
Stochastic Renewal Process Model for
Condition-Based Maintenance

by

Pradeep Ramchandani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Civil Engineering

Waterloo, Ontario, Canada, 2009
c© Pradeep Ramchandani 2009



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis deals with the reliability and maintenance of structures that are dam-
aged by shocks arriving randomly in time. The degradation is modeled as a cu-
mulative stochastic point process. Previous studies mostly adopted expected cost
rate criterion for optimizing the maintenance policies, which ignores practical im-
plications of discounting of maintenance cost over the life cycle of the system.
Therefore, detailed analysis of expected discounted cost criterion has been done,
which provides a more realistic basis for optimizing the maintenance. Examples
of maintenance policies combining preventive maintenance with age-based replace-
ment are analyzed. Derivaion for general cases involving preventive maintenance
damage level have been discussed. Specific cases are also considered.
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Chapter 1

Introduction

1.1 Introduction

One of the important area of interest in reliability theory is the study of various
maintenance policies in order to reduce the occurrence of system failure. Over the
years various probabilistic models have been introduced, each with its own intrinsic
cost structure. One main problem is to compute an expression for the expected
long run cost per unit time so that the optimization policy may be determined.

Critical engineering systems in nuclear power plants, such as reactor fuel core
and piping systems experience degradation due to stresses and unfavorable envi-
ronment produced by transients or shocks in the reactor. For example, unplanned
shutdown and excursion to poor chemistry conditions cause degradation through
corrosion, wear and fatigue processes. To control the risk due to failure of a crit-
ical engineering system in the plant, maintenance and replacements of degraded
components are routinely performed. Because of uncertainty associated with the
occurrence of shocks and damage produced by them, theory and stochastic processes
play a key role in estimating reliability and developing maintenance strategies.

The failure of a system or structure occurs when its strength drops below a
threshold that is necessary for resisting the applied stresses. Technically the total
damage experienced by a system can be modeled as a sum of damage increments
produced by individual shocks. To Incorporate uncertainties, shocks are modeled
as a stochastic point processes and the damage produced by each shocks is modeled
as a positive random variable. In essence, the cumulative damage is modeled as
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a compound point process (Smith 1958). The theory of stochastic processes and
mathematical reliability analysis have been discussed in several monographs (Aven
1999, Barlow and Proschan [19], Cox [27], Feller [28] and Tijms 2003). Mercer
[30] developed a stochastic model of degradation as a cumulative process in which
shocks arrive as a poisson process. A more generalized formulation of damage using
compound renewal process was presented by Morey [32], and he derived distribu-
tion of the first passage time or reliability function. Kahle and Wendt [29] modeled
shocks as a double-stochastic Poisson process. Ebrahimi [31] proposed a cumulative
damage model based on the Poisson shot noise process.

The cumulative damage models are popularly applied to the optimization of
maintenance policies using the condition or age based criteria. Nakagawa [16] for-
mulated a preventive maintenance policy was analyzed by Boland and Proschan
[20]. Later several other policies were investigated by Nakagawa and co-workers
(Nakagawa and Kijima [3], Nakagawa and Yasui 1993 and Qian et al. [2]). Aven
[10] presented an efficient method for optimizing the cost rate. An in-depth dis-
cussion of inspection and maintenance optimization models is presented in a recent
monograph ,Nakagawa [18].

Previous studies (like Qian et al [2]) mostly adopted asymptotic expected cost
rate criterion for optimizing maintenance policies. However, in van der Weide et al
[9] optimization of discounted cost, which is more pertinent to practical applications
is considered.

1.2 Thesis Organization

In chapter (2), two of the most commonly used maintenance policies (Age and
Block Replacement policies) are discussed. Relation between the two policies is also
discussed. In chapter (3), various events and probabilities associated with stochastic
process model are defined. Chapter (4) includes the derivation of asymptotic cost
rate for various models in stochastic process model. Examples for the results derived
in chapter (4) are given in chapter (5).
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1.3 Research Objectives

The main objective of the thesis is to analyze the maintenance methods imple-
mented to optimize the cost rate criteria. This thesis includes the study of common
maintenance policies and stochastic process model. In particular, the thesis deals
with following topics.

• To analyze the commonly used Age and Block Replacement policies for main-
tenance of engineering systems and relation between them.

• To analyze the stochastic process model used for optimizing cost rate for
maintenance policies based on the assumptions that total damage and time
of occurrence of shocks forms a stochastic process.

• To analyze the importance of discount factor in the stochastic process model
since discount factor is more often applicable to empirical data.
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Chapter 2

Common Maintenance Policies

2.1 Introduction

One of the important area of interest in reliability theory is the study of vari-
ous maintenance policies in order to reduce the occurrence of system failure. Two
policies of particular note are age replacement policy and block replacement policy.
For an age replacement maintenance policy, scheduled replacement occur whenever
an operating unit reaches age T . For block replacement maintenance policy, sched-
uled replacements occur every T units of time. Over the years various probabilistic
models have been introduced, each with its own intrinsic cost structure. One main
problem is to compute an expression for the expected long run cost per unit time
so that the optimization policy may be determined. In the past, the calculations
for the age replacement policy and the block replacement policy have been treated
separately, we will show however that there is a simple and elegant cost relationship
between theses two policies.

A general cost mechanism was introduced by Puri and Singh, [26]. However
these authors were interested only in optimization results and considered only the
age replacement policy. Thomas H. Savits, [1] gave a more general model. Section
(2.2) and (2.3) delineate the notions of age and block replacement policies. The
expected long run cost per unit of time is also calculated.

2.2 Age Replacement Policy

Failures of units are roughly classified into two failure modes: catastrophic fail-
ure in which a unit fails suddenly and completely, and degraded failure in which
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a unit fails gradually with time by its performance deterioration. In the former,
failures during actual operation might sometimes be costly or dangerous. It is an
important problem to determine when to replace or preventively maintain a unit
before failure. In the latter, maintenance costs of a unit increase with its age, and
inversely, its performance suffers some deterioration. In this case, it is also required
to measure some performance parameters and to determine when to replace or pre-
ventively maintain a unit before it has been degraded into failure state.

In this section, we consider the replacement of a single unit with catastrophic
failure mode, where its failure is very serious, and sometimes may incur a heavy
loss. Some electronic and electric parts or equipment are typical examples. We
introduce a high cost incurred for failure during operation and a low cost incurred
for replacement before failure. The replacements after failure and before failure
are called corrective replacement and preventive replacement, respectively. In this
chapter we assume that the distribution of failure time of a unit is known a priori
by investigating its life data, and the planning horizon is infinite. It is also assumed
that an operating unit is supplied with unlimited spare units.

The most reasonable replacement policy for a unit is based on its age, which
is called age replacement. A unit is always replaced at failure or time T if it has
not failed up to time T , where T (0 < T ≤ ∞) is constant. In this case, it is
appropriate to adopt the expected cost per unit of time as an objective function
because the planning horizon is infinite.

2.2.1 Replacement Policy

Consider an age replacement policy in which a unit is replaced at constant time
T after its installation or at failure, whichever occurs first. We call a specified time
T the planned replacement time which ranges over (0,∞]. The event {T =∞} rep-
resents that no replacement is made at all. It is assumed that failures are instantly
detected and each failed unit is replaced with a new one, where its replacement time
is negligible, and so, a new installed unit begins to operate instantly. Furthermore,
suppose that the failure time Xk, (k = 1, 2, ...) of each unit is independent and has
an identical distribution F (t) ≡ Pr{Xk ≤ t} with finite mean µ, where F̄ ≡ 1−F ,
i.e.µ ≡

∫∞
0
F̄ (t) dt <∞

5



A new unit is installed at time t = 0. Then, an age replacement procedure
generates a renewal process as follows. Let {Xk}∞k=1 be the failure times of the
successive operating units. Define a new random variable Zk ≡ min{Xk, T}(k =
1, 2, ...). Then, {Zk}∞k=1 represents the intervals between replacements caused by
either failures or planned replacements such as shown in figure (2.1). A sequence of
random variables {Zk}∞k=1 is independently and identically distributed, and forms
a renewal process, and has an identical distribution

3.1 Replacement Policy 71

Planned replacement at time T Replacement at failure

Z1 Z2 Z3 Z4

T X2 X3 T

X1 X4

Fig. 3.1. Process of age replacement with planned time T

F (t) ≡ Pr{Xk ≤ t} with finite mean µ, where F ≡ 1 − F throughout this
chapter; i.e., µ ≡

∫∞
0

F (t)dt < ∞.
A new unit is installed at time t = 0. Then, an age replacement procedure

generates a renewal process as follows. Let {Xk}∞
k=1 be the failure times of

successive operating units. Define a new random variable Zk ≡ min{Xk, T}
(k = 1, 2, . . . ). Then, {Zk}∞

k=1 represents the intervals between replacements
caused by either failures or planned replacements such as shown in Figure 3.1.
A sequence of random variables {Zk}∞

k=1 is independently and identically
distributed, and forms a renewal process as described in Section 1.3, and has
an identical distribution

Pr{Zk ≤ t} =

{
F (t) for t < T

1 for t ≥ T .
(3.1)

We consider the problem of minimizing the expected cost per unit of time
for an infinite time span. Introduce the following costs. Cost c1 is incurred for
each failed unit that is replaced; this includes all costs resulting from a failure
and its replacement. Cost c2 (< c1) is incurred for each nonfailed unit that
is exchanged. Also, let N1(t) denote the number of failures during (0, t] and
N2(t) denote the number of exchanges of nonfailed units during (0, t]. Then,
the expected cost during (0, t] is given by

Ĉ(t) ≡ c1E{N1(t)} + c2E{N2(t)}. (3.2)

When the planning is infinite, it is appropriate to adopt the expected cost per
unit of time limt→∞ Ĉ(t)/t as an objective function [1].

We call the time interval from one replacement to the next replacement as
one cycle. Then, the pairs of time and cost on each cycle are independently and
identically distributed, and both have finite means. Thus, from Theorem 1.6,
the expected cost per unit of time for an infinite time span is

C(T ) ≡ lim
t→∞

Ĉ(t)
t

=
Expected cost of one cycle

Mean time of one cycle
. (3.3)

We call C(T ) the expected cost rate and generally adopt it as the objective
function of an optimization problem.

Figure 2.1: Age replacement policy

Pr{Zk ≤ t} =

{
F (t), for t < T
1, for t ≥ T

We consider the problem of minimizing the expected cost per unit of time for
an infinite time span. Introduce the following costs. Cost c1 is incurred for each
failed unit that is replaced; this includes all costs resulting from a failure and its
replacement. Cost c2 (< c1 ) is incurred for each non-failed unit that is replaced.
Also, let N1(t) denote the number of failures during (0, t] and N2(t) denote the
number of replacements of non-failed units during (0, t]. Then, the expected cost
during (0, t] is given by

Ĉ(t) ≡ c1E{N1(t)}+ c2E{N2(t)}
When the planning is infinite, it is appropriate to adopt the expected cost per unit
of time limt→∞ Ĉ(t)/t as an objective function.

We call the time interval from one replacement to the next replacement as
one cycle. Then, the pairs of time and cost on each cycle are independently and
identically distributed, and both have finite means. Thus, the expected cost per
unit of time for an infinite time span is

C(T ) = lim
t→∞

Ĉ(t)

t
=

Expected cost of one cycle

Mean time of one cycle
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We call C(T ) the expected cost rate and generally adopt it as the objective
function of an optimization problem.

When we set a planned replacement at time T (0 < T ≤ ∞) for a unit with
failure time ζ, the expected cost of one cycle is

c1Pr{X ≤ T}+ c2Pr{X > T} = c1F (T ) + c2F̄ (T ) (2.1)

and the mean time of one cycle is
∫ T

0

tdPr{X ≤ t}+ T Pr{X > T} =

∫ T

0

tdF (t) + T F̄ (T )

= −
∫ T

0

t dF̄ (t) + T F̄ (T )

= −
[
tF̄ (T )

]T
0

+

∫ T

0

F̄ (t) d(t) + T F̄ (T )

=

∫ T

0

F̄ (t)dt (2.2)

Thus, the expected cost rate is

C(T ) =
c1F (T ) + c2F̄ (T )∫ T

0
F̄ (t) dt

(2.3)

where c1 = cost of replacement at failure and c2 = cost of replacement at planned
time T with c2 < c1.

If T = ∞ then the policy corresponds to replacement only at failure, and the
expected cost rate is

C(∞) ≡ lim
T→∞

C(T ) =
c1

µ
(2.4)

2.3 Block Replacement Policy

If a system consists of a block or group of units, their ages are not observed and
only their failures are known, all units may be replaced periodically independently
of their ages in use. The policy is called block replacement and is commonly used
with complex electronic systems and many electrical parts.

7



2.3.1 Replacement Policy

A new unit begins to operate at time t = 0, and a failed unit is instantly detected
and is replaced with a new one. Furthermore, a unit is replaced at periodic times
kT (k = 1, 2, 3...) independent of its age. Suppose that each unit has an identical fail-
ure distribution F (t) with finite mean µ and F n(t) (n = 1, 2...) is the n-fold Stieltjes
convolution of F (t) with itself ; i.e. F n(t) ≡

∫ t
0
F n−1(t − u)dF (u) (n = 1, 2, 3...)

and F (0)(t) ≡ 1 for t > 0.

102 4 Periodic Replacement

Planned replacement Minimal repair at failure

(k − 1)T kT (k + 1)T

Fig. 4.1. Process of periodic replacement with minimal repair

c1E{N1(T )} + c2E{N2(T )} = c1H(T ) + c2

because the expected number of failures during one cycle is E{N1(T )} =∫ T

0
h(t)dt ≡ H(T ) from (4.7). Therefore, from (3.3), the expected cost rate

is [1, p. 99],

C(T ) =
1
T

[c1H(T ) + c2]. (4.16)

If a unit is never replaced (i.e., T = ∞) then limT→∞ H(T )/T = h(∞) if it
exists, which may possibly be infinite, and C(∞) ≡ limT→∞ C(T ) = c1h(∞).

Furthermore, suppose that a unit is replaced when the total operating time
is T . Then, the availability is given by

A(T ) =
T

T + β1H(T ) + β2
, (4.17)

where β1 = time of minimal repair and β2 = time of replacement. Thus, the
policy maximizing A(T ) is the same as minimizing the expected cost rate
C(T ) in (4.16) by replacing βi with ci.

We seek an optimum planned time T ∗ that minimizes the expected cost
rate C(T ) in (4.16). Differentiating C(T ) with respect to T and setting it
equal to zero, we have

Th(T ) − H(T ) =
c2

c1
or

∫ T

0

t dh(t) =
c2

c1
. (4.18)

Suppose that the failure rate h(t) is continuous and strictly increasing.
Then, the left-hand side of (4.18) is also strictly increasing because

(T + ∆T )h(T + ∆T ) − H(T + ∆T ) − Th(T ) + H(T )

= T [h(T + ∆T ) − h(T )] +
∫ T+∆T

T

[h(T + ∆T ) − h(t)] dt > 0

for any ∆T > 0. Thus, if a solution T ∗ to (4.18) exists then it is unique, and
the resulting cost rate is

C(T ∗) = c1h(T ∗). (4.19)

In addition, if
∫∞
0

tdh(t) > c2/c1 then there exists a finite solution to (4.18).
Also, from (4.18),

Figure 2.2: Block Replacement Policy

Consider a block consisting of one unit and one cycle with constant time T
from the planned replacement to the next one. We consider the block of unit
to calculate maintenance cost of one unit and its subsequent replacements. Let
c1 be the cost of replacement for a failed unit and c2 be the cost of the planned
replacement. Then, because the expected number of failed units during one cycle
is M(T ), ≡∑∞n=1 F

(n)(T ) (Sheldon M. Ross[33]), the expected cost in one cycle is,

c1E{N1(T )}+ c2E{N2(T )} = c1M(T ) + c2

Therefore, the expected cost rate is

C(T ) =
[c1M(T ) + c2]

T
(2.5)

If a unit is replaced at failures, then, T = ∞. Taking into account the fact that
limT→∞

M(T )
T

= 1
µ
, we conclude that expected cost rate in this case will be c1

µ

2.4 Cost Relationship between Age and Block

Replacement Policies

This section analyzes the cost relationship between block replacement policy and
age based replacement policy as proposed by Thomas H. Savits, 1988 [1]. The
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basic ingredient for this model is a stochastic process {R(t), 0 ≤ t ≤ X}. R(t) is
interpreted as the operational cost of a unit on line during a time interval [0,t).
Hence, we assume that R(0) = 0. The random variable X is assumed to be positive
and designates an unscheduled replacement ; i.e. after ageing X units of time the
item is to be replaced by a new identical unit. The cost for such an unplanned
replacement is c1.

The above mechanism does not preclude the possibility of unit breakdowns dur-
ing the time interval [0, X). In such a case, we assume that the unit is repaired
each time and continues functioning at some level of operation. The cost for these
repairs would be incorporated into the cost function R(t). Thus X is distinguished
as the time of a major breakdown which is not repairable; all other breakdowns are
considered to be minor and repairable.

Note that R(t) represents the unit operational cost over the time interval [0, t)
as opposed to the time interval [0, t]. This choice is just a matter of notational
convenience.

It is customary to adopt some type of maintenance policy in order to reduce
the occurrence of system failures. Two policies that we consider in this paper are
age replacement and block replacement. In the case of an age replacement mainte-
nance policy, a scheduled(or planned) replacement occurs whenever a functioning
unit reaches age T . In the case of block replacement policy, a scheduled replace-
ment occurs every T units of time, i.e. at the times T, 2T, · · · . In either case, the
cost of a planned replacement is c2.

Thus there are three distinct types of costs built into our model: c1, the cost
for an unplanned replacement; c2, the cost for a planned replacement due to some
maintenance policy; and R(t), the unit operational cost.

2.4.1 Operation Cost for Age Replacement Policy

We now want to analyze the total operational cost for each type of maintained
system in more detail. In particular, we shall obtain expressions for the long-run
cost per unit time, the so-called infinite-horizon case.
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Let {Ri(t), 0 ≤ t ≤ Xi}, i = 1, 2, · · · , be independent copies of {R(t), 0 ≤ t ≤
X}. Ri(t) denote the operation cost of replaced unit in the ith cycle. For conve-
nience we shall ignore the cost of the initial unit at time t = 0.
We first introduce the following notation:

Zk = min(Xk, T ) (2.6)

Xk =

{
0, if k = 0,
Z1 + · · ·+ Zk if k = 1,2,· · ·

and

R∗i (t) =

{
Ri(t+) if 0 ≤ t ≤ Zi
Ri(Zi) + c1I(Xi<T ) + c2I(Xi≥T ) if t ≥ Zi.

for i=1,2,· · · . Here IA denotes the indicator function of the set A.

If KA(t) denotes the total operational cost over [0, t], it is easy to see that for
Xk ≤ t ≤ Xk+1, k = 0, 1, · · · ,

KA(t) =
k∑

i=1

R∗i (Zi) +R∗k+1(t−Xk) (2.7)

Here we use the convention that an empty sum is 0. Since the expression (2.7)
also depends on the maintenance parameter T, we sometimes use the more explicit
notation KA(t;T ) instead.

We now denote the expected total operational cost E[KA(t)] by CA(t) (or
CA(t;T )). Thus by the theory of renewal reward processes, we conclude that

JA(T ) = lim
t→∞

CA(t)

t
=
E[R∗(t)]

E[Z]
(2.8)

(provided E[|R∗(Z)|] is finite). Equation (2.8) says that the expected long run cost

per unit time is the average cost per cycle divided by the average length of a cycle.
It is now convenient to introduce the notation

A(T ) = E[R∗(Z)] = E[R(T ) + c2;T ≤ X] + E[R(X) + c1;X < T ] (2.9)

We also observe that A(T ) = E[KA(Z;T )].
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2.4.2 Operation Cost for Block Replacement Policy

For block replacement policy we use the following notation:

σk =

{
0 if k = 0
X1 + · · ·+Xk if k = 1, 2, · · ·

If KB(t) denotes the total operational cost over [0, t], one can see that

KB(t) =

{
R1(T ) + c2 if 0 < T ≤ σ1,∑∞

i=1Ri(Xi) + kc1 +Rk+1(T − σk) + c2 if σk < T ≤ σk+1, k = 1, 2 · · ·

Now, since we have renewals every T units of time, it follows from the theory
of renewal reward processes that the expected long run cost per unit time is the
average cost per cycle divided by the average length of a cycle; i.e..

JB(T ) = lim
t→∞

CB(t)

t
=
E[KB(T )]

T
(2.10)

2.4.3 Comparison between the two policies

Let B(T ) = E[KB(T )]

B(T ) = E[KB(T )]

= E[R1(T ) + c2; 0 < T ≤ σ1]

+
∑∞

k=1
E[
∑k

i=1
Ri(Xi) + kc1 +Rk+1(T − σk) + c2;σk < T ≤ σk+1]

=
∑∞

k=1

∑k

i=1
E[Ri(Xi) + c1;σk < T ≤ σk+1]

+
∑∞

k=0
E[Rk+1(T − σk) + c2;σk < T ≤ σk+1]

=
∑∞

k=0
E[Rk+1(Xk+1) + c1;σk+1 < T ]

︸ ︷︷ ︸
I

+
∑∞

k=0
E[Rk+1(T − σk) + c2;σk < T ≤ σk+1]

︸ ︷︷ ︸
II

(2.11)

I =
∑∞

k=0
E[Rk+1(Xk+1) + c1;σk+1 < T ]

=
∑∞

k=0
E[Rk+1(Xk+1) + c1;σk +Xk+1 < T ]

=
∑∞

k=0
E[E[Rk+1(Xk+1) + c1;σk +Xk+1 < T ]]
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The last step follows from the fact that {Ri(t), 0 ≤ t ≤ Xi} are independent copies
of {R(t), 0 ≤ t ≤ X}. Hence

I =

∫

[0,T )

[E[R(X) + c1;X < T − x] dU(x). (2.12)

II =
∑∞

k=0
E[Rk+1(T − σk) + c2;σk < T ≤ σk+1]

=
∑∞

k=0
E[Rk+1(T − σk) + c2;σk < T,Xk+1 ≥ T − σk]

(Noting that σk+1 = σk +Xk+1)

=
∑∞

k=0
E[E[Rk+1(T − σk) + c2;σk < T,Xk+1 ≥ T − σk]]

(2.13)

The last step follows from the fact that {Ri(t), 0 ≤ t ≤ Xi} are independent copies
of {R(t), 0 ≤ t ≤ ζ}. Hence

II =

∫

[0,T )

E[R(T − x) + c2;X ≥ T − x]dU(x) (2.14)

Where U(x) =
∑∞

k=0 P (σk ≤ x) is the renewal function generated by the indepen-
dent and identically distributed sequence X1, X2, · · · .

Hence, substituting (2.12) and (2.14) into equation (2.11) and recalling equation
(2.9) we obtain the main result, which goes as follows

The average cost per cycle in the age replacement maintenance policy case,
A(T ), and in the bloc replacement maintenance policy case, B(T ) are related by
the following equation :

B(T ) =

∫

[0,T )

A(T − x) dU(x) (2.15)

Hence if we know A, we can find B. conversely, if we know B, we can find A as
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follows,

A(T ) +

∫ T

0

B(T − x) dG(x) (where G(x) = P (X ≤ x)) (2.16)

= A(T ) +

∫ T

0

(∫

[0,T−x)

A(T − x− y) dU(y)

)
dG(x)

= A(T ) +

∫ T

0

(∫

[0,T−x)

A(T − x− y) d
(∑∞

k=0
P (σk ≤ y)

))
dG(x)

= A(T ) +

∫ T

0

(∫

[0,T−x)

A(T − x− y) d
(∑∞

k=0
Gk(y)

))
dG(x)

= A(T ) +

∫ T

0

A(T − x) d
(∑∞

k=0
Gk+1(x)

)
(2.17)

But
∑∞

k=0
Gk(x) = 1 +

∑∞

k=0
Gk+1(x)

∴
∑∞

k=0
Gk+1(x) = U(x)− 1

∴ d
(∑∞

k=0
Gk+1(x)

)
= dU(x)− δd(x) (2.18)

From equations 2.17 and 2.18

A(T ) +

∫ T

0

A(T − x) (dU(x)− δd(x))

= A(T ) +

∫ T

0

A(T − x) dU(x)−
∫ T

0

A(T − x) δd(x)

= A(T ) +

∫ T

0

A(T − x) dU(x)− A(T )

=

∫ T

0

A(T − x) dU(x)

= B(T ) (2.19)

From equations 2.16 and 2.19

B(T ) = A(T ) +

∫ T

0

B(T − x) dG(x) (2.20)

Therefore, from Equations (2.15) and (2.20), we conclude that A can be found if B
is known and conversely.

13



2.5 Discount Cost

In the coming chapters we will also include the discount factor in calculating
expected cost rate. Discount cost describe the weights placed on costs that occur
at different points in time. In economic literature, several mathematical functions
give more weight to the present cost than to the future cost.

For better understanding of Discount factor, consider the following explanation.
x units of money at time 0 does not have the same value as x units of money at
time t. To find the relation between the value of money at two different times we
introduce the notion of discount factor. Discount Factor is defined as the amount
of money needed to be deposited at time 0 so that the value of money at time t is
equal to 1.

It is quite natural for the discount factor to depend on the interest rate r. The
most well-known discount function is the discount-utility model proposed by Samuel-
son [24]. According to this model, the discount factor at time t is given by

D(t) = e−rt, r > 0 (2.21)

This type of discounting is also called exponential discounting. Hence if we want to
deposit x units at time t then we need to deposit xe−rt units at time 0

As an alternative to exponential discounting, several hyperbolic functional forms
for the discount function have been proposed: Herrnstein [21] and Mazur [22] sug-
gested the function

D(t) = (1 + βt)−1, β > 0, (2.22)

and Loewenstein and Prelec [23] generalized this form to

D(t) = (1 + βt)−
β
α , α, β > 0. (2.23)

Equations (2.22) and (2.23) are called hyperbolic discounting and generalized
hyperbolic discounting, respectively. For hyperbolic discounting, future cost is at-
tached more weight than for exponential discounting and a person’s discount rate
is declining over time rather than being a constant. A hyperbolic discount function
often fits empirical data better than the exponential discount function. Exponen-
tial and hyperbolic discounting are special cases of generalized discounting: (2.23)
converges to exponential discounting with rate β as α→ 0 and (2.23) simplifies to
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hyperbolic discounting for α = β.

There is a fundamental difference underlying hyperbolic and exponential dis-
counting. To understand the difference consider the following example.

Suppose one deposits v1 = $100 in a bank which pays hyperbolic interest rate
with β = 0.3. After 5 years, i.e. when t1 = 5 we get V1 = $250. Now suppose
at this point another deposit of v2 = $200 is made in the same bank. Now at
this point of time we have v2 = V2 = $200, t2 = 0 and V1 = $250, so V2 < V1.
After a gap of 10 years t1 = 15, t2 = 10, v1 = $100, v2 = $200. Finally, we get
V1 = $550, andV2 = $800. So that V2 > V1. The conclusion is that the value
reverses since duration (t) acts multiplicatively on the initial deposit (v). As the
years pass, any differences in time of deposit are diminished in relative importance
to difference in the amount of initial deposit.

On the other hand, suppose one deposits $100 in bank which paid with expo-
nential interest rate and after 5 years it grows to $250. Now at this point, if one
deposits $200 in the same bank then there would be no time, no matter how long,
where the values of two deposits reverse. Exponential growth describes compound
interest. Interest is calculated based on the amount accumulated at the start of the
period, not on the initial deposit.

Hence deviation from exponential discount functions are often considered by
economists to be irrational (Strotz[25]). There is indirect evidence (Ainsle, 1974;
Logue, 1988; Rachlin & Green, 1972) with non-human and human subjects that
subjective delay discount functions do indeed deviate from exponential form. For
instance, a pigeon might choose two pellets of food delayed by 14s over on pellet
delayed by 10s(both alternatives fixed in time) but reverse its preference after 10s
have passed, choosing one pellet immediately over two pellets delayed by 4s. This
sort of preference reversal is predicted by hyperbolic discount functions but not by
exponential ones.

On the basis of a series of experiments with pigeons as subjects, Mazur(1978)
found direct evidence that pigeon’s delay discount functions are not exponential
but are hyperbolic.
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2.6 Conclusion

The expected long run cost for the age based replacement policy and block
based replacement policy is found to be A(T )

E[min(X,T )]
and B(T )

T
respectively. The other

important results gave the relationship between two maintenance policies in a way
that the operation cost of one replacement policy could be calculated from the
other. The results were as follows

B(T ) =

∫

[0,T )

A(T − x) dU(x)

B(T ) = A(T ) +

∫

[0,T )

B(T − x) dG(x)

These results help in calculating the operation cost due to age and block re-
placement policies, which are most commonly used. One can compare the opera-
tion cost due to these replacement policies with the replacement policies discussed
in the coming chapters. And depending on the model one can use replacement
policies which is cost effective.

Previous studies mostly adopted expected cost rate criterion for optimizing the
maintenance policies, which ignores practical implication of discounting of mainte-
nance cost over the life cycle of the system. Therefore, in the last section, concept
of discounting is explained. Mainly the two discounting, hyperbolic and exponen-
tial discounting are discussed. In the coming chapters expected cost rate will be
calculated considering exponential discounting.
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Chapter 3

Stochastic Process Model

3.1 Introduction

Chapter (3), (4) and (5) gives in-depth discussion of optimization results derived by
van der Weide et al [9]. In deriving the optimization results Qian et al [2] did not
consider discounting, whereas discounted cost criterion is the main idea in van der
Weide et al [9]. The primary objective of chapter (3) and chapter (4) is to present
a conceptually clear derivation of expected discounted cost criterion for optimizing
maintenance of systems subject to cumulative damage. The proposed derivation is
general and it can be reduced to special cases of homogeneous or non-homogeneous
Poisson processes or renewal process.

3.2 Background

Occurrences of shocks are random in time and the damage produced by each
shock is also a random variable. The total damage at time t is a sum of damage
increments produced by all j shocks occurred up to this time.

Random occurrences of shocks over time, S1,S2, ......,Sj, .... are taken as points
in a stochastic point process on [0,∞). The total number of shocks in the interval
(0, t] is denoted by N (t) and N (0) ≡ 0.

Define the probability of occurrence of j shocks in (0, t] as

Hj(t) = P (N (t) = j), (3.1)
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Figure 3.1: stochastic shock process causing random damage

and the expected number of shocks as

R(t) = E(N (t)). (3.2)

In a given time interval (0, t] the probability associated with the number of shocks
(j) is related with that of the time of occurrence of the jth shock (Sj) as

Fj(t) = P (Sj ≤ t) = P (N (t) ≥ j) =
∑∞

i=j
Hi(t). (3.3)

Using this, equation 3.1 can also be rewritten as

Hj(t) = P (N (t) ≥ j)− P (N (t) ≥ j + 1) = Fj(t)− Fj+1(t). (3.4)

Note that Fj(t) depends on the distribution of the time between the shocks.

A shock produces a random amount of damage Y modeled by a cumulative
distribution function

G(x) = P (Y ≤ x) (3.5)

The damage occurred at the jth shock is denoted as Yj. The evaluation of cumula-
tive damage is based on two key assumptions:
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1. damage increments, Y1, Y2, ...., are independent and identically distributed
(iid).

2. The damage increments (Yj)j≥1 and the shock process N (t) : t ≥ 0 are
independent.

The total damage caused by j shocks is given as

Dj =
∑j

i=1
Yj, j ≥ 1, and D0 ≡ 0. (3.6)

The distribution of Dj is obtained from the convolution of G(x) as

P (Dj ≤ x) = G(j)(x), (3.7)

where

G(j+1)(x) =

∫ x

0

G(j)(x− y) dG(y). (3.8)

Note that
G(0)(x) = 1, x ≥ 0.

The total damage, Z(t), at time t however depends on the number of shocks N (t)
occurred in this interval, i.e.,

Z(t) =

N(t)∑

j=1

Yi = DN (t). (3.9)

Using the total probability theorem and independence between the sequence Y1, Y2, ...
and N (t), we can write for x > 0

P (Z(t) > x) =
∑∞

j=1
P (Dj > x,N (t) = j) =

∑∞

j=1
(1−G(j)(x))Hj(t). (3.10)

Using the facts that
∑∞

j=1Hj(t) = 1 and G(0)(x) = 1, the distribution of the total
damage can be written as

P (Z(t) ≤ x) = H0(t) +
∑∞

j=1
G(j)(x)Hj(t) =

∑∞

j=0
G(j)(x)Hj(t). (3.11)

Substituting H0(t) = 1− F1(t) and Hj(t) = Fj(t)− F(j+1)(t) equation 3.11 can be
written as

P (Z(t) ≤ x) = 1−
∑∞

j=1
[G(j−1)(x)−G(j)(x)]Fj(t). (3.12)
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This is a fundamental expression that can be used to compute the system relia-
bility. Suppose damage exceeding a limit xcr causes the component failure, equation
3.12 provides P (Z(t) ≤ xcr) which is synonymous with the reliability function.

Formula for the mean value of the damage exceeding level B for the first time
i.e. τB, is given by

τB = min{t : Z(t) > B} (3.13)

So we have

{τB > t} = {Z(t) ≤ B} and (3.14)

E(τB) =
∞∑

j=0

G(j)(B)

∫ ∞

0

Hj(t)dt. (3.15)

3.3 Maintenance Model

In the proposed cumulative damage model, the failure can take place at time
t when a shock occurring at t causes the total damage Z(t) to exceed a critical
threshold zF . The failure prompts a corrective maintenance (CM) action involving
the system renewal through replacement or complete overhaul (as good as new re-
pair).

On the other hand, a preventive maintenance (PM) plan can be based on the
following two strategies:

1. Condition-based strategy in which the system is renewed preventively as soon
as Z(t) exceeds a maintenance threshold value zM , zm < zF . It is assumed
here that system’s degradation is continuously monitored.

2. Age-based strategy in which the system is replaced at certain age a, irrespec-
tive of its condition.

Reliability of safety-critical systems in a nuclear plant is maintained by
implementing preventive maintenance and replacement programs.
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So {τB > t} = {Z(t) ≤ B} and

E(τB) =
∞∑

j=0

G(j)(B)

∫ ∞

0

Hj(t) dt. (14)

3 MAINTENANCE MODEL

In practice, reliability of safety-critical systems in a nuclear plant is maintained by imple-
menting preventive maintenance and replacement programs. In the proposed cumulative
damage model, the failure can take place at time t when a shock occurring at t causes
the total damage Z(t) to exceed a critical threshold zF . The failure prompts a corrective
maintenance (CM) action involving the system renewal through replacement or complete
overhaul (as good as new repair). We will study a preventive maintenance (PM) plan based
on: (1) a condition-based strategy in which the system is renewed preventively as soon as
Z(t) exceeds a maintenance threshold value zM , zM < zF , (2) an age-based strategy in which
the system is replaced at certain age a, irrespective of its condition. It is assumed here that
system’s degradation is continuously monitored. The probabilities of occurrence of any such
maintenance actions at time t needs to be evaluated, considering the stochastic nature of the
shock process and randomness associated with damage increments. This section presents
the derivation of these probability terms.

3.1 Formulation
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Figure 2: Events related to the maintenance model

First we investigate three basic disjoint events that can take place at the time of occurrence
(Sj) of any jth shock, as shown in Figure 2.

5

Figure 3.2: Shock Process

The probabilities of occurrence of any such maintenance actions at time t needs to
be evaluated, considering the stochastic nature of the shock process and random-
ness associated with damage increments. this section describes derivation of these
probability terms.

3.3.1 Formulation

First we investigate three basic disjoint events that can take place at the time of
occurrence of any jth shock. Define an event, Aj, that the total damage exceeds
the PM threshold, zM , at the jth shock (j = 1, 2, ....) as

Aj = {D(j−1) ≤ zM < Dj} (3.16)

The event Aj is the union of two disjoint events, namely, the occurrence of PM or
CM action, and they are defined as follows

1. APMj = Probability that the total damage exceeds zM but is less than critical
threshold = {Aj ∩ {Dj ≤ zF}}
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2. ACMj = Probability that the total damage exceeds zM and zF = {Aj ∩{Dj >
zF}}.

Finally, the event that no PM takes place by first j shocks is defined as

Bj = {Dj ≤ zM} =
∞⋃

i=j+1

Ai. (3.17)

For future calculations, the following notations will be used

αj = P (Aj) (3.18)

βj = P (APMj ) (3.19)

γj = P (ACMj ) (3.20)

πj = P (Bj) (3.21)

Now these probabilities can be derived in terms of the distribution of damage
increments G(x) as follows

αj = P (Aj) = P{Dj−1 ≤ zM < Dj}
= P (Dj−1 ≤ zM , Dj > zM)

= P (Dj−1 ≤ zM)− P (Dj−1 ≤ zM , Dj ≤ zM) (3.22)

Since {Dj ≤ zM} is contains the event {Dj−1 ≤ zM}
αj = P (Dj−1 ≤ zM)− P (Dj ≤ zM)

= G(j−1)(zM)−G(j)(zM) (3.23)

When the PM threshold is exceeded in shocks (j) to (j − 1), there are two
possible mutually exclusive events: either the total damage is below zF requiring a
PM action, or the total damage exceeds level zF leading to a CM action. It implies
that αj = βj + γj.

To calculate βj, first note that

βj = P (APMj ) = P (Dj−1 ≤ zM , zM < Dj ≤ zF )

= P (Dj−1 ≤ zM , zM < Dj−1 + Yj ≤ zF )

=

∫ zM

0

P (zM < x+ Yj ≤ zF ) dG(j−1)(x)

=

∫ zM

0

[G(zF − x)−G(zM − x)] dG(j−1)(x) (3.24)

22



In the same way we can evaluate γj as

γj = P (ACMj ) = P (Aj ∩ {Dj > zF}).
= P (Dj−1 ≤ zM , Dj > zF )

= P (Dj−1 ≤ zM , Dj−1 + Yj > zF )

=

∫ zM

0

[1−G(zF − x)] dG(j−1)(x). (3.25)

Finally we calculate the probability πj = P (Bj)

πj = P (Bj) = P (Dj ≤ zM)

= P (∪∞i=j+1Ai)

= 1−
∑j

i=1
P (Ai)

= 1−
∑j

i=1
αi.

= 1−
∑j

i=1
[G(i−1)(zM)−G(i)(zM)] = G(j)(zM). (3.26)

where we have used the fact that Aj are disjoint.

Now

{D(j−1) ≤ zM < Dj} = {Aj ∩ {Dj ≤ zF}}
⋃
{Aj ∩ {Dj > zF}}

P ({D(j−1) ≤ zM < Dj}) = P ({Aj ∩ {Dj ≤ zF}}) + P ({Aj ∩ {Dj > zF}})
Hence αj = βj + γj (3.27)

Furthermore, for any n ≥ 1, the collections {APM1 , ACM1 , .........., APMn , ACMn , Bn}
and {A1, ....., An, Bn} are both finite partitions of the sample space, so that we can
write

n∑

i=1

αi + πn =
n∑

i=1

βi +
n∑

i=1

γi + πn = 1 (3.28)

3.3.2 Probabilities Associated with
Maintenance Actions

The proposed model involves an interaction of age-based and condition-based pre-
ventive maintenance criteria.
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When we start at time 0, a new system is put into service. The system
will be replaced at age a, should it survive up to this age. On the other
hand, a corrective or preventive maintenance action before age a will be
required if the cumulative damage at this time, Z(a), exceeds the PM
threshold zM .

The probability associated with corrective or preventive maintenance action, PCP ,
can be derived using equations (3.10) and (3.26) as

PCP = P (Z(a) > zM)

= 1−
∑∞

j=1
G(j)(zM)Hj(a)

= 1−
∑∞

j=1
πj Hj(a). (3.29)

Defining Aj =
∑j

i=1 αj, it follows from Eqn. (3.26) that

PCP = 1−
∑∞

j=1
πj Hj(a)

= 1−
∑∞

j=1
{1−

∑j

i=1
αi}Hj(a)

=
∑∞

j=1

j∑

i=1

αiHj(a)

=
∑∞

j=1
Aj Hj(a) (3.30)

PCP can also be calculated using equations 3.12, 3.23 and 3.26 as follows.

PCP = P (Z(a) > zM) = 1− P (Z(a) ≤ zM)

= 1−
{

1−
{∑∞

j=1
[G(j−1)(zM)−G(j)(zM)]Fj(a)

}}

=
∑∞

j=1
[G(j−1)(zM)−G(j)(zM)]Fj(a)

=
∑∞

j=1
αj Fj(a). (3.31)

Let PF be the probability that a corrective maintenance will be performed before
age a. Now to calculate the value of PF , note that the events ACMj and Sj are
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independent. Hence we get the following equation

PF =
∑∞

j=1
P (ACMj ,Sj < a)

=
∑∞

j=1
γj Fj(a) =

∑∞

j=1
γj
∑∞

i=j
Hi(a) (3.32)

=
∑∞

i=1

∑i

j=1
γj Hi(a) =

∑∞

i=1
CiHi(a), (3.33)

Where Ci =
∑i

j=1 γj.

Similarly, the probability of preventive maintenance before a can be obtained as

PM =
∑∞

j=1
P (APMj ,Sj < a)

=
∑∞

j=1
βjFj(a) =

∑∞

j=1
βj
∑∞

i=j
Hi(a) (3.34)

=
∑∞

i=1

∑i

j=1
βj Hi(a) =

∑∞

i=1
BiHi(a) (3.35)

Where Bi =
∑i

j=1 βj

The probability of age-based replacement at age a is as follows

PA = 1− PCP
= P (Z(a) ≤ zM) = 1− P (Z(a) ≥ zM)

= 1−
∑∞

j=1
αjFj(a) = 1−

∑∞

j=1
αj
∑∞

i=j
Hi(a)

= 1−
∑∞

i=1

∑i

j=1
αjHi(a) = 1−

∑∞

i=1
AiHi(a) (3.36)

3.4 Summary

Probabilities associated with preventive and corrective maintenance are calculated
in terms of time of occurrence of shocks, damage caused by shocks and age of
replacement which will help in optimizing the cost rate defined in terms of these
events.
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Chapter 4

Maintenance Cost Analysis

4.1 Introduction

Let T denote the length of renewal cycles and C the cost associated with the
renewal. After the first renewal at time T1, a new cycle starts, and it survives
the duration T2 and so on. The renewal cost varies depending on the maintenance
actions. We assume cost cF for CM, cA for replacement at age a and cM for PM
before age a.

For N (a) = n, n ≥ 1, a random vector of renewal cycles and associated costs,
(Tm, Cm) is an iid sequence generated by random variables T and C with the fol-
lowing distribution.

P (T = Sj) = P (APMj ∪ ACMj ) = P (Aj), for j ≤ n, (4.1)

P (T = a) = P (∪∞i=n+1Ai) on Bn.

(4.2)

ie T =

{
Sj on Aj, j ≤ n
a on Bn

P (C = cM) = P (Dj−1 ≤ zM < Dj ≤ zF ) for APMj j ≤ n (4.3)

P (C = cF ) = P (Dj−1 ≤ zM < Dj, Dj > zF ) for ACMj j ≤ n (4.4)

P (C = cA) = P (∪∞i=n+1Ai) on Bn. (4.5)
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ie C =





cM on APMj , j ≤ n,
cF on ACMj , j ≤ n,
cA on Bn

Putting the above facts together we get the following joint distribution for the
sequence (Tm, Cm).

(T,C) =





(Sj, cM) on APMj , j ≤ n
(Sj, cF ) on ACMj , j ≤ n
(a, cA) on Bn

If no shocks occurred up to time a, i.e. N (a) = 0, then (T,C) = (a, cA). If
M(t) is the total number of completed renewal cycles, then the total cost over a
time interval (0, t] is a sum of costs incurred over these renewal cycles, which will
be given as

K(t) =

M(t)∑

j=1

Cj. (4.6)

Note that K(t) is a random function involving random variables M(t) and C,
and its contribution is very difficult to evaluate. Therefore it is convenient to work
with asymptotic formulas for long term expected cost.

So what we are looking for is simple form for the expression Q = limt→∞
K(t)
t

.
For that we need to know the relationships between K(t), M(t), C and T .

To start with, observe that

E(T ) <∞⇒ P (T <∞) = 1. (4.7)

Because, if we had P (T =∞) = c > 0 then we would have E(T ) =∞.
Hence we have

P (T1 + T2 + ....+ Tn <∞) = 1 (4.8)

This in turn implies that

P ( lim
t→∞

M(t) =∞) = 1 (4.9)

because if we had

P ( lim
t→∞

M(t) = τ <∞) = c > 0, (say) (4.10)
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then

P (T1 + T2 + ....Tτ =∞) = c (4.11)

which would be a contradiction to (4.8). Hence we have

lim
t→∞

M(t) =∞ with probability 1,

T1 + T2 + .....+ TM(t) ≤ t < T1 + T2 + .....+ TM(t)+1

the above inequality gives

T1 + T2 + .....+ TM(t)

M(t)
≤ t

M(t)
<
T1 + T2 + .....+ TM(t)+1

M(t) + 1

M(t) + 1

M(t)

By the strong law of large numbers for a sequence of independent and identically
distributed random variables, we have

lim
n→∞

T1 + T2 + .....+ Tn
n

= E[T ] with probability 1

Hence letting t→∞ we get the following equation

lim
t→∞

t

M(t)
= E[T ]

ie lim
t→∞

M(t)

t
=

1

E[T ]

Finally we can get the expression for long-term expected average cost rate Q per
unit time given as

Q = lim
t→∞

K(t)

t∑M(t)

i=1
Ci = K(t) ≤

∑M(t)+1

i=1
Ci.

∑M(t)
i=1 Ci
t

=
K(t)

t
≤
∑M(t)+1

i=1 Ci
t

.

∑M(t)
i=1 Ci
M(t)

× M(t)

t
=
K(t)

t
≤
∑M(t)+1

i=1 Ci
M(t) + 1

× M(t) + 1

t
.
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Taking the limit as t→∞, we get

lim
t→∞

∑M(t)
i=1 Ci
M(t)

× M(t)

t
= lim

t→∞
K(t)

t
≤ lim

t→∞

∑M(t)+1
i=1 Ci
M(t) + 1

× M(t) + 1

t

By the use of strong law of large number for the sequence {Cn} we get

E(C)

E(T )
= lim

t→∞
K(t)

t
≤ E(C)

E(T )

So we have

lim
t→∞

k(t)

t
=
E(C)

E(T )

Now the discounted cost evaluated over a time horizon (0,t] considering an ex-
ponential discounting factor with interest rate r per unit time is given as

K(t, r) =

M(t)∑

j=1

e−rUj Cj

Where Uj = T1 + · · ·+ Tj denotes the time of jth renewal.

The long-term expected equivalent average cost per unit time is given as (van
der Weide [6]):

Q(r) = lim
t→∞

rE(K(t, r)) =
rE(Ce−rT )

1− E(e−rT )
(4.12)

Note that

lim
r→0

Q(r) = lim
r→0

rE(Ce−rT )

1− E(e−rT )
=
E(C)

E(T )
= Q (4.13)

4.2 General Expression for Cost Rate

(With Discounting)

The expected discounted cost expended is given by

E[Ce−rT ] =
∞∑

n=0

E[Ce−rT ;N (a) = n]
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For n=0 we have a simple form

E[Ce−rT ;N (a) = 0] = CAe
−raH0(a), (4.14)

For n ≥ 1 we split the expectations over the disjoint events APM1 , ACM1 , · · · , APMn ,

ACMn , Bn.

E[Ce−rT ; N (a) = n] =
∑n

j=1
E[Ce−rT ; N (a) = n |APMj ]P (APMj )

+
∑n

j=1
E[Ce−rT ; N (a) = n |ACMj ]P (ACMj )

+E[Ce−rT ; N (a) = n |Bn]P (Bn).

E[Ce−rT ;N (a) = n] = CM
∑n

j=1
βjE[e−rSj ;N (a) = n]

+CF
∑n

j=1
γjE[e−rSj ;N (a) = n]

+CAe
−raπnHn(a). (4.15)

Substituting Eq (4.15) into Eq (4.14) we get the following equation involving double
summations.

E[Ce−rT ] = CM
∑∞

n=1

∑n

j=1
βjE[e−rSj ;N (a) = n]

+CF
∑∞

n=1

∑n

j=1
γjE[e−rSj ;N (a) = n]

+CA
∑∞

n=0
e−raπnHn(a).

= CM
∑∞

j=1
βj
∑j

n=1
E[e−rSj ;N (a) = n]

+CF
∑∞

j=1
γj
∑j

n=1
E[e−rSj ;N (a) = n]

+CA
∑∞

n=0
e−raπnHn(a). (4.16)

= CM
∑∞

j=1
βjE[e−rSj ;N (a) ≥ j]

+CF
∑∞

j=1
γjE[e−rSj ;N (a) ≥ j]

+CA
∑∞

n=0
e−raπnHn(a). (4.17)

E[Ce−rT ] = CM
∑∞

j=1
βjE[e−rSj ;Sj ≤ a]

+CF
∑∞

j=1
γjE[e−rSj ;Sj ≤ a]

+CA
∑∞

n=0
e−raπnHn(a). (4.18)
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4.2.1 Cost Rate in Terms of Sj
The third term in equation (4.18) can be simplified in terms of Sj as follows

∑∞

n=1
πnHn(a) =

∑∞

n=1
(1−

∑n

j=1
αj)P (N (a) = n)

=
∑∞

n=1
P (N (a) = n)−

∑∞

j=1

∑∞

n=j
αjP (N (a) = n)

= P (S1 ≤ a)−
∑∞

j=1
αjP (Sj ≤ a). (4.19)

Finally we obtain,

E[Ce−rT ] = CM
∑∞

j=1
βjE[e−rSj ;Sj ≤ a]

+CF
∑∞

j=1
γjE[e−rSj ;Sj ≤ a]

+CAe
−ra
(
P (S1 ≤ a)−

∑∞

j=1
αjP (Sj ≤ a)

)
. (4.20)

=
∑∞

j=1

(
CMβj + CFγj

)
E[e−rSj ;Sj ≤ a]

+ CAe
−ra
(
P (S1 ≤ a)−

∑∞

j=1
αjP (Sj ≤ a)

)
. (4.21)

Taking in this formula CA = CM = CF = 1 and βj + γj = αj, we get after
simplification

E[e−rT ] = e−ra
(
P (S1 ≤ a)−

∑∞

j=1
αjP (Sj ≤ a)

)
+
∑∞

j=1
αjE[e−rSj ;Sj ≤ a]

(4.22)

Using equation 4.12, from the above calculations it follows that the long-term ex-
pected equivalent average discounted cost is given as

Q(r) = r

∑∞
j=1

(
CMβj + CFγj

)
E[e−rSj ;Sj ≤ a] + CAe

−ra
(
P (S1 ≤ a)−∑∞j=1 αjP (Sj ≤ a)

)

1− e−ra
(
P (S1 ≤ a)−∑∞j=1 αjP (Sj ≤ a)

)
−∑∞j=1 αjE[e−rSj ;Sj ≤ a]

(4.23)
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4.2.2 Cost Rate in Terms of Hn

The term E[e−rSj ;Sj ≤ a] can be evaluated in terms of its distribution Fj of Sj as

E[e−rSj ;Sj ≤ a] =

∫ a

0

e−rxdFj(x) = e−raFj(a) +

∫ a

0

Fj(x)re−rxdx (4.24)

= e−ra(
∑∞

i=j
Hi(a)) +

∫ a

0

(
∑∞

i=j
Hi(x))re−rxdx

=
∑∞

i=j

{
e−raHi(t) +

∫ a

0

Hi(t)re
−rxdx

}
(4.25)

E[Ce−rT ] = CA e
−ra
∑∞

i=0
πiHi(a)

+
∑∞

j=1
(CMβj + CFγj)

∑∞

i=j

{
e−raHi(a) +

∫ a

0

Hi(x)re−rxdx

}

= CA e
−ra
∑∞

i=0
πiHi(a)

+
∑∞

i=1

∑i

j=1
(CMβj + CFγj)

{
e−raHi(a) +

∫ a

0

Hi(x)re−rxdx

}

= CA e
−ra
∑∞

i=0
πiHi(a)

+
∑∞

i=1
(CMBi + CFCi)

{
e−raHi(a) +

∫ a

0

Hi(x)re−rxdx

}

Rearranging the terms we can also write

E[Ce−rT ] = CAe
−raH0(a) + e−ra

∑∞

n=1
(CAπn + CMBn + CFCn)Hn(a)

+
∑∞

n=1
(CMBn + CFCn)

∫ a

0

Hn(x)re−rxdx.

(4.26)

This formula can be simplified by taking C0 = CA = CM and CF = C0 + δF ,

E[Ce−rT ] = e−ra(C0 + δF
∑∞

n=1
CnHn(a))

+
∑∞

n=1
(C0Bn + CFCn)

∫ a

0

Hn(x)re−rxdx. (4.27)

Substituting C0 = CF = 1 in equation 4.27 we get

E[e−rT ] = e−ra +
∑∞

n=1
(1− πn)

∫ a

0

Hn(x)re−rxdx

= 1−
∑∞

n=0
πn

∫ a

0

Hn(x)re−rxdx. (4.28)
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From the above calculations it follows that the long-term expected equivalent av-
erage discounted cost in terms of Hn is given as

Q(r) = r

CA e
−ra∑∞

i=0 πiHi(a) +
∑∞

i=1(CMBn + CFCn)

{
e−raHi(t) +

∫ a
0
Hi(t)re

−rxdx

}

∑∞
n=0 πn

∫ a
0
Hn(x)re−rxdx.

(4.29)

The expected length of the renewal cycle can be derived by differentiating equation
4.28 with respect to r and then substituting r = 0:

E[T ] =
∞∑

n=0

πn

∫ a

0

Hn(x)dx. (4.30)

4.3 General Expression for Cost Rate

(Without Discounting)

As discussed before, there are three possible ways for the renewal of a structure
at time T: PM when zM ≤ Z(T ) < zF , replacement when T = a, and CM when
Z(T ) ≥ zF . The expected length of the renewal cycle is given as

E(T ) =
∞∑

j=0

πj

∫ a

0

Hj(x) dx.

The expected cost incurred in a renewal cycle is simply a product of probabilities
of the three possible renewal actions with the associated costs:

E(C) = CA PA + CM PM + CF PF (4.31)

= CA

{
1−

∑∞

j=1
αj Fj(a)

}
+ CM

{∑∞

j=1
βj Fj(a)

}
+ CF

{∑∞

j=1
γj Fj(a)

}

= CA +
∑∞

j=1
[CMβj + CFγj − CAαj]Fj(a). (4.32)
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Assuming that C0 = CM = CA andCF = C0 + δF , we get

E(C) = C0 +
∑∞

j=1
[C0 βj + C0 γj − (C0 + δF )αj]Fj(a).

= C0 +
∑∞

j=1
[C0(βj + γj − αj) + δF γj Fj(a).

= C0 + δF
∑∞

j=1
γj Fj(a)

= C0 + δF
∑∞

j=1
γj
∑∞

i=j
Hi(a)

= C0 + δF
∑∞

i=1

∑i

j=1
γj Hi(a)

= C0 + δF
∑∞

i=1
CiHi(a). (4.33)

The asymptotic cost rate Q can now be obtained by substituting the values of E(C)
and E(T ).

Q =
C0 + δF

∑∞
i=1 CiHi(a)∑∞

j=0 πj
∫ a

0
Hj(x) dx

(4.34)

It is also possible to express Q in terms of the distribution functions Fj of the
occurrence times Sj of the shocks.

Q =
C0 + δF

∑∞
i=1 γi Fi(a)

∫ a
0
H0(x) dx+

∑∞
j=1

(
1−∑j

i=1 αi

)∫ a
0
Hj(x) dx

=
C0 + δF

∑∞
i=1 γi Fi(a)∫ a

0
H0(x) dx+

∑∞
j=1

∫ a
0
Hj(x) dx−∑∞j=1

∑j
i=1 αi

∫ a
0
Hj(x) dx

=
C0 + δF

∑∞
i=1 γi Fi(a)

a−∑∞i=1

∑∞
j=i αi

∫ a
0
Hj(x) dx

=
C0 + δF

∑∞
i=1 γi Fi(a)

a−∑∞i=1 αi
∫ a

0

∑∞
j=i Hj(x) dx

=
C0 + δF

∑∞
i=1 γi Fi(a)

a−∑∞i=1 αi
∫ a

0
Fi(x) dx

(4.35)

These expressions are useful if the shock process is a renewal process, i.e. inter-
occurrence times of shocks are iid
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4.4 Without Age Replacement

Consider the simple condition based maintenance strategy in which the system
is renewed preventively as soon as Z(t) exceeds a maintenance threshold value
zM , zM < zF , without age replacement. In this case a renewal cycle ends if the
total damage exceeds the PM level zM . We have

(T,C) =

{
(Sj, cM) on APMj
(Sj, cF ) on ACMj

In order to derive the asymptotic cost rate Q (i.e cost per unit time) and the
long term expected equivalent average cost per unit time, a number of expectations
have to be evaluated:

4.4.1 Cost Rate in Terms of Sj

E(Ce−rT ) = E[E(Ce−rT |C)]

=
∑∞

j=1
E[CMe

−rSj ]βj +
∑∞

j=1
E[CF e

−rSj ]γj

=
∑∞

j=1
(CMβj + CFγj)E(e−rSj) (4.36)

and substituting C ≡ 1, we get

E(e−rT ) =
∞∑

j=1

αjE(e−rSj) (4.37)

and substituting r = 0 yields

E(C) =
∞∑

j=1

(CMβj + CFγj) (4.38)

The expected length of the renewal cycle can be derived by differentiating Eq (4.37)
with respect to r and then substituting r = 0

E(T ) =
∞∑

j=1

αjE(Sj). (4.39)
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It follows that asymptotic cost rate per unit time is given as

Q =

∑∞
j=1(CMβj + CFγj)∑∞

j=1 αjE(Sj)
(4.40)

And the asymptotic cost rate per unit time considering the discount factor is given
as

Q(r) =
r
∑∞

j=1(CMβj + CFγj)E(e−rSj)

1−∑∞j=1 αjE(e−rSj)
. (4.41)

These formulas for Q and Q(r) are calculated in terms of the occurrence times
of the shocks. When the shock process is a renewal process we can simplify formula
(4.40) and (4.41). In this case Sj = X1 + · · · + Xj where (Xj) is the iid sequence
of inter-occurrence times and we can substitute E(Sj) = jm and E(e−rSj) = ωj,
where m = E(X1) and ω = E(e−rX1)

4.4.2 Cost Rate in Terms of Hn

We now continue with expressions for Q and Q(r) in terms of the probability
distribution of the total number of shocks. Using integration by parts, we get

E(e−rSj) =

∫ ∞

0

e−rx dFj(x) = [e−rxFj(x)]∞0 + r

∫ ∞

0

e−rxFj(x) dx

= r
∞∑

j=1

∫ ∞

0

Hi(x)e−rxdx (4.42)

and differentiating with respect to r and substituting r = 0 we get

E(Sj) =
∞∑

i=j

∫ ∞

0

Hi(x) dx (4.43)

∑∞

j=1
αjE(e−rSj) =

∑∞

j=1
αjr

∑∞

i=j

∫ ∞

0

Hi(x)e−rx dx

= r
∑∞

i=1

∑i

j=1
αi

∫ ∞

0

Hi(x)e−rx dx

= r
∑∞

i=1
Ai
∫ ∞

0

Hi(x)e−rx dx. (4.44)
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It follows that

Q =

∑∞
j=1(CMβj + CFγj)∑∞
i=1Ai

∫∞
0
Hi(x) dx

, (4.45)

and

Q(r) =
r2
∑∞

i=1(CMBi + CFCi)
∫∞

0
Hi(x)e−rx dx

1− r∑∞i=1Ai
∫∞

0
Hi(x)e−rx dx

(4.46)

4.5 Specific Models

In this section we analyze specific cases of PM policy as analyzed in Quian et al [2]
and van der Weide et al [9] Following are the two proposed models

1. Model 1 : The system undergoes PM at age a or at the occurrence of first
shock S1 producing damage Y1, whichever occurs first. This means that the
PM level, zM=0. This type of model could be used in nuclear power plants
where damage beyond certain level could be catastrophic.

2. Model 2 : The system undergoes PM at time a or CM if the total damage
exceeds the failure level zF , whichever occurs first. This means that the PM
level zM = zF . This type of model can be used where failures do not cause
much difference in production or the failures are not catastrophic in nature.

4.5.1 Model 1

In this case PM occurs at the first shock or at the age a. This means that zM = 0
implies that P (Bn) = πn = P (Dn ≤ zM) = 0 for all n ≥ 1 and π0 = 1, since each
shock produces a finite amount of damage. There can be either no shock or one
shock before the age a is reached. Hence the possible values for n are 0 and 1. Note
that H0(x) +H1(x) = 1.
From equation 4.27,

E(Ce−rT ) = e−ra(C0 + δF

∞∑

n=1

CnHn(a)) +
∞∑

n=1

(C0Bn + CFCn)

∫ a

0

Hn(x)re−rxdx.

(4.47)
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To Simplify this expression, we need to evaluate the value of αj, βj, and γj
Recall 




αj = P (Aj) = P (Dj−1 ≤ zM < Dj);
βj = P (APMj ) = P (Aj

⋂{Dj ≤ zF});
γj = P (ACMj ) = P (Aj

⋂{Dj > zF}).
Hence we get α1 = 1, since zM = 0 , β1 = G(zF ) and γ1 = 1− G(zF ). Rest of the
terms will be zero.
Now,

E(Ce−rT ) = e−ra(C0 + δF
∑∞

n=1
CnHn(a))

+
∑∞

n=1
(C0Bn + CFCn)

∫ a

0

Hn(x)re−rxdx.

= e−ra(C0 + δFC0H0(a) + δFC1H1(a))

+(C0B1 + CFC1)

∫ a

0

H1(x)re−rxdx.

= e−ra(C0 + δF Ḡ(zF )(1−H0(a)))

+(C0G(zF ) + (C0 + δF )Ḡ(zF ))

∫ a

0

(1−H0(x))re−rxdx.

= C0(1−
∫ a

0

H0(x)re−rx dx)

+δF Ḡ(zF )[1− e−raH0(a)−
∫ a

0

H0(x)re−rx dx] (4.48)

From Eq (4.28), We have

E(e−rT ) = 1−
∑∞

n=0
πn

∫ a

0

Hn(x)re−rx dx.

= 1−
∫ a

0

H0(x)re−rx dx (4.49)

Hence the expected long term discounted value of the expected equivalent average
cost rate is given as

Q(a, r) =
rE(Ce−rT )

1− E(e−rT )

where E(Ce−rT ) and E(e−rT ) are given by equations 4.48 and 4.49.
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4.5.2 Model 2

In this case the system undergoes maintenance at age a or when the damage exceeds
zF . That means zM = zF . Hence in this case we have

• βj = P (APMj ) = P (Aj
⋂{Dj ≤ zF}) = 0, since it is not possible to have

{zM < Dj} and {Dj ≤ zM} simultaneously.

• αj = P (Aj) = P (APMj ) + P (ACMj ) = βj + γj = γj

• πj = Gj(zM) = Gj(zF )

Now,

E(Ce−rT ) = e−ra[C0 + δF
∑∞

n=0
CnHn(a)]

+
∑∞

n=1
(C0Bn + CFCn)

∫ a

0

Hn(x)re−rx dx

= e−ra[C0 + δF
∑∞

n=0
(
∑n

i=1
γi)Hn(a)]

+
∑∞

n=1
(CF (

∑n

i=1
γi))

∫ a

0

Hn(x)re−rx dx

= e−ra[C0 + δF
∑∞

n=0
(1− πn)Hn(a)]

+
∑∞

n=1
(CF (1− πn))

∫ a

0

Hn(x)re−rx dx

= e−ra[C0 + δF ]− e−raδF
∑∞

n=0
πnHn(a) + CF

∫ a

0

re−rx dx

−CF
∑∞

n=1
πn

∫ a

0

Hn(x)re−rx dx

= CF

(
1−

∑∞

n=0
πn

∫ a

0

Hn(x)re−rx dx

)

−δF e−ra
∑∞

n=0
πnHn(a) (4.50)

And from equation 4.28, we get

E(e−rT ) = 1−
∑∞

n=0
Gj(zF )

∫ a

0

Hj(x)re−rx dx (4.51)

The expected equivalent average cost rate can be found by substituting the value
of E(e−rT ) and E(Ce−rT ) in equation (4.12)

39



4.6 Summary

General expression for asymptotic cost rate for maintenance is derived with and
without considering discount factor. These cost rate’s are calculated in terms of
occurrence time of shocks as well as in terms of number of shocks. Expression for
cost rate is function of damage caused by shocks, preventive level, failure level,
and replacement age. Expression are also derived for case of replacement without
considering age replacement and couple of other models.
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Chapter 5

Applications

5.1 Introduction

For the analytical results derived in chapter 4, numerical examples of mainte-
nance cost optimization are presented to illustrate the proposed model. van der
Weide et al, [9] and Qian et al, [2] modelled shock process as Poisson process and
exponential damage distribution. However, van der Weide et al, [9] has given more
examples involving discount factor which have been discussed in this chapter. The
optimization variables are the PM damage threshold (zM) and the replacement age
(a). Also in the case where age replacement is not considered, shock process is taken
with Weibull inter-occurrence time. In all the derivations cost due to preventive
maintenance and cost due to age replacement is taken to be the same. Sections 5.3
and 5.4 give the expression for most general cases. Section 5.5 describes the few
cases where age replacement is not considered. In section 5.6, couple of specific
models are considered.

5.2 Exponential Damage Distribution

This section is about the analysis of damage process when the shock follows expo-
nential distribution is given as

G(x) = 1− e−λx, x ≥ 0
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First we calculate the distribution of the sum Dk of k damage increments. The
general expression for the distribution Dk is given by

P (Dk ≤ x) =

∫ x

0

G(k−1)(x− y) dG(y) for k ≥ 1

First observe that

P (D1 ≤ x) = G(x) = 1− e−λx

P (D2 ≤ x) = G(2)(x) = 1−
1∑

i=0

(λx)i

i!
e−λx (5.1)

P (Dk+1 ≤ x) = G(k+1)(x) = 1−
k∑

i=0

(λx)i

i!
e−λx (5.2)

We proceed with calculation of αj, βj, γj andπj, which we need for the analysis of
damage process.

βj =

∫ zM

0

[
G(zF − x)−G(zM − x)

]
dG(j−1)(x)

=

∫ zM

0

(1−G(zM − x))dGj−1(x)−
∫ zM

0

(1−G(zF − x))dG(j−1)(x) (5.3)

In order to proceed further we evaluate the integral I =

∫ zM

0

[
1−G(ξ−x)

]
dGj−1(x).

I =

[
e−λ(ξ−x)G(j−1)(x)

]zM

0

−
∫ zM

0

de−λ(ξ−x)

dx
G(j−1)(x)dx.

= e−λ(ξ−zM ) −
j−2∑

i=0

(λzM)i

i!
e−λξ − λe−λξ

[ ∫ zM

0

eλx
(

1−
j−2∑

i=0

(λx)i

i!
e−λx dx

)]

=
(λzM)j−1

(j − 1)!
(5.4)

42



On substituting this value we get

βj =
(λzM)j−1

(j − 1)!

(
e−λzM − e−λzF

)
(5.5)

αj = Gj−1(zM)−Gj(zM) =

[
1−

j−2∑

i=0

(λzM)i

i!
e−λzM

]
−
[

1−
j−1∑

i=0

(λzM)i

i!
e−λzM

]

=
(λzM)(j−1)

(j − 1)!
e−λzM (5.6)

γj = αj − βj =
(λzM)j−1

(j − 1)!
e−λzM −

[
(λzM)(j−1)

(j − 1)!

(
e−λzM − e−λzF

)]

=
(λzM)(j−1)

(j − 1)!
e−λzF (5.7)

πj = 1−
j∑

i=1

αi = Gj(zM)

= 1−
j−1∑

i=0

(λzM)i

i!
e−λzM (5.8)

= 1−
n∑

i=0

αi = 1−An (5.9)

Bn =
n∑

j=1

βj =
n∑

j=1

(λzM)j−1

(j − 1)!

(
e−λzM − e−λzF

)

=
n∑

i=1

(λzM)j−1

(j − 1)!
e−λzM

(
1− e−λ(zF−zM )

)

=
(
1− e−λ(zF−zM )

)
An (5.10)

Cn =
n∑

i=1

γi =
n∑

i=1

(λzM)i−1

(i− 1)!
e−λzF

= e−λ(zF−zM )

n∑

i=1

(λzM)i−1

(i− 1)!
e−λzM (5.11)

= e−λ(zF−zM )An (5.12)
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Define the sums

∑
1 =

∞∑

n=1

AnHn(a) (5.13)

∑
2 =

∞∑

n=1

An
∫ a

0

Hn(x)dx (5.14)

∑
3 =

∞∑

n=1

An
∫ a

0

Hn(x) e−rxdx (5.15)

5.3 General Expression for Cost Rate

(Without Discounting)

From equation (4.34) we get the following expression for asymptotic cost rate

Q =
C0 + δF

∑∞
i=1 CiHi(a)∑∞

j=0 πj
∫ a

0
Hj(x) dx

(5.16)

It follows from the above calculations that

E(C) = C0 + δF

∞∑

i=1

CiHi(a)

= C0 + δF

∞∑

i=1

e−λ(zF−zM )AiHi(a)

= C0 + δF e
−λ(zF−zM )

∑
1 (5.17)

E(T ) =
∞∑

j=0

πj

∫ a

0

Hj(x) dx

=
∞∑

j=0

(1−Aj)
∫ a

0

Hj(x) dx

= a−∑2 (5.18)

Hence the asymptotic non-discounted cost-rate can be given as

Q =
C0 + δF e

−λ(zF−zM )
∑

1

a−∑2

(5.19)
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5.3.1 Homogenous Poisson process

When the shock follows homogenous Poisson process

Hi(a) = P (N(a) = i) =
(µa)ie−µa

i!

Ai =
i∑

j=1

αj =
i∑

j=1

(λzM)(j−1)

(j − 1)!
e−λzM

=
i−1∑

j=0

(λzM)j

j!
e−λzM

∴ Q(a) =
C0 + δF e

−λ(zF−zM )
∑∞

i=1

(∑i−1
j=0

(λzM )j

j!
e−λzM

)
Hi(a)

a−∑∞i=1

(∑i−1
j=0

(λzM )j

j!
e−λzM

) ∫ a
0
Hi(x)dx.

(5.20)

Now in order to proceed further we need to evaluate the integral

Ii(a) =

∫ a

0

Hi(x) dx =

∫ a

0

(µx)ie−µx

i!
dx =

µi

i!

∫ a

0

xie−µxdx

=
µi

i!

{[−xie−µx
µ

]a

0

+

∫ a

0

ixi−1e−µx

µ
dx

}

= −a
i
H(i−1)(a) + I(i−1)(a) (5.21)

I0(a) =

∫ a

0

H0(x) dx =

∫ a

0

e−µx dx

= − 1

µ
[e−µx]a0 =

1− e−µa
µ

(5.22)

Considering Q as a function of a we want to see how the cost rate varies with age.

Q(a) =
C0 + δF e

−λ(zF−zM )
∑∞

i=1

(∑i−1
j=0

(λzM )j

j!
e−λzM

)
Hi(a)

a−∑∞i=1

(∑i−1
j=0

(λzM )j

j!
e−λzM

) ∫ a
0
Hi(x)dx.

(5.23)

To begin with consider C0 = 20, zM = 28, zF = 30, λ = 0.5.

Q(a) =
20 + δF e

−1
∑∞

i=1

(∑i−1
j=0

(14)j

j!
e−14

)
Hi(a)

a−∑∞i=1

(∑i−1
j=0

14j

j!
e−14

) ∫ a
0
Hi(x)dx.

(5.24)
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Figure 5.1: General Cost Rate for HPP without Discounting

When the cost due to corrective maintenance as compared to preventive main-
tenance is high (i.e. δF is high), as it happens in the case of nuclear power plants, it
would be reasonable to decrease preventive damage level as the following diagrams
show, Consider C0 = 20, δF = 120, zF = 30, λ = 0.5.
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Figure 5.2: General Cost Rate for HPP without Discounting

When the maintenance cost due to failure level is very high, it would be natural
to decrease the PM level, as the above graph shows. Decreasing zM from 28 to 26.5
decreases the cost rate. However further decrease in zM increases the cost rate as
decrease in zM implies frequent repair.

5.3.2 Non-Homogeneous Poisson process

When the shock follows non-homogeneous Poisson process with µ(t) = 2t

Hi(a) = P (N (a) = i) =
a2ie−a

2

i!
(5.25)

Q(a) =
C0 + δF e

−λ(zF−zM )
∑∞

i=1

(∑i−1
j=0

(λzM )j

j!
e−λzM

)
Hi(a)

a−∑∞i=1

(∑i−1
j=0

(λzM )j

j!
e−λzM

) ∫ a
0
Hi(x)dx.

(5.26)

To get recursive relation for Ii =
∫ a

0
Hi(x) dx consider following equation

d

dx
(x2i+1e−x

2

) = (2i+ 1)x2ie−x
2

+ x2i+1e−x
2

(−2x)
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∴ 2

∫ a

0

x2(i+1)e−x
2

dx = (2i+ 1)

∫ a

0

x2ie−x
2

dx− a2i+1e−a
2

∴ Ii+1(a) =
2i+ 1

2(i+ 1)
Ii(a)− a

2(i+ 1)
Hi(a)

or Ii(a) =
2i− 1

2i
Ii−1(a)− a

2i
H(i−1)(a)

and I0(a) =

∫ a

0

e−x
2

dx =

√
π

2
erf(a) (5.27)

As discussed in the homogeneous case we want to see how the cost rate varies with
age in non-homogeneous case. Consider C0 = 20, zM = 28, zF = 30, λ = 0.5
On substituting these values we get

Q(a) =
20 + δF e

−1
∑∞

i=1

(∑i−1
j=0

(14)j

j!
e−14

)
Hi(a)

a−∑∞i=1

(∑i−1
j=0

14j

j!
e−14

) (
2i−1

2i
Ii−1(a)− a

2i
H(i−1)(a)

) (5.28)
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Figure 5.3: General Cost Rate for NHPP without Discounting
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Hence for µ(t) = 2t it is seen that minimum expected cost rate remains almost
the same for different values of δF . However, the difference increase with increase
in the value of a.

5.4 General Expression for Cost Rate

(With Discounting)

From equation (4.27) and (4.28)

E(Ce−rT ) = e−ra
(
C0 + δF

∞∑

n=1

CnHn(a)

)
+
∞∑

n=1

(C0An + δFCn)

∫ a

0

Hn(x)re−rx dx

= e−ra
(
C0 + δF

∞∑

n=1

e−λ(zF−zM )AnHn(a)

)

+r

[
C0

∞∑

n=0

An
∫ a

0

Hn(x)e−rx dx+ δF

∞∑

n=1

Cn
∫ a

0

Hn(x) e−rx dx

]

= e−ra
(
C0 + δF e

λ(zF−zM )

∞∑

n=1

AnHn(a)

)

+r

[
C0

∑
3 + δF

∞∑

n=1

e−λ(zF−zM )An
∫ a

0

Hn(x)e−rxdx

]

= e−ra
(
C0 + δF e

−λ(zF−zM )
∑

1

)
+ r

[
C0 + δF e

−λ(zF−zM )
]∑

3 (5.29)

E[e−rT ] = 1−
∞∑

n=0

πn

∫ a

0

Hn(x)re−rxdx

= 1−
∞∑

n=0

(1−An)

∫ a

0

Hn(x)e−rxdx

= 1−
[∫ a

0

e−rx dx−∑3

]

= 1−
[

1− e−ra
r

−∑3

]
(5.30)
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Expected equivalent average discounted cost rate per unit time Q(r), is given by

Q(r) =
r E(Ce−rT )

1− E(e−rT )

=
r
[
e−ra

(
C0 + δF e

−λ(zF−zM )
∑

1

)
+ r

(
C0 + δF e

−λ(zF−zM )
)∑

3

]

1−
[
1−

{
1−e−ra

r
−∑3

}]

=
r2
[
e−ra

(
C0 + δF e

−λ(zF−zM )
∑

1

)
+ r

(
C0 + δF e

−λ(zF−zM )
)∑

3

]

{1− e−ra − r∑3}
(5.31)

One gets relationship between age and expected cost rate similar to the one
calculated without considering discount factor using proper recursive relation for
calculating

∑
3. Now in order to calculate the value of Q(r), we need to simplify

the expression for
∑

3

When Hn(x) is a Homogeneous Poisson Process with parameter µ.

∑
3 =

∞∑

n=1

An
∫ a

0

Hn(x) e−rxdx =
∞∑

n=1

AnIn(a) (5.32)

In(a) =

∫ a

0

Hn(x) e−rxdx =

∫ a

0

(µx)n

n!
e−µx e−rxdx

= −µa
n

e−ra

µ+ r
Hn−1(a) +

µ

µ+ r
In−1(a) (5.33)

I0(a) =

∫ a

0

H0(x)e−rx dx =

∫ a

0

e−µx−rx dx

=

[
−e
−(µ+r)x

µ+ r

]a

0

=
1− e−(µ+r)a

µ+ r
(5.34)

When Hn(x) is Non-Homogeneous Poisson Process with parameter 2x.

∑
3 =

∞∑

n=1

An
∫ a

0

Hn(x) e−rxdx =
∞∑

n=1

AnIn(a)

In(a) =

∫ a

0

Hn(x)e−rx dx =

∫ a

0

e−x
2
x2n

n!
e−rx dx

=
1

n!2

[
−a2n−1e−rae−a

2 − rI(2n− 1) + (2n− 1)I(2n− 2)
]

(5.35)
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I0(a) =

∫ a

0

e−ry−y
2

dy

=

√
π

2
e(

r
2)

2 [
erf(a+

r

2
)− erf(

r

2
)
]

(5.36)

I1(a) =

∫ a

0

ye−ry−ry
2

dy

=
1

2

[
1− e−ra−a2

]
− r

2
I(0) (5.37)
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Figure 5.4: General Cost Rate with Discounting

The parameter used for investigating the variation of cost rate with age in the
above case are C0 = 20, zM = 28, zF = 30, λ = 0.5, r = 0.04

5.5 Without Age Replacement

As Discussed in the previous chapter, in this case the system is renewed preventively
as soon as Z(t) exceeds a maintenance threshold value zM , without age replacement.
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5.5.1 Cost Rate in Terms of Hn

The expression for Q and Q(r) in terms of the probability distribution of the number
of shocks, using equation (4.45) and (4.46) is given by

Q =

∑∞
j=1(CMβj + CFγj)∑∞
i=1Ai

∫∞
0
Hi(x) dx

, (5.38)

Q(r) =
r2
∑∞

i=1(CMBi + CFCi)
∫∞

0
Hi(x)e−rx dx

1− r∑∞i=1Ai
∫∞

0
Hi(x)e−rx dx

(5.39)

For HPP, using recursive relations similar to equations (5.21) and (5.33) we calculate
the integrals involved in equations (5.38) and (5.39).
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Figure 5.5: HPP Shock Process
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For NHPP, using recursive relations similar to equations (5.27) and (5.35) in-
tegrals involved in equations (5.38) and (5.39) can be simplified to obtain results
numerically. Parameters for Figures 5.5 and 5.6 are C0 = 20, CF = 100, δF =
80, zF = 30, r = 0.04, µ = 4.06
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Figure 5.6: NHPP Shock Process
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5.5.2 Cost Rate in Terms of Sj
Asymptotic non-discounted cost rate using equation. (4.40) is given by

Q =

∑∞
j=1 (CMβj + CFγj)∑∞

j=1 αjE(Sj)
(5.40)

Asymptotic discounted rate using equation. (4.41) is given by

Q(r) =
r
∑∞

j=1 (CMβj + CFγj)E(e−rSj)

1−∑∞j=1 αjE(e−rSj)

=
r
∑∞

j=1 (C0(βj + γj) + δFγj)E(e−rSj)

1−∑∞j=1 αjE(e−rSj)

=
r
[
C0

∑∞
j=1 αjE(e−rSj) + δF

∑∞
j=1 γjE(e−rSj)

]

1−∑∞j=1 αjE(e−rSj)
(5.41)

When Sj is a renewal process with inter-arrival times Xi, the expressions for equa-
tions 5.40 and 5.41 can be further simplified.

For asymptotic non-discounted cost rate

Numerator =
∞∑

j=1

[CMβj + CFγj] =
∞∑

j=1

C0(βj + γj) + δFγj

= C0 + δF e
−λ(zF−zM ) (5.42)

Denominator =
∞∑

j=1

αjE(Sj) =
∞∑

j=1

αjE(X1 + . . .+Xj)

=
∞∑

j=1

αj(jm) =
m

λzM

∞∑

j=1

j2 (λzM)j

j!
e−λzM

= m(λzM + 1) (5.43)

Where m = E(X)
Substituting equations 5.42 and 5.43 in 5.40,

∴ Q =
C0 + δF e

−λ(zF−zM )

m(λzM + 1)
(5.44)
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For asymptotic discounted cost rate

Numerator = r

[
C0

∞∑

j=1

αj
(
E(e−rX1)

)j
+ δF

∞∑

j=1

γj
(
E(e−rX1)

)j
]

= r
[
C0 + δFωe

−λ(zF−zM )
]
ωe−λzM (1−ω) (5.45)

Denominator = 1−
∞∑

j=1

αjE(e−rSj)

= 1− ωe−λzM (1−ω) (5.46)

Where ω = E(e−rX)
Substituting equations (5.45) and (5.46) in (5.41),

∴ Q(r) =
r
[
C0 + δFωe

−λ(zF−zM )
]
ωe−λzM (1−ω)

1− ωe−λzM (1−ω)
(5.47)

Example (1)
Here we consider the example where shock process is renewal with Weibull inter-
occurrence times. Probability density of Weibull distribution with scale parameter
θ, and shape parameter α is given by

f(x; θ, α) =
α

θ
(
x

θ
)α−1e−(x

θ
)α

For θ = 3 and α = 2

f(x; 3, 2) =
2

3
(
x

3
)e−(x

3
)2

m = E[X] =θ Γ(1 +
1

α
) = 3 Γ(1 +

1

2
) = 2.6587

ω = E[e−rX ] = 0.8776
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Figure 5.7: Variation of cost rate with zM

The parameters used in the above example are C0 = 20, δF = 80, λ = 0.5, zF =
30, r = 0.05

Example (2)
Now consider the example where shock process is renewal whose inter-occurrence
times are Chi-square distributed. Probability density of Chi-square distribution
with k degrees of freedom is given by

f(x; k) =

{ 1
2k/2Γ(k/2)

x(k/2)−1e−x/2 for x > 0,

0 for x ≤ 0

For k = 1

f(x; k) =

{ 1
21/2Γ(1/2)

x−(1/2)e−x/2 for x > 0,

0 for x ≤ 0

m = E[X] = k = 1

ω =E[e−rX ] = (1− 2r)−1/2
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Figure 5.8: PDF of χ2 distribution with k = 1
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Figure 5.9: Variation of cost rate with zM

Again,the parameters used in the above example are C0 = 20, δF = 80, λ =
0.5, zF = 30, r = 0.05. Most often, inter-arrival times of renewal shock process is
not so less initially. So it is not practical to consider χ2 distribution with 1 degree of
freedom. Figure (5.8) shows probability density of χ2 distributed inter-occurrences
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times with one degree of freedom. Following is χ2 probability distribution with five,
ten and fifteen degrees of freedom, which is more reasonable assumption.
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Figure 5.10: PDF of χ2 distribution
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Figure 5.11: Variation of cost rate with zM

Figure (5.11) displays the variation of cost rate with zM when inter-occurrence
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times are χ2 distributed with five degrees of freedom. For this case there is signifi-
cant difference between discounted and non-discounted cost rate.

Example (3)
Consider the example where shock process is renewal whose inter-occurrence times
follow Erlang distribution. Probability density of Erlang distribution with shape
parameter k and scale parameter θ is given by

f(x, k, θ) =
xk−1e−

x
θ

θk(k − 1)!
x ≥ 0, θ > 0

As in the case with χ2 distribution, it is more practical to consider scale parameter
2 and shape parameter 3 for the Erlang distribution, as it often fits practical data
better than other parameters.

m = E[X] = kθ = 6

ω = E[e−rX ] = (1− rθ)−k = (1− 0.05× 2)−2 = 1.2346
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Figure 5.12: PDF of Erlang distribution

Figure (5.12) indicates the probability density of inter occurrence times. Figure
(5.13) indicates the cost rate, when the inter arrival times follow Erlang distribution.
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Figure 5.13: Variation of cost rate with zM

5.6 Specific Maintenance Models

In this section we analyze the three maintenance models introduced in the previous
chapter. We make the following assumptions

1. The shock process N (t) is a non-homogeneous poisson process with intensity
function µ(t) = 2t, and

2. The damage size per shock is exponentially distributed with parameter λ > 0.

5.6.1 Model 1

Expected long term discounted value of the expected equivalent average cost rate
when PM occurs at the first shock or at the age a is given by (from equation (4.48)
and (4.49))

Q(a, r) = r
C0(1−

∫ a
0
H0(x)re−rx dx) + δF Ḡ(zF )[1− e−raH0(a)−

∫ a
0
H0(x)re−rx dx]∫ a

0
H0(x)re−rx dx

=
C0(1− r

∫ a
0
H0(x)e−rx dx) + δF Ḡ(zF )[1− e−raH0(a)− r

∫ a
0
H0(x)e−rx dx]∫ a

0
H0(x)e−rx dx

(5.48)
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Where
∫ a

0

H0(y)e−ry dy =

∫ a

0

e−ry−y
2

dy

=

√
π

2
e(

r
2)

2 [
erf(a+

r

2
)− erf(

r

2
)
]

In this model we have only the age a as a decision variable. We choose a such
that the long term discounted value of the expected equivalent average cost rate is
minimized. Following figure illustrates the dependence of the long-term discounted
value of the expected equivalent average cost rate on the age a. We took in this
example λ = 0.56, zF = 3 and C0 = 20.

Following figures demonstrate the change in expected equivalent average cost
rate with age a. Figure (5.14) illustrates change with different values of r (interest
rate), while Figure (5.15) illustrates change with different values of δF .
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Figure 5.14: PM occurs at the first shock or age a
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For all the values of r, minimum is observed at a = 0.875. The table below
summarizes the observations.

r = 0.04 r=0.08 r=0.12
Minimum value of Q(r) 54.0319 53.5317 53.0358
Mean cycle length for a =
0.875. (E(T ))

0.8120 0.8120 0.8120

Probability that no shock
occurs during (0, a], (H0(a))

0.465 0.465 0.465
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Figure 5.15: PM occurs at the first shock or age a
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5.6.2 Model 2

From equations (4.50) and (4.51), expected long term discounted value of the ex-
pected equivalent average cost rate when the maintenance occurs at failure or at
age a is given by

Q(a, r) = r
CF
(
1−∑∞n=0 πn

∫ a
0
Hn(x)re−rx dx

)
− δF e−ra

∑∞
n=0 πnHn(a)∑∞

n=0 G
j(zF )

∫ a
0
Hj(x)re−rx dx

(5.49)

The integral,
∫ a

0
Hj(x)re−rx dx can be calculated as in Eq (5.35).

Since the maintenance occurs at failure, zM = zF and hence

πn = 1−
n−1∑

i=0

(λzM)i

i!
e−λzM = 1−

n−1∑

i=0

(λzF )i

i!
e−λzF (5.50)
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Figure 5.16: PM occurs at failure or age a
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The parameters used in the performing the cost analysis of Model 2 are C0 =
20, λ = 0.56, zM = zF = 30, r = 0.04

5.7 Conclusion

The maintenance cost rate can be optimized with respect to both zM and a. For
a specified zM , an optimal a can be found that would minimize the cost rate. The
global minimum of the cost rate is insensitive to the age replacement(a), and it
is the same as the minimum cost for only condition-based strategy. This suggests
that for minimizing the cost rate, a condition-based strategy will always supersede
age-based replacement. The proposed formulation can incorporate a general point
process as a shock process. For example, renewal process can be included in the
model. The derivation of discounted cost rate provides more practical solutions to
the optimization of maintenance policies than those based on non-discounted cost
rate criterion.
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Chapter 6

Conclusions

6.1 Conclusion & Contributions

Stochastic process model remains the critical component in preventive maintenance
of engineering systems. The main purpose of this thesis is to study the maintenance
models of engineering systems. Detailed analysis of work done by Savits, T. H. [1]
and van der Weide et al [9] is done. In addition, detailed analysis has been done
for the case when the inter occurrence times follow Chi-Square and Erlang distri-
butions and the cost rate has been derived by considering the parameters which
give distribution that can fit empirical data. In chapter (2) common existing main-
tenance policies and relation between them have been discussed. These policies
can be used where failure is not catastrophic and preventive maintenance is not
required. However, the best among these common maintenance policies could be
implemented by calculating the cost rate as derived in detail. Very often it is not
possible to calculate cost rate for one maintenance policy. In that case, the cost re-
lationship as indicated by equations 2.15 and 2.20 could be implemented. Chapters
3, 4, & 5 show how maintenance policies can be optimized by suitable combination
of preventive maintenance and age replacement. General expressions and expres-
sions without age replacement of cost rate considering preventive maintenance, age
based replacement and cost replacement are discussed. Some commonly observed
specific cases have also been considered.
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6.2 Future Work

For the models discussed in the thesis, asymptotic discount cost is calculated
at the beginning of the cycle. Instead of considering the cost at the beginning of
cycle one can consider terminating stream of fixed payments over a specified period
of time. One can also work with several cases when cost is constant over time.
Because of mathematical convenience, most of the literature available today is on
exponential discounting. Some literature, as discussed in section (2.5) suggests
that other types of discounting may be appropriate to work with in several cases.
Damage distribution is take to be exponential in van der Weide et al, [9] and Qian
et al, [2]. However, one fails to evaluate integrals of the type (5.3) even for gamma
distribution. Different methods could be implemented for other distributions as
well.
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