are likely to

bear the brunt of heavy traffic during flash crowds. Note that the results of the connec-

tion management mechanisms studied in this thesis can also apply to other TCP-based,

connection-oriented Internet servers which can get overloaded, such as LDAP servers.

We use two different web servers in our evaluation – the µserver, an event-driven,

user-space web server, and TUX, a kernel-space web server.
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The µserver

We use the µserver [52, 19] to represent current high-performance, user-space web servers.

The µserver is a single process event-driven web server designed to facilitate research on

the impact of operating system design and implementation on server performance and

scalability.

While the µserver can support multiple event notification mechanisms, in our experi-

ments we use the select() system call to obtain events from the operating system. We

also use the Accept-INF [19] option while accepting new connections. That is, whenever

select() indicates that an accept() call can complete without blocking, the µserver keeps

issuing accept() calls in a tight loop until one of them fails, thereby draining the listen

queue entirely. Recent work [19, 77, 37] has demonstrated that a select()-based µserver

using the Accept-INF option can withstand sustained overload and yield throughput that

rivals that provided by specialized, in-kernel web servers.

We use the µserver in our experiments because it provides better performance than

existing thread or process-per-connection, user-space web servers such as Apache. In fact,

our preliminary experiments showed that the throughput with Apache was more than five

times lower than that obtained with the µserver1. Apache uses multiple threads or pro-

cesses, each of which accepts a connection and processes it to completion before accepting

the next connection. We expect that the TCP connection management mechanisms stud-

ied in this thesis will have an even greater impact on the performance of servers like Apache

that are not as aggressive as the µserver in accepting new connections.

TUX

We use the in-kernel TUX [39, 55] web server (also called the Redhat Content Accelerator)

in some of our experiments. TUX has been reported to be the fastest web server on

Linux [46]. By running in the kernel, TUX eliminates the cost of event notification (or

scheduling), kernel boundary crossings, and redundant data buffering, which traditional

user-space servers incur. More importantly, TUX has direct access to kernel-level data

structures such as the server socket’s listen queue, and is closely integrated with the kernel’s

1We used the one-packet workload for this evaluation.

31



networking stack and file system cache. This allows it to implement several optimizations

such as zero-copy request parsing, zero-copy disk reads, and zero-copy network writes.

Note that we use the Accept-1 [19] option added to TUX by Brecht et al. [19] in order to

maintain a balance between accepting new connections and completing work on existing

connections. In this configuration, TUX accepts a single connection from the listen queue

and works on it until it is completed or until it blocks. This is different than the default

approach of draining the listen queue completely and then working on all the accepted

connections. Pariag [72] and Brecht et al. [19] have demonstrated that with the Accept-

1 option, TUX can provide higher throughput and lower response time compared to its

default connection acceptance mechanism.

We use TUX in our experiments to demonstrate that implementation choices for TCP

connection management can have a significant impact on the performance of an over-

loaded server, even if the server has been streamlined and optimized to perform a single

task efficiently. In particular, we believe that some of the TCP connection establishment

mechanisms discussed in this thesis can be deployed in Layer 4 or 7 switches, which per-

form admission control for a web server farm, to improve their throughput and reduce client

response times during flash crowds. TUX provides an approximation of the potential ef-

fectiveness of these mechanisms in improving the throughput and reducing the response

time in such specialized switches.

Server Configuration

As described earlier, we use the select-based µserver (version 0.5.1-pre-03) with the

Accept-INF option. While we use the zero-copy sendfile() system call for the SPECweb99-

like workloads in the µserver, for the one-packet workload we use the writev() system

call to transmit data as well as HTTP headers from an application-level cache because

it results in better performance due to the absence of setsockopt() calls to cork and

uncork a socket [71, 66]. We use TUX (kernel module version 2) with a single thread,

as recommended in its users manual [39], enhanced with the Accept-1 option as described

earlier.

Both the µserver and TUX are configured to use a maximum of 15,000 simultaneous

connections, however, we never reach this maximum limit. Logging is disabled on both the
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servers to prevent disk writes from confounding our results. Note that in this thesis we

focus on using the µserver and TUX to evaluate several different implementation choices

for TCP connection management. Unlike earlier work [19, 72, 77], we do not seek to present

a direct comparison between the two web servers.

SYN and Listen Queue Sizes

The size of the SYN queue can be configured through the net.ipv4.tcp max syn backlog

sysctl (a sysctl is an administrator-configurable parameter in Linux). Its default size is

1024 for systems with more than 256 MB of memory, 128 for those systems with less

than 32 MB of memory, and 256 otherwise. The size of the listen queue is determined by

the value specified for the “backlog” parameter to the listen system call. Historically,

Internet servers have used a backlog value between 5 and 8 [80]. Recent TCP stacks allow

applications to use a larger backlog value to buffer more connections between accept()

calls. The Linux 2.4 TCP stack silently limits the backlog value specified by the application

to 128. The Linux 2.6 stack allows this maximum backlog value to be modified through

the net.core.somaxconn sysctl, but continues to use a default maximum backlog of 128.

Thus, the de facto listen queue size in Linux TCP stacks is at most 1282. The listen queue

size for the in-kernel TUX web server can be set through the net.tux.max backlog sysctl,

which defaults to 2048.

For our experiments, we use the default values for the SYN queue (1024) and the listen

queue (128 for µserver, 2048 for TUX) because of the large number of existing production

systems that operate with these limits. While it is possible that using different values

for these queues might influence server throughput during short bursts of high load, for

the persistent overload scenarios (such as flash crowds) that we study in this thesis, it is

sufficient to note that these queues are of a fixed size and will overflow during sustained

periods of high load. Note that Arlitt and Williamson have reported that the size of the

listen queue does not have a significant impact on server performance under high load [7].

We also conducted some preliminary experiments under persistent overload with different

queue sizes and found no qualitative differences in server throughput obtained with the

different connection establishment mechanisms studied in this thesis. As expected from

2Unless configured otherwise.
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queueing theory, using a larger queue does increase the average client response time.

3.1.2 Machine and Network Setup

All experiments are conducted in an environment consisting of eight client machines and

one server machine. We use a 32-bit, 2-way 2.4 GHz Intel Xeon (x86) server in most of

our experiments. This machine contains 8 KB of L1 cache, 512 KB of L2 cache, 1 GB

of RAM, and two Intel e1000 gigabit Ethernet cards. The client machines are identical

to the server, and are connected to it through a full-duplex, gigabit Ethernet switch. We

partition the clients into two different subnets to communicate with the server on different

network cards. That is, the first four clients are linked to the server’s first network card,

while the remaining four clients communicate with the server using a different subnet on

its second network card. In this thesis, we focus on evaluating server performance under

the assumption that the upstream and downstream bandwidth of the server’s network link

is not the bottleneck during overload. Hence, we have configured our experimental setup

to ensure that the network bandwidth is not the bottleneck in any of our experiments.

Our server runs a custom Linux 2.4.22 kernel in uni-processor mode. This kernel is

a vanilla 2.4.22 kernel with its TCP stack modified to support the different connection

establishment and termination mechanisms studied in this thesis. We use a 2.4 Linux

kernel because of difficulties (i.e., kernel panics and server bugs) running TUX with the

newer 2.6 kernel. Note that the TCP connection management code that we are concerned

with in this thesis has not changed between the 2.4.22 kernel and the latest 2.6 kernel

(2.6.11.6). The results of the different connection management mechanisms on a 2.6 kernel

will be qualitatively similar to those presented in this thesis. To demonstrate this, we

show some experimental results using a 2.6.11 kernel in Section 5.5. All of our clients run

a Redhat 9.0 distribution with its 2.4.20-8 Linux kernel.

For our experiments in Section 5.5, we use an HP rx2600 server with a different processor

architecture – a 64-bit, 2-way 900 MHz Itanium 2 (ia-64). This machine has 32 KB of L1

cache, 256 KB of L2 cache, 1.5 MB of L3 cache, 4 GB of RAM, and two Intel e1000

gigabit Ethernet cards. The rest of the client and network setup used for the Itanium 2

experiments remains unchanged.

We do not modify the default values for other networking-related kernel parameters
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such as send and receive socket buffer sizes, TCP maximum retransmission limits, trans-

mit queue lengths, or driver-specific parameters on our servers (or our clients). A large

number of production server machines run “out of the box” without modifying the default

configuration. Running our experiments in the same fashion increases the applicability of

our results. More importantly, changing the default values (without having a good rea-

son to do so) unnecessarily increases the parameter space that must be explored in the

experiments.

We have instrumented the TCP stack in our server kernels to report detailed statis-

tics during connection establishment and termination. The Linux kernel only tracks the

number of failed connection attempts (total queue drops), and the number of listen queue

overflows (ListenQOverflow-induced queue drops). We added fine-grained counters to track

all the causes of queue drops, including those due to SynQ3/4Full and ListenQFullAtSyn3.

Although these counters are not tracked by the Linux kernel by default, the overhead added

by our additions is minimal. These detailed statistics are available through the standard

kernel SNMP interface and can be obtained through programs such as netstat.

3.2 Workloads and Overload Model

We use two different workloads to evaluate the impact of TCP connection management

mechanisms on server performance. Note that both of our workloads involve requests for

static files that can be served completely from the in-memory file system cache. During

a flash crowd, clients are typically interested in a very small subset of a web site [25, 87],

which is cached by the file system after the first few requests. To alleviate server load during

flash crowds, web administrators often replace pages that require the generation of dynamic

content with static pages [25, 68]. Our first workload is inspired by a real-world flash crowd,

while our second workload is based on the popular SPECweb99 benchmark [26]. In this

section, in addition to discussing both these workloads in detail, we will also describe our

workload generator (which is able to generate overload conditions at the server using a few

client machines), and our overload model.

3All rules that cause queue drops are described in Section 2.1.1
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3.2.1 One-packet Workload

Our first workload is motivated by real-world flash crowd events [25, 68]. Media sites

such as CNN.com and MSNBC were subjected to crippling overload immediately after the

September 11th terrorist attacks [25], pushing site availability down to 0% and response

time to over 47 seconds [38]. The staff at CNN.com responded by replacing their main

page with a small, text-only page, sized to allow the server reply (including the headers)

to fit into a single unfragmented IP packet. We devised our one-packet workload to mimic

the load experienced by CNN.com on September 11th. Each client requests the same one-

packet file using an HTTP 1.1 connection. Note that every client connection consists of a

single request.

We believe that the one-packet workload also highlights other aspects of load ex-

perienced by real-world web servers that are typically ignored by benchmarks such as

SPECweb99. Nahum [65] compares the characteristics of SPECweb99 with data traces

gathered from several real-world web server logs. His analysis points out some important

shortcomings of the SPECweb99 benchmark. In particular, SPECweb99 does not take into

account conditional GET requests, it underestimates the number of HTTP 1.0 requests,

and overestimates the average file transfer size.

A conditional GET request contains an “If-Modified-Since” header. If the requested

file has not been modified since the value specified in the header, the server returns an

HTTP 304 Not Modified header with zero bytes of (file) data. This response can easily

fit into a single IP packet. Nahum reports that up to 28% of all requests in some server

traces consist of single packet transfers due to conditional GET requests. He also reports

that the proportion of HTTP 1.0 connections used in SPECweb99, namely, 30%, is much

smaller than that seen in his traces. HTTP 1.1, standardized in 1997, added support for

persistent connections, where multiple requests can be made over a single TCP connection.

However, even in some of Nahum’s traces obtained in 2000 and 2001, up to 50% of the

requests originated from a HTTP 1.0 connection. Finally, the median transfer size in these

traces is much smaller than that used in SPECweb99 and is small enough to fit in a single

IP packet.

Thus, our one-packet workload is derived from measures taken by CNN.com to address

a flash crowd. Having the server deliver a single small file from its file system cache is
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perhaps the best way to serve the most clients under extreme overload. It also incorporates

a number of characteristics reported by Nahum in real-world web traces, which are ignored

by popular web benchmarks. Past work characterizing flash crowds [47] has reported that

the increase in server traffic occurs largely because of an increase in the number of clients,

which causes the number of TCP connections that a server has to handle to escalate.

The connection-oriented nature of the one-packet workload, which arises from using a

single request per HTTP connection, stresses the server’s networking subsystem, thereby

highlighting the impact of the implementation choices for TCP connection management.

3.2.2 SPECweb99-like Workload

The SPECweb99 benchmark [26] has become the de facto standard for evaluating web

server performance [65]. Developed by the Standard Performance Evaluation Corporation

(SPEC), its workload model is based on server logs taken from several popular Internet

servers and some smaller web sites. The benchmark provides a workload generator that can

generate static as well as dynamic requests. The later constitute 30% of all requests [27].

As described in Section 3.2.1, during flash crowds, web servers have to handle primarily

a static, in-memory workload. To ensure that our workload remains representative of real-

world overload scenarios, we carefully constructed an HTTP trace that mimics the static

portion of the SPECweb99 workload. We use one directory4 from the SPECweb99 file set,

which contains 36 files and occupies 4.8 MB. The entire file set can be easily cached and

no disk I/O is required once the cache has been populated. Our trace contains HTTP 1.1

connections with one or more requests per connection, where each connection represents an

HTTP session. The trace recreates the file classes and the Zipf-distribution access patterns

that are required by the SPECweb99 specifications. We refer to the resulting workload as

SPECweb99-like.

30% of connections used in SPECweb99 are HTTP 1.0, and the number of requests

per connection for the remaining 70% of HTTP 1.1 connections range from 5 to 15, with

an average of 7.2. As described in Section 2.2.2, many popular web browsers use parallel

connections for their requests in order to improve client throughput and minimize the

4Note that all directories in the SPECweb99 file set are identical with respect to the structure and sizes

of their files.
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response time. This is in contrast to using a single sequential persistent connection to

fetch embedded objects modelled in SPECweb99. Jamjoom and Shin [45] report that the

average number of requests per connection issued in current browsers is between 1.2 and

2.7. In particular, Internet Explorer, by far the most popular web browser today [8], uses

an average of 2.7 requests per connection. This is significantly lower than the average of

7.2 requests per connection used in SPECweb99.

Thus, SPECweb99 underestimates the rate of new connection attempts seen at busy

web servers. To address this problem, we use three different values for average requests

per connection with our SPECweb99-like workload, namely, 1.0, 2.625, and 7.2. That is,

we use three different SPECweb99-like workloads each of which follow the file classes and

access patterns specified in SPECweb99, but use sessions that on average have a single

request per connection, 2.62 requests per connection and 7.2 requests per connection. Like

the one-packet workload, the single-request-per-connection SPECweb99-like workload is

connection-oriented, and can be seen as an extension of the one-packet workload that uses

different file sizes in its requests. The mean size of files requested in all of our SPECweb99-

like workloads is around 15 KB. The 2.62-requests-per-connection SPECweb99-like work-

load seeks to be representative of the behaviour of current web browsers, while the 7.2-

requests-per-connection SPECweb99-like workload meets most6 of the SPECweb99 speci-

fications for static content.

We use the one-packet workload for most of our experiments in Chapters 4 and 5

because its connection-oriented nature highlights the performance impact of the different

TCP connection management mechanisms. We also believe that it is more representative

of the loads handled by web servers during flash crowds, where most of the clients are

interested in a single “hot” page (e.g., a breaking news story or a live game score), and

the server administrators have taken steps to ensure that all the “hot” content is delivered

as quickly and efficiently as possible. We examine the impact of the SPECweb99-like

workloads on the implementation choices for TCP connection management in Section 5.1.

5With our SPECweb99-like trace generator, an average of 2.62 requests per connection was the closest

that we could come to the average of 2.7 requests per connection used in Internet Explorer.
6We use HTTP 1.1 for connections consisting of a single request instead of HTTP 1.0 as specified in

SPECweb99 in order to ensure that all connection terminations are initiated by the clients.
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3.2.3 Workload Generator

The workload generator provided with the SPECweb99 benchmark operates in a closed

loop. That is, each client modelled in the generator will only send a new request once the

server has replied to its previous request. Banga and Druschel [11] demonstrate that such

a naive load generation scheme allows the rate of requests made by the generator to be

throttled by the server. Even though more than one client can be run on a machine, many

such clients that are blocked waiting for a response from the server can cause that machine

to run out of resources such as available ephemeral TCP ports or file descriptors. Without

resources at the client machine, additional connections cannot be attempted, hence, a

closed-loop workload generator is unable to maintain sustained load that can exceed the

capacity of the server. While it is possible to use a large number of client machines to

create overload conditions, Banga and Druschel show that several thousand closed-loop

generators (and hence client machines) would be needed to generate sustained overload.

We address the inability of the SPECweb99 generator to produce overload at the

server by using httperf [64], an open-loop workload generator in conjunction with our

SPECweb99-like traces. Open-loop generators such as httperf induce overload by imple-

menting connection timeouts. Every time a connection to the server is attempted a timer

is started. If the timer expires before a connection can be established, the connection

is aborted so that a new one can be attempted in its place. If the connection does get

established, the timer is restarted for every request issued and the connection is closed on

a timeout. A connection is deemed successful if all of its requests are served without a

timeout. By using an application-level timeout, httperf is able to bound the resources

required by a client. This ensures that the server receives a continuous rate of requests

which is independent of its reply rate. The timeout used in httperf is similar to the be-

haviour of some web users (or even browsers) who give up on a connection if they do not

receive a response from the server within a reasonable amount of time.

By running in an event-driven fashion, only a single copy of httperf is needed per

client CPU to generate sustained overload. In addition to the throughput and response

time statistics for successful clients, httperf tracks the number of timed out and server-

aborted7 connections as errors. While it is possible that there are other causes for errors

7Connections for which a RST is received from the server, either prior to or after connection establish-
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measured at the client (e.g., running out of ephemeral ports) we have carefully monitored

our tests to ensure that all httperf errors are due to timeouts or connections aborted by

the server.

We use a 10 second timeout in all of our experiments. With our Linux clients, this allows

a SYN segment to be retransmitted at most twice when no response is received from the

server, before a connection is aborted by the client. A 10 second timeout is chosen as an

approximation of how long a user might be willing to wait, but more importantly it allows

our clients to mimic the behaviour of TCP stacks in Windows 2000 and XP8, which also

retransmit a SYN at most twice. We examine the impact of using different timeouts in

Section 5.3.

3.2.4 Overload Model

We use a persistent overload9 model that simulates flash crowds in our evaluation of dif-

ferent connection management mechanisms. Under persistent overload, a server has to

try to handle loads well in excess of its capacity for an extended period of time. That is,

the duration of sustained overload at the server is much longer than that of any interim

periods of light load. In contrast, a bursty traffic model assumes that overload conditions

are transient, with short-lived bursts of heavy traffic (overload bursts) interrupting pro-

tracted periods of light load at the server. Figure 3.1 illustrates the difference between

these overload models.

Our persistent overload model assumes that a server has to handle sustained overload

for a length of time measured in minutes or hours. This is not an unreasonable assumption –

past flash crowds have reported prolonged periods of overload at the server, which last for

many hours, sometimes even for a day [25, 68, 87, 47]. Accordingly, flash crowd simulation

models [5] often assume a rapid spike in load at the server at the beginning of the flash

crowd, a continuous stream of incoming requests that saturate the server for a protracted

period, followed by a sudden drop in load that marks the end of the flash crowd.

Persistent overload does not imply that there is only a single long-lasting period of

ment.
8The TCP implementation used by a majority of web clients today [8].
9The term “persistent overload” is due to Mahajan et al. [56].
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(a) Persistent Overload (b) Bursty Traffic

Figure 3.1: Comparison of Overload Models

overload at the server. It is possible to have multiple periods of overload – similar to the

multiple shock waves model described by Ari et al. [5] – as long as their duration is much

longer than the duration of the interim periods of light load. Note that persistent overload

represents flash crowds, it does not imply that the server is perpetually under overload.

An “always-overloaded” web site indicates that it is time for the administrators to upgrade

server capacity. Our persistent overload model applies to those web sites which normally

have enough capacity to handle the load received, but end up operating near or past their

saturation point due to a temporary surge in the popularity of the content that they are

serving.

The overload model can influence the results of some TCP connection establishment

mechanisms. Consider a mechanism which notifies client TCP stacks to stop the retrans-

mission of connection attempts whenever queue drops occur. Such a mechanism can lead

to poor aggregate server throughput if the duration of overload is short compared to the

duration of light load because most of the client retransmissions might be serviced during

the periods of light load10. On the other hand, as we will demonstrate in this thesis, if over-

load conditions last long enough so that most of the client TCP retransmission attempts

occur while the server is still under overload, such a mechanism can actually increase server

throughput. Note the distinction between retransmissions at the TCP layer and the ap-

plication layer. The former are due to the semantics of TCP, where segments that are not

10Note however, that as discussed in Section 5.2, it might be possible to avoid queue drops during short

bursts altogether by sizing the SYN and listen queues appropriately.
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acknowledged by the peer are retransmitted. Higher layer protocols are not aware of these

retransmissions. Application-level retries are specifically initiated by the client-side appli-

cation or by the end user. As described in Section 3.3, we treat application-level retries in

the same way as new connection establishment attempts.

Thus, we use the persistent overload model in most of our experiments because it

is representative of the load handled by servers during flash crowds. Note that unless

otherwise qualified, we use the term “overload” to mean persistent overload. In Section 5.2,

we discuss the impact of bursty traffic on server performance with different connection

establishment mechanisms.

3.3 Methodology

In each of our experiments we evaluate server performance with a particular connection

establishment and/or termination mechanism. An experiment consists of a series of data

points, where each data point corresponds to a particular request rate. For each data point,

we run httperf for two minutes, during which it generates requests on a steady basis at

the specified rate. The actual rate achieved by httperf depends on how quickly it can

recycle resources such as ports and file descriptors to generate new requests. While we

always report the target request rate (denoted requests/sec) specified to httperf in our

evaluation, at very high loads there can be a slight (less than 5%) difference in the target

rate and the request rate actually achieved by httperf, especially for those connection

establishment mechanisms that require a large number of connection attempts to be active

for the duration of the timeout (e.g., default). For the one-packet (as well as the single

request-per-connection SPECweb99-like) workload, the request rate equals the rate of new

connection attempts.

Note that httperf does not enforce application-level retries directly. The load gener-

ation model in httperf assumes that no immediate application-level retries are initiated

upon a connection failure, either on an explicit notification from the server or on a (applica-

tion) timeout. This assumption ensures that the rate of requests generated is independent

of the connection establishment mechanism used at the server. We account for application-

level retries (e.g., those inititated by a user hitting the “Reload” button in a web browser)
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by using a higher request rate. That is, the requests generated at a particular rate rep-

resent not only maiden requests from new clients, but also retried attempts from those

clients that did not get a response for their initial request.

Two minutes provide sufficient time for the server to achieve steady state execution.

We have observed that running a data point for longer than two minutes did not alter

the measured results, but only prolonged the duration of the experiment. We use a two

minute idle period between consecutive data points, which allows TCP sockets to clear

the TIME WAIT state before the next data point is run. Before running an experiment,

all non-essential services and daemons such as cron and sendmail are terminated on the

server. We also ensure that we have exclusive access to the client and server machines as

well as the network during the experiments to prevent external factors from confounding

the results.

We primarily use the following metrics in our evaluation of server performance.

1. Server throughput (replies/sec) – the mean number of replies per second delivered

by the server, measured at the clients.

2. Client response time – the mean response time measured at the clients for successful

connections. It includes the connection establishment time as well as the data transfer

time.

Additionally, we use the following metrics to support our analysis of throughput and

response time results.

1. Queue drop rate (qdrops/sec) – the number of connection establishment attempts

that are dropped at the server TCP stack, reported on a per-second basis.

2. Error rate (errors/sec) – the number of failed (i.e., aborted by the server or timed

out by the client application) connections, reported on a per-second basis.

For our primary metrics, server throughput and client response time, we compute and

report the 95% confidence intervals based on the statistics provided by httperf. We do not

compute confidence intervals for our supporting metrics, the error and queue drop rates,

which are simple counts obtained for each request rate. Obtaining the confidence intervals
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for these metrics would require each experiment to be run multiple times, this significantly

increases the duration of our evaluation but does not insure additional insight. Note that

for workloads using a single request per connection (e.g., the one-packet workload), the sum

of the server throughput (reply rate) and the error rate equals the request rate achieved

by httperf.

The results of each experiment are depicted on a graph where the x-axis represents

the request rate and the y-axis displays one of the performance metrics. While discussing

the results of our experiments, we focus our attention on server behaviour after it has

reached its peak capacity (i.e., the saturation point). All of the connection management

mechanisms discussed in this thesis come into play only when the server is overloaded, in

particular, only when queue drops occur at the server. They do not affect server throughput

or client response times during periods of light load.

In the next chapter, we study the impact of TCP connection establishment and ter-

mination mechanisms on server throughput and client response time using the one-packet

workload.
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Chapter 4

Impact of TCP Connection

Management on Overload Server

Performance

In this chapter, we show that implementation choices for TCP connection management,

in particular TCP connection establishment and TCP connection termination, can have

a significant impact on an overloaded server’s throughput and response time. Figure 4.1

outlines the road map of the different connection management mechanisms investigated

in this chapter1. In Section 4.1, we point out the shortcomings in the existing connection

establishment mechanism implemented in Linux (as well as some UNIX TCP stacks), dis-

cuss alternative solutions, and evaluate them. The connection establishment mechanisms

studied can be categorized based on the stage at which they operate in the three-way

handshake. We examine two alternatives at the SYN stage and two alternatives at the

ACK stage, as shown in Figure 4.1.

We also evaluate two alternative connection termination mechanisms in Section 4.2.

We present a connection termination mechanism that allows us to assess the cost of sup-

porting half-closed TCP connections. We also evaluate the impact of an abortive release

of connections by clients on server throughput. Note that some of these connection estab-

1Note that the existing connection management mechanism in Linux is left out of Figure 4.1 for clarity.
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Figure 4.1: Road map of TCP connection management mechanisms investigated in this

chapter

lishment as well as termination mechanisms can be used together. In particular, different

mechanisms (leaf nodes) that do not have a common parent in the tree shown in Figure 4.1

can be combined together. As explained in Section 3.2, we generate overload using the

one-packet workload with a 10 second timeout for all of our experiments in this chapter.

4.1 Impact of TCP Connection Establishment

on Server Performance

In the following sections, we describe the shortcomings in the Linux server TCP stack when

queue drops occur while processing client connection establishment attempts, and review

alternative implementation choices. Some of these alternative mechanisms are already

implemented in UNIX or Windows TCP stacks, while some of them are novel. All of these
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implementation choices affect only the server TCP stack – no protocol changes to TCP, or

modifications to the client TCP stacks and applications, or server applications are required.

We refer to the existing connection establishment mechanism in Linux as default. As

explained in Section 2.1.1, under overload, queue drops can occur in the Linux TCP stack

when the server receives a SYN and either the SynQ3/4Full or the ListenQFullAtSyn rule

is triggered, or when the ListenQOverflow rule is triggered upon receiving a SYN/ACK

ACK. As indicated earlier, we divide our discussion into problems arising from queue drops

occurring at the ACK stage and those occurring at the SYN stage.

4.1.1 Problem – Listen Queue Overflow upon Receiving

SYN/ACK ACKs

As shown in Figure 2.1, the Linux TCP stack does not respond with a SYN/ACK to a

SYN when the listen queue is full. This prevents the client from immediately sending a

SYN/ACK ACK while the listen queue is still likely to be full and thus reduces the number

of queue drops due to ListenQOverflow.

However, while responding to a SYN, the TCP stack code only checks if the listen

queue is completely full. It is possible that the number of SYN/ACKs sent by the server

at a given point in time exceeds the amount of free space available in the listen queue.

Consider a listen queue of size 128, which is entirely empty. The TCP stack then receives

1000 SYNs. Since the listen queue is not full, it sends back 1000 SYN/ACKs. If the round-

trip time (RTT) to each client is roughly the same, the server TCP stack will receive 1000

SYN/ACK ACKs around the same time. This is a problem because only 128 SYN/ACK

ACKs can be accommodated in the listen queue, the rest trigger the ListenQOverflow rule.

The Linux TCP stack silently drops a SYN/ACK ACK that triggers ListenQOverflow.

No notification is sent to the client and the client’s incomplete connection continues to

occupy space in the SYN queue. Under overload, we have observed that the server ap-

plication’s listen queue is nearly always full because the rate of new connections exceeds

the rate at which the application is able to accept them. The TCP stack receives a burst

of SYNs and responds to all of them with SYN/ACKs, as long as there is space for at

least one entry in the listen queue (and the SYN queue is not three-quarters full). This
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invariably results in the server receiving more SYN/ACK ACKs than there is space for in

the listen queue, leading to a high number of queue drops due to ListenQOverflow.

It is instructive to study the effect of a silent SYN/ACK ACK drop at the server on the

client. Figure 4.2 provides tcpdump [42] output to illustrate the flow of TCP segments from

a client (s01) whose SYN/ACK ACK triggered ListenQOverflow at the server (suzuka).

In our tcpdump output we only display the time at which TCP segments were received or

transmitted at the server, the end-point identifiers, the TCP flags field (i.e., SYN (S), PSH

(P), or FIN (F)), the ACK field, the relative sequence and acknowledgement numbers, and

the advertised window sizes.

Upon receiving a SYN/ACK, the client TCP stack sends a SYN/ACK ACK, transitions

the connection to the ESTABLISHED state, and returns the connect() call signifying a

successful connection. The client application is now free to start transmitting data on

that connection, and therefore sends an 80-byte HTTP request to the server (line 4).

However, the client’s SYN/ACK ACK (line 3) has been silently dropped by the server due

to ListenQOverflow.

From the server’s point of view, the connection is still in SYN RECV state awaiting a

SYN/ACK ACK, hence, all subsequent client TCP segments (except RSTs) are handled in

the SYN RECV code path. Even subsequent data (PSH2) and termination notification (FIN)

segments from the client are handled in the code path for connections in the SYN RECV

state. The data and FIN segments, which are treated as an implied SYN/ACK ACK, can

result in additional queue drops if the listen queue is full when they arrive at the server.

Thus there is a disconnect between TCP connection state at the client (ESTABLISHED)

and the server (SYN RECV). The client keeps retransmitting the first segment of its re-

quest (lines 5, 6). Note that a typical HTTP request fits within a single TCP segment.

The retransmission timeout (RTO) used by the client for data requests tends to be more

aggressive than the exponential-backoff style retransmission timeout used for SYN retrans-

missions because the client has an estimate of the round-trip time (RTT) after receiving

the SYN/ACK. Eventually, the client-side application times out (after one second in the

example in Figure 4.2) and terminates the connection (line 7). Unfortunately, the FIN

segment also triggers ListenQOverflow at the server, so it has to be retransmitted (lines 8,

2A PSH segment usually corresponds to an application write in BSD-derived TCP stacks [80].
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(1) 11:32:03.688005 s01.1024 > suzuka.55000: S 1427884078:1427884078(0) win 5840

(2) 11:32:03.688026 suzuka.55000 > s01.1024: S 956286498:956286498(0)

ack 1427884079 win 5792

(3) 11:32:03.688254 s01.1024 > suzuka.55000: . ack 1 win 5840

(4) 11:32:03.688254 s01.1024 > suzuka.55000: P 1:81(80) ack 1 win 5840

(5) 11:32:03.892148 s01.1024 > suzuka.55000: P 1:81(80) ack 1 win 5840

(6) 11:32:04.312178 s01.1024 > suzuka.55000: P 1:81(80) ack 1 win 5840

(7) 11:32:04.688606 s01.1024 > suzuka.55000: F 81:81(0) ack 1 win 5840

(8) 11:32:05.152238 s01.1024 > suzuka.55000: FP 1:81(80) ack 1 win 5840

(9) 11:32:06.832233 s01.1024 > suzuka.55000: FP 1:81(80) ack 1 win 5840

(10) 11:32:07.686446 suzuka.55000 > s01.1024: S 956286498:956286498(0)

ack 1427884079 win 5792

(11) 11:32:07.686533 s01.1024 > suzuka.55000: . ack 1 win 5840

(FreeBSD clients do not send this extra ACK, instead sending

the FIN directly)

(12) 11:32:10.192219 s01.1024 > suzuka.55000: FP 1:81(80) ack 1 win 5840

(13) 11:32:13.685533 suzuka.55000 > s01.1024: S 956286498:956286498(0)

ack 1427884079 win 5792

(14) 11:32:13.685637 s01.1024 > suzuka.55000: . ack 1 win 5840

(15) 11:32:16.912070 s01.1024 > suzuka.55000: FP 1:81(80) ack 1 win 5840

(16) 11:32:25.683711 suzuka.55000 > s01.1024: S 956286498:956286498(0)

ack 1427884079 win 5792

(17) 11:32:25.683969 s01.1024 > suzuka.55000: . ack 1 win 5840

(18) 11:32:30.352020 s01.1024 > suzuka.55000: FP 1:81(80) ack 1 win 5840

(The following TCP sequence occurs only if the server is able

to promote the incomplete connection to the listen queue)

(19) 11:32:30.352122 suzuka.55000 > s01.1024: P 1:1013(1012) ack 82 win 46

(20) 11:32:30.352142 suzuka.55000 > s01.1024: F 1013:1013(0) ack 82 win 46

(21) 11:32:30.352394 s01.1024 > suzuka.55000: R 1427884160:1427884160(0) win 0

(22) 11:32:30.352396 s01.1024 > suzuka.55000: R 1427884160:1427884160(0) win 0

Figure 4.2: tcpdump output of a client whose SYN/ACK ACK is silently dropped due to

ListenQOverflow while establishing a connection
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9, 12, 15, and 18).

If the server is unable to accommodate any subsequent client segments in its listen

queue, its SYN/ACK retransmission timeout expires, and it resends the SYN/ACK (lines

10, 13, and 16). There are some obvious problems with this SYN/ACK retransmission. In

the existing Linux implementation, a SYN/ACK is retransmitted even if the listen queue

is full. This can easily cause subsequent client responses to be dropped if the listen queue

continues to be full (lines 11, 12, 14, and 15), resulting in unnecessary network traffic. By

retransmitting the SYN/ACK, the server TCP stack also creates additional load for itself,

which is imprudent during overload. More importantly, the incomplete client connection

continues to occupy space in the SYN queue (to allow SYN/ACK retransmissions) as long

as a segment from that client cannot trigger a new entry to be added to the listen queue.

This reduces the amount of free space in the SYN queue and might cause subsequent SYNs

to be dropped due to the SynQ3/4Full rule.

If the listen queue is not full when a subsequent client segment arrives, the server TCP

stack creates a socket and places it on the listen queue. The server application can then

accept, read, process, and respond to the client request (lines 19 and 20). However, the

client application might have already closed its end of the connection, and hence the client

TCP stack might not care about responses on that connection from the server. As a result,

it sends a reset (RST) in response to every server reply (lines 21 and 22).

A subtle side-effect of handling all client segments subsequent to a SYN/ACK ACK drop

in the SYN RECV code path is an inflation (or over-counting) of queue drops measured at the

server. The count of ListenQOverflow-induced queue drops can be higher than expected

and can exceed the total number of new connections attempted by the client. Table 4.1

shows a breakdown of all queue drops due to ListenQOverflow (“Total ListenQOverflow-

Induced Qdrops”) counted by the server TCP stack for the one-packet workload with the

µserver at different request rates. Recall that we did not add this statistic, it is tracked and

reported by the vanilla Linux kernel. The “SYN/ACK ACKS Dropped” column indicates

the number of SYN/ACK ACKs dropped and the “Other Segments Dropped” column

indicates the number of all other segments (i.e., data and FIN) dropped in the SYN RECV

state code path. We have instrumented these two counters to obtain a fine-grained count

of ListenQOverflow-induced queue drops. Table 4.1 shows that at a high rate of incoming
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Conn./sec SYN/ACK

ACKs

Dropped

Other Segments

Dropped

Total

ListenQOverflow-

Induced QDrops

20,000 62,084 72,235 134,319

26,000 171,641 181,867 353,508

32,000 165,935 167,620 333,555

Table 4.1: Breakdown demonstrating inflation of ListenQOverflow-induced queue drops

reported by server TCP stack due to silent drop of SYN/ACK ACKs

connection attempts, the server TCP stack inflates the number of queue drops due to

ListenQOverflow, and hence, the number of failed connection attempts by a factor of two.

That is, while we expect the number of ListenQOverflow-induced queue drops to reflect

only the number of SYN/ACK ACKs dropped, this count in the kernel is inflated because

subsequent client segments are handled by the same SYN RECV state code path. The inflated

ListenQOverflow-induced queue drop count skews the total number of queue drops in all

the results with default reported in this thesis.

To summarize, the default mechanism to handle queue drops arising from ListenQOver-

flow in the Linux TCP stack (default) is problematic because:

1. It can result in a disconnect between the TCP states at the client and the server.

2. It can result in unnecessary TCP traffic (i.e., the transmission of data and FIN

segments following a silent SYN/ACK ACK drop) at the server as well as in the

network.

4.1.2 Solutions for the Listen Queue Overflow Problem

The disconnect between the TCP states at the end-points resulting from queue drops due to

ListenQOverflow and the subsequent redundant TCP traffic can be avoided in two different

ways – reactively, or by proactively preventing the listen queue from overflowing.
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Reactive Solutions

Instead of silently dropping a SYN/ACK ACK when ListenQOverflow is triggered, the

server TCP stack can send a reset (RST) to a client to notify it of its inability to continue

with the connection. A RST ensures that both end-points throw away all information as-

sociated with that connection and subsequently there is no TCP traffic on that connection.

The implicit assumption in aborting a connection on queue drops due to ListenQOverflow

is that the server application is not able to drain the listen queue fast enough to keep up

with the rate of incoming SYN/ACK ACKs. We will refer to this mechanism as abort3.

Unfortunately, any RST sent after a SYN/ACK is not transparent to the client appli-

cation. The application will be notified of a reset connection by the client TCP stack on

its next system call on that socket, which will fail with an error such as ECONNRESET. Thus,

abort results in the client getting a false impression of an established connection, which is

then immediately aborted by the server. Recall that without abort, when ListenQOver-

flow is triggered, the client has an impression that a connection has been established, when

it is in fact in SYN RECV state at the server.

By default, abort is used when a SYN/ACK ACK is dropped in TCP stacks in

FreeBSD, HP-UX 11, Solaris 2.7 and Windows [45]. Although it is not enabled by de-

fault, administrators on Linux can achieve similar behaviour by setting the net.ipv4.-

tcp abort on overflow sysctl.

Jamjoom and Shin [45] describe another reactive mechanism to handle queue drops

arising from ListenQOverflow. Whenever a SYN/ACK ACK triggers ListenQOverflow,

the TCP stack can temporarily grow the listen queue to accommodate it, but continue to

drop SYN segments by enforcing the ListenQFullAtSyn rule. Growing the listen queue to

accommodate the additional SYN/ACK ACK allows the server to transition the associated

connection to the ESTABLISHED TCP state. Note that no resizing of kernel data structures is

required because the listen queue is implemented as a linked list. However, this mechanism

disregards the listen queue size specified by the application, thereby overriding any listen

queue based admission control policies. The additional connections in the listen queue also

deplete the available kernel memory. Under overload, the server might not be able to accept

and process these connections before the client times out, resulting in an inappropriate use

3An abbreviation of the abort on overflow sysctl that achieves this behaviour in Linux.
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of resources. For these reasons, in this thesis, we do not consider growing the listen queue

to address queue drops due to ListenQOverflow.

Proactive Solutions

Proactive approaches that avoid queue drops due to ListenQOverflow ensure that the listen

queue is never full when a SYN/ACK ACK arrives. We are aware of one such proactive

approach, namely, lazy accept() [80]. We also describe a new proactive approach, which

implements listen queue reservation.

Lazy accept()

In the lazy accept() approach, the server TCP stack does not send a SYN/ACK in

response to a SYN until the server application issues an accept() system call. This

ensures that the server TCP stack can always accommodate a subsequent SYN/ACK ACK

in the listen queue. In fact, there is no reason to use separate SYN and listen queues to

implement lazy accept(). The server TCP stack can track information about connections

on which a SYN is received in a single queue until there is an accept() system call from

the application. It can subsequently complete the three-way handshake for the entry at the

head of that queue and make its associated socket descriptor available to the application4.

Such a scheme provides the server application with fine-grained admission control func-

tionality because the TCP stack does not complete the three-way handshake before the

application notifies it to do so. This is in contrast with most current TCP stack and socket

API implementations, in which a server application has to reject a connection that has

already been established by its TCP stack in order to effect admission control.

The Solaris 2.2 TCP stack provided a tcp eager listeners parameter to achieve the

lazy accept() behaviour [80]. Support for this parameter seems to have been discontin-

ued in later Solaris versions. The Windows Sockets API (Version 2) provides this func-

tionality through the SO CONDITIONAL ACCEPT socket option which can be used with the

WSAAccept() system call [58].

4Unfortunately, none of the open-source TCP stacks support lazy accept(), hence, we are unable to

verify its implementation details.
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Note that a lazy accept() approach can result in poor performance because the appli-

cation thread will invariably block waiting for the three-way handshake to be completed by

the TCP stack. While the server TCP stack can return an EWOULDBLOCK error for sockets

in non-blocking mode if there is no pending connection (i.e., queued SYN request), a lazy

accept() would have to otherwise block until the server TCP stack receives a SYN/ACK

ACK, unless there is an external asynchronous notification mechanism to signal connection

completion to the application. It is unclear whether the implementation of lazy accept() in

Windows (which is currently the only major platform that supports this proactive mech-

anism) provides an asynchronous notification or lets the WSAAccept() system call on a

socket block (even if the socket is in non-blocking mode) until the three-way handshake is

completed. More importantly, a lazy accept() makes the application vulnerable to SYN

flood denial of service (DoS) attacks, where malicious clients do not send a SYN/ACK

ACK in response to a SYN/ACK. This can cause lazy accept() calls to stall. The queued

connections from malicious clients not only deplete server resources, they can also stall the

application by causing SYN segments from legitimate clients to be dropped.

Listen queue reservation

Another proactive method of ensuring that there are no listen queue overflows, while still

allowing the three-way handshake to be completed before connections are placed on the

listen queue, is to implement listen queue reservations. Whenever the server TCP stack

sends a SYN/ACK in response to a SYN, it reserves room for that connection in the listen

queue (in addition to adding an entry to the SYN queue). Room is freed for subsequent

reservations every time an entry is removed from the listen queue through an accept()

system call. Room can also be created in the listen queue whenever an entry is removed

from the SYN queue due to an error or a timeout (e.g., when the client resets the connection

or if the number of SYN/ACK retransmission attempts exceeds the maximum limit). The

server TCP stack sends a SYN/ACK only if there is room for a new reservation in the

listen queue. The reserv mechanism avoids listen queue overflows by ensuring only as

many SYN/ACK ACKs will be received as have been reserved in the listen queue. We

refer to the listen queue reservation mechanism as reserv.

To our knowledge, the reserv mechanism described above is novel. However, we arrived
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at it at the same time as the Dusi Accept() call described by Turner et al. [83] for the

Direct User Socket Interface within the ETA architecture. This call allows applications to

post asynchronous connection acceptance requests which reserve room in the listen queue.

In contrast to work by Turner et al., our listen queue reservation mechanism works with

the BSD sockets API and TCP stacks implemented in most existing operating systems.

Our current implementation of reserv is geared toward non-malicious clients in a LAN

environment. It primarily seeks to address the disconnection in TCP states at the client

and the server and to provide a better understanding of whether listen queue reservations

can improve server throughput. Hence, we assume that every client for which there is

a reservation in the listen queue will respond immediately with a SYN/ACK ACK. This

implementation can be generalized to allow for “overbooking” (similar to the overbooking

approach used for airline seat reservations) to account for clients whose SYN/ACK ACK

is delayed. In particular, in WAN environments we might need to send more SYN/ACKs

to high-latency clients than there are spaces for reservation, lest the server’s listen queue

becomes completely empty while the SYN/ACK ACKs from the clients are in transit5.

In general, the number of reservations can be bounded by the sum of the SYN queue

size, the listen queue size, and the number of client SYN/ACK ACKs in transit. A more

important shortcoming of our current reserv implementation is its vulnerability to attacks

from malicious clients. We defer the discussion of security implications of reserv until

Section 4.1.7.

4.1.3 Evaluation of the Listen Queue Overflow Solutions

We now compare the performance of abort and reserv against default. As described

in Section 3.3, we measure the throughput, response time, error rate, and queue drops

when these mechanisms are used with the user-space µserver and the kernel-space TUX

web servers. Figures 4.3 and 4.4 show the results obtained with the µserver and TUX

respectively. Note that for all the µserver results in this thesis (including those shown

in Figure 4.3), the x-axis starts at 12,000 requests/sec. We leave out data points prior

5Note that a client SYN/ACK ACK lost in transit will result in a SYN/ACK retransmission by the

server. A listen queue reservation is deleted when the threshold on maximum SYN/ACK retransmissions

is reached.
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Figure 4.3: Evaluation of the µserver with listen queue overflow solutions

to 12,000 requests/sec out of the graphs because at these points the server is not under

overload and its reply rate matches the client request rate. For the same reason, the x-axis

in all the graphs for TUX starts at 20,000 requests/sec.

Figures 4.3(d) and 4.4(d) show that abort reduces the number of queue drops signifi-

cantly by ensuring that there is only one queue drop due to ListenQOverflow per connec-

tion. Surprisingly, reserv has significantly higher queue drops compared to abort. This

is due to retransmitted SYN segments from the clients. The server TCP stack does not

respond to a SYN with a SYN/ACK when there is no reservation available in the listen

queue. That is, it silently drops the SYN6. The SYN retransmission timeout at the client’s

TCP stack expires if it does not receive a SYN/ACK within a specific amount of time,

resulting in another SYN transmission7. This retransmitted SYN can also result in further

queue drops if there is no room for a reservation in the listen queue when it arrives at the

6In most UNIX TCP stacks, including Linux, whenever a SYN is dropped, it is dropped silently. No

notification is sent to the client [80].
7All TCP stacks have an upper bound on how many times a SYN is retransmitted.
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Figure 4.4: Evaluation of TUX with listen queue overflow solutions

server. Note that SYN retransmissions also influence the queue drops in abort, but to a

lesser degree because connection requests are mostly rejected at the ACK stage. Table 4.2

shows a per-second breakdown of connection establishment segments dropped at the SYN

stage, namely, “SYNs Dropped”, and either dropped or rejected at the ACK stage, namely,

“ACKs Reset/Dropped”, for three request rates with TUX.

The table demonstrates that with reserv, all connection establishment attempts are

dropped at the SYN stage, while with default, most attempts are dropped at the SYN

stage. The SYN drop rate is higher than the request rate in both of these mechanisms due

to SYN retransmissions by the clients. With abort, most attempts are rejected at the ACK

stage with fewer SYN drops compared to reserv or default. Note that with abort all of

the queue drops at SYN stage are due to ListenQFullAtSyn and not SynQ3/4Full. In our

low-latency LAN environment, a SYN/ACK ACK from a client arrives almost immediately

after the server sends a SYN/ACK. This ensures that connections occupy space in the SYN

queue for a very short time. The quick SYN/ACK ACK arrival does however put additional

pressure on the listen queue.
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Rate default abort reserv

SYNs

Dropped

ACKs

Dropped

SYNs

Dropped

ACKs

Reset

SYNs

Dropped

ACKs

Dropped

26,000 26,828 5,135 2,992 5,698 27,195 0

30,000 39,966 4,734 12,341 9,818 40,782 0

34,000 53,216 4,283 21,312 13,259 53,883 0

Table 4.2: Breakdown of connection attempts dropped or rejected per second at the SYN

and ACK stages with TUX

Figures 4.3(a) and 4.4(a) indicate that neither abort nor reserv are able to provide

significant improvements in throughput over default. The peak8 throughput is the same

with all the three mechanisms. After the peak, abort and reserv provide less than

10% improvement in throughput over default in the µserver and a negligible increase in

throughput in TUX. It is also evident from Figures 4.3(b) and 4.4(b) that the response

times obtained with abort and reserv are fairly close to those obtained with default.

Note that we use a log scale for all the response time results in this thesis. The sharp spike

in response times after 19,000 requests/sec in Figure 4.3(b) corresponds to the server’s

peak (saturation point). After the peak (i.e., at 20,000 requests/sec), many clients have to

retransmit a SYN using an exponential backoff before they get a response from the server.

Hence, the average connection establishment time and consequently the response time

rises sharply. The lack of improvement in throughput with abort, despite the reduction

in the number of queue drops, is due to the overhead of processing retransmitted SYN

segments at the server. The same problem limits the throughput obtained with reserv.

In Section 4.1.4, we will analyze the overhead of processing retransmitted SYN segments

in detail.

Figure 4.4(c) shows that with TUX the error rate (i.e., the rate of connection failures

seen by the client) resulting from abort is 5%-10% higher than default. This is because

TUX is able to drain its listen queue very quickly by running in the kernel. The RST

sent when a SYN/ACK ACK is dropped due to ListenQOverflow is counter productive

because it terminates the client connection prematurely. On the other hand, with default

8The highest rate at which the server’s reply rate matches the request rate.
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subsequent segments transmitted by the client are treated as implied SYN/ACK ACKs

and if one such segment does not trigger ListenQOverflow (before the client times out),

the connection can be placed on the listen queue and is eventually serviced. Note that a

user-space server such as the µserver might not be able to drain its listen queue quickly

enough to keep up with the rate of incoming SYN/ACK ACKs. In such cases, by preventing

subsequent client transmissions from being treated as implied SYN/ACK ACKs (thereby

adding to the server’s burden), abort can actually reduce the error rate by up to 10% as

demonstrated in Figure 4.3(c).

Note that neither abort nor reserv affect the throughput, response time, queue drops,

or the error rate with either web servers prior to the peak (saturation point). We reiterate

that at loads below saturation, there are no queue drops, hence the implementation choices

for connection establishment have no impact on server throughput and response time.

Thus, abort and reserv succeed in eliminating the disconnect in the TCP states at the

end-points and alleviate load by relieving the server from handling data and FIN segments

transmitted following a silent SYN/ACK ACK drop. However, both these mechanisms

fail to improve throughput or response times because they do not mitigate the overhead

of processing retransmitted SYN segments. We will evaluate this overhead in the next

section.

4.1.4 Problem – Silent SYN Drop

As seen in Section 4.1.3, SYN retransmissions can increase the number of queue drops. In

this section, we analyze the impact of retransmitted SYN segments on server throughput

and response time under persistent overload.

Like any other TCP transmission, the client TCP stack sets up a retransmission timeout

whenever it sends a SYN segment to the server. If the SYN retransmission timeout expires

before a SYN/ACK is received, the client TCP stack retransmits the SYN and sets up

another timeout. This process continues until the server responds with a SYN/ACK, or

until the threshold for the maximum number of SYN retransmissions is reached.

Table 4.3 shows the SYN retransmission timeouts used in popular TCP stacks. Note

that some of the timeouts in the table (in particular those for Linux and FreeBSD) differ

from previously reported values by Jamjoom and Shin [45]. We obtained the timeouts
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Operating System SYN retransmission timeout (sec)

Linux 2.4/2.6 3, 6, 12, 24, 48

FreeBSD 5.3 3, 3.2, 3.2, 3.2, 3.2, 6.2, 12.2, 24.2

Mac OS X 10.3 3, 3, 3, 3, 3, 6, 12, 24

Windows 9x, NT 3, 6, 12

Windows 2000/XP 3, 6

Table 4.3: SYN retransmissions timeouts in current TCP stacks

shown in Table 4.3 by observing the actual tcpdump output on different operating systems.

Figure 4.5 shows the tcpdump output of a Linux 2.4 client whose SYNs are silently

dropped by the server. It demonstrates that the client TCP stack will retransmit SYNs

up to five times – 3, 9, 21, 45, and 93 seconds9 after the original SYN transmission.

(1) 19:32:35.926222 s01.1033 > suzuka.55000: S 3600646294:3600646294(0) win 5840

(2) 19:32:38.923018 s01.1033 > suzuka.55000: S 3600646294:3600646294(0) win 5840

(3) 19:32:44.922816 s01.1033 > suzuka.55000: S 3600646294:3600646294(0) win 5840

(4) 19:32:56.922559 s01.1033 > suzuka.55000: S 3600646294:3600646294(0) win 5840

(5) 19:33:20.922018 s01.1033 > suzuka.55000: S 3600646294:3600646294(0) win 5840

(6) 19:34:08.912657 s01.1033 > suzuka.55000: S 3600646294:3600646294(0) win 5840

Figure 4.5: tcpdump output of a client whose SYNs are silently dropped while establishing

a connection

A client application can also prevent further SYN retransmissions by issuing a close()

system call on a socket descriptor that has not been connected. The SYN retransmission

timeout in the TCP stack is different from a timeout used by the client application or by the

end user, each of which might use a different timeout. For example, a user may stop trying

to connect to a web site if he or she does not get a response within 5 seconds. Similarly, a

web browser might close a connection after waiting for 15 seconds. In fact, the 10 second

application-level timeout used in all of our experiments allows for the retransmission of at

most two SYNs, which is lower than the maximum number of SYN retransmissions made

by the Linux TCP stack. As explained in Section 3.3, we take into account retransmissions

9These retransmission timings are cumulative values of the differences in successive lines in Figure 4.5.
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by the application or the end user by including them in the rate of incoming client requests.

As described in Section 2.1.1, if either the SYN or the listen queue is full, the server

TCP stack does not respond with a SYN/ACK. By ignoring the SYN, it forces the client

TCP stack to retransmit another SYN, hoping that the queues will have space for the

connection request at a later time [80]. Thus, an implicit assumption in silent SYN drops

is that the connection queues overflowed because of a momentary burst in traffic that

will subside in time to allow the retransmitted SYN segments to be processed. However,

under persistent overload conditions, such as during flash crowds, the server TCP stack

has to handle a large number of connection attempts for an extended period of time. The

duration of overload at the server is much longer than the client application timeout as

well as the maximum SYN retransmission timeout used in most client TCP stacks. That

is, the majority of clients retransmit their SYNs while the server is still overloaded. Hence,

the server TCP stack is forced to process retransmitted SYN segments from “old” (i.e.,

client TCP stacks that are retrying) connections, in addition to a steady rate of incoming

SYN requests arising from “new” connections.

Cost of Processing Retransmitted SYN Segments Under Overload

In order to understand why abort did not improve server performance in Section 4.1.3,

we now evaluate the overhead of processing retransmitted SYN segments under overload.

We profiled our server using oprofile [41], a system-wide profiler, to determine the

percentage of CPU time spent in kernel-space as well as user-space code. Note that as de-

scribed in Section 3.2, our workloads do not require disk accesses and there are no network

bottlenecks in our experimental environment. We then grouped the functions reported in

the flat profile into different categories for a component-level analysis. Since we are inter-

ested in analyzing Internet servers, we used the following categories – driver (interrupt-

handling and NAPI-based packet-processing), net-ip (IP packet-processing), net-tcp (TCP

segment-processing), net-socket (socket API, including skbuff management), net-other

(protocol-independent device support), mm (generic memory management), other-kernel

(all other kernel routines such as process, and file-system management), and server appli-

cation (TUX or the µserver).

For simplicity, we discuss profiling results obtained by running the in-kernel TUX server
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Kernel Component %CPU Time

Rate=17,500 Rate=25,000

driver 26.96 21.83

net-ip 3.45 3.62

net-tcp 16.59 21.56

net-socket 7.92 8.90

net-other 3.82 3.98

tux 13.09 13.47

mm 6.86 7.98

other-kernel 18.58 17.29

TOTAL 97.27 98.63

Table 4.4: Breakdown of CPU time spent in kernel components near peak load and under

overload summarized from oprofile data for TUX with abort on the one-packet workload

with abort on the one-packet workload. The results with the µserver are qualitatively

similar, except for the additional event-notification overhead that one would expect from a

user-space, event-driven network server. Table 4.4 shows the component-level profiles for

two data points, one just before the peak (17,500 requests/sec), and one under overload

(25,000 requests/sec). Note that the total CPU time does not add up to 100% because it

excludes time taken by the oprofile daemon. Note also that the peak rate is lower with

profiling enabled – without profiling TUX peaks near 22,000 requests/sec with abort, as

shown in Figure 4.4(a).

As the load exerted on the server increases, the TCP component dominates the CPU

usage. The CPU consumption of TCP segment processing goes up from about 17% to

22% as the request rate increases from 17,500 to 25,000. The CPU usage of all other

components except “driver” (as explained below) remains approximately the same. Even

with an increase in server load, the application (shown as “net-tux”) does not get a pro-

portionately higher share of CPU time to complete work on existing requests or to accept

new connections.

The amount of time spent in the driver component decreases with an increase in load
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because as explained in Section 2.2.2, we have enabled NAPI in our experiments to avoid

interrupt-driven receiver livelock. With NAPI, the networking subsystem resorts to peri-

odic polling under high loads to prevent interrupt handling from hogging the CPU. NAPI

also ensures that tasks other than packet-processing (e.g., the web server) get adequate

CPU time under overload at the server. In other statistics collected during the experiments

(but not shown here), we have observed that the amount of time spent polling is lower

before the peak load (at 17,500 requests/sec) compared to under overload (at 25,000 re-

quests/sec)10. Hence, under overload, with strategies to counter receiver livelock in place,

TCP segment-processing code becomes one of the major consumers of CPU cycles.

It is instructive to determine the cause of the increase in CPU cycles consumed by the

TCP component when the server is overloaded. Table 4.5 (which corresponds to TUX

results for abort in Figure 4.4) shows the breakdown of incoming TCP segments as the

load exerted increases. The expected number of SYN segments is computed by multi-

plying the request rate by the duration of the experiment (around 120 seconds). The

difference between the actual and expected SYN segments received can be attributed to

SYN retransmissions from the clients11.

TCP Statistic Request Rate

22,000 28,000 34,000

Expected SYN segments 2,640,000 3,360,000 4,080,000

Actual SYN segments 2,640,011 4,156,497 6,385,607

Actual SYN/ACK ACK segments 2,640,011 3,323,742 3,828,060

Connection establishment segments 5,280,022 7,480,239 10,213,667

Established connections 2,640,011 2,372,030 2,236,980

Ratio of estab. conn. to actual SYN segments 1 0.57 0.35

Total segments 15,840,231 16,968,566 19,161,742

Table 4.5: Incoming TCP segment statistics near peak load and under overload for TUX

with abort on the one-packet workload

10 Consequently, the number of interrupts per second is higher at 17,500 requests/sec.
11More correctly, a difference greater than 50 is due to SYN retransmissions, a value less than that can

be caused by our workload generator running slightly longer than the specified duration.
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As the load exerted increases, the number of connection establishment segments (i.e.,

SYN plus SYN/ACK ACK segments) received and processed at the server increases rapidly

compared to the number of segments destined for already established connections. For

example, at 22,000 requests/sec, only a third of the total TCP segments received are for

establishing connections (i.e., 5,280,029 out of 15,840,231), while at 34,000 request/sec,

more than half of the total TCP segments processed constitute an attempt to establish a

connection (i.e., 10,213,667 out of 19,161,742). The increase in connection establishment

segments is primarily due to retransmitted SYN segments. As shown in Table 4.5 under

overload, retransmitted SYN segments significantly increase the aggregate TCP traffic at

the server. This corroborates results presented by Jamjoom and Shin [45], who report

that SYN retransmissions result in close to two-folds increase in traffic at the server during

flash crowds. As we will demonstrate in Figure 4.9, many client connection attempts

require the server to process more than one SYN segments before the connection is either

established, aborted, or timed out. As the server TCP stack spends more time processing

SYN segments, the number of connections that it is able to actually establish and process

decreases. We will discuss the implications of retransmitted SYN segments on server

throughput and response time in detail in Section 4.1.6. At this point, however, we can

conclude that a significant portion of the server’s CPU resources are devoted to processing

retransmitted TCP SYN segments under overload.

The high cost of handling retransmitted SYN segments is not because of a poor im-

plementation of SYN processing in the Linux networking stack. On the contrary, the

SYN-processing implementation in most modern TCP stacks, including Linux, is meant

to be efficient to minimize the damage from SYN flood attacks [54]. As discussed in Sec-

tion 5.4, dropping SYN segments at an earlier stage in the networking stack (e.g., at the

IP layer as done by some firewalls such as netfilter) does not mitigate the negative

performance impact of retransmitted SYN segments.

4.1.5 Alternatives to Silent SYN Drop

In this section, we describe approaches that attempt to alleviate TCP segment-processing

load resulting from retransmitted SYN segments at the server. These solutions can be
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broadly classified as follows12.

1. Sending a RST to a client whenever a SYN is dropped.

2. An approach such as persistent dropping [45] to filter out retransmitted SYN seg-

ments with lower overhead. Note that in persistent dropping, retransmitted SYN

segments are still dropped silently.

3. Dropping no SYN segments, but rejecting connection establishment attempts at the

ACK stage instead.

Persistent dropping was discussed in Section 2.2.3. We describe the other alternatives

in detail in the following subsections.

Send RST on a SYN Drop

When under overload, instead of silently dropping SYN segments, the server TCP stack

can explicitly notify clients to stop the further retransmission of SYNs. One way of achiev-

ing this is to send a RST whenever a SYN is dropped. Note that the abort mechanism

involves sending a RST whenever a SYN/ACK ACK is dropped. Usually, a RST is sent

in response to a SYN to indicate that there is no listening socket at the specified port on

the server13. As per RFC 793, the client TCP stack should then give up on the connec-

tion and indicate a failure to the client application. Typically upon receiving a RST, a

connect() call by the application would fail with an error such as ECONNREFUSED. Note

that a client application is free to continue to retry a connection even after it receives an

ECONNREFUSED error from its TCP stack, but most well-written applications would give

up attempting the connection. By sending a RST when a SYN is dropped14, we elimi-

nate TCP-level retransmissions, which are transparent to the client application. In order

to notify a client when the server is overloaded so that it can prevent further connection

attempts (i.e., avoid SYN retransmissions), we modified the server TCP stack in Linux

12Note that this list is not exhaustive.
13A RST in response to a SYN in TCP is equivalent to an ICMP “Port Unreachable” message [80].
14Note that if a RST sent to a client is lost under wide-area network connections, it is no different than

a silent SYN drop, a client will retransmit a SYN when its retransmission timeout expires.
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to send a RST whenever a SYN is dropped. This behaviour can be chosen through the

net.ipv4.tcp drop syn with rst sysctl. We refer to this mechanism as rst-syn15.

Note that rst-syn only affects client behaviour at the SYN stage and is typically used

in conjunction with ACK stage mechanisms described in Section 4.1.2. That is, we can

use rst-syn in conjunction with the listen queue reservation mechanism to send RST

to clients whenever a reservation is not available, we refer to this mechanism as reserv

rst-syn. Similarly, when rst-syn is used in conjunction with the aborting of connec-

tions on ListenQOverflow-induced SYN/ACK ACK drops, we call the resulting mechanism

abort rst-syn.

While we developed rst-syn independently after discovering the high overhead of pro-

cessing retransmitted SYNs, we later discovered that some TCP stacks, including those

on some Windows operating systems, already implement such a mechanism [59]16. As in-

dicated earlier, most UNIX TCP stacks drop SYN segments silently. In this context, the

results presented in this thesis can be viewed as a comparison of the different connection

establishment mechanisms implemented in current TCP stacks.

Before presenting the results of rst-syn, we point out its shortcomings. Sending a

RST in response to a SYN when there is a listening socket at the client-specified port

implies overloading the semantics of a RST [34]. RFC 793 states: “As a general rule, reset

(RST) must be sent whenever a segment arrives which apparently is not intended for the

current connection. A reset must not be sent if it is not clear that this is the case” [73].

While it can be argued that from the server’s point-of-view the RST achieves the desired

effect of preventing further SYN retransmissions from clients, such an approach violates

the recommendations of RFC 793. In particular, a client TCP stack which receives a

RST from the server is unable to determine whether the RST is because of an incorrectly

specified port, or due to overload at the server. Unfortunately, no other alternative seems

to be available in current TCP implementations to allow an overloaded server to notify

clients to stop retransmitting SYN segments. An approach that could provide such a

functionality is suggested in RFC 1122 – “A RST segment could contain ASCII text that

encoded and explained the cause of the RST” [17]. A server TCP stack would indicate that

15An abbreviation of “RST in response to a SYN on a SYN drop”.
16Some firewalls also use rst-syn for congestion control [34].
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it is overloaded in its RST segment. Client TCP stacks could then notify the applications

about the overload at the server with an error such as ESERVEROVRLD. Unfortunately, such

an approach would require modifications to existing TCP stack implementations at the

clients. In this thesis, we explore approaches to allow the server to notify clients that it

is overloaded with currently deployed client TCP stacks, and evaluate the effectiveness of

such approaches.

Another problem with rst-syn is that it relies on client cooperation. Some client TCP

stacks, notably those on Microsoft Windows, immediately resend a SYN upon getting a

RST for a previous SYN17. Note that this behaviour does not follow the specifications of

RFC 793. As shown in Figure 4.6, RFC 793 explicitly specifies that a client TCP stack

should abort connection attempts upon receiving a RST in response to a SYN.

If the state is SYN-SENT then

[checking of ACK bit omitted]

If the RST bit is set

If the ACK was acceptable then signal the user

"error: connection reset", drop the segment, enter CLOSED state,

delete TCB, and return.

Otherwise (no ACK) drop the segment and return.

Figure 4.6: Event-processing steps for handling RSTs received in SYN SENT state specified

in RFC 793 [73]

By retransmitting a SYN upon receiving a RST, Windows TCP stacks introduce un-

necessary SYN segments into the network when the client is attempting to connect to a

server at a non-existent port18. The number of times SYNs are retried in this fashion is

a tunable system parameter, which defaults to 2 retries in Windows 2000/XP and 3 re-

tries in Windows NT [60]. Microsoft provides the following rationale for their decision to

retry SYNs – “The approach of Microsoft platforms is that the system administrator has

the freedom to adjust TCP performance-related settings to their own tastes, namely the

17Microsoft client TCP stacks ignore “ICMP port unreachable” messages in a similar fashion, retrying

a SYN instead [45].
18A port which does not have an associated listening socket on the server.
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maximum retry ... The advantage of this is that the service you are trying to reach may

have temporarily shut down and might resurface in between SYN attempts. In this case,

it is convenient that the connect() waited long enough to obtain a connection since the

service really was there” [60]. While a user familiar with RFC 793 can set this parameter

to zero, we assume that most users run with the default values. Also note that in contrast

to SYN retransmissions when no SYN/ACKs are received from the server, SYNs are re-

tried immediately by the Windows client TCP stack – no exponential backoff mechanism

is used.

We will refer to the behaviour of Windows-like TCP stacks that retry a SYN upon

receiving a RST for a previous SYN as win-syn-retry. To our knowledge, there are no

(public) results that quantify the effects of the win-syn-retry behaviour with server TCP

stacks which do send a RST to reject a SYN. On the other hand, some past work has cited

the win-syn-retry behaviour as a justification for dropping SYN segments silently [45, 85].

In this thesis, we test this hypothesis by evaluating the effectiveness of rst-syn with RFC

793-compliant as well as win-syn-retry TCP stacks.

Unfortunately, our workload generator (httperf) is UNIX-specific and non-trivial to

port to the Windows API. Hence, we modified the Linux TCP stack in our clients to

implement the win-syn-retry behaviour. If a configurable option is set, our client stacks

retransmit SYNs up to 3 times after receiving a RST for the original SYN. Note that we

have chosen an aggressive retry value of 3 (default in Windows 98/NT) instead of 2 (default

in Windows 2000/XP), which we suspect would be used in most current Windows client

TCP stacks. We will refer to our emulation of the win-syn-retry behaviour in Linux as

win-emu.

No SYN Drops

Silently dropping SYN segments results in SYN retransmissions in all client TCP stacks.

Notifying the client that is should abort SYN retransmissions with a RST is not effective

in stopping SYN retries with win-syn-retry TCP stacks. To workaround this problem,

we developed a mechanism which avoids retransmissions of TCP connection establishment

segments, albeit in an ungainly fashion. The key idea of this mechanism is to drop no

SYN segments, but to instead notify the client of a failure to establish a connection at the
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ACK stage. Thus, we send a SYN/ACK in response to every SYN, irrespective of whether

there is space available in the SYN queue or the listen queue. We later use abort to reset

those connections whose SYN/ACK ACKs cannot be accommodated in the listen queue.

We refer to this mechanism as no-syn-drop.

An obvious limitation of no-syn-drop is that we give some clients false impression of

the server’s ability to establish a connection. In reality, under overload, we can only accom-

modate a portion of the SYN/ACK ACKs from the clients in the listen queue, so we have

to abort some established client connections19. Upon receiving a RST on an established

connection, all client TCP stacks that we are aware of (including Microsoft Windows) im-

mediately cease further transmissions. An ECONNRESET error is reported to the application

on its next system call on that connection. Most well-written client applications, including

all browsers that we are aware of, already handle this error. We reiterate that the only

reason for exploring no-syn-drop is due to a lack of an appropriate mechanism in cur-

rent TCP implementations to notify clients (particularly, win-syn-retry clients) about

an overload at the server in order to stop retransmission attempts. Note that when a RST

in sent to a client whose SYN/ACK ACK triggers ListenQOverflow, all state information

about the client connection at the server TCP stack is destroyed (with both abort and

no-syn-drop). If this RST is lost in a WAN environment, subsequent (data or FIN) seg-

ments from the client will be answered with a RST by the server TCP stack. In this way,

the client will eventually receive a notification of the server’s inability to continue with the

connection.

In order to ensure that there are no SYN drops with no-syn-drop, we eliminated the

ListenQFullAtSyn rule while processing SYN segments in the Linux TCP stack. Note that

as a result of eliminating this rule, we expect many more listen queue overflows. We had

to use another technique to ensure that SYN segments are not dropped when the SYN

queue is full. While we have not observed any SYN drops because of a full SYN queue20

with abort or reserv in our environment, the SYN queue could get close to full with

high-latency clients in a WAN environment.

We use TCP SYN cookies [54, 14], a mechanism originally created to guard against SYN

19 Note that the connections aborted are in the ESTABLISHED state only at the client.
20More precisely due to SynQ3/4Full.
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flood denial of service attacks, to ensure that SYNs are not dropped due to lack of space in

the SYN queue. SYN cookies do not save any information about incomplete connections

at the server, thereby giving the impression of an unbounded SYN queue. The server

TCP stack sends a specially-crafted sequence number (the cookie) in its SYN/ACK that

encodes information that would normally be saved in the SYN queue. When a SYN/ACK

ACK arrives, the server recreates the incomplete request based on the sequence number

acknowledged. Note that the SYN cookies approach has some limitations – in particular

not all TCP options (e.g., window scaling) included in a SYN are encoded in a SYN/ACK,

these cannot be reconstructed from the SYN/ACK ACK received, so this information

is lost [54]. Hence, most UNIX TCP stacks use SYN cookies as a fall-back mechanism

only after the SYN queue is completely full. We also had to fix the TCP SYN cookies

implementation in Linux to properly implement abort. Several 2.4 and 2.6 kernel sources

that we examined (including the latest 2.6.11.6) did not check if abort on overflow (which

implements abort in Linux) is enabled when SYN cookies are used – a potential oversight

on the part of the networking developers since neither SYN cookies nor abort on overflow

are enabled by default. As discussed in Section 4.1.1 without abort, server throughput

is degraded on a silent listen queue overflow, this problem is exacerbated by relaxing the

ListenQFullAtSyn rule when responding to a SYN. In our evaluation of no-syn-drop, we

use a modified Linux TCP stack, which enforces abort when used in conjunction with

SYN cookies.

4.1.6 Evaluation of Silent SYN Drop Alternatives

In this section, we evaluate server performance with rst-syn on RFC 793-compliant clients,

and with rst-syn and no-syn-drop on Windows-like (win-emu) clients.

Regular Clients

We first evaluate server throughput and response times with rst-syn on client TCP stacks

which follow RFC 793, and abort a connection attempt upon receiving a RST in response

to a SYN. We will refer to such client TCP stacks as regular clients. As indicated earlier,

we expect that rst-syn will be used in conjunction with abort or reserv. Figures 4.7
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Figure 4.7: Evaluation of the µserver with alternatives to silent SYN drop

and 4.8 demonstrate that when abort and reserv are combined with rst-syn, they yield

a significant improvements in throughput and client response times.

As shown in Figure, 4.7(a) abort rst-syn increases the peak throughput of the µserver

by 11% compared to abort, and offers around 20% improvement after the peak, which in-

creases as the request rate is increased. Similarly, reserv rst-syn increases the peak

throughput of the µserver by 11% compared to reserv, and provides more than 24%

improvement in throughput after the peak. While the peak throughput of TUX, shown

in 4.8(a), is not changed, abort rst-syn results in close to 10% improvement after the

peak. The throughput in TUX with reserv rst-syn is also more than 12% higher com-

pared to reserv, and this gap increases at higher rates.

Note that the improvement in throughput with rst-syn is consistent across the board

for all request rates, and increases at higher request rates. When compared to default,

abort rst-syn results in more than a 27% improvement in throughput after the peak
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Figure 4.8: Evaluation of TUX with alternatives to silent SYN drop

in the µserver, and around an 8% increase in throughput after the peak in TUX. The

corresponding numbers for improvements in throughput provided by reserv rst-syn over

default are 35% in the µserver and 15% in TUX. Throughput improves with rst-syn

because it eliminates the cost of processing retransmitted SYN segments, which allows more

time to be devoted to completing work on established connections. In reserv rst-syn we

reject a connection attempt at the SYN stage instead of the ACK stage, resulting in one

less packet sent and received by the server per connection, hence, its throughput is slightly

better than that of abort rst-syn. The gains obtained from rst-syn can be explained

by the general principle of dropping a connection as early as possible under overload [63].

As shown in Figures 4.7(b) and 4.8(b), the response time is reduced by two orders

of magnitude with rst-syn in both the µserver and TUX. Recall that by response time,

we imply the average response time measured at clients for successful connections. The

response time is the sum of the connection establishment time and the data transfer time.
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When the server is overloaded, a substantial amount of time is spent establishing connec-

tions. SYNs might have to be retransmitted multiple times before a SYN/ACK is received

and the connect() call returns on the client. Once a server accepts a client connection

(i.e., puts it on the listen queue), the amount of time spent in transferring data is small

for the one-packet workload compared to the connection time, so it does not affect the

response time significantly. On an average it takes around 3 seconds for the client to es-

tablish a connection, but less than 100 milliseconds to get a response once the connection

has been established, when either default or abort are used at the server. On the other

hand, with rst-syn, a client connection attempt fails immediately. Clients which do get

a response for a SYN, receive it without having to resort to SYN retransmissions. As a

result, the average connection establishment time, and hence the average client response

time tends to be very short. We can get higher throughput as well as lower response time

with rst-syn because the server is under persistent overload. The server can reject some

clients immediately, but it always has a sustained rate of new clients to handle, so its

throughput does not decrease. We believe that under high load, it is better to provide

good service to some clients along with an immediate notification of failure to the rest of

the clients, rather than giving poor service to all the clients.

Figure 4.7(c) demonstrates using the µserver that rejecting connections at the SYN

stage does not result in a higher error rate. That is, the improvements in response times

are not because the server handles fewer clients. In fact, both abort rst-syn and reserv

rst-syn actually reduce the number of clients which do not receive a server response

compared to default. The error rate when TUX is used in conjunction with abort and

abort rst-syn (shown in Figure 4.8(c)) is higher than default because as described in

Section 4.1.3, aborting connections when SYN/ACK ACKs cannot be accommodated in

the listen queue is counter productive in TUX. That is, the increase in the error rate is

due to abort, not because of rst-syn. Note that the error rate with reserv and reserv

rst-syn is lower than that with default, even in TUX. As expected, the error rate is

equal to the rate of queue drops with abort rst-syn and reserv rst-syn because the

retransmission of connection establishment segments is eliminated.

It is instructive to examine how many connection attempts, both successful as well

as failed, require more than one SYN transmission with default or abort. This can
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Figure 4.9: Breakdown of connection attempts and failures based on number of SYNs

transmitted with default, abort, and abort rst-syn in TUX for three different request

rates

provide a better understanding of why the throughput is lower and the client response times

are higher with both these mechanisms when compared to abort rst-syn (or reserv

rst-syn). Figure 4.9 shows a breakdown of all connection attempts and failures (errors)

based on the number of SYN segments transmitted using default, abort, and abort

rst-syn while running the µserver. Note that the connection attempts and errors for each

mechanism are shown for three different request rates, namely, 22,000, 28,000, and 34,000.
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Recall that a 10 second timeout allows at most three SYN transmissions, two of which

occur after the previous SYN retransmission timeout expires. Recall also that the num-

ber of connections attempted is determined based on the request rate and the duration

for which that rate was run. Connection attempts include all connections that were: (i)

successfully serviced, (ii) rejected (either through abort or rst-syn) by the server, or (iii)

timed out by the client. Rejected or timed out connections add up to failed connections

(i.e., errors). Any connection, whether successful or rejected that lasts for less than 3 sec-

onds requires only one SYN transmission (i.e., the original connection attempt). Similarly

those connections that last for more than 6 seconds and 9 seconds require two and three

SYN transmissions, respectively. Finally, a connection that has to be timed out by the

application results in three SYN transmissions. We accordingly added counters to httperf

to categorize connections based on how many SYNs they transmitted. Note that each con-

nection is counted exactly once based on the number of SYN transmissions. For example,

a connection that is established on the third SYN retransmission, and gets a response from

the server after 9.5 seconds is categorized as requiring three SYN transmissions.

The number of connections attempted (“attempts”) by default, abort, as well as

abort rst-syn is same for each request rate shown in Figure 4.9. On the other hand,

the number of failed connections (“errors”) differs in these mechanisms, it is the lowest

with abort rst-syn. The number of successful connections can be obtained by factoring

out the “errors” bar from the “attempts” bar. For example, with default, all connec-

tion attempts that require only two SYN transmissions represent successful connections

because there are no connections which fail after just two transmissions. All client connec-

tions require a single SYN transmission with abort rst-syn, after which they are either

successfully serviced or reset by the server (using rst-syn). Note that the work involved

at the server to deliver data to the clients in the one-packet workload is minimal, hence,

no connections timeout after they are established. With default, a failed connection re-

quires three SYN retransmissions, after which the client application gives up and times out

a connection for which its TCP stack has not received a SYN/ACK from the server (i.e., a

connection where the application’s connect() call does not succeed for 10 seconds). With

abort, a connection can fail for two reasons – if a client does not receive a SYN/ACK

after three SYN transmissions, or if it does receive a SYN/ACK on any of its SYN trans-
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missions, but the server responds to its subsequent SYN/ACK ACK with a RST due to a

listen queue overflow.

Figure 4.9 shows that as the load exerted on the server increases, a typical connection

attempt involves the transmission of more than one SYN segment with default as well as

with abort. At 22,000 request/sec, the percentage of connections requiring only one SYN

transmission is 48% with default and 66% with abort. However, at 34,000 requests/sec,

this figure drops to just 26% with default and 37% with abort. In comparison, the per-

centage of connections requiring three SYN retransmissions (which consists mostly of failed

connections) is 69% with default and 43% with abort. As described earlier, with abort

rst-syn, all connections (both successful and failed) require a single SYN transmission.

The lack of SYN retransmissions not only reduces the client response times, but also allows

the server to spend more time on established connections, resulting in higher throughput.

Recall from Section 3.1.1, that we have not configured TUX and µserver to facilitate

a direct comparison. While higher response times obtained with TUX (shown in Fig-

ure 4.8(b)) in comparison to those obtained with the µserver (shown in Figure 4.7(b)) may

appear to be suggestive, this difference is because of the different configurations used in

both the servers. Both the servers use different listen queue sizes – 128 in the µserver

compared to 2048 in TUX21. The larger listen queue allows more connections to buffered

before TUX can work on them, thereby increasing the average response time. That is,

there is an inverse relationship between the number of connections buffered in the listen

queue and the average response time for those connections22. The response times obtained

with TUX using a smaller listen queue (with 128 entries) is comparable to those obtained

with the µserver.

Thus, rst-syn is effective in improving server throughput and reducing client re-

sponse times on regular clients by eliminating SYN retransmissions. As discussed in Sec-

tion 4.1.7, there are some security implications of using reserv (with or without rst-syn)

in production environments. While abort takes a reactive approach to SYN/ACK ACK

drops rather than avoiding them, it is significantly easier to implement than reserv. We

21Recall that the listen queue sizes were chosen to be the default values in Linux.
22This relationship suggests that making the queue sizes too large is counter productive because it

increases client response times and might result in more timed out connections. This result is well known

in queueing theory.
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consider abort rst-syn to be a more viable mechanism that adequately addresses server

performance as well as security requirements. Hence, in the remainder of this thesis, we

only present the results of abort rst-syn.

Windows-like Clients

In this section, we compare the results of abort rst-syn and no-syn-drop against

abort23 when used with the win-emu clients. We only present the µserver results in

this section. TUX results are similar and do not provide additional insight, so we omit

them. We also include the results of abort rst-syn on regular clients (denoted “abort

rst-syn”) for comparison. Figure 4.10 summarizes these results.
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Figure 4.10: Evaluation of the µserver with win-emu clients

Figure 4.10(a) shows that the throughput with abort rst-syn win-emu is lower than

23We chose abort because it is implemented in most UNIX TCP stacks, noting that default has slightly

lower throughput than abort.
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that with abort rst-syn. This is because of the SYNs retried by win-emu clients upon

receiving a RST. The throughput provided by abort rst-syn win-emu is initially com-

parable to that obtained with abort win-emu, however, as the request rate increases, its

throughput drops below that obtained with abort win-emu. A client that does not re-

ceive a SYN/ACK in response to its SYN retransmits a SYN at most twice with abort

win-emu, but up to three times with abort rst-syn win-emu, which explains the gap

in the queue drops between these two mechanisms in Figure 4.10(d). As shown in Fig-

ure 4.10(b), the client response time is reduced by two order of magnitude with abort

rst-syn compared to abort, even on win-emu clients. Windows TCP stacks (and hence

our emulation thereof) resend another SYN immediately upon receiving a RST for a previ-

ous SYN. An immediate retransmission ensures that the connection establishment times,

and hence, the response times, remain low for clients that receive responses from the server

on subsequent SYN transmissions24.

By avoiding the retransmission of connection establishment segments, no-syn-drop

allows more time to be spent completing work on established connections. As a result,

its throughput, at and after the peak, is more than 15% higher than that of abort

win-emu and abort rst-syn win-emu. The throughput and response time resulting from

no-syn-drop is comparable to that provided by abort rst-syn on regular clients. This

demonstrates that it is possible to deploy mechanisms that are effective in reducing response

time and improving server throughput in currently deployed client TCP stacks, including

those on Windows. A mechanism like no-syn-drop obviates the need for techniques to

filter retransmitted SYNs with a lower overhead, such as those proposed by Jamjoom and

Shin [45]. The efficiency of techniques such as SYN policing [85] can also be improved by

using no-syn-drop to eliminate retransmitted connection attempts by clients25.

24abort rst-syn will fail to improve the response times with a win-syn-retry TCP stack that uses an

exponential backoff for the resending a SYN in response to a RST. However, we are not aware of such a

TCP stack.
25Note that with no-syn-drop, we might have to perform SYN/ACK ACK policing instead of SYN

policing.

78



4.1.7 Security Implications of Connection Establishment Mech-

anisms

In recent years, resilience in the face of Denial of Service (DoS) attacks, especially SYN

flood attacks by malicious clients has been a major criteria influencing the implementation

choices for connection establishment in many server TCP stacks [54]. Techniques such as

SYN cache, SYN cookies, and early discard of invalid ACK segments have been proposed

to prevent malicious clients from consuming most of the server resources, thereby denying

service to legitimate clients. In this section we briefly discuss the security implications of the

connection establishment mechanisms discussed in this thesis, focusing on the susceptibility

of the server to SYN flood attacks. Note that we do not consider generic denial of service

attacks (e.g., attacks attempting to flood the server’s network link with invalid TCP/IP

packets) because the server TCP stack, by itself, is unable to provide protection against

such attacks without an external firewall or packet filtering mechanism. As described in

Section 2.2.3, protecting servers from generic denial of service attacks is still an area of

active research.

In a SYN flood attack malicious clients attempt to overwhelm the server by sending a

constant stream of TCP SYN requests. The source address in these requests is typically

forged to be non-existent or unreachable hosts, leaving the server with many incomplete

connections in its SYN queue, each waiting for a SYN/ACK response. Each of these SYN

queue entries not only utilize server resources but they also fill up the SYN queue, thereby

increasing the probability of the subsequent dropping of SYNs from legitimate clients. As

described in Section 4.1.5, TCP SYN cookies [14, 54] can be used to obtain a virtually

unbounded SYN queue without storing any information about incomplete connections at

the server. Current production TCP stacks (in many UNIX-like systems) already use SYN

cookies in conjunction with mechanisms such as default and abort to protect the server

from SYN flood attacks.

This leads to the following question – Are the two new connection establishment mech-

anisms described in this thesis, no-syn-drop and reserv vulnerable to SYN flood attacks?

The no-syn-drop mechanism guards against SYN flood attacks by relying on SYN cook-

ies. It is no more vulnerable to other network flooding attacks than other connection

establishment mechanism. Our current implementation of reserv, on the other hand,
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does introduce additional security concerns because it assumes that all clients that re-

ceive a SYN/ACK respond immediately with a SYN/ACK ACK. By sending bogus SYN

segments, malicious clients can not only occupy entries in the SYN queue, they can also

consume listen queue reservations. This can cause SYN segments from legitimate clients

to be dropped because no listen queue reservations are available (in addition to SYN drops

because the SYN queue is full). Note that the size of the listen queue is typically smaller

than the size of the SYN queue in most TCP stacks. All of the proactive solutions to avoid

listen queue overflows, discussed in Section 4.1.2, are similarly vulnerable to SYN flood

attacks. There is a trade-off between the extra work (e.g., processing and sending a RST

in response to a SYN/ACK ACK that is dropped) and involved in reactive approaches to

listen queue overflows such as abort and the vulnerability to SYN flood attacks entailed

by proactive solutions.

We could use SYN cookies to get an unbounded SYN queue in conjunction with an

overbooking of the listen queue, a probabilistic drop of SYNs (similar to Random Early

Drop [33]), and a periodic clean up of least-recently-used items, to improve the robustness

of reserv against SYN flood attacks. However, given the complexity involved with such

an implementation of reserv and the fact that server performance with abort is close to

that obtained with reserv (when both are used in conjunction with rst-syn), it is unclear

whether there are any real advantages26 to incorporating reserv in current production

TCP stacks. If network-based proposals to counter denial of service attacks such as ingress

and egress filtering, rate limiting, and unicast reverse path forwarding become widespread

and succeed in ensuring that all TCP segments that make their way to the server are

from legitimate clients, it would be feasible to deploy our existing reserv implementation,

without requiring any security-related changes.

26Note that reserv is more correct than abort based on a strict interpretation of RFC 793.
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4.2 Impact of TCP Connection Termination on Server

Performance

In this section, we examine alternatives to the standard connection termination mechanism

suggested in RFC 793, at the server TCP stack as well as in the client application, and

evaluate their impact on the throughput of overloaded servers

As demonstrated in Figure 2.3 and as described in Section 2.1.2, a graceful connec-

tion termination by the client, either with half-closed connection semantics (through the

shutdown() system call) or in half-duplex fashion (through the close() system call), re-

sults in a FIN being sent to the server. The server TCP stack has no way of knowing

whether the client is using half-closed connection semantics. Most server TCP stacks

assume that connections are terminated using half-closed semantics by the clients.

Supporting half-closed connections can result in an imprudent use of resources at an

overloaded server. Many browsers and web crawlers terminate connections (including those

connections that timeout or are aborted by the user) by issuing a close() system call.

That is, they do not use half-closed connection semantics. However, because the server

TCP stack supports half-closed connections, it continues to make queued data available to

the server application (i.e., the web server) through read() calls, even after receiving a FIN

from a client. Only when the data queue is completely drained will read() return EOF

(0) notifying the server application that the client has terminated the connection. Any

prior non-zero read() call is processed by the application and can result in subsequent

writes. The effort spent generating and writing data at the server is wasteful because upon

receiving the data the client TCP stack responds with a RST when the application does

not use half-closed connection semantics for terminating a connection.

Figure 4.11 illustrates the flow of TCP segments from a client (s01) that has timed

out and terminated its connection through a close() call (line 6). The server (suzuka)

TCP stack immediately acknowledges the client’s FIN (line 7). After 25 seconds, the server

application is able to read() the request, and writes the appropriate response (line 8). The

following read() returns EOF, so the server application issues a close() call to terminate

its end of the connection (line 9). The client application is not using half-closed connection
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(1) 12:41:57.297282 s01.1024 > suzuka.55000: S 1159260550:1159260550(0) win 5840

(2) 12:41:57.297305 suzuka.55000 > s01.1024: S 882478789:882478789(0)

ack 1159260551 win 5792

(3) 12:41:57.297531 s01.1024 > suzuka.55000: . ack 1 win 5840

(4) 12:41:57.297532 s01.1024 > suzuka.55000: P 1:80(79) ack 1 win 5840

(5) 12:41:57.297554 suzuka.55000 > s01.1024: . ack 80 win 46

(6) 12:41:58.797487 s01.1024 > suzuka.55000: F 80:80(0) ack 1 win 5840

(7) 12:41:58.837288 suzuka.55000 > s01.1024: . ack 81 win 46

(8) 12:42:23.079113 suzuka.55000 > s01.1024: P 1:1013(1012) ack 81 win 46

(9) 12:42:23.079131 suzuka.55000 > s01.1024: F 1013:1013(0) ack 81 win 46

(10) 12:42:23.079240 s01.1024 > suzuka.55000: R 1159260631:1159260631(0) win 0

(11) 12:42:23.079364 s01.1024 > suzuka.55000: R 1159260631:1159260631(0) win 0

Figure 4.11: tcpdump output of a client that times out

semantics so the client TCP stack responds with a RST27 to every server reply (lines 10,

11).

Client-initiated connection termination is common for HTTP 1.1 persistent connections.

In most server TCP stacks, this can result in web servers wasting resources on connections

even after they have been terminated by the client. For HTTP 1.0 connections, the server

typically initiates the connection termination after sending a response. Note that studies

have advocated the use of client-initiated connection termination to prevent the server

from having many connections in the TIME WAIT state [31, 81]. It is also possible for

both sides to simultaneously terminate their end of the connection. While it is unlikely

to happen in a browser-web server environment, a simultaneous connection termination

obviates the need for the server to support half-closed connections.

4.2.1 Disabling Support for Half-Closed Connections

We describe a mechanism that can help isolate the impact of supporting half-closed connec-

tions on server throughput under overload in this section. In particular, we are interested

in answering the following question – If the server TCP stack were to drop support for

27Note that a RST from the client can cause subsequent system calls by the server application on that

socket to fail with an ECONNRESET error.
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half-closed connections and treat all FINs as an indication that the client application is

no longer interested in either sending or receiving data on a connection, can we improve

server throughput?

Note that we are aware of problems with not supporting half-closed connections. Dis-

abling support for all half-closed connections at the server will break clients that do rely

on half-closed semantics (i.e., they will be unable to receive data from the server follow-

ing a FIN)28. In current TCP implementations, clients do not provide any indication of

whether they are using half-closed semantics in their FIN segments, hence, the server TCP

stack cannot selectively disable half-closed connections from some clients. In this thesis,

we disable support for half-closed connections in order to assess if the throughput of an

overloaded server can be improved by avoiding the imprudent use of resources on connec-

tions that clients do not care about (i.e., connections which have been terminated through

a close() call without relying on half-closed semantics). We do not suggest that server

TCP stacks should stop supporting half-closed connections entirely. However, support for

half-closed connections could be disabled at the server on a per-application basis. That

is a server-side program could issue a setsockopt() system call to notify the TCP stack

that it should not support half-closed connections on any of its sockets29. Alternatively,

the TCP protocol could be enhanced to allow an end-point to notify its peer that it is not

using half-closed semantics while terminating a connection (e.g., through a special TCP

segment such as one with the FIN and RST flags both set). We perform experimental

evaluation in this thesis to determine whether such approaches are worth pursuing.

Assuming that most clients will not use half-closed connection semantics is not unrea-

sonable. Stevens [80] points out that most client applications (except for a few remote

shell implementations) use the close() system call instead of using half-closed connec-

tions. Zandy and Miller [90] describe a socket enhancement detection protocol that relies

partly on the fact that very few applications read() from half-closed connections following

a connection termination. All the modern web browsers that we are aware of do not use

half-closed semantics. Thus, most client applications will continue to work correctly after

the support for half-closed connections is disabled at the server TCP stack.

28Additional problems with not supporting half-closed connections are outlined in Section 4.2.2.
29 Specifically the listening socket and all the sockets derived from it, including those that refer to client

connections.
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We refer to our connection termination policy that does not support half-closed con-

nections as rst-fin30. Our current implementation of rst-syn disables support for all

half-closed connections in the server TCP stack. That is, we use a system-wide param-

eter configurable through the net.ipv4.tcp rst to fin sysctl to effect rst-fin, this

option was chosen for the ease of implementation. As alluded to earlier, we intend to

implement rst-fin as an application-specific option that can be configured through the

setsockopt() system call in the future. This would allow Internet servers fine-grained

control over support for half-closed connections by selecting rst-fin based on application

semantics.

When rst-fin is enabled all FIN segments that do not have piggy-backed data (i.e.,

a segment containing data along with a FIN flag) are assumed to indicate that the client

is interested in no further read or write activity on that connection, and the server TCP

stack takes steps to immediately stop work on that connection. To achieve this, it treats a

FIN from the client as if it were a RST, and throws away all information associated with

that connection. The server TCP stack then transmits a RST to the client. Note that the

transmission of RST in response to a FIN is done directly by the server’s TCP stack without

any intervention from the server application. The server application gets notification of the

terminated connection through a ECONNRESET error on a subsequent system call on that

socket. The handling of RST at the client is completely transparent to the application

(i.e., no information is propagated by the client TCP stack to the application), provided

the socket descriptor has been destroyed using a close() call. Figure 4.12(a) illustrates

how we disable support for half-closed connections.

Note that when rst-fin is enabled, the server TCP stack sends a RST in response

to a FIN instead of sending a FIN/ACK segment. This allow clients which are expecting

half-closed connection semantics (i.e., waiting for a read() following a shutdown()) to

be notified of an abnormal connection termination, instead of getting an EOF marker

indicating that the server has no more data to send. Sending a RST in our opinion, is

not only more correct, but it also frees the server from having to process a final ACK (in

response to the FIN sent) from the client. In this way, rst-fin can reduce the amount of

time the server spends processing TCP segments on connections that clients do not care

30An abbreviation of “RST to FIN”.
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about.

If there is data piggybacked with the FIN from a client, the server TCP stack does

not invoke rst-fin, but follows the usual connection teardown process that permits half-

closed connections. This is done to avoid penalizing client TCP stacks that implement

the connection termination optimization described by Nahum et al. [66] (summarized in

Section 2.2.2), and piggyback their last data segment on the FIN. Note also that when a

RST is sent in response to a FIN, the TCP connection transitions to the CLOSED state.

Hence, if this RST is lost in a WAN environment, the subsequent retransmission(s) of FIN

(when the FIN retransmission timeout expires) from the client will receive a RST from the

server TCP stack.

4.2.2 Connection Termination through Abortive Release

Some browsers such as Internet Explorer 5 and 6 terminate connections through an abortive

release [8]. An abortive release implies that the application notifies its TCP stack to

abruptly terminate a connection by sending a RST instead of using the two-way FIN/ACK

handshake31. The abortive release procedure is illustrated in Figure 4.12(b). Applications

typically use an abortive release in response to abnormal events, for example, when a

thread associated with the connection crashes.

We have observed that Internet Explorer uses an abortive release to terminate all of its

connections, whether they represent abnormal behaviour, for example, when the browser

window is closed by the user, or a routine event, for example, when the user hits the stop

button to stop loading a page or when the browser closes a connection due to a (browser-

based) timeout. Note that using an abortive release as part of the normal connection

termination process is against the recommendations of RFC 793 and RFC 2616. RFC

2616, which describes HTTP 1.1, states, – “When a client or server wishes to timeout it

should issue a graceful close on the transport connection” [32].

A RST from the client precludes support for half-closed connections because the server

TCP stack immediately throws away all information associated with that connection, and

subsequent system calls on that connection return ECONNRESET to the server application.

31An abortive release thus corresponds to the ABORT operation specified in RFC 793.
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(a) rst-fin Termination (b) Abortive Release (close-rst)

Figure 4.12: Alternatives to supporting half-closed connections

Many socket APIs provide an option to terminate connections through an abortive release.

In the BSD socket API, applications can activate the linger parameter in the SO LINGER

socket option with a zero timeout to force the subsequent close() call on that socket to

have the abortive release semantics.

The reasons why Internet Explorer terminates all connections in an abortive fashion

are not clear. The argument that doing so prevents servers from being stuck with a lot

of connections in TIME WAIT state (suggested in [8]) is incorrect because the connection

termination is initiated by the client. Only sides that initiate graceful connection termi-

nation have to transition to the TIME WAIT state. There are usually enough ephemeral

ports at the client to allow connections in TIME WAIT state, hence the client application

need not perform an abortive release when terminating a connection. A RST sent by the

client does bypass the CLOSE WAIT and LAST ACK TCP states shown in Figure 2.3 at the

server, allowing the server TCP stack to transition directly to the CLOSED state. As alluded

to earlier, it also ensures that the server application does not work on connections that

have been given up on by the clients. Since Internet Explorer is currently the most pop-

ular web browser (used by more than 75% of clients according to some estimates [8]), we

try to answer the following question – Does an abortive connection termination by client
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applications improve server throughput? We use the close-with-reset option provided

in httperf to emulate the abortive release behaviour of Internet Explorer. We believe

that ours is the first (public) attempt to study the impact of abortive release on server

throughput. We refer to the abortive release of a connection by a client application as

close-rst32.

It is important to note that both rst-fin and close-rst can result in lost data if

data segments arrive (out of order) on a connection after a FIN or RST, or if there is data

pending in the socket buffer that has not been read (or written) by the application when

a FIN or a RST is received on a connection. Both of these mechanisms treat a connection

termination notification from the client as an indication that the client does not care

about the connection, including the potential loss of TCP-acknowledged data that might

not have been delivered to the server application. Such an approach is acceptable given

the semantics of HTTP GET requests (which are the primary cause of overload in web

servers) or when clients terminate connections on a timeout. It might not be appropriate in

other application-level protocols or protocol primitives that require reliable delivery of data

sent prior to connection termination, and do not use application-level acknowledgements.

We reiterate that we take an exploratory approach toward studying the impact of TCP

connection termination mechanisms on server throughput, not a prescriptive one.

4.2.3 Evaluation of Alternative Connection Termination Mech-

anisms

Dropping support for half-closed connections only affects server throughput. The response

time, which is determined by how long it takes to establish a connection and for the

subsequent data transfers is not affected. Hence, we only include throughput results in

our evaluation of connection termination mechanisms. For completeness, we do include a

response-time graph toward the end of this section to demonstrate that it is not affected

by connection termination mechanisms.

Figure 4.13 shows the impact of rst-fin and close-rst when used in conjunction

with default. To study if there is a relationship between connection termination and

32An abbreviation of “client connection close with RST”.
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Figure 4.13: Evaluation of alternative connection termination mechanisms

establishment mechanisms, in particular, to check if a particular connection termination

mechanism can obviate the need for better connection establishment mechanisms (or vice-

versa) – we also present the results of rst-fin and close-rst when used in combination

with abort rst-syn.

Figures 4.13(a) and 4.13(b) demonstrate that when compared to default, default

rst-fin results in a 17% improvement in the peak throughput with the µserver and 13%

improvement in peak throughput with TUX. Using rst-fin prevents resources from being

spent on processing connections that have been timed out by the client at the server. It

also allows the TCP connection state to transition directly from ESTABLISHED to CLOSED.

This frees the server from having to process additional ACK segments (in response to

FINs), including those on connections which were serviced successfully. For example, with

default in the µserver at 30,000 requests/sec, 1,659,594 out of the 6,638,376 total TCP

segments received after connection establishment represent a client acknowledgement of

the server’s FIN. The processing of these ACKs is avoided with abort rst-fin. For the

same reasons, default close-rst provides an improvement in throughput over default,

which is comparable (at and after the peak) to that obtained with default rst-fin in

both the µserver and TUX.

It is also evident that connection termination mechanisms complement connection es-

tablishment mechanisms. The throughput yielded by both rst-fin and close-rst in-

creases when they are coupled with abort rst-syn. The improvement in throughput

is especially significant in the µserver. As shown in Figure 4.13(a), when compared to
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default rst-fin, abort rst-syn rst-fin provides more than 20% higher throughput

(after peak), and abort rst-syn close-rst provides close to 30% higher throughput.

Note that with abort rst-syn close-rst, the server is able to stop working on a con-

nection upon receiving a RST from a client without having to transmit any subsequent

TCP segments. On the other hand, with abort rst-syn rst-fin, the server TCP stack

has to transmit an additional RST after receiving a client FIN. The increase in through-

put in TUX obtained with rst-fin and close-rst when used in conjunction with abort

rst-syn is comparatively smaller (around 5%).

The results of this section suggest that stopping work on connections immediately after

they have been terminated by clients can improve the throughput of an overloaded server.

The server can stop working on terminated connections by disabling support for half-closed

TCP connections (on a per-application basis), or if “cooperative” clients use an abortive

release for tearing down connections. Alternatively, existing event notification mechanisms

can be enhanced to notify a server application of a connection terminated by a client before

it makes further system calls on the socket associated with that connection, for example,

by adding a POLL FIN bit to the poll() system call. The server application could then

choose to terminate the client connection immediately, dropping support for half-closed

connections in the process.

Emulation of Typical Web Clients

In this section, we review the impact of different connection management mechanisms on

the performance of overload servers when used with typical (as of 2005) web clients –

Internet Explorer browsers running on Microsoft Windows operating systems [8]. That is,

we use Linux clients that emulate the win-syn-retry behaviour (i.e., win-emu clients)

along with httperf configured to terminate connections using an abortive release (i.e.,

close-rst). These typical web clients will be denoted as close-rst win-emu in the

following discussion.

We evaluate the following connection establishment mechanisms with typical web clients –

abort, which is implemented in most UNIX TCP stacks (and is a configurable option in

Linux), abort rst-syn, which is used in some Windows TCP stacks, and no-syn-drop,

which to the best of our knowledge is not deployed in any existing TCP stacks, but can be
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Figure 4.14: Evaluation of the µserver with typical web clients

used to work around win-syn-retry clients. We only include the results obtained with

the µserver in Figure 4.14, the results obtained with TUX are similar.

As alluded to earlier, the connection termination mechanism used does not affect the

response times. The results of abort close-rst win-emu in Figure 4.14(b) are compa-

rable to those of abort win-emu in Figure 4.10(b). By eliminating the retransmission

of connection establishment segments, abort rst-syn and no-syn-drop provide two or-

ders of magnitude reduction in response times compared to abort. The throughput of

abort rst-syn is lower with typical web clients due to the overhead of handling SYN seg-

ments retried by win-syn-retry TCP stacks. As described in Section 4.1.6, by preventing

the TCP-level retransmission of connection attempts by clients, no-syn-drop can provide

more than a 20% increase in throughput (after the peak) compared to abort on typical

web clients.

In summary, mechanisms that avoid the retransmission of connection attempts from

client TCP stacks can improve server throughput and reduce client response times under

overload. Unfortunately, win-syn-retry client TCP stacks, which do not follow the rec-

ommendations of RFC 793 with respect to handling of a RST received in response to a SYN,

can nullify the effectiveness of rst-syn. However, no-syn-drop can be used in such cases

to improve server throughput by up to 40% and reduce client response times by two orders

of magnitude. Note that although its approach might be ungainly, no-syn-drop works

equally well with regular as well as win-syn-retry clients. We have also demonstrated
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that disabling support for half-closed connections and the abortive release of connections

by client applications can improve the throughput of an overload server by more than 15%.

In the next chapter, we will revisit some of these connection management mechanisms and

evaluate them under different operating environments than the ones used in this chapter.
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Chapter 5

Performance Evaluation Under

Different Environments

In this chapter, we evaluate some of the connection management mechanisms described

in Chapter 4 under different environments. For the experiments presented in Chapter 4,

we used a single workload (namely, the one-packet workload) to effect persistent overload

with a 10 second client timeout on a Xeon (x86) machine running Linux 2.4.22 as our

server. In this chapter, we examine whether the implementation choices for connection

management, especially connection establishment, continue to have an impact on server

throughput and client response times when used with different workloads, bursty traffic,

different client timeouts, early packet drops, and different platforms. Note that for clarity,

we only modify one parameter at a time in each of the following sections.

For brevity, we only present results of the µserver on regular clients in this chapter.

The TUX results are qualitatively similar and do not provide additional insight. Also, as

demonstrated in Section 4.1.6, the no-syn-drop mechanism can be used to achieve the

effect of rst-syn on Windows-like (win-syn-retry) clients. Thus, in this chapter we focus

on presenting the throughput and response time results obtained with the µserver under

different environments. The analysis of the results with different connection management

mechanisms (using supporting metrics such as error rate and queue drops) was provided

in Chapter 4, we will not repeat that discussion in this chapter.
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5.1 SPECweb99-like Workloads

In this section, we present the results of connection management mechanisms on the in-

memory, SPECweb99-like workloads. As described in Section 3.2.2, we use three SPECweb-

99-like workloads, which differ in the average number of requests per connection. The

single-request-per-connection (referred to as “1 req/conn”) workload extends the one-

packet workload with variable-sized file transfers. The 7.2-requests-per-connection (re-

ferred to as “7.2 req/conn”) workload uses the SPECweb99-stipulated 7.2 average requests

per connections. The 2.62-requests-per-connection (referred to as “2.62 req/conn) work-

load uses an average of 2.62 requests per connection to mimic the behaviour of current web

browsers, particularly Internet Explorer.

In Figure 5.1, we compare the throughput and response times obtained with abort

rst-syn to that obtained with default on the three SPECweb99-like workloads. Recall

that abort rst-syn seeks to eliminate the retransmission of SYN segments by client TCP

stacks, while default represents the default connection establishment mechanism in Linux.
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Figure 5.1: Evaluation of connection establishment mechanisms with the µserver on

SPECweb99-like workloads

Figure 5.1(a) shows that abort rst-syn does not improve upon the throughput of

default on the “7.2 req/conn” workload. This is not surprising, given that this workload

does not aggressively create new connections. Even when the target request rate is 30,000

requests/sec, the rate of new connections is substantially smaller (only around 3,900 con-

nections/sec). As a result, the implementation choices for connection establishment do not

have a significant impact on server throughput. However, the response time with abort
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rst-syn is significantly (around 80%) lower than that obtained with default, in spite of

the fact that the “7.2 req/conn” workload contains multiple file transfers with an average

transfer size of 15 KB. That is, the transfer time for this workload is not negligible, yet

the higher overall response time with default indicates that the transfer time is a small

fraction of the connection establishment time. Thus, during overload the connection es-

tablishment time dominates the overall response time. Note that the reduction in response

time is not because fewer clients are serviced. The error rate with abort rst-syn is in

fact slightly lower than that with default, as explained in Section 4.1.6.

On the connection-oriented “1 req/conn” workload, abort rst-syn provides more than

a 20% improvement in throughput after the peak and two orders of magnitude reduction

in response time when compared with default. These differences are similar to those

reported for the one-packet workload in Section 4.1.6, which indicates that the connection-

oriented nature of these workloads dominates the amount of content transferred.

Finally for the “2.62 req/conn” workload, with abort rst-syn, the throughput after

the peak is around 10% higher and the response time is two orders of magnitude lower when

compared with default. As described in Section 3.2.2, while SPECweb99 incorporates

many aspects of the workloads seen in production web sites, it overestimates the number

of requests per connection issued by modern browsers. These results clearly indicate that

the impact of the connection establishment mechanisms on the server throughput depends

on the rate of new connections at the server. At the same time, mechanisms such as abort

rst-syn provide a substantial reduction in client response times even on workloads that

are not connection-oriented.

In order to evaluate whether immediately stopping work on connections that have been

terminated by clients can improve server throughput on the SPECweb99-like workloads,

we present the results of default and default close-rst in Figure 5.2. Note that the

throughput obtained with default rst-fin was similar to that obtained with default

close-rst, but we leave out its results from Figure 5.2 for clarity.

The difference in the throughput obtained with default close-rst and default

is negligible for the “7.2 req/conn” workload, as expected, because this workload does

not stress the connection management mechanisms of the server. By ensuring that the

server does not spend resources on connections that have been terminated by the clients,
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close-rst can provide around an 8% improvement in throughput after the peak on the

“2.62 req/conn” workload, and an 11% increase in throughput on the “1 req/conn” work-

load.

The results in this section indicate that given current browser and TCP stack implemen-

tations, connection establishment mechanisms such as abort rst-syn, which prevent the

TCP-level retransmission of connection attempts from clients, significantly reduce client

response times and increase the throughput of web servers during overload, without requir-

ing any additional effort on the part of web site administrators1. Additionally, an abortive

release of connections by client applications (as well as disabling support for half-close

connections at the server TCP stack) can result up to 10% improvement in the throughput

of an overloaded server.

5.2 Bursty Traffic

We use persistent overload (described in Section 3.2.4) in our evaluation of connection

management mechanisms in this thesis because it is representative of the load handled by

real-world servers during flash crowds. During persistent overload, most of the retrans-

1Other than turning on the sysctls that enable these mechanisms, if they are not on by default.
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mission of connection establishment attempts by the client TCP stacks occur while the

server is still under overload. As demonstrated in Chapter 4, under persistent overload,

connection establishment mechanisms such as abort rst-syn and no-syn-drop increase

server throughput and reduce client response times by notifying client TCP stacks to elim-

inate the retransmission of connection attempts. In this section, we conduct a preliminary

investigation of the performance of such mechanisms under bursty traffic. Under bursty

traffic, overload conditions at the server are transient, with short-lived bursts of heavy

traffic (overload bursts) interrupting protracted periods of light load. Unlike persistent

overload, the duration of the bursts is short enough that the overload has subsided by the

time the majority of clients retransmit their SYNs.

We stress that the results presented in this section are preliminary. It might be possible

to size the SYN and listen queues to avoid queue drops during bursty traffic. Recall that

the implementation choices for connection establishment come into play only when there

are queue drops. We are in the process of developing a mathematical model for sizing

these queues so as to minimize the number of queue drops. In this section, we use a simple

method for generating bursts that allows us to compare the behaviour of abort rst-syn

and default under bursty traffic with the default sizes for the SYN and listen queues

(which were also used in all other experiments).

Figure 5.3 illustrates our simple approach for generating bursty traffic. It consists

of two alternating phases – an overload burst that lasts for b seconds where the server

receives sustained connection attempts at a rate of R’ requests per second, and an inactivity

period, where the server receives no client connections2 for 5 seconds. Although in general

inactivity periods can be variable length, we assume a fixed 5 second inactivity period to

simplify our analysis. The server can handle some connections “left over” from the burst

(especially those connections which are initiated toward the end of the burst), if they are

retried by the clients during the inactivity period. By using an inactivity period instead

of a period of light load, our model recreates a worst-case scenario for mechanisms such

as abort rst-syn, which abort client connection attempts immediately during overload

(i.e., whenever queue drops occur), even though the server might in a position to handle

2Unfortunately, our workload generator does not support the creation of no connections, so we had to

create one connection per second during the inactivity period.
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Figure 5.3: A simple approach for generating bursty traffic

them later.

We use three different burst lengths – 10 seconds (denoted “10s-burst”), 20 seconds

(denoted “20s-burst”), and 40 seconds (denoted “40s-burst”) to study how the duration of

the overload burst relative to the inactivity period affects server throughput and response

time. Note that each data point for the experiments in this section was run for 225 seconds

to ensure that the number of bursts and inactivity periods is evenly balanced3. We also use

a request rate (R’) during the burst to ensure that the average request rate achieved for a

particular data point matches the target rate (R) specified to httperf. For example, with

a 10 second burst length and a 5-second inactivity period, to achieve an overall target rate

of 10,000 requests/sec, a net rate of 15,000 request/sec is used during the burst. Without

an increase in the rate during the burst, the average request rate achieved would be much

lower because requests are suppressed during the inactivity period. The results comparing

abort rst-syn and default for the three burst lengths appear in Figure 5.4

As alluded to earlier for the 10 second burst, Figure 5.4(a) shows that abort rst-syn

results in around 25% lower throughput compared to default. By aborting connections

every time there is a queue drop, abort rst-syn is able to reduce the queue drop rate

as well as the response times (shown in Figures 5.4(d) and 5.4(b)). However, as shown in

Figure 5.4(c), this reduction comes at the cost of a higher error rate because connections

3225 is the least common multiple of 15, 25, and 45.
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Figure 5.4: Evaluation of the µserver under bursty traffic

are aborted immediately on a queue drop, so overall fewer clients get serviced with abort

rst-syn for the 10 second burst workload. On the other hand, with default, clients whose

initial SYN segments are dropped can get a response from the server on a subsequent SYN

retransmission, especially if it occurs during an inactivity period at the server. Note

that with a 10 second burst and a 5 second inactivity period, the probability of SYN

retransmissions occurring during an inactivity period is high.

Interestingly, as the burst length increases to 20 seconds, the difference in throughput

between abort rst-syn and default becomes negligible. With a 40 second burst, the

throughput of abort rst-syn is higher than that of default, which is similar to what

we observed under persistent overload. As the burst length is increased relative to the

length of the inactivity period, most of the client retransmissions with default happen

not during an inactivity period, but while the server is still overloaded, thereby lowering

the server throughput. The response time obtained with abort rst-syn is two orders of
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magnitude lower than that obtained with default for all the three burst lengths. Note

that the reduction in response time is not due to an increase in the error rate.

Using a 10 second inactivity period with the same three burst-lengths did not lead to

a significant change in the throughput or the response time (for both abort rst-syn and

default) when compared with the results shown in Figure 5.4. This section demonstrates

that there is a crossover point with respect to how long an overload burst lasts relative to

the length of the inactivity period, after which connection establishment mechanisms such

as abort rst-syn perform as well as or better than default in terms of server throughput.

Note that the client response times are significantly lower when abort rst-syn is used

instead of default, irrespective of the length of the burst. The discussion in this section

also applies to the no-syn-drop mechanism, which aborts client connection attempts at

the ACK stage instead of the SYN stage as done in rst-syn. Both these mechanisms can

result in suboptimal throughput during short-lived bursty traffic when client applications

(or end users) do not retry a connection immediately upon receiving an explicit failure

notification from the server.

In this section, we used a simple model of bursty traffic along with a fixed-length

inactivity period. In the future, we intend to perform a more rigorous analysis to determine

exactly where this crossover point lies for variable-length, variable-rate periods of overload

and light load. Dynamic techniques can then be used to detect persistent overload and

notify some client TCP stacks to stop the retransmission of connection attempts. One

such simple dynamic technique that addresses both bursty traffic and persistent overload

is described below. The server TCP stack assumes short-lived bursty traffic when queue

drops first occur. It checks periodically if queue drops continue to occur for t seconds. If

queue drops do last for t seconds, persistent overload is detected and the TCP stack notifies

clients to stop the retransmission of connection attempts. Although the server throughput

with this mechanism will be slightly lower at the start of the persistent overload period,

the server is not adversely affected by bursty traffic. The value of t can be determined

analytically (based on the crossover point) or empirically using traces from flash crowds.

We believe that the automatic detection of persistent overload can form the basis of

interesting research in the future. Note that the mechanisms discussed in this thesis do

not have an impact on server behaviour under light loads. Mechanisms such as abort
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rst-syn or no-syn-drop provide a significant improvement in throughput during persis-

tent overload. However, these mechanisms might result in suboptimal throughput during

short-lived bursts of heavy traffic, techniques to automatically detect persistent overload

can help eliminate this limitation. Both abort rst-syn and no-syn-drop provide more

than an order of magnitude reduction in client response times during bursty traffic as well

as under persistent overload. We believe that the results reported in this thesis make a

strong case for deploying mechanisms that notify clients to stop the TCP-level retransmis-

sion of connection attempts in production TCP stacks.

5.3 Different Client Timeouts

For all of our experiments in this thesis we use a 10 second client timeout as explained in

Section 3.2.3. That is, if the client application (httperf) does not receive a SYN/ACK or

a response to its request from the server within 10 seconds, it gives up on its connection,

marking it as an error. The client application typically times out because it does not receive

a SYN/ACK in response to its SYN. The timeout in turn influences the total number of

SYN transmissions by the client TCP stack. As shown in Figure 4.5, the Linux TCP stack

retransmits SYN segments five times for up to 93 seconds after a client application issues a

connect() system call (if no SYN/ACK is received for any of the SYN transmissions). A

timeout of 10 seconds allows for at most three SYN transmissions, including retransmissions

3 and 9 seconds after the original transmission. This is similar to the behaviour of TCP

stacks in Windows 2000 and XP.

In this section, we study the impact of using different timeout values on the throughput

and the client response times when the server is under overload. We use the following

timeout values for our experiments – 1 second, 4 seconds, 10 seconds, and 22 seconds.

These values have been chosen to allow for one second after the transmission of the first, the

second, the third, and the fourth SYN respectively (in Linux), after which the client gives

up on the connection if it does not receive a server response. In Figure 5.5, we compare

the throughput and the response time obtained with abort rst-syn to that obtained

with default with these four timeout values. Note that using a 22 second timeout we

were unable to generate more than 28,000 requests/sec with default using just 8 client
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Figure 5.5: Evaluation of the µserver with different client timeouts

machines because the clients ran out of ephemeral ports. For this reason, data points

after 28,000 requests/sec are missing for the default results with the 22 second timeout

in Figure 5.5.

Figure 5.5(a) demonstrates that as the timeout increases, the throughput provided by

default decreases. In contrast, the throughput with abort rst-syn is not affected by

the timeout value because no SYN retransmissions are permitted. The improvement in

throughput after the peak with abort rst-syn in comparison to default is close to 20%

with a 4 second timeout, more than 27% with a 10 second timeout, and more than 35%

with a 22 second timeout. The throughput as well as the response time obtained with

default is similar to that obtained with abort rst-syn with a 1 second timeout because

there are no SYN retransmissions.

As shown in Figure 5.5(b), the response times obtained with abort rst-syn are two

orders of magnitude lower than that obtained with default for timeout values over 1

second. This is because clients can get service on later SYN retransmissions with default.

Note that we could increase the gap in the response times between abort rst-syn and

default even further (i.e., to three orders of magnitude) simply by using a larger timeout

(e.g., 46 seconds).

The results in this section demonstrate that as the timeout value used by client appli-

cations or users increases, the improvement in throughput and response times provided by

connection establishment mechanisms such as abort rst-syn (which prevents the TCP-

level retransmissions of connection attempts) increases as well.
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5.4 Early SYN Drops

In this section we describe a mechanism that allows an early discard of client connection

establishment packets under overload anywhere in the networking stack. This mechanism

relies only on existing data structures available in the Linux TCP stack, in particular, it

only uses the listen and SYN queues. Unlike previous work by Voigt et al. [85] or Iyer et

al. [40], no external admission control technique is required. We refer to our mechanism as

early-syn-drop.

Researchers have advocated dropping packets as early as possible in the networking

stack in order to minimize the resources spent on dropped packets [63]. In this section,

we demonstrate that dropping SYN segments earlier in the networking stack does not

significantly reduce their negative impact on server throughput. That is, the high overhead

of processing SYN segments during high loads is not an artifact of a poor implementation

of TCP connection establishment in Linux. In the process, we point out that techniques

such as persistent dropping [45] that seek to filter our retransmitted SYN segments with a

lower overhead are unlikely to succeed in improving server throughput.

Figure 5.6 outlines the code path4 taken by a TCP SYN segment in the NAPI-enabled

Linux networking stack. The packet is first processed by the driver and then by a NAPI-

based kernel thread when it is received. An skbuff encapsulating the packet is created, and

it is passed on to the IP layer for processing. Note that Figure 5.6 shows the code path for

IPv4, however, the code path for IPv6 is similar. A packet destined for the local machine is

then passed on to the TCP layer for further processing. The tcp v4 rcv function (line 13)

serves as an entry point into the TCP layer from the IP layer, while tcp v4 conn request

(line 25) implements the bulk of the SYN processing, including dropping SYN segments or

responding with a SYN/ACK. As seen in Figure 5.6, multiple procedures (many of which

are inlined hash table lookups) need to be invoked at the TCP layer before a SYN can be

processed.

We now describe how early-syn-drop is implemented. A SYN segment is normally

dropped whenever the SynQ3/4Full or ListenQFullAtSyn rules are triggered. However,

as indicated in Section 4.1.3, when abort is used in our environment, SYN segments are

4In the figure, indentation distinguishes called functions from the callee, and all function at the same

level of indentation in a particular component occur in sequence.
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[Device Driver / Software Interrupt]

(1) e1000_intr (interrupt handler)

(2) netif_rx_schedule (schedules software interrupt)

[software interrupt scheduling code omitted]

(3) net_rx_action (run when software interrupt is scheduled)

(4) e1000_clean (dev->poll)

(5) e1000_clean_rx_irq

(6) [NAPI accounting code omitted]

(7) netif_receive_skb (calls ip_rcv)

[IP]

(8) ip_rcv

(9) nf_hook (netfilter hook, disabled in our configuration)

(10) ip_rcv_finish

(11) ip_local_deliver

(12) ip_local_deliver_finish (calls tcp_v4_rcv)

[TCP]

(13) tcp_v4_rcv

(14) __tcp_v4_lookup

(15) __tcp_v4_lookup_established

(16) __tcp_v4_lookup_listener

(17) tcp_v4_do_rcv

(18) tcp_v4_rcv_established (fast path for ESTABLISHED sockets)

(19) tcp_v4_hnd_req (otherwise)

(20) tcp_v4_search_req

(21) tcp_v4_check_req (req found, try to transition from SYN_RECV to ESTAB.)

(22) tcp_v4_syn_recv_sock (fails if listen queue is full)

(23) __tcp_v4_lookup_established (if req not found)

(24) tcp_rcv_state_process

(25) tcp_v4_conn_request (for LISTEN sockets, process SYN, try to send SYN/ACK)

Figure 5.6: TCP connection establishment code path in Linux with NAPI
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dropped only because the listen queue is full5. Hence, as long as the listen queue is full6,

SYN segments can be dropped earlier in the networking stack. Whenever a SYN or a

SYN/ACK ACK is dropped due to ListenQFullAtSyn or ListenQOverflow, a flag is set.

It is unset whenever space is created in the listen queue following an accept() call. This

flag is visible across the various layers in the networking subsystem and when set, earlier

methods can drop SYN segments without passing them on to subsequent functions (i.e.,

higher up the networking stack). The early-syn-drop mechanism thus provides basic

admission control functionality that relies only on the listen queue data structure in the

TCP stack. By enforcing packet drops only when queue drops occur, early-syn-drop

ensures that the server is never under-utilized during overload.

The flag indicating that SYNs can be dropped is visible throughout the networking

subsystem allowing early-syn-drop to be enforced at various stages in the network packet

processing. We have explored two such options – at the entry point of the TCP layer (i.e.,

in the tcp v4 rcv function (line 13)), and at the entry point of the IP layer (i.e., in the

ip rcv function (line 8)). Dropping SYN segments at the entry point of the TCP layer

obviates the need for hash table lookups when the listen queue is full. Similarly, dropping

SYN segments at the entry point of the IP layer reduces the resources spent on dropped

packets in further IP and TCP processing. Note that some packet filters and firewalls (e.g.,

netfilter) use hooks at the entry point of the IP layer to enforce dropping of packets.

While we did not use a generic packet filter because of the high overhead involved, we

added code at various stages in the networking stack to drop SYN segments by examining

the flags field in the TCP headers. We did not observe a significant difference in server

throughput (or response time) between the implementation of early-syn-drop at the

entry point of the IP layer and that at the TCP layer. In this section, we will present

the results of early-syn-drop implemented at the entry point of the TCP layer because

this approach preserves protocol layering. Note that it might be possible to implement

early-syn-drop in the driver allowing certain packets to be dropped even before they are

pulled off the network card. To our knowledge, the e1000 driver used in our evaluation

does not support selective packet drops on the network card. We intend to explore the

5Queue drops due to the SYN queue being full can also be avoided by using SYN cookies.
6It would be trivial to add a rule to enforce early drops when the SYN queue is full.
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possibility of enforcing early-syn-drop directly at the network card in the future.

It is possible to use early-syn-drop in conjunction with other connection establish-

ment mechanisms. In fact, we can use the early-syn-drop mechanism in combination

with default or any of the connection establishment alternatives shown in Figure 4.1.

To isolate the impact of early-syn-drop, we present the results of abort and abort

rst-syn when used with and without early-syn-drop in Figure 5.7. While abort

early-syn-drop implies a silent, but early drop of SYN segments, with abort rst-syn

early-syn-drop, whenever SYN segments are dropped early, a RST is sent to the clients.

Note that abort rst-syn (without any early SYN drops) serves as a yardstick to measure

the effectiveness of abort early-syn-drop.
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Figure 5.7: Evaluation of the µserver with early SYN drops

Figure 5.7(a) shows that early-syn-drop fails to yield a substantial improvement in

throughput. The increase in throughput over abort with abort early-syn-drop is less

than 5%, and nowhere as significant as the improvement provided by abort rst-syn. In

fact, even abort rst-syn early-syn-drop fails to yield more than a 5% improvement

in throughput over abort rst-syn. We treat all received SYN segments uniformly, ir-

respective of whether they are retransmitted or not. Hence, as shown in Figure 5.7(b),

our implementation of early-syn-drop cannot reduce the client response time, which is

influenced by retransmitted SYN segments.

Note that early-syn-drop is effective in dropping SYNs early when the listen queue

is full. For example, at 30,000 requests/sec, with abort early-syn-drop, 4,979,497 out

of the 7,610,976 SYN segments received are dropped, out of which 4,968,015 SYNs are
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dropped early, and only 11,482 SYNs are dropped through the normal SYN-processing

code path7.

Thus, the early-syn-drop mechanism is effective in ensuring that SYN segments are

dropped early in the networking stack during server overload. However, an early drop fails

to reduce the overhead of processing SYN segments. Consequently, it does not improve

server throughput under overload compared to mechanisms that explicitly notify clients to

stop the TCP-level retransmission of connection attempts. In light of the results in this

section, we expect that mechanisms such as rst-syn and no-syn-drop will provide better

server throughput during flash crowds compared to approaches like persistent dropping [45],

which require SYN segments to be processed at the server before they are dropped. We

intend to determine if this is the case in future work.

5.5 Different Hardware Platforms and TCP Stacks

We use a Xeon (x86) machine running a Linux 2.4.22 kernel as the server in all of our

experiments. In this section, we revisit some of the TCP connection establishment and ter-

mination mechanisms described in Chapter 4, evaluating their performance on a Itanium-2

(ia64) server machine that runs a current Linux 2.6.11 kernel. We show that the results of

the connection management mechanisms presented in this thesis are not sensitive to the

hardware platform used for their evaluation.

The Itanium-2 is a 64-bit architecture that uses features such as an explicitly parallel

instruction set that make it very different from the 32-bit x86 architecture. As described

in Section 3.1.2, the Itanium-2 server used for the experiments in this section also has

a larger cache and main memory compared to the x86 machine used in the rest of our

experiments. Recall also that the implementation of connection management in the Linux

2.6 TCP stack (as of the current version, 2.6.11.6) has not changed from that in the 2.4

stack. In Figure 5.8, we present the throughput and response time results for default,

abort, abort rst-syn, and abort rst-syn rst-fin.

The results shown in Figure 5.8 are qualitatively similar to those presented in Chapter 4.

7Drops of SYN segments through the normal code path must take place in order to trigger subsequent

early SYN drops.
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Figure 5.8: Evaluation of the µserver on an Itanium-2 server and a Linux 2.6 kernel

Using abort fails to provide a substantial improvement in the throughput or the response

time over default due to the overhead of processing retransmitted SYN segments. With

abort rst-syn, there is close to a 15% improvement in throughput after the peak, and

nearly two orders of magnitude reduction in client response times, when compared with

abort and default. Using rst-fin in conjunction with abort rst-syn results in 30%

higher throughput after the peak compared to default.

Note that in absolute terms, the results of all the connection management mechanisms

(including default) are worse on the Itanium-2 server than those on the Xeon server. In

particular, the peak throughput is 38% lower. We believe that is because the design and

implementation of efficient compilers and kernel subsystems on the Itanium architecture

is still under active development. However, the results of the connection management

mechanisms are qualitatively similar to those on the Xeon server used in the rest of our

experiments. Thus, the results reported in this thesis are not an artifact of the server

hardware platform or the version of the (Linux) TCP stack used in the experiments.

The results presented in this Chapter reaffirm the fact that the implementation choices

for TCP connection management studied in this thesis can have a significant impact on

server throughput and client response times in a variety of environments. We hope that our

work can assist application developers, system administrators, and protocol implementers

in choosing an appropriate mechanism to ensure good Internet server performance under

overload.
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Chapter 6

Conclusion

In this thesis, we provide a better understanding of the behaviour of an overloaded server.

In particular, we describe some of the causes of the drop in server throughput and the

increase in client response times as the load at the server increases. After studying sev-

eral different connection management mechanisms, we demonstrate that implementation

choices for TCP connection establishment and termination can have a significant impact

on server throughput and client response times during overload conditions such as flash

crowds.

We review the existing approaches for implementing connection establishment in TCP

stacks in Linux, various flavours of UNIX, and Windows. We point out a shortcoming

in the default Linux implementation of connection establishment (default). The silent

drop of SYN/ACK ACK segments from clients when the listen queue overflows at an

overloaded server can cause a disconnect between the TCP states at the clients and the

server, resulting in unnecessary traffic at the server as well as in the network. TCP stacks

in UNIX and Windows implement the abort mechanism to prevent this disconnect by

sending a reset (RST) to clients whose SYN/ACK ACK segments are dropped. The Linux

TCP stack should similarly enable abort by default. Although proactive mechanisms such

as listen queue reservation (reserv) can be used avoid listen queue overflows, they are more

vulnerable to SYN flood denial of service attacks in the current Internet infrastructure.

We show that mechanisms implemented at the server TCP stack, which eliminate the

TCP-level retransmission of connection attempts by clients during overload, can improve
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server throughput by up to 40% and reduce client response times by two orders of magni-

tude in a variety of operating environments. Unfortunately, a mechanism such as rst-syn,

which sends RST to clients whose SYN segments are dropped, cannot be effectively de-

ployed because some client TCP stacks, notably those on Windows operating systems, do

not follow RFC 793 and instead retry a SYN immediately upon receiving a RST from the

server for a previous SYN. We describe a mechanism called no-syn-drop that prevents the

retransmission of connection attempts even in Windows-like TCP stacks. In no-syn-drop,

no SYN segments are dropped, instead the server TCP stack uses abort to reset connec-

tions from clients whose SYN/ACK ACKs cannot be accommodated in the listen queue.

While the no-syn-drop approach is ungainly, it requires no modifications to client-side

TCP stacks and applications, or server-side applications.

We believe that the results reported in this thesis make a strong case for TCP stack

implementors to develop a clean mechanism to allow an overloaded server to explicitly

notify clients to stop the retransmission of SYN segments. A silent drop of SYN segments

as suggested in RFC 3360 [34] is harmful to Internet server throughput and client response

time during persistent overload conditions such as flash crowds. Such an overload notifi-

cation mechanism might be ICMP-based [44], it could leverage the text-based extensions

suggested in RFC 793 to describe the cause of a TCP RST, or it could use a specially

crafted TCP segment (e.g., a segment with the SYN, ACK, and FIN flags set)1. The

client TCP stack can propagate this notification to the application through an appropriate

socket-level error message such as ESERVEROVRLD.

We demonstrate that supporting half-closed TCP connections can lead to an impru-

dent use of resources at an overloaded server when client applications terminate connections

using the half-duplex semantics offered by the close() system call. We describe a mech-

anism called rst-fin that disables support for half-closed connections at the server TCP

stack. We also examine whether client applications that terminate connections using an

abortive release (such as Internet Explorer) affect server throughput. Our results indicate

that both an abortive release and rst-fin improve server throughput by 10%-15% on

most workloads. While typical web transactions (i.e., HTTP GET requests) can operate

1A specially crafted segment can allow a client which receives a RST to distinguish between server

overload and the lack of listening socket at the requested port.
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with the relaxed data-delivery guarantees entailed by an abortive connection release or

rst-fin, this trade-off between strict reliability and higher throughput might not be ac-

ceptable for all application protocols. Instead of clients terminating connections abortively,

an application-specific socket option could be implemented to allow server applications to

select the rst-fin approach based on application protocol semantics.

6.1 Future Work

In the future, we intend to conduct a detailed study of the impact of TCP connection estab-

lishment mechanisms on server throughput under short-lived bursty traffic. In particular,

we plan to investigate exactly how long a burst needs to last before it can be treated

as persistent overload and examine whether the SYN and listen queues can be sized to

minimize queue drops during short-lived bursts. We also intend to explore techniques to

distinguish bursty traffic from persistent overload conditions so that the server can notify

clients to stop the retransmission of connection attempts only when those retransmissions

are likely to occur while the server is still under overload.

Additionally, we plan to examine the impact of TCP connection management mecha-

nisms on server throughput and client response times under wide-area network conditions,

using tools such as NIST Net [20] to simulate wide-area traffic characteristics such as

delays and packet loss. We also intend to reevaluate the performance of the connection

management mechanisms discussed in this thesis with specialized TCP stacks, such as those

offloaded on to the network card or those implemented on dedicated packet-processing CPU

cores, when such stacks become widely available. Furthermore, it would be instructive to

assess the impact of the mechanisms studied in this thesis on dynamic-content workloads.

Finally, the results reported in this thesis indicate that it is possible to sustain tens of

millions of hits per hour using an out-of-the-box server in our environment. This suggests

that a well-designed user-space web server with a modified TCP stack running Linux on a

uniprocessor commodity Xeon machine can provide good performance under overload. We

intend to evaluate whether these developments obviate the need for maintaining elaborate

web server farms running specialized load balancers in order to host high-volume web sites.
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Appendix A

Glossary

abort: Connection establishment mechanism that aborts a client connection with a RST

when ListenQOverFlow is triggered upon receiving a SYN/ACK ACK. Implemented

in TCP stacks in FreeBSD, HP-UX, Solaris and Windows. Implemented but not

enabled by default in the Linux TCP stack.

abort early-syn-drop: Connection establishment mechanism that aborts a client con-

nection with a RST whenever a SYN/ACK ACK is dropped and effects an early drop

of SYNs while the server is overloaded. See also early-syn-drop.

abort rst-syn: Connection establishment mechanism that aborts a client connection with

a RST whenever a SYN/ACK ACK or a SYN is dropped (due to ListenQOverflow,

SynQ3/4Full, or ListenQFullAtSyn).

abort rst-syn early-syn-drop: Connection establishment mechanism that aborts a

client connection with a RST whenever a SYN/ACK ACK or a SYN is dropped.

Note that SYNs are dropped early while the server is overloaded. See also early-syn-

drop.

abort rst-syn close-rst: Connection management mechanism that uses abort rst-syn

for connection establishment with clients that terminate their connections using an

abortive release (close-rst).
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abort rst-syn rst-fin: Connection management mechanism that uses abort rst-syn

for connection establishment in conjunction with rst-fin for connection termination

(which disables support for half-closed TCP connections at the server).

abort rst-syn win-emu: Connection establishment mechanism that uses abort rst-syn

when dealing with win-emu clients, which retry a SYN upon receiving a RST for a

previous SYN.

ACK stage: The second step in the three-way TCP connection establishment handshake

concerned with the processing of a SYN/ACK ACK. See also SYN stage.

client TCP stack: The client-side functionality provided by the TCP stack in an oper-

ating system.

close-rst: An abortive release of a connection, where the client application forces its

TCP stack to terminate a connection by sending a RST. Implemented by Internet

Explorer 5 and 6.

default: The default connection establishment mechanism in the Linux TCP stack (im-

plemented in the 2.4 and the current 2.6 kernel, as of 2.6.11.6), which silently drops

SYN segments (due to SynQ3/4Full or ListenQFullAtSyn) as well as SYN/ACK ACK

segments (due to ListenQOverflow).

early-syn-drop: A mechanism that allows an early drop of SYN segments anywhere in

the networking stack while the connection establishment queues are full due to server

overload.

ListenQFullAtSyn: A rule dictating that a SYN segment be dropped because the listen

queue is full. Enforced at the SYN stage. See also ListenQOverflow and SynQ3/4Full.

ListenQOverflow: A rule dictating that a SYN/ACK ACK segment be dropped be-

cause there is no space in the listen queue. Enforced at the ACK stage. See also

ListenQFullAtSyn and SynQ3/4Full.
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no-syn-drop Connection establishment mechanism that does not drop any SYN seg-

ments, but relies on abort to reject client connections on ListenQOverflow-induced

SYN/ACK ACK drops.

queue drop: A SYN or SYN/ACK ACK segment that cannot be accommodated in the

SYN or the listen queue and has to be dropped.

regular clients: TCP stacks which give up on a connection upon receiving a RST

in response to a SYN and indicate an error to the application, thus following the

recommendations of RFC 793. See also win-syn-retry.

reserv: Connection establishment mechanism that implements listen queue reservation

at the SYN stage.

reserv rst-syn: Connection establishment mechanism that sends a RST in response to

a SYN whenever a reservation cannot be made in the listen queue.

rst-fin: Connection termination mechanism that disables support for half-closed TCP

connections at the server. All FIN segments are assumed to indicate that a client

is not interested in further read or write activity on a connection, hence, the server

sends a RST in response to a client’s FIN.

rst-syn: Connection establishment mechanism that sends a RST to a client whenever a

SYN segment is dropped. Implemented in some Windows TCP stacks.

server TCP stack: The server-side functionality provided by the TCP stack in an

operating system.

SYN/ACK ACK: A TCP segment used by the client to acknowledge that it has received

the SYN/ACK sent by the server.

SYN drop: A silent drop of a SYN segment without any client notification, as imple-

mented in most UNIX TCP stacks.

SYN stage: The first step in the three-way TCP connection establishment handshake

concerned with the processing of a SYN. See also ACK stage.
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SynQ3/4Full: A rule dictating the dropping of a SYN segment because the SYN queue

is three-quarters full. Enforced at the SYN stage. See also ListenQFullAtSyn and

ListenQOverflow.

sysctl: An administrator-configurable parameter in Linux.

win-emu: Our emulation of the win-syn-retry behaviour in the Linux client TCP stack.

See also win-syn-retry.

win-syn-retry: Behaviour of some client TCP stacks, notably those on Windows op-

erating systems, which do not follow the recommendations of RFC 793 and retry a

SYN upon receiving a RST for a previous SYN.
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