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ABSTRACT 

 

Lithium–sulfur batteries are a promising candidate to support the demand for high energy 

density storage systems. The active material is sulfur, which presents the advantages of being 

abundant on earth, thus inexpensive, and environmentally friendly. However the use of conventional 

organic liquid electrolytes in these batteries prevents them from being commercialized, because of 

many technical problems that have yet to be overcome. One of the major issues is the polysulfide 

shuttle which leads to fast decay of cell performance. A solution is to use all-solid-state batteries 

instead, thus removing the inherent hazards to liquid batteries such as flammability and leakages. The 

drawbacks for all-solid-state are the increase in resistance of the electrolytes, the deterioration of the 

electronic and ionic pathways at the solid/solid interfaces, and the expensive processes and designs 

for their manufacture. In this thesis, research is carried out in an attempt to find new superionic 

conductors for solid electrolytes, improve on known conductors, and investigate the performance of 

all-solid-state cells using different fabrication methods and morphologies.  

In the first part of this thesis, the parameters influencing the synthesis of the well-known 

super-ionic conductor Li7P3S11are studied, in order to establish a more systematic method to produce 

this metastable phase at larger scales. Then, new crystal structures are uncovered in the 67.Na2S-

33.P2S5 glass system. After thermal and spectroscopic analyses, it seems that these phases might be 

polymorphs of the known phase Na4P2S7, although its crystal structure has never been reported 

before. Finally, a completely new phase, Li2NaPS4, is synthesized and characterized by XRD, Raman 

spectroscopy, and electrochemical impedance spectroscopy.  

In the second part, the performance of all-solid-state batteries is analyzed depending on the 

solid electrolyte used, and the composition and architecture of the composite cathode. First, two 

batteries are compared- using Li7P3S11 and Li10GeP2S12 (LGPS) solid electrolyte respectively. The 

Li10GeP2S12-based cell proved superior capacity, but poor cyclability and rate capability, and 

investigation showed that the material decomposes in side reactions providing extra capacity. Then in 

the composite cathode, two different carbons, Activated Carbon (AC) and KetjenBlack (KB), and two 

different ionic conductors, Li1.5PS3.25 and LGPS, are compared with each other respectively. At low 

cycling rate, the best performance is obtained for materials which achieve higher contact area (higher 

surface area for carbon: AC, and higher coating and ductility for solid electrolyte: Li1.5PS3.25). 
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However, for high rates and high rate change, conductivities are the most important characteristic to 

enable fast transfer of the carriers at the interface of the active material. Thus, better performance was 

observed for KB for the electronic conductors, and for LGPS for the ionic conductors.  
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Chapter 1: 

Introduction 

 

1.1 General overview on lithium rechargeable batteries 

With the development of the world’s population, the economic growth, and the advances in 

technologies, the global demand for energy is increasing at an alarming rate. These energy needs can 

no longer rely on the burning of fossil fuels as the resulting emissions create serious environmental 

pollution and contribute to global warming. It is therefore essential to turn down our dependence on 

fossil fuels, which are besides unevenly distributed and becoming scarce, and to develop profitable 

and efficient renewable energies 1. 

Energies based on solar, wind, geothermal and nuclear sources were shown to be promising 

clean alternatives. However, these energies are not reliable, efficient and competitive enough to meet 

the industrial demand for high-energy density and storage capacity needed in electric devices and 

automobile motors at a large scale. Furthermore, they present the disadvantage of being stationary 

when the world is furiously calling for wireless technologies. Rechargeable batteries are the obvious 

solution since they provide storage of chemical energy in a portable device delivering energy as 

electrical energy with a very high conversion efficiency. However, several limitations such as cost, 

power, cycle life, safety and environmental friendliness have to be considered. Lithium-ion batteries 

in particular have invaded our laptops, cell-phones and portable telecom technologies, because they 

are low-cost, compact, and environmentally harmless. Yet these batteries are not suitable to meet the 

vehicle energy requirements, such as safety, rate capability and sufficient energy density to power an 

electric vehicle on a long run. Currently, lead-acid batteries are commonly used for hybrid gas-

electric cars on the market, but do not provide enough power to be used without fossil fuels, and are 

toxic for the environment 2.  

1.1.1 Basic Concepts of Lithium rechargeable batteries 

As seen before, the most promising candidate for applications to the auto industry is the 

Lithium-ion rechargeable battery. A rechargeable battery, also known as secondary battery, is able to 

be charged and discharged reversibly with the same capacity over a certain life-time. They are thus 
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much more efficient than primary batteries which are for one-time uses only, e.g. alkaline batteries 

found all over the consumer market. Typically, a practical rechargeable battery consists of several 

connected electrochemical cells in series and in parallel to meet the output requirements in voltage 

and current for a given application 3. That is why all of the research made for the development of 

these batteries are focused on the functioning and performance of a single electrochemical cell.  

An electrochemical cell is composed of a positive (cathode) and a negative (anode) electrodes 

separated by an electronically insulating electrolyte, which can be liquid or solid. When in discharge, 

the two electrodes are connected via an exterior electric circuit, the difference in chemical potentials 

between the two active materials gives rise to the conduction of ions through the electrolyte, and 

oxidation and reduction half-reactions take place at the anode and cathode respectively.  When the 

cell is charged, the reactions at the electrodes are reversed: oxidation occurs at the cathode and 

reduction at the anode. So that the transfer of electrons and ions occurs in the electrodes, both of them 

should be ionically and electronically conductive. 

Several basic electrochemical concepts are needed to characterize the performance of an 

electrochemical cell. The next part will focus on defining them as they are going to be used in this 

thesis 4.  

 The Potential (V) of a cell is determined by the redox potentials of the reactions occurring at 

the electrodes, which are defined by thermodynamics laws and intrinsic to each active 

material. The potential difference between cathode and anode is desired to be large as the 

output power is the product of the current by the voltage. Thus, the electrolyte has to be 

chosen carefully to be stable in the electrochemical potential window of the cell, to prevent its 

decomposition.  

 The Discharge/Charge Voltage Profile is a plot of voltage as a function of specific capacity 

upon galvanostatic cycling, where a constant discharge/charge current is applied to the cell. In 

liquid batteries the profile will typically show intermediary redox reactions and the potential 

they correspond to. For instance a plateau represents a two-phase transition and a slope 

indicates a single-phase reaction. A minimum voltage difference between discharge and 

charge is wanted to maximize the energy efficiency, as it is characteristic of a low degree of 

polarization. 

 The Specific Capacity (in mA.h/g) or volumetric capacity (in mA.h/cm3) is defined by the 

amount of charge (Q, in mA h) stored per mass or volume of electrode for one full 
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discharge/charge. In industry, batteries are more generally evaluated in terms of energy 

density, which is the product of capacity and voltage per mass (W.h/kg) or volume (W.h/L). 

 The Capacity Retention characterizes the ability of the cell to get a reversible specific 

discharge/charge capacity over a defined number of cycles. It is usually expressed as a 

fraction or percentage of the 1st cycle, which is typically the highest in specific capacity 

achieved.  

 Similarly, the Cycling Life means the capacity retention with prolonged life of a cell. This 

characteristic is critical for practical applications, but unfortunately it depends on many 

factors that are not always easily reproducible in laboratory experiments (e.g. rate changes, 

rest times and frequencies). In the lab, the cell is considered to have reached its cycle life, 

when upon galvanostatic cycling, the capacity has dropped to 80% of its initial capacity. High 

rate capability indicates the ability to maintain its capacity and degree of polarization upon 

increased rate.  

 The Coulombic Efficiency, expressed in %, is the ratio of the discharge specific capacity to 

the charge specific capacity of the same cycle. It provides an interesting analysis over the 

number of cycles for prolonged galvanostatic cycling of a cell.  

 

1.1.2 Intercalation and integration electrochemistry 

Li metal as an anode in rechargeable batteries has attracted much interest due to the fact that it 

is the lightest (specific gravity = 0.53 g.cm-3) and most electropositive element of the periodic table 

after hydrogen. These properties are essential for the development of high energy density and high 

specific capacity devices.  

There are two types of lithium battery systems, those that are based on intercalation 

electrochemistry, with electrodes that store/release Li+ ions through a topotactic intercalation process, 

and those based on integration electrochemistry, with cathodes in which Li+ ions react in a reversible 

way with the active material, enabling larger storage of the active species.  

The first Li-ion batteries commercialized by SONY Corporation were composed of the 

layered structure of LiCoO2 as a cathode (an intercalation-based active material discovered by 

Goodenough et al. in 1980 5) and graphite as an anode, and they are still dominating the electronic 

device market. More recently, LiFePO4 has proven to be more stable, thanks to the presence of PO4
3- 

tetrahedra in its structure, and above all to render higher specific capacity (170 mA.h/g against 140 
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mA.h/g for LiCoO2). Although the LiFePO4-based batteries exhibit extremely small capacity decay 

even after thousands of cycles, their application to industry in a wide scale has been curbed since 

LiFePO4 has a much lower electronic conductivity and thus requires more nanotechnology and 

coatings treatments prior to battery assembly.  

Traditional Li ion batteries have enabled to keep up and contribute to the explosive 

development of portable electronic technologies, like cell-phones, computers and cameras. However, 

after several decades of research and practical optimization, these energy devices have reached their 

limits and cannot respond to the higher energy density demanded for electric vehicles. The physical 

storage capacity of intercalation-based mechanisms are too limited, and the electrochemical-stability 

windows of most electrolytes do not allow cycling of these batteries on a wider voltage window to get 

more storage capacity. Therefore, alternative materials that undergo an integration process by 

accommodating ions and electrons in electrode redox reactions are promising candidates to be the 

next energy source of the future. Two examples of this approach are Li-O2 and Li-S batteries. Both 

systems are based on redox reactions between chalcogens and oxygen or sulfur, but although the 

latter are in the same group, the chemistries are very different. 

Lithium-oxygen batteries using diatomic oxygen as the active cathode material were 

discovered most recently and have a remarkable theoretical specific energy of 900 Wh kg-1. Upon 

discharge, the lithium anode is oxidized and releases Li+ ions in the liquid electrolyte, and through the 

carbon positive electrode, atmospheric O2 is diffused and dissolved in the liquid electrolyte where the 

reduction reaction takes place following the equation: 2Li+ + O2 + 2e- ↔ Li2O2. This novel system 

presents some major drawbacks such as irreversible side reactions of the intermediate O2- anion, 

causing very fast capacity decay, and the electrochemistry and mechanisms need further investigation 

and understanding in order to design functional working electrodes 6.  

This thesis examines the electrochemistry of Li-S batteries, which will be discussed in detail 

in the following section.  

1.2 Lithium-sulfur batteries 

1.2.1 Basic principles of Li-S batteries 

The Li-S battery system has a theoretical specific capacity of 1672 mA.h/g, which is about 6 

times the capacity of conventional Li-ion batteries. Moreover, sulfur presents the advantage of being 
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environmentally friendly and one of the most abundant elements on earth, making it a very 

inexpensive material. 

A traditional Li-S cell consists of a lithium metal anode and a sulfur-composite positive 

electrode separated by an organic liquid electrolyte. During discharge, the lithium metal is oxidized 

and releases Li+ ions and electrons. The electrons are transferred to the cathode via the external 

electrical circuit, which generates a current. The Li+ ions are transferred from the anode to the 

cathode through the ionically conductive. At the positive electrode elemental sulfur (in the form of 

cyclo-S8 molecules) is reduced, following the overall reaction equation S8 + 16e- + 16Li+ ↔ 8Li2S. 

Lithium sulfide is the final product after the formation and subsequent reaction of intermediate 

lithium polysulfide species 7. The reverse reactions occur when the cell is charged. Figure 1 

illustrates the behavior of each species upon functioning of the cell. 

 

Figure 1: Schema of the typical charge/discharge mechanisms in Li-S battery 4. 

1.2.2 Challenges of Li-S batteries 

Despite being the center of intensive research since the early 1950’s, Li-S battery technology 

still faces many technical problems that prevent its commercialization. Alternative anode materials 

need to be investigated to resolve safety issues associated with the reactivity of a pure lithium metal 

anode. Additionally, Li-S batteries generally show short cycle life, low rate capability, and low 

Coulombic efficiency. The fundamental problems causing this poor performance can be divided into 

three categories: the physical properties of sulfur and its species, lithium deposition, and polysulfide 

solubility and shuttle.  
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1.2.2.1 Physical properties of S8/Li2S 

At the positive electrode where reduction occurs, sulfur reacts with electrons from the 

external circuit, and with Li+ ions transferred from the lithium anode through the electrolyte. 

However, sulfur possesses very low ionic and electronic conductivities (5x10-30 S/cm and 10-17 S/cm 

respectively) 8, so the transfer of the charged species is very difficult. This results in poor activation 

and use of the sulfur, and thus in poor battery performance. To overcome this problem carbon 

additives are used as hosts due to their very high electronic conductivity and light weight 10, yet the 

overall energy density is consequently reduced. The same problem applies to other sulfur species, 

products from the discharge reaction, so when Li2S is deposited on the cathode surface, the 

conversion back to sulfur might be even more difficult and the polarization increasingly larger upon 

cycling. Another important issue is the volumetric expansion/contraction occurring during the 

transformation of sulfur (density = 2.03 g.cm-3) into lithium sulfide (density = 1.67 g.cm-3) and vice 

versa. This 80% change in volume can seriously deteriorate the structural integrity of the cathode, 

leading to fast capacity fading9. This problem is usually alleviated by the use of a binder, at the 

expense of the overall energy density.  

1.2.2.2 Lithium anode issues 

Lithium metal reacts violently with water or oxygen. Despite this reactivity it is still used in 

current state-of-the-art Li-S devices, limiting their commercialization at an industrial level. In 

particular, the application of current Li-S batteries to vehicle technology is very unsafe. In the 

circumstance of a collision the battery may explode or burst into flames. Novel anode materials to 

couple with sulfur composite cathodes with high energy density are needed to push the technology 

forward towards realistic applications. In addition, there is dendrite formation at the anode surface 

when lithium is deposited during the cell charge. This may give rise to growth of lithium metal 

through the electrolyte and the separator, causing short-circuit when it reaches the cathode 6. This 

significantly reduces cycle life. For future laboratory research and industrial applications the lithium 

metal anode needs to either be protected, or replaced by a material without these inherent problems.  

1.2.2.3 Polysulfides shuttle 

One of the biggest issues with current Li-S batteries is the lithium polysulfides (LiPS) shuttle. 

It arises from the dissolution of intermediate polysulfide species Li2Sn (n≥2) in liquid electrolytes. 

The polysulfides are readily soluble in glyme-based electrolytes due to their long hydrophilic chain, 
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and are able to diffuse through the separator to reach the anode. The LiPS are reduced at the anode, 

forming a solid interface layer of Li2S/Li2S2 which then blocks the transfer of lithium ions to the 

liquid electrolyte. As a result, when more incoming long-chain polysulfides reach the anode, they 

react with the solid interface layer, becoming short-chain LiPS. In high concentrations the short-chain 

LiPS diffuse back towards the cathode and become oxidized back to long-chain LiPS. This parasitic 

process causes self-discharge and loss of active material, resulting in poor capacity retention over 

cycling 4. A lot of research has been performed on cathode materials and cathode architecture, and on 

electrolytes in order to chemically or physically trap these polysulfides. The search for the perfect 

host is still ongoing, but these studies are not in the scope of this thesis. Instead, a completely novel 

approach using solid electrolytes will be discussed.  

1.3 All-solid-state batteries 

1.3.1 Basic concepts in all-solid-state batteries 

As seen previously, conventional lithium liquid batteries, although widely used and 

extensively studied, have major drawbacks, such as leakage risks, flammability, and expensive 

sealing agents, that prevent them from being commercialized or applied to electric vehicles in an 

industrial range. The use of all-solid-state batteries avoids these issues 10. Furthermore, the weight and 

volume of a solid battery can easily be reduced, and thus larger energy outputs and better efficiencies 

can be achieved. With the development of microelectronics and integrated circuits, the demand for 

long cycle life, light-weight, and high energy density batteries is increasing. All-solid-state batteries 

are good candidates to fulfill these needs 11. Currently, lithium solid-state batteries still face issues 

such as lower power density and higher ionic resistance compared with liquid cells (at room 

temperature), in addition to expensive fabrication costs 12.  

A solid-state cell consists of an anode and a cathode, as for a liquid electrolyte battery, but it 

employs a solid electrolyte. Such a substitution allows for simplified architectures of the electrodes 13, 

however it has its own sets of constraints inherent to solid-state. Solid-state batteries usually have a 

higher resistance at ambient temperature than liquid cells, due to lower ionic conductivities of solid 

electrolytes. Solid cells tend to last longer because they are not as sensitive to shocks, leakages, and 

extreme temperatures as liquid cells. However, they undergo additional stresses at solid-solid 

interfaces between the electrodes and electrolyte, or even within the composite cathode itself, which 

can reduce performance and longevity 14. The main difference in the design of the solid cells lies in 
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the cathodes which are typically composed of active material (e.g. metal oxides such as LiCoO2 for 

lithium ion batteries), with an ionic conductor (solid electrolyte) and an electronic conductor 

(typically carbon when using an insulating active material) 14-15.  

There are two types of solid state batteries: thin film type (Figure 2a) and bulk-type (Figure 

2b). The main difference between the two categories comes down to the thickness of the electrolyte; 

in thin film batteries, the thickness is a few hundreds of nanometers, whereas in bulk-type solid state 

batteries it is several hundreds of micrometers. Correspondingly different processes are used to 

manufacture each type. Thin film solid-state electrolytes are usually fabricated by nanotechnology 

processes such as pulsed laser deposition, plasma sintering, chemical vapor deposition,… Bulk solid-

state electrolytes are prepared by mechanical milling, annealing, compaction and heat-treating. Thin 

film batteries are mainly used in microelectronics for portable devices. Bulk-types are more 

promising for vehicles applications as they can be stacked, used in series, and provide significantly 

higher power and energy density. This thesis focuses on bulk-type batteries.  

 

 

Figure 2: Schematic diagram of (a) a thin film-type battery and (b) a bulk-type battery. 

 

For years, the potential supplantation of Li-ion technology by all-solid-state batteries has 

relied on finding a solid electrolyte which has high ionic conductivity, very low electronic 

conductivity, good chemical and thermal stability and a wide electrochemical window 16. Thus, 

intensive research has been carried out in the hunt for suitable solid electrolytes.  

1.3.1 Development of superionicconducting solid electrolytes 

(a) (b) 
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Solid ionic conductors for battery applications include a large variety of materials such as gel, 

organic polymer, organic–inorganic hybrids, and inorganic materials. In this overview, the focus is on 

inorganic solid electrolytes which can be divided into three categories: crystalline, glass, and glass–

ceramic. Table 1 shows the ionic conductivities of some of the most common inorganic solid 

electrolytes, at room temperature.  

 

Composition 
Conductivity at 25°C 

(S/cm) 
Category Reference 

La0.51Li0.34TiO2.94 (LTT) 1.4 ×10
−3

 Crystal (perovskite) Ito et al.
17

 

Li1.3Al0.3Ti1.7(PO4)3 7×10
−4

 Crystal (NASICON) Aono et al.
18

 

Li14ZnGe4O16 1x10
-6

 Crystal (LISICON) Hong et al.
19

 

Li3.4Si0.4P0.6S4 6.4x10
-4

 Crystal (thio-LISICON) Kanno et al.
20

 

Li3.25Ge0.25P0.75S4 2.2x10
-3

 Crystal (thio-LISICON) Kanno et al.
21

 

Li7La3Zr2O12 3x10
-4

 Crystal (garnet) Murugan et al.
22

 

Li10GeP2S12 (LGPS) 1.2x10
-2

 Crystal Kamaya et al.
31

 

Li1.07Al0.69Ti1.46(PO4)3 

(LATP) 
1.3x10

-3
 Glass-ceramic Fu et al.

23-24
 

Li1.5Al0.5Ge1.5(PO4)3 

(LAGP) 
4.0x10

-4
 Glass-ceramic Fu et al.

 23-24
 

Li7P3S11 1.1x10
-2

 Glass-ceramic Seino et al.
25

 

Li3.25P0.95S4 1.3x10
-3

 Glass-ceramic Mizuno et al.
41

 

Li2.9PO3.3N0.46 3.3x10
-6

 Amorphous (thin film) Yu et al.
34

 

Li3.6Si0.6P0.4O4 5.0x10
-6

 Amorphous (thin film) Kanehori et al.
26

 

30Li2S·26B2S3·44LiI 1.7x10
-3

 Glass Wada et al.
38

 

50Li2S·17P2S5·33LiBH4 1.6x10
-3

 Glass Yamauchi et al.
39

 

63Li2S·36SiS2·1Li3PO4 1.5x10
-3

 Glass Aotani et al.
40

 

70Li2S·30P2S5 1.6x10
-4

 Glass Zhang et al.
36

 

    

Table 1: Ionic conductivities at 25 °C of various inorganic solid electrolytes. Sulfide-based 

electrolytes are highlighted. 

1.3.1.1 Inorganic crystalline ceramics electrolytes 
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Ceramics are typically oxides and are characterized by a high hardness and good stability in 

air. Four different kinds of superionic conducting oxide (SCO) electrolytes can be identified, 

according to their structure type.  

The perovskite Li0.5−3xLa0.5+xTiO3 (LLT) materials have a high number of vacancies in the 

lithium lattice, resulting in a high bulk conductivity (>10-3 S/cm for x~0.3)27. However grain 

boundary resistance is very high and increases the total resistance by two orders of magnitude28 and 

high-temperature sintering is necessary for practical use. Furthermore, Ti is easily reduced by lithium 

metal, so these electrolytes are not applicable to lithium batteries.   

The NASICON (Na SuperIonic CONductor) structures are of the type NaA2
IV(PO4)3 with 

AIV=Ge, Zr, or Ti. Among them, Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP) have 

very good ionic conductivities (> 10-3 S/cm)29 thanks to the substitution of Ti4+ or Ge4+ ions by 

smaller Al3+ ions decreasing the unit cell dimensions and enhancing the ionic conductivity by three 

order of magnitudes. However, similar to LLT materials, NASICON electrolytes contain Ti or Ge, 

and are thus unstable against lithium metal 30.  

The LISICON (Lithium SuperIonic CONductor) structure (discovered by Hong in 1978) has a 

relatively low ionic conductivity (about 10-6 S/cm for Li14ZnGe4O16) and reacts with lithium metal 

and CO2. Replacement of the oxide ions by larger sulfide ions in the framework gives rise to the thio-

LISICON family of electrolytes. This family contains materials such as Li3.25Ge0.25P0.75S4 which has 

high ionic conductivity of 2.2 x 10-3 S/cm, and most recently Li10GeP2S12 (LGPS), which has the 

extremely high ionic conductivity of 1.2 x 10-2 S/cm 31.  

Garnet crystal structures present the advantage of having high ionic conductivity (3 x 10-4 

S/cm for Li7La3Zr2O12 (LLZ)32) and high chemical stability against the lithium anode. The framework 

is composed of La3+, Zr4+, and Al3+ (to stabilize the structure) cations, which are not redox active at 

low potentials vs Li+/Li 33. However, to achieve the structure of garnet, high temperature sintering is 

necessary, which considerably complicates the battery fabrication process 33.  

1.3.1.2 Inorganic glass solid electrolytes 

Glassy (amorphous) materials are ductile and have very low grain boundary resistance, so 

high temperature is not needed for cell assembly.  
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Oxide amorphous materials usually have low ionic conductivities, but those with especially 

high Li+ concentration like Li2.9PO3.3N0.46 (LIPON) show an acceptable ionic conducitivity of about 

10-6 S/cm 34. In addition, these oxide glasses have very good stability in the atmosphere and against 

lithium metal. However, this type of electrolyte is only used in thin film batteries in order to reduce 

their resistance (which is proportional to thickness). 

Sulfide glasses generally show high conductivities and low activation energies, owing to the 

weaker bonding of lithium with sulfur anions35 compared to oxide anions. In particular, in the Li2S-

P2S5 system glasses typically have an ionic conductivity of over 10-4 S/cm at room temperature 36. 

However, they react with H2O to generate H2S gas, thus they are not stable in air 37. Addition of 

lithium salts such as lithium halides 38, lithium borohydride 39 and lithium ortho-oxosalts 40 can 

further increase their ionic conductivity by an order of magnitude, and increase their chemical 

stability in the atmosphere. 

1.3.1.3 Inorganic glass-ceramic solid electrolytes 

Glass ceramics are partially crystalline materials prepared by crystallization of amorphous 

glasses. They usually have higher ionic conductivities as their grain boundary resistance is low due to 

the presence of the amorphous phase, and their bulk conductivity is high (superionic crystals are often 

formed from the precursor glasses). High temperature or metastable phases can be crystallized from 

supercooled liquid after glass transition temperature. Li7P3S11 or Li3.25P0.95S4 are good examples of 

materials, with ionic conductivities above 10-3 S/cm 41-42. Sulfide glass-ceramics possess wide 

electrochemical windows (up to 10 V), however, they are still reactive to atmosphere, which 

complicates handling in the fabrication process. Similar to the Li2S-P2S5 glasses, several approaches 

can be adopted to limit their hydrolysis by water in air, such as partial substitution by oxides (Li2O, 

P2O5)
43 or addition of metal oxides (Fe2O3, ZnO, Bi2O3) which react spontaneously with H2S, limiting 

the emission of H2S gas38-39-40.  

1.3.1.4 Conclusion 

After two decades of research, solid electrolytes that have high ionic conductivity and very 

low activation energy have been discovered, resulting in overall higher conductivity than liquid 

organic electrolytes, as shown by Figure 3 . Sulfide electrolytes in particular have attracted great 

attention due to their high Li+ ion conductivity, mechanical properties, wide selection of composition, 

and wide electrochemical windows. Despite their chemical reactivity with atmosphere, they are still 
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one of the most promising candidates for application to all-solid-state batteries, and the search for 

new and more stable sulfide-based ion conductors is more than ever at the order of the day.  

 

Figure 3: Comparison of activation energies for Li2S-P2S5 glasses and conventional liquid 

electrolytes44. 

 

1.3.2 All-solid-state batteries 

1.3.2.1 All-solid-state battery performance 

Bulk-type all-solid-state batteries are composed of three layers (see Figure 2b: the composite 

cathode as a working electrode, the solid electrolyte, and the Li-In anode as a counter electrode. The 

first all-solid-state battery was first developed for Li-ion batteries, with a Li2S–SiS2–Li3PO4 glass for 

electrolyte 45. Since then, cells with other sulfide electrolytes have been investigated and more recent 

research has been focusing on cells using high sulfur loadings as active material.  

A typical charge-discharge cycle for a lithium-ion-based all-solid-state cell is shown in 

Figure 4. The cell is composed of (Li4Ti5O12 / Li2S-P2S5 glass /vapor grown carbon fiber (VGCF)) in 

a (38/58/4) weight ratio as the working electrode, Li2S-P2S5 glass as solid electrolyte, and Li-In as the 

negative electrode. The current density was held constant at 12.7 mA/cm². The cell exhibits 

remarkable stability of the initial capacity of 140 mAh/g for 700 cycles 46.  
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Figure 4: Charge-discharge curves of Li-In/Li4Ti5O12 all-solid-state cell. Open and solid circles 

overlap each other and represent charge and discharge capacities. Solid diamonds represent the 

Coulombic efficiency (Tatsumisago et al. 2011)46. 

All-solid-state batteries are usually characterized by a long cycle life and better resistance at 

high temperature. Li-ion all-solid-state cells have already invaded the market and present fewer safety 

concerns than conventional liquid batteries, however they are limited by their theoretical maximum 

capacity and energy density.  Several active materials, such as TiS2, Mo6S8, FeS, and Ni3S2, have 

been investigated in performances of batteries, yet sulfur still has one of the largest theoretical 

capacities, as discussed in the previous sections on conventional liquid batteries. Figure 5 below 

compares the cycling performance of a LiCoO2-based cell with a sulfur-based all-solid-state battery. 

The sulfur cell exhibits a capacity of over 1500 mAh/g, more than 15 times larger than the capacity 

generated by the  LiCoO2-based cell. The sulfur battery retains 1000 mAh/g over 200 cycles at a 

current density of 0.64 mA/cm², which almost meets the demand of battery applications with large 

energy density and long cycle life 47.  
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Figure 5: Charge-discharge performance of (a) an all-solid-state cell [AB-S-SE/80Li2S-20P2S5 (SE) 

/Li-In ] and (b) a LiCoO2-based all-solid-state cell for comparison. The inset shows the cycle 

performance of the sulfur-based cell (Hayashi et al.47). 

1.3.2.2 Current approaches for the formation of intimate contacts 

Changing from liquid to solid-state results in longer cycle life, as the phenomenon of 

polysulfide shuttle is completely averted. However, some issues still remain that are inherent to the 

sulfur materials, as well as new  issues due to the solid-state nature of the materials.  

Sulfur and sulfides are ionic and electronic insulators, thus, the cathode needs to be a mixture 

of active material (sulfur), an ionic conductor (solid electrolyte) and an electronic conductor 

(typically carbon-based), which results in a decrease in power density. Volume expansion upon 

formation of Li2S can be problematic for contact between the different solid components in the 

cathode. This can be prevented by using of glassy solid electrolytes which act as a binder due to their 

ductility, and by using appropriate mixing and deposition processes for the cathode fabrication.  
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Since charge-transfer reactions occur at the interfaces, an intimate contact at the solid/solid 

interfaces must be made between electrodes and electrolyte on one hand, and between the different 

composites of the cathode on the other hand. Different methods have been developed to enhance 

contact surface area within the composite cathode and are schematically presented in Figure 6. 

 

Figure 6: Different approaches to realize intimate contact between composites in the electrodes47. 

One way to produce good contact between electrolyte and active material in the cathode is the 

use of mechanical milling to reduce the size of the materials to the nanoscale. This increases the 

contact area48 and results in active material and carbon embedded in a matrix of solid electrolyte, as 

shown in the STEM-EELS image in Figure 6. Another approach is to coat active material particles 

(e.g. LiCoO2) with solid electrolyte by pulsed laser deposition49. A thin film of 70 nm in thickness 

was achieved (see TEM image in Figure 6) with high adhesion to the particles. Finally, another 

method is to use the glassy nature of the sulfide solid electrolytes. A mixture of active material and 

solid electrolyte is heated to the supercooled liquid state temperature (glass transition temperature) of 

the glasses. The softening of the electrolyte creates an amorphous matrix in which the active material 

is embedded, reducing the grain boundaries and increasing the contact areas. The last two techniques 

are more difficult to apply to sulfur as an active material, as it has a relatively low melting point 

(160°C), but nano particles of Li2S can be used as a starting active material to circumvent this 
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problem.  All of these methods result in larger charge-discharge capacities and better cyclability 

thanks to better activation and utilization of the active material by increasing of contact. Some of the 

best results are obtained with a combination of supercooled state and milling treatment 50. 

At the electrolyte-anode interface, contact area can be improved by forming a thin film of 

indium at the surface of the solid electrolyte pellet by a vacuum-evaporation process. This contributes 

to a better reversibility of the Li deposition and dissolution processes, limiting dendrite growths 51. 

Better contact within the solid electrolyte can be obtained by hot pressing. It has been shown 

that hot pressing increases the density of the solid electrolyte, enabling better ion transfer and 

conductivity, higher resistance to lithium dendrite growth, and better interface contact with the 

electrodes 52-53. 

 

1.4 Summary 

Li-S batteries were first introduced by Ulam et al. in 1962, and despite their high theoretical 

specific capacity of 1672 mAh/g, their practical application has been hindered by many technical 

issues, preventing them from invading industrial markets. One solution to meet the world’s demand 

for energy is all-solid-state Li-S batteries which have a higher energy density and higher capacity 

retention than liquid batteries, as the polysulfide shuttle responsible for fast cell decay is completely 

inhibited. Furthermore, for electric vehicle applications, stacked solid batteries are convenient and 

safe, and decrease the risk of leakage, flammability, and explosion.  

The search for solid electrolyte materials that are ionically conductive enough to match the 

performance of liquid organic electrolytes started two decades ago and is still ongoing. For bulk-type 

batteries, sulfide-based electrolytes are promising candidates, owing to their high ionic conductivity, 

mechanical properties, and wide electrochemical window. The materials Li10GeP2S12 (crystalline) and 

Li7P3S11 (glass–ceramics)  in particular have attracted much attention due to their high ionic 

conductivity ≥ 10-2 S/cm. The only drawback is their chemical reactivity in air, which would result in 

expensive processes in industrial manufacturing. At the laboratory scale, various methods to enhance 

contact surface areas between electrode and electrolyte have been developed. However, much 

research on the architecture, morphology, distribution and size of the composites in the positive 

electrode need to be carried out to achieve favorable electrochemical and ionic pathways at a larger 
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scale. Rapid degradation of the lithium anodes by the growth of dendrites is still a major problem, and 

only a better understanding of electrode/electrolyte interfaces and of the lithium deposition process 

can mitigate this issue with an adapted tailoring of the microstructures. New solid electrolytes with 

higher Li+ ion conductivity and chemical stability are needed for upscaling. Finally, as only 25 weight 

% is typically used in most solid-state batteries, higher sulfur loadings (at least 50%) in the composite 

cathode would be necessary to increase power density.  

 

1.5 Scope of this thesis 

This thesis will be focused on the synthesis of sulfide-based solid electrolytes and their 

application to all-solid-state batteries. Chapter 1 gave a general introduction on the energy demand 

and need for high energy density rechargeable batteries. Chapter 2 describes the characterization 

methods and techniques used in this thesis. Chapter 3 focuses on the synthesis of the superionic 

conductor Li7P3S11 and investigation into new phases discovered in sulfide glass systems. Chapter 4 

explores the performance of all-solid-state Li/S batteries with different solid electrolytes and cathode 

compositions.  
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Chapter 2: 

Characterization Methods and Techniques 

 

 

2.1 Powder X-Ray Diffraction 

X-Ray Diffraction (XRD) has become the most common technique to analyze crystal 

structures, and it is the primary analytical method used in this thesis to identify synthesized materials. 

Laue et al. discovered in 1912 that X-ray radiation can be diffracted by crystals because their 

wavelength is of the same order of magnitude as interatomic distances (10 nm < λ < 0.01 nm). In 

1913 Sir William Bragg discovered a more simple law to express the necessary conditions for 

diffraction of X-rays by crystal planes. This law, known as “Bragg’s Law”, can explain the 

appearance of a unique diffraction pattern which identifies a specific structure.   

           

The law is schematically illustrated in Figure 7. If we consider incoming parallel X-ray 

beams of wavelength λ, forming an angle θ with a set of parallel lattice planes separated by a distance 

d, then the beam going into a deeper plane travels an extra distance of 2d sinθ. Then, if it is a multiple 

of the incident wavelength, the two waves interfere constructively, and due to Bragg’s law, each 

diffracted peak can be associated to a d-spacing if θ is fixed.  
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Figure 7: schematic illustration of Bragg’s law 

In an X-ray diffractometer, the sample is rotated with regards to the incident beam and 

scanned over a range of θ (or 2θ) and the intensity of diffracted X-rays are measured as a function of 

the angle. Any possible crystal orientation gives rise to diffraction corresponding to each d spacing 

present, thus powder samples are likely to give all the information about the material’s structure. The 

obtained pattern is affected by various properties. First, the overall area under all peaks belonging to 

one phase on the XRD pattern is proportional to the weight fraction of this phase in the sample. 

Secondly, the crystallinity of the sample is proportional to the peaks intensity. Lastly, the peaks widen 

as crystallite size decreases (if they are typically less than 1 μm) due to diffraction by grain 

boundaries.  

XRD patterns in this thesis were collected using a Bruker D8-Advance powder X-ray 

diffractometer operating at 40 kV and 30 mA and using Cu-Kα radiation (λ=0.15405 nm) unless 

otherwise stated. Air-sensitive samples were applied on a silicon zero-background holder and a 

protective Kapton film was sealed with vacuum grease on top to allow X-ray penetration while 

avoiding any exposure to air during measurements. For long scans (more than 7h), the powdered 

samples were transferred into glass capillary tubes (0.5 mm diameter) sealed with an acetylene-

oxygen torch.  

Structure determination and refinement of the XRD patterns were performed using the 

software TOPAS. First, the unknown peaks were indexed and fitted with the best solutions of space 

group and lattice parameters (proposed by a random-based LeBail algorithm). Once a few potential 

candidates are selected, charge flipping is carried out with TOPAS to determine the structure and the 
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atom sites in the unit cell. This method basically fits the reflection intensities of the peaks using an 

iterative algorithm based on the distribution of electron density.  

 

2.2 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) is a widely used thermoanalytical technique which 

can provide qualitative and quantitative information about chemical, physical and heat capacity 

changes that involve endothermic or exothermic processes. As much as XRD analysis, this method 

has been crucial to the synthesis of the materials in this thesis. The sample to be analyzed (typically 

3-15 mg) and a reference sample are placed on heaters inside the analytical chamber, as illustrated by 

Figure 8.  

 

Figure 8: Schematic of a DSC instrument. 

Both heaters impose the same heating ramp to the reference and the sample and the 

temperature is kept the same in both pans. When the sample undergoes a physical transformation, 

such as a phase transition, more (or less) heat will need to flow to it than to the reference so as to 

maintain both at the same temperature. As a result, the difference of heat flow provided to the sample 

and the reference is measured as a function of temperature. Typically exothermic changes such as 

crystallization require an increase in heat flow, and endothermic processes like melting a decrease of 

the heat needed by the sample. Figure 9 shows the most common features obtained by DSC. 



21 
 

 

Figure 9: Features of a DSC curve. 

Other information can be obtained from a DSC measurement. The area of a peak is directly 

proportional to the heat absorbed or released by the reaction, thus it is also proportional to the number 

of nuclei in the sample that undergoes the thermal transformation. It is thus possible to determine the 

degree of crystallinity of a heat-treated sample, which was initially amorphous material, with several 

measurements.  

       

Where ΔH is the enthalpy of transition, K is the calorimetric constant (specific to the instrument), and 

A the peak area. 

DSC measurements for this thesis were conducted using a TA Instruments DSC Q2000 under 

constant nitrogen flow. The air-sensitive samples, as well as the reference (Ar) were sealed 

beforehand in hermetic aluminium pans in an argon-filled glovebox with a Tzero sample press.  

Thermogravimetric Analysis (TGA) was also occasionally performed under nitrogen flow on 

a TA Instruments SDT Q600 analyzer. TGA is very similar to DSC in that both the sample and 

reference are heated at the same rate, but TGA measures the difference in mass between the sample 

and the reference as the temperature is increased, rather than heat flow. This method is more adapted 

for phase or chemical reaction analyses. 
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2.3 Surface area/pore size characterization 

Surface area and pore size characterization rely on physisorption or Van der Waals 

interactions between the adsorbate (N2) and the solid surface of a material. N2 adsorption/desorption 

isotherms are collected at a constant temperature (77K in a liquid nitrogen bath) while the gas 

pressure is periodically increased. The ability of a material to adsorb the gas molecules is directly 

correlated to its surface area and pore characteristics and it is measured by the relative pressure in the 

sample chamber compared with the reference chamber. Prior to the measurement, the sample is 

outgassed at an appropriate temperature (60-90°C for sulfur-composites) to ensure that the surface is 

free of gas molecules. In this thesis, surface area and pore volume were determined on a 

Quantachrome Autosorb-1 instrument and calculated respectively from Brunauer-Emmett-Teller 

(BET) theory and from the amount of N2 adsorbed at a relative pressure P/P0 of 0.99 (P is the pressure 

inside the tube and P0 the standard pressure).  

 

2.4 Raman Spectroscopy 

Raman spectroscopy is a technique that provides information about vibrational and rotational 

modes in a molecule, and thus generates spectral lines that are inherent (fingerprints) to a specific 

grouping of atoms within a structure. When monochromatic light (e.g. from a laser) is shone on a 

material, the photons will either be elastically scattered back (Rayleigh scattering) or, more 

infrequently interact with the molecule and be inelastically emitted back, changing the energy and 

frequency of the photons (Stokes-Raman scattering). Each molecule has a unique set of vibrational 

energy levels, so measuring the shift in energy of the reemitted photons can help to identify different 

structures in a sample. In a Raman Spectrometer, a laser is used to illuminate the sample, the photons 

of the same wavelength as the incident laser beam (elastic scattering) are filtered, while all other 

photons are amplified, resulting in a Raman spectrum.  

In this thesis a RAMAN HORIBA HR800 was used. As all the materials are air-sensitive, 

they were put on an optical microscope slide and sealed with a cover slip with epoxy glue. 
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2.5 Scanning Electron Microscopy and Energy Dispersive X-Ray 

Spectroscopy 

Scanning Electron Microscopy (SEM) is a technique for high-resolution imaging of the 

morphology and topography of solid samples. In an SEM instrument, the surface of the sample is 

bombarded by high-energy electrons, which generates a variety of signals - secondary electrons, 

back-scattered electrons, transmitted electrons, and X-rays characteristic to the elements in the sample 

– that are collected by specific detectors. Different information is provided by the different types of 

electrons: secondary electrons give information on topography and back-scattered electrons are 

characteristic of the distribution of elements. A secondary electron is generated if upon bombardment, 

a low-energy shell electron is hit and excited enough to leave a hole behind. The hole is then filled by 

an outer higher-energy shell electron, generating an x-ray from the lowering in its energy, which is 

characteristic of the emitting element and of the difference in energy. The collection of these x-rays 

by Energy X-ray Spectroscopy (EDX) can provide an element distribution mapping of the sample 

area.  

SEM and EDX measurements in this thesis were performed on a LEO 1530 field emission 

SEM equipped with an EDX Zeiss attachment. 

 

2.6 Electrochemical measurements 

2.6.1 Solid-state cell design 

Starting an all-solid-state battery project in our lab required a significant change in the design 

of the batteries, which cannot be run in regular coin cells. The issues involved with solid-state 

batteries are very different from traditional lithium sulfur liquid-based electrolyte batteries. Special 

attention had to be given to the solid-solid interfaces between the three components in the design of 

the solid-state cell. Figure 10 presents a schematic view of an all-solid-state battery. The positive 

electrode is a mixture of active material (sulfur in most cases), ionic conductor (solid electrolyte), and 

electronic conductor (typically carbon). Then comes a layer of solid electrolyte, and since the 

electrolyte is often reactive against the reducing surface of lithium metal, a lithium-indium alloy is 

used as a counter-electrode to protect the electrolyte.  
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Figure 10: Schematic illustration of an all-solid-sate battery 

To prepare a battery, generally about 80 mg of solid electrolyte is placed in a polycarbonate 

cylinder and pressed between two stainless steel current collectors at 160 MPa. Then the composite 

cathode powder (about 10-15 mg) is added, and the two layered pellet is pressed at 360 MPa. Finally, 

indium foil and lithium foil are applied on the opposite side and the cell is pressed at 200 MPa. The 

cylinder is then placed in a holder, tightened by screws to maintain the pressure on the pellet, and 

current is flowed through two screws in the center of the current collectors. 

 

Figure 11: Illustration of an all-solid-state battery cell. 
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Assembly of the cell is carried out in an argon filled glovebox, and as the glovebox is not equipped 

with VMP3 channels yet, the cell is placed in a glass jar sealed by a rubber stopcock, wrapped with 

Parafilm for better protection against air-contamination, and run on a lab bench. 

2.6.2 Galvanostatic cycling 

This protocol is the most standard technique to study battery performance. In this mode, a 

window of voltage is defined (according to the open circuit voltage, electrochemical stability of the 

materials, etc) and a constant current is applied to the cell until discharge ends at the lower cut-off 

voltage. The current is then reversed and the battery charges until the upper cut-off voltage is reached. 

The voltage of the cell is measured as a function of step time or capacity delivered. Long-term 

performance is evaluated by the retained specific capacity values as a function of cycle numbers. 

Finally rate capability studies can be performed by increasing the current applied for a number of 

cycles and then returning to the initial current to see the difference in terms of capacity and general 

behavior. Galvanostatic measurements were carried out on a VMP3 potentiostat/galvanostat station 

with Electrochemical Impedance Spectroscopy (EIS) capabilities (BioLogic Science Instruments). 

2.6.3 Cyclic Voltammetry 

For cyclic voltammetry measurements, the current is recorded as a function of the potential 

applied. The cell is cycled by applying typically a voltage ramp linear over time and once the voltage 

reaches its upper or lower limit, it is reversed. This technique provides clear information about the 

redox reactions occurring with cycling. From the area and the width of the peaks can be inferred 

information about the amount of material involved and the kinetics in the transformation. CV 

measurements in this thesis were carried out on a VMP3 potentiostat/galvanostat station with EIS/Z 

capabilities (BioLogic Science Instruments). 

2.6.4 Electrochemical Impedance Spectroscopy 

The impedance of a circuit characterizes its ability to resist the flow of electrical current. 

Electrochemical impedance is measured by applying an alternating current (AC) potential within a 

wide range of frequencies to an electrochemical cell. The generated current signal is measured and 

can be analyzed as a sum of sinusoidal functions. The amplitude of the potential applied is typically 

low to just enable a linear response from the cell which is a non-linear electric element. 
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In this thesis, impedance is described by a complex value consisting of a real and an 

imaginary part, and displayed as a Nyquist plot (the imaginary part plotted as a function of the real 

part). Generally, for impedance measurements on a solid electrolyte, the Nyquist plot is composed of 

three semi-circles on the left in the high frequency range, and an inclined line on the right at low 

frequencies. The three semi-circles correspond to resistance and capacitance of the bulk, the grain 

boundaries of the electrolyte, and the electrolyte/current collector interface. At room temperature the 

three semi-circles often form a single semi-circle, and the total impedance of the solid electrolyte is 

the sum of the three resistances previously listed. The straight line relates to the overall electrolyte 

resistance. Figure 12 below illustrates a typical Nyquist plot for a solid ionic conductor. When the 

semi-circle is not well defined in the measurements, we can obtain the value of the resistance by 

extrapolation of the linear part to the x-axis.  

 

Figure 12: Typical Nyquist plot of impedance measurement on a solid electrolyte. 

In this thesis, EIS measurements were carried out on a BioLogic Science Instrument VMP3 

potentiostat/glavanostat station with EIS/Z capabilities. The DC voltage was kept at open-circuit, and 

the AC voltage was applied with a frequency range from 1 MHz to 0.1 Hz.  
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Chapter 3:  

Synthesis and characterization of sulfide-based solid 

electrolytes 

 

3.1 Introduction 

In the Li/S battery field, all-solid-state batteries draw a lot of attention, because despite 

significant improvement of cathode architecture, the polysulfide shuttle has not been completely 

inhibited in liquid-based cells. Two major goals in all-solid-state battery research is to develop 

suitable solid electrolytes, with high ionic conductivity, and to create a favourable interface between 

all the solid components. Sulfide-based solid electrolytes are among the most promising candidates 

thanks to their high ionic conductivity and remarkable mechanical and electrochemical properties. In 

this chapter, we first study synthesis methods of the well-known superionic conductor Li7P3S11. Then, 

two unknown phases are identified in the Na2S-P2S5 glasses system. Finally, a new phase, Li2NaPS4 

is reported in the third section.  

 

3.2 Li2S-P2S5 glasses 

Among solid-state sulfide electrolytes, the Li2S-P2S5 glasses have attracted a lot of attention 

due to their particular high ionic conductivity (over 10-3 S/cm). Many efforts have especially been 

made to form the superionic conductor Li7P3S11, which was reported to have an ionic conductivity of 

about 5.0 x 10-3 S/cm 54 in most literature, and of 1.1 x 10-2 S/cm in a more recent paper by Hayashi et 

al. 55. The goal at the beginning of this project was to synthesize this promising solid electrolyte and 

to apply it to Li-S all-solid-state batteries. We have attempted to develop a more systematic method to 

synthesize this metastable phase at a larger scale (more than a few hundred milligrams) and to 

optimize all of the experimental parameters to enhance its conductivity for use in all-solid-state 

batteries.  
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3.2.1 Synthesis of Li7P3S11 

The synthesis of Li7P3S11 is traditionally composed of two steps. The first step is the 

preparation of the amorphous glasses which are then heat-treated in the second step to form the glass-

ceramics. The precursors Li2S and P2S5 are mixed in a 70:30 molar ratio, following the equation 

below: 

                           

Two different routes of synthesis of the 70.Li2S-30.P2S5 glasses are typically used 54: the 

quenching route (from the melt) and the milling route (solid-state reaction). In the quenching method, 

the precursors, Li2S and P2S5, are milled for an hour, heated to 750°C (above melting point), then 

slowly cooled down at around 700°C. After maintaining this temperature for several hours, the 

mixture is quenched in an ice bath. In the milling method, the precursors are only milled in a 

planetary ball mill apparatus (FRITSCH PULVERISETTE 7 Premium) until the precursor materials 

have reacted and are no longer present in a crystalline form.  

Variations in the milling parameters (speed, milling time, material and size of the balls and 

jars) have been used to evaluate their influence on the quality of the obtained material. Subsequently, 

the obtained glasses are analyzed by DSC and heat-treated at temperatures corresponding to 

exothermic peaks in the DSC measurements.  

Different heating parameters have also been studied to obtain the best material. The 

temperature of the heat-treatment, holding time, heating rate, cooling rate, material form (powder or 

compressed pellet), material of the crucible (alumina, Inconel, carbon, gold, platinum, glass, quartz), 

atmosphere (flow or static atmosphere, argon, nitrogen, vacuum…) all affect the quality of the final 

product. The influence of all of the different synthesis parameters have been studied and discussed at 

length in the literature, so this section will mainly focus on the conclusions drawn from our own 

experiments to determine the best systematic method to purely synthesize the Li7P3S11 phase with 

improved conductivity.  
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3.2.2 Influence of synthesis parameters 

3.2.2.1 Milling parameters 

There are several milling parameters that can influence the quality of the obtained glasses:  

-the milling speed 

-the milling time 

-the material and size of the grinding balls and milling jars 

All parameters are correlated, as milling consists of mechanical shocks that break the 

structures, reduce the particle sizes of the materials, and generate thermal energy, thus favouring 

thermally-controlled reactions.   

Material and size of grinding jars and balls 

It has been shown that the best glasses (finely ground and homogeneous) were obtained using 

ZrO2 jars and balls. A large number of small balls was more efficient at breaking the structures in a 

consistent and homogeneous way than a small number of large grinding balls. In this work, for 45 mL 

ZrO2 jars, 300 balls of 5 mm in diameter were typically used.  

Milling speed and milling time  

Two rounds of glasses are compared in this section. One has been milled at 400 rpm for 22 hrs 

(“low-speed” milling) and the other at 900 rpm for 30 min (“high-speed” milling). Figure 13 shows 

the XRD patterns of both rounds. The glasses milled at 400 rpm exhibit an amorphous pattern after 22 

hours of milling (the precursors Li2S and P2S5 have reacted and are no longer present). After milling 

the glasses at 900 rpm for 30 min, Li2S and P2S5 are not only no longer present, but some 

crystallization of the Li7P3S11 phase has occured. 
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Figure 13: XRD patterns of glasses milled at 400 rpm for 22 hours and of glasses milled at 900 rpm 

for 30 min. 

 The DSC (Figure 14) of the glasses milled at 900 rpm only exhibits two very small 

exothermic peaks at 216°C (peak A) and 320°C (peak B), respectively, representing no major 

crystallization events.  However, for the amorphous glasses, significant phase change occurs at 250°C 

(peak A’) and 345°C (peak B’). These results agree with the XRD features of the two glasses 

presented in Figure 13. The sample milled at 900 rpm is already partially crystalline, resulting in less 

amorphous material that can crystallize and thus less intense crystallization peaks on the DSC. 

Additionally, there are significant shifts in the crystallization temperatures observed for the 

amorphous glass and the already semi-crystalline glass. This can be attributed to the presence of 

Li7P3S11 crystals in the amorphous matrix, indicating that the formation of this phase is favored via 

nucleation for high-speed milling. Hence, lower crystallization temperatures are required because the 

crystal growth process requires less energy than the nucleation process.  
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Figure 14: DSCs of Li2S-P2S5 glasses after milling at 900 rpm for 30 min and at 400 rpm for 22 h 

respectively. 

Both rounds of glasses were heat-treated following their DSC results (before and beyond each 

exothermic peak) and the results are later compared (see 3.2.2.2 Temperature of Heat-Treatment) to 

see which milling program leads to more crystalline Li7P3S11.  

Amount of milled material 

It is crucial to begin with homogeneous glasses to obtain uniform crystallization when the 

glasses are heat-treated. Attempts have been made to upscale the synthesis of Li7P3S11, however, 

having more than 3 g in a ball milling jar (even big 500 mL jars) results in systematic agglomeration 

of the material after that the particles reach a specific size. Heat-treatments of the glasses showed 

irreproducible results, with a tendency to develop poorly crystalline Li7P3S11 along with other 

impurity phases. Figure 15 shows the XRD patterns of the same round of glasses (a 6g batch) after 

identical heat-treatments with identical conditions. After 16 to 18 h of milling, the glasses 

systematically agglomerated in the bottom of the jar and crushing the build-up of materials by hand 

after every two hours of milling was necessary to obtain amorphous glasses (≥ 30 h total required). 

After the heat-treatment, glass (1) exhibited significantly more of the Li3PS4 impurity phase than 
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glass (2). The overall crystallinity of the products was also very low. Starting with inhomogeneous 

glasses results in unpredictable quality of Li7P3S11 for two identical heat-treatments. 

 

Figure 15: XRD patterns of 70-30 Li2S-P2S5 glasses after heat-treatment at 250°C, performed with 

identical conditions. 

 

3.2.2.2 Temperature of heat-treatments 

Heat-treatments have been performed at the temperatures corresponding to thermal changes in 

the DSC measurements of the low- and high-speed milled glasses presented in the previous section. 

All other heat-treatment parameters were held constant so that the effect of the temperature of the 

heat-treatment and of the milling speed on the quality of the Li7P3S11 obtained can be observed.  

From the observations made of various heat-treatments performed on both rounds, it appears 

that the peaks A and A’ correspond to crystallization of Li7P3S11, and the peaks B and B’ to 

decomposition of Li7P3S11 into Li3PS4 and Li4P2S6. Furthermore, the best crystallization of Li7P3S11 is 

achieved when heat-treating at a temperature just before the thermal changes B and B’. Figure 16 

below shows the XRD patterns of the high-speed milled glasses after heat-treatment at temperatures 

just before peak B (Figure 15(a)) and just after peak B (Figure 15(c)), and of the low-speed milled 
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glasses after heat-treatment at a temperature just before peak B’ (Figure 15(b)). These temperatures 

are correspondingly marked by arrows (a), (b) and (c) on the DSC curves in Figure 13. Both (a) and 

(b) exhibit a pure Li7P3S11 pattern, but the sample analyzed after heat-treatment of the high-speed 

milled glasses is significantly more crystalline, suggesting that it is a better way of milling. Heat-

treatment (c), performed after the decomposition peak B, shows very crystalline Li4P2S6 mixed with 

some Li3PS4. 

 

Figure 16: XRD patterns of high-speed milled glasses after heat-treatment at 300°C (a) and at 

330°C(c), and on low-speed milled glasses after heat-treatment at 325°C (b). 

 

3.2.2.3 Holding time  

To determine the influence of holding time, three samples of the same mass and round of 

milled glasses were heat-treated at the same temperature (250°C) for 1, 2, and 3 hours. All other 

parameters were held constant. Figure 17 shows the XRD patterns of the resulting materials after 

heat-treatment. After 1 hour of heat-treatment, a fairly low crystallization of Li7P3S11 is obtained. 

After 2 hours, the amount of Li7P3S11 has increased, however a few new peaks corresponding to 

Li4P2S6 are also present. Lastly, after 3 hours the crystallinity of Li7P3S11 has decreased compared to 

the 2-hour heat-treatment, and the peaks of Li4P2S6 have increased in intensity. This seems to indicate 
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that after formation of the first nuclei of Li7P3S11, longer holding time increases the crystallinity up to 

a critical time after which the phase begins to decompose into Li4P2S6. These results show that the 

material is very sensitive to heat-treatment holding time.  

 

Figure 17: XRD patterns of identical samples that have been heat-treated at 250°C for different 

holding times. 

 

3.2.2.4 Heating and cooling rates 

Figure 18 compares the XRD patterns of glasses heat-treated with different heating and 

cooling rates. The first (sample 1) was heat-treated at a 5°C/min rate to 300°C, held for 1 h, and then 

rapidly cooled to room temperature by removing the sample from the furnace. The second (sample 2) 

was heat-treated quickly by placing in a furnace that was stabilized at the set temperature, held for 1 

h, and then cooled slowly (about 3°C/min) in the furnace. The third (sample 3) was heat-treated with 

fast heating and cooling by placing the sample in an already hot furnace and removing it after 1 h of 

heat-treatment. The fast heating rate was calculated to be about 200°C/min, and the fast cooling rate 

to be about 30°C/min. The heating and cooling rates are directly related to the holding time 

parameter. For an equivalent holding time, a faster heating rate gives less exposure to heat, so the 

material will not crystallize or decompose as much as if a slow heating rate was used. Figure 18 
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shows that the heating rate has to be considered in addition with the holding time (a slow heating rate 

with a short holding time might be equivalent to a fast heating rate and a longer holding time). The 

most crystalline Li7P3S11 was obtained with Sample 3 (fast rates) which formed without any 

impurities. Sample 1 (slow heating rate) exhibits fairly crystalline Li7P3S11 as well but with some 

extra peaks as a result of decomposition. Sample 2 (slow cooling rate) shows considerable 

decomposition of Li7P3S11 into Li3PS4, which indicates that the cooling rate has a major impact on the 

crystallization process. This is not surprising as Li7P3S11 is a metastable high temperature phase. This 

phase needs to be stabilized kinetically in order to achieve high degrees of crystallization. In theory, 

better samples can usually be obtained by decreasing the cooling rate further by quenching in an ice 

bath, however this requires more preparation as the material has to be compressed in pellets and 

sealed under vacuum in a quartz tube. In practice, this method is not more efficient to form good 

materials and is in addition more time- and effort- consuming than the fast cooling method used here 

(see sections on influence of form of material and of atmosphere type). 

 

Figure 18: XRD patterns of heat-treated glasses with (1) a slow heating rate and fast cooling rate, (2) 

a fast heating rate and a slow cooling rate, and (3) fast heating and cooling rates. 
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Two samples of different quantities were heat-treated from the batch of glasses with the exact 

same conditions. The first sample has a mass of 50 mg and the second a mass of 200 mg. The XRD 

patterns of the two samples after heat-treatment are shown in Figure 19. As expected, the sample 

with a smaller mass crystallized significantly more than the sample with a larger mass. The amount of 

material has a huge impact on the heat-treatment results. 

 

Figure 19: XRD patterns of samples after heat-treatment of 50 mg and 200 mg of glasses. 

 

3.2.2.7 Form of the material 

Two heat-treatments were performed on the same batch of glasses, one in powder form and 

the other with the powder pressed into a pellet.Figure 20 shows the XRD patterns of the powders 

after heat-treatment. Slightly lower crystallinity is obtained for the heat-treated pellet. As it is more 

compact, it takes longer to reach the heat-treatment temperature, thus requiring a longer holding time 

to achieve the same crystallinity as the powdered sample.  
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Figure 20: XRD patterns of heat-treatments performed on (a) a powder sample and (b) a pelletized 

sample. 

 

3.2.2.8 Crucible material 

Several crucible materials have been investigated, including alumina, gold, inconel, and 

quartz/glass. Figure 21 presents the results of samples heat-treated in gold and inconel. All other 

parameters are identical. The highest crystallinity was obtained with the gold crucible and the lowest 

with the inconel. Alumina showed approximately the same results as gold, but as there is more 

diffusion of lithium into alumina than in gold, gold was chosen for all standard heat-treatments. 

Overall, the difference is not astonishingly significant, but still plays a role in the final quality of the 

glass-ceramics obtained, when considered in addition to the other factors.  
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Figure 21: XRD patterns of heat-treated glasses in (a) an inconel crucible and (b) a gold crucible. 

 

3.2.2.9 Atmosphere 

The atmosphere in which the heat-treatment is performed also affects the crystallization of the 

material. Some heat-treatments were performed in an inert argon atmosphere, under an argon flow or 

under vacuum. Given its higher thermal conductivity coefficient, argon resulted in better 

crystallizations than vacuum. For the same reason, a static atmosphere was preferred to a flow of 

colder argon in the furnace.  

 

3.2.2.10  Conclusions on the influence of synthesis parameters 

From the various experiments and the study of the different parameters, a preferential method 

of synthesis has emerged. First, ball milling has proven to be simpler more efficient than quenching 

for the preparation of the 70.Li2S-30.P2S5 glasses. All milling jars and balls were zirconium oxide. 

The best results were obtained using a large number of small grinding balls, and with higher milling 

speeds for shorter milling times (the round milled at 900 rpm for 30 min resulted in higher 

crystallization of Li7P3S11 than the round milled at 400 rpm for 22 h). For the synthesis of Li7P3S11 

20 25 30 35 40

In
te

n
s

it
y

 (
a

.u
.)

2(°)



39 
 

glass-ceramics, the highest degree of crystallization was obtained in an inert argon atmosphere, in 

gold crucibles, and at temperatures slightly below the decomposition temperature of Li7P3S11 into 

Li4P2S6 and Li3PS4. To obtain pure Li7P3S11 it is critical to rapidly cool the sample after heat-

treatment to stabilize this metastable high-temperature phase. Compromises between the holding 

time, the heating rate, the amount of material and the material-form are needed in order to optimize 

the quality of the obtained Li7P3S11.   

 

3.2.3 Ionic conductivity measurements 

To determine if an ionic conductor will be a good solid electrolyte, impedance analysis  is 

performed. From impedance measurements, the ionic conductivity of the material can be calculated, 

and if measured at different temperatures, the activation energy can be determined as well. Other 

information (e.g. polarization) can be obtained if the analysis is conducted on full cells. A good solid  

electrolyte must have the ability to conduct Li+ ions with a low activation energy and a low degree of 

polarization. 

Three samples were prepared for impedance analysis. The first material was 70.Li2S-30.P2S5 

milled glass (a).  The second sample is Li7P3S11 glass-ceramics powder (obtained by heat-treating 

glasses in a powder-form) (b). These two powders were then pelletized and placed in a polycarbonate 

cylinder between two stainless steel blocking current collectors. The third sample is also a Li7P3S11 

glass-ceramic, but this sample was heat-treated in pellet-form in a ceramic cylinder, and the 

impedance measurement was carried out directly in the cylinder (the material kept its original pellet 

form) (c). After impedance measurement, the three pellets were crushed and analyzed by XRD 

(Figure 22).  The glasses showed a nearly amorphous pattern with very small nuclei of Li7P3S11. The 

glass-ceramics exhibited the Li7P3S11 phase pattern, but the glass-ceramic synthesized in a powder-

form is about twice as crystalline as the sample prepared in a pellet-form. This result agrees with the 

results presented in the previous section (compressed samples need a longer holding time to achieve 

same degree of crystallization as a powdered sample).  
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Figure 22: XRD patterns of (a) 70.Li2S-30.P2S5 milled glasses, and of Li7P3S11 crystallized in a (b) 

powder-form, and (c) pellet-form. 

Figure 23 shows the Nyquist plots for the three samples. The data is not normalized by the 

thickness of the pellet so the resulting ionic conductivities are presented in  

Table 2 (as we have   
         

                         
 ). Anyway, the pellets thicknesses are all in the 

range of 500-700 μm. The Li2S-P2S5 glass shows a partial semi-circle at high frequencies, followed 

by a linear portion at low frequencies. The two glass-ceramics exhibit only the linear part. These 

results are typical for sulfide glasses, in which the grain boundary resistance is not high enough to 

appear in the plots at room temperature. When temperature is decreased, the resistances (bulk, grain 

boundary and interfaces) increase and three semi-circles would appear at high frequency for the glass-

ceramics 55-56. For the plot with a semicircle (as for the glasses presented in Figure 23), the data can 

be fitted by an equivalent circuit to calculate the overall resistance and the bulk-conductivity. For data 

without semi-circles, the overall resistance of the electrolyte can be extrapolated from the linear 

portion to the x-axis in the Nyquist plot or from the Bode plot (log(|Z|) as a function of 

log(frequency)).  The values are presented in  

Table 2.  
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Figure 23: Nyquist plots of (a) Li2S-P2S5 glasses, (b) Li7P3S11 prepared in a powder-form and (c) 

Li7P3S11 prepared in a pellet form, measured at room temperature. 

 

Sample Total electrolyte 

resistance (Ω) 

Thickness of pellet (cm) Ionic conductivity 

(S/cm) 

Li2S-P2S5 glasses 1200 0.064 6.79  10
-5 

Li7P3S11 (powder HT) 57.5 0.054 1.20  10
-3 

Li7P3S11 (pellet HT) 63.1 0.067 1.35  10
-3 

 

Table 2: Ionic conductivity of Li2S-P2S5 glasses and glass-ceramics. 

The glasses have an ionic conductivity of 10-5-10-4 S/cm, which is typical for sulfide glasses. 

Despite its lower degree of crystallinity, the sample heat-treated directly in the impedance cell as a 

pellet has a higher ionic conductivity than the glass-ceramics heat-treated in a powder-form and 

pelletized afterwards in the impedance cell. This is due to reduction in grain boundary resistance.   
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3.2.4 Conclusion and perspectives 

The synthesis of Li7P3S11 remains very difficult even after over a year of research. Every 

round of glasses and every heat-treatment is different and behaves in a different way. Treatments that 

would achieve the highest crystallinity and conductivity for one round would result in low 

crystallinity and poor performance for another one. Because of this, each round of glasses has to be 

analyzed by DSC, and multiple heat-treatments must be performed to determine the optimum 

Li7P3S11 synthesis method for each batch.  This is why upscaling is currently not an option. Despite 

this, a method has been created to produce satisfactory glass-ceramics for use in all-solid-state 

batteries. First, higher crystallinity is achieved when nuclei or crystals of Li7P3S11 are already present 

in the glasses. This is done either by using high milling speeds, or by conducting an extensive study 

of nuclei and crystal growth rates followed by heat-treatments in several steps 57-58. Furthermore, it 

has been shown that degree of crystallinity is not the only important factor when using Li7P3S11 as a 

solid electrolyte, as was also shown in literature59. The reduction of grain boundary resistance is just 

as important as degree of crystallinity, if not more so, as the impedance results showed. Significant 

progress has been made on the synthesis of Li7P3S11, and a method to obtain a reasonably conductive 

solid electrolyte that can be used in batteries was determined.  
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3.3 Na2S-P2S5 glasses 

3.3.1 Introduction 

The Na-P-S system has attracted special interest since the discovery of the Li7P3S11 phase in 

2008 59. In fact, as the X7P3S11 superionic conducting phase is present in both the Ag-P-S (discovered 

in the 1980’ s 60) and the Li-P-S systems, there is a chance that the Na7P3S11 phase exists as well. The 

hunt for it has been unsuccessful so far despite investigations and publications made by Martin and 

Hayashi’s groups in particular. Other sodium ionic conductors were discovered in the process: for 

instance a cubic form of Na3PS4, which has an ionic conductivity two orders of magnitude higher than 

its tetragonal counterpart 61.  

In this section, attempts to synthesize Na7P3S11 from 70.Na2S-30.P2S5 glasses are presented. 

Investigation of the phases forming in the 67.Na2S-33.P2S5 glasses gave rise to the discovery of two 

“new unknown” structures.  

3.3.2 70-30 Na2S-P2S5 glasses 

We first tried to synthesize Na7P3S11 in the traditional way used for Li7P3S11. Similar to Li2S-

P2S5 glasses, reagent grade Na2S and P2S5 were mixed in a 70:30 molar ratio, and ball milled in a 

ZrO2 jar at 400 rpm. Two different experiments are presented here. In the first, the mixture was 

milled for 10 h (in literature the milling time is typically at least 20 h) and the second experiment for 

for 30 min. The resulting materials were analyzed by XRD and DSC techniques. 

Figure 24 compares X-ray diffraction patterns of the two glass samples. The sample milled 

for 10 hours shows small peaks of Na3PS4 while the sample milled for 30 min is completely 

amorphous. This demonstrates that the Na-P-S system is considerably more sensitive to heating from 

the ball milling step, compared to the Li-P-S system. Na3PS4 tends to form very easily from the 

glasses compared with its cousin (Li3PS4) in the Li-P-S system.  
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Figure 24: XRD patterns of 70-30 Na2S-P2S5 glasses milled at 400 rpm for 10 hours and 30 min 

respectively. 

Following these results, DSC analysis was carried out on the round of glasses milled for 30 

min, which were amorphous. The heat-flow curve is displayed in Figure 25. The material was heated 

in the DSC up to 500 °C at a heating rate of 10 °C/min. The curve exhibits two exothermic peaks at 

211°C and 235°C, an endothermic peak at 350°C, and a barely visible exothermic peak at 384°C. In 

our type of materials, exothermic peaks are usually characteristic of crystallization and endothermic 

peaks of melting. The glasses were consequently heat-treated according to those thermal changes. 

Heat-treatments of the other round of glasses milled for 10 h only resulted in further crystallization of 

Na3PS4 so no further investigation was conducted.  
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Figure 25: DSC curve of the 70-30 Na2S-P2S5 glasses milled at 400 rpm for 30 min. 

The glasses were heated-treated at 210, 250, and 390°C respectively (as indicated by the 

arrows in Figure 25). The samples were placed into quartz tubes, sealed under vacuum, heated up to 

the different temperatures, held for 1 h, and then quenched in an ice bath to stabilize the composition 

obtained at the different temperatures. Figure 26 shows the XRD patterns of the heat-treatments. The 

heat-treatment at 210°C, corresponding to the first exothermic peak, exhibits only small peaks of 

Na3PS4. At 250°C (after the second exothermic peak), the Na3PS4 peaks are more intense than for the 

210°C heat-treatment, and an unknown phase appears. After heat-treatment at 390°C (after the 

melting point), XRD results show only Na3PS4 remains with a higher degree of crystallinity. These 

results strongly suggest that at 211°C, Na3PS4 crystallizes from the amorphous glasses; at 235°C, the 

unknown phase crystallizes as well from the remaining amorphous glasses; and at 350°C, the 

unknown phase melts, leaving Na3PS4 crystals and an amorphous melt composition in the sample.  
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Figure 26: XRD patterns of 70. Na2S-30.P2S5 glasses heat-treated and quenched at 210°C, 250°C and 

390°C respectively. 

The unknown phase is not reported in any XRD database, but further investigation into 

literature suggests that it could be crystalline Na4P2S7. In particular, Hayashi et al. published very 

similar XRD patterns of this phase in 2014, which was attributed to crystalline Na4P2S7, but this was 

never verified62. Thus, glasses in the molar ratio 67-33 (stoichiometry of Na4P2S7) were prepared.  

 

3.3.3 67.Na2S-33.P2S5 glasses 

To synthesize the 67.Na2S-33.P2S5 glasses, Na2S and P2S5 were mixed in a 67:33 molar ratio, 

placed into ZrO2 jars and mechanically milled at 400 rpm for 30 min. XRD was used to verify that the 

material was amorphous. Figure 27 shows the DSC curve of the 67.Na2S-33.P2S5 glass, which 

exhibits an exothermic peak at 226°C, two endothermic peaks at 350°C (the same as for the 70-30 

glasses)  and at 423°C upon heating to just below 500°C, and an exothermic peak at 315°C upon 

cooling down.  
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Figure 27: DSC curves of 67.Na2S-33.P2S5 glasses milled at 400 rpm. 

Heat-treatments were performed at the temperatures denoted by black arrows in Figure 27, 

which are just beyond the exo- or endo-thermic features. The glasses were placed in a powder form in 

a gold crucible and placed in a hot furnace set at the selected temperature, held for 1 h, and then 

cooled to room temperature (under argon) external to the furnace. Figure 28 shows the XRD patterns 

of the heat-treated samples at 230, 290, 375, and 455°C, as well as a sample heated up at 470°C, 

cooled down and held at 300°C (arrow in the cooling curve). The sample heat-treated at 230°C 

exhibits peaks corresponding to Na3PS4 and the unknown phase previously observed in the 70-30 

system (unknown 1). Heat-treatment at 290°C resulted in further crystallization of the unknown phase 

1, where the ratio of Na3PS4 to unknown 1 is decreased. At 375°C, after the melting point, the 

unknown phase 1 did not disappear as expected (according to previous studies on the 70-30 system, 

the unknown phase 1 crystallizes around 230°C and melts at 350°C). This could be because the 

sample was not quenched at the end of the heat-treatment but simply cooled down at room 

temperature. Thus, unknown 1 had time to recrystallize. At 455°C, after the second melting point, the 

sample became amorphous, which suggests that both the Na3PS4 and unknown phase 1 have melted. 
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Finally, the glasses heated up to 470°C (to the melt) and then held at 300°C, exhibited a second 

unknown (unknown 2) in the diffraction pattern.  

 

Figure 28:  XRD patterns of 67-33 glasses after heat-treatment at (a) 230°C, (b) 290°C, (c) 375°C, 

(d) 455°C, and (e) 470-300°C. 

Figure 29 shows the Raman spectra of the materials (c) heat-treated at 375°C (i.e. of the 

unknown phase 1), (d) heat-treated at 455°C (i.e. of the composition of the melt), and (e) heat-treated 

at 470°C and then cooled and held at 300°C (HT 470-300°C) (i.e., unknown phase 2). The spectra 

exhibit identical features but with differing intensities. The higher the temperature of the heat-

treatment, the more intense are the Raman peaks. The most identifiable peaks are the main band at 

400 cm-1 and a very low intensity band at 380 cm-1, which can be assigned to P2S7 
4- and P2S6

4- ions 

respectively, according to the literature about Raman studies of the lithium thiophosphates. Table 3 

below summarizes all the Raman peaks frequencies and intensities, comparing them with data from 

the literature. The peaks matching perfectly are highlighted in yellow. The peaks that were not 
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comparable are highlighted in grey, and the peaks that were missing or extra are in red. Finally very 

weak peaks that are not present in our spectra are left in white, as they could be present. Overall, the 

spectra of the heat-treated materials match almost perfectly the referenced spectra of Na4P2S7, 

confirming our previous hypothesis. Although the unknown phases 1 and 2 have very distinct 

diffraction patterns, the Raman results suggest that they might be Na4P2S7 polymorphs. 

 

Figure 29: Raman spectra of the 67-33 Na glasses after heat-treatment at 375°C, 455°C, and 470-

300°C. 
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Peak frequency for 

HTs (cm
-1

) 

Peak frequency for 

Na4P2S7 (literature) 
63

 

(cm
-1

) 

 183 m 

215 w 215 vw 

 230 vw 

249 wsh 248 wsh 

259 s 260 s 

281 m 280 m 

310 w 310 vw 

380 wsh n.p. 

398 vs 398 vs 

410 msh 410 msh 

n.p. 435 s 

462 s 462 s 

495 s n.p. 

523 s 524 s 

 540 vw 

582 w 583 w 

594 w 595 w 

610 w 610 w 

n.p. 650 m 

819 vw  

1065 vw  

1251 m  

1443 sb  

Table 3: Comparison of peaks frequencies and intensities of the Raman spectra of the heat-treated 

materials. w weak, m: medium, s: strong, v:  very, b: broad, sh: shoulder, n.p. : not present 
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3.3.4 Characterization of the unknown phases 

Impedance measurements were performed on (a) the precursor 70-30 Na glasses, (b) a 

mixture of Na3PS4 and unknown phase 1 (heat-treatment of the 70-30 glasses at 250°C), (c) the 

precursor 67-33 Na glasses, (d) the unknown phase 1 (heat-treatment at 375°C was the most 

crystalline), and (e) the unknown phase 2 (heat-treatment at 470 and then 300°C). The different ionic 

conductivities at room temperature are reported in Table 4.  

Material Ionic conductivity at room temperature (S/cm) 

(a) 70.Na2S-30.P2S5 glasses 7.35 10
-7 

(b) Na3PS4 + unknown 1  1.01 10
-5

 

(c) 67-33 Na2S-P2S5 glasses 1.10 10
-6

 

(d) Unknown 1 (HT 375°C) 5.30 10
-7

 

(e) Unknown 2 (HT 470-300°C) 6.50 10
-7

 

Table 4: Comparison of the ionic conductivity of different sodium glasses and glass-ceramics 

The XRD patterns of both unknown phases were indexed in the P-1 space group.  

For unknown phase 1, the lattice parameters are a=5.48 Å, b=6.54 Å, c=8.65 Å, α=96.2°, β=80.5°, 

and γ=84.8°.  

For unknown phase 2, the best matches were for a=5.88 Å, b=5.00 Å, c=8.13 Å, α=86.6°, β=97.8°, 

and γ=92.4°.  

These lattice parameters are somewhat similar, which comforts the hypothesis of polymorph 

materials. Figure 30 and Figure 31 show LeBail fits of the patterns. 
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Figure 30: LeBail fit of the XRD pattern of the unknown phase 1. 

 

 

Figure 31: LeBail fit of the XRD pattern of the unknown phase 2. 

 

3.3.5 Conclusion and future studies: 

The investigation in the 70-30 and 67-33 Na2S-P2S5 glasses uncovered two never reported 

crystalline structures. Although the crystalline structures were never published, DSC and Raman 

analyses support our hypothesis that these phases are in fact polymorphs of the structurally undefined 
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Na4P2S7 phase. The two materials exhibited low ionic conductivities of about 5 x 10-7 S/cm. More 

characterization must be performed to verify this hypothesis. The materials need to be synthesized in 

a more pure form to definitely establish their structure.  
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3.4 Na-Li hybrid glasses 

As reported in the previous section we did not succeed in synthesizing the Na7P3S11 phase via 

solid-state route by planetary ball milling. However, we observed that for the Li-P-S system, once 

some nuclei of the Li7P3S11 phase are present, the formation of the “7-11” structure with high purity 

and high degree of crystallization is favored (cf section 3.1). In this perspective, we have attempted to 

mix amorphous 70.Na2S-30.P2S5 glasses with partially crystalline Li7P3S11 glass-ceramics, in 

different weight ratios. As a result, a new hybrid Na-Li phase was formed, then determined by ab 

initio structure solution using Topas™, and characterized by impedance spectroscopy, SEM/EDX and 

Raman spectroscopy.  

3.4.1 Experimental 

Synthesis of the 70.Na2S-30.P2S5 glasses and of the 70.Li2S-30.P2S5 glass-ceramics  

Reagent grade Na2S (Alfa, purity 99%) and P2S5 (Aldrich, purity 99.9%) in a molar ratio of 

70:30 were used as starting materials. The Na glasses were prepared by a mechanochemical method 

using a planetary ball mill apparatus (PULVERISETTE 7 Premium, Germany). The materials were 

milled together in a 45 mL Zirconia jar at 500 rpm for 30 min (section 3.2.1). Similarly, the 

mechanochemical treatment was performed for a 70:30 molar ratio mixture of Li2S (Alfa, purity 

99.9%) and P2S5, and glass-ceramics were obtained after milling at 900 rpm for 1 h (see section 3.1). 

X-Ray diffraction (XRD) was performed to verify the crystallinity of the obtained glasses and DSC to 

determine the crystallization temperatures and other thermal behaviors.  

Preparation of the hybrid Na-Li glasses 

The precursors, the Na glasses and the Li glass-ceramics were weighed in different weight 

ratios (90:10, 60:40, 50:50, and 40:60) and ground together in a mortar. Each mixture was put into a 

13 mm die and a pressure of 3 tons was applied at 25°C for 30s using a hydraulic press. The pellets 

were then heat-treated at 170°C (softening temperature of the Na glasses) for 3 h. The 60:40 ratio 

material was further heat-treated at 260°C, 330°C and 375°C. Again, XRD and DSC were performed 

to investigate the structure and thermostability of the obtained materials. 

 

3.4.2 Results and discussion 
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  Figure 32 shows the XRD patterns of the Na glasses, the Li7P3S11 glass-ceramics, and the 

different hybrids. The structures change after pre-heat-treatment at 170°C. The 90:10 ratio of Na 

glasses/Li7P3S11 glass-ceramics has crystallized into the thermodynamically stable phase Na3PS4. 

However, for the 60:40 ratio, a completely new phase is observed that does not match any phase from 

the database. The 50:50 and 40:60 ratios gave the same result as for the 60:40 phase, but in less 

crystalline. 

 

Figure 32 : XRD patterns of Li7P3S11 glass-ceramics (Li gl), 70.Na2S-30.P2S5 glasses (Na gl), and 

mixtures of both in 90:10, 60:40, 50:50, and 40:60 weight ratios. 

Following these results, DSC was performed on the different samples, in order to crystallize 

more of the unknown phase and to enable the identification of its structure. The results are presented 

in Figure 33. The Na glasses present the same features of crystallization of Na3PS4 and the unknown 

phase 1 around 223°C as presented in section 3.2. Similarly the Li glass-ceramics show exothermic 

peaks at 313°C and 390°C, corresponding to the crystallization of Li3PS4 and Li4P2S6, respectively. 

The hybrid samples have very different features from the precursors. Despite the 60:40 and 50:50 
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ratios having almost identical XRD patterns, their DSCs are very different. The 60-40 ratio has two 

small exothermic peaks at 258 and 329°C, and an endothermic peak at 374°C. The 50-50 wt% ratio 

shows exothermal change at 236°C and two endothermic peaks at 315°C and 321°C.  

 

Figure 33 DSC of Li7P3S11 glass-ceramics, 70.Na2S-30.P2S5 glasses (Na gl), and mixtures of both in 

90:10, 60:40, 50:50, and 40:60 weight ratios.  

Given that the 60:40 ratio was the most promising in terms of obtaining a single phase, some 

preliminary heat-treatments were performed at 260°C, 330°C, and 375°C (labeled with arrows in 

Figure 33 showing the DSC features). The XRD patterns of the obtained materials are presented in 

Figure 34 below.  
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Figure 34 XRD patterns of the hybrid 60:40  Na-Li glasses heat-treated at 260°C, 330°C, and 375°C. 

The “Phase A”, present in the pre-heat-treated sample (Na-Li : 60-40 weight %), is found in 

each sample but is obtained almost pure-phase and highly crystalline in the heat-treatment at 375°C. 

The other two heat-treatments show multiple unknown peaks, and their number makes it difficult to 

analyze and determine the single phases among them. The other ratios were also heat-treated at 

different temperatures, following the arrows on the DSC curves. All heat-treatments resulted in a 

mixture of the phase A with additional unknown peaks, similarly to the heat-treatments at 260°C and 

330°C for the 60-40 wt%, but with no obvious correlation between them.  

 

3.4.3 Characterization of the unknown “phase A” 

3.4.3.1 Structure determination 

Na-Li : 60-40

HT 330°C

HT 260°C

In
te

n
s
it

y
 (

a
.u

.)

2

HT 375°C

Phase A



58 
 

The Phase A was successfully, and definitively indexed to a tetragonal structure in the space 

group I-42m with the following lattice parameters: a =  6.3007 Å and c = 8.0026 Å. After indexing 

and fitting of the pattern, the structure was determined and the material was found to be Li2NaPS4, 

which exhibits corner-sharing tetrahedra of PS4, NaS4 and LiS4 ions (shown in Figure 35). The Li+ 

ions (in the green tetrahedra) are segregated into 2D layers in the structure as depicted, whereas the 

Na+ ions (in the yellow tetrahedra) are in 2a sites that should present little mobility owing to the 

presence of P5+ (as PS4) in the 2b sites (see Figure 36). 

 

Figure 35: Polyhedral depiction of the unit cell of the Li2NaPS4 structure. Purple tetrahedra: PS4, 

yellow tetrahedra: NaS4, green tetrahedra: LiS4. 
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Figure 36: Space group and cell parameters of the Li2NaPS4 structure. 

 

3.4.3.2 Impedance measurements 

Impedance measurements were performed on Li2NaPS4. The Nyquist plot is shown in Figure 37.  
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Figure 37: Nyquist plot of Li2NaPS4. 

The data was fit by an equivalent circuit of the form:  
  

   
  
  
   

 (Table 5). R1 corresponds to the bulk, 

and R2 corresponds to the grain boundary resistance. The bulk resistance from the z-fit is 5.4 x 105 Ω, 

which gives an ionic conductivity of 1.2 x 10-7 S/cm.  

R1 (Ω) 

(bulk) 

R2 (Ω) 

(gb) 
Q1 (F) Q2 (F) Q3 (F) χ² 

5.4 10
5
 8.8 10

5
 1.2 10

-10
 2.3 10

-9
 1.9 10

-7
 9.0 10

-2
 

Table 5: Fitting parameters of the equivalent circuit. 

 

3.4.3.3 SEM/EDX characterization 

The sample was also analyzed by SEM and EDX. Figure 38 below shows an SEM image of 

the material. Small polygons were observed, but they seemed covered in an amorphous material, and 

the degree of crystallinity did not seem very high. However, as the sample reacts with air, and given 

that the process of introducing the sample into the SEM chamber takes a couple of minutes, it had 

time to degrade partially, as shown in the EDX results. As sulfides react with H2O to form H2S we 
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have a deficit of sulfur and additional oxygen atoms in the structure. The Na/P atom ratio is 

approximately one, as expected. The experiment needs to be redone with an SEM equipped with an 

air-lock.  

 
 

Figure 38: SEM image and EDX analysis of Li2NaPS4. 

 

3.4.3.4 Raman analysis 

Finally, the material was analyzed by Raman spectroscopy to check if the tetrahedra present 

in the structure are detectable by Raman. Figure 39 shows the Raman spectrum of Li2NaPS4. A main 

band was observed at 420 cm-1, corresponding to PS4
3- ions. The spectrum exhibits two other weak 

peaks at 250 and 280 cm-1 respectively. Investigation into characteristic NaS4 and LiS4 tetrahedral 

vibrational frequencies in other known compounds did not give rise to any possible match to these 

two peaks.  
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Figure 39: Raman spectrum of Li2NaPS4. 

3.4.4 Conclusion and future work 

A new phase, Li2NaPS4, was discovered. It was analyzed by XRD, SEM, EDX, Raman and 

impedance spectroscopy. Although this material seemed at first promising, its poor ionic conductivity 

of 10-7 S/cm compromises its application to all-solid-state batteries. More studies should be done to 

investigate the reasons of such poor conductivity, the nature of the actual charge carriers (Li+ or Na+ 

ions), and possible element and vacancy substitutions to improve its conductivity and reactivity.    

 

 

3.5 Conclusions and perpsectives 

In this chapter, we have first done a summary of Li7P3S11 way of synthesis by describing the 

influence of the different parameters. From experimental observations, it seems difficult to upscale 

the synthesis of this superionic conductor, however its study has enabled us to improve its 

crystallinity and ionic conductivity and to fabricate all-solid-state batteries. 

In the second section, pursuit of the theoretical Na7P3S11 phase led to the discovery of two 

unknown structures, which, after further analysis, seemed to be polymorphs of the Na4P2S7 phase. 
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Finally, a new sulfide-based material, Li2NaPS4, was discovered and characterized. However, 

it exhibited a low ionic conductivity of about 4 x 10-8 S/cm, perhaps due to the mixture of charge 

carriers in its structure (Na+ and Li+ cations). Although it is not promising for applications to all-

solid-state batteries, more analyses and attempts to improve its conductivity (by substitution or 

insertion of other elements) can be done.   
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Chapter 4:  

Applications to Lithium-Sulfur All-Solid-State 

Batteries 

 

 

4.1 Introduction 

In this section, charge-discharge performance of different batteries is investigated at room 

temperature. First, the influence of two different solid electrolytes -Li7P3S11 and Li10GeP2S12- on 

specific capacity, capacity retention and rate capability is examined. The all-solid-state cells achieved 

a high specific capacity but showed poor capacity retention and rate capability. In particular, the 

Li10GeP2S12-based cell had an initial higher-than-theoretical capacity, likely due to irreversible 

decomposition reactions of Li10GeP2S12 (LGPS).  

Second, different compositions of the composite cathode are studied to enhance the overall 

performance of the batteries. Two different electronic conductors -Ketjenblack (KB) and Activated 

Carbon (AC)- as well as two ionic conductors -LGPS and Li1.5PS3.25 - are compared.  

All the cathodes had a sulfur loading of 51 weight % and the capacities were normalized by 

the weight of sulfur in the cathodes. The charge-discharge curves are presented versus Li-In potential 

(left-hand vertical axis in figures) and versus Li+/Li (right-hand vertical axis), which is calculated 

based on the potential difference between Li and Li-In electrodes (0.6 V for Li-In alloys with a Li/In 

molar ratio < 1) 64. The cells show typically an average operating voltage of 2.1 V vs Li+/Li (1.5 V vs 

Li-In), which corresponds to traditional potential in liquid electrolyte batteries. This result suggests 

that the same electrochemical reaction occurs in all-solid-state batteries: S + 2Li+ + 2e- = Li2S. Thus, 

just as for the liquid cells, one of the main issues encountered in all-solid-state cells will be related to 

the volumetric expansion in the transformation of sulfur into lithium sulfide. This should further 
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increase the risk of poor solid-solid contact at the interfaces, which is already inherent to all-solid-

state cells.  

 

4.2 Experimental 

4.2.1 Solid electrolytes 

Three sulfide solid ionic conductors, Li7P3S11, Li10GeP2S12, and Li1.5PS3.25, were synthesized 

in order to compare their performance in all-solid-state cells. Both solid electrolytes Li7P3S11 and 

Li10GeP2S12 were prepared by using a high energy ball milling method followed by a heat-treatment. 

For Li7P3S11 (see section 3.1), Li2S and P2S5 in a 70:30 molar ratio were weighed, placed into a 

zirconia jar with 300 balls under argon atmosphere, and then ball milled at 900 rpm for 2 h. Partially 

crystalline Li7P3S11 was obtained, and after heat-treatment at 300°C for 1 h, the sample was highly 

crystalline. For Li10GeP2S12, Li2S, GeS2 and P2S5 were weighed in a 5:1:1 molar ratio, milled at 300 

rpm for 12 h, and then heat-treated in a quartz tube sealed under vacuum at 550°C for 8 h 31. 

Li1.5PS3.25, used as an ionic conductor in the cathode, was prepared by ball milling Li2S and P2S5 in a 

60:40 molar ratio at 200 rpm for 14 h until it became amorphous31. The structure and the ionic 

conductivity of the solid electrolytes were analyzed by XRD and EIS respectively.  

 

4.2.2 Positive composite electrodes 

Three different composite cathodes were prepared. Sulfur was used as the active material, 

KetjenBlack (KB) or Activated Carbon (AC MAXSORB ®), as the electronic conductor, and 

Li1.5PS3.25 or LGPS, as the ionic conductor. The three cathodes were KB/S/Li1.5PS3.25, 

AC/S/Li1.5PS3.25 and AC/S/LGPS with a Carbon-Sulfur-Solid Electrolyte weight ratio of 9-51-40 %. 

The carbon-sulfur mixtures were weighed in a 10-90 wt%, and then wet milled in acetone in a 

stainless steel jar at 370 rpm for 10 hours. After drying, the materials were annealed at 160°C 

overnight. Subsequently, the C-S composites were mixed with the solid electrolyte (Li1.5PS3.25 or 

LGPS) in a 60:40 weight ratio, and dry milled at 370 rpm for 15 hrs. XRD, TGA, DTA and BET 

analyses were performed on the materials at each step of the synthesis to evaluate the impact of each 

treatment on the morhpology of the three electrodes.  



66 
 

4.2.3 Negative electrode 

Li-In was used as the counter-electrode in all of the batteries. An indium foil disk was applied 

on top of a lithium foil disk (with a Li/In molar ratio of 0.79). The resulting alloy disk was attached 

on a stainless steel current collector, and applied against the bi-layered pellet contained in the cell 

cylinder (see section 2.5.1). In all-solid-state batteries, the irregular lithium deposition and lithium 

dissolution processes cause the formation of lithium dendrites at the anode over cycling, similar to 

liquid batteries. The propagation of the dendrites is directly correlated with the density of the solid 

electrolyte layer of the cell. In the case of soft sulfide-based solid electrolytes, cold pressing can 

easily achieve densities of 90%, and hot pressing at low temperatures (in the range of 60°C to 100°C) 

is an efficient method to obtain densities of over 99%. However, even when the solid electrolyte 

pellet has a very high density (> 95 %), the lithium dendrites are still able to grow through the micro-

cracks generated after several cycles, and as a result, the cells show short cycle life. A single defect in 

the electrolyte pellet will be an opened path to dendrite growth. One way to limit the dendrite growth 

is to apply an indium protective layer on top of the lithium. Additionally, as the electrode potential of 

the Li-In alloy is constant and equal to 0.6 V vs Li+/Li (for Li/In molar ratios below 1) 64,  the 

potentials, and thus the reactions occurring at these potentials  can easily be compared with reactions 

taking place in traditional liquid Li-S systems. 

 

4.3 Results and discussion 

4.3.1 Comparison of solid electrolytes  

4.3.1.1 Galvanostatic cycling  

In this section, performance of Li7P3S11 and LGPS as solid electrolytes are compared. Table 6 

below summarizes the ionic conductivities of both materials. 

Material 
Ionic conductivity 

 (reported in literature) 

Ionic conductivity of the 

materials used in the batteries 

Li7P3S11 5.0 x 10
-3

 S/cm 1.2 x 10
-3

 S/cm 

Li10GeP2S12 1.1 x 10
-2

 S/cm 7.0 x 10
-3

 S/cm 



67 
 

Table 6: Ionic conductivities at room temperature of Li7P3S11 and LGPS, in literature and as-used in 

all-solid-state cells. 

Galvanostatic measurements were performed on two all-solid-state cells using respectively 

Li7P3S11 (Figure 40.a) and LGPS (Figure 40.b), as the solid electrolyte. The composite cathode was 

KB-S- Li1.5PS3.25 in both cells and the assembly process was identical (described in section 2.5.1). 

The two batteries were run at a C/50 charge rate at 25°C, and the first cycles are presented in Figure 

40. The cut-off voltages are -0.5 V in discharge and 3.4 V in charge for the Li7P3S11-based battery, 

and 0 V in discharge and 3 V in charge for the LGPS-based battery (vs Li-In). The all-solid-state cell 

using Li7P3S11 exhibits an initial discharge capacity of 800 mA.h/g. After the first discharge, the 

charge and discharge capacities drop to 600 mA.h/g (so 200 mA.h/g below the initial capacity), but 

remain relatively stable from there up to the 20th cycle (not shown here). The cell using LGPS shows 

overall higher capacity, which can be reasonably interpreted as a benefit from the superior ionic 

conductivity of the electrolyte (see Table 7). However, the first discharge capacity of the LGPS cell 

is of 1850 mA.h/g, which is above the maximum theoretical capacity of the Li/S couple (1672 

mA.h/g). Investigation needs to be done to determine the side reaction generating this added capacity. 

As this phenomenon is not observed for the Li7P3S11-based cell, this is most likely due to some 

decomposition reaction of LGPS. After the 2nd cycle, the charge and discharge capacities stabilize 

around 1200 mA.h/g, more than 600 mA.h/g below the first discharge, which attests of irreversible 

reactions. In addition, contrary to the Li7P3S11 all-solid-state cell, the discharge curve of the LGPS-

based battery exhibits a change of slope, which is the sign of a second reaction (possibly LGPS 

decomposition) occurring after/during the transformation of sulfur in Li2S upon discharge. Lastly, we 

can observe that the charge-discharge curves of the LGPS cell are not symmetrical: the side reaction 

seems to only occur during the discharge of the battery. 
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Figure 40: Charge-discharge curves of (a) Li7P3S11-based and (b) LGPS-based all-solid-state cells. 

In conclusion, Li7P3S11 shows relatively better stability upon cycling than LGPS, but poorer 

capacity values. Yet the LGPS cell seems to undergo an additional reaction while discharging, which 

results in an inflection in the curve and an irreversible extra-capacity. Finally, in all cells there is a 

huge drop in capacity (never recovered) after the first discharge, which appears to be inherent to the 

all-solid-state cells and could be solely due to the volumetric expansion upon formation of Li2S 

within the cathode.  

 

4.3.1.2 Investigation in extra-capacity  

Cyclic Voltammetry was performed on LGPS and Li7P3S11 versus Li-In. For both cells, a 
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face of the pelletized electrolytes. The potential sweep was carried out between 0 V and 3 V for 
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LGPS, and between 0 V and 3.5 V for Li7P3S11 (potentials are vs Li-In), with a voltage scan rate of 15 

mV/s. The results are presented in Figure 41. The potential windows are actually 0.6-3.6 V vs Li, and 

0.6-4.1 V vs Li, respectively. Overall, both electrolytes show reactivity, as the voltammograms are 

not completely flat. The Li7P3S11 voltammogram exhibits a cathodic peak around 1.02 V vs Li+/Li 

(0.62 V vs Li-In) with an intensity of about 0.075 mA, and an anodic peak around 1.93 V vs Li+/Li 

(1.33 V vs Li-In) with and intensity of 0.025 mA. The CV of LGPS shows a significantly more 

intense peak (above 0.3 mA) at 1.14 V vs Li+/Li (0.54 V vs Li-In), attesting of a redox reaction, and 

an overall higher reactivity (given by the intensity of the background profile) although no peak is 

clearly identifiable, which could be due to the presence of amorphous phase in the sample.  These 

results show that LGPS is considerably more reactive than Li7P3S11, and undergoes redox reactions 

against Li-In in the cycling voltage window. This corroborates with the electrochemistry data shown 

in the previous section.  

 

Figure 41: Cyclic voltammogram of (a) LGPS and (b) Li7P3S11 against Li-In at the first cycle. 
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The newt study aims at determining if the ionic conductor (Li1.5PS3.25) from the cathode, 

which is sulfide-based, does not behave as an active material (upon cycling or upon contact with 

LGPS). For this purpose, a cell without sulfur (regular active material) was assembled and cycled at 

the same rate and with the same cut-off voltages as the LGPS-based cell presented previously. Figure 

42 shows the charge-discharge curves of a (SuperP-Li1.5PS3.25)/(Li10GeP2S12)/(Li-In) battery. The 

mass of Li1.5PS3.25 solid electrolyte was the same as in the LGPS-based battery so that the specific 

capacity was directly comparable to the cell with active material (sulfur). SuperP (SP) was chosen to 

be the electronically conductive host as it has poor surface area and is unable to retain Li ions in its 

matrix. The galvanostatic measurements show an initial discharge capacity of about 50 mA.h/g, 

which deteriorates very quickly: after 5 cycles, the discharge capacity is cut in half to only 25 

mA.h/g. The charge capacities are lower than the discharge capacities (below 20 mA.h/g), which 

suggests that the charge and discharge redox reactions are not reversible. Overall, these results 

demonstrate that the capacity generated from the cell without active material is negligible and fades 

very quickly, so it can be disregarded in the analysis of battery performance.  Thus, we can safely say 

that the added capacity in the LGPS cell is solely due to electrochemical decomposition reactions of 

LGPS. 

 

Figure 42: Charge-discharge curves of a (SP-Li1.5PS3.25)/(Li10GeP2S12)/(Li-In) cell. 
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4.3.1.3 Conclusion 

In conclusion, although we have used the two most promising solid electrolytes up-to-date, 

Li7P3S11 and Li10GeP2S12, the batteries showed quick fading of capacity. In particular, LGPS seems to 

undergo side reactions that give added capacity in the initial cycles, but as they are irreversible, fast 

decay of capacity is observed. Li7P3S11 is more stable but has a significantly lower capacity. 

Following these results, the search for chemically and electrochemically stable solid 

electrolytes needs to be pursued. The literature is mitigated about LGPS stability against Li and Li-In. 

Some papers have reported stable LGPS material, in others it is not.  

In our case, the fast degradation of the cells might come from air contamination as well. Our 

batteries are sealed in glass jars and as a battery takes weeks to run a couple of cycles, there is a 

reasonable chance that the materials degrade with time. Channels are in the process of being set up in 

an inert dry atmosphere in a glovebox. Still, the need for more chemically and electrochemically 

stable solid electrolytes is more and more important. Cycling at higher temperatures (~100°C) is 

another approach to reduce cycling time and thus time of the exposure and degradation due to 

contamination. However, the design of the cells has to be adapted to higher working temperatures, 

and currently no design has given entire satisfaction.   

 In the next section, different cathode compositions are studied and characterized 

electrochemically.  

 

4.3.2 Study of the cathode composition 

An intimate contact between all solid components in the composite cathode is crucial for good 

performance and rate capability. A combination of thermomechanical milling and thermal treatments 

has shown to be one of the easiest ways to achieve good solid-solid contact within the cathode 31. 

Other methods such as Pulsed Laser Deposition (PLD) have proven to be even more efficient 31 but 

are consequently more expensive and time-consuming and we don’t dispose of the appropriate air-

free instrumentation in our lab. One of the goals for our batteries was to use cells with a minimum 

sulfur loading of 50 wt %, as we want to achieve sufficient energy density for practical applications. 
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Two different carbons with high surface area (KB and AC) were used, as surface area is a 

very important factor to enable intimate contact of the electronically conductive host with the other 

materials 31. In the first section, we compare the performance of two Li-S, one having a KB-based 

cathode and the other an AC-based cathode.   

As far as the ionic conductor is concerned, many studies have been carried out to determine 

the key requirements to achieve the highest performance. Chikusa and Nagata claimed that the use of 

the amorphous Li1.5PS3.25 enables a better activation of sulfur within a solid-state electrode, due to its 

ductility and amorphous structure (and despite its poor conductivity) 65. Thus, in the second section, 

we compare the charge-discharge curves of two cells, one prepared using Li1.5PS3.25 (amorphous and 

poorly conductive) and the other one using LGPS (crystalline and highly conductive) in the 

composite cathode.  

 

4.3.2.1 Comparison of two electronic conductors: AC and KB 

Figure 43 below shows the XRD patterns of Ketjenblack-sulfur and Activated Carbon-

sulfur composites after mechanical milling at room temperature. Figure 44 displays the XRD 

patterns of the milled samples after subsequent annealing at 160°C. Both milled composites exhibit 

peaks attributable to α-sulfur, which is slightly more crystalline in the KB-S mixture (the peaks are 

sharper). The presence of sulfur at this stage is not surprising as we have a very high proportion of 

sulfur (90 wt %). The use of very high surface area carbons should allow the embedding of the sulfur 

in the carbon matrix upon further treatment, as demonstrated by the results in Figure 44, in 

comparison with Figure 43. Both figures are at the same scale and the XRD measurements were 

performed in the same conditions. Upon annealing, the peaks of α-sulfur in the KB-S mixture have 

significantly decreased by more than half, and in particular the milled-annealed AC-S composite 

exhibits an almost amorphous pattern, with a higher halo background and a few small peaks of α-

sulfur. These results suggest that part of the crystalline sulfur changed into amorphous sulfur, and that 

the amorphization is favored in the AC carbon compared to KB. 



73 
 

 

 

 

 

Figure 43: XRD patterns of mechanically milled 

Ketjenblack-sulfur (KB-S) and Activated Carbon-

sulfur (AC-S) composites 

Figure 44: XRD patterns of milled and annealed 

Ketjenblack-sulfur (KB-S) and Activated Carbon-

sulfur (AC-S) composites 

 

The milled-annealed samples were then milled with Li1.5PS3.25 in a 60:40 weight ratio. Figure 

45 shows the XRD patterns of the milled composites KB/S/Li1.5PS3.25 and AC/S/Li1.5PS3.25. Both are 

halo patterns and have no peaks of α-sulfur. Most likely, the amorphous solid electrolyte coats the 

carbon-sulfur composites and covers all the crystalline sulfur.  

 

Figure 45: XRD patterns of mechanically milled KB/S/Li1.5PS3.25 and AC/S/Li1.5PS3.25 composites. 
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Figure 46 below shows the TGA curves of the (a) KB-S and (b) AC-S composites, after 

milling and after annealing. For the KB-S mixture (10:90 wt %), the weight decreases drastically (by 

84.4 %) in the range of 200-350°C, which is characteristic of evaporation of sulfur in annealed 

cathode materials. After annealing at 160°C, the KB-S composite exhibits a shift in the temperature at 

which mass loss occurs (compared to the sample that has been milled only). Additionally, the total 

weight loss is of only 83.2% against 84.4% after milling. Similarly, upon annealing, the AC-S 

composites show an increase in the temperature characteristic of weight change, and a reduced 

percentage of weight loss from the milled to the milled-annealed sample. Furthermore, a change in 

the slope of the curve is observed around 250°C, which is characteristic of a two-step reaction. Upon 

annealing, the weight loss changes from 85.6% to 78.5%, so some sulfur might be too embedded in 

the pores of the carbon to evaporate. Overall, the change in ranges of temperature of mass loss is due 

to the different morphologies of sulfur and carbon, and to the contact area and adhesion between 

them. Thus, an increase in temperature of mass change indicates stronger bonding and better coating 

of the sulfur on the carbon. Each part of the curves corresponds to a different type of sulfur 

morphology, as supported by the XRD results.  

Upon mixing with the binding solid electrolyte Li1.5PS3.25 (Figure 47), the KB/S/Li1.5PS3.2 

composite curve takes a two-steps shape, and exhibits a total weight loss of 61.1%. The 

AC/S/Li1.5PS3.25 cathode shows evaporation of 51.4% of its weight and a several-step reaction curve. 

As sulfur consists of only 51 % of the total weight of each composite, it seems that some of the solid 

electrolyte evaporates as well, or that some reaction occurs. In any case, this data shows a change in 

morphology upon subsequent treatments and an increase in adhesion between the composites.  
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Figure 46: TG curves of (a) KB-S composites and (b) AC-S composites, prepared by mechanical milling, and milling-

annealing respectively. 
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Figure 47:TG curves of KB/S/Li1.5PS3.25 and AC/S/Li1.5PS3.25 composite cathodes. 

Differential Thermal Analysis (DTA) curves are shown in Figure 48 for each prepared 

composite. The curves (a) (milled KB-S), (b) (milled-annealed KB-S), (c) (milled AC-S), and (d) 

(milled-annealed AC-S) exhibit endothermic features in the range of 100-125°C. The peaks are 

significantly smaller for the AC-based composites compared to the KB-composites, which indicates a 

smaller amount of material undergoes the transformation in the AC-based compounds. These peaks 

match the characteristic temperature of transformation of elemental sulfur (which melts at 115°C). 

Thus, as shown by XRD and TGA results, this DTA analysis demonstrates that upon treatments, the 

sulfur morphology changes and S8 barely remains in the composites. Instead, another type of sulfur, 

which is amorphous and more strongly bound to the carbon host, is formed. Lastly, AC is more 

effective than KB, as it has a superior surface area. In the case of the KB/S/Li1.5PS3.25 (e) and 

AC/S/Li1.5PS3.25 (f) composite cathodes, no exo- or endo- thermic changes are observed in this range 
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of temperature, confirming the previous results. DTA of the solid electrolyte is shown for comparison 

to ensure that they do not undergo any thermal change.    

 

 

Figure 48: DTA curves of (a) milled KB-S, (b) milled-annealed KB-S, (c) milled AC-S, (d) milled-

annealed AC-S, (e) KB/S/Li1.5PS3.25, (f) AC/S/Li1.5PS3.25 composites, and (g) Li1.5PS3.25. 

BET analysis was performed on the samples at every step, and the results are presented in 

Table 8 below. The data, obtained by a multi-point analysis, is consistent with the XRD patterns 

presented in Figure 44 and Figure 45. Mechanical milling results in smaller particle size of the 

materials, and the S8 is uniformly scattered within the host’s pores and surface. Upon annealing at 

160°C (minimum of viscosity of sulfur), elemental sulfur melts and diffuses more into the pores, 

which gives a significant decrease in total pore volume. Finally, when the solid electrolyte is added 

and milled with the carbon-sulfur composites, the pore volume is further reduced.  

Material 
Total surface area 

(m²/g) 

Total Pore volume 

(cm
3
/g) 

Average pore diameter 

(Å) 

KetjenBlack 1400  0.46 (for pores < 15.7 Å) 13.13  

Activated Carbon 

(®MAXSORB) 
4816  1.42 (for pores < 13.1 Å) 11.8  

Milled-Annealed KB/S 0 4.95   

Milled-Annealed AC/S 6.6 1.81 x 10
-3
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Å) 

Milled KB/S/Li1.5PS3.25 1.3 5.53 (for pores < 13 Å)  

Milled AC/S/Li1.5PS3.25 0 1.7 x 10
-6

   

Table 8: BET analysis of the different carbon composites.  

An all-solid-state cell was assembled using LGPS as the solid electrolyte, Li-In as the counter 

electrode, and an AC-based cathode. The charge-discharge voltage profile of the 

[AC/S/Li1.5PS3.25]/LGPS/Li-In  cell is shown in Figure 49. The voltage window was set up from 0.5 

V to 3.5 V vs Li-In, as LGPS decomposes below 0.5 V (see section 4.3.1). The cell was first run at 

C/50, then C/20 and then at C/50 again. After an initial specific discharge capacity of 1500 mA.h/g,  

the capacity drops and stabilizes around 1100 mA.h/g (73% of initial capacity). When cycled at C/20, 

the specific capacity drops to 400 mA.h/g (27% of initial capacity), after a cycle of adaptation. When 

the cell is cycled again at C/50, the capacity increases to 910 mA.h/g (which represents 61% of initial 

discharge capacity). We can first note that we do not have higher-than-theoretical capacity, so the 

reduction of the voltage window seems to be efficient to prevent LGPS decomposition. However, the 

cell exhibits a capacity loss of 400 mA.h/g (27%) between the first discharge and the first charge. 

This seems to be inherent to all solid cells and might come from physical degradation in the cathode 

and electrolyte after activation. Overall, the AC-based battery shows poor adaptability to rate change, 

and poor capacity at higher rate. This may come from the relatively low electronic conductivity of 
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AC.  

Figure 49:  Charge-discharge voltage profile of an all-solid-state cell with an AC/S/Li1.5PS3.25 

cathode. 

We can compare the performance of the AC-based cell with the battery presented in the first 

section: [KB/S/Li1.5PS3.25]/LGPS/Li-In, although the voltage window is different (from 0 V to 3 V) 

and results in added capacity from LGPS reactivity. Figure 50 compares at different rates the specific 

discharge capacity as a function of the number of cycles of the KB-based cell with the AC-based cell. 

The all-solid-state battery using KB has a larger irreversible drop of capacity after the 1st discharge 

(about 33% of the initial capacity against 27% for the AC-based cell). At C/20, the KB cell capacity 

decreases from 1100 to 700 mA.h/g (a 33% drop from 1100 mA.h/g) while the AC cell capacity 

deteriorates from 1000 to 400 mA.h/g (a 60% drop from 1000 mA.h/g).  At C/20, the decay in 

capacity is comparable for both batteries. These results can be explained by the difference in 

electronic conductivity, which matters more at higher current densities (the charges need to be carried 

and transferred faster at the materials interfaces). When cycling at the lower rate of C/50, the KB cell 

recovers about 90% of the reversible capacity achieved at C/50 for its first cycles. The AC-based all-

solid-state cell also recovers 90% although its capacity loss at C/20 was significantly larger. This 

shows that there was no or limited irreversible degradation of the cathode and of the solid-solid 

contacts after the 1st cycle.  
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Figure 50: Specific discharge capacity in function of cycle number at different cycling rates for the 

KB-based cell and the AC-based cell. 

Further studies and cycling are needed to really determine which carbon is best for battery 

application. The XRD, BET and TGA data tend to show that more intimate contact is achieved within 

the AC-based cathode, due to its higher surface area. However, the electrochemical data of the all-

solid-state cells using both cathodes show that at high rates, the most conductive carbon (KB) results 

in smaller capacity loss. The cycling parameters were not the same and the two cells were run months 

from each other, but as cycling a battery takes several weeks, we are currently not able to produce 

two identical cells to get more conclusive results. 

 

4.3.2.2 Comparison of two ionic conductors: LGPS and Li1.5PS3.25 

In this section, two ionic conductors in the composite cathode are compared. Table 9 below 

summarizes the important properties of the solid electrolytes Li1.5PS3.25 and LGPS.  
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Solid electrolyte Ionic conductivity (S/cm) Structure 

Li1.5PS3.25 10
-5 

Amorphous structure 

LGPS 6 x 10
-3 

Crystal 

Table 9: Ionic conductivities of Li1.5PS3.25 and LGPS. 

Figure 51  shows the XRD patterns of AC/S/Li1.5PS3.25 and AC/S/Li10GeP2S12 composite 

cathodes. The Li1.5PS3.25-based composite is completely amorphous whereas the pattern of the LGPS-

based cathode has a few small unknown peaks, which do not correspond to LGPS nor sulfur.  

 

Figure 51: XRD patterns of AC/S/Li1.5PS3.25 and AC/S/Li10GeP2S12 composite cathodes. 

Two all-solid-state batteries were assembled using LGPS as the solid electrolyte, Li-In as the 

anode, and AC/S/Li1.5PS3.25 (a) or AC/S/Li10GeP2S12 (b) as the cathode. The cells were cycled 

galvanostatically at C/50 for 5 cycles, then at C/20 for 5 cycles, and at C/50 again, in the voltage 

window [0.5 V – 3.5 V] against Li-In. The charge-discharge curves of both cells are presented in 

Figure 52. The cell using LGPS as the ionic conductor in the composite cathode exhibits an initial 

discharge capacity of 1200 mA.h/g, which then drops to 400 mA.h/g (by 33%). Upon cycling at C/50, 

the capacity decreases quickly, from 870 to 720 mA.h/g in 4 cycles (decay rate of 37.5 mA.h/g per 

cycle). Overall the performance of the LGPS-based cell is poorer than the Li1.5PS3.25 –based cell. This 

can be explained by the difference in ductility of both ionic conductors. Li1.5PS3.25 is amorphous and 

acts as a binder, which allows for a better solid-solid contact within the cathode. LGPS is a crystalline 

phase and thus, it is less likely to bind as well as Li1.5PS3.25 upon volume changes, hence poorer 

capacity despite its significantly higher conductivity. Interestingly, at higher rates (C/20), 
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performance of the Li1.5PS3.25 –based cell is much poorer than the LGPS-based cell performance, 

relatively to performance at C/50. 

 

Figure 52: Charge-discharge curves of cells prepared with (a) Li1.5PS3.25-based and (b) LGPS-based 

cathodes. 

 

4.4 Conclusion and perspective 

In this chapter, cycling measurements of our first all-solid-state batteries are presented. This 

provides insight on the performance of our old and new sulfide-based ionic conductors as solid 

electrolytes, besides just cristallinity and ionic conductivity characterizations.  

First, two of the most promising solid electrolytes were compared. The Li7P3S11-based cell 

showed relatively good stability but a low capacity of about 500 mA.h/g after 10 cycles, and the 
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Li10GeP2S12-based cell exhibited extra-added capacity (1850 mAh/g for the initial discharge) owing 

to secondary irreversible reactions which lead to faster decay of capacity. 

Then two carbons were used in the composite cathode and compared. For favorable 

solid/solid contact and cycling at low rates, it seems that surface area is the key to obtain good 

performance. However, for a high rate capability (cycling at very different rates for short times), 

higher electronic conductivity of the cathode is required in order to favor fast transfer of charges at 

the interfaces between active material and electrons and ions. That is why Activated Carbon (AC) 

(very high surface area, low electronic conductivity) demonstrated good performance in the first 

cycles at C/50, but poor rate capability. Ketjenblack (KB) (high surface area but not as high as AC, 

very good electronic conductivity) showed faster decay at low rates initially, but recovered capacities 

much better upon rate change. The optimal conductive host would be a combination of both carbons 

in appropriate ratios. 

Finally two solid ionic conductors were compared for use in the composite cathode. 

Amorphous and ductile Li1.5PS3.25 showed better performance and capacity than crystalline 

Li10GeP2S12 at low rates, due to better contact and coating of the sulfur, and reduction of grain 

boundary resistance within the cathode. However, there again, at high rates and high rate change, the 

Li1.5PS3.25-based cell exhibited very fast decay due to the very low ionic conductivity of Li1.5PS3.25 

and to the consequently low transfer of charges in the cathode compared with the LGPS-based cell. 

In conclusion, for further tests and studies to characterize our materials, a distinction should 

be made in the type of cell performance: the performance of cells cycled at constant low rates and the 

performance of cells cycled at high rates and alternatively high and low rates.  

Further investigation and optimization need to be done, in particular for physical processes 

and methods to form favorable interfaces in the composite cathode at low and high rates. Solubility 

experiments were carried out aiming at the development of thin membranes to improve contact 

between electrolyte layer and electrodes.  These solubility results could also be used for a better and 

uniform coating of sulfur particles by solid electrolyte and electronic conductor in the cathode.  

Lastly, the engineering aspect of all-solid-state batteries need to be further developed. First, 

batteries need to be cycled in a 100% air-free environment. Study of the influence of variable applied 

pressure on the performance of the cell could be carried out with a new design. The use of a hot press, 
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or a ball milling instrument equipped with a heater and a cooler could be extremely useful to fabricate 

high-quality interfaces in the materials as well.  
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