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Abstract 

The fracture toughness of the zirconium alloy (Zr-2.5Nb) is an important parameter in determining 

the flaw tolerance for operation of pressure tubes in reactor. Fracture toughness data have been 

generated by performing rising pressure burst tests on sections of pressure tubes removed from 

operating reactors. The test data were used to generate a lower-bound fracture toughness curve, which 

is used in defining the operational limits of pressure tubes. The thesis presents a comprehensive 

statistical analysis of burst test data and develops a multivariate statistical model to relate toughness 

with material chemistry, mechanical properties, and operational history. The proposed model can be 

useful in predicting fracture toughness of specific in-service pressure tubes, thereby minimizing 

conservatism associated with a generic lower-bound approach. 
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Chapter 1 
Introduction 

1.1 Introduction  

The pressure tubes used in CANDU® reactors are fabricated from cold-worked Zr-2.5Nb and are a 

length of 6.3 m, with an inside diameter of 103 mm, and a wall thickness of 4.2 mm. During service, 

irradiation and deuterium ingress from the pressurized heavy water coolant reduces the fracture 

toughness of the pressure tube material. Periodic assessments of surveillance tubes are removed            

from the reactors and inspection are conducted to ensure that the tubes remain “fit-for-service” [1]. 

Currently, 106 burst tests have been performed on sections irradiated Zr 2.5Nb pressure tubes 

removed from operating reactors using the standardized method [3]. The measured values of Kc from 

a portion of these tests were used to generate a lower-bound curve, thereby defining the operational 

limits of pressure tubes. Such a conservative approach was deemed necessary due in part to the 

significant tube-to-tube variability in measured fracture properties. Previous studies have identified 

specific material characteristics that influence pressure tube fracture toughness, and the variability in 

the burst test results. The role of chlorine in the formation of primary void nucleation sites for 

fracture, for exampled , highlighted the importance of controlling the chemical composition and 

fabrication routes of pressure tubes [3, 5]. 

1.2 Objectives 

In the current study, a comprehensive multivariate statistical analysis of the burst test database is 

performed to correlate fracture toughness with relevant variables, such as material chemistry, 

mechanical properties and irradiation history. As a result, a significant portion of the burst test 

                                                      
® Canada Deuterium Uranium (CANDU) is a registered trademark of Atomic Energy of Canada Limited. 
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fracture toughness variability is addressed, and the statistical influences of the covariates are 

quantified.  As part of the analysis, predictive models for pressure tube fracture toughness are 

developed from the most significant covariates. 

The objective of this study is to develop an advanced multivariate statistical model to relate the 

fracture toughness with covariates such as material composition, mechanical properties and other 

parameters related to reactor in service conditions. To apply the regression procedure twelve 

independent variables have been taken.  

1.3 Thesis Organization 

The outline of the thesis is as follows. In Chapter two a description of the irradiated Zr-2.5Nb 

pressure tube material and burst test methodology is presented. In Chapter three a simple regression 

model is developed between lower bound for fracture toughness and test temperature. In Chapter four 

a description of the multivariate statistical techniques is presented followed by a multivariate analysis 

of data. The results from the multivariate analysis are then presented. In Chapter five stepwise 

regression analysis is performed. The result obtained from forward, backward and stepwise regression 

is compared and the best suitable model is considered. Finally, conclusion is presented in Chapter six. 
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Chapter 2 
Preliminary Analysis 

2.1 CSA Method to determine lower bound fracture toughness 

CAN/CSA-N285.4-94 describes an empirical equation to determine the lower-bound fracture 

toughness. 

For temperature less than or equal to 1500C, the lower-bound fracture toughness is given by 
 
 TKc 30.027 +=    mMPa                                        (D.13-1) 

   
 
and for temperature greater than 1500 C, the lower-bound fracture toughness is given by  
 
 72=cK       mMPa                                        (D.13-2) 

Where, 

Kc = fracture toughness mMPa , defined as the critical stress intensity factor at the onset of flaw 

instability,  

T = temperature, (0C) 

2.1.1 Statistically based fracture toughness 

For temperatures less than or equal to 1500C, the relation for the statistical based fracture toughness is 

given by 

 )exp( 1211 kckckcc TBAK ε++=  mMPa                     (D.13-3) 
Where, 

1cK  =   statistically based fracture toughness, mMPa  

Akc 1 =   3.762;                         Bkc1 = 5.8 x 10-3;                 T  =  Temperature, (0C); 
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2
1

2

1291 9.3653.1
)742.87(

31
11 ⎥

⎦

⎤
⎢
⎣

⎡ −
++=

Tsdt kckcε  

 
t29 = Student’s t-distribution with 29 degree of freedom  

sdkc1 = 0.174 
 
For temperature greater than 1500C, the relation for the statistically based fracture toughness is given  
 
Kc2   = exp (Akc2 + εkc2)  
 
Kc2 = statistically based fracture toughness, mMPa  
 
Akc2 = 4.6495 

2
1

2342 35
11 ⎥⎦
⎤

⎢⎣
⎡ += kckc sdtε  

 
t34 = Student’s t-distribution with 34 degree of freedom 
 
sdkc2 = 0.1809 

2.2 Data 

2.2.1 Material 

The majority of specimens initially tested were from sections of tubes removed after approximately 

18 years of operation. These tubes were fabricated as standard cold-worked (~ 26%) Zr-2.5Nb 

pressure tubes prior to 1987, and it was specified that the ingots should be vacuum arc melted twice, 

as this process reduces some of the volatile impurity elements [6]. Some ingots, however, were 

produced using 100% recycled material, which is equivalent to the ingot being melted four times. The 

multiple melting of the material significantly reduced some of the volatile impurity elements (e.g. 

chlorine), which has a significant effect on the fracture toughness [5]. 

Cold-worked Zr-2.5Nb pressure tubes manufactured prior to 1987 were fabricated in accordance with 

the chemical specifications detailed in [6], which do not include any specific limits on the 

concentrations of impurity elements such as chlorine and phosphorus. Previous studies have 
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demonstrated that these particular elements are among a few that have a significant effect on the 

deformation and fracture behaviour of pressure tube material [3, 5]. As a result, changes to the 

chemical composition specifications for Zr-2.5Nb pressure tubes were recommended [7] to improve 

the properties of newer tubes. Although the manufacturing route for pressure tubes has evolved with 

time, the overall changes to fabrication have not been substantial. 

The chemical compositions of specimen used in the burst test program were taken from ingot 

analyses provided by the manufacturer, and Glow Discharge Mass Spectrography (GDMS) of offcuts 

(material removed from the ends of a pressure tube before installation in reactor). The measured 

values for the elements chlorine (Cl), carbon (C), oxygen (O), iron (Fe), and phosphorus (P) were 

used as part of the current study. 

2.2.2 Burst Test Procedure and Analysis 

The standardised procedure for conducting burst tests on irradiated Zr-2.5Nb pressure tube material 

was developed at AECL [3], and involves spark machining a through-wall axial crack of 55 mm 

length at the centre of a 0.5 m long section of tube.  In addition, results from tests with non-standard 

crack lengths are included in this investigation (initial crack lengths 02a  were in the range of 36.1 

mm ≤≤ 02a 86.4 mm).  The machined flaw is then sealed with a composite patch made of Teflon, 

stainless steel, and aluminium sheet that are secured to the pressure tube with silicone rubber. The test 

section is fitted with mechanical end caps before attachment to the pressurizing system, and enclosed 

in a protective bell-jar. The machined flaw in the specimen is extended approximately 5 mm axially 

in each direction by fatigue pressure cycling at room temperature using water and a maximum stress 

intensity of 15 MPa m1/2. Stable crack growth is monitored using the direct current potential drop 

method. Once an experiment is to be conducted, the test section is heated to the desired test 

temperature using external heating coils and held for at least one hour. The test section is then 
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pressurized with argon gas monotonically until failure. The Dugdale strip yield equation for an axial, 

through wall defect in a pressurized cylinder is used to calculate the Mode I stress intensity factor (Kc) 

as [3], 

 2/1
2

2
secln
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⎟
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(2.1)

where fσ = flow stress (mean of the yield stress and ultimate tensile strength), a2  = total crack 

length, hσ = hoop stress ( tpri / ), p = internal pressure, ir = internal radius, t = wall thickness, and 

M = Folias bulging correction factor given approximately by [8]: 

 2/1242 ]})/([0135.0)/([255.11{ tratraM mm −+=                           (2.2) 

for a given mean radius mr . The resulting fracture toughness is expressed as the critical stress 

intensity factor Kc, corresponding to the stress intensity at the point of instability (rupture) calculated 

using the initial crack length 2a0 rather than the crack length at the point of instability (2ai). As a 

result, Kc represents a conservative estimate of the fracture toughness. The CCL determined from Kc 

is also conservative provided that the pressure at rupture is less than the operating pressure. 

2.3 Preliminary Analysis 

The database for statistical analysis consists of fracture toughness (Kc) values obtained from 106 tests 

and values of 12 covariates for each test sample. A summary of variable affecting the fracture 

toughness is presented in Table 2-1. The average and standard deviation of Kc are estimated as 113.55 

MPa√m and 32.83 MPa√m, respectively, and the coefficient of variation is 29 %. 
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R2 = 0.94
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Figure 2-1 Normal probability plot of fracture toughness data 

R2 = 0.93
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Figure 2-2 Weibull probability plot of fracture toughness data 

The normal probability plot presented in Figure 2-1 shows that the normal distribution can model the 

test data reasonably well. From the fitted distribution, the 10% probability lower bound for Kc is 

estimated as 71.5 MPa√m. It should be remarked that the lower and upper tail regions of the empirical 

distribution (i.e., data) are not well represented by the normal distribution, and the use of other 

(MPa m1/2 )
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distributions for improving the goodness-of-fit will be explored in future work. Other distributions 

like Weibull and Gumbel are plotted in Figure 2-2 and Figure 2-3 respectively. 

R2 = 0.91
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Figure 2-3 Gumbel probability plot of fracture toughness data 

2.4 Concluding Remark 

The normal, weibull and gumbel probability paper plots have R2 values 0.94, 0.93 and 0.91 

respectively. Since R2 value is highest for normal distribution, so normal distribution is the best fit for 

the given data set. The traditional single-variate probabilistic analysis generally provides a 

conservative lower bound, especially when the data exhibit large variability. To improve the 

lower-bound estimate, a regression analysis is required as it can reduce the prediction variability by 

establishing a statistical relation with other random variables (covariates) that influence the fracture 

toughness. 

 

 

 

 

(MPa m1/2 )
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Table 2-1: Variables affecting the fracture toughness 

Variables Xk Name 
 

Symbol Mean 
(μk) 

Standard 
Deviation 

(σk) 
Units 

Material 
Chemistry 

X1 Chlorine [C1] Cl 4.31 3.77 Ppm 
X2 Phosphorous[P] P 25.03 17.78 Ppm 
X3 Carbon [C] C 159.95 25.97 Ppm 
X4 Oxygen [O] O 1133.51 95.49 Ppm 
X5 Iron [Fe]  Fe 756.32 259.53 Ppm 

Mechanical 
Property X6 Flow stress FS  922.33 146.22 MPa 

Operational 
Parameters 

X7 Irradiation Fluence IRF 9.43 2.19 1025n/m2 
X8 Irradiation Temperature IRT 266.85 11.15 °C 
X9 Test Temperature TT 183.83 90.79 °C 

Material 
Texture 
Parameters 

X10 Offcut Avg Fr* OFR 0.32 0.024  
X11 Offcut Avg Ft* OFT 0.63 0.027  
X12 Offcut Avg Fl* OFL  0.049 0.0098  

* Fr, Ft, and Fl are measures of the fraction of grains with basal plane normal oriented in the radial, 
transverse, and longitudinal tube directions, respectively. 
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Chapter 3    
Linear Regression Model 

3.1 Introduction: 

Modeling refers to the development of mathematical expressions that describe in some sense the 

behavior of a random variable of interest. This variable may be the fracture toughness of a pipe, 

thickness of a feeder, or the tensile strength of metal wire. In all cases, this variable is called the 

dependent variable and denoted with Y. Most commonly the modeling is aimed at describing how the 

mean of the dependent variable E[Y] changes with changing conditions; the variance of the 

dependent variable is assumed to be unaffected by the changing conditions. 

Other variables which are thought to provide information on the behavior of the dependent variable 

are incorporated into the model as predictor or explanatory variables. These variables are called the 

independent variables and are denoted by X with subscripts as needed to identify different 

independent variables. In addition to the X’s, all models involve unknown constants, called 

parameters, which control the behavior of the model.   

The mathematical complexity of the model and the degree to which it is a realistic model depend on 

how much is known about the process being studied and on the purpose of the modeling exercise. In 

preliminary studies of a process or in cases where prediction is the primary objective, the models 

usually fall into the class of models that are linear in the parameters. That is, the parameters enter the 

model as simple coefficients on the independent variables or functions of the independent variables. 

Such models are referred as linear models. The more realistic models, on the other hand, are often 

nonlinear in the parameters. Most growth models, for example, are nonlinear models. Nonlinear 

models fall into two categories: the one, which can be linearized by an appropriate transformation on 

the dependent variable, and other are those that cannot be so transformed. 
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3.2 The Linear model and Assumptions 

The simplest linear model involves only one independent variable and states that the true mean of the 

dependent variable changes at a constant rate as the value of the independent variable increases or 

decreases. Thus, the functional relationship between the true mean of Yi, denoted by E [Yi] and Xi is 

the equation of a straight line: 

 E [ ] XY 10 ββ +=  (3.1)

β0 is the intercept, the value of E [Yi] when X = 0, and β1 is the slope of the line, the rate of change in 

E[Yi] per unit change in X. The observations on the dependent variable Yi are assumed to be random 

observations from populations of random variables with the mean of each population given by E [Yi]. 

The deviation of an observation Yi from its population mean E[Yi] is taken into account by adding a 

random error εi to give the statistical model 

 iii XY εββ ++= 10  (3.2)

The subscript i indicates the particular observational unit, i = 1, 2, . . . , n. The Xi is the ith observation 

on the independent variable and assumed to be measured without error. That is, the observed values 

of X are assumed to be a set of known values. The Yi and Xi are paired observations; both are 

measured on every observational unit. 

The random errors εi have zero mean and are assumed to have common variance σ2 and to be pairwise 

independent. Since the only random element in the model is εi, these assumptions imply that the Yi 

also have common variance σ2 and are pairwise independent. For purposes of making tests of 

significance, the random errors are assumed to be normally distributed, which implies that the Yi are 

also normally distributed. The random error assumptions are frequently stated as  

 iε ~ 2,0( σNID ) (3.3)

where NID stands for “normally and independently distributed.” The quantities in parentheses denote 

the mean and the variance, respectively, of the normal distribution. 
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3.3 Least Square Estimation 

The simple linear model has two parameters β0 and β1, which are to be estimated from the data. If 

there were no random error in Yi, any two data points could be used to solve explicitly for the values 

of the parameters. The random variation in Y, however, causes each pair of observed data points to 

give different results. (All estimates would be identical only if the observed data fell exactly on the 

straight line.) A method is needed that will combine all the information to give one solution which is 

“best” by some criterion. The least squares estimation procedure uses the criterion that the least 

squares solution must give the smallest possible sum of squared deviations of the criterion observed 

Yi from the estimates of their true means provided by the solution. Let 0

Λ

β  and 1

Λ

β be numerical 

estimates of the parameters β0 and β1, respectively, and let 

 XY 10

ΛΛΛ

+= ββ  
(3.4)

be the estimated mean of Y for each Xi, i = 1,2, . . . , n. Note that ∧

iY  is obtained by substituting the 

estimates for the parameters in the functional form of the model relating E (Yi) to Xi, equation 3.1. 

The least squares principle chooses 1

ΛΛ

ββ ando be that minimize the sum of squares of the residuals, 

SS (Res): 

 2

1
)()(Re i

n

i
i YYsSS

∧

=

−= ∑  

                =∑
=

n

i
ie

1

2  

 

 

(3.5)

Where )( iii YYe
∧

−=  is the observed residual for the ith  observation. The summation indicated by Σ 

is over all observations in the data set as indicated by the index of summation, i = 1 to n.  
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The estimators for β0 and β1 are obtained by minimizing SS (Res). The derivatives of SS (Res) with 

respect to 1,
ΛΛ

ββ in turn are set equal to zero. This gives two equations in two unknowns called the 

normal equations: 

 

iiii

ii

YXXX

YXn

∑∑∑
∑∑

=+

=+
ΛΛ

ΛΛ

1
2

0

10

)()(

)()(

ββ

ββ  

 

(3.6)

Solving the normal equations simultaneously for 
∧

0β  and 
∧

1β  gives the estimates of β1 and β0 as 

Note that )( XXx ii −=  and )( YYy ii −=  denote observations expressed as deviations from their 

sample means X and Y respectively. These estimates of the parameters give the regression equation             

 
ii XY 10

ΛΛΛ

+= ββ  
 

(3.8)

3.4 Accuracy of Estimates 

3.4.1 Variance of 1
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β  

To determine the variance of  1
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β  we express 1
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The coefficient on each Yi is 
∑ 2

i

i

x
x

, which a constant in the regression model is. The Yi  are assumed 

to be independent and to have common variance σ2. Thus, the variance of 1

Λ

β  is  
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3.4.2 Variance of 0

∧

β  

The variance of 0

Λ

β can be derived using following formula 

XY 10

ΛΛ

−= ββ  

The random variables in this linear function are Y and 
Λ

1β ; the coefficients are 1 and (- X ). Equation 

3.11 can be used to obtain variance of 0

Λ

β : 

( ) ),(2)()()()( 11
2

0

ΛΛΛ
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It can be easily shown that )(YVar =
n
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∑
=
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3.5 Predicted Values and Residuals 

Each quantity computed from the fitted regression line  
∧

iY  is used as both (1) the estimate of the 

population mean of Y for that particular value of Predictions X and (2) the prediction of the value of 

Y one might obtain on some future observation at that level of X. Hence, the 
∧

iY are referred to both 

as estimates and as predicted values.  

If the observed values Yi in the data set are compared with their corresponding values 
∧

iY computed 

from the regression equation, a measure of the degree of agreement between the model and the data is 

obtained. The residuals  

 ∧

−= iii YYe  
(3.13)

measure the discrepancy between the data and the fitted model. 

3.6 Analysis of Variation in the Dependent Variable 

The residuals are defined in equation 3.13 as the deviations of the observed values from the estimated 

values provided by the regression equation. Alternatively, each observed value of the dependent 

variable Yi can be written as the sum of the estimated population mean of Y for the given value of 

X and the corresponding residual: 
 

iii eYY +=
∧

 
(3.14)

 
∧

Y is the part of the observation 
∧

iY “accounted for” by the model, whereas ei  reflects the “unaccounted 

for” part. The total uncorrected sum of squares of Yi, SS(Total uncorr) =
2∑ iY , can be similarly 

partitioned. Substitute ii eY +
∧

for each iY  and expand the square. Thus 

 
22 )( iii eYY += ∑∑

Λ
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           ∑∑ +=
Λ

22
ii eY  

           = )(Re)( sssModelss +  

 
 

(3.15)

(The cross-product term ii eY∑
∧

 is zero. The term SS (Model) is the sum of squares “accounted for” 

by the model; SS (Res) is the “unaccounted for” part of the sum of squares. The forms SS (Model) = 

∑
∧

2
iY and SS (Res) = 

2∑ ie show the origins of these sums of squares. The more convenient 

computational forms are 

 

)()()(Re
)()( 2

_
2

1

_
2

ModelssTotalsssss
XXYnModelss

uncorr

i

−=

−+= ∑
Λ

β  
 
 

(3.16)

 

The partitioning of the total uncorrected sum of squares can be re expressed in terms of the corrected 

sum of squares by subtracting the sum of squares due to correction for the mean, the correction 

factor 
2

Yn , from each side of equation (3.15): 

 
)(Re])([)(

_
2

_
2 sssYnModelssYnTotalss uncorr +−=−

 
(3.17)

 
or, using equation (3.16): 
 

∑∑∑ +−=
Λ

22
_

1
2 )( iii eXXy β  

          )(Re)(Re sssgrss +=  

 
 

(3.18)

The lower case y is the deviation of Y from 
_
Y so that ∑ 2

iy is the corrected total sum of squares. 

Henceforth, )(Totalss is used to denote the corrected sum of squares of the dependent variable. 

)(Modelss denotes the sum of squares attributable to the entire model, where as )(Re sss denotes 

only that part of )(Modelss that exceeds the correction factor. The correction factor is the sum of 

squares for a model that contains only the constant term β0. Such a model postulates that the mean of 
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Y is a constant, or is unaffected by changes in X. Thus, )(Re sss measures the additional information 

provided by the independent variable. 

 The degrees of freedom associated with each sum of squares is determined by the sample size n and 

the number of parameters p’ in the model. [ p’ to denote the number of parameters in the model and p 

(without the prime) to denote the number of independent variables; p’ = p+1 when the model includes 

an intercept as in equation 3.2.] The degrees of freedom associated with SS(Model) is p’  = 2; the 

degrees of freedom associated with SS(Regr) is always 1 less to account for subtraction of the 

correction factor,  which has 1 degree of freedom. SS(Res) will contain the (n − p’) degrees of 

freedom not accounted for by SS(Model). The mean squares are found by dividing each sum of 

squares by its degrees of freedom. One measure of the contribution of the independent variable(s) in 

the model is the coefficient of determination, denoted by R2. 

 

∑
= 2

2 )(Re

iy
grssR  

 
 

(3.19)

∑ 2
iy =  the corrected total sum of squares. 

This is the proportion of the (corrected) sum of squares of Y attributable to the information obtained 

from the independent variable(s). The coefficient of determination ranges from zero to one and is the 

square of the product moment correlation between Yi and iY
Λ

if there is only one independent 

variable, it is also the square of the correlation coefficient between Yi and Xi. 

3.7 Tests of Significance and Confidence Intervals 

The most common hypothesis of interest in simple linear regression is the hypothesis that the true 

value of the linear regression coefficient, the slope, is zero. This says that the dependent variable Y 

shows neither a linear increase nor decrease as the independent variable changes. In some cases, 
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the nature of the problem will suggest other values for the null hypothesis. The computed regression 

coefficients, being random variables, will never exactly equal the hypothesized value. The role of the 

test of significance is to protect against being misled by the random variation in the estimates. Is the 

difference between the observed value of the parameter 
Λ

1β and the hypothesized value of the 

parameter greater can be reasonably attributed to random variation? If so, the null hypothesis is 

rejected. To accommodate the more general case, the null hypothesis is written as H0 : β1= m, where 

m is any constant of interest and of course can be equal to zero. The alternative hypothesis is  

Ha : 
Λ

1β = m, Ha : β1 > m, or Ha : β1 < m depending on the expected behavior of β1 if the null 

hypothesis is not true. In the first case, Ha : 1

Λ

β = m is referred to as the two-tailed alternative 

hypothesis (interest is in detecting departures of β1 from m in either direction) and leads to a two-

tailed test of significance. The latter two alternative hypotheses, Ha : β1 > m and Ha : β1 < m, are one-

tailed alternatives and lead to one-tailed tests of significance. If the random errors in the model, the εi, 

are normally distributed, the Y and any linear function of the Y will be normally distributed. Thus, 

1

Λ

β   is normally distributed with mean β1 ( 1

Λ

β  is unbiased) and variance Var( 1

Λ

β ). If the null 

hypothesis that β1 = m is true, then 1m−
Λ

β  is normally distributed with mean zero. Thus, 

Λ

Λ

=
)(

m- 

1

1

β

β

s
t  

 
is distributed as Student’s t with degrees of freedom determined by the degrees of freedom in the 

estimate of σ2 in the denominator. The computed t-value is compared to the appropriate critical value 

of Student’s t, determined by the Type I error α and whether the alternative hypothesis is one-tailed or 

two-tailed. The critical value of Student’s t for the two-tailed alternative hypothesis places probability 
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α/2 in each tail of the distribution. The critical values for the one-tailed alternative hypotheses place 

probability α in only the upper or lower tail of the distribution, depending on whether the alternative 

is β1 > m or β1 < m, respectively. 

3.8 Effect of Texture Parameter 

To address the effect of texture parameter a sample of 55 data points at 2500C from low chlorine 

sample has been taken. Figure 3-1 and Figure 3-2 shows the dependency of fracture toughness with 

texture parameter. 
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Figure 3-1 Effect of Texture parameter Ft on Kc 
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Figure 3-2 Effect of Texture parameter Fr on Kc 

3.9 Case study: Fracture Toughness Vs Temperature 

3.9.1 Temperature less than 1500C 

To find the equation for lower bound fracture toughness a sample of 43 data points (test temperature 

less than 15000C) has been taken from the database. The result of the simple regression between 

fracture toughness and Test temperature is given in Table 3-1. The R2  for this model is 0.44 meaning 

44% of the variation in the fracture toughness (dependent variable) is “explained’ by its linear 

relationship with the Test Temperature (independent variable). 

Table 3-1: Simple regression result Test Temperature taken as a variable 

Covariate Unstandardized 

Coefficients 

Std 

Coff. 

t 

value 

sig 95% confidence 

interval for B 

B Std 

error 

Lower 

Bound 

Upper 

Bound 

(Constant) 62 6.6  9.49 0.00 49 75 

Test 

Temperature 0.36 0.06 0.66 5.64 0.00 0.23 0.49 
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Test of Significance: Using the two tailed alternative hypothesis and α = 0.05 gives a critical t-value 

of t(0.05,2) = 4.303. Since |t |> 4.303, the conclusion is that data provide convincing evidence that 1

Λ

β is 

different from zero. 

For each data point 90% lower bound fracture toughness has been predicted with above model. A 

linear curve fit for these predicted value results in the following equation 

 TKc 36.020 +=  (3.20)

The lower bound fracture toughness obtained in the equation (3.20) can be compared with the clause 

13.2.2 CAN/CSA – N285.4-94 of 

 
 TKc 30.027 +=  (D.13-1)
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Figure 3-3 Comparison CAN/CSA Vs Model (T ≤ 150) 
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3.9.2 Temperature greater than 1500C 

For temperature greater than 1500 C, a sample of 63 data points have taken from the database and a 

simple regression is performed. The result of regression is shown in Table 3-2 below. The R2 for this 

model is 0.031. 

Table 3-2  Simple regression result Test Temperature taken as a variable 

Covariate Unstandardized 

Coefficients 

Std 

Coff. 

t 

value 

Sig 95% confidence 

interval for B 

B Std 

error 

Lower 

Bound 

Upper 

Bound 

(Constant) 41 61  0.67 0.50 -81 164 

Test 

Temperature 0.34 0.24 0.18 1.4 0.17 -0.15 0.83 

 
Test of Significance: Using the two tailed alternative hypothesis and α = 0.05 gives a critical t-value 

of t(0.05,2) = 4.303. Since |t |< 4.303, the conclusion is that the data do not provide convincing evidence 

that 1

Λ

β is different from zero. For each data point 90% lower bound fracture toughness has been 

predicted with above model. A linear curve fit for these predicted value results in the following 

equation 

 636.0 −= TKc  (3.21)
  
The lower bound fracture toughness obtained in the equation (3.21) can be compared with the clause 

13.2.2 CAN/CSA – N285.4-94.  

 72=cK  (D.13-2)
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Figure 3-4 Comparison CAN/CSA Vs Model (T>150)  

3.10 Concluding Remark 

For temperature less than equal to 1500 C, linear regression model shows a close resemblance with 

clause 13.2.2 CAN/CSA – N285.8-94. 

For temperature greater than 1500 C, linear regression model does not show resemblance with clause 

13.2.2 CAN/CSA – N285.8-94. An increase in data point can improve the model. 
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Chapter 4 
Linear Regression Model 

4.1 The model 

The linear additive model for relating a dependent variable to p independent variables is 
 

 .22110 iippiii XXXY εββββ ++++= (4.1)

 
The subscript i denote the observational unit from which the observations on Y and the p independent 

variables were taken. The second subscript designates the independent variable. The sample size is 

denoted with n, i = 1, . . . , n, and p denotes the number of independent variables. There are (p + 1) 

parameters βj  ( j = 0, . . . , p) to be estimated when the linear model includes the intercept β0. For 

convenience, another parameter p’ = (p+1) is used. Four matrices are needed to express the linear 

model in matrix notation: 

Y: The n×1 column vector of observations on the dependent variable Yi; 

X: The n × p’ matrix consisting of a column of ones, which is labeled 1; 

followed by the p column vectors of the observations on the independent variables; 
 
β: The p’ × 1 vector of parameters to be estimated; and 

ε:  The n × 1 vector of random errors. 

With these definitions, the linear model can be written as 
 
       ,εβ += XY (4.2)
or, 
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(4.3)
 



 

 25 

Each column of X contains the values for a particular independent variable. The elements of a 

particular row of X, say row r, are the coefficients on the corresponding parameters in β that give 

E(Yr). β0 has the constant multiplier 1 for all observations; hence, the column vector 1 is the first 

column of X. Multiplying the first row of X by β, and adding the first element of ε confirms that the 

model for the first observation is 

 
1112211101 ....... εββββ +++++= pp XXXY (4.4)

 
The vectors Y and ε are random vectors; the elements of these vectors are random variables. The 

matrix X is considered to be a matrix of known constants.  

The vector β is a vector of unknown constants to be estimated from the data. Each element βj is a 

partial regression coefficient reflecting the change in the dependent variable per unit change in the jth  

independent variable, assuming all other independent variables are held constant. The definition of 

each partial regression coefficient is dependent on the set of independent variables in the model. 

Whenever clarity demands, the subscript notation on βj is expanded to identify explicitly both the 

independent variable to which the coefficient applies and the other independent variables in the 

model. For example, β2.13 would designate the partial regression coefficient for X2 in a model that 

contains X1, X2, and X3. 

The usual assumption about εi are now expressed in terms of the random vector ε. ε is said to have 

multivariate normal distribution with mean vector 0 (of order n x 1). The variance of an individual 

element εi is replaced with the variance covariance matrix for any random vector of n elements is 

defined as n x n symmetric matrix with diagonal elements equal to the variance of the random 

variables (in order) and the (i,j)th off-diagonal element equal to the covariance between εi and εj. For 

example, if Z is a 3 x 1 vector of random variables z1, z2, z3, the variance-covariance matrix of Z is the 

3 x 3 matrix 
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(4.5)

 
The variance co-variance matrix for ε is Iσ2 where I is the n x n identity matrix and σ2 is the common 

variance of all εi. The distribution of ε can be written as 

 
 ε ~N(0,  Iσ2) (4.6)
 
The statement that the variance-covariance matrix of ε, Var(ε), is Iσ2 included two usual assumption 
that 

1. The εi  have common variance σ2 ; and  

2. They are statistically independent. ( Independence is reflected in zero covariance) 
 

Since the element of X and β are constants, the Xβ term in the model is a set of constant being added 

to the vector of random errors, ε. Thus, Y is a random vector with mean vector Xβ and variance-

covariance matrix Iσ2: 

 
 E (Y) βεβεβ XEXEXE =+=+= )()()( (4.7)
  
 Var (Y) 2)()( σεεβ IVarXVar ==+=  (4.8)

 
Var (Y) is the same as )(εVar since during a constant to a random variable does not change the 

variance. When ε is normally distributed, Y is also multivariate normally distributed. Thus, 

  
 Y ~ ),( 2σβ IXN  (4.9)
 
This result is based on the assumption that the linear model being used in the correct model. If 

important independent variables have been omitted or if the functional form of the model is not 

correct, Xβ will not be the expectation of Y. 
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4.2 Normal Equations and Solutions 

In matrix notation, the normal equations are written as 
 

YXXX '' =
Λ

β  
 

(4.10)

The normal equations are always consistent and hence will always have a solution of the form 
 

)()( '1' YXXX −
Λ

=β  
 

(4.11)

The multiplication XX ' generates a p’ x  p’ matrix where the diagonal elements are the sums of 

squares of each of the independent variables and the off-diagonal elements are the sums of products 

between independent variables. The general form of X’X is  
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(4.12) 
 

Summation in all cases is over i = 1 to n, the n observations in the data. When only one independent 

variable is involved, X’X consists of only the upper-left 2 × 2 matrix. Inspection of the normal 

equations in Chapter 3, equation (3.6), reveals that the elements in this 2 × 2 matrix are the 

coefficients on 10

ΛΛ

ββ and . The elements of the matrix product X’Y are the sums of products between 

each independent variable in turn and the dependent variable: 
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                             (4.13)

 
The first element ΣYi , is the sum of products between the vector of ones (the first column of X) and 

Y. Again, if only one independent variable is involved, X’Y consists of only the first two elements.  
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The unique solution to the normal equations exists only if the inverse of the first element ΣYi  is the 

sum of products between the vector of ones (the first column of X) and Y . Again, if only one 

independent variable is involved, X’Y consists of only the first two elements. The unique solution to 

the normal equations exists only if the inverse of X’X exists. This, in turn, requires that the matrix X 

be of full column rank; that is, there can be no linear dependencies among the independent variables. 

The practical implication is that there can be no redundancies in the information contained in X. 

It is always possible to rewrite the model such that the redundancies among the independent variables 

are eliminated and the corresponding X matrix is of full rank. In this chapter, X is assumed to be of 

full column rank.  

4.3 Correlation Analysis 

The correlation of Kc with all 12 covariates is calculated using SPSS and the same is summarized in 

Figure 4-1.  
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Figure 4-1 Correlation of Measured  Kc with all 12 covariates 

Note that the correlation coefficient between two random variables Xi and Xk is defined as ρik = E[(Xi 

- μi) (Xk - μk)]/σiσk, where the operator E[.] denotes the mathematical expectation. Figure 4-1 shows 
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that Kc has high negative correlation with chlorine (ρ = -0.65) and flow stress (ρ = -0.49) and high 

positive correlation with the test temperature (ρ = 0.65). These observations are consistent with 

physical reasoning. For example, material with high flow stress, which is an average of the yield and 

ultimate tensile stresses, is expected to have low fracture toughness. Similarly, the positive correlation 

of test temperature on Kc is well understood. Kc exhibits modest correlation (0.2 ≤|ρ| ≤ 0.5) with 

irradiation temperature, iron and grain size parameters, Fr and Ft.  

The correlation plot does not convey a complete picture since the covariates could be significantly 

correlated among themselves. In that case, more refined measures than the correlation coefficient are 

required to relate fracture toughness with them. This issue is investigated in the next section. 

4.4 Correlation among Covariates 

4.4.1 Pair-wise Correlation Analysis 
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Figure 4-2 Covariates with modest correlation (0.3 ≤|ρ| ≤ 0.5) 

A 12×12 (Appendix A) correlation matrix for the covariates was calculated from the test data, and 

only significant results are summarized here. High negative correlation is found between two pairs of 

covariates: (1) flow stress and test temperature (ρ69 = -0.74), and (2) grain size parameters Fr and Ft 

(ρ10,11 = -0.95). In Figure 4-2 ten pairs of covariates with modest correlation (0.3 ≤|ρ| ≤ 0.5) are 
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presented. The test temperature is correlated with several other covariates, and grain size parameters 

are correlated with chemical impurities. 
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Figure 4-3 Correlation among chemical impurity elements 

The correlation among chemical impurities is presented in Figure 4-3. Chlorine concentration is 

negatively correlated with phosphorus (ρ12 = -0.33) and oxygen (ρ14 = -0.23). Carbon has high 

correlation with phosphorus (ρ23 = 0.55) and oxygen (ρ34 = 0.49). Iron has modest correlation with 

phosphorus (ρ25 = 0.22), carbon (ρ35 = 0.3) and oxygen (ρ45 = -0.33). Because of this correlation 

structure, all chemical impurity elements may not be required in modeling the effect of material 

chemistry on the fracture toughness.  

4.4.2 Stepwise Estimation: Selecting the first Variable 

Table 6-1 (Appendix A), shows all the correlations among the twelve independent variables and their 

correlations with the dependent variable (Y).  Examination of the correlation matrix indicates that 

chlorine concentration [Cl] (X1), and Test temperature (X9) is reasonably high correlated with 

Fracture toughness. Fracture toughness is also moderately correlated with Flow stress (X6), irradiation 

temperature (X7) and OFFCUT Avg Fr (X10). So, there are five variables (namely X1, X6, X7, X9, X10)  

have high potential to predict the fracture toughness. Chlorine concentration [Cl] (X1), and Test 
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temperature (X9) will account for 42% (r2 = 0.652) each, of the variation in Fracture toughness, if used 

separately as the only independent variable in the regression. Also from Table 6-1 (Appendix A), it is 

clear that there is no correlation between X1 and X9, so both predictors can be included in the 

regression model. Since, the correlation is highest for chlorine concentration [Cl] and Test 

temperature, so in forward regression Test temperature (X9) has been considered as a first entering 

variable. The result of regression using Test Temperature as only predicting variable is shown in 

Table 4-1. 

Table 4-1 Regression result with variable Entered: (X9) Test temperature 

Multiple R 0.65 

Multiple R2 0.42 

Adjusted R2 0.42 

Standard Error of estimate 25.0 

 
Multiple R: Multiple R is the correlation coefficient for the simple regression of X9 and the 

dependent variable. It has no plus or minus sign because in multiple regression the sign of the 

individual variable may vary, so this coefficient reflects only the degree of association. 

R square: R square (R2) is the correlation coefficient squared, also referred to as the coefficient of 

determination. This value indicates that percentage of total variation of Y explained by X9. The total 

sum of squares (48111+65096=113208) is the squared error that would occur if we used only the 

mean of Y to predict the dependent variable. Using the value of X9 reduces this error by 

(48111/113208 = 42.1%). 

Standard Error of the Estimate: The standard error of the estimate is another measure of the 

accuracy of our predictions. It is the square root of the sum of the squared errors divided by the 

degree of freedom. It represents an estimate of the standard deviation of the actual dependent values 

around the regression line; i.e, a measure of variation around the regression line. The standard error of 
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the estimate can also be viewed as the standard deviation of the prediction errors and thus become 

measure to asses the absolute size of the confidence interval for the predictions 

Variables in equation: A single predictor variable X9 is used to calculate the regression equation for 

predicting the dependent variable. For each variable in the equation, several measures need to be 

defined: the regression coefficient, the standard error of the coefficient and the‘t’ value of variables in 

the equation. 

• Regression coefficient: The value 0.24 in the regression coefficient (b1) of the predictor 

variable (X9). Thus the predicted value for each value of X9 is the intercept plus the regression 

coefficient times the value of the predictor variable (70.2 – 0.24*X9). The standardized 

regression coefficient, or beta value, of 0.65 is the value calculated from the standardized 

data. With only one independent variable, the squared beta coefficient equals the coefficient 

of determination. The beta values allow us to compare the effect of X9 on Y to the effect on Y 

of other predictor variables at each stage, because this value reduces the regression 

coefficient to a comparable unit, the number of standard deviations. (At this stage we don’t 

have any variable to compare). 

• Standard error of coefficient: the standard error of the coefficient is the standard error of the 

estimate of b9. The value of b9 divided by the standard error (-0.24/0.027 = -8.8) is the 

calculated t value for a t test of the hypothesis b9 = 0. A smaller standard error implies more 

reliable prediction. Thus it is good to have small standard errors and therefore smaller 

confidence interval. This coefficient is also referred to as the standard error of the regression 

coefficient; It is an estimate of how much the regression coefficient will vary between 

samples of the same size from the same population and use them to calculate the regression 

equation, this would be an estimate of how much the regression coefficient would vary frm 

sample to sample. 
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• t value of variables in the equation: the t value of variables in the equation measures the 

significance of the partial correlation of the variable reflected in the regression coefficient. It 

is useful to determine whether a variable should be dropped from the equation once a variable 

has been added. Also given in the table is the level of significance, which is compared to the 

threshold level for dropping the variable. In our case, we have set a 0.1 for dropping variables 

from the equation. The critical value for a significance level of 0.1 (two tailed) with 104 

degree of freedom is 1.66.  Therefore, X9 meets our requirement for inclusion in the 

regression equation. F values are often given at this stage rather than t values. (t values is the 

square root of the F value) 

Variables not in the equation: Although X9 has been included in the regression equation, four other 

potential independent variables remain for inclusion to improve the prediction of the criterion 

variable. For those values, two measures are available to assess their potential contribution: partial 

correlations and t values. 

• Partial correlation. The partial correlation is a measure of the variation in Y not accounted 

for by the variables in the equation (only X9 in step 1) that can be accounted for by each of 

these additional variables. For example, in Table 4-2 the value 0.69 represents the partial 

correlation of X1 given that X9 is in the equation. Remember, the partial correlation can be 

misinterpreted. It does not mean that we explain 69.0 percent of the previously explained 

variance. It means that 47 percent (0.692 =47%, the partial coefficient of determination) of the 

unexplained (not the total) variance can now be accounted for by X9. Because 42 percent was 

already explained by X1, (1-0.42)*0.47=0.27 or 27 percent of the total variance could be 

explained by adding variable X1.  

• t values of the variable not in the equation. The column of t values measures the significance 

of the partial correlation for variables not in the equation. These are calculated as a ratio of 
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the additional sum of squares explained by including a particular variable and the sum of the 

squares explained by including a particular variable and the sum of the squares left after 

adding that same variable. If this t values does not exceed a specified significance level, the 

variable will not be allowed to enter the equation. The tabled t value for a significance level 

of 0.1 with 103 degree of freedom is 1.66. Looking at the column of t values, note that five 

variables (X1, X2, X4, X10, and X11) exceed this value and are candidates for inclusion. Simple 

correlation of X1 with the dependent variable is 0.65, and the partial correlation is also largest 

among rest of the variable to be included. Therefore, X1 would be included in the model next.  

Table 4-2  Inclusion of first variable Test Temperature 

Variables in the equation Variables not in the 
equation 

Variables Unstandardized 
Coefficients 

Std. Error 
of 

coefficient 

Standardized 
Coefficients 

(β) 

t 
value 

Sig. Partial 
correlation 

t 
value 

(Constant) 70.2 5.5  12. 7 0.000   

Test 
Temp 

X9 
0.24 0.027 0.65 8.7 0.000   

[Cl] X1      -0.69 -9.68 

[C] X3      0.078 0.79 

[O] X4      0.287 3.04 

[Fe] X5      -0.142 -1.45 

Flow 
Stress 

X6      -0.008 -0.08 

Irrad Flu X7 
     -0.130 -1.4 

Irradiation 
Temp 

X8 
     0.140 1.45 

[P] X2      0.234 2.44 

OFFCUT  
Avg  Fr 

X10 
     0.251 2.63 

OFFCUT 
Avg  Ft 

X11      -0.218 -2.26 

OFFCUT 
Avg  Fl 

X12      -0.148 -1.51 
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4.4.3 Selecting the second Variable 

The multiple R (from 0.65 to 0.83) and the R squared (from 0.42 to 0.70) values have both increased 

with additional X1 inclusion. The increase in R2 of 28 percent is derived by multiplying the 58 percent 

of variation that was not explained after step 1 by the partial correlation squared: 58*(0.69)2 =27.6; 

that is, of the 50.9 percent unexplained with X9, (0.69)2 of this variance was explained by adding X1, 

yielding a total variance explained of 0.70 that is, 0.42+0.58*(0.69)2 = 0.70 

The value of unstandardized coefficient β has changed very little (0.24 to 0.19). This is a further clue 

that variables X9 and X1 are relatively independent (the simple correlation between two variables is 

0.07). If the effect of X1 on Y were totally independent of the effect of X9, the β coefficient would not 

change at all.  

The partial t values indicate that both X9 and X1 are statistically significant predictors of Y. The t 

value for the X9 is now 9.3, where it was 8.7 in the previous step. The t value for X1 examines the 

contribution of this variable given that X9 is already in the equation. 

Because predictors X9 and X1   both make significant contributions to the explanation of variation in 

the dependent variable, we can ask, are other predictors available? Looking at the partial correlation 

for variables not in the equation in Table 4-3, we see that X8 (Irradiation temperature) has highest 

partial correlation (0.187). 

4.4.4 Selecting the third Variable 

With X8 entered into the regression equation, the results are shown in the Table 4-4. As we predicted, 

the value of R2 increases by 1.0 percent (0.70 to 0.71). 
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Table 4-3 Introduction of second variable Chlorine 

Variables in the equation Variables not in the 
equation 

Variables Unstandardized 
Coefficients 

Std. Error of 
coefficient 

Standardized 
Coefficients 

(β) 
t 

value Sig. 

Partial 
correlation 

t 
Value 

(Constant) 97 4.9  19.9 0.000   

Test 
Temperature 

X9 0.19 0.02 0.53 9.3 0.000   

[Cl] X1 -4.6 0.48 -0.53 -9.6 0.000   

[C] X3  
   

 0.052 0.531 

[O] X4 
 

  
 

 0.155 1.589 

[Fe] X5 
  

 
 

 -0.151 -1.54 

Flow 
Stress 

X6 
  

  
 

0.102 1.035 

Irradiation 
Fluence 

X7 
     

-0.176 -1.802 

Irradiation 
Temperature 

X8 
     

0.187 1.927 

[P] X2 
     

-0.008 -0.077 

OFFCUT  
Avg  Fr 

X10 
     

-0.022 -0.22 

OFFCUT 
Avg  Ft 

X11 
     

0.031 0.031 

OFFCUT 
Avg  Fl 

X12 
     

-0.165 -0.165 

 

In addition, examination of the partial correlation for rest of the variable not in the equation (most 

potential X7 and X4) indicates that no additional value will be gained by adding them to the predictive 

equation. These partial correlations are very small and have partial t values (for X2, X3, X5, X6, X10, 

X11, X12) associated with them that would not be statistically significant at the level (0.1) chosen for 

this model. 
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Table 4-4 Selecting the third variable Irradiation Temperature 

Variables in the equation Variables not in the 
equation 

Variables Unstandardized 
Coefficients 

Std. Error of 
coefficient 

Standardized 
Coefficients 

(β) 
t 

value Sig. 

Partial 
correlation 

  t 
Value 

(Constant) 11.9 44.8  0.26 0.79   

Test 
Temperature 

X9 0.18 0.022 0.49 8.2 0.000   

[Cl] X1 -4.6 0.47 -0.53 -9.7 0.000   

Irradiation 
Temperature 

X8 0.33 0.17 0.113 1.9 0.057   

[O] X4      0.186 1.9 

[Fe] X5      -0.122 -1.23 

Flow 
Stress 

X6      0.106 1.06 

Irradiation 
Fluence 

X7      -0.259 -2.69 

[C] X3      0.091 0.92 

[P] X2      0.056 0.56 

OFFCUT  
Avg  Fr 

X10      0.032 -0.32 

OFFCUT 
Avg  Ft 

X11      0.031 0.313 

OFFCUT 
Avg  Fl 

X12      -0.153 -1.55 

 

In developing the multivariate equation following assumptions have been considered. 

Linearity:  The first assumption linearity will be assessed through the analysis of residuals and 

partial regression plots. Figure 4-4 does not exhibit any nonlinear pattern to residual, thus ensuring 

that the overall equation is linear. But we must also be certain, when using more than one predictor 

variable, that each predictor variable’s relationship is linear as well as to ensure its best representation 

in the equation. To do so, we use the partial regression plot for each predictor in the equation. Figure 

4-5, Figure 4-6, Figure 4-7 shows the relationship for X9 (Test Temperature), and X1 (Chlorine 

Concentration) are quite well defined; thus they have strong and significant effect in the regression 

equation.  
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Figure 4-4 Analysis of studentized residuals 

R2 = 0.42
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Figure 4-5 Partial regression plot, Test Temperature Vs Fracture Toughness 

The variable X8 (Irradiation Temperature) is less well defined, both in slope and scatter of the points, 

thus explaining its lesser effect in the equation (evidenced by the smaller coefficient (0.33), beta value 

(0.11), and significance level (0.06)). For all three variables, almost no non linear pattern is shown, 

thus meeting the assumption of linearity for each predictor variable. 
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Figure 4-6 Partial regression plot, Chlorine Concentration Vs Fracture Toughness 
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  Figure 4-7 Partial regression plot, Irradiation Temperature Vs Fracture Toughness 

Homoscedasticity: The next assumption deals with the constancy of the residuals across values of 

the predictor variables. Examination of the residuals Figure 4-4 shows no pattern of increasing or 

decreasing residuals. This finding indicates homoscedasticity in the multivariate case. 

Identifying Outliers for assumption Violations: For our final analysis, we attempt to identify any 

observations, that are influential (having a disproportionate impact on the regression results) and 
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determine whether they should be excluded from the analysis.  The residual has been used for 

identifying outliers. Figure 4-9 shows the studentized residuals for each observation. Because the 

values correspond to t values, upper and lower limits can be set once the desired confidence interval 

has been established. 
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Figure 4-8 Normal probability paper plot of residuals for the model validation 
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Figure 4-9 Plot of studentized residuals 
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For 95 percent confidence interval, the corresponding t value is 1.66, thus identifying statistically 

significant residuals as those with residuals greater than this value. Seven observation 

(5,37,60,65,97,98,101) have significant residuals and can be classified as outliers. Outliers are 

important because they are observations not represented by the regression equation for one or more 

reasons-one of which may be an influential effect on the equation that requires a remedy. 

4.4.5 Predictive Model for samples with Low Chlorine Content 

Current Zr-2.5Nb pressure tubes have a [Cl] < 0.2 ppm.  As a result, a statistical model for predicting 

fracture toughness of pressure tubes with low chlorine content is required.  From the database, a 

smaller sample of size = 28 data points having [Cl] ≤  1 ppm was extracted for analysis.  The number 

of samples used, from the database at a given test temperature, is outlined in Table 4-5. 

Table 4-5  Test sample of low chlorine data 

Test Temperature (°C) Number of Samples 
150 5 
250 21 
280 2 
Total 28 

 From this sample, the average and standard deviation of Kc are estimated as 152.46 MPa√m and 

10.64 MPa√m, respectively.  The coefficient of variance of this sample is 6.97%.  A regression model 

has developed using 7 variables including only ingot chemistry and operational conditions Table 4-7, 

resulting in the following model: 

7654321 029.0141.01526.1036.0056.0071.0367.878.31 XXXXXXXy ++−++−−=  (4.14)

The regression results using these methods are summarized in Table 4-6. This model can explain 57% 

of the variability associated with the data.  The standard error of the model with 20 degrees of 

freedom is 8.05 MPa√m, which is smaller than the standard deviation of the test data (10.64 MPa√m).   
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Table 4-6 Regression result for low chlorine data 

 
 

Covariates 

Regression 
Coefficients 

 
 
t value 

 
 

Significance 
(p value) 

95% confidence 
intervals for bk 

bk Standard 
Error 

Lower 
Bound 

Upper 
Bound 

(Constant) 31.878 60.201 .530 .602 -93.699 157.456 

P (X1) -.367 .148 -2.473 .022 -.059 .118 

C (X2) .071 .100 .711 .485 -4.141 1.090 

O (X3) .056 .020 2.774 .012 -.274 .556 

Fe (X4) .036 .013 2.730 .013 -.676 -.057 

Irradiation Fluence 
(X5) 

-1.526 1.254 -1.217 .238 -.138 .280 

Irradiation 
Temperature (X6) 

.141 .199 .709 .487 .014 .098 

Test Temperature (X7) .029 .042 .696 .494 .008 .063 

 

Table 4-7 Variable for low chlorine data 

Variables  Name Mean 
Standard 

Deviation 
Units 

Ingot 

Chemistry 

X1 Phosphorous[P] 35.96 22.61 Ppm 

X2 Carbon [C] 160.68 34.79 Ppm 

X3 Oxygen [O] 1160.14 103.30 Ppm 

X4 Iron [Fe]  743.04 214.39 Ppm 

Operational 

Parameters 

X5 Irradiation Fluence 9.17 1.75 1025n/m2 

X6 Irradiation Temperature 269.11 10.87 °C 

X7 Test Temperature 234.29 40.77 °C 
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Figure 4-10 Regression model for low chlorine content data 

A comparison of the observed values and predicted values using this model is shown in Figure 4-10 

with 90% confidence interval, and the order of importance of the covariates is listed in the Figure 

4-11.  Here, it is observed that Phosphorous has the highest influence, followed by Irradiation Fluence  

and Iron. 
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Figure 4-11 Effect of Covariates 
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4.5  Concluding Remark 

Figure 4-1 shows that Kc has high negative correlation with chlorine (ρ = -0.65) and flow stress (ρ = -

0.49) and high positive correlation with the test temperature (ρ = 0.65). Kc exhibits modest 

correlation (0.2 ≤|ρ| ≤ 0.5) with irradiation temperature, iron and grain size parameters, Fr and Ft. 

High negative correlation is found between two pairs of covariates: (1) flow stress and test 

temperature (ρ6, 9 = -0.74), and (2) grain size parameters Fr and Ft (ρ10,11 = -0.95). Chlorine 

concentration is negatively correlated with phosphorus (ρ1,2 = -0.33) and oxygen (ρ1,4 = -0.23). 

Carbon has high correlation with phosphorus (ρ2,3 = 0.55) and oxygen (ρ3,4 = 0.49). Iron has modest 

correlation with phosphorus (ρ2,5 = 0.22), carbon (ρ3,5 = 0.3) and oxygen (ρ4,5 = -0.33). 

Test temperature (X9) has been considered as a first entering variable. The result of regression using 

Test Temperature as only predicting variable is shown in Table 4-1. The standardized coefficient for 

Test temperature is 0.65 and R2 value for model is 0.42.  

For selecting second variable t value and largest correlation coefficient has been considered as 

criteria. Simple correlation of X1 with the dependent variable Y is 0.65, and the partial correlation is 

also largest among rest of the variable to be included. Therefore, X1 would be included in the model 

next. The multiple R (from 0.65 to 0.83) and the R squared (from 0.42 to 0.70) values have both 

increased with additional X1 inclusion. 

Looking at the partial correlation for variables not in the equation in Table 4-3, we see that X8 

(Irradiation temperature) has highest partial correlation coefficient (0.187) among rest of the variable 

to be included. With X8 entered into the regression equation, the results are shown in the Table 4-4. 

The value of R2 increases by 1.0 percent (0.70 to 0.71). 

Current Zr-2.5Nb pressure tubes have a [Cl] < 0.2 ppm. So, a statistical model for predicting fracture 

toughness of pressure tubes with low chlorine content is required.  From the database, a smaller 
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sample of size = 28 data points having [Cl] ≤  1 ppm was extracted for analysis.  A regression model 

has developed using 7 variables including only ingot chemistry and operational conditions has been 

developed. The order of importance of the covariates is listed in the Figure 4-11. It is observed that 

Phosphorous has the highest influence, followed by Irradiation Fluence  and Iron. 
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Chapter 5 
Stepwise Regression 

5.1 Stepwise Regression Methods 

A stepwise regression method is a procedure by which the best model is developed in stages. A list of 

several potential explanatory variables is available and this list is repeatedly searched for variables 

which should be included in the model. The best explanatory variable is used first, then the second 

best, and so on. This procedure is known as stepwise regression. There are three procedures available 

to perform stepwise regression analysis [15].  

5.1.1 Forward Selection 

Forward stepwise selection of variables chooses the subset models by adding one variable at a time 

to the previously chosen subset. Forward selection starts by choosing as the one-variable subset the 

independent variable that accounts for the largest amount of variation in the dependent Variable. This 

will be the variable having the highest simple correlation with Y. At each successive step, the variable 

in the subset of variables not already in the model that causes the largest decrease in the residual sum 

of squares is added to the subset. Without a termination rule, forward selection continues until all 

variables are in the model. 

5.1.2 Backward Elimination 

Backward elimination of variables chooses the subset models by starting with the full model and 

then eliminating at each step the one variable whose deletion will cause the residual sum of squares to 

increase the least. This will be the variable in the current subset model that has the smallest partial 

sum of squares. Without a termination rule, backward elimination continues until the subset model 

contains only one variable.  
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5.1.3 Stepwise Selection 

Neither forward selection nor backward elimination takes into account stepwise the effect that the 

addition or deletion of a variable can have on the contributions of other variables to the model. A 

variable added early to the model in forward selection can become unimportant after other variables 

are added, or variables previously dropped in backward elimination can become important after other 

variables are dropped from the model. The variable selection method commonly labeled is a forward 

selection process that rechecks at each step the importance of all previously included variables. If the 

partial sums of squares for any previously included variables do not meet a minimum criterion to stay 

in the model, the selection procedure changes to backward elimination and variables are dropped one 

at a time until all remaining variables meet the minimum criterion. Then, forward selection resumes. 

Stepwise selection of variables requires more computing than forward or backward selection but has 

an advantage in terms of the number of potential subset models checked before the model for each 

subset size is decided. It is reasonable to expect stepwise selection to have a greater chance of 

choosing the best subsets in the sample data, but selection of the best subset for each subset size is not 

guaranteed.  

5.2 Stopping Rules 

 The computer programs for the stepwise selection methods generally include criteria for terminating 

the selection process. In forward selection, the common criterion is the ratio of the reduction in 

residual sum of squares caused by the next candidate variable to be considered to the residual mean 

square from the model including that variable. This criterion can be expressed in terms of a critical 

“F-to-enter” or in terms of a critical “significance level to enter” (SLE), where F is the “F-test” of the 

partial sum of squares of the variable being considered. The forward selection terminates when no 

variable outside the model meets the criterion to enter. This “F-test,” and the ones to follow, should 

be viewed only as stopping rules rather than as classical tests of significance. The use of the data to 
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select the most favorable variables creates biases that invalidate these ratios as tests of significance 

(Berk, 1978).  

The stopping rule for backward elimination is the “F-test” of the smallest partial sum of squares of the 

variables remaining in the model. Again, this criterion can be stated in terms of an “F-to-stay” or as a 

“significance level to stay” (SLS). Backward elimination terminates when all variables remaining in 

the model meet the criterion to stay. The stopping rule for stepwise selection of variables uses both 

the forward and backward elimination criteria. The variable selection process terminates when all 

variables in the model meet the criterion to stay and no variables outside the model meet the criterion 

to enter (except, perhaps, for the variable that was just eliminated). The criterion for a variable to 

enter the model need not be the same as the criterion for the variable to stay. There is some advantage 

in using a more relaxed criterion for entry to force the selection process to consider a larger number 

of subsets of variables. 

5.3 Model development fracture toughness data 

The forward selection, backward elimination and stepwise selection methods of variable selection in 

SPSS are illustrated with the fracture toughness data. In this program, the termination rules are 

expressed in terms of significance level to enter, and significance level to stay. For this example, the 

criteria were set at SLE = 0.05 and SLS = 0.10 for all the three methods. These values are user 

defined. The regression results using these methods are summarized in Table 5-1,Table 5-2,Table 5-3 

respectively. 

Table 5-1 Backward Regression 

Model Covariate Unstandardized 
Coefficients 

Std 
Coff 

t 
value 

Sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

1 (Constant) -56.69 73.43  -0.77 0.44 -202.49 89.11 
Cl (X1) -4.55 0.59 -0.52 -7.69 0.00 -5.73 -3.38 
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Model Covariate Unstandardized 
Coefficients 

Std 
Coff 

t 
value 

Sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

P (X2) -0.03 0.13 -0.02 -0.24 0.81 -0.30 0.24 
C (X3) 0.10 0.11 0.08 0.91 0.36 -0.12 0.32 
O (X4) 0.03 0.03 0.09 1.17 0.25 -0.02 0.09 
Fe (X5) -0.01 0.01 -0.06 -0.75 0.46 -0.03 0.01 

Flow Stress 
(X6) 0.01 0.02 0.07 0.91 0.36 -0.02 0.05 

Fluence (X7) -2.65 0.89 -0.18 -2.96 0.00 -4.42 -0.87 
Irr-Temp (X8) 0.54 0.19 0.18 2.80 0.01 0.16 0.93 

Test Temp 
(X9) 0.21 0.03 0.58 7.21 0.00 0.15 0.27 

OFFCUT Avg 
Fr (X10) -51.59 90.43 -0.04 -0.57 0.57 -231.14 127.95 

OFFCUT Avg 
Ft (X11) -253.03 197.37 -0.08 -1.28 0.20 -644.92 138.85 

2 (Constant) -92.20 52.48   -1.76 0.08 -196.32 11.91 
Cl (X11) -4.29 0.46 -0.49 -9.22 0.00 -5.21 -3.36 
O (X4) 0.05 0.02 0.15 2.69 0.01 0.01 0.09 

Fluence (X7) -2.87 0.87 -0.19 -3.31 0.00 -4.59 -1.15 
Irr-Temp (X8) 0.60 0.18 0.20 3.36 0.00 0.24 0.95 

Test Temp 
(X9) 0.19 0.02 0.54 9.33 0.00 0.15 0.24 

Table 5-2 Forward regression 

Model Covariate Unstandardized 
Coefficients 

Std 
Coff 

t 
value 

sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

1 (Constant) 70.22 5.51   12.75 0.00 59.29 81.14 
Test Temp 

(X9) 0.24 0.03 0.65 8.77 0.00 0.18 0.29 
2 (Constant) 97.82 4.91   19.90 0.00 88.07 107.57 

Test Temp 
(X9) 0.19 0.02 0.54 9.75 0.00 0.16 0.23 

Cl (X1) -4.66 0.48 -0.54 -9.69 0.00 -5.61 -3.71 

Table 5-3 Stepwise Regression 

Model Covariate Unstandardized 
Coefficients 

Std 
Coff. 

t 
value 

sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

1 (Constant) 70.22 5.51   12.75 0.00 59.29 81.14 
Test Temp 

(X9) 0.24 0.03 0.65 8.77 0.00 0.18 0.29 
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Model Covariate Unstandardized 
Coefficients 

Std 
Coff. 

t 
value 

sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

2 (Constant) 97.82 4.91   19.90 0.00 88.07 107.57 
Test Temp 

(X9)  0.19 0.02 0.54 9.75 0.00 0.16 0.23 
Cl (X1) -4.66 0.48 -0.54 -9.69 0.00 -5.61 -3.71 

5.4 Results 

The backward elimination method results in best regression model with only 5 covariates, namely, 

chlorine (X1), oxygen (X4), irradiation fluence (X7), irradiation temperature (X8) and test temperature 

(X9). The model equation is estimated as, 

 98741 194.0595.0869.205.0287.4203.92 XXXXXy ++−+−−=  (5.1)

The model statistics is summarized in  Table 5-4 show that all the regression coefficients are 

significant at 5% level, except the intercept (b0) for which the p value is 0.08. 

 Table 5-4 Regression results for the predictive model 

 
 

Covariates 

Regression 
Coefficients 

 
 
t value 

 
 

Significance 
(p value) 

95% confidence 
intervals for bk

bk Standard 
Error 

Lower 
Bound 

Upper 
Bound 

(Constant) -92.20 52.48 -1.76 0.08 -196.32 11.91 
Cl (X1) -4.29 0.46 -9.22 0.00 -5.21 -3.36 
O (X4) 0.05 0.02 2.69 0.01 0.01 0.09 

Fluence (X7) -2.87 0.87 -3.31 0.00 -4.59 -1.15 
Irradiation 

Temperature (X8) 0.60 0.18 3.36 0.00 0.24 0.95 
Test Temperature (X9) 0.19 0.02 9.33 0.00 0.15 0.24 

 

For this model R2 = 0.747, which means it explains 75% of the variability in the data, i.e., sum of 

squares of deviation from the mean of Kc data. The standard error of the model with 100 degrees of 

freedom is 16.90 MPa√m, which is approximately half of the standard deviation of the Kc (32.83 

MPa√m). A comparison of the observed and predicted values presented in Figure 5-1 shows that 90% 
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prediction intervals enclose the sample data quite well. The adjusted R2 of this model (=0.734) is 

slightly higher than that consisting 11 covariates (0.728), which indicates that elimination of variables 

has not resulted in loss of model predictability. Another way to check the suitability of any m 

covariate model in comparison to that with 11 covariates is to compute the Mallow statistic (Cm), 

given as [10] 
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Figure 5-1 Regression model for Kc with 90% prediction interval 
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R2 = 0.94
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Figure 5-2 Residuals of the regression plotted on the normal probability paper 
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Cm < (m+1) signifies that adequacy of the reduced model. In case of the proposed model with m = 5, 

n = 106, (s2)5 = 16.90 and (s2)11 = 17.10, Cm = 4.8 (< 6), which also confirms its adequacy. The 

residuals, i.e., the differences between measured and predicted values, are plotted on a normal 

probability plot in Figure 5-2. It shows that the residuals can be fitted quite closely by a normal 

distribution, which validates the modelling assumption underlying the regression analysis. 
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5.5 Discussion 
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Figure 5-3: Effect of covariates on the fracture toughness 

The importance and nature of the effect of a covariate on Kc can be investigated by examining the 

sign and magnitude of standardized regression coefficients, which are obtained  by carrying out 

multivariate regression on standardized the covariates obtained as (Xk - μk)/σk.The magnitudes of 

standardized regression coefficients are indicative of their relative importance in explaining the 

variability associated with Kc [10]. These standardized regression coefficients should be bounded 

within ±1, otherwise they are considered inconsistent due to large inter-correlation among covariates. 

The negative sign indicates that increasing the value of that covariate would decrease the toughness, 

and the reverse is implied by the positive sign. 

Figure 5-3 shows that the test temperature has the highest influence (positive), followed by [Cl] 

which has an adverse effect on Kc. The effect of the irradiation temperature (positive) and irradiation 

fluence (adverse) is of similar order, and oxygen has a small positive effect. 
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Figure 5-4: Comparison of predicted Kc with the lower bound  

The lower bound estimate for Kc is specified in CSA N285.8 as a function of temperature (T) as [11]: 

 3.027)( TK LBc +=  for T ≤ 150 °C,  and  

 

 

 72)( =LBcK  for T > 150 °C (5.3)

This lower bound is compared with the predicted Kc values for 106 test samples in Figure 5-4. This 

plot shows that the regression model can provide a tube specific estimate of the fracture toughness 

which is expected to be more realistic than a generic lower bound curve. Recognizing that material 

chemistry and operational conditions can easily be obtained for all in-service pressure tubes, the 

proposed model (Eq.5.1) is amenable to use in fitness for service assessment of pressure tubes. 

The predicted lower bound for Kc values has also been compared with statistically based 

fracture toughness and shown in Figure 5-5. 
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Figure 5-5: Comparison of predicted Kc with statistical lower bound 

5.6 Model development for low Chlorine content data 

A set of 36 data points has taken and forward selection, backward elimination and stepwise selection 

methods of variable selection has been performed using SPSS. The regression results using these 

methods are summarized in Table 5-5,Table 5-6 and Table 5-7 respectively. 

Table 5-5 Backward Regression 

Model Covariate Unstandardized 
Coefficients 

Std 
Coff 

t 
value 

Sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

1 (Constant) 31.88 60.20  0.53 0.60 -93.70 157.46 
Test Temp (X9) 0.03 0.04 0.11 0.70 0.49 -0.06 0.12 

IRF (X7) -1.53 1.25 -0.25 -1.22 0.24 -4.14 1.09 
IRT (X8) 0.14 0.20 0.14 0.71 0.49 -0.27 0.56 

P (X2) -0.37 0.15 -0.78 -2.47 0.02 -0.68 -0.06 
C (X3) 0.07 0.10 0.23 0.71 0.49 -0.14 0.28 
O (X4) 0.06 0.02 0.54 2.77 0.01 0.01 0.10 
Fe (X5) 0.04 0.01 0.72 2.73 0.01 0.01 0.06 

2 (Constant) 29.68 59.38  0.50 0.62 -93.80 153.16 
Test Temp (X9) -1.62 1.23 -0.27 -1.32 0.20 -4.18 0.94 

IRF (X7) 0.18 0.19 0.18 0.93 0.36 -0.22 0.57 
IRT (X8) -0.37 0.15 -0.79 -2.54 0.02 -0.68 -0.07 

P (X2) 0.07 0.10 0.22 0.69 0.50 -0.14 0.27 
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Model Covariate Unstandardized 
Coefficients 

Std 
Coff 

t 
value 

Sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

C (X3) 0.06 0.02 0.55 2.86 0.01 0.02 0.10 
O (X4) 0.04 0.01 0.72 2.76 0.01 0.01 0.06 

3 (Constant) 26.49 58.48  0.45 0.66 -94.79 147.77 
Test Temp (X9) -1.68 1.21 -0.28 -1.39 0.18 -4.20 0.83 

IRT (X8) 0.21 0.18 0.21 1.15 0.26 -0.17 0.59 
P (X2) -0.31 0.12 -0.67 -2.66 0.01 -0.56 -0.07 
C (X3) 0.06 0.02 0.55 2.88 0.01 0.02 0.10 
O (X4) 0.04 0.01 0.83 4.28 0.00 0.02 0.06 

4 (Constant) 88.91 21.65  4.11 0.00 44.11 133.70 
Test Temp (X9) -1.13 1.12 -0.18 -1.01 0.32 -3.44 1.19 

IRT (X8) -0.37 0.11 -0.79 -3.46 0.00 -0.59 -0.15 
C (X3) 0.05 0.02 0.47 2.63 0.02 0.01 0.09 
O (X4) 0.04 0.01 0.85 4.32 0.00 0.02 0.06 

Table 5-6  Forward regression 

Table 5-7 Stepwise Regression 

Model Covariate Unstandardized 
Coefficients 

Std 
Coff 

t 
value 

Sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

1 (Constant) 138.39 6.95  19.92 0.000 124.11 152.67 
Fe (X5) 0.02 0.01 0.38 2.11 0.000 0.00 0.04 

2 (Constant) 135.33 6.08  22.27 0.000 122.81 147.84 
Fe (X5) 0.04 0.01 0.75 3.83 0.000 0.02 0.06 
P (X2) -0.29 0.09 -0.61 -3.14 0.000 -0.48 -0.10 

3 (Constant) 85.22 21.35  3.99 0.000 41.16 129.28 
Fe (X5) 0.04 0.01 0.90 4.76 0.000 0.03 0.06 
P (X2) -0.41 0.10 -0.88 -4.20 0.000 -0.62 -0.21 
O (X4) 0.04 0.02 0.41 2.43 0.002 0.01 0.08 

Model Covariate Unstandardized 
Coefficients 

Std 
Coff 

t 
value 

Sig 95% confidence 
interval for B 

B Std 
error 

Lower 
Bound 

Upper 
Bound 

1 (Constant) 138.39 6.95  19.92 0.000 124.1 152.7 
Fe (X5) 0.02 0.01 0.38 2.11 0.000 0.0 0.0 

2 (Constant) 135.33 6.08  22.27 0.000 122.8 147.8 
Fe (X5) 0.04 0.01 0.745 3.83 0.000 0.0 0.1 
P (X2) -0.29 0.09 -0.612 -3.14 0.000 -0.5 -0.1 

3 (Constant) 85.22 21.35  3.99 0.000 41.2 129.3 
Fe (X5) 0.04 0.01 0.900 4.76 0.000 0.0 0.1 
P (X2) -0.41 0.10 -0.881 -4.20 0.000 -0.6 -0.2 
O (X4) 0.04 0.02 0.410 2.43 0.002 0.0 0.1 



 

 57 

5.7 Results 

The backward elimination method results in best regression model with only 7 covariates, namely, 

Phosphorous (X2), Carbon (X3), Oxygen (X4), Iron (X5), Irradiation fluence (X7), Irradiation 

temperature ( X8) and Test Temperature (X9). The model equation is estimated as, 

 9879432 029.0141.053.1036.0056.0071.0367.878.31 XXXXXXXy ++−++−−=  (5.2) 

The model statistics is summarized in Table 5-8 shows that all the regression coefficients. 

Table 5-8 Regression results for the predictive model 

 
 

Covariates 

Regression 
Coefficients 

 
 
t value 

 
 

Significance 
(p value) 

95% confidence 
intervals for bk 

bk Standard 
Error 

Lower 
Bound 

Upper 
Bound 

(Constant) 31.88 60.20 0.53 0.60 -93.70 157.46 
Test Temp (X9) 0.03 0.04 0.70 0.49 -0.06 0.12 

IRF (X7) -1.53 1.25 -1.22 0.24 -4.14 1.09 
IRT (X8) 0.14 0.20 0.71 0.49 -0.27 0.56 

P (X2) -0.37 0.15 -2.47 0.02 -0.68 -0.06 
C (X3) 0.07 0.10 0.71 0.49 -0.14 0.28 
O (X4) 0.06 0.02 2.77 0.01 0.01 0.10 
Fe (X5) 0.04 0.01 2.73 0.01 0.01 0.06 

 

For this model R2 = 0.76, which means it explains 76% of the variability in the data, i.e., sum of 

squares of deviation from the mean of Kc data. The standard error of the model with 20 degrees of 

freedom is 8.05 MPa√m, which is approximately less than the standard deviation of the Kc (10.64 

MPa√m) for 28 data points. A comparison of the observed and predicted values presented in Figure 

5-6 shows that 90% prediction intervals enclose the sample data quite well.  
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Figure 5-6 Regression model for Kc with 90% prediction interval 

Figure 5-7 shows that the residuals fitted quite closely by a normal distribution, which validates the 

modelling assumption underlying the regression analysis. 
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Figure 5-7 Residuals of the regression plotted on the normal probability paper 
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5.8 Discussion 
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Figure 5-8: Effect of covariates on the fracture toughness 

The importance and nature of the effect of a covariate on Kc can be investigated by examining the 

sign and magnitude of standardized regression coefficients.  
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Figure 5-9: Comparison of predicted Kc with the lower bound  
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Figure 5-8 shows that the Phosphorous has the highest influence (negative), followed by [Fe] which 

has a positive effect on Kc. The effect of the [O] (positive), [C] (positive) Irradiation Temperature 

(positive) Test temperature (positive) and Irradiation Fluence (adverse) has a small effect.The lower 

bound obtained from code is compared with the predicted Kc values for 36 test samples in Figure 

5-9. This plot shows that the regression model can provide a tube specific estimate of the fracture 

toughness which is expected to be more realistic than a generic lower bound curve.  
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Figure 5-10: Comparison of predicted Kc with statistically based lower bound 

The predicted lower bound for Kc values has also been compared with statistically based 

fracture toughness and shown in Figure 5-10. 

5.9 Concluding Remark 

The backward elimination method results in best regression model with only 5 covariates, namely, 

chlorine (X1), oxygen (X4), irradiation fluence (X7), irradiation temperature (X8) and test temperature 

(X9). For this model R2 = 0.747, The standard error of the model with 100 degrees of freedom is 16.90 

MPa√m, which is approximately half of the standard deviation of the Kc (32.83 MPa√m). Test 

temperature has the highest influence (positive), followed by [Cl] which has an adverse effect on Kc. 
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The effect of the irradiation temperature (positive) and irradiation fluence (adverse) is of similar 

order, and oxygen has a small positive effect. The lower estimate for Kc is specified in CSA N285.8 

is compared with the predicted Kc values for 106 test samples in Figure 5-4. This plot shows that the 

regression model can provide a tube specific estimate of the fracture toughness which is expected to 

be more realistic than a generic lower bound curve. 
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Chapter 6 
Conclusions 

6.1 Conclusions 

The obtained data has been checked for best fit distribution. Normal, Weibull and Gumbel probability 

paper has been plotted and has R2 value 0.94, 0.93 and 0.91 respectively. Finally normal distribution 

has chosen best fit for the given data set. 

Next, dependence of temperature on fracture toughness has been analyzed. For temperature less than 

equal to 1500 C, linear regression model shows a close resemblance with clause 13.2.2 CAN/CSA – 

N285.4-94. For temperature greater than 1500 C, linear regression model does not show resemblance 

with clause 13.2.2 CAN/CSA – N285.4-94. An increase in data point can improve the model. 

To develop the multivariate regression model correlation between dependent variable and 

independent variable has been considered. Figure 4-1 shows that Kc has high negative correlation 

with chlorine (ρ = -0.65) and flow stress (ρ = -0.49) and high positive correlation with the test 

temperature (ρ = 0.65). Kc exhibits modest correlation (0.2 ≤|ρ| ≤ 0.5) with irradiation temperature, 

iron and grain size parameters, Fr and Ft. Also correlation between two dependent pair has been 

considered to control collinearity problem. A three variable regression model (Test Temperature, 

chlorine, and Irradiation Temperature) has been developed. This model explains 71% variability of 

observed data. 

An analysis for low chlorine content and high temperature data has been also performed. From the 

database, a smaller sample of size = 28 data points having [Cl] ≤  1 ppm was extracted for analysis.  

A regression model has developed using 7 variables including only ingot chemistry and operational 

conditions Table 4-7, resulting in the following model: 
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++−++−−= 654321 141.01526.1036.0056.0071.0367.878.31 XXXXXXy 7029.0 X   

 This model explains 57% variability in data points.  

The backward elimination method results in best regression model with only 5 covariates, namely, 

chlorine (X1), oxygen (X4), irradiation fluence (X7), irradiation temperature (X8) and test temperature 

(X9). The model equation is estimated as, 

 98741 194.0595.0869.205.0287.4203.92 XXXXXy ++−+−−=  

The model statistics is summarized in  Table 5-4 show that all the regression coefficients are 

significant at 5% level, except the intercept (b0) for which the p value is 0.08. The statistical analysis 

presented in this thesis showed that a significant portion (~ 75%) of the burst test fracture toughness 

variability can be addressed.  Since the covariates in the model are readily available for in-service 

pressure tubes (chlorine concentration, oxygen concentration, irradiation fluence, irradiation 

temperature, and operating temperature), it can be used to can be used to predict the fracture 

toughness of in-service pressure tubes, and define a suitable probabilistic lower-bound. The proposed 

approach and resulting model will improve the understanding of fracture toughness variability for 

in-service tubes, and may provide a basis for positive (less conservative) changes to guidelines for 

fitness-for-service assessment.                                                        

 

 

 
 
 
 



 64 

Appendix A 
Correlation of Measured KC with all 12 covariates 

Table 6-1: Correlation Matrix 

 Fracture 
Toughness 

Test 
Temp 

Irradiation 
Fluence 

Irradiation  
Temp 

Flow  
Stress Cl P C O Fe 

OFFCUT 
Avg Fr 

OFFCUT 
Avg Ft 

OFFCUT 
Avg Fl 

Fracture 
Toughness 1 0.65 0.10 0.37 -0.48 -0.65 0.17 -0.03 0.16 -0.19 0.28 -0.23 -0.15 

Test Temp 0.65 1.00 0.31 0.42 -0.74 -0.21 -0.02 -0.13 -0.09 -0.13 0.13 -0.10 -0.06 
Irradiation 

Fluence 0.10 0.31 1.00 0.42 -0.23 -0.05 -0.01 0.04 0.12 -0.11 0.16 -0.12 0.06 

Irradiation 
Temp 0.37 0.42 0.42 1.00 -0.31 -0.10 -0.27 -0.23 -0.16 -0.21 0.10 -0.04 -0.10 

Flow Stress -0.48 -0.74 -0.23 -0.31 1.00 0.23 0.07 0.15 0.07 0.11 -0.08 0.06 0.00 

Cl -0.65 -0.21 -0.05 -0.10 0.23 1.00 -0.34 -0.03 -0.23 0.07 -0.40 0.36 0.05 

P 0.17 -0.02 -0.01 -0.27 0.07 -0.34 1.00 0.55 0.30 0.23 -0.03 -0.01 -0.02 

C -0.03 -0.13 0.04 -0.23 0.15 -0.03 0.55 1.00 0.50 0.30 -0.01 -0.12 0.34 

O 0.16 -0.09 0.12 -0.16 0.07 -0.23 0.30 0.50 1.00 -0.34 0.26 -0.26 0.04 

Fe -0.19 -0.13 -0.11 -0.21 0.11 0.07 0.23 0.30 -0.34 1.00 -0.45 0.38 0.18 
OFFCUT 
Avg Fr 0.28 0.13 0.16 0.10 -0.08 -0.40 -0.03 -0.01 0.26 -0.45 1.00 -0.95 0.12 

OFFCUT 
Avg Ft -0.23 -0.10 -0.12 -0.04 0.06 0.36 -0.01 -0.12 -0.26 0.38 -0.95 1.00 -0.39 

OFFCUT 
Avg Fl -0.15 -0.06 0.06 -0.10 0.00 0.05 -0.02 0.34 0.04 0.18 0.12 -0.39 1.00 
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Appendix B 
Periodic inspection of CANDU Components 

(CAN/CSA-N285.4-94) 

Clause: D.13 Critical Crack length (CCL) 
 

D.13.1 General 

The length of a through-wall crack at which crack instability occurs is used in the flaw stability and 

leak-before-break (LBB) analysis procedures described in Clauses C.2 and C.4, respectively. 

 
D.13.2 Fracture toughness for axial through-wall flaw 
 
13.2.2 Lower-bound fracture toughness 
 
For temperature less than or equal to 1500C, the lower-bound fracture toughness is given by 
 
 TKc 30.027 +=    mMPa  (D.13-1)

  
 
and for temperature greater than 1500 C, the lower-bound fracture toughness is given by  
 
 72=cK    mMPa  (D.13-2)

 

cK = fracture toughness, defined as the critical stress intensity factor at the onset of flaw instability, 

 mMPa         T = temperature (0C) 

13.2.3 Statistically based fracture toughness 
 
Temperature less than or equal to 1500 C. 
 
Foe temperatures less than or equal to 1500C, the relation for the statistically based fracture toughness 

is given by 

 )exp( 1211 kckckcc TBAK ε++= (D.13-3)
 
Kc1 = statistically based fracture toughness, mMPa  

Akc1 =  3.762 ;          Bkc1 = 5.8849 X 10-3    ;         T =  Temperature, 0C 



 

 66 

2
1

2

11 9.3653.1
)742.87(

31
11)29...( ⎥

⎦

⎤
⎢
⎣

⎡ −
+⎟

⎠
⎞

⎜
⎝
⎛+==

Tsdfodt kckcε  

 
t (d.o.f.=29)  =  student’s t-distribution with 29 degree of freedom  

sdkc1 = 0.174 
 
The value of Akc1 = 4.14,                   Bkc1 = 3.9 x 10-3   

To verify the above statistical equation 43 data point (T≤  150 0C) has been taken from a data set of 

106 samples. A linear regression between ln(Kc) and temperature results in following model with R2  

value 0.47.  

 )14.40039.0exp( += TKc  (B-1)

Figure 6-1 shows comparison between equation (D.13-3) and equation (B-1) with observed data 

points shown as dots.  

Temperature greater than 1500 C. 
 
For temperature greater than 1500C, the relation for the statistically based fracture toughness is given  
 
by                                                    Kc2  = exp (Akc2 + εkc2) 
 
Kc2 = statistically based fracture toughness, mMPa  
 
Akc2 = 4.6495 

2
1

22 35
11)34...( ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+== kckc sdfodtε  

 
t (d.o.f. = 34) = student’s t-distribution with 34 degree of freedom 
 
sdkc2 = 0.1809 
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Figure 6-1: Comparison of predicted K c with statistically based lower bound 
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