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Abstract

The purpose of the thesis is to determine whether Java, a programming lan-

guage that evolved out of a research project by Sun Microsystems in 1990, is

suitable for solving large sparse linear systems using direct methods. That

is, can performance comparable to the language traditionally used for sparse

matrix computation, Fortran, be achieved by a Java implementation. Perfor-

mance evaluation criteria include execution speed and memory requirements.

A secondary criterion is ease of development.

Many attractive features, unique to the Java programming language,

make it desirable for use in sparse matrix computation and provide the mo-

tivation for the thesis. The ‘write once, run anywhere’ proposition, coupled

with nearly-ubiquitous Java support, alleviates the need to re-write programs

in the event of hardware change. Features such as garbage collection (au-

tomatic recycling of memory) and array-index bounds checking make Java

programs more robust than those written in Fortran.

Java has garnered a poor reputation as a high-performance computing

platform, largely attributable to poor performance relative to Fortran in its

early years. It is now a consensus among researchers that the Java language

itself is not the problem, but rather its implementation. As such, improving

compiler technology for numerical codes is critical to achieving high perfor-

mance in numerical Java applications.

Preliminary work involved converting SPARSPAK, a collection of Fortran

90 subroutines for solving large sparse systems of linear equations and least

squares problems developed by Dr. Alan George, into Java (J-SPARSPAK).

It is well known that the majority of the solution process is spent in the

numeric factorization phase. Initial benchmarks showed Java performing, on

average, 3.6 times slower than Fortran for this critical phase. We detail how

we improved Java performance to within a factor of two of Fortran.
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Chapter 1

Introduction

Since inception, the Java platform has been plagued with the perception of

poor efficiency, especially when it comes to scientific or engineering applica-

tions, characterized by large-scale floating point computations. A recurring

task in these applications is that of solving systems of linear equations. In

this thesis we explore the suitability of the Java programming environment

for this task. Ability to execute at a speed on par with Fortran (the language

traditionally used for such computations) is our primary metric. Determining

suitability is not as simple as running benchmarks and arriving at a ‘yes’ or

‘no’ answer, as the performance difference, and other relevant characteristics

will each hold different weight depending on the particular application. We

hope to give the reader information such that he/she will be able to make an

educated decision as to whether the benefits of Java outweigh the potential

pitfalls. We suspect that the reader will be surprised with the performance

of Java relative to Fortran, as it has significantly improved since Java was

first deployed and not much information has been published in recent years

regarding this topic.

In this chapter, we will provide an introduction to both Java, and what is

involved in solving sparse systems of linear equations using direct methods.

Although it is customary for the thesis motivation and goals etc. to appear

in the first chapter, we feel it necessary to introduce Java, the application
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we intend to solve in Java, and the current state of Java and numerical

computing first. As such, the motivation has been delayed until Chapter 3.

Chapter 2 will cover the current state of Java and numerical computing

- including solutions proposed by various researchers. Much work has been

done on determining suitability of Java for high performance computation,

with performance being the key issue preventing Java from large scale adop-

tion as a high performance computing platform. As such, considerable work

has focused on ways to improve performance, which will also be covered in

Chapter 2.

As mentioned, Chapter 3 presents the motivation, goals, objectives, and

provides a detailed outline of the remainder of the thesis.

1.1 Introduction to Java

Java is a modern object-oriented programming language which evolved from

a research project at Sun Microsystems™in 1990. Java has garnered atten-

tion from both industry and academia alike due to its easy-to-learn nature,

powerful object model, ease of portability, advanced memory management

facilities, and multithreading capabilities. In this section we will describe the

Java platform in greater detail.

The Java programming language is very user-friendly; its use in introduc-

tory programming courses is testament to this. User-friendliness is achieved,

in part, through facilities which catch common programmer mistakes. For

example, attempting to write an array element outside the bounds of an ar-

ray causes an ArrayIndexOutOfBoundsException to be thrown. No memory

write occurs, and the execution environment (typically a Java Virtual Ma-

chine - herein referred to as a JVM) notifies the programmer not only that an

illegal write was requested, but indicates the source file and line number that

attempted the illegal write. Figure 1.1 contains a simple Java program and

resulting execution output. The program creates an array of 3 integers, and

then (attempts) to print the first four elements of the array. The first three
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public class test {

public static void main(String args[]) {

int arr[] = {1, 2, 3};

int upperBound = arr.length + 1;

for(int i = 0; i < upperBound; i++)

System.out.println(arr[i]);

}

}

Output:

1

2

3

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3

at test.main(test.java:6)

Figure 1.1: Example of a Java program accessing an out-of-bounds memory location
and the resulting output when executed.

print as expected, but attempting to access the fourth element generates the

exception as indicated by the program output. In traditional programming

languages such as Fortran and C, the memory write would occur unimpaired,

causing unpredictable behavior.

Compilers for traditional programming languages such as Fortran output

native machine code which can then be immediately executed. Java takes

a different approach. Java source code is first compiled into intermediate,

machine-independent bytecode (class files). Upon execution, a JVM trans-

forms each bytecode into a native instruction, and executes the native in-

struction. The additional instruction translation step incurs overhead which

degrades performance relative to traditional languages.
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In an attempt to lessen the impact of instruction interpretation, core to

modern JVM’s is a Just-In-Time (JIT) compiler which translates frequently

executed methods into native code at runtime, allowing the compiled code

to execute at raw machine speed, and eliminating the need for subsequent

interpretation. Some refer to “Just-In-Time” as “Better-Late-Than-Never”.

Time required for program execution is now the sum of the time for compi-

lation plus the time for execution.

It is possible to limit a JVM to execute a subset of the normal operations,

a potential use of which includes improving safety for the host computer by

preventing Java programs from writing to sockets or modifying disk files.

This ‘sandbox’ environment is typically used when executing applets (em-

bedded programs in web browsers).

Java is cross-platform compatible at both the source and bytecode level.

The “write-once, run-anywhere” characterization is commonly used to de-

scribe such behavior. Cross-platform compatibility is especially important

for high-performance applications where the hardware architecture generally

has a significantly shorter lifespan than the software application [12]. Porting

a Java program from one machine to another is as simple as copying bytecodes

(or similarly, copying the source codes and recompiling). Reproducibility is

achieved even when GUI’s are employed by including GUI support in the

Java Application-Programmer Interface (API) (i.e., Swing and AWT). Sun

has essentially signed a contract guaranteeing bit-by-bit reproducibility over

all platforms. Such a guarantee comes at a price, as we will see later.

When working with languages such as Fortran, a programmer is required

to keep track of all dynamically allocated memory and is responsible for re-

leasing the memory when it is no longer needed. Memory leaks occur when

the programmer forgets to release a chunk of dynamically allocated mem-

ory. Java relegates the task of freeing dynamically allocated memory when

it is no longer needed to a “garbage collector” (a separate thread running in

the JVM). In doing so, application debug time is decreased. Furthermore,

much cleaner code is produced as the code is not cluttered with memory
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management statements [9]. Efficiency of modern garbage collectors is al-

most entirely attributable to a huge engineering effort by both industry and

academia alike.

It should also be noted that since Java has been popular for use in intro-

ductory programming courses at post-secondary institutions, a large school of

skilled Java programmers is available. Clearly, more programmers increases

the attractivness of the language to developers deciding what language to

adopt for a project.

All variables in Java, with the exception of intrinsics, (i.e., all objects)

are references. An implication being it is impossible to inadvertently make a

copy of a large object. In languages such as Fortran and C++, programmers

have the option of passing deep copies of large objects and data structures

into methods, a dangerous feature in the hands of an unskilled programmer.

Java’s approach effectively eliminates this potential source of performance

degradation.

As mentioned, early Java implementations interpreted bytecode, and per-

formance relative to Fortran often lagged by two orders of magnitude. Such

dismal early figures resulted in Java acquiring a bad reputation for scien-

tific and engineering applications demanding high performance. This will be

explored further in Chapter 2.

1.2 Introduction to Sparse Matrix Computa-

tion

In this section, we will describe what solving large sparse symmetric positive

definite linear systems using direct methods entails. The solution process is

composed of a number of phases; each of which with varying computational

demands. We will describe both what a sparse symmetric positive definite

linear system is, and what it means to solve them using direct methods. Both

of these concepts will be explained at a high level as they are not the main

focus of the thesis.
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1.2.1 Notation

Defintions from [11] will be adopted. Matrices will be represented by upper-

case, bold, italic letters (such as A). Vectors will be represented by lowercase,

bold, italic letters (such as x). Ω(A) is the set denoting the nonzero sub-

script pairs in A and Ω(x) is the set denoting the nonzero subscripts in x.

Let η(v) denote the number of nonzero elements in v. The density of v,

denoted by δ(v), is the ratio of the number of nonzero elements to the total

number of elements and is thus

δ(v) =
η(v)

n2
(1.1)

where n is the number of components of v. Let |S| denote the cardinality of

the set S. Thus |Ω(A)| represents the number of nonzeroes in the matrix

A.

1.2.2 Overview of the Problem

We are concerned with solving the n × n system of linear equations

Ax = b (1.2)

(i.e., given a matrix A and a vector b, determine a vector x which satisfies

equation 1.2). Approaches used to determine x fall into two broad cate-

gories, iterative methods and direct methods. We will limit our study to

direct methods. Although they share the same goal, the two approaches are

largely orthogonal in nature from a computational perspective. For more in-

formation on iterative methods, see [8]. We are interested in the case where

A is sparse, symmetric, and positive definite.

In solving a system of equations using direct methods, some variant of

Gaussian elimintion is applied yielding a triangular factorization of the ma-

trix (i.e., A = LU where L and U are lower and upper triangular re-

spectively). After factorization, the solutions of the two triangular systems

Ly = b and Ux = y are computed to get x. In computing the triangular
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factorization A = LU , fill is introduced. By this we mean elements which

are zero in A can be nonzero in LU . This is not a problem when n×n stor-

age has been allocated for the factor LU (a strategy often employed when

A is dense). However, we are concerned with the case where A is sparse. A

sparse matrix is one in which the majority of its elements are zero. When

a matrix is sparse, a reduction in both memory usage and computational

requirements can be achieved by storing, and operating on, only the nonzero

elements.

If A is symmetric (Aij = Aji) and positive definite (xtAx > 0 for all

vectors x where x �= 0), the factorization will have certain properties which

can be exploited for additional performance gains. Cholesky showed that

symmetric Gaussian elimination results in the factorization A = LLt (that

is, U = Lt). We refer to L as the Cholesky factor. We reduce our storage

requirements by half by storing only the Cholesky factor L. More important,

factorization now involves computing one-half the number of entries as the

general case.

In the general case, some form of pivoting is required to ensure numerical

stability, often conflicting with the goal of minimizing fill. It is well known

(see, for example, Forsyth and Moler [17]) that when A is symmetric positive

definite, numerical stability is no longer an issue, allowing one to focus solely

on minimizing fill.

To summarize, our task differs from naive Gaussian elimination of a gen-

eral system in the following fashion. Our system is sparse, meaning that

savings can be had if only the non-zero elements are stored. In storing only

the non-zero elements, minimizing fill is now a concern. As such, an ordering

which attempts to minimize fill incurred during the numeric factorization

phase is first determined. Because we store only the non-zeroes during the

solution process, and η(LU) ≥ η(A) (assuming no-cancellation), additional

storage must be allocated prior to factoring A into LU . The process of de-

termining both how much, and the location of, additional required storage

is known as symbolic factorization. Once the amount of storage required to
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store LU is known, L and U are computed in the numeric factorization

phase. Finally, the solution vector x obtained at by performing a triangular

solve as described above.
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Chapter 2

Java and Numerical Computing

2.1 Issues with Java and Numerical Comput-

ing

From James Gosling [3], a key player in the design of Java, “The original

specification of floating point arithmetic in Java was done in a context where

sophisticated high performance numerical computing was not an issue”. As

a result, Java contains many features that make the developers life easier at

the expense of performance. In addition, it is missing some features which

researchers have labelled as key for adoption as a numerical computing plat-

form. In this section, we will discuss the current state of Java and numerical

computing, including identification of both missing features and those present

which are detrimental to high performance numerical computing.

First, we will provide some discussion on why these issues are relevant

to our work. We suspect the performance gap between Java and Fortran for

solving large sparse positive definite systems using direct methods will be sim-

ilar to that for other high-performance computing applications such as those

from the SciMark1 benchmark suite. If so, performance-hindering character-

istics of the Java programming environment identified by researchers work-

1http://math.nist.gov/scimark2/index.html
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ing to improve the performance of Java for high-performance computing are

likely to be relevant in our quest as well.

As mentioned in Section 1.1, early JVM implementations interpreted

bytecodes in a relatively unsophisticated fashion. Figure 2.1 shows the evolu-

tion of virtual machine technology on a 333-MHz Sun Ultra 10. The SciMark

2.0 benchmark suite was used for the JVM comparison. The benchmark suite

consists of a number of computational kernels, including a one-dimensional

FFT, Jacobi Successive Over-relaxation, Monte Carlo integration, sparse ma-

trix multiply, and dense LU matrix factorization. As of Java 1.3, vendors

have been allowed to provide their own implementations of elementary func-

tions (i.e., sin, cos etc.) under the restriction that results can differ by at

most one unit in the last place of the correctly rounded result [14]. Figure 2.1

makes it clear that continued advances in JIT compilation coupled with fur-

ther relaxation of Java floating point rules are crucial to increasing viability

of Java as a numerical computing platform.

Figure 2.2, extracted from [14], further solidifies dependence of Java nu-

merical code performance on the JVM. It shows up to a 20-fold performance

difference of the SciMark 2.0 benchmark across varying hardware. JVM’s

available for PC’s are typically much more evolved than those available for

high-end workstations. The JVM PC userbase is much greater than the user-

base for high-end workstations. As such, more software development effort

has been devoted to the PC JVM’s than those for high-end workstations2.

Java does not contain intrinsic complex number support, a feature many

say is required for numerical computations. Ideally, arithmetic with complex

numbers would be supported as efficiently as that with numbers of type float

and double. Although not intrinsically part of the language, complex number

support can be added as follows.

A Complex class can be created, which contains two members of type

2The latest JVM version for the system we initially intended to use in our benchmarking
was 1.1.4. We thus switched to the Win32 platform at the cost of having to find a decent
Fortran compiler for that target.
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Figure 2.1: Evolution of Java performance for the SciMark benchmark on a single
platform: a 333-MHz Sun Ultra 10 [14]

double representing the real and imaginary parts respectively. The class

will contain methods which support operations on complex numbers such

as addition, multiplication etc.. Figure 2.3 gives an example as to how this

class could be used. The problems with this approach are as follows. Every

object in Java, in addition to memory consumed by class members, contains

a 16-byte object descriptor, bringing the amount of memory required for an

instance of our class to 32 bytes (twice the amount consumed by a complex

number in Fortran 90). Secondly, evaluating expressions such as the one in

Figure 2.3 results in the creation of an unnecessary temporary (a new complex

object is created by the operation a.times(b)). Moreira et al. in [15] showed
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that computations involving complex numbers in this representation can be

up to 100 times slower than Fortran 90. This is due to both the explicit cost

of excessive object creation and the collateral effect of increased stress on the

garbage collector.

Complex a = new Complex(1.0,2.0);

Complex b = new Complex(3.0,4.0);

Complex c = new Complex(4.0,5.0);

Complex d = a.times(b).plus(c)

Figure 2.3: Usage of user-defined complex numbers in Java
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The syntax for manipulating complex numbers represented in this format

is tedious and unintuitive. Ideally, we would like to be able to use the same

familiar syntax used to manipulate intrinsic arithmetic data types such as

int and double. In order to provide the same convenience to programmers as

Fortran 90, the community claims that Java must include intrinsic complex

number support, and operator overloading for easier manipulation of user-

defined data types.

The Java Language Specification states that exceptions are precise:

“Exceptions are precise: when the transfer of control takes place,

all effects of the statements executed and expressions evaluated

before the point from which the exception is thrown must appear

to have taken place. No expressions, statements, or parts thereof

that occur after the point from which the exception is thrown

may appear to have been evaluated. If optimized code has spec-

ulatively executed some of the expressions or statements which

follow the point at which the exception occurs, such code must be

prepared to hide this speculative execution from the user-visible

state of the program” [18]

Such a model effectively precludes most compiler optimizations which modify

instruction order. Almost all optimizations traditionally applied to numerical

programs modify instruction order [15]. Two pre-requisites for re-ordering

instructions are as follows: (1) The section must be free of any exception (i.e.,

an array-bounds or null-pointer exception), and (2) instruction execution

dependence must be preserved. By that we mean all writes to a datum

must be kept in order, no write of a datum be moved prior to a read of

the datum, and finally, no read of a datum be moved after a write to that

datum [15]. Obviously, core to verifying the three aforementioned criteria

is determining which datum’s are ‘the same’. In Fortran 90, variables are

distinct if they have different names. In the case of arrays, two array elements

are distinct if they are pointed to by different coordinates. In Java the

13



situation is exacerbated by what is called array aliasing. For example, in

Figure 2.4, A[3] and A[4] reference the same array. As such, instruction

execution dependencies are much more difficult to calculate in Java.

Another issue identified by researchers is Java’s lack of true multidimen-

sional arrays. The Java language specification does not directly support

arrays with dimension greater than one. A ‘two-dimensional’ array in Java

is in fact an array-of-arrays. Numerical programs do not need the flexibility

provided by Java’s array structure. In fact, it is a hinderance. Figure 2.4

depicts a legal Java array structure. The array object descriptor contains

information such as the length of the array, and information contained in all

Java objects such as a lock bit, bits used by the garbage collector and type

information etc. Note that there is no guarantee that a two-dimensional

array in Java has a rectangular structure. Finally, Java’s array structure

does not guarantee rows are stored contiguously, thus sacrificing locality of

reference. An unfortunate implication of this being traditional blocking al-

gorithms which enjoy great popularity on Fortran platforms will generally

not provide any benefit in Java; thus, direct conversion of numerical libraries

from Fortran to Java should be done with great care.

As mentioned in Section 1.1, every array access is checked prior to be-

ing executed with an ArrayIndexOutOfBoundsException thrown in the event

the access is illegal. The problems with this are two-fold. There is a cost

associated with making sure every array index is in bounds (two integer com-

parisons). Secondly, as we have seen, any potential exception-generator is at

odds with compiler optimizations which are necessary for high performance

in numerical codes. One important research area to improve Java perfor-

mance has dealt with identifying sections of code which are guaranteed not

to throw an array-out-of-bounds exception. If one can prove a section of

a Java program will not raise an array-out-of-bounds exception, it can be

executed without checks (saving both the explicit cost, and bringing us one

step closer to legalizing otherwise illegal compiler optimizations). In the gen-

eral case, removal of array bounds checks is a very interesting (or annoying)

14
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problem. We will present a scenario demonstrating this.

Imagine a section of code that indexes an array with an arbitrary element

from another array (i.e., A[b[i]]). Removing the bounds check for A involves

proving at runtime that the minimum value in b is greater than or equal to

zero, and the maximum value is less than or equal to the length of A. This

is referred to as indirect array addressing. Further complicating the issue

is the possibility that a concurrently executing thread has a reference to b,

at which point we must concede modification of b could occur at any point

during the execution of the program. For more information on this problem,

and on potential solutions, see [20].

The benefit obtained by removal of array-bounds checks is dependent

on both the application and the compiler. A program with many array

accesses (e.g., a scientific computing application) has much to gain from
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array bounds check removal. Compiler dependence results from the level

of optimization which can subsequently be performed once exception-free

regions are identified. Reported performance improvements have ranged from

15% (Blount et. al. in [13]) to 15 times that of code with array bounds checks

(Moreria et. al. in [16]). One must be skeptical when evaluating practical

merit as most reported improvements indicated benefit achieved by simple

(illegal) removal of array bounds checks. In an environment conforming to

Java language semantics, the true benefit is determined by discounting the

cost associated with legal removal of the checks in conjunction with cost

saved.

Java’s implementation of multi-dimensional arrays causes further anxi-

ety when attempting to eliminate array bounds checks. Proving access of

A[i][j] is legal requires determining the minimum and maximum values

that i and j can take followed by checking to see if those values are within

the bounds of the array. If A were rectangular, this check would be relatively

trivial. Since we cannot guarantee that A is rectangular, the check involves

iterating through each row of the array, requiring O(n) operations. If A were

rectangular, the check could be performed in O(1).

In addition to performing array bounds exception checks, the Language

Specification mandates that every referenced object be non-null. As such,

indexing element A[i][j] requires first determining that A is non-null, re-

trieving A[i], verifying A[i] is non-null, and finally retrieving A[i][j].

In summary, we have identified many issues which stand in the way of

Java’s adoption as a numerical computing platform. Some of these issues are

mere inconveniences (i.e., operator overloading), whereas others are much

more serious (those which prevent ever-important compiler optimizations).

In the next section, we will identify and discuss proposed solutions to some

of the problems identified in this section.
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2.2 Proposed Solutions to Java and Numeri-

cal Computing

Although this section might appear to be “a related work” section, recall

that our goal is to determine suitability of Java for a particular type of

computation and not to improve performance of Java, which is the goal of

the majority of the works presented in this section. Summary of research

more directly related to ours (i.e., determining suitability of Java for high

performance numerical computing) can be found in Section 3.1.

Moreira et. al in [19] performed a comparison of Java versus C and

Fortran for numerical computing. The study is slightly outdated (1998), and

the Java source code seems to have been compiled into native machine code

in the same fashion as Fortran and C instead of being interpreted. However,

as we will see, the conclusions they draw are pertinent to our work. They

compared results from a simple matrix-matrix multiplication routine; 100%

pure Java ran at 2.2 Mflops, C ran at 137.6 Mflops, and FORTRAN achieved

205.4 Mflops. The remainder of the paper explained why 100% pure Java ran

two orders of magnitude slower than Fortran. Removing the run-time checks

from their Java compiler (i.e., removing null reference and array bounds

checks) improved performance to 33.3 Mflops, much better than before but

still not close to C or FORTRAN. The performance boost was partially due

to removal of the explicit cost associated with the checks, and partially due

to compiler optimizations which became possible once the possibility of an

exception being thrown was eliminated.

Removing the runtime checks is not strictly legal, but was done to show

the associated cost. However, the authors recognized that if they could iden-

tify guaranteed exception-free regions of code, they could achieve similiar

performance figures while maintaining conformance with the Java language

specification. To accomplish this, a technique known as versioning is em-

ployed. Refer to the example in Figure 2.5. If the if statement on line

one evaluates to true, the loop is guaranteed exception free and traditional
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if(A != null && p <= A.length) {

// This version is safe and can be executed without runtime checks

for(int i = 0; i < p; i++)

System.out.println(A[i]);

} else {

// This version is unsafe

for(int i = 0; i < p; i++)

System.out.println(A[i]);

}

Figure 2.5: Example of versioning

compiler optimizations can be applied. If it evaluates to false, the exception-

raising version of the loop is executed. The paper does not clarify whether

the compiler identifies exception-free sections of code, or whether it is up to

the programmer. If it is left up to the programmer, some mechanism in-

structing the compiler as to which sections of code were exception free would

be necessary. Also, that would open the possibility for the programmer to

incorrectly specify a region of code exception-free, causing the type of un-

predictable results typical of less-robust languages such as Fortran and C.

Clearly, the merit of versioning depends on automatic identification of these

regions. Checking for non-null references is trivial, but guaranteeing all array

accesses are in bounds is not as was demonstrated in Section 2.1.

Continuing with discussion of the Moreira paper, in an attempt to further

understand the cause of poor Java performance, they systematically disabled

features of the C compiler to the point where C performance equaled Java

performance (33 Mflops). They disabled the use of the FMA (fused multiply-

add) instruction, loop unrolling, instruction reordering, and used Java-like

arrays (i.e., double* A[m] instead of double A[m][n]). Re-enabling these

features one by one, they were able to determine the performance benefit as-

sociated with each. Switching back to true rectangular arrays increased per-

18



formance to 44.2 Mflops. Re-enabling the FMA instruction boosted through-

put to 64.2 Mflops, and a final 2-fold performance increase to 137.6 Mflops re-

sulted from allowing the compiler to unroll the loops and perform instruction

re-ordering. Clearly, legalizing these features for Java is critical in boosting

Java performance to the level of C and Fortran.

NINJA

The NINJA group is part of IBM research and is working to make Java

competitive with Fortran and C++ in the domain of technical computing.

One project to emerge from their research was the IBM Array Package. The

goal of the array package was to add true multi-dimensional array support

to Java, and improve complex number performance. To guarantee a multi-

dimensional array occupies a contiguous section of memory, they encapsu-

lated a one-dimensional array in a class, and added methods to simulate

multi-dimensional array support. A downside of this approach being the to-

tal number of elements in any rank array is 231 − 1 (i.e., the maximum of

elements allowed in a one-dimensional array). An n-dimensional true Java

array can hold up to n × 231 − 1 elements. Once instantiated, the rank and

dimensions of a multi-dimensional array can not change, improving ease of

compiler optimizations.

Encapsulating a multi-dimensional array as a one-dimensional array comes

at the price of a method call for each get or set operation. Modern JVM’s

which implement method inlining effectively nullify the cost of the method

call at the expense of actually inlining the methods. Taking the concept of

general inlining a step further, the NINJA group created a non-conforming

compiler and JVM implementing a technique they refer to as semantic in-

lining. Semantic inlining treats calls to known methods on known datatypes

as language primitives. Semantic inlining removes the cost of known method

calls at compile time as opposed to run-time (as is the case with conventional

modern JVM’s). In addition, it allocates known objects on the stack as op-

posed to the heap whereever possible, effectively eliminating the problem of
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temporary object creation illustrated in Figure 2.3.

To test array package performance, the NINJA group benchmarked it

versus a 100% pure Java implementation (without the array package), and

Fortran compiled with maximum optimizations. Over a wide range of nu-

merical benchmarks, 100% pure Java ran, on average, at 1.5% the speed of

Fortran. The array package coupled with the compiler supporting semantic

inlining ran at 73% of Fortran. The figure achieved with the array package

is especially impressive since it conforms entirely to the Java language spec-

ification. The downside to this approach is that performance improvements

require explicit semantic knowledge of certain classes and methods.

Conclusion

We presented two works in the section. The first diagnosed why Java runs

slower than Fortran and C for numerical computing applications. Addition-

ally, it presented a few solutions. The second presented a solution to the

lack-of-true-multidimensional-arrays problem. Compiler optimizations can

be legalized by creating two versions of critical code sections, one of which

is guaranteed to be exception free; a technique known as versioning. To aide

identification of exception-free regions of code, a collection of immutable,

rectangular multi-dimensional array classes was created. Semantic inlining

was used to eliminate the cost of the extra method calls associated with use of

the multi-dimensional array classes. In addition, semantic inlining improved

complex number performance by allocating objects on the stack whenever

possible. Use of the aforementioned techniques improved Java performance

to within 73% of Fortran.

Some of the techniques presented in this section require a compiler with

instrinsic knowledge of certain classes, adding to both compiler size and

complexity. Given that the techniques are primarily aimed at improving

performance of numerical codes, it might not be feasible to include them in

a general-purpose Java compiler, such as the one available from Sun. Ideally,

performance-improving techniques should be general enough that they can be
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applied to a wide-range of Java programs, rather than providing individual

solutions for different ‘types’ of computation. In the following section, we

will discuss the latest compiler technology employed in todays fastest Java

Virtual Machine.

2.3 Java Compiler Technology

In this section, we will present an overview of Java compiler technology. As

mentioned in the introduction, the transition from Java source code to actual

program execution is a two-step process. First, the source code is compiled

into a JVM-targetted, platform-independent bytecode. A JVM then executes

the bytecode.

As demonstrated, compiler technology plays a substantial role in Java

performance. We benchmarked the most popular JVM’s early on in the

project with various numerical benchmarks for Java and discovered the Sun

JVM with the -server option to be the best performer. Obviously, the JVM

yielding the best performance should be the one used in our tests, since

performance is our primary criterion. Ideally we would like to determine

why this JVM outperforms the others. Accomplishing this would require

the ability to selectively toggle compiler optimizations on and off. The Sun

JVM does not provide that functionality, nor is the source code available.

Sun releases documentation stating what optimizations their VM performs,

but not how or to what degree. Namely, for certain optimizations, it is not

known how Sun overcomes the hurdles identified in section 2.1. We realize it

is very unsatisfying to present a problem, saying that a solution exists, but

not explain it. Given that we must use the top-performing JVM for numerical

computations in our study, we see no work-around. In this section, we will

present high-level details of the Sun JVM.

Much of the information to follow in this chapter has been extracted

from the Java HotSpot Virtual Machine v.1.4.1 Whitepaper [24]. A few

challenges facing creators of optimizing Java compilers were highlighted in
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section 2.1 (e.g., the strict exception model). The whitepaper identified more

complications which will also be covered in this section.

Additional Hurdles

A popular compiler optimization whereby a method call is replaced by the

actual body of the method called is known as method inlining. Programs to

which method inlining has been applied benefit on two fronts. First, the cost

associated with the actual method call is saved. More importantly however,

following inlining the optimizing compiler has much larger blocks of code to

work with, increasing effectiveness of other optimizations.

The majority of methods in Java programs are virtual (i.e., the actual

method invoked is unknown at compile-time). This has the effect of both

increasing the cost of method calls in Java (virtual method calls are more

expensive than non-virtual), and inlining methods in Java programs substan-

tially more difficult.

The Java Hotspot Virtual Machine

Core to modern JVM’s is a JIT compiler, which translates frequently exe-

cuted methods into native code at runtime (as opposed to compilers for tradi-

tional languages which generate native code prior to runtime). All methods

are interpreted the first time they are called. Recognizing that most pro-

grams spend the majority of their execution time in a minority of their code,

the Java Hotspot VM attempts to limit optimizations to these “hotspots”.

By interpreting infrequently executed code, the JIT compiler minimizes time

spent compiling while still optimizing critical locations. The hotspot ana-

lyzer runs for the life time of the program, adapting to changing program

behavior as necessary.

The Sun JVM package actually includes two virtual machines, the client

virtual machine, and the server virtual machine. Both contain an optimizing

JIT compiler. The server VM is intended to be used for long-running ap-

plications, such as those typically found in server environments. The server
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VM is a fully optimizing compiler, applying almost all optimizations char-

acteristic of compilers for traditional languages. Optimizations such as dead

code elimation, loop invariant hoisting, common subexpression elimination,

and constant propagation are applied. Futhermore, optimizations specific to

the Java programming language such as array-index and null-check elimina-

tion are performed. Register allocation is performed by using a global graph

coloring algorithm. The compiler performs method inlining, coupled with

dynamic deoptimization, which we will explain following a description of the

client compiler.

The client compiler performs very few global optimizations (which are

typically the most expensive), but rather does peep-hole optimizations on an

intermediate program representation generated from the bytecodes. Methods

which are neither synchronized nor throw any exceptions are candidates for

inlining.

To deal with the issue of being unable to inline virtual methods, the Sun

JVM employs a technique referred to as dynamic deoptimization. An example

best demonstrates how dynamic deoptimization inlines virtual method calls.

Suppose an abtract class Shape existed, with an abstract method getArea().

There exists classes square and circle derived from Shape, both of which

implement the getArea() method appropriately. If, during the execution

of a program utilizing objects of class Shape, the hotspot compiler notices

that every call to the getArea() method of a Shape object executes the

circle version, the compiler will actually inline that version at the call site!

In the event the square getArea() method should be called instead, the

compiler dynamically deoptimizes the circle getArea() method, and calls

the square one instead. In this fashion, the hotspot compiler is able to

inline virtual method calls. It must still be realized that, even after a virtual

method call is inlined, a check must be performed prior to executing any of

the inlined code, to ensure the inlining is still valid.

Both the client and server VM’s interpret each method first prior to any

compilation. In doing so, a long-running interpreted method could cause seri-
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ous performance degradation. In the event this occurs, the hotspot compiler

saves method state, halts exeuction, compiles and optimizes the method, and

continues execution at the halted point with the native as opposed to inter-

preted code. This technique is referred to as On-Stack Replacement (OSR).

In conclusion, we see that the hotspot server compiler performs many

classical optimizations performed on statically-compiled languages, somehow

overcoming issues created by the Java Language Specification. Given that

the server compiler is a high-end fully optimizing compiler, it seems that the

asymptotic performance of Java programs should approach that of traditional

programs. Although certainly not the case in studies presented so far (most

of which were 2+ years told), it will be interesting to see how the server

compiler performs under our application. It will remain to be seen whether

the toll of JIT compilation can ever be offset by potential performance gains

over statically compiled languages.

On a final note, it is speculated by some that performance of languages

employing JIT compilation with run-time analysis and the ability to dynamic

optimize generated code will eventually surpass performance of traditional

lanuages (e.g., under no circumstance can a static C++ compiler inline a

virtual method call).

2.4 Thesis Outline

In Chapter 3, we present related work, dicuss thesis motivation, and discuss

what we mean by suitability of Java for solving large symmetric sparse posi-

tive definite systems of linear equations using direct methods. Furthermore,

we state how we are going to determine suitability. We also discuss what we

hope to achieve by benchmarking.

Chapter 4 discusses issues overcome in the conversion of SPARSPAK into

Java due to both language differences and access to numerical libraries. In

addition, we discuss the problems we chose to benchmark SPARSPAK.

Chapter 5 presents initial results. With the aid of profiling, we identify
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performance-critical areas of the solution process with the eventual goal of

lessening the performance gap between Java and Fortran. In Chapter 6,

we discuss our attempts to improve the performance-critical areas of the

solution process identified in the previous chapter. And finally, in Chapter

7, we present our conclusions and identify areas for future work.
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Chapter 3

Related Work, Motivation, and

Methodology

3.1 Related Work

To the best of our knowledge, no prior study has been done evaluating Java

for solving large sparse systems of equations using direct methods. In this

section, we will report results of other researchers who have studied Java

versus traditional languages such as Fortran and C for numerical or scientific

applications. In addition, we will report any other research viewed as being

applicable to ours. Our work differs in that the applications most researchers

used to evaluate suitability of Java for numerical computing consist of small

computational kernels – the computational requirements of SPARSPAK are

much broader with stresses placed on system components often unstressed

by computational kernels (i.e., out-of-cache memory accesses, disk I/O).

Saad et al. developed a benchmark suite intended to measure the per-

formance of systems for sparse matrix computation. One decision they had

to make was whether computational kernels can be representative of whole

application performance. On the one hand, it can be argued that kernels do

not adequately stress components commonly used by whole applications such

as the hard disk and perhaps even main memory in cases where the kernel
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dataset fits entirely in cache. However, they also note that to a performance

analysis specialist, total application run time is useless. Relating to our work,

in addition to stating wall-clock timing differences, we should attempt to de-

termine computational kernels whose performance is representative of whole

application performance. Successfully doing so will more precisely identify

what (if anything) needs work to improve Java performance for solving large

symmetric sparse positive definite systems using direct methods.

In [12], Bull et. al. performed a comparsion of Java versus C for scientific

applications. They converted a subset of the Java Grande Benchmark into C

and compared performance versus Java. The subset they converted consisted

of:

• computing the first n Fourier coefficients of the function f(x) = (x+1)x

on the interval [0,2]

• solving an n × n linear system using LU factorization followed by a

triangular solve

• sorting an array of n integers using heapsort

• performing 100 iterations of successive over-relaxation (SOR) on an

n × n grid

• performing a one-dimensional forward transform of n complex numbers

• performing sparse matrix-vector multiplication using a sparse matrix

stored in compressed-row format with a prescribed sparsity structure

Running on PC’s (Linux, Windows NT), Java executed a mean 1.23 times

slower than C which they deem very respectable (we agree). They use a

wide variety of JVM’s, with no one JVM emerging as the clear winner. The

following results compare the best Java result (over all JVM’s) with the best

C result. Relatively, they found the FFT to be slowest (2.26 times slower

than C), and the Fourier series calcuation to be the fastest (finishing in 0.87
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times the speed of C). The sparse matrix-vector multiplication was “middle

of the pack”, running at 1.30 times slower than C. They conclude that the

performance gap between Java and C for scientific applications is no longer

a major reason to choose C over Java.

Blount et. al. ?? converted a subset of the LAPACK (a high-performance

Fortran 77 numerical library) into Java and labelled it JLAPACK. Their de-

sign was object oriented in nature containing classes such as Vector and

Matrix. Their implementation attempted to keep data orthogonal to shape

information, allowing one to choose the most natural view of the data (e.g.,

given a matrix, one could specify a view in the form of a new matrix such

that every other element of the original matrix is an element of the new ma-

trix – the same copy of the data is used, with different shape information).

This feature is present in Fortran 77 and widely used throughout LAPACK.

They cited absence of parametric polymorphism and operator overloading

as being detrimental to their implementation effort; substantial code bloat

and extra programmer effort was necessary. Their tests indicated that JLA-

PACK performed within a factor of three of LAPACK on most architectures.

Disabling the JIT compiler made JLAPACK unusably slow.

Java contains a mechanism by which methods written in other program-

ming languages can be executed with the results available to the calling

Java environment. These methods are referred to as native methods [4].

When taken to the extreme, the entirety of a sparse matrix solver (such as

SPARSPAK [5]) could be compiled and called from a Java program yielding

“Fortran-like” performance under Java. In order to test both the perfor-

mance of the Java Native Interface (JNI) and the dependence of JALPACK

performance on the BLAS libraries, Blount et. al. replaced all calls to the

Java BLAS routines with calls to the native BLAS routines. They reported

a performance increase to within 15% of LAPACK for sufficiently large prob-

lem sizes. It would seem as though identifying hotspots in Java programs

and replacing those hotspots with native code is a promising method of in-

creasing Java performance – but one must keep in mind that a significant
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portion of the benefits offered by Java are lost as soon as the JVM relin-

quishes control to any code outside its jurisdiction. Portability is much more

difficult to achieve when the JNI is utilized - the shared library being called

must be available on all platforms of interest. In addition, the shared library

is likely to have slight differences from platform to platform, resulting in

different outcomes [14]. Robustness is lost upon calling a native method as

the calling JVM has no way to prevent out-of-bounds array indexing, object

mis-casting, accessing of deleted objects, or any other form of memory cor-

ruption. These drawbacks directly conflict with our primary motivation for

determining Java’s worthiness as a sparse matrix computation tool and as

such we will not consider the JNI in this thesis.

3.2 Motivation

So far, we have described the essence of Java, and the nature the problem we

are trying to solve using Java, and the current state of Java and numerical

computing. Given that background, we can now discuss the motivation of

the thesis. When performing numerical computations, execution speed is

a high priority and, given the choice, generally would not be sacrificed for

programmer convenience. This begs the question, why are we attempting to

coax Java into a role it was not designed for? In this section, we will address

that question.

Firstly, how does our problem differ from work that others have done?

The majority of papers which have evaluated Java’s suitability for numerical

computation have used a collection of popular kernels (sparse matrix-matrix

multiplication, FFT etc.) and either reported the results in a standard mea-

sure such as MFlops, or compared the results to those obtained from exe-

cuting the same kernels in a traditional language such as Fortran or C. The

authors deem the results either satisfactory or not, and proceed to label

Java as either suitable or unsuitable for numerical or scientific computa-

tion. Granted, it is possible (perhaps even likely), that performance of these
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kernels is indicative of real-world performance of the majority of scientific

applications. However, this clearly can not be verified due to the excep-

tionally large number of applications which fall into the category of either

numeric or scientific. We are curious as to whether relative performance of

Java to Fortran will hold when solving symmetric positive definite systems

of equations using direct methods. In addition, there is a lack of papers

addressing high-performance Java computing in recent years, the majority

were published between the years 1998-2001. Given the dependence of Java

performance on compiler technology, a recent study is overdue.

A brief introduction to the Java programming language was given in

Section 1.1. A number of general (i.e., not specific to numerical computing)

characteristics were presented; in this section we will identify and discuss

those relevant to our application. Catching common programmer mistakes

such as indexing an array out of bounds increases programmer productivity

by decreasing development (specifically debug) time. Arrays are the primary

data structure used in most numerical applications. In fact, all data types

used in SPARSPAK are either instrinsics or arrays of instrinsics, making

array index bounds checking a boon to development, but a hinderance to a

stable, bug-free system. Use of array bounds checking in Java has encouraged

researchers to find ways to legally eliminate the checks – as the technology

matures, we anticipate the performance impact to be minimal.

Forcing all objects to be passed by reference into methods thereby pre-

venting inadvertent copies to be made is a boon to numerical program-

mers. As an example, a large sparse matrix can easily occupy hundreds of

megabytes of memory; inadvertently copying such a structure would result in

both needless performance degradation and increased memory consumption.

As mentioned in Section 1.1, Java is cross-platform compatible at both

the source and bytecode levels. That is, a Java program will exhibit sim-

ilar behavior over all inputs on all hardware for which a conforming JVM

is available. Numerical programs typically outlive the hardware they were

originally designed to run on, making cross-platform compatibility especially
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useful. Saad et al. in [6] make the remark regarding large scientific programs:

Because the cost of writing large application programs is consid-

erable, most of these codes are used over long periods of time. As

a result many application codes running on today’s latest archi-

tectures are not necessarily developed for these architectures. In

addition, due to the diversity of existing architectures, applica-

tion codes cannot be optimized uniformly across these architec-

tures. These difficulties will probably not be resolved in the near

future...

When they say ‘application codes cannot be optimized uniformly across these

architectures’, they mean that code-level optimizations applied to a program

for one architecture may not be useful (in fact, might even be a hinderance)

for a different architecture. The virtual machine concept used by Java es-

sentially introduces another layer of abstraction; the Java program specifies

what to do, but decisions on how to do it are largely left up to the underlying

virtual machine. Virtual machines can (and should) be tailored to the target

architecture. We realize that cross-platform compatibility is not magically

present; time and effort has to be spent developing a conforming JVM for

the target platform. Furthermore, as evidenced in Section 2.1, not all virtual

machines are created equal. Therefore, usefulness of cross-platform compat-

ibility in our case depends on the availability of not only a conforming JVM,

but a JVM whose performance under our application is acceptable.

Garbage collection neither hinders, nor is especially useful, for our ap-

plication. On one hand it simplifies implementation by relegating the task

of freeing dynamically allocated memory to the JVM, effectively preventing

memory leaks. However it is usually the case that only a few large, persistent

data structures are used in numerical applications. SPARSPAK is testament

to this as fewer than one hundredy dynamically allocated objects (arrays)

are created during a solution process, and it is usually very clear cut when

they are no longer needed. As such, it would not be difficult to manually
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manage memory in this case. Furthermore, relegating memory management

to the JVM degrades application performance. But again, so few objects are

created, we doubt garbage collection has substantial performance impact.

Most numerical applications tend to spend the majority of their time in

a small minority of the code (these sections of code are commonly referred

to as kernels or hot spots). Such behavior is ideally suited to Just-In-Time

(JIT) compilation where code is selectively optimized based on execution

frequency.

Perhaps Java’s most frequent criticism is its poor performance relative

to Fortran and C. As with virtually all other researchers working on high-

performance computing in Java, one of the goals is to convince computational

scientists that Java’s reputation of being unacceptably slow for high perfor-

mance computing is no longer suitable.

While it is true that benchmarks designed to test Java’s numerical compu-

tation abilities typically contain some sort of simplistic sparse matrix kernel

(typically sparse matrix-vector multiplication), the results can hardly be ex-

tended to our application. As such, another motivation for conducting our

evaluation is lack of anything similar.

The leading edge Java compilers are free to users, whereas advanced For-

tran 90 compilers can be very expensive. Showing that a complex numerical

Java application can run at an acceptable speed relative to Fortran will al-

lieviate users from having to purchase expensive sofware to achieve high

performance in their numerical applications. Academic researchers will es-

pecially benefit.

In Section 2.1, we presented and discussed language issues identified by

researchers as being detrimental to acceptance of Java as a platform for

numerical computing. We will demonstrate that many are not relevant to

our application. Early recognition of this fact provided substantial thesis

motivation.

Lack of instrinsic complex number support has been cited as detrimental

to adoption of Java as a platform for numerical computation. Our primary
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tool for evaluating Java, SPARSPAK, does not contain complex number sup-

port. SPARSPAK is accepted as a standard for solving large sparse positive

definite systems of linear equations using direct methods and has enjoyed

success in both industry and academia. Its wide acceptance suggests that a

substantial number of real-world problems do not involve complex numbers

and allows us to conclude that limiting our study to real arithmetic does not

inhibit its usefulness.

Java does not contain true rectangular multi-dimensional array support;

introducing a slew of problems when multi-dimensional arrays are required.

Every array in SPARSPAK is of rank one (i.e., there are no multi-dimensional

arrays). Thus, another feature identified as necessary for numerical comput-

ing is not used by SPARSPAK, implying it is not required for solving large

sparse positive definite systems of linear equations using direct methods.

Operator overloading is another feature cited as being useful for numer-

ical applications. Operator overloading increases readability of numerical

programs which in turn simplifies maintenance. However, operator overload-

ing is only useful when abundant use of user-defined data types is made.

SPARSPAK does not do much manipulation of user-defined data types and

as such does not use operator overloading (even though it is a feature of For-

tran 90). Thus, while useful in the general case, lack of operator overloading

is not detrimental to creation of programs for solving large sparse positive

definite systems of linear equations using direct methods.

Lastly, we would like to relay a success “story” detailing a massive con-

version effort undertaken at Boeing Inc. to migrate its flagship legacy 3D

Modelling software (AGPS) written in Fortran/C into Java[23]. Throughout

the 25 year lifetime of AGPS, it was ported many times (a case of soft-

ware outliving the hardware it was designed for). In most of these instances

(especially in the early years, when critical code sections were written in

assembly), the migration required a huge engineering effort. Requests were

made for a PC port of AGPS. These requests were not taken seriously as

AGPS required mature Fortran/C compilers, an X-Windows environment,
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and contained numerous POSIX-standard system calls. As the number of

systems supported by AGPS increased, the development team found itself

spending most of its time working on porting issues, as opposed to attending

to the ever-growing list of requested features. The team started develop-

ment of a “proof-of-concept” Java program. They were attracted by Java’s

simple object model, networking capabilities, and promise of effortless cross-

platform compatibility. As Java was new at this point, they were concerned

with its performance, availability, and evolution. Development productivity

increased by a factor of 2, in part due to the compiler catching many errors

at compile time as opposed to runtime. They found that the Java proto-

type (containing some very intensive numerical computations) ran within a

factor of 2 of the Fortran version, which they had lablled as their minimum

acceptable performance differential. Java development was being performed

on an SGI workstation – to test PC portability the class files (compiled on

an SGI) were copied over to a PC, executed, and to the amazement of the

developers, the application ran flawlessly! They had assumed some sort of

tweaking would be necessary to achieve cross-platform compatbility. The

PC compatibility that had been a running joke in the company for many

years, was achieved for free with Java migration. New releases were deployed

every 2-3 months as opposed to every 12-24 months as before. Users felt

more comfortable requesting new features as they would be realized in less

than 4 months as opposed to 12-24 as before. The performance difference

between Java and Fortran continued to decrease as the Sun JVM matured.

Equivalent functionality of over 300,000 lines of mixed Fortran and C code

was achieved in 150,000 lines of pure Java code. From the paper[23]:

The resulting gains in development, maintainability, robustness,

plus the achieved portability made the migration to Java an ex-

tremely good investment for this legacy program and our engi-

neering customers.

We have presented an industrial application involving high-performance

numerical computation which has substantially benefitted from migration
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into Java, further emphasizing the need to eliminate perceived inefficiencies

of the langauge.

We have highlighted the primary motivations for the thesis. Java presents

a friendlier programming environment than traditional languages, which makes

it attractive for any project, ours included. Array bounds checking is are par-

ticularly conducive to numeric program development. Cross-platform com-

patibility is useful for numerical programs as the software typically outlives

the hardware. The virtual machine concept coupled with just-in-time com-

pilation is ideal for numeric computation as the majority of time is spent in

kernels or hot-spots. Further motivation originates from a desire to promote

Java as a viable alternative to Fortran and C for numeric computation. Fi-

nally, many characteristics identified by the community as being detrimental

to numeric computing in general (operator overloading, lack of true multidi-

mensional arrays) do not hinder our application.

3.3 Methodology

In this section we will describe how we intend to determine the suitability of

the Java programming environment for solving large sparse symmetric posi-

tive definite systems using direct methods. This involves explicitly defining

both the Java programming environment and what we mean by suitability for

solving large symmetric sparse positive definite systems of linear equations

using direct methods.

By the Java programming environment, we mean the combination of the

language, a compiler, and a virtual machine. Obviously, many compilers and

many virtual machines exist for the Java programming language. These com-

ponents are interchangeable as long as conformance with the Java language

specification is maintained. We are allowed to pick the compiler and virtual

machine which best suit the needs of our application.

We define suitability of the Java programming environment for a partic-

ular application to be the environment’s ability to satisfy the requirements
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of the application (which clearly are application dependent). As previously

mentioned, Fortran is the language traditionally associated with large scale

scientific computations. As such, comparable performance of Java relative to

Fortran is the primary issue. The second interest is ease of writing programs

which achieve comparable performance. Clearly, the more difficult it is to

coax high performance out of a program designed for our application, the

less suitable Java is for it. We will now provide a more in-depth discussion

of the first requirement.

To evaluate the first requirement, we converted a subset of SPARSPAK, a

collection of Fortran subroutines for solving sparse systems of linear equations

and least squares problems into Java (which we refer to as J-SPARSPAK).

Specifically, we converted the portion of SPARSPAK designed to solve posi-

tive symmetric definite systems. We ask the following question: if J-SPARSPAK

runs at a comparable speed to SPARSPAK, can we conclude that Java’s

performance is comparable to Fortran’s for solving large sparse positive def-

inite systems using direct methods (thus satisfying the first requirement)?

SPARSPAK is the culmination of 25 years of intensive sparse matrix research

and is accepted as a de facto standard for solving large symmetric sparse

positive definite systems of linear equations using direct methods. Thus, any

solver achieving performance comparable to SPARSPAK (J-SPARSPAK in-

cluded), can be deemed suitable for solving large sparse positive definite

systems using direct methods.

However, if J-SPARSPAK does not perform comparably to SPARSPAK,

we need not conclude that Java is unsuitable for solving large symmetric

sparse positive definite systems of linear equations using direct methods.

As we will see, performance of Java applications is incredibly sensitive to

data structure choice and programming style. During the conversion of

SPARSPAK to Java, we attempted to minimize implementation differences

by using the same data structures, algorithms, and programming style – we

preserved the nature of SPARSPAK entirely. However, we have to accept the

possibility that techniques delivering high performance in Fortran 90 might
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not in Java. Although unlikely, we concede that entirely different data struc-

tures and programming style could radically improve Java performance and

as such, can not conclude that poor performance of J-SPARSPAK relative

to SPARSPAK implies that Java is not suitable for solving large symmet-

ric sparse positive definite systems of linear equations using direct methods.

We could merely conclude that direct adaptation of design choices and pro-

gramming style in SPARSPAK is not conducive to the Java programming

environment when performance is a concern.

The second requirement, ease of writing programs which achieve per-

formance comparable to Fortran, is much more qualitative in nature. If

the straight conversion yields respectable performance, we argue that good

performance is not difficult to achieve in Java programs thus satisfying the

second requirement. However, if unintuitive modifications to J-SPARSPAK

are required for high performance, suitability is negatively affected.

We must provide a discussion regarding what relative performance differ-

ence is acceptable to scientific programmers. In other words, what constitues

comparable performance. The issue is not clear-cut and is largely dependent

on the particular situation. We again turn to the Boeing project [23] which

migrated a legacy mixed Fortran/C application into Java. Analysis of this

the conversion effort indicated that performance within a factor of 2 of For-

tran is acceptable.

In conclusion, we have defined what we mean when we by suitability

of Java for solving large sparse positive definite systems of equations using

direct methods, along with stating how we are going to determine suitability.

3.4 Benchmarking

As previously mentioned, there are four phases to solving large symmetric

sparse systems of linear equations using direct methods. Each of these phases

has their own characteristics and requirements. We see no reason to believe

that decent relative performance in one phase would imply decent relative
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performance in another. Thus, even though our goal is determining the

performance of all phases relative to Fortran in conjunction, we recognize

each phase to be a separate computational unit requiring its own analysis.

Again, it is likely that modifications to J-SPARSPAK will improve per-

formance. The initial benchmarks will determine which phase(s) we should

focus our efforts on; subsequent effort should be directed towards profiling

those phases to determine the bottlenecks, and attempting to eliminate the

bottlenecks by any means possible. In the worst case scenario, no one bot-

tleneck is identified, but rather J-SPARSPAK as a whole is unnacceptably

slower than SPARSPAK. Ideally, a computational kernel is identified, the

performance of which is pivotal to whole application performance, allowing

us to focus our efforts.

Note that many benchmarks available today for Java programs ‘warmup’

the methods. By ‘warmup’ we mean the method to be benchmarked is

exeucted a couple times prior to any actual timing which, in theory, causes

the JIT compiler to translate the method into native code and perform any

optimizations. We chose not to use this approach for a couple of reasons.

First, the results are not indicative of a real-world environment (Java pro-

grams in an industrial setting do not ‘warmup’ prior to execution). Second,

the server JVM uses on-stack replacement which compiles on the fly and

switches to the compiled code for any long running method which was being

interpreted.
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Chapter 4

Implementation

4.1 Conversion of Sparspak to Java

Sparspak 90 is a collection of FORTRAN 90 subroutines for solving large

sparse systems of linear equations and least squares problems [5]. One of the

two schools of thought regarding benchmarking a system for performance

deals with measuring the time required to complete a whole applcation code.

We converted Sparspak 90 into Java in order to compare whole application

code performance between Fortran 90 and Java.

The entire conversion was performed manually. Due to the modular,

object-oriented structure of SPARSPAK, conversion to Java was relatively

straightforward. However, Fortran 90 does contain language features not

present in Java. These language features are simply ‘syntactic sugar’ – For-

tran 90 is no more expressive than Java. We will highlight some of the

challenges faced.

Passing Functions as Arguments

Fortran 90 allows the programmer to supply functions as parameters to func-

tions. SPARSPAK utilizes this feature by allowing users to supply their own

ordering function to the solver without recompilation of the entire package.
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To simulate the user-defined ordering feature, we created an interface in Java,

userOrdering, with one abstract method, findOrder. The user can then cre-

ate a class which implements this interface, and then pass an instance of this

class to the ordering routine.

Optional Function Arguments

Functions in Fortran 90 can contain optional parameters; this feature is uti-

lized throughout SPARSPAK. We employ Java’s method-name overloading

to simulate optional function parameters. For example, if a Fortran 90

function had the following signature: foo(Integer,Double), where the Dou-

ble was optional, we would create two methods in Java, foo(Integer) and

foo(Integer,Double). Our approach fails when two optional parameters of

the same data type exist consecutively in the signature of a function (this

is referred to an ambiguous parameter pair). The aforementioned problem

is rectified by creating uniquely-named methods. In the general case, if n

is the number of ambiguous parameter pairs within the signature of a func-

tion, then 2n uniquely-named methods are required. Practically speaking,

this problem only presented a slight inconvenience as at most one ambiguous

parameter pair was encountered in any function signature.

BLAS

SPARSPAK makes several calls to level 3 BLAS routines. Writing all nec-

essary BLAS routines in Java would have been a major undertaking. Fortu-

nately, J. Dongarra et. al wrote a Fortran 77-to-Java converter which they

used to convert the BLAS routines into Java [10]. The first Java version of

SPARSPAK utilized this package.

Pass by Reference

Arguments to Fortran functions can be passed either by value or reference.

Primitivies passed into Java methods are passed by value, and objects are
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passed by reference. It was sometimes the case that primitives passed into

Fortran 90 functions were passed by reference and modified. To simulate

this behavior in Java, we encapsulated the primitive in an object, allowing

the proper modifications to occur. Slight use of this was required making

performance degradation a non-issue.

Input/Output Formatting

Benchmarking Fortran vs. Java required test problems. We used a selection

of matrices taken from the University of Florida Sparse Matrix Collection1.

Matrices from this collection are stored using the Harwell-Boeing matrix ex-

change format2. An indication of Fortran’s dominance in scientific comput-

ing, parsing matrices stored in the HB format requires reading data against

Fortran formats. To handle this in the general case is a very complicated

task. Jocelyn Paine3 wrote a Java package for reading and writing data

against Fortran formats. Using this package, we created a Harwell-Boeing

file reader for Java4 which we use in the Java version of SPARSPAK.

Arrays

Arrays in Fortran 90 are polymorphic in that the number of dimensions is

dependent upon the array declaration at the top of the function. For example,

an array with four elements could be viewed as a single-dimensional array

(i.e., a vector) in one context and a two-dimensional array (i.e., a matrix) (of

size (4,1), (2,2), or (1,4)) in another. It was often the case that a vector in one

context was treated as a matrix in another. For example, a BLAS routine

performing matrix-matrix multiplication, DGEMM , treats arrays passed

into it as two-dimensional, whereas they are one-dimensional in the calling

program of SPARSPAK. Fortran arrays are stored in column major order -

1http://www.cise.ufl.edu/research/sparse/matrices/
2http://www.netlib.org/utk/papers/matrixmarket/node8.html
3http://www.j-paine.org/
4http://www.math.uwaterloo.ca/˜saarmstr/software.html
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consecutive column elements are stored contiguously in memory. As such,

each call of the form A[i][j] in DGEMM was translated into A[i+(j−1)∗n]

with n being the number of columns in A. The obvious performance impact

will be explored later.

Fortran 90 supports the ability to pass sections of arrays into a function.

For instance, if the parameter A(10) was passed into a function, accessing

A(5) from within the function is equivalent to accessing A(15) in the calling

program. For every use of this feature within SPARSPAK, we added an extra

integer parameter to the method in the Java version serving as an offset which

was added to every index to the array within the function. Lack of pointers in

Java clearly hinders performance in this case as an extra addition is required

for every index into an array of this sort. The performance hit can be lessened

by clever programming techniques as will be explored later.

By default, arrays in Fortran 90 are indexed from 1 to n, where n is the

length of the array. Arrays in Java are always indexed from 0 to n − 1.

We chose to make the length of each Java array one greater than necessary

(allowing us to use the same index into each Java array as was made into

the corresponding Fortran array). If arrays of the same length were used, 1

would have to be subtracted from each array index in Java making translation

mistakes more likely and the resulting code less efficient. The downside to the

approach, of course, is a slightly higher memory requirement. In SPARSPAK,

this is negligible since fewer than 100 arrays are used throughout any solution

process.

Labelled Loops

Fortran allows loops to be labelled and provides the ability to transfer control

flow from anywhere inside the labelled loop to outside the labelled loop. This

feature is typically used to branch from a loop nested inside the labelled

loop to outside the labelled loop. An example best demonstrates how we

simulated this feature in Java. Figure 4.1 contains a Fortran 90 program

and the corresponding semantically equivalent Java program. The program
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consists of an outer loop, labelled outer, inside of which lies another loop,

inner, and inside another loop, unlabelled. Inside the innermost loop we

have both a branch to outside outer and a branch to outside inner.

For each loop designated label in Fortran 90, we create a boolean variable

breakLabel in Java (in this case, breakOuter and breakInner). If a statement

of the form exit label is encountered in Fortran 90, we set breakLabel to true,

and immediately break out of the currently executing loop. Suppose that we

made it to line 5 of the Fortran 90 program, control flow immediately jumps

to line 12. Similarly, in Java, breakOuter is set to true, and we break out

of the inner-most loop. Control then jumps to line 8, followed by a jump to

line 11, and finally out of the outer loop, as required 5.

4.2 Test Problems

To compare the performance of Java vs. Fortran running SPARSPAK we

solve equations of the form Ax=b where A is an n by n, large sparse sym-

metric positive definite matrix either generated by SPARSPAK’s built-in

grid-problem creator, or one of a selection of matrices from the University

of Florida Sparse Matrix Collection. The vector b is generated so that the

solution x is 1, . . . , n (allowing us to both easily verify the solution, and that

numerical stability was maintained).

In Table 4.1, we present properties of the matrices used to test SPARSPAK.

The integer n represents the number of rows and columns in the matrix (all

matrices are rectangular). NNZ per row of A indicates the average number

of non-zeroes in a row of A and is defined as

η(A)

n
(4.1)

5Clearly, use of ’goto’ statements would be a more natural mechanism of accomplishing
the same behavior. Java supports a ’goto’ statement at the bytecode, but not the source
level.
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Problem n NNZ per row of A NNZ per row of LLt

HB Problems

cfd2 123 440 24 1054

ct20stif 52 329 51 422

finan512 74 752 7 172

nd3k 9 000 363 3398

nd6k 18 000 382 5736

nemeth26 9 506 158 167

pwtk 217 918 52 516

Grid Problems

600 by 600 360 000 5 67

700 by 700 490 000 5 69

800 by 800 640 000 5 73

900 by 900 810 000 5 76

1000 by 1000 1 000 000 5 78

1100 by 1100 1 210 000 5 79

1200 by 1200 1 440 000 5 79

Table 4.1: Test Problem Properties

Similarly, NNZ per row of LLt indicates the average number of non-zeroes

per row of LLt.

Grid problems are characterized by a very regular and predictable matrix

structure – they are symmetric with a cluster of elements along the diago-

nal and bands of elements parallel to the diagonal. The predictable matrix

structure offers a controlled test bed under which to examine the effects of

incrementing problem size with everything else remaining proportional. We

found that a 1200 by 1200 grid, (fifty-eight million non-zeroes in the Cholesky

factor) was the largest problem we could solve (limited by the amount of main

memory in our test machine). Anything smaller than 600 by 600 is too small

to be of any interest. Thus, we examined square 5-point grid problems of size
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600 to 1200, in increments of 100. Each node of a 5-point grid is connected to

four other grid points and itself (except around the border of the grid). Since

the points around the border constitute the minority, the average number of

non-zeroes per row of a 5-point grid problem is five, as evidenced by Table

4.1.

SPARSPAK uses the Multiple-Minimum-Degree (MMD) ordering algo-

rithm. When the MMD algorithm is applied to a n = k × k grid problem,

the number of non-zeroes in the Cholesky factor is predicted roughly by

equation:

η(L) = ck2 log2 k (4.2)

where c is a constant. Dividing Equation 4.2 by n gives us the average

number of non-zeroes per row (or column) of a factored grid problem: c log2 k.

We see that the number of non-zeroes per row of a grid problem increases

proportional to the log of the grid size, k. The growth of the NNZ per row

of LLt of Table 4.1 over the grid problems is consistent with this finding.

As of May 2004, there were 943 matrices in the University of Florida

Sparse Matrix Collection. We examined the properties of each, and selected

all of those which fit our criteria; we required our matrices to be sufficiently

large (i.e., n > 10000) so as to decently stress the solver causing solution times

to be at the bare minimum many seconds, diminishing timing and operating

system effects which plague very short computations. However, we want the

maximum amount of memory required to be less than that available on our

system (1 GB) to avoid use of virtual memory, the performance of which

is dependent on current file system fragmentation and beyond our control.

In addition, we are concerned with solving problems which are symmetric

positive definite.

The sizes of the problems extracted from the University of Florida Sparse

Matrix Collection vary from 9000 by 9000 to 217918 by 217918. The MMD

ordering algorithm performs the best on the matrix nemeth26, and the worst

on cfd2. The ndXX problems are by far the most dense, both in terms
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of A and LLt. In the subsequent chapter, we will present the results of

solving these matrices using both SPARSPAK and the initial version of J-

SPARSPAK.
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Fortran 90

1 outer: do while( test1 )

2 inner: do while( test2 )

3 do while( test3 )

4 if( test4 ) then

5 exit outer

6 else

7 exit inner

8 end if

9 end do

10 end do inner

11 end do outer

12

Java

1 boolean breakOuter = false;

2 while( test1 ) {

3 boolean breakInner = false;

3 while( test2 ) {

4 while( test3 ) {

5 if( test4 ) { breakOuter = true; break; }

6 else { breakInner = true; break; }

7 }

8 if( breakOuter ) { break; }

9 if( breakInner ) { break; }

10 } // end while( test2 )

11 if( breakOuter ) { break; }

12 }

Figure 4.1: Fortran 90 Code showing loop labelling
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Chapter 5

Results and Experimentation

5.1 Hardware

Tests were conducted on a machine with an AMD Athlon XP Processor

clocked at 1.4GHz with 1GB of RAM. As mentioned in Section 2, virtual

machines for PCs deliver much better performance than those available for

other architectures. As such, we chose to run J-SPARSPAK on Windows

XP Professional Edition with service pack 1 using Sun JVM v.1.5.0. J-

SPARSPAK was executed with the following options: Xmx1024m, which sets

the maximum heap size to 1024 megabytes (the default 64 megabyte heap

size is not adequate to solve all but the smallest of problems); Xms128m, which

sets the minimum heap size to 128 megabytes thus decreasing amount of time

spent acquiring memory from the operating system. As mentioned, the server

VM typically out-performs the client VM for longer running computations.

However, to provide evidence of this we will present results from both the

client and server VMs, after which we will focus solely on the server VM.

We used Compaq Visual Fortran v.6.6b1 to compile SPARSPAK into

native win32 code. SPARSPAK was compiled with maximum optimizations,

and the generated code was optimized for the K7 (AMD Athlon) processor.

1http://h18009.www1.hp.com/fortran/
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We noticed that early tests exhibited unacceptable variability in solution

times (i.e., we were unable to achieve repeatability). This was fixed by ex-

ecuting SPARSPAK and J-SPARSPAK at highest priority (decreasing the

probability of being pre-empted by another process). All times presented

in all tables are measured in seconds unless otherwise specified, and are the

average2 at least three runs at high priority.

5.2 Initial Results

In this section, we will present initial results and analysis comparing the

initial version of J-SPARSPAK to SPARSPAK.

Tables 5.1 (server VM) and 5.2 (client VM) present results comparing the

first version of J-SPARSPAK to SPARSPAK. As mentioned, we use both

Harwell-Boeing (HB) problems, and problems generated by SPARSPAK’s

internal grid problem generator. The two tables have the same format. The

first column indicates the name of the problem for the Harwell-Boeing prob-

lems, and the size of the grid for the grid problems. The row labelled HB

ratio is a measure of how much slower Java is relative to Fortran for that

particular phase of computation over all HB problems. Similarly, Grid ra-

tio indicates the same statistic over all grid problems. The row labelled

Average ratio is the average ratio over both HB and grid problems.

Note that the Fortran numbers presented are the same for Tables 5.1 and

5.2 – we are comparing different Java VM implementations against Fortran

compiled with maximum optimizations. We will first discuss performance

of the server VM versus the client VM. The client VM appears to be a

better overall performer than the server VM, yielding better times relative to

Fortran (signified by lower ratios) in the ordering, symbolic factorization, and

triangular solve phases. However, the numeric factorization phase performs

much worse under the client VM, on average 5.25 times slower than Fortran

2We chose the average as opposed to minimum of the times to give a real-world indi-
cation of what can be expected
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Ordering
Symbolic

Factorization
Numeric

Factorization
Triangular

Solve

Problem Java Fortran Java Fortran Java Fortran Java Fortran

cfd2 3.84 1.69 4.16 2.52 956.96 214.61 3.22 1.85

ct20stif 2.45 1.50 1.51 0.57 67.89 17.51 0.65 0.32

finan512 12.85 12.10 1.26 0.39 58.38 16.76 0.45 0.21

nd3k 4.69 2.56 1.25 0.66 348.83 74.92 0.79 0.43

nd6k 9.62 6.28 2.98 2.23 2059.3 451.50 2.47 1.55

nemeth26 2.90 1.26 0.74 0.11 4.30 0.90 0.10 0.06

pwtk 5.13 2.56 4.36 2.82 328.58 89.72 2.80 1.62

HB ratio 1.80 2.72 4.21 1.81

600 3.66 1.25 2.90 1.41 24.86 8.69 0.83 0.49

700 4.32 1.71 3.17 1.69 37.50 13.48 1.11 0.69

800 4.80 2.25 4.08 2.26 60.18 20.98 1.51 0.92

900 5.82 2.88 4.32 2.92 97.76 31.83 1.87 1.22

1000 6.55 3.62 5.39 3.66 125.68 40.35 2.34 1.52

1100 7.19 4.60 5.86 4.43 167.19 52.07 2.87 1.85

1200 8.68 5.57 6.68 5.28 202.34 65.19 3.39 2.23

Grid ratio 2.08 1.61 3.00 1.58

Average
Ratio

1.94 2.17 3.61 1.70

Table 5.1: Initial Fortran and Java Comparison (Server VM)

whereas under the server VM the numeric factorization runs only 3.61 times

slower. The performance difference of the two VMs can be explained in

terms of phase runtimes. Notice that the ordering, symbolic factorization,

and triangular solve phases, as a general rule, all complete well within 10

seconds. Recall that the server VM spends much more effort optimizing the

JIT compiler output – the benefit of which is only realized for significantly
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Ordering
Symbolic

Factorization
Numeric

Factorization
Triangular

Solve

Problem Java Fortran Java Fortran Java Fortran Java Fortran

cfd2 2.27 1.69 3.20 2.52 1375.58 214.61 2.88 1.85

ct20stif 1.55 1.50 0.74 0.57 100.85 17.51 0.51 0.32

finan512 11.26 12.10 0.60 0.39 81.52 16.76 0.33 0.21

nd3k 3.67 2.56 0.84 0.66 457.97 74.92 0.68 0.43

nd6k 8.54 6.28 2.48 2.23 2825.13 451.50 2.28 1.55

nemeth26 2.16 1.26 0.25 0.11 1.61 0.90 0.06 0.06

pwtk 3.72 2.56 3.33 2.82 538.81 89.72 2.57 1.62

HB ratio 1.32 1.41 5.31 1.47

600 1.83 1.25 1.58 1.41 42.00 8.69 0.67 0.49

700 2.27 1.71 2.26 1.69 66.52 13.48 0.93 0.69

800 3.10 2.25 2.96 2.26 106.63 20.98 1.26 0.92

900 3.75 2.88 3.77 2.92 168.70 31.83 1.68 1.22

1000 4.71 3.62 4.79 3.66 215.78 40.35 2.07 1.52

1100 6.35 4.60 5.60 4.43 280.86 52.07 2.55 1.85

1200 8.02 5.57 6.07 5.28 354.44 65.19 3.05 2.23

Grid ratio 1.37 1.25 5.19 1.37

Average
Ratio

1.35 1.33 5.25 1.42

Table 5.2: Initial Fortran and Java Comparison (Client VM)

longer running computations (such as the numeric factorization). Smaller

computations such as the three aforementioned phases over our problem set

are in fact ill-suited towards the server VM. Even though the client VM

outperforms the server VM in three of the four phases, the server VM is still

a better choice for solving large symmetric sparse positive definite systems

of linear equations using direct methods as the benefit realized by the server

VM over the numeric factorization more than compenstates for the slower
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Ordering
Symbolic

Factorization
Numeric

Factorization
Triangular

Solve

Problem Java Fortran Java Fortran Java Fortran Java Fortran

cfd2 0.4% 0.8% 0.4% 1.1% 98.8% 97.3% 0.3% 0.2%

ct20stif 3.4% 7.5% 2.1% 2.9% 93.6% 88.0% 0.9% 0.4%

finan512 17.6% 41.1% 1.7% 1.3% 80.0% 56.9% 0.6% 0.3%

nd3k 1.3% 3.3% 0.4% 0.8% 98.1% 95.4% 0.2% 0.1%

nd6k 0.5% 1.4% 0.1% 0.5% 99.3% 97.8% 0.1% 0.1%

nemeth26 36.1% 54.1% 9.2% 4.7% 53.5% 38.6% 1.2% 0.7%

pwtk 1.5% 2.7% 1.3% 2.9% 96.4% 92.8% 0.8% 0.5%

600 11.4% 10.6% 9.0% 11.9% 77.1% 73.4% 2.6% 4.1%

700 9.4% 9.7% 6.9% 9.6% 81.3% 76.7% 2.4% 3.9%

800 6.8% 8.5% 5.8% 8.6% 85.3% 79.4% 2.1% 3.5%

900 5.3% 7.4% 3.9% 7.5% 89.1% 81.9% 1.7% 3.1%

1000 4.7% 7.4% 3.8% 7.4% 89.8% 82.1% 1.7% 3.1%

1100 3.9% 7.3% 3.2% 7.0% 91.3% 82.7% 1.6% 2.9%

1200 3.9% 7.1% 3.0% 6.7% 91.5% 83.3% 1.5% 2.9%

Average 7.6% 12.1% 3.6% 5.2% 87.5% 80.4% 1.3% 1.9%

Table 5.3: Initial Results Breakdown by Percentage

times over the three less significant phases. Unless otherwise specified, all

further attention will be directed towards the server VM.

Table 5.3 indicates the percentage of the total solution time consumed

by each phase for both Fortran and Java. We present the statistic for each

problem along with the average percentage consumed over all problems. We

will now discuss the initial results and their implications. We will examine

each of the phases seperately, and then the solution process as a whole.
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Ordering

In the ordering phase for Harwell Boeing problems, Java runs, on average,

1.8 times slower than Fortran. Notice that the longer the ordering takes,

the better Java performs relative to Fortran. For example, nk6k takes only

1.52 times as long, and finan512 takes only 1.06 times as long. Recall that

under JIT compilation, run time is the sum of the compilation time plus

the execution time. Thus, JIT compilation really shines when subjecting

large and/or stressful datasets to small sections of code, as is the case when

ordering the aforementioned matrices using the MMD degree algorithm.

One might wonder why the ordering for finan512 takes longer than any

other matrix, even though it is neither the largest nor the most dense. From

the documentation associated with the matrix3:

This matrix is quite strange, and appears to be highly sensitive

to tie-breaking issues, or some other phenomenon...

The majority of matrices, when subjected to some variation of the minimum-

degree ordering algorithm, produce comparable results but often with large

discrepancies in ordering times. The matrix finan512 produces neither com-

parable results, nor comparable ordering times. For more information on this

phenomenon, see [22].

On average, the ordering process for the grid problems takes longer in

Java relative to Fortran than the Harwell-Boeing problems (2.08 as opposed

to 1.80). This is due to none of the grid orderings taking a particularly long

time – even 1200 by 1200 only requires 8.68 seconds in Java. We suspect

that ordering larger grid problems would reduce the gap between Java and

Fortran. Overall, Java runs at approximately half the speed of Fortran for

the ordering process. We deem this acceptable, especially given that the

ordering process constitutes a relatively small minority of the entire solution

time.

3http://www.cise.ufl.edu/research/sparse/HBformat/Mulvey/
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From Table 5.3, we see that the ordering process consumes, on average,

7.6% of the time required for the solution process for Java, and 12.1% for

Fortran. Note that this does not mean the ordering runs faster in Java (it

does not in most cases), it simply means that there are other phases which,

relative to the ordering phase, perform worse in Java. In both Fortran and

Java, the ordering process is the second-most demanding phase, albeit a

distant second.

Symbolic Factorization

The amount of work performed by the symbolic factorization process is

roughly proportional to the number of non-zeroes contained in, and the struc-

ture of, the Cholesky factor. Similar to the ordering process, we see that the

longer running computations (such as symbolically factoring the 1200 by

1200 grid) perform the best under Java relative to Fortran. Again, this is

due to the decreasing cost/benefit ratio characteristic of JIT compilation un-

der longer running computations. Overall, Java runs approximately half as

fast as Fortran during the symbolic factorization phase. But like the ordering

phase, the amount of time spent is small relative to the total solution time.

Numeric Factorization

By far the most interesting and important phase of the solution process is

the numeric factorization. Recall that this phase is responsible for numer-

ically computing the Cholesky factor. The density of the Cholesky factor

plays a larger role than simply the number of non-zeroes (as is the case in

the symbolic factorization), as evidenced by cross-referencing Table 4.1 with

Table 5.1. The matrices containing the most non-zeroes per row in their

Cholesky factor are those which consume the most time during the numeric

factorization.

The numeric factorization performs far worse in Java than it does in For-

tran – 4.21 times as bad for Harwell-Boeing problems, and 3.00 times as

bad for Grid problems, average of 3.61 times slower. It is unfortunate (and
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further proof of Murphy’s Law) that the most critical phase of the solution

process is plagued with such poor efficiency while the less important phases

exhibit respectable performance. As the problem size increases, we antici-

pate the numeric factorization to further dominate the overall computation

to the point where performance of the other phases is nearly irrelevant. This

trend is confirmed by examining the percentage of time spent in the numeric

factorization of the grid problems. The percentage of time spent in the nu-

meric factorization increases monotonically with respect to the grid problem

size (as evidenced in Table 5.4. Similarly, the Harwell-Boeing problems with

the most non-zeroes in the Cholesky factor (cfd2, nd3k, nd6k) spend most of

their time in the numeric factorization. Clearly, the suitability of Java for

solving large symmetric sparse positive definite systems of linear equations

using direct methods depends on the ability to perform a fast and efficient

numeric factorization. This will be re-visited later in the thesis.

Triangular Solve

The triangular solve phase is trivial relative to the other three phases of the

solution process. It consumes, on average, only 1.2% of the solution time

in Java, and 1.8% of the solution time in Fortran. Java achieves decent

performance relative to Fortran in this phase, running at 1.7 times the speed

of Fortran over both Harwell-Boeing and Grid problems. The triangular

solve is accomplished in only 30 lines of Fortran 90 code. We suspect the

simplicity of the routine allowed the JIT compiler to translate it to native

code very quickly; thus, even though it is very short-lived, we do not pay a

significant penalty for the JIT compilation. Like the ordering and symbolic

factorization phases, the triangular solve phase is relatively insignificant to

the solution process as a whole, and as such no further attention will be paid

to the triangular solve phase.
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Overall Analysis

Table 5.4 presents the total solution times for all of the problems. The col-

umn labelled Ratio, similiar to previous tables, is the Java solution time

divided by the Fortran solution time. The next column, Numeric Factor-

ization Percentage, indicates the percentage of time spent in the numeric

factorization. Java performs, on average, 3.79 times worse for Harwell-Boeing

problems, and 2.79 times worse for the grid problems. The relatively worse

performance of Harwell-Boeing problems with respect to the grid problems

is attributable to generally higher density of the Cholesky factors, causing

more time to be spent on the numeric factorization. The performance of

Java relative to Fortran over grid problems as the grid size increases remains

fairly constant. The 600 by 600 grid runs approximately 2.72 times slower

in Java, and the 1200 by 1200 grid runs 2.76 times slower. We attribute the

consistency to the (expected) logarithmic growth of the number of non-zeroes

per row in the Cholesky factor with respect to the grid size – 67 per row in

the 600 by 600 grid, and only 79 per row in the 1200 by 1200 grid.

The problems range in solution times (Java) from 8.04s (nemeth26) to

2074s, over 30 minutes (nd6k). Over all problems, Java runs 3.29 times

slower than Fortran. Again, we anticipate that as the problem size increases,

this ratio will more closely resemble the average numeric factorization ratio

(3.62). We repeated the numeric factorization percentages from Table 5.3

to show the correlation between solution time ratio and the amount of time

spent in the numeric factorization. With the exception of finan512 (confuses

the MMD algorithm) and nemeth26 (a relatively small problem), we can

conclude that the more time spent in the numeric factorization, the worse

the resulting solution time ratio. We point this out to further illustrate

reliance of solver performance on a fast and efficient numeric factorization.

Conclusion

After benchmarking the first version of J-SPARSPAK against SPARSPAK,

we have discovered that Java runs, on average, 3.21 times slower than For-
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Total
Solution

Time

Ratio
Numeric

Factorization
Percentage

(Java)

Problem Java Fortran

cfd2 968.17 220.67 4.39 98.84%

ct20stif 72.50 19.90 3.64 93.65%

finan512 72.94 29.46 2.48 80.04%

nd3k 355.55 78.57 4.53 98.11%

nd6k 2074.42 461.56 4.49 99.27%

nemeth26 8.04 2.33 3.45 53.47%

pwtk 340.88 96.72 3.52 96.39%

600 32.26 11.85 2.72 77.07%

700 46.11 17.58 2.62 81.34%

800 70.57 26.42 2.67 85.27%

900 109.77 38.86 2.83 89.06%

1000 139.96 49.14 2.85 89.80%

1100 183.12 62.94 2.91 91.30%

1200 221.09 78.27 2.82 91.52%

Table 5.4: Total Solution Times

tran. The majority of the performance difference is attributable to poor

numeric factorization performance relative to the other phases. Improving

J-SPARSPAK performance will depend on our ability to diagnose exactly

why this phase is performing slower relative to the other phases, and hope-

fully determine ways to improve performance. Recall from Section 3.4, in the

event Java performs radically slower than Fortran, the key to improving per-

formance is identifying one or more kernels which dominate the computation.

Successfully identifying such kernels allows a focused effort on improving per-

formance over those code portions, something well within our abilities. In the
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event that Java is simply slower across the board than Fortran and no spe-

cific code section can be identified as dominating the numeric factorization

process, we suspect lack of compiler maturity and general run-time overhead

associated with Java to be the culprit – the only solution to which requires

access to, and intricate knowledge of, a Java compiler. In the following sec-

tion, we will present the results of profiling the numeric factorization, with

the goal of identifying hot-spots, which we can then attempt to optimize and

thus improve performance of Java relative to Fortran.

5.3 Profiling Results

We are confident that profiling the solution process will reveal one or more

code sections which dominate the numeric factorization process. The other

3 phases each run approximately twice as slow in Java as opposed to Fortran

– one would think that the numeric factorization phase could be coaxed

to exhibit similar behaviour. We anticipate Java performance over a large

portion of the numeric factorization to be on par with other phases, and

performance in a small minority of code to be significantly worse. In this

section, we will discuss how we profiled both J-SPARSPAK and SPARSPAK

and discuss the results of profiling the numeric factorization phase.

Annoyingly, when running in server mode, the JVM does not provide

accurate profiling results. We speculate that the more agressive optimizations

of the server virtual machine are at odds with providing accurate profiling

information. As such, we used the client virtual machine when profiling J-

SPARSPAK. We acknowledge that results obtained with the client virtual

machine differ from those obtained with the server virtual machine (short

phases such as the ordering, symbolic factorization, and triangular solve run

faster, whereas the numeric factorization runs much slower). However, we

suspect the results are useful since we are simply trying to identify where the

numeric factorization phase is spending most of its time.

The Sun JVM provides profiling support through the Java Virtual Ma-
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chine Profiling Interface (JVMPI). The JVMPI allows heap, cpu, or monitor

profiling. We would like to utilize the cpu profiling ability to determine where

the numeric factorization phase is spending the majority of its time. The VM

option -Xrunhprof:cpu=samples,depth=8 instructs the virtual machine to

perform cpu sampling at the default interval of 20ms at a stack depth of 8

(the profiler will probe as far as 8 method calls deep – more than enough to

accurately profile J-SPARSPAK). The result of the profiling is a file contain-

ing traces in the following format:

TRACE 300090:

org.netlib.blas.Dgemm.dgemm(Dgemm.java:391)

SparseSpdMethod.SpkLDLtFactor.LDLtFactor(SpkLDLtFactor.java:182)

SparseSpdMethod.SparseSpdBase.Factor(SparseSpdBase.java:281)

SparseSpdMethod.SparseSpdSolver.Factor(SparseSpdSolver.java:109)

SparseSpdMethod.SparseSpdSolver.Solve(SparseSpdSolver.java:46)

driver.main(driver.java:60)

indicating that the sample observed the program to be on line 391 of the

method DGEMM in class org.netlib.blas.Dgemm, which was called from the

LDLtfactor routine etc.. The number of traces in the file is dependent on

the number of unique samples identified by the profiler. The profiler records

the stack trace for each unique sample, and the number of times each sample

was hit. An open-source utility PerfAnal4 is available to parse and display

the profiler output in a useful fashion. Running PerfAnal on the trace file of

nd3k produces the output shown in Figure 5.1. We have expanded the call

to the numeric factorization phase, and see that, of the 33.79% of the time

spent in the numeric factorization phase, 32.14% of the time is spent in the

BLAS routine DGEMM. Thus, a total of 95% of the numeric factorization is

spent in that one routine!

Notice that the profiler produces results inconsistent with figures reported

earlier (which indicated that 98.11% of the solution process was spent in the

4http://java.sun.com/developer/technicalArticles/Programming/perfanal/
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numeric factorization of nd3k). This is clearly not due to differences between

the client and server virtual machines, but instead the profiler reports nu-

meric factorization time as a percentage of total program run time, which

includes time required to read the problem. Recall that we are using the

Fortran format parser created by Jocelyn Paine, which, although functional,

is very slow – thus the total program runtime when solving Harwell-Boeing

problems is actually dominated by the time required to read in the problem.

Fortunately, the suitability of Java for solving large sparse positive definite

systems of linear equations using direct methods does not depend on the

ability to read and parse Harwell-Boeing files in a timely manner.

Figure 5.1: Output of PerfAnal
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Compaq Visual Fortran (CVF) contains built-in profiling through the

IDE. We employed the function timing ability of CVF to determine areas

where SPARSPAK is spending the majority of its time in the numeric fac-

torization routine. Similar to profiling Java, we set the stack probe depth

to 8. The output of the profiler is less cryptic than that output from the

Java profiler. In fact, the profiler sorts the output in terms of most active

function. For example, a portion of the the profiler output for nd3k is as

follows:

| Func Func+Child Hit

Functions and Callers | Time % Time % Count

_DGEMM@60 (dxml_ts_gemm.obj) |74102.5 57.9 74213.2 58.0 41492

_SPKLDLTFACTOR_mp_LDLTFACTOR@36 *|72357.1 97.6 72404.5 97.6 13181

_SPKSPARSESPDBASE_mp_SPARSESPD*|72357.1 97.6 72404.5 97.6 13181

_DTRSM@60 (dxml_ts_trsm.obj) |1745.4 2.4 1808.7 2.4 28311

_SPKLDLTFACTOR_mp_LDLTFACTOR@3*|1745.4 2.4 1808.7 2.4 28311

The output indicates that 58.0% of the time was spent in the BLAS rou-

tine DGEMM. However, of that 58.0%, 97.6% was the result of calls from

SPKLDLTFACTOR, and 2.4% the result of calls from another BLAS routine

DTRSM. Interestingly enough, the DTRSM from the version of LAPACK used

in J-SPARSPAK does not call DGEMM (as indicated by Figure 5.1:

org.netlib.blas.Dtrsm.dtrsm... is a leaf node). Thus, all of the time

spent in DGEMM of J-SPARSPAK is the result of calls directly from SPKLDLTFACTOR.

When comparing to time spent in DGEMM of SPARSPAK we must therefore

be careful to exclude all time spent in DGEMM calls not made directly from

SPKLDLTFACTOR (which constitute the minority for nd3k – 2.4%). Figure 5.2

shows the numeric factorization call graphs for both Java and Fortran.

Another interesting aspect of the SPARSPAK profiling result is that

PCHOLE is mysteriously absent from the list of functions identified by the pro-

filer – this function comprises, on average, 8.7% of the numeric factorization
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Figure 5.2: Function call graphs for J-SPARSPAK AND SPARSPAK

time of J-SPARSPAK. We eventually realized that the CVF compiler must

be inlining this function directly into its calling routine, SPKLDLTFACTOR. The

runtime system obviously has no knowledge of this, and thus gives no indi-

cation that a PCHOLE function even exists. The clue that the function was

inlined came from a profiler trace indicating a call to DTRSM directly from

SPKLDLTFACTOR, when in fact the only call to DTRSM is from PCHOLE. Upon

inspection, PCHOLE is a reasonable choice for inlining as it consists of only

30 lines, and is called only once from SPKLDLTFACTOR (recall that inlining a

function results in increased code size). Due to the inlining of PCHOLE we are

unable to get an accurate comparison of the time J-SPARSPAK spends in

PCHOLE relative to SPARSPAK. However, looking at the output of the Java

profiler, we see that the vast majority of the time spent in PCHOLE is spent

in DTRSM; thus we can get a reasonable approximation of the time spent in

PCHOLE from the time spent in DTRSM.

The numeric factorization process is initiated by a call to the routine

LDLTFACTOR in both J-SPARSPAK and SPARSPAK. When the call finishes,
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the numeric factorization is complete (note that the routine makes multiple

calls to subroutines). As such, we would like to determine where this routine

is spending the majority of its time – whether in a subroutine or in the actual

LDLTFACTOR routine itself.

In Table 5.5, we present a breakdown of percentage of time spent in the

three most active functions during numeric factorization, and the percent-

age of time spent in the LDLTFACTOR routine and all other subroutines (The

PCHOLE routine of SPARSPAK is actually the time spent in DTRSM, which we

suspect is very close to the amount of time spent in PCHOLE). In Figure 5.3,

we present a graph of the data contained in the rows of the table correspond-

ing to the Harwell-Boeing problems. Similarly, Figure 5.4 displays the grid

problem data. For both graphs, the first bar of a problem indicates the Java

breakdown, and the second bar indicates the Fortran breakdown. With the

graphs, one is better able to visualize the amount of time spent in each of

the four identified areas of the numeric factorization routine (keep in mind

the segregation is applied to help us better understand where the numeric

factorization is spending most of its time – the breakdown is not meant to

imply there are four logical phases of the numeric factorization the same way

there are four phases to the overall solution process).

The first thing one notices in Table 5.5 is the amount of time spent in the

routine DGEMM in both Java and Fortran. Java spends, on average, 87.1% of

its numeric factorization time in the routine, whereas Fortran spends 67.7%

of its time in DGEMM. For longer running computations, such as nd6k, 95.81%

of the Java numeric factorization time is spent in the routine DGEMM, giving

rise to the possibility that greater than 90% of the entire solution process is

spent in this one routine! Let us now try to make some sense as to exactly

what is implied by the results in Table 5.5.

Recall that Java with the client VM spends, on average, 5.25 more time in

the numeric factorization routine than Fortran. Suppose that the Java DGEMM

percentage was the same as the Fortran DGEMM percentage – that would im-

ply DGEMM in Java ran, on average, 5.25 times slower than DGEMM in Fortran.
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Figure 5.3: Visualization of the HB Factorization percentage breakdown
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Figure 5.4: Visualization of the Grid Factorization percentage breakdown
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DGEMM PCHOLE ASSMB Rest

Problem Java Fortran Java Fortran Java Fortran Java Fortran

cfd2 95.45% 85.47% 2.84% 3.78% 1.46% 10.04% 0.25% 0.72%

ct20stif 91.20% 79.46% 6.36% 6.67% 2.08% 10.28% 0.37% 3.59%

finan512 91.86% 75.84% 4.36% 6.43% 3.00% 13.10% 0.78% 4.63%

nd3k 94.77% 80.53% 2.50% 2.69% 1.49% 9.19% 1.23% 7.59%

nd6k 95.81% 83.03% 1.50% 1.55% 1.80% 10.48% 0.90% 4.94%

nemeth26 65.38% 43.40% 17.31% 5.81% 5.77% 8.34% 11.54% 42.45%

pwtk 92.71% 84.12% 5.44% 6.32% 1.61% 8.50% 0.24% 1.06%

600 81.43% 51.26% 14.76% 26.83% 1.68% 7.16% 2.13% 14.75%

700 82.28% 54.46% 13.81% 24.65% 2.04% 7.54% 1.87% 13.36%

800 83.46% 63.74% 12.16% 21.54% 2.65% 8.44% 1.73% 6.27%

900 85.31% 60.81% 10.51% 20.49% 2.71% 8.28% 1.47% 10.42%

1000 86.08% 60.70% 10.26% 19.64% 2.24% 8.00% 1.42% 11.66%

1100 86.40% 61.92% 10.49% 18.74% 2.03% 8.19% 1.08% 11.15%

1200 86.89% 62.59% 9.62% 17.70% 2.17% 8.52% 1.32% 11.19%

Average 87.1% 67.7% 8.7% 13.1% 2.3% 9.0% 1.9% 10.3%

Table 5.5: Breakdown of time spent in numeric factorization

However, Java spends a greater percentage of its time in DGEMM than For-

tran; therefore, Java must run more than 5.25 times slower than Fortran in

the DGEMM routine. Given that we know how much slower the numeric fac-

torization routine runs in Java as opposed to Fortran (5.25 times), and the

respective breakdown of time spent in the numeric factorization (Table 5.5),

we can derive an approximation of how much slower each area of the numeric

factorization is relative to Fortran (Table 5.6).

Table 5.6 presents the relative performance data for the numeric factor-

ization routine. We will present an example showing how the entries of the

table were calculated. Java runs, on average, 5.21 times slower than For-

tran during the numeric factorization phase using the client VM. From Table
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5.5, Java spends an average of 87.1% of its numeric factorization time in

DGEMM and Fortran spends 67.7% of its time in DGEMM. Therefore, the time

spent in DGEMM of J-SPARSPAK is .871×5.21
.677

= 6.70 times greater than that

of SPARSPAK.

DGEMM PCHOLE ASSMB REST

Ratio 6.70 3.46 1.33 0.96

Table 5.6: Java to Fortran Ratio for Numeric Factorization Functions

We have discoverd that J-SPARSPAK running in the client VM spends

the majority of its numeric factorization time in the BLAS routine DGEMM.

This routine runs 6.7 times slower in Java than Fortran – significantly worse

than any other portion of J-SPARSPAK relative to SPARSPAK. It is highly

likely that J-SPARSPAK running in the server VM exhibits similiar be-

haviour (with perhaps better DGEMM performance as the numeric factorization

runs faster). Improving Java performance relative to Fortran for our applica-

tion requires a fast and efficient numeric factorization, which in turn depends

on DGEMM. In the subsequent Chapter, we will analyze this routine, its pur-

pose, and attempt to determine why Java exhibits such poor performance in

this routine relative to Fortran.
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Chapter 6

DGEMM

6.1 What is DGEMM?

DGEMM calculates, in double-precision arithmetic, a matrix-matrix product1

and addition for real general matrices or their transposes2:

C = α × op(A) × op(B) + β × C,

where op(X) is either X or XT , α and β are scalars, and A, B, and C are

real matrices. The designation op(A) is an m × k matrix, op(B) a k × n

matrix, and C an m×n matrix. The Fortran function signature is as follows:

SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

BETA, C, LDC )

TRANSA and TRANSB specify whether A and B should be transposed re-

spectively, m, n, k, alpha, and beta are as defined above. The parameters

1Ironically, the primary performance requirement for solving large sparse positive def-
inite systems of linear equations using direct methods is the ability to perform a fast and
efficient dense matrix multiplication. This is no fluke – 25 years of intensive sparse ma-
trix research have made this possible. By reducing the problem to manipulation of dense
matrices, algorithms achieve much better data locality of reference and as a result exhibit
fewer cache misses.

2http://www.netlib.org/blas/dgemm.f
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Figure 6.1: Visualization of a Fortran array passed into DGEMM

LDA, LDB, and LDC represent the leading dimension of the data pointed to

by A, B, and C respectively. Recall that in Fortran, one can pass portions of

arrays into functions. In Figure 6.1, we present a visualization of a Fortran

array (using the dimensions of A) passed into DGEMM. The matrix A actually

used in the multiplication is an m × k rectangular portion of the memory

block passed into DGEMM. LDA is necessary to determine the appropriate index

into the memory block when accessing elements of A.

J-SPARSPAK uses a version of DGEMM created by an automatic Fortran 77

to Java converter3. The routine treats each of the four possible matrix orien-

tations (A or AT coupled with either B or BT ) separately. The LDLTFACTOR

routine has three different calls to DGEMM:

1. dgemm (‘n’, ‘t’, jlen, nj, nk, -one, lnz(klpnt), ksuplen, temp2,

nj, one, lnz(jlpnt), jlen )

2. dgemm (‘n’, ‘t’, klen, nups, nk, -one, lnz(klpnt), ksuplen,

temp2, width, one, lnz(ilpnt), jlen )

3. dgemm (‘n’, ‘t’, klen, nups, nk, -one, lnz(klpnt), ksuplen,

temp2, width, 0.0d0, temp, klen )

3See Appendix A for the Fortran 77 code given to the converter
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All three calls to DGEMM use the matrix orientations A and BT (indicated

by ‘n’ and ‘t’ as the first two parameters), thus allowing us to focus our

efforts on the portion of the routine dedicated to that case.

Similar to our manual conversion effort, the automatic converter had to

deal with issues such as passing portions of arrays into functions. Like us,

they provided an integer offset for every array, emulating Fortran behaviour.

In Figures 6.2, we present a subset of the Fortran 77 code given to the

automatic converter, namely that which is responsible for the multiplication

when the matrix orientations A, BT are supplied4.

We will briefly describe the way the Fortran code performs the matrix-

matrix multiplication. The outer loop (J) runs from 1 to N – at the end of one

iteration of the outer loop, an entire column of C will have been computed.

The column of C is first multiplied by beta (if beta does not equal one).

Note that in the event beta equals zero, the column of C is explicitly set to

zero, as opposed to being multiplied by zero. A difference in the way arrays

are allocated between Fortran and Java could render this step redundant in

Java. Namely, all elements of a numeric Java array are initialized to zero

upon allocation, whereas the values in a newly allocated Fortran array are

dependent on the bit pattern existing prior to allocation. Thus, if C is newly

allocated, and beta equals zero, then explicitly setting C equal to zero prior

to performing the multiplication is redundant. Although probably a minor

issue in our case (potentially adding m×n operations to each multiplication),

it is not obvious and spotting it requires fairly extensive knowledge of Java

run-time semantics.

The algorithm computes C[*,J] by first scaling it by BETA, and then

adding the matrix-vector product (the result of which is a vector) A x B[*,J]

(A multiplied by column J of B).

In Figure 6.3, we present the Java code produced by the automatic con-

verter (call this DGEMM version 1). In addition to being less readable than

4Note that the Fortran code given to F2J is not the same code used in SPARSPAK –
we will elaborate later in the chapter
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*

* Form C := alpha*A*B’ + beta*C

*

DO 170, J = 1, N

IF( BETA.EQ.ZERO )THEN

DO 130, I = 1, M

C( I, J ) = ZERO

130 CONTINUE

ELSE IF( BETA.NE.ONE )THEN

DO 140, I = 1, M

C( I, J ) = BETA*C( I, J )

140 CONTINUE

END IF

DO 160, L = 1, K

IF( B( J, L ).NE.ZERO )THEN

TEMP = ALPHA*B( J, L )

DO 150, I = 1, M

C( I, J ) = C( I, J ) + TEMP*A( I, L )

150 CONTINUE

END IF

160 CONTINUE

170 CONTINUE

Figure 6.2: The Fortran 77 code given to F2J
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1 for (j = 1; j <= n; j++) {

2 if (beta == zero) {

3 for (i = 1; i <= m; i++) {

4 c[(i)- 1+(j- 1)*Ldc+ _c_offset] = zero;

5 }

6 }

7 else if (beta != one) {

8 for (i = 1; i <= m; i++) {

9 c[(i)- 1+(j- 1)*Ldc+ _c_offset] =

10 beta*c[(i)- 1+(j- 1)*Ldc+ _c_offset];

11 }

12 }

13 for (l = 1; l <= k; l++) {

14 if (b[(j)- 1+(l- 1)*ldb+ _b_offset] != zero) {

15 temp = alpha*b[(j)- 1+(l- 1)*ldb+ _b_offset];

16 for (i = 1; i <= m; i++) {

17 c[(i)- 1+(j- 1)*Ldc+ _c_offset] =

18 c[(i)- 1+(j- 1)*Ldc+ _c_offset]+

19 temp*a[(i)- 1+(l- 1)*lda+ _a_offset];

20 }

21 }

22 }

23 }

Figure 6.3: Java code resulting from the conversion (Java DGEMM version 1)
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int lowerLimit = -1 + (j-1)*Ldc + _c_offset;

int upperLimit = lowerLimit + m;

for(int i = lowerLimit; i <= upperLimit; i++)

c[i] = zero;

Figure 6.4: More efficient scaling of a column of C

the corresponding Fortran code in Figure 6.2, we see that computing each

array index requires four additions and a multiplication. Our first attempt

to optimize the routine involved decreasing the amount of work required to

compute each array index. For example, examine the section of code where

c[*,j] is set to zero (lines 3 and 4 of Figure 6.3). We are successively access-

ing elements of column j of c, and these elements are stored consecutively in

memory. Examining the index into c, we see that the only variable changing

over the course of the loop is i. We suggest the code in Figure 6.4 as an

alternative, which is semantically equivalent, but more efficient.

In Figure 6.4, we present code which eliminates redundant computations

(at the expense of creating two temporary integers), while maintaining se-

mantics. Notice that we have explicitly created a temporary variable repre-

senting the lower limit of the loop. This is unnecessary as substituting the

expression used to calculate lowerlimit into the definition of the loop would

be equally efficient – the expression would only be evaluated once. The tem-

porary upperLimit should improve efficiency unless the compiler could have

otherwise proved that upperLimit is invariant and move it out of the loop.

We re-wrote version 1 of the routine (Figure 6.3) with the goal of removing

as many redundant array indexing computations as possible, and present the

result (DGEMM version 2) in Figure 6.5. Compare the amount of work

performed indexing the arrays in DGEMM version 1 relative to version 2 –

the indexes in version 2 require at most an addition, with most requiring

no computation. When multiple arrays are accessed inside a loop, such as

the inner most loop (lines 22-23), we must choose one index to optimize. In
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Problem Version 1 Version 2

cfd2 956.96 775.83

ct20stif 67.89 50.72

finan512 58.38 56.58

nd3k 348.83 277.01

nd6k 2059.35 2054.83

nemeth26 4.30 2.81

pwtk 328.58 236.25

ratio to fortran 4.21 3.41

600 24.86 13.20

700 37.50 20.89

800 60.18 35.73

900 97.76 63.58

1000 125.68 80.30

1100 167.19 110.39

1200 202.34 142.59

ratio to fortran 3.00 1.87

combined ratio 3.60 2.64

Table 6.1: Numeric factorization time comparision of DGEMM versions 1 and 2

lines 22-23, we arbitrarily chose to optimize the index into c. In tailoring the

code to efficiently index c, we had to take special care to index a properly

by subtracting that which was added to loop iteration values (line 16). The

code of version 2 is even less readable than that of version 1.

In Table 6.1 we present benchmark results for the numeric factorization

of J-SPARSPAK using DGEMM version 2. We see that with version 2, the

ratio of Java performance relative to Fortran improved from a factor of 4.21,

to 3.41 (19.0%) over all HB problems. Similarly, over all grid problems, the

ratio improved from 3.00 to 1.87 (37.6%). Overall, the solution time ratio

improved from 3.60 to 2.64 (26.7%).
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1 int tempc = -ldc;

2 int tempb = -ldb + b_offset;

3 for( int j = 1; j <= n; j++ ) {

4 tempc += ldc;

5 tempb += ldb;

6 if( beta == zero ) {

7 int upLimit = tempc + c_offset + m;

8 for( int i = tempc + c_offset + 1; i <= upLimit; i++ )

9 c[i] = zero;

10 }

11 else if( beta != one ) {

12 int upLimit = tempc + c_offset + m;

13 for( int i = tempc + c_offset + 1; i <= upLimit; i++ )

14 c[i] *= beta;

15 }

16 int tempa = -lda + a_offset - tempc - c_offset;

17 for( int l = 1; l <= k; l++ ) {

18 tempa += lda;

19 if( b[ l + tempb ] != zero ) {

20 double temp = alpha * b[ l + tempb ];

21 int upLimit = tempc + c_offset + m;

22 for( int i = tempc + c_offset + 1; i <= upLimit; i++ )

23 c[ i ] *= temp * a[ i + tempa ];

24 }

25 }

26 } // end for( j=1... )

Figure 6.5: Java DGEMM version 2 - redundant array index computations eliminated
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The increase in performance yielded by version 2 of DGEMM exempli-

fies the lack of Java compiler maturity. Version’s 1 and 2 of DGEMM are

semantically equivalent - a mature optimizing compiler should be able to

recognize and optimize version 1 of DGEMM to (at least) the point of ver-

sion 2 using loop invariant hoisting and induction variable analysis. Indeed,

when the two routines were coded in Fortran 90 and compiled with maxi-

mum optimizations, they performed equivalently . When compiled with no

optimizations, version 2 out-performed version 1 by 29%. Also noteworthy,

when the DGEMM routine presented in Appendix A was compiled in CVF

with maximum optimizations, it ran at the same speed as DGEMM versions

1 and 2, all of which verifies earlier allegations that poor Java performance

is in large part due to immature compiler technology.

As we have seen however - a number of compiler optimizations can be

applied by hand. With version 2 of DGEMM, we improved numeric factor-

ization performance by 26.7%; however, Java is still running 2.67 times slower

than Fortran – better, but still unacceptably slower than the other phases.

Nonetheless, a viable option for Java programmers developing high perfor-

mance numerical codes is to hand-tune critical code sections for performance.

As we have seen, hand-tuning code comes at the expense of code-readability.

In addition, performance improvements yielded by hand-tuned code may not

yield high performance on different platforms. Since one of Java’s main

strength is cross-platform compatiblity, this is a significant issue.

Our next step was to examine the DGEMM routine being used by SPARSPAK.

Compaq Visual Fortran ships with a library called the ‘Compaq Extended

Math Library’5 (CXML). CXML includes a complete LAPACK implemen-

tation, as well as implementations of BLAS levels 1, 2, and 3. Recall that

DGEMM resides in BLAS level 3. CXML employs a number of techniques to

achieve high performance in numerical codes. The hierarchical memory sys-

tem is efficiently managed by enhancing the data locality of reference. For

example, the algorithms are structured to operate on sub-blocks of arrays

5http://h18000.www1.hp.com/math/documentation/cxml/dxml.3dxml.html
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that are sized to remain in cache until all operations involving the data in

the sub-block are complete6. Performance of the CXML DGEMM routine

trumped that of the Fortran routine presented in Appendex A compiled with

maximum optimizations by close to a factor of three.

Unfortunately, Compaq has not released the source code for the CXML

library. We attempted to contact Compaq and request the source code, but

did not get a response. It is possible that the code in the library was created,

or at least tweaked, at the assembly level, rendering the source code useless

as far as a conversion into Java is concerned. Regardless, not knowing the

specific techniques used to coax performance out of the CXML DGEMM

routine merited no further investigation.

6.2 IBM Array Package Revisited

Recall from Section 2.2, the NINJA group at IBM developed a library called

the IBM Array Package. In addition to classes simulating true multi-dimensional

arrays, the package also includes an implementation of BLAS routines utiliz-

ing the multi-dimensional array classes. Our next step was to compare the

version of DGEMM included in the IBM Array Package with our version of

DGEMM. Unfortunately, integrating the IBM DGEMM into J-SPARSPAK

was not as easy as simply replacing the 3 calls to DGEMM from LDLTFACTOR

with the IBM version. The IBM DGEMM has the following function signa-

ture

dgemm(int transA, int transB, double alpha, doubleArray2D A,

doubleArray2D B, double beta, doubleArray2D C)

Notice that the arrays A, B, and C are all of type doubleArray2D, the IBM

Array Package class encapsulating an immutable 2-dimensional rectangular

array of doubles. We cannot pass objects of type double[] (as present

in J-SPARSPAK) into the IBM DGEMM routine, preventing integration.

6http://h18000.www1.hp.com/math/documentation/cxml/cxmlref.pdf
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One option is conversion of the arrays passed into DGEMM into arrays of

type doubleArray2D immediately prior to each call site – unfortunately that

would require copying all of the data in the array negating any advantages

yielded by a more efficient DGEMM implementation. A second option would

be to modify J-SPARSPAK such that all arrays to be passed into the IBM

DGEMM routine were of type doubleArray2D for the lifetime of the program.

This approach would require a significant amount of effort and used only as

a last resort.

At first glance, it appeared as though the IBM DGEMM routine did

not support offsets into the arrays, further complicating integration into J-

SPARSPAK. However, the array classes in the IBM Array Package support

efficient array sectioning in a fashion similar to Fortran, negating the need

for array offsets. Support of array sectioning is efficient in the sense that no

data-copying occurs, but still less efficient than Fortran as a new object must

be created (and eventually deleted) to store sectioning information.

In order to compare the IBM DGEMM routine to versions 1 and 2 of

our DGEMM routine, we decided to perform one large (i.e., 1000 × 1000)

matrix multiplication in each of the routines. To test whether one large

multiplication is representative of many thousand small multiplications (as

occuring in SPARSPAK, see Appendix B), we ran a 1000× 1000 problem on

DGEMM versions 1 and 2. DGEMM version 1 performed the multiplication

in 27.46 seconds, and version 2 required 20.21 seconds. Recall that in J-

SPARSPAK, version 2 performed on average 27% faster than version 1. With

one large multiplication, version 2 runs 26.5% faster than version 1, validating

usage of one large multiplication for subsequent DGEMM tests.

Running the 1000 × 1000 problem on the IBM DGEMM routine using

matrix orientations A and BT resulted in a time of 7.46 seconds! As a com-

parison, Fortran with maximum optimizations executing the routine in Ap-

pendix A on the same problem runs in slightly over 11 seconds. The CXML

DGEMM routine used in SPARSPAK completes in 4.21 seconds. The IBM

DGEMM routine must be using some of the same techniques used in the
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CXML routine (which are not performed by the optimizing compiler ship-

ping with CVF). Integrating the IBM DGEMM routine into J-SPARSPAK

became a much higher priority. Like the CXML, IBM did not release the

source code for the array package. We emailed the developers of the IBM

Array Package requesting the source code but did not receive a response.

Fortunately, we had the class files available to us, and a number of free Java

decompilers (.class to .java) are readily available.

6.2.1 Decompilation

Using the DJ Java Decompiler7, we decompiled both the IBM DGEMM

routine, and the implementation of the class doubleArray2D. The result of

decompiling the IBM DGEMM routine was 214 lines long! Analysis of the

decompiled code revealed that a combination of blocking and loop unrolling,

both of which aim to improve data locality, can be attributed to the increased

performance. We will now describe in detail the internal representation of the

doubleArray2D class and how the IBM DGEMM routine uses the objects to

perform the multiplication. Understanding the workings of these two designs

is key to J-SPARSPAK integration.

The doubleArray2D Class

A doubleArray2D object represents a 2-dimensional, immutable, rectangular

array using 6 values:

1. a data storage pointer (double [] data)

2. a 2-element shape vector (int n0, n1)(the number of rows and columns

respectively)

3. a 3-element weights vector (int w0, w1, w2) (describes placement of

elements in the data vector)

7http://members.fortunecity.com/neshkov/dj.html
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Element i,j of a doubleArray2D object is accessed in the following fash-

ion: data[i*w0 + j*w1 + w2]. By default, w0 is initialized to n1 (the num-

ber of columns), w1 is initialized to one, and w2 is initialized to zero. By

changing the values of w0, w1, and w2, it is clear how the doubleArray2D

class can support sectioning. The implementation of the get call reveals

another technicality which must be accounted for if an attempt to integrate

into J-SPARSPAK is made: by default the doubleArray2D class uses row-

wise (C-style) storage as opposed to column-wise (used in SPARSPAK AND

J-SPARSPAK). Therefore, the matrix orientations AT , B must be used to

achieve conformance with J-SPARSPAK.

The IBM DGEMM Routine

We will now describe the implementation of the IBM DGEMM routine. At

a high level, the IBM DGEMM routine computes 4 × 4 blocks of C at a

time, using 4 rows of A and 4 columns of B. Like all other matrix-matrix

multiplication routines encounterd so far, the routine consists of 3 nested

loops, one for each of the unique matrix dimensions.

The inner-most loop runs from 1 to the number of (columns in A/rows

in B) in strides of one. The data access pattern after the inner-most loop

completes is shown in Figure 6.6 (a) – 4 rows of A and 4 columns of B are

used to compute 4 × 4 blocks of C. The 16 elements of C are not accessed

for the remainder of the multiplication.

The middle loop runs from 1 to the number of columns in B in strides

of 4. The same 4 rows of A are repeatedly multiplied by 4 different columns

of B, to compute a unique 4 × 4 block of C. In the event the number of

columns of C is not a multiple of 4, an epilogue exists to the middle loop to

compute the remaining rows of C in 4 × 1 sections. After the middle loop

and its epilogue finish, 4 entire rows of C have been computed (see Figure

6.6 for the data access pattern).

The outer loop runs from 1 to the number of rows in C, in strides of 4,

with an epilogue outside the loop to compute any remaining rows of C in the
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A B C

A B C

(a)

(b)

Figure 6.6: Data access patterns after one iteration of the middle (a) and outer (b) loops
respectively

event the number of rows in C is not a multiple of 4 – these are computed

one by one.

The IBM DGEMM routine uses the same access pattern depicted in Fig-

ure 6.6 regardless of the matrix orientations. To observe the effect of matrix

orientation on performance, we ran the 1000 × 1000 problem using the four

possible matrix orientations and the results were surprising. Referring to

Table 6.2, we see that the multiplication times range from 7.46s, to 14.46s!

We will now describe what occurs inside the doubleArray2D class when a

transpose operation is applied, in the hopes of understanding the cause of the

performance difference. Changing the matrix orientation of a doubleArray2D

object amounts to changing the values of the member variables w0 and w1.

The call A.get(1,5) where A is a doubleArray2D object returns data[1*w0

+ 5*w1 + w2] (where, by default, w0 is initialized to the number of columns
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in the matrix, w1 is initialized to one, and w2 to zero). If one requests that A

be transposed, the member variables w0 and w1 get swapped, as do the mem-

ber variables n0 and n1. A subsequent call A.get(x,y) returns the equivalent

of the call A.get(y,x) before the transpose operation, as required.

In the context of the IBM DGEMM routine, supplying different matrix

orientations to the routine results in different data storage orientations (i.e.,

instructing the routine to use AT instead of A means A is stored in column-

major instead of row-major order). Thus, the performance difference is en-

tirely attributable to different memory access patterns.

Matrix Orien-
tation

Multiplication
Time

A, B 13.84

AT , B 14.46

AT , BT 9.14

A, BT 7.46

Table 6.2: IBM DGEMM Matrix-Matrix multiplication times for the four different ma-
trix orientations

Note that none of the allowable matrix orientations in the IBM Array

Package coincide directly with what J-SPARSPAK requires, namely A and C

stored column-wise and B stored row-wise. Fortunately, we doubt the storage

of C has much impact on performance – every element of C is accessed only

twice during the course of a multiplication, once to retrieve the value existing

prior to the multiplication, and once to set the new value. Furthermore, the

routine never iterates across rows or down columns of C, it retrieves (and

sets) 4 × 4 blocks at a time.

Let us now examine the different memory access patterns to determine

which result in best performance, hopefully allowing us to modify our DGEMM

routine to use techniques similiar to that used in the IBM DGEMM routine,

while maintaining conformance with the calling conventions and expected

data-layout of J-SPARSPAK.
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First, we examine the memory layout of the fastest multiplication, A with

BT . With this orientation, A is stored row-wise, and B is stored column-

wise. Referring again to Figure 6.6, we see that to compute a 4 × 4 block

of C, we iterate across 4 rows of A and down 4 columns of B. It is well-

known that accessing elements in the natural order (e.g., column-major for

2-dimensional Fortran array, row-major for 2-dimensional C arrays) results

in best performance. Performance of the A, BT multiplication is testament

to this – both A and BT are accessed in the natural order.

Turning our attention to the memory layout of the slowest multiplication

(AT , B), we see that both matrices are accessed orthogonal to the natural

order – further evidence that traversing arrays along the natural order is key

to high performance. Looking at the cases where one array is traversed in the

natural order and one is not, we see that the case A, B performs worse than

AT , BT . We propose the following explanation, consistent with our natural

order explanation presented earlier. Recall that 4 rows of C are computed at

a time, in 4×4 blocks. In computing each 4×4 block, the same 4 rows of A

are repeatedly multiplied by 4 different columns of B. In computing 4 rows

of C, only 4 rows of A are traversed (after which they are in cache), whereas

the entirety of B is traversed. Thus, the penalty for traversing A out of

order is significantly less than the penalty for traversing B out of order, and

is reflected in the multiplication times.

Another note of interest is the amount of computation being performed

to index each element of a doubleArray2D object, namely 3 additions and

2 multiplications. We are surprised that such decent performance figures

were achieved, given the performance improvement we saw in moving from

DGEMM version 1 to DGEMM version 2. It is possible that performance of

the IBM DGEMM routine can be improved using techniques similar to those

used in transforming DGEMM version 1 to DGEMM version 2.
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6.3 DGEMM Version 3

Armed with the keys to improving matrix-matrix multiplication performance

from the previous section, we set out to write a third J-SPARSPAK com-

patible DGEMM routine. We define the following requirements for a J-

SPARSPAK compatible DGEMM routine:

• accepts arrays A, B, and C as single dimensional double arrays

• A and C are stored column-wise, and B is stored row-wise

• all matrices support offsets

Although not a requirement, we would also like the matrices to be accessed

in their natural order whenever possible.

In Figure 6.7, we present the sizes and data layout of the matrices A, B,

and C. We want the algorithm to iterate down columns of A, across the

rows of B, and down the columns of C. We thus propose a multiplication

routine in which the inner-most loop runs to m (iterating down the columns

of A and C), the middle loop runs to n (across the rows of B), and the

outer-loop to k. Such a scheme results in iteration of all matrices in their

natural order – although we suspect not much gain is achieved by traversing

B in order as, between accessing 4 elements of B, 4 entire columns of A,

and 1 entire column of C is accessed (potentially pushing elements of B out

of cache).

In Figure 6.8, we present the data access patterns of DGEMM version 3.

The data access pattern after one iteration of the inner-most loop is shown

in Figure 6.8 (a). The routine computes the product of an m × 4 section of

A and an 4×1 section of B, the result of which is a m×1 section of C. The

4 columns of A are repeatedly multiplied by a different 4 × 1 section of B.

After one iteration of the outer loop, every element of C has been updated.

Subsequent iterations of the outer loop use 4 different columns of A with 4

different rows of B to again update every element of C.
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Figure 6.7: Sizes and data layout of matrices A, B, and C

A B C

A B C

(a)

(b)

Figure 6.8: Data access patterns after one iteration of the middle (a) and outer (b) loops
respectively

DGEMM version 3 performs a 1000×1000 multiplication in 8.84 seconds,

11.2 seconds faster than DGEMM version 2, and only 1.39 seconds slower

than the IBM DGEMM routine with the optimal data layout. The IBM

DGEMM routine achieves better data locality due to the potentially poor
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Problem Version 1 Version 2 Version 3

cfd2 956.96 775.83 418.86

ct20stif 67.89 50.72 32.59

finan512 58.38 56.58 28.37

nd3k 348.83 277.01 145.23

nd6k 2059.35 2054.83 877.67

nemeth26 4.30 2.81 3.42

pwtk 328.58 236.25 161.95

ratio to fortran 4.21 3.41 2.14

600 24.86 13.20 15.11

700 37.50 20.89 21.69

800 60.18 35.73 33.65

900 97.76 63.58 51.91

1000 125.68 80.30 65.61

1100 167.19 110.39 96.45

1200 202.34 142.59 105.84

ratio to fortran 3.00 1.87 1.67

combined ratio 3.60 2.64 1.90

Table 6.3: Numeric factorization time comparision of DGEMM versions 1, 2, and 3

cache performance when accessing B in DGEMM version 3.

In Table 6.3, we present the timings of the numeric factorization routine

for DGEMM versions 1, 2, and 3. Version 3 improves the HB ratio to 2.14

from 3.41, and the grid ratio from 1.87 to 1.67. The total ratio over all

problems improved from 2.64 down to 1.90 – the numeric factorization routine

is now on par with the ordering, symbolic factorization, and triangular solve

routines relative to Fortran.

Notice that in most cases, DGEMM version 3 yields a substantial im-

provement over DGEMM version 2. However, with smaller problems, such

as nemeth26, and the 600 × 600 and 700 × 700 grid problems, version 3 is
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actually slightly slower than version 2. Examining the table of DGEMM call

statistics in Appendix B, we see that the 3 problems which ran slower with

DGEMM version 3 are those which, on average, perform the fewest number

of floating-point operations per multiplication. DGEMM version 3 advances

DGEMM version 2 by performing more operations per memory fetch. How-

ever, that technique relies on those matrix dimensions iterated over in strides

of four being of at least size 4 (e.g., the outer loop runs from 1 to k in strides

of 4). In the event k is less than 4, version 3 essentially reduces to version

2 (i.e., 1 row/column at a time) with the upper limit of the outer and mid-

dle loops swapped (i.e., version 3 goes to k, n, and m in that order, and

and version 2 goes to n, k, and m). We are unsure why this would yield a

performance improvement, but it is not an issue since it is only slight. In

conclusion, increased performance of DGEMM version 3 yields the most im-

provement when relatively large matrices are supplied to DGEMM, such as

with the problem nd6k.

Interestingly, as the density of the problem increases, the ratio of the

numeric factorization time for DGEMM versions 2 and 3 approaches the

ratio of the 1000 multiplication for DGEMM version 2 and 3 (20s vs 8s),

even though, in the case of nd6k, 39772 calls are made, with an average of 2.5

million operations per multiplication (a total of 100 billion). Contrast that

with one call consisting of one billion operations in the case of the 1000×1000

multiplication. We suspect that once the matrices reach a certain size, the

time required for the multiplication increases linearly with the matrix size.

In conclusion, we have improved DGEMM performance by almost a factor

of 2 since version 1, bringing Java performance within a factor of 2 of Fortran

and on par with the other 3 routines. Eliminating inefficient array indexing

resulting from simulation of 2-dimensional arrays by 1-dimensional arrays

yielded a performance improvement of 27%. The remaining improvement

was achieved by making better usage of the memory cache, increasing the

number of operations performed per memory fetch.
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Chapter 7

Future Work and Conclusion

7.1 Future Work

With a thesis of this scope, a number of branches for future work have been

exposed. We essentially made a ‘beeline’ for the best possible performance

in J-SPARSPAK, without much investigation as to the specific reasons for

Java’s performance deficiencies. Broadbrush generalizations such as ‘imma-

ture compiler technology’ were cited as culprits – the community would ben-

efit from more specific information (e.g., the Java compiler was unable to

eliminate array bounds checks from this section of code because the loop up-

per limit variable was not declared as final decreasing performance by X%).

We would ideally like to determine the exact cause of performance difference

beteween identical Fortran and Java code. Doing so would precisely identify

the hurdles present and the direct effect of current compiler technology on

solving symmetric large sparse positive definite systems of equations using

direct methods.

Although we focused on performance of 100% pure Java code, it would

be interesting to call the CXML DGEMM routine from J-SPARSPAK through

the JNI and measure resulting performance. We suspect that the asymptotic

performance of J-SPARSPAK would approach that of SPARSPAK, as, for

sufficiently large problems, solution time is almost entirely dependent on
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DGEMM performance. Although, in the general case, robustness is sacrificed

when the JNI is employed, the CXML library is very mature and most likely

bug-free. In an industrial setting, the advantage of the performance increase

yielded by the CXML library would most likely outweigh the possibility of a

slightly-less robust system which is no longer cross-platform compatible.

The optimal DGEMM performance on a 1000 × 1000 multiplication oc-

curred when A was stored row-major, B column major, and C row-major.

It would be possible to modify J-SPARSPAK to use those storage layouts

for the three arrays, further improving DGEMM performance. Changing the

storage layout of the matrices is unlikely to negatively affect performance of

other areas of J-SPARSPAK.

We have evaluated Java vs. Fortran for one scientific computing applica-

tion and have discovered Java code converted directly from Fortran code to

run within a factor of 2. Although consistent throughout our application, it

would be interesting to see whether other solvers achieve a similar ratio.

Given that the ability to optimize Java code depends on the ability to

prove that same code free of exceptions, it would be useful to know what

prevents the compiler from proving a certain section of code exception-free.

Most mature Java programs do not contain any errors and therefore would

not throw any exceptions. It would be a shame if a mature program could

not be proved exception-free and thus could not be optimized. Therefore,

determining how to write Java code conducive to optimization would be a

useful contribution to the community.

7.2 Tips for achieving high-performance in

numerical Java applications

On a more practical note, in this section, we will present tips and tech-

niques we have discovered which improve performance of scientific applica-

tions in Java. When performance is a concern, it is important to simulate

two-dimensional arrays with one-dimensional arrays, for a couple of reasons.
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First, only one array-bounds/null-pointer check is required for each access

(instead of two). More importantly however, a one-dimensional array is

guaranteed to be stored contiguously in memory, improving data locality of

reference when iterating over the elements. Whenever possible, arrays should

be traversed in their natural order, improving cache performance.

JVM’s for PC’s are typically more advanced than those for less-prevalent

platforms. As such, given similar hardware running different operating sys-

tems, the best performance is to be had on Linux/Windows machines.

7.3 Summary

We will present a brief summary of the project. We converted a sparse

matrix solver written in Fortran 90 into Java. Issues encountered stemmed

primarily from features present in Fortran 90 but not in Java. Unlike most

Fortran environments, no ‘instrinsic’ version of BLAS is available for Java.

As a result, we used a version of BLAS output by a Fortran to Java con-

verter. Following that, we tested the Java version using a variety of JVM’s

and found the Sun JVM with the -server option to surpass the others in

performance. Initial benchmarks comparing J-SPARSPAK to SPARSPAK

showed the numeric factorization phase to dominate the solution process in

both Fortran and Java and unfortunately, with the Java version running

3.61 times slower than the Fortran version. Given that the other phases ran

within a factor of 2 of Fortran, we figured improvement of the numeric fac-

torization routine was possible. Profiling the execution revealed the majority

of the numeric factorization routine was spent in a matrix-matrix multipli-

cation BLAS function, DGEMM. J-SPARSPAK was using a version of DGEMM

created by the Fortran-to-Java converter, whereas SPARSPAK was using a

highly-tuned DGEMM routine from the CXML library. We did not have access

to either the source code for the CXML DGEMM routine, nor have the creators

revealed the techniques used to achieve such high performance. Examin-

ing the code produced by the automatic Fortran-to-Java converter, we saw

90



that alot of redundant array indexing computations were being performed.

Eliminating these improved performance by 27% (DGEMM version 2). Still, J-

SPARSPAK was running 2.64 times slower than SPARSPAK in the numeric

factorization routine – we suspected further performance improvements were

possible. Time required to perform a 1000 × 1000 multiplication with the

DGEMM routine from the IBM Array Package was 7.46 seconds, DGEMM version

2 performed the same multiplication in slightly over 20 seconds. Decompil-

ing the IBM DGEMM routine revealed that loop unrolling and blocking had

a part to play in the performance improvement. Benchmarking the routine

with different matrix orientations also showed that accessing arrays in their

natural order is critical for high performance. Based on that information, we

created a third DGEMM routine. The new routine, DGEMM version 3, performed

within a factor of 2 of the CXML DGEMM function, on par with the other

solution phases relative to Fortran.

7.4 Conclusion

Our work has exposed deficiencies in the numerical libraries currently avail-

able for Java. Numerical programming courses encourage use of bug-free,

mature numerical libraries whenever possible. Although good advice when

programming in tradtional languages such as Fortran and C, numerical pro-

gramming in Java currently requires a different approach. One can not as-

sume that numerical libraries available for Java will yield optimum perfor-

mance. As we have shown, significant tweaking of our DGEMM routine was

required to achieve comparable performance to Fortran.

Re-usable numerical libraries, crucial to adoption of a language as a high-

performance computing medium, are not yet mature in Java. Numerical li-

braries currently existing use proprietary data formats (i.e., doubleArray2D)

which, unless adopted at the beginning of the project, are difficult to exploit

(e.g., integration of the IBM DGEMM routine into J-SPARSPAK would have

required changing all arrays to type doubleArrayXD where X is the rank of
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the array).

The asymptotic performance of Java does not approach that of Fortran as

one might predict given the depth of compiler optimizations that are applied

by the server VM. We suspect this is either because the aggressivness of

the optimizations still do not approach those applied by Fortran compilers,

or issues created by the Java Language Specification (such as the need to

prove sections of code to be free of exceptions prior to optimization) take a

signifcant toll on performance.

As a general rule, Java code converted directly1 from Fortran code will

run within a factor of 2. Decreasing the performance gap depends on Java

compiler technology maturing. We suspect that performance of Java code

will eventually reach or even surpass the level of Fortran due to additional in-

formation available to the compiler at run-time. If performance greater than

a factor of 2 is required, high-level compiler optimizations such as loop un-

rolling, loop invariant hoisting, and common subexpression elimination can

be applied by hand to critical sections of code (as we did creating DGEMM ver-

sion 2). Keep in mind that code-readability is adversely affected by manually

applying compiler optimizations, detracting from code maintainability.

We would like to discuss the project from a practical point of view –

namely what are the implications of our work towards conversion of high-

performance numerical into Java, possibly in an industry setting. The path

we took in the initial conversion effort could easily be followed by anyone

converting software from Fortran into Java. Initial results would have shown

Java to run almost 4 times slower than Fortan for sufficiently large prob-

lems - most likely unacceptable for all but trivial tasks. At this point, the

conversion effort is likely to have been dropped and Java again labelled as

unsatisfactory for applications demanding high performance. Even had the

team behind the conversion recognized the importance of DGEMM, and used

the IBM version (with all arrays of type doubleArray2D), it is possible that

they would have used the ‘fast’ orientation in their tests, and the ‘slow’ orien-

1as close as language differences permit
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tation in their application, not realizing there is a factor of two performance

difference between the two. The problem, in our case, was one of immature

numerical libraries. Had a tuned DGEMM function been used in J-SPARSPAK

the first time around, it would have ran within a factor of two of Fortran

immediately. Thus, our final conclusion is that Java, in its current state,

has the ability to perform within an acceptable level of Fortran for solving

large sparse symmetric positive definite systems of equations with access to

mature numerical libraries.

The two primary contributions we have made to the community are as fol-

lows. First, numerical programs consisting of instrinsic language constructs

(i.e., no complex numbers) converted from Fortran, with today’s fastest Java

JIT compiler, will run within a factor of two of Fortran. This includes the

program J-SPARSPAK, a program designed to solve large symmetric sparse

positive definite systems of equations using direct methods. Secondly, Java

numerical libraries in their current state can not be thoughtlessly used by

numerical programs. They must be tested and possibly modified before being

employed if performance is a concern. In light of these two issues, in terms of

performance, we feel that Java is indeed suitable for solving symmetric large

sparse positive definite systems of equations using direct methods. However,

in terms of ease of program development, mature and efficient numerical li-

braries running within a factor of two of equivalent Fortran libraries must

be developed and readily available to the Java community. Regardless, sig-

nificant progress has been made since Java’s inception, and we feel scientific

Java applications will eventually become ubiquitous.
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Appendix A

SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,

$ BETA, C, LDC )

* .. Scalar Arguments ..

CHARACTER*1 TRANSA, TRANSB

INTEGER M, N, K, LDA, LDB, LDC

DOUBLE PRECISION ALPHA, BETA

* .. Array Arguments ..

DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * )

* ..

*

* Purpose

* =======

*

* DGEMM performs one of the matrix-matrix operations

*

* C := alpha*op( A )*op( B ) + beta*C,

*

* where op( X ) is one of

*

* op( X ) = X or op( X ) = X’,

*

* alpha and beta are scalars, and A, B and C are matrices, with op( A )
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* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.

*

* Parameters

* ==========

*

* TRANSA - CHARACTER*1.

* On entry, TRANSA specifies the form of op( A ) to be used in

* the matrix multiplication as follows:

*

* TRANSA = ’N’ or ’n’, op( A ) = A.

*

* TRANSA = ’T’ or ’t’, op( A ) = A’.

*

* TRANSA = ’C’ or ’c’, op( A ) = A’.

*

* Unchanged on exit.

*

* TRANSB - CHARACTER*1.

* On entry, TRANSB specifies the form of op( B ) to be used in

* the matrix multiplication as follows:

*

* TRANSB = ’N’ or ’n’, op( B ) = B.

*

* TRANSB = ’T’ or ’t’, op( B ) = B’.

*

* TRANSB = ’C’ or ’c’, op( B ) = B’.

*

* Unchanged on exit.

*

* M - INTEGER.

* On entry, M specifies the number of rows of the matrix
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* op( A ) and of the matrix C. M must be at least zero.

* Unchanged on exit.

*

* N - INTEGER.

* On entry, N specifies the number of columns of the matrix

* op( B ) and the number of columns of the matrix C. N must be

* at least zero.

* Unchanged on exit.

*

* K - INTEGER.

* On entry, K specifies the number of columns of the matrix

* op( A ) and the number of rows of the matrix op( B ). K must

* be at least zero.

* Unchanged on exit.

*

* ALPHA - DOUBLE PRECISION.

* On entry, ALPHA specifies the scalar alpha.

* Unchanged on exit.

*

* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is

* k when TRANSA = ’N’ or ’n’, and is m otherwise.

* Before entry with TRANSA = ’N’ or ’n’, the leading m by k

* part of the array A must contain the matrix A, otherwise

* the leading k by m part of the array A must contain the

* matrix A.

* Unchanged on exit.

*

* LDA - INTEGER.

* On entry, LDA specifies the first dimension of A as declared

* in the calling (sub) program. When TRANSA = ’N’ or ’n’ then

* LDA must be at least max( 1, m ), otherwise LDA must be at

96



* least max( 1, k ).

* Unchanged on exit.

*

* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is

* n when TRANSB = ’N’ or ’n’, and is k otherwise.

* Before entry with TRANSB = ’N’ or ’n’, the leading k by n

* part of the array B must contain the matrix B, otherwise

* the leading n by k part of the array B must contain the

* matrix B.

* Unchanged on exit.

*

* LDB - INTEGER.

* On entry, LDB specifies the first dimension of B as declared

* in the calling (sub) program. When TRANSB = ’N’ or ’n’ then

* LDB must be at least max( 1, k ), otherwise LDB must be at

* least max( 1, n ).

* Unchanged on exit.

*

* BETA - DOUBLE PRECISION.

* On entry, BETA specifies the scalar beta. When BETA is

* supplied as zero then C need not be set on input.

* Unchanged on exit.

*

* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).

* Before entry, the leading m by n part of the array C must

* contain the matrix C, except when beta is zero, in which

* case C need not be set on entry.

* On exit, the array C is overwritten by the m by n matrix

* ( alpha*op( A )*op( B ) + beta*C ).

*

* LDC - INTEGER.
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* On entry, LDC specifies the first dimension of C as declared

* in the calling (sub) program. LDC must be at least

* max( 1, m ).

* Unchanged on exit.

*

*

* Level 3 Blas routine.

*

* -- Written on 8-February-1989.

* Jack Dongarra, Argonne National Laboratory.

* Iain Duff, AERE Harwell.

* Jeremy Du Croz, Numerical Algorithms Group Ltd.

* Sven Hammarling, Numerical Algorithms Group Ltd.

*

*

* .. External Functions ..

LOGICAL LSAME

EXTERNAL LSAME

* .. External Subroutines ..

EXTERNAL XERBLA

* .. Intrinsic Functions ..

INTRINSIC MAX

* .. Local Scalars ..

LOGICAL NOTA, NOTB

INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB

DOUBLE PRECISION TEMP

* .. Parameters ..

DOUBLE PRECISION ONE , ZERO

PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )

* ..

* .. Executable Statements ..
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*

* Set NOTA and NOTB as true if A and B respectively are not

* transposed and set NROWA, NCOLA and NROWB as the number of rows

* and columns of A and the number of rows of B respectively.

*

NOTA = LSAME( TRANSA, ’N’ )

NOTB = LSAME( TRANSB, ’N’ )

IF( NOTA )THEN

NROWA = M

NCOLA = K

ELSE

NROWA = K

NCOLA = M

END IF

IF( NOTB )THEN

NROWB = K

ELSE

NROWB = N

END IF

*

* Test the input parameters.

*

INFO = 0

IF( ( .NOT.NOTA ).AND.

$ ( .NOT.LSAME( TRANSA, ’C’ ) ).AND.

$ ( .NOT.LSAME( TRANSA, ’T’ ) ) )THEN

INFO = 1

ELSE IF( ( .NOT.NOTB ).AND.

$ ( .NOT.LSAME( TRANSB, ’C’ ) ).AND.

$ ( .NOT.LSAME( TRANSB, ’T’ ) ) )THEN

INFO = 2
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ELSE IF( M .LT.0 )THEN

INFO = 3

ELSE IF( N .LT.0 )THEN

INFO = 4

ELSE IF( K .LT.0 )THEN

INFO = 5

ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN

INFO = 8

ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN

INFO = 10

ELSE IF( LDC.LT.MAX( 1, M ) )THEN

INFO = 13

END IF

IF( INFO.NE.0 )THEN

CALL XERBLA( ’DGEMM ’, INFO )

RETURN

END IF

*

* Quick return if possible.

*

IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.

$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )

$ RETURN

*

* And if alpha.eq.zero.

*

IF( ALPHA.EQ.ZERO )THEN

IF( BETA.EQ.ZERO )THEN

DO 20, J = 1, N

DO 10, I = 1, M

C( I, J ) = ZERO
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10 CONTINUE

20 CONTINUE

ELSE

DO 40, J = 1, N

DO 30, I = 1, M

C( I, J ) = BETA*C( I, J )

30 CONTINUE

40 CONTINUE

END IF

RETURN

END IF

*

* Start the operations.

*

IF( NOTB )THEN

IF( NOTA )THEN

*

* Form C := alpha*A*B + beta*C.

*

DO 90, J = 1, N

IF( BETA.EQ.ZERO )THEN

DO 50, I = 1, M

C( I, J ) = ZERO

50 CONTINUE

ELSE IF( BETA.NE.ONE )THEN

DO 60, I = 1, M

C( I, J ) = BETA*C( I, J )

60 CONTINUE

END IF

DO 80, L = 1, K

IF( B( L, J ).NE.ZERO )THEN
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TEMP = ALPHA*B( L, J )

DO 70, I = 1, M

C( I, J ) = C( I, J ) + TEMP*A( I, L )

70 CONTINUE

END IF

80 CONTINUE

90 CONTINUE

ELSE

*

* Form C := alpha*A’*B + beta*C

*

DO 120, J = 1, N

DO 110, I = 1, M

TEMP = ZERO

DO 100, L = 1, K

TEMP = TEMP + A( L, I )*B( L, J )

100 CONTINUE

IF( BETA.EQ.ZERO )THEN

C( I, J ) = ALPHA*TEMP

ELSE

C( I, J ) = ALPHA*TEMP + BETA*C( I, J )

END IF

110 CONTINUE

120 CONTINUE

END IF

ELSE

IF( NOTA )THEN

*

* Form C := alpha*A*B’ + beta*C

*

DO 170, J = 1, N
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IF( BETA.EQ.ZERO )THEN

DO 130, I = 1, M

C( I, J ) = ZERO

130 CONTINUE

ELSE IF( BETA.NE.ONE )THEN

DO 140, I = 1, M

C( I, J ) = BETA*C( I, J )

140 CONTINUE

END IF

DO 160, L = 1, K

IF( B( J, L ).NE.ZERO )THEN

TEMP = ALPHA*B( J, L )

DO 150, I = 1, M

C( I, J ) = C( I, J ) + TEMP*A( I, L )

150 CONTINUE

END IF

160 CONTINUE

170 CONTINUE

ELSE

*

* Form C := alpha*A’*B’ + beta*C

*

DO 200, J = 1, N

DO 190, I = 1, M

TEMP = ZERO

DO 180, L = 1, K

TEMP = TEMP + A( L, I )*B( J, L )

180 CONTINUE

IF( BETA.EQ.ZERO )THEN

C( I, J ) = ALPHA*TEMP

ELSE
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C( I, J ) = ALPHA*TEMP + BETA*C( I, J )

END IF

190 CONTINUE

200 CONTINUE

END IF

END IF

*

RETURN

*

* End of DGEMM .

*

END
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Appendix B

In Table B.1, we present properties of the matrices given to the DGEMM

routine broken down by problem. For each problem, we give the average

number of rows in A and C (avg. m), the average number of columns in B

and C (avg. n), and the average number of columns in A/rows in B (avg.

k). In addition, we calculated the average number of operations per multi-

plication (derived by summing the product m×n×k for each multplication,

and dividing by the number of multiplications). We also supply the num-

ber of DGEMM calls, and the total number of operations performed by the

DGEMM routine over the course of the solution process. We see that any-

where from 13 178 to 309 516 calls are made to DGEMM throughout the

course of a solution process. Anywhere from 15 million to over 100 billion

operations are executed in the DGEMM routine for our problem set.
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Problem Avg.
m

Avg.
n

Avg.
k

Avg. Ops per
mul

Number of
Calls

Total Ops

cfd2 231 17 18 473 417 105 082 49 747 605 194

ct20stif 73 12 10 87 151 43 777 3 815 209 327

finan512 108 9 6 83 686 35 558 2 975 706 788

nd3k 831 29 28 1 235 345 13 178 16 279 376 410

nd6k 1406 31 31 2 522 465 39 772 100 323 477 980

nemeth26 42 1 2 122 123 596 15 078 712

pwtk 116 19 16 180 984 111 583 20 194 737 672

600 28 8 7 20 068 76 024 1 525 649 632

700 30 8 7 23 114 104 622 2 418 232 908

800 32 8 7 25 485 136 752 3 485 124 720

900 36 9 8 35 431 173 748 6 156 065 388

1000 36 9 8 36 900 214 411 7 911 765 900

1100 37 9 8 39 406 260 320 10 258 169 920

1200 38 9 8 41 583 309 516 12 870 603 828

Table B.1: Test problem DGEMM matrix properties
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