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Abstract 

Ensembles methods such as AdaBoost, Bagging and Random Forest have attracted much attention in 

the statistical learning community in the last 15 years. Zhu and Chipman (2006) proposed the idea of 

using ensembles for variable selection. Their implementation used a parallel genetic algorithm (PGA). 

In this thesis, I propose a stochastic stepwise ensemble for variable selection, which improves upon 

PGA.  

Traditional stepwise regression (Efroymson 1960) combines forward and backward selection. One 

step of forward selection is followed by one step of backward selection. In the forward step, each 

variable other than those already included is added to the current model, one at a time, and the one 

that can best improve the objective function is retained. In the backward step, each variable already 

included is deleted from the current model, one at a time, and the one that can best improve the 

objective function is discarded. The algorithm continues until no improvement can be made by either 

the forward or the backward step. 

  Instead of adding or deleting one variable at a time, Stochastic Stepwise Algorithm (STST) adds 

or deletes a group of variables at a time, where the group size is randomly decided. In traditional 

stepwise, the group size is one and each candidate variable is assessed. When the group size is larger 

than one, as is often the case for STST, the total number of variable groups can be quite large. Instead 

of evaluating all possible groups, only a few randomly selected groups are assessed and the best one 

is chosen.  

From a methodological point of view, the improvement of STST ensemble over PGA is due to the 

use of a more structured way to construct the ensemble; this allows us to better control over the 

strength-diversity tradeoff established by Breiman (2001). In fact, there is no mechanism to control 

this fundamental tradeoff in PGA. Empirically, the improvement is most prominent when a true 

variable in the model has a relatively small coefficient (relative to other true variables). I show 

empirically that PGA has a much higher probability of missing that variable. 
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Chapter 1 
Introduction 

1.1 Statistical Machine Learning Problems and Ensemble Methods 

“Vast amounts of data are being generated in many fields, and the statistician’s job is to make sense 

of it all: to extract important patterns and trends, and understand ‘What the data says.’ We call this 

learning from data.” (Hastie et al, 2001) 

Typically, we have a response measurement and some predictors, quantitative or categorical. In 

traditional linear regression, forms of the functions linking the predictors to the response are 

determined before the fitting process begins. These procedures are all parametric. We have to make 

different kinds of “reasonable” assumptions about the models. However, in statistical learning, people 

rely far less on the prior information of the link function. Although sometimes there are still 

constraints, the functional forms are mostly arrived from the data. In that sense, statistical learning 

procedures can be seen as nonparametric. It is more about learning from data rather than learning 

from assumptions. There are two kinds of statistical learning problems: supervised and unsupervised. 

Regarding the supervised learning, the response variable is measured so that the learning process can 

be guided by the outcome, e.g. regression problems. In the unsupervised learning problem, we can 

only observe the features but no measurements of the outcome, e.g. cluster analysis.  

To a certain extent, statistical learning can be viewed as the modern version of Exploratory Data 

Analysis (Tukey, 1977) developed along with the enormous developments of computing power and 

computer algorithms over the past two decades. 

In statistical learning, many methods and algorithms have been created. Generally, many 

algorithms developed in the past 15 years fall into two categories: kernel methods and ensemble 

methods. We will only focus on the ensemble methods in the following sections. Rather than using a 

strong classifier, the main idea behind ensemble methods is to combine the outputs from many weak 

classifiers. Bagging (Breiman, 1996), Random Forest (Breiman, 2001) and AdaBoost (Freund and 

Schapire, 1996) are the most important representatives of ensemble methods. 

1.2 Bagging 

Bagging stands for “Bootstrap Aggregation”. It was first proposed by Leo Breiman as an extension of 

CART (Classification and Regression Tree). A number of classification trees are built on different 
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Bootstrap samples, and the outputs are aggregated to produce the final results. Bagging is perhaps the 

earliest procedure to exploit a combination of fitted values based on Bootstrap samples.  

With a dataset having categorical response, the Bagging algorithm can be easily described as the 

following key steps: 

1. Take a Bootstrap sample from the data.  

2. Construct a classification tree on the Bootstrap sample.  

3. Repeat steps 1-2 for many times. 

4. For an observation, usually from the test data, drop it down all the trees and count the number 

of times that it is classified in all categories. Assign it to a final category by the majority vote.  

Bootstrapping is the only stochastic mechanism of Bagging. Because of Bootstrapping, the 

averaging tends to cancel out results shaped by idiosyncratic features of the data. A large number of 

fitting attempts can produce flexible fitting functions which are able to respond to systematic, but 

highly localized, feature of the data. One can obtain more stable fitted values and more honest 

assessments of how good the fit really is. By averaging a number of low-bias, high-variance 

predictions, Bagging can effectively maintain the low bias and reduce the prediction variance. 

Bagging also suffers from several problems. First, it cannot obviously depict how the predictors are 

related to the response. Second, the bootstrap sampling can lead to problems when categorical 

predictors or outcomes are highly unbalanced. For example, for the rare target problems, Bootstrap 

can make the data even more unbalanced. Third, since the same predictors are used from tree to tree, 

the sets of fitted values are highly correlated. This may make the output of the trees similar. If the 

fitting function is substantially inappropriate, bagging can no longer cancel out the negative effect. At 

that time, bagging is a weak classifier that makes things worse.  

After all, Bagging is a useful tool in practice and an important conceptual advance in statistical 

learning. It can be regarded as an important step of what Leo Breiman called “algorithmic modeling”. 

Algorithmic models are computer algorithms designed to solve very particular data analysis 

problems, linking inputs to outputs in the purpose of making the classification errors small. Although 

they may be bad at describing how the inputs are linked to the outputs, the accuracy of prediction and 

the high level of automation are attractive.   
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1.3 Random Forest 

Random Forest (Breiman, 2001) is an extension of Bagging. The main difference is, as each tree is 

constructed, only a random sample of predictors is considered before each node is split. Thus, each 

tree is produced using Bootstrap sampling of the observations, and at each split a random sample of 

the predictors is considered. Two stochastic mechanisms exist. Although the difference seems small, 

some problems of Bagging are solved.  

The Algorithm of Random Forest 

The random forest algorithm is very much like the Bagging algorithm. Let P be the number of 

predictors and assume the response is categorical variable. 

1. Take a Bootstrap sample from the data. 

2. Construct a classification tree without pruning. During the process, before each split is made, 

instead of using all the predictors, use a sample of the predictors randomly chosen with the 

same size M<P.  

3. Drop the out-of-bag data (the observations that are not used to build the tree) down the tree. 

Store the class assigned to each observation in the out-of-bag data. 

4. Repeat steps 1-3 for a number of times. 

5. For each observation, usually from the test data, drop it down all the trees and count the 

number of times that it is classified in all categories. Assign it to a final category by the 

majority vote.  

During the forest building progress, the out-of-bag data are dropped down the trees and are 

assigned classes i.e. the classes are determined by the trees that are built without them. This can be 

used to generate an internal unbiased estimate of the generalization error. So misclassification error 

can truly assess the performance of the Random Forest. Bagging can also do the same procedure. 

By working with a random sample of predictors at each split, the trees have more variety, thus, are 

more independent. Breiman (2001) theoretically established the benefit of this, which we will review 

later.  
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Breiman’s Theorems about Random Forest (Breiman, 2001) 

Considering an ensemble of K classifiers, . Suppose the data point is y, x, 

where y denotes the response and x is the predictor vector. Then the margin function is defined as  

)(),...,(),( 21 xfxfxf K

))((max))((),( jxfIavyxfIavyxmg kkyjkk =−==
≠

, 

where I is the indicator function, j is an incorrect class and ‘av’ denotes taking average over all the 

classifiers. The margin shows the difference between the proportions of the votes for the correct class 

and the most voted incorrect class. Generalization error is defined by  

)0),((, <= yxmgPg yx , 

where P denotes probability. The generalization error is the probability over the population that the 

correct class does not receive the most votes, thus, the class is assigned incorrectly.  

Now, let’s move to Random Forest, where the classifiers are trees 

,...3,2,1),,()( == kxfxf kk θ Breiman proved that as the number of trees increases, for almost 

surely all sequences ...,, 21 θθ , g converges to  

)0)),((max)),(((, <=−=
≠

jxfPyxfPP
yjyx θθ θθ . 

The importance of the convergence is that it indicates Random Forest does not overfit as more trees 

are added. This is an important result regarding the problem of overfitting. 

Breiman showed an upper bound for the generalization error which enlightens why Random Forest 

is more powerful than Bagging. Before we show the form of the upper bound, we need more 

definitions. The margin function for a given data point in a Random Forest is defined as  

)),((max)),((),( jxfPyxfPyxmr
yj

=−==
≠

θθ θθ . 

The strength of the set of classifiers )},({ θxf is ),(, yxmrEs yx= . The strength of a Random Forest 

is the average margin over the data population, the larger the better. The strength is an indicator of the 

power for the classifiers in the Random Forest. 

 Breiman defined ))()((/))()(),(( ,, θθθθθθρρ θθθθ ′′′= ′′ sdsdEsdsdE as the mean value of 

the correlation. The parameterθ  here is the random mechanism of the classifiers. Regarding Random 
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Forest, it is Bootstrap sampling of the data set and predictors sampling before each split. Strictly 

speaking, this definition of the mean correlation is not 100% correct from a technical point of view.  

Finally, Breiman showed 

22 /)1( ssg −≤ ρ . 

In order to make Random Forest work well i.e. make g smaller, we need the strength to be bigger and 

ρ  to be smaller. Consequently, an individual tree should be as strong as possible and the trees should 

be as independent as possible. That is why the trees in Random Forest are built without pruning. The 

introduction of the predictor sampling before each split increases the diversity of the trees, thus, make 

them more uncorrelated. And that is the advantage of Random Forest compared to Bagging. 

Generally, the principle of increasing strength of individual paths and reducing the dependence not 

only applies to Random Forest, but also applies to all the ensemble methods. And how to balance the 

strength-diversity tradeoff is always an open question in the field of ensemble methods.  

1.4 AdaBoost 

AdaBoost is the most popular boosting procedure introduced by Freund and Schapire (1996). 

Consider a classification problem with binary response coded as 1 and -1. The algorithm is as 

following: 

1. Give the initial weights NiNwi ,...,3,2,1,/1 ==  to each observation 

2. For m=1 to M  

Fit a classifier  to the observations using the weights . )(Xfm iw

Compute 
∑

∑
=

=
≠

= N

i i

N

i imii
m

w

xfyIw
err

1

1
))((

 and ]/)1log[( mmm errerr−=α . 

Set the new weights . NixfyIww imimi
new

i ,...,2,1))],((exp[ =≠⋅⋅= α

3. The final output is ])([)(
1∑ =

=
M

m mm xGsignxG α  
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    All people firstly seeing the algorithm of AdaBoost must have the question why should the weights 

be defined in this way. Let W and R denote the set of observations that are wrongly and correctly 

classified by classifier , respectively. We have )(Xfm ∑∑
∈

=
all

i
Wi

im wwerr / , which indicates  

∑ ∑
∈

=
Wi all

imi werrw  and ∑ ∑
∈

−=
Ri all

imi werrw )1( . 

If we reweigh the observations by  

NixfyIww imimi
new

i ,...,2,1))],((exp[ =≠⋅⋅= α , 

where ]/)1log[( mmm errerr−=α , only the observations wrongly classified by classifier  get 

new weights. The interesting result is  

)(Xfm

new

Ri
i

all Ri
iim

Wi m

m
i

Wi

new
i wwwerr

err
errww ∑∑ ∑∑∑

∈∈∈∈

==−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= )1(1

, 

whick indicates that given the new weights, the current classifier has 50% error rate. In that 

sense, the next classifier is “decoupled” from . 

)(Xfm

)(1 Xfm+ )(Xfm

Friedman, Hastie and Tibshirani (2000) proved that AdaBoost substantially is a forward stagewise 

modeling approach that minimizes the exponential loss )exp(),( yffyL −= . By replacing the 

empirical average by the population expectation, it is easy to general AdaBoost to “Real AdaBoost” 

and “Gentle AdaBoost”. Indeed, many other Boosting variations are possible as long as we pick a 

different loss function.  

To summarize, AdaBoost combines a large number of weighted classifiers, and each classifier is 

built on the weighted observations. The observation weights are functions of how poorly such 

observation was fitted using the previous classifier. The classifier weights are functions of how well 

the classifier fits the data. Once a classifier is fitted, it will not be re-adjusted. Unlike Bagging or 

Random Forest where individual classifiers are independently constructed, in AdaBoost the 

individual classifiers are constructed sequentially. However, because of the reweighing of the 

observations in each step, the next classifier is always “decoupled” from the former one. So the 

diversity of classifiers increases.  
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1.5 Conclusion 

Ensemble methods appear to be efficient and successful. The power of aggregate of a number of weak 

classifiers is usually greater than that of one strong classifier. From the review of the well-known 

ensemble methods, we find that in order to build an effective ensemble, the strength-diversity tradeoff 

must be handled appropriately. If all the ensemble members are very strong, they may be similar with 

each other, so that the ensemble has no much sense. On the other hand, if all the ensemble members 

are very weak, although the diversity is big, each ensemble member is too weak to be eligible. 

Generally, how to find the balance of the strength-diversity tradeoff depends on the situation.  

   In this thesis, we try to use ensembles to deal with variable selection problem. From the beginning 

to the end, our research is guided by how to well handle the strength-diversity tradeoff.  
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Chapter 2 
Review of Variable Selection Using Ensembles 

We now turn to the idea of using ensembles for variable selection, which is the problem that we will 

study in this thesis. Firstly, we will review the variable selection problem. Then, we will show our 

motivation of why using ensembles and take an overview of Parallel Genetic Algorithm (Zhu and 

Chipman, 2006). 

2.1 Variable Selection Problem 

Regression models are widely applied in statistical inference. Variable selection is a central 

problem in this field. Consider the simple linear regression model 

),0(~, 2
10 σεεββ NXY p

i ii ++= ∑ =
, 

where the response Y is linearly related to p explanatory variables . Random error pXXX ,...,, 21 ε  

follows the distribution . Generally, not all the predictors actually affect the response, so 

variable selection is necessary before any statistical estimation or prediction. The traditional 

procedure of variable selection is that we first choose a criterion, then, try to find the subset of 

predictors which optimizes the criterion. Clearly, the best subset is unique. And usually, this subset 

may not be the best when examined by other criterion. Zhu (2008) summarized that two main 

challenges for subset selection are: 

),0( 2σN

Computation 

Let  be the space of all the subsets of Ω },...,{ 1 pXXS = . The size of the space is p2=Ω . When p 

is large, exhaustive search becomes impossible. Many efficient algorithms were developed in order to 

find the relatively “best” subset. The most well known one is the “stepwise regression” proposed by 

Efroymson (1960). 

Criterion 

This problem is more substantial. How to determine which subset is “better” or one variable is “more 

important” than others? AIC (Akaike, 1973) and BIC (Schwarz, 1978) are the most representative and 

widely used variable selection criteria.  
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AIC and BIC have the expressions 

)ln(2 LkAIC −= , 

)ln()ln( LnkBIC −= , 

where k is the number of parameters, n is the number of observations and L is the maximized value of the 

likelihood function of the estimated model. It is well known that AIC tends to choose more variables 

and BIC tends to choose less. And they both have their own properties. BIC is consistent in selecting 

the true model and AIC is minimax-rate optimal for estimating the regression function (Yang, 2005). 

Different criteria always give us different selections. Obviously, which criterion to use depends on the 

data and the objects. It is usually a difficult problem. 

2.2 Motivation 

Zhu and Chipman (2006) designed an ensemble procedure – Parallel Genetic Algorithm (PGA) to 

boost up the performance of various variable-selection criteria such as the AIC and GCV. It is the 

first try of using ensembles to deal with variable selection. Zhu (2008) used a small toy example to 

explain the gist of their idea, i.e., how can they use ensemble to boost up the performance of AIC. He 

considered the simple linear regression model 

50,...,2,1),1,0(~,,...,, 10,1,8,5,2, =+++= iNxxxxxy
iid

iiiiiiii εε . 

There are 10 potential predictors but only  are contained in the true model. All the 

predictors and errors are generated independently from . It is affordable to exhaustively 

compute the AIC values for all the 1024 ( ) subsets. The distribution of AIC values in the subset 

space is showed by Figure 2.1. Each point in the figure represents a subset.   

852 ,, xxx

)1,0(N
102

We find that the subset with the smallest AIC is not { }, but contains 5 variables. If we 

choose the “best” subset, we will include two more junk variables. We applied the traditional variable 

selection algorithms (forward, backward and stepwise) to the toy example using AIC as objective 

function and they all output the subset { }. It is partly efficiency and partly lucky 

that they could find the best subset without exhaustive search. However, they failed to choose the true 

subset. The traditional algorithms like forward, backward and stepwise try to find the global optimal 

point but ignore the whole distribution of AIC in the subset space. 

852 ,, xxx

106852 ,,,, xxxxx
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     Figure 2.1 AIC values vs subset sizes 

The points in the figure are separated into several parts. Significant gaps exist between different 

groups of points. Indeed, the red ( ) group consists of the subsets that contain all 3 true 

variables . Green ( ), blue (+) and black (

o

852 ,, xxx Δ × ) groups consist of the subsets containing 2, 1 

and 0 of the 3 true variables, respectively. This is strong evidence showing that are more 

important than other variables. PGA tries to use ensemble to catch such information about AIC, thus, 

boost up the performance of AIC.  

852 ,, xxx

2.3 Parallel Genetic Algorithm 

In this section, we take an overview of Parallel Genetic Algorithm. Genetic Algorithm (GA) mimics 

the mechanisms of natural reproduction processes. It is firstly used by Kuncheva (1993) to do feature 

selection for parallel classifiers. In the context of variable selection, generally speaking, GA starts 

with an initial population set which are all subsets of predictors. The subsets then produce offspring 

which are also subsets by crossing-over, mutation and combination with certain probabilities in order 

to fit the criterion better. The offspring continue producing another generation of offspring. This 

process is regarded as evolution. The whole family is called a universe.  The last-generation offspring 

of a universe are supposed to be the best subsets. Kuncheva (1993) uses GA to select a number of 
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subsets for the multiple-classifier system in order to increase the predictive accuracy of the system. 

After all, GA is a search algorithm for finding optimal subsets.  

Instead of using a single GA to search the best subset, Zhu and Chipman (2006) use PGA which is 

an ensemble of parallel GA paths to deal with variable selection. The main idea is to create a number 

of parallel universes by Single-Path GA (Zhu and Chipman, 2006), each of which gives a score to 

each of the predictors. The predictors with relatively high average scores are chosen.  

Suppose the potential variables are { } and we have a data set of the observations. The 

algorithm can be described as: 

pxxx ,...,, 21

1. Start a universe i.e. a path 

a) Run a Single-Path Genetic Algorithm on the data set using AIC as objective function for a few 

generations before it converges to produce offspring which are all subsets of { }. pxxx ,...,, 21

b) Consider the last-generation subsets. For each variable, calculate the percentage of the subsets 

that contain it as its score. For example, variable x1 being contained by 50% last-generation 

subsets indicates that it gets a score 0.5 from this universe.  

2. Produce a number of universes, so that each variable has a number of scores. Use the average of 

those scores as the final score for the corresponding variable. 

3. Order the final scores of the variables from big to small and find the largest gap of the two 

neighborhoods. The variables with the scores above the gap are output.  

Due to the randomness of Genetic Algorithm, the universes are generated variously. The ensemble 

of universes determines the destiny of the variables.  

The most important parameter of the algorithm is how many generations to evolve in each universe, 

i.e., when to stop.  

z If we stop early, the universes are not well evolved and the last-generation offspring may stay 

in the green ( ) group, blue (Δ × ) group even black (+) group. The scores of such universe are 

not good enough to be eligible. Our purpose is to let the offspring all or mostly fall into the red 

( o ) group, i.e. they should contain all the 3 true variables. Thus, the 3 true variables can all 

have high scores. Actually, since the evolutionary algorithm is a heuristic stochastic search 

algorithm that mimics Darwin’s “natural selection” to optimize any given objective function 
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(Goldberg 1989), the offspring are very likely to fall into the red (o ) group if the universes 

evolve long enough.  

z The evolution will not stop until the offspring are all competitive. If we let the universes 

evolve too many generations, the universe tends to go farther than just falling into the red (o ) 

group. The offspring may all be near the lowest AIC point. Because the subset with smallest 

AIC includes junk variables, the universes may score some junk variables highly, which 

misleads us to choose junk variables. 

As an ensemble member, for the individual GA path, each universe should evolve deeply to make 

the last-generation offspring competitive, i.e. the last-generation subsets correspond to the small AIC 

values. But in that way, the offspring may be similar with each other, so that the efficiency of the 

ensemble is reduced. This is exactly the strength-diversity tradeoff mentioned in 1.1.2. Because the 

genetic algorithm is heuristic, it contains too much randomness which makes PGA hard to control. 

Zhu and Chipman used an entropy method to choose the parameter, but it is in general tricky. We will 

show later in a simulation study that PGA is unstable. 

2.4 Conclusion 

The exhaustive search is the greediest algorithm that exactly outputs the subset optimizing the 

criterion. Other searching algorithms like stepwise algorithm, Genetic algorithm also aim to find the 

global optimal point. From the point of finding the optimal point, exhaustive search is always the best. 

However, from Figure 2.1, we find that the subset with smallest AIC does not correspond to the “true” 

model. In that sense, simply finding the optimal point of a criterion should not be the only object. 

PGA shows us that ensemble methods are able to catch more information of the criterion like AIC and 

boost the performance of it, thus, are powerful in finding the “true” subset.  
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Chapter 3 
Stochastic Stepwise Ensemble 

From the discussion of PGA, we find that the single-path genetic algorithm makes it an algorithm 

hard to control. We want more structure. Instead of using the genetic algorithm, we construct a 

Stochastic Stepwise Ensemble by using a stochastic stepwise selection algorithm in each path. The 

stochastic stepwise algorithm is built on the highly structured approach of stepwise selection, but is 

inserted stochastic elements so that it can be used in an ensemble. We will show the details about the 

stochastic elements later. 

3.1 The Stochastic Stepwise Algorithm (STST) 

Traditional stepwise regression combines forward and backward selection. One step of forward 

selection is followed by one step of backward selection. In the forward step, each variable other than 

those already included is added to the current model, one at a time, and the one that can best improve 

the objective function is retained. In the backward step, each variable already included is deleted from 

the current model, one at a time, and the one that can best improve the objective function is discarded. 

The algorithm continues until no improvement can be made by either the forward or the backward 

step. Instead of adding or deleting one variable at a time, Stearns (1976) develops the Plus-l-Minus-r 

(l-r) search method which always adds l variables in the forward step and deletes r variables in the 

backward step. Pudil, Novovicova and Kittler (1994) remove the constraint of fixing l and r by 

proposing floating search method. All the algorithms are all determinate searching algorithm. 

 The stochastic stepwise algorithm (STST) is developed for building ensemble. STST also adds or 

deletes a group of variables at a time, but the group size is randomly decided. In traditional stepwise, 

the group size is one and each candidate variable is assessed. When the group size is larger than one, 

as is often the case for STST, the total number of variable groups can be quite large. Instead of 

evaluating all possible groups, only a few are assessed and the best one is chosen. Table 3.1 contains 

a detailed description of the STST algorithm.  

Figure 3.1 illustrates a possible stochastic stepwise path. Each floor of the ellipse stands for the 

effect of a step (forward or backward). Left ellipse nodes indicate being included in the model and 

right ellipse nodes indicate being excluded from the model. Initially, we have 10 potential 

predictors . In the first forward step, three variables are added into the },...,,,{ 10321 xxxx },,{ 521 xxx
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model. Then, one variable is deleted in the first backward step. In the second forward step, 

variables are added… The algorithm continues doing forward and backward steps till no 

improvement can be made. 

}{ 5x

},{ 43 xx

Repeat 

1. (Forward Step) Suppose  variables, are not in the current model. Initially, d },...,,{
21 dlll xxx pd= . 

a) Determine the number of variables we want to add into the model, or the group size, say 

.* dg f <

b) Determine the number of candidate groups that will be assessed, .* fk

c) Generate candidate groups of size , each by randomly choosing variables without 

replacement from the set, . 

fk fg fg

},...,,{
21 dlll xxx

d) Assess each candidate group by adding it into the current model, one group at a time. The 

one that can best improve the AIC is added into the model.  

2. (Backward Step) Suppose h variables, are not in the current model. },...,,{
21 hlll xxx

a) Determine the number of variables we want to delete from the model, or the group size, say 

.* hgb <

b) Determine the number of candidate groups that will be assessed, .* bk

c) Generate candidate groups of size , each by randomly choosing variables without 

replacement from the set, . 

bk bg fg

},...,,{
21 hlll xxx

d) Assess each candidate group by deleting it from the current model, one group at a time. The 

one that can best improve the AIC is deleted from the model.  

Until 

       No improvement can be made by either the forward or the backward step. 

Table 3.1: The stochastic stepwise (STST) algorithm for variable selection 
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*  Details for how the numbers , , are determined are given in Section 3.2 and 3.3. fg fk bg bk

 

 

Figure 3.1: An illustration of STST 

3.2 Tuning Functions 

In this section and the next, we explain how the numbers , , are determined. Suppose we 

are doing a forward (backward) step and the potential predictors to be added (deleted) 

are . First, we need to determine g, the number of variables to add (delete). Intuitively, it 

seems reasonable that g should depend on m, say  

fg fk bg bk

},...,,{ 21 mxxx

)(mgsfg = , 
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where “gsf” stands for “group size function”. Second, given g, we have a total of possible groups 

of variables and need to determine k, the number of groups to assess. Intuitively, it also seems 

reasonable that k should depend on , say  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
g
m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
g
m

),( gmcnfk = , 

where “cnf” stands for “candidate number function”. 

  Because both g and k are integers, we first define a function, round: ℵ→ℜ , which outputs the 

nearest integer of a number, e.g., round(3.7)=4 and round(2.4)=2. Middle points such as 3.5 and 4.5 

are rounded up, i.e., round(n+0.5)=n+1 for all ℵ∈n . Suppose ℵ∈mg,  and . Let denote 

the set of all the integers on the interval 

mg < mΨ

)](),([ /12/1 λλ mroundmround  

for some λ>1. Our definitions of the functions gsf and cnf are: 

)(~)( mUnifmgsf Ψ , 

and 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

κ/1

),(
g
m

roundgmcnf  

for some κ>1. We discuss how to choose λ and κ in the next section (Section 3.3). Here, we first 

explain why the functions gsf and cnf are chosen to have these particular forms. 

  First, it is important that is a stochastic but not a deterministic function. Consider the 

first forward step and the first backward step. Suppose there are m=p=20 potential predictors. If 

gsf(m) is a deterministic function, say gsf(20)=7 and gsf(7)=3, then, for all parallel STST paths, only 

models with 7 predictors are assessed by the forward step and those with 7-3=4 predictors are 

assessed by the backward step. Many models, such as those with 2 or 3 predictors, are never assessed. 

Clearly, more flexibility is needed. According to our definition, suppose λ=1.5, then 

)(mgsfg =
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(mgsf

]7,6,5,4,3[~)20( Unifgsf . In the first forward step, some STST paths may add 3 variables, while 

others may add 4, 5, 6 or 7 variables. This increases the diversity of our ensemble. 

Second, we want gsf(m) to grow with m, but we don’t want it to grow too fast. This is why 

functions of the form mα with α<1 are considered. A natural upper bound is gsf(m) m, so the 

parameter λ must not be smaller than 1. On the other hand, it is easy to see that for all 

fixed m as 

1) →

∞→λ , which means λ should never be too large, either. The choice of m1/2λ as the lower 

bound is largely empirical, because we want the set mΨ to have a reasonable range, one that is neither 

too big nor too small, so that our overall ensemble is effective 

Finally, we want the function cnf(m,g) to be monotonically increasing in  – as more subsets 

become available, more candidate groups should be assessed in order to have a reasonable chance of 

finding an improvement. However, we cannot afford to let this grow linearly in  since it can be a 

very large number and that’s why we use 1/κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
g
m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
g
m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
g
m   for some κ>1. 

These choices are not unique, as long as they are reasonable. Our choices may not be the best ones, 

but it works well if λ and κ are chosen appropriately. 

3.3 Tuning Parameters 

In this section, we explain how to choose the parameters λ and κ. Notice that, for variable selection, 

we cannot resort to cross validation to choose these parameters because we don’t know what the true 

variables are. Recall that, for the PGA (Zhu and Chipman, 2006), the main parameter is how many 

generations to evolve in each universe, i.e., the depth of each path or simple “path depth”. Zhu and 

Chipman used an entropy method to choose this parameter (Zhu and Chipman 2006; Section 3.2 ), 

but it is in general tricky to choose this parameter properly. For STST, each path stops automatically 

when no improvement can be made. That is, we do not directly control the “path depth” i.e. the 

number of steps until algorithm stops, but the “path depth” is highly related to the parameters λ and κ. 

 

 

 



 

 18 

  To illustrate how these parameters affect the “path depth”, we use a simulated example from Zhu 

and Chipman (2006): 

40,...,2,1),1,0(~,,...,,32 20,1,15,10,5, =+++= iNxxxxxy
iid

iiiiiiii εε  

There are 20 predictors, but only three of them are actually used in the model to generate y. For every 

∈λ {1, 1.1, 1.2,…, 3.9, 4} and ∈κ {1.5, 2, 2.5, …, 14.5, 15}, we ran STST for 300 times and 

recorded the depth of each path. Figure 3.1 plots the average depths against all (λ, κ)-pairs. From the 

figure, we can see: 

First, at the left of the dotted line, the depths are small (around 2). Because the value of λ is close to 

1, the group sizes are relatively large compared with the total number of available variables. 

Correspond to the STST algorithm (Table 3.1), the group sizes and are very likely to be larger 

than d/2 and h/2, respectively. In that sense, the probability that the candidate groups contain 

important variables is very high. For the first one or two forward steps, because of the existence of 

important variables, we always end with adding one of the candidate groups, even though such candi- 

fg bg

 

Figure 3.2: Contour plot of the average depths vs λ and κ 



 

 19 

date contains many junk variables. Also because of the existence of important variables in the 

candidate groups, backward steps always end with deleting nothing. So, the paths stop at a subset 

containing most of the variables (all important variables and most junk variables) within several 

forward steps. In our particular case, there are 20 potential predictors and 3 of them are true. If we 

add a group of 10 predictors at the first forward step, and a group of 5 predictors at the second 

forward step after their competition with some other candidate groups, we should believe that all 3 

true variables are included in those 10+5=15 variables. That is why the average depths in this area are 

around 2. This area is not preferred because the paths select too many junk variables.  

Second, at the right side of the blue dotted line, fixing λ, the depth first increases then decreases 

along with the increase of κ. Because λ is fixed, the group sizes are relatively stable. When the 

number of candidates is too small (κ is big), only a small number of groups have chance to be 

assessed. It is very likely that none of the candidate groups are useful. That keeps both forward step 

and backward step from working effectively, so the paths stop early. In that sense, the paths are too 

weak to be used as an ensemble. On the other hand, when there are too many candidates (κ is small), 

accessing a large number of candidate groups makes the algorithm too greedy. It is always able to add 

the best variables in the forward step and delete the worst ones in the backward step. It makes full use 

of each step and finish quickly. The paths become too strong so that they are similar to each other. 

We don’t want κ to be neither too large nor too small which both indicate small depths of the paths. 

Intuitively, fix the value of  , the κ value corresponding to the peak of depths is preferred.  

The line in Figure 3.1 links the peaks of depths. Which (λ, κ)-pair in the line should we choose? 

Three parts A, B and C as labeled are attractive.  

Part A is around λ=2.5, κ=3. Let’s take a look at the possible group sizes i.e.,  (Section 3.2) with 

respect to m—the total number of available variables.  

mΨ

M 
mΨ  

10-20 {2,3} 

8-9 {2} 

3-7 {1,2} 

1-2 {1} 

Table 3.2: mΨ for different m when λ=2.5 



 

 20 

From Table 3.2, we find that the group sizes are very small. Especially in the first couple of 

forward steps, with almost 20 available potential variables, only the groups containing 2 or 3 

variables are assessed. If a small number of candidate groups are assessed, the probability that no 

important variables are contained is very high, thus, the algorithm stops early. In order to guarantee at 

least one of the important variables are assessed at each step, i.e., be contained by one of the 

candidate groups, the number of candidate groups should be large enough (κ be small). However, the 

bigger the number of candidate groups, the more STST algorithm is similar with traditional stepwise 

algorithm. Being similar with traditional stepwise indicates loss of diversity. With small group sizes, 

STST algorithm can easily fall into being too weak or too strong. Even though points around part A 

look like balance points, they are relatively quite sensitive with respect to the change of κ, thus are 

not preferred.   

Let’s move to part B, which is around λ=1.8, κ=3.5. Although the value of λ is larger indicating 

that the paths have bigger group sizes than part A, the value of κ is 3.5. It is only slightly bigger than 

3 of part A. With κ=3 and small group sizes (part A), the STST algorithm suffers from the danger of 

being too greedy. Now with a similar κ value but bigger group sizes, the chance of each variable 

being assessed increase greatly. At each step, the STST algorithm can always add the best variables 

or delete the worst ones. Empirically speaking, the STST paths are too greedy around part B.    

Part C has λ around 1.6 and κ around 5 which are both relatively appropriate. And the values of 

depths nearby C are quite stable with respect to both λ and κ. 

Our choice of the (λ, κ)-pair for this data set is λ=1.6, κ=5. 

The choice of the (λ, κ)-pair must vary for different data sets, so the similar procedure should be 

repeated for every new data set. 

3.4 Conclusion 

STST algorithm is an extension of the traditional stepwise algorithm. It allows adding or eliminating 

a group of variables in the forward or backward step, respectively and contains two stochastic 

mechanisms. One is the random determination of the group size to be added or eliminated in each 

step. The other is the random pick of the candidate groups to be assessed. STST Algorithm is a 

stochastic searching algorithm which is quite weak. However, stochastic stepwise ensemble is the 

aggregate of a number of single STST paths. It should be emphasized that the stochastic stepwise 
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ensemble is no longer a simple searching algorithm. The selecting of the variables is determined by 

the majority vote.  

Two tuning parameters λ and κ are the control of the group size and the number of candidate 

groups. Different values of the parameters correspond to different strength and diversity of the single 

STST paths. The variable selection problem is unsupervised, so we cannot apply cross-validation to 

choose the parameters. We use the contour plot of the average path depths to do that. It is less 

computationally expensive than cross-validation. The process of choose the parameters is actually the 

process of finding the balance of strength-diversity tradeoff. 
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Chapter 4 
Simulation Study 

In this chapter, we conduct empirical experiments to assess the performance of stochastic stepwise 

ensembles. The predictive effect is recognized as the golden standard to evaluate a model (Miller, 

2002). People always care mostly about the predictive accuracy of a model. The mean squared error 

of prediction (MSEP) is a popular metric to evaluate the predictive effect. It is defined as: 

2))(ˆ)(( xfxfEMSEP −= , 

where x is a new observation of the predictors.  

4.1 Theoretical Results for MSEP 

Let’s first take a look at the characteristics of MSEP on linear regression models. 

Assume Y is the observation vector; β is the 1×n 1×m  unknown coefficient vector and X is the 

covariate matrix. X, β can be separated into mn × )(X qp XX=  and , where  is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

q

p

β
β

β pX

pn × matrix; is  matrix;qX qn × pβ is 1×p vector and qβ is 1×q vector.  

The full model is  

),0(~, 2
nn INXY σεεβ += . 

The partial model is  

),0(~, 2
nnpp INXY σεεβ += . 

We define  to be the least square estimate of β̂ β  based on the full model and pβ
~

 to be the least 

square estimate of pβ  based on the partial model which only contains the first p variables. 

So andβ̂ pβ
~

can be expressed as YXXXYXXX pppp ′′=′′= −− 11 )(~,)(ˆ ββ , respectively. Let  be qβ̂
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the last q components of . Assume x is a new observation of the potential predictors which can be 

partitioned into . 

β̂

)( qp xx

We consider two cases: 

1. Theorem 1: 

Suppose the full model εβ += XY
 
is true. All the components of β are nonzero. We have 

1) 0)~()~(,)ˆ()ˆ( =′≠=== qpppp XXexceptxxEyExxEyE ββββ  

2)  22 )~()()ˆ(,0)()ˆcov( ppqqq xxExxEIf βββββββ −<≥−<≥′−

Proof: see Appendix 

This theorem means if we only choose part of the true variables, we always get a biased prediction. 

Whether MSEP decreases or increases depends on the condition  or ′≥− 0)ˆcov( qqq βββ 0< . 

To illustrate the condition, it is helpful to consider the simple 1-dimensional linear regression 

),0(~, 2
21 nn INXY σεεββ ++= , 

where Y is the  observation vector;  β1×n 1 and β2 are unknown coefficients which are all constants 

and X  is the n vector of observations of the single predictor. Assume β1× 2 0, which means the full 

model is true. Consider fitting both full model and null model, the sizes of MSEP depends on the 

value of β2. The condition becomes  or 0)ˆvar( 2
22 ≥− ββ 0<  . Notice that 

 
is a constant 

determined by X and σ. If 

)ˆvar( 2β

)ˆvar( 22 ββ < , which means the absolute value of β2  is relatively small, 

the fitted model based on the null model has lower MSEP. On the other hand, if )ˆvar( 22 ββ > , 

the absolute value of β2 is relatively big, we’d better keep the single variable and fit the full model in 

order to have a lower MSEP.  

Moving back to multiple regression, although the value of an individual coefficient cannot 

determine the property of the matrix, the main principle still holds. If a predictor has a large 
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coefficient (absolute value), which means such predictor is important, we definitely should select it. 

Although the coefficient of a predictor is nonzero, its absolute value is close to zero. It also indicates 

that such predictor is almost useless, so we should not select it.  

 

2. Theorem 2: 

Suppose the partial model εβ += ppXY
 
is true. All the components of pβ are nonzero while 

all the components of qβ are zero. We have 

1)  ppppppp xxEyExxEyE ββββ ==== )~()~(,)ˆ()ˆ(  

2) 22 )~()ˆ( pppppp xxExxE ββββ −≥−  

  Proof: see Appendix 

If we include more variables into the model besides the true ones, we can still get an unbiased 

prediction. However, MSEP will definitely increase. The second conclusion can be seen as the special 

case of 2) in Theorem 1. If the coefficients of some predictors are all zero, the condition automatically 

becomes , so including such predictors will increase the MSEP.   0)ˆcov()ˆcov( ≥=′− qqqq ββββ

As said at the beginning of this chapter, we use MSEP to assess the performance of the STST 

ensemble. Based on the results of the theorems, if the coefficients of the true predictors are all big 

enough, in order to get lowest MSEP, we should include all of the true variables and exclude all junk 

variables. So, to assess STST ensemble, we just simply check if it can choose the true subset. We 

conduct such experiments in section 4.2. If the coefficients of some true predictors are close to zero, it 

is hard to determine whether selecting them is better or discarding them is better. In this sense, to 

assess STST ensemble, we have to compute the MSEP values directly. This part is showed in section 

4.3.  

4.2 Study 1 

In this section, we consider the model: 

40,...,2,1)1,0(~,,...,,32 20,1,15,10,5, =+++= iNiidxxxxxy iiiiiiii εε  
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We have 20 potential variables and only 3 of them are true. The sample size is 40. The coefficients 

of the true variables are 1, 2 and 3, obviously nonzero. So according to the results in last section, in 

order to achieve better MSEP, we have to choose exactly the subset .  },,{ 15105 xxx

When Zhu and Chipman (2006 Section 4.3) compared PGA with Traditional Stepwise AIC or BIC, 

Exhaustive Search using AIC or BIC and a Bayesian method SSVS (George and McCulloch, 1993), 

the same model was used. They repeated the simulation 100 times and generated 100 data sets, then, 

applied all the mentioned variable selection algorithms to the data sets. For each data set, if an 

algorithm successfully chose , it was recorded as a “hard” success. If an algorithm 

ranked all the true variables ahead of the junk variables, it was recorded as a “soft” success. We 

applied STST ensemble to the same data sets and also output the time of hard successes and soft 

successes. We quote the results from Zhu and Chipman (2006) and add the results of STST.    

},,{ 15105 xxx

Method Time of Successes Method Time of Successes 

Traditional Stepwise AIC 1 SSVS (1,5; hard) 81 

Traditional Stepwise BIC 20 SSVS (1,10; hard) 88 

Exhaustive AIC 3 SSVS (10, 100; hard) 58 

Exhaustive BIC 28 SSVS (10, 500; hard) 84 

PGA (hard) 77 SSVS (1,5; soft) 97 

PGA (soft) 97 SSVS (1, 10; soft) 97 

STST (hard 74 SSVS (10, 100; soft) 100 

STST (soft) 98 SSVS (10, 500; soft) 100 

Table 4.1: Performance of different algorithms 

From the result, we find that STST is a competitive algorithm. It performs much better than the 

traditional stepwise and exhaustive search using AIC or BIC as objective function. For both “hard” 

and “soft” metrics, STST is at the same level as PGA and SSVS.  

Both PGA and STST give about 75 out of 100 “hard” successes. It is not bad comparing with the 

SSVS algorithm. However, we have to think what happened to the rest 25 simulations?  

Let’s take a look at the illustration in Section 2.2 again. In Figure 2.1, the bottom red ( ) part is the 

subsets containing all the three true variables. However, there is a small gap that separates this part 

into two parts.  
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Figure 4.1: AIC values vs subset sizes 

From Figure 4.1, we see that the gap is caused by variable . The top part does not contain but 

the bottom part does. The subsets containing  are at the bottom. So if only consider the 

distribution of AIC, the variable together with  determine the models with the smallest 

AIC values. The variable performs just like a true variable. Technically, it is impossible for the 

algorithms like PGA and STST to figure out is different with . Facing such problem, 

PGA and STST have to give a “wrong” result containing .  

6x 6x

8652 ,,, xxxx

6x 852 ,, xxx

6x

6x 852 ,, xxx

6x

Why is so important? We find that variable has a larger correlation with the error ε than the 

other junk variables does (Table 4.2). We generated the predictors and errors independently. 

However, the sample correlations may not definitely be close to zero. If the correlation of a junk 

variable and a true variable or the error is large, such junk variable becomes “important”. The 

distribution of the sample correlation is given by the following result:  

6x 6x

 

 



 

 27 

Junk Variable Correlation With ε 

1x  -0.138 

3x  -0.175 

4x  -0.0017 

6x  0.330 

7x  0.033 

9x  -0.104 

10x  0.224 

Table 4.2: Correlations of junk variables with error 

Theorem 3 (Kern O. Kymn 1968): 

Suppose a pair of random variables (x, y) have a bivariate normal distribution and assume that the 

correlation coefficient ρ between x and y is given as ρ=0. We take a random sample of size n of a pair 

of independent variates from the above population and define  ),(),...,,( 11 nn YXYX

YYXX

XY

SS
Sr = , 

where SXY is the sample covariance and SXX, SYY are the sample variance. Then the statistic 

S=(1+r)/(1-r) is distributed as F with degree of freedom (n-2, n-2). 

The statistic S is a monotone increasing function with respect to r. Figure 4.2 displays 5 cumulative 

distribution functions of r at n=30, 40, 50, 100, 200 in yellow, red, blue, green and black, 

respectively.  

From Figure 4.2, we find that the sample correlations are almost between (-0.5, 0.5). And as the 

sample size increases, the range decreases. This is reasonable because the larger the sample size is, 

the harder the sample of two variables to be highly correlated.  

In our simulation, we had 20 predictors and an error. The sample size was 40. Check the 

corresponding line, the probability of the sample correlation beyond (-0.3, 0.3) is quite big. It is easy 

for the sample of a junk variable to be highly correlated with the sample of a true variable or the error. 
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We tried doing the same simulations with larger sample sizes (more than 100). We could get more 

than 95 “hard” successes for both PGA and STST.  

 

Figure 4.2: Cumulative probability functions of sample  

           correlations with different sample size 

Generally, when the sample size is small, none of the variable selection criteria or algorithms can 

totally get rid of the high correlation problem.  

4.3 Study 2 

In last section, we use model  

40,...,2,1)1,0(~,,...,,32 20,1,15,10,5, =+++= iNiidxxxxxy iiiiiiii εε , 

where the coefficients of the true variables are obviously nonzero. So it is quite clear that 

ε+++= 15105 32 xxxy  can be treated as the true model. From the aspect of MSEP metric, such 

model is also preferred. However, when some coefficients of the true variables are close to zero, it is 

hard to identify the right model. According to Theorem 1, if we use MSEP metric, which model is 

better depends on the values of the coefficients. Yang (2007) discusses a motivating numerical 

example where he considered the simplest 1-dimentional linear regression model 
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nixy iii ,...,2,1,21 =++= εββ . 

There are only two models: full model and null model. It is possible to have the simple expressions of 

MSEP for different criteria like AIC, BIC. The expressions depend on the value of β1, the distribution 

of { } nii ,...,2,1, =ε  and the sample values of { } nixi ,...,3,2,1, = . The MSEP of different criteria are 

compared under different values of β1.  

Our purpose of this section is to compare STST with PGA and traditional stepwise with AIC and BIC 

as objective functions. We follow the same routine but considered a more complicated model so that 

STST and PGA could be applied. We considered the model: 

niNiidxxxxxy iiiiiiii ,...,2,1)1,0(~,,...,,32 20,1,15,10,5, =+++= εεα . 

We let α change from 0 to 1 and fitted the model based on the outcome of AIC, BIC, STST and PGA, 

respectively. Then we used the fitted model to predict the response of a new observation of the 

predictors (generated from  ). However, because we did not have simple expressions for 

the MSEP, for a certain value of α, we simulated 100 times and calculate the MSEP values of all the 

competitors for 100 times. (See some notes in Appendix). We also recorded the times that 

variable were included in the final model for each algorithm. We repeated the procedure for 

different sample size n=150, 300, 700 and plotted the average MSEP values against α and 

times being included against α. 

),0( 2020 IN

5x

5x

From Figure 4.3, 4.4, 4.5, we find that there are three regions of α, α small, α large and α in-

between. When α is near zero, regarding the MSEP values, STST ≈ PGA<BIC<AIC. When α 

becomes larger, AIC<BIC<PGA STST. When α is very large, STST≈ ≈BIC<AIC<PGA. 

According to Theorem 1 (section 4.1), theoretically, there exists a threshold value for α, say C. 

When α < C, including variable indicates the increase of MSEP. When α >C, not including  
increases MSEP.  

5x 5x
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Figure 4.3: MSEP versus α (left) and times of x5 being included versus α (right) for different 

algorithms when sample size n=150 

 

Figure 4.4: MSEP versus α (left) and times of x5 being included versus α (right) for different 

algorithms when sample size n=300 
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Figure 4.5: MSEP versus α (left) and times of x5 being included versus α (right) for different 

algorithms when sample size n=700 

When α is small, e.g., α < C, models containing  will have larger MSEP values. STST and PGA 

are most unlikely to contain and AIC tends to choose more often than BIC does. So for the 

MSEP values, STST PGA<BIC<AIC. 

5x

5x 5x

≈

As α increases, e.g., when α exceeds C, models containing will have smaller MSEP values. All 

the algorithms still perform in the same way. The order of the MSEP values is inverted to 

AIC<BIC<PGA STST. 

5x

≈

When α is large enough, PGA starts to perform differently from the other methods. It always has a 

non-zero probability of missing  , although  is quite important (with a large coefficient). 

Actually, the probability that PGA misses  is not very large. However, missing  is disastrous for 

MSEP. Regarding other algorithms, AIC and BIC 100% contain and STST is almost 100% except 

for some small fluctuations. From that point of view, they are the same. But AIC tends to include 

more junk variables, and according Theorem 2, that increases MSEP. So we have 

STST BIC<AIC<PGA. 

5x 5x

5x 5x

5x

≈
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Although STST is an algorithm based on AIC, it performs like BIC. This is not a surprise for us. It 

is well known that BIC tends to choose a subset of predictors with small size. And BIC is a consistent 

variable selection criterion which means it will asymptotically choose the true model as the sample 

size goes to infinity. STST also tends to choose less variables comparing with AIC. STST is an 

algorithm that tries to choose the true model when the sample size is relatively small. When the value 

of α is large, the lines of STST and BIC seem to overlap with each other. Actually, the line of STST is 

a little bit lower than that of BIC. STST tends to choose less variables even comparing with BIC.  

PGA seems out of control in our simulations when the value of α is close to 1. It always loses 

for several times out of 100 times. Although PGA has a high probability to choose the true model 

(section 4.2), it also has a relatively high probability to lose important variables comparing with 

STST. If we continue increasing the value of α, PGA selects more often but still less than STST 

does. If α becomes greater than 2, then, variable with coefficient 2 takes the place of . PGA 

tends to lose the important variables with relatively small coefficients sometimes. PGA is an 

algorithm using genetic algorithm to produce each path. But genetic algorithm is hard to control. 

STST is an algorithm based on stepwise algorithm which is more structural, thus, easier to control. 

Our method of using contour plot of depths to choosing the parameters appears to work well. For the 

ensemble methods with stochastic mechanisms, uncertainty always exists. That is why STST also has 

some small fluctuations.  

5x

5x

10x 5x

The middle region shrinks with increase of the sample size. The larger the sample size is, the more 

information we can get from the data. The algorithms become more sensitive to the change of α.  
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Chapter 5 
Conclusions and Future Research 

The objective of the thesis is to propose a Stochastic Stepwise ensemble method for variable selection. 

We use a stochastic stepwise algorithm to build the individual paths of the ensemble. The final 

selection is made by aggregating the results from many Stochastic Stepwise paths. In Chapter 1, we 

take an overview of statistical learning and briefly introduce three popular and powerful ensemble 

methods: Bagging, Random Forest and AdaBoost. The strength-diversity tradeoff plays an enormous 

role in guiding our research. Chapter 2 first reviews the variable selection problem and its two big 

challenges – computation and criterion. Then, we discuss the Parallel Genetic Algorithm. In Chapter 

3, we propose Stochastic Stepwise Algorithm. The key point is instead of adding or deleting one 

variable at each step, we randomly add or delete a group of variables at each step. We use STST 

algorithm to produce the individual paths of the ensemble. The stepwise algorithm is more structural 

than genetic algorithm, thus, is easier to control. Contour plot of depths of the STST paths is used to 

choose the tuning parameters. The tuning process is actually the process of finding the balance of the 

strength and diversity. In simulation studies, we compare STST to other algorithms. When all the 

coefficients of the true variables are obviously nonzero, STST performs as well as PGA and SSVS 

and are much more likely to choose the true model than the traditional methods do. When some 

coefficients of the true variables are close to zero, we find that STST performs like BIC and is more 

stable than PGA.  

  In the future, we plan to investigate the following topics: 

1. Although our definitions of the tuning functions work well if we choose the 

proper parameters, they may not be the best. We will try other possible ways to define the 

functions. If the tuning functions and tuning parameters are changed, the contour plot of depth 

will look different. The trick to choose the proper parameters may be different as well, but it 

basically has to follow the same thought of finding the balance of strength and diversity. 

),(),( cnfgsf

2. Although the tuning process is not complicated, we still cannot handle to do it each time we 

generate a new dataset in the large simulation study. In that sense, it would be better if the 

algorithm can do the tuning process automatically.  
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3. In the current version of STST, we only use AIC as the objective function. Actually, the paths 

are not necessarily to have a unique objective function. Different paths can use different criteria, 

say some use AIC; some use BIC; some use Cp…This will bring the algorithm larger diversity. 

4. STST, as a variable selection algorithm, can deal with the large p small n problem i.e. the 

number of potential predictors is greater than that of the observations. Generally, in that case, it 

is impossible to fit the model. However, for STST, when build a path, we can randomly choose d 

predictors (d<n<p) and only use them in the procedure. Although for a single path, only d 

predictors have effect, the consolidation of the paths contains the information of all predictors. 

All the predictors play an equivalent game and the ones get high scores are regarded as better 

than others. 

5. In this thesis, as illustrations, we only considered the simplest linear regression model. It is easy 

to apply STST to other generalized linear regression models. The only difference is to change the 

model fitting procedure. 

 



Appendix 

A.1 Proofs of Theorem 1 and 2 

Lemma: 

Assume A is a nonsingular symmetric matrix and it can be separated as  
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The proof of the lemma can be found in most linear algebra text books or linear regression books, e.g. 

Hocking (2003). 
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where . qqDqpCppB ××× :,:,: 111

Proof of Theorem 1: 

The true linkage is εβ += XY . 
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Proof of Theorem 2: 

The true linkage is εβ += ppXY . 
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The last step is because of . 0)ˆcov(2
1 ≥= qD βσ

The proofs are motivated by a similar theorem about MSE of linear regression models (Theorem 4.1 

from Hocking (2003) ).  

A.2 Notes for Study 2 

Following is the procedure of doing study 2  

1. Generate an observation of predictors ( )2021 ,...,, zzzz = , which will be used to calculate MSEP 

throughout the study. 
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2. For a value of α. 

A. Simulate a data set ( nikx iki ,...,2,1;20,...,2,1},,{ , ==ε ) and calculate the observations of the 

responses nixxxy iiiii ,...,2,1,32 15,10,5, =+++= εα  

B. Applying an algorithm to the data set, suppose we choose predictors .  },...,,{
21 pccc xxx

a) Check whether the variable  is included in the selected model or not.  5x

b) Compute the MSEP values. Let )1(: +× pnX p denote the matrix combined by the column 

vectors of the sample values corresponding to  and denote the 

matrix combined by the column vectors of the sample values corresponding to 

. Let 

},...,,,1{
21 pccc xxx 3: ×nX T

},,{ 15105 xxx Tβ  denote the true coefficients )3,2,( ′α . 

Thus,  YXXXzzzzwherezzzf ppppcccppp p
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The MSEP can be calculated by 
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C. Repeat B using other algorithms. 

D. Repeat steps A-C 100 times. Record the average MSEP value and the times  being selected 

for each algorithm. 

5x

3. Change the value of α and do step 2.  
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