
 

 

Statistical Geocomputing:  

Spatial Outlier Detection in Precision Agriculture 

 
 

by 

 

Peter Chu Su 

 

 

A thesis  
presented to the University of Waterloo       

in fulfillment of the  

thesis requirement for the degree of  
Master of Environmental Studies  

in 
Geography 

 

 

Waterloo, Ontario, Canada, 2011 

 

© Peter Chu Su 2011  



ii 
 

AUTHOR’S DECLARATION 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public.  

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

 

The collection of crop yield data has become much easier with the introduction of technologies 

such as the Global Positioning System (GPS), ground-based yield sensors, and Geographic 

Information Systems (GIS). This explosive growth and widespread use of spatial data has 

challenged the ability to derive useful spatial knowledge. In addition, outlier detection as one 

important pre-processing step remains a challenge because the technique and the definition of 

spatial neighbourhood remain non-trivial, and the quantitative assessments of false positives, 

false negatives, and the concept of region outlier remain unexplored. The overall aim of this 

study is to evaluate different spatial outlier detection techniques in terms of their accuracy and 

computational efficiency, and examine the performance of these outlier removal techniques in 

a site-specific management context.  

In a simulation study, unconditional sequential Gaussian simulation is performed to generate 

crop yield as the response variable along with two explanatory variables. Point and region 

spatial outliers are added to the simulated datasets by randomly selecting observations and 

adding or subtracting a Gaussian error term. With simulated data which contains known spatial 

outliers in advance, the assessment of spatial outlier techniques can be conducted as a binary 

classification exercise, treating each spatial outlier detection technique as a classifier. Algorithm 

performance is evaluated with the area and partial area under the ROC curve up to different 

true positive and false positive rates. Outlier effects in on-farm research are assessed in terms 

of the influence of each spatial outlier technique on coefficient estimates from a spatial 

regression model that accounts for autocorrelation. 

Results indicate that for point outliers, spatial outlier techniques that account for spatial 

autocorrelation tend to be better than standard spatial outlier techniques in terms of higher 

sensitivity, lower false positive detection rate, and consistency in performance. They are also 
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more resistant to changes in the neighbourhood definition. In terms of region outliers, standard 

techniques tend to be better than spatial autocorrelation techniques in all performance aspects 

because they are less affected by masking and swamping effects. In particular, one spatial 

autocorrelation technique, Averaged Difference, is superior to all other techniques in terms of 

both point and region outlier scenario because of its ability to incorporate spatial 

autocorrelation while at the same time, revealing the variation between nearest neighbours.    

In terms of decision-making, all algorithms led to slightly different coefficient estimates, and 

therefore, may result in distinct decisions for site-specific management.  

The results outlined here will allow an improved removal of crop yield data points that are 

potentially problematic. What has been determined here is the recommendation of using 

Averaged Difference algorithm for cleaning spatial outliers in yield dataset. Identifying the 

optimal nearest neighbour parameter for the neighbourhood aggregation function is still non-

trivial. The recommendation is to specify a large number of nearest neighbours, large enough to 

capture the region size. Lastly, the unbiased coefficient estimates obtained with Average 

Difference suggest it is the better method for pre-processing spatial outliers in crop yield data, 

which underlines its suitability for detecting spatial outlier in the context of on-farm research.     
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CHAPTER 1:                                           

INTRODUCTION 

 

The collection of yield data has become much easier with the introduction of technologies such 

as Global Positioning System (GPS), ground-based yield sensors, and Geographic Information 

System (GIS). Combine harvesters mounted with a yield sensor and a GPS receiver allows the 

collection of instantaneous crop yield data as the combine is harvesting the agricultural field. 

The result of this and other leading technological approaches has led to a new paradigm of 

agriculture, known as precision agriculture.  

Precision agriculture is naturally information-intensive as it requires substantial layers of data in 

order to provide the necessary information for sound decision-making. The explosive growth 

and widespread use of spatial data in precision agriculture has challenged the ability to derive 

useful spatial knowledge, emphasizing the need for better data pre-processing. Particularly, 

spatial yield datasets obtained by combine harvesters mounted with ground-based yield 

monitoring sensors and GPS are affected by various random and systematic errors that occur 

because of natural topographic conditions, management-induced practices, and measurement 

error (Stafford et al., 1996).  These errors need to be appropriately removed from the raw crop 

yield dataset in order to derive better spatial information.     

After the collection of crop yield data, expert filtering software programs are used to remove 

yield errors. Expert filtering is a system that includes knowledge about the field, combine, crop, 



2 
 

GPS, and other characteristics, which assesses the raw data and removes points that experts 

would not consider reasonable (Blackmore & Marshall, 1996). Expert filtering focuses on 

removing known systematic errors, which are well defined and described in the literature 

(Rands, 1995; Blackmore & Marshall, 1996; Nolan et al., 1996; Beck et al., 1999; Arslan and 

Colvin, 2002; Kleinjan et al., 2002; Sudduth & Drummond, 2007). On the other hand, stochastic 

errors from mostly unknown sources, commonly referred as yield surges or spatial outliers, are 

diminished according to the discretion of the analyst. These errors can be correctly removed, 

completely ignored, or incorrectly removed. In this work, crop yield point measurements that 

are substantially different than the neighbouring point measurements for the same agricultural 

field are considered to be spatial outliers.   

The precision agriculture community utilizes local neighbourhood statistics to deal with these 

random errors, which involves the calculation of local statistics and determining outliers based 

on a moving window. Spatial outlier detection has also received a lot of attention from the data 

mining community. Data mining, particularly spatial data mining is the process of discovering 

interesting, previously unknown, and potentially useful patterns from large spatial datasets 

(Shekhar et al., 2005). In data mining, different spatial outlier detection algorithms have been 

elaborated and implemented to large spatial datasets such as traffic and census datasets. While 

both research communities implement similar techniques, the effectiveness of their techniques 

and the choice of parameters remain non-trivial.  In addition, while most of the attention has 

been given to filtering data for yield mapping purposes, there has been little or no 

consideration regarding filtering data for the analysis of spatial yield data  and possible 

consequences for decision-making based on statistical analyses in on-farm research. Although 

recognized as an important yet difficult process, to my knowledge, the study of spatial outlier 

effects in statistical modelling for site-specific management, particularly in modelling crop yield 

response functions, has been non-existent in agricultural studies.    
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1.1. Research Goals 

The overall goal of this study is to assess the effects of outlying observations in yield datasets 

and their elimination strategies for site-specific crop management. More specifically, the 

objectives of this study are as follows: 

1. To identify and provide an understanding of the importance of precision agriculture 

practices for site-specific management; 

2. To examine the errors that are present throughout the collection phase of crop yield 

data; 

3. To devise a framework for simulating crop yield data for testing purposes; 

4. To examine existing spatial outlier detection techniques that are widely utilized for 

filtering erroneous crop yield data, and assess their performance via quantitative 

methods;   

5. To examine the effects of outliers and their detection techniques for statistical 

modelling in a site-specific management context. 

  

1.2. Motivation for Research 

Spatial and non-spatial outliers and their detection techniques remain a popular research topic 

in the literature. Outlier detection has been studied as early as 1620 with the work of Sir Francis  

Bacon (Hadi et al., 2009), while spatial outlier detection gained popularity during the early 21st 

century. Currently, many spatial outlier detection techniques are available but there is no 

knowledge about which spatial outlier detection technique is better. Ver Hoef & Cressie (2001) 

state a problem in statistics is the misuse of statistical techniques: to use lesser statistical 

methods when more powerful methods are available. And this has been the case in the context 

of precision agriculture and data mining studies. Sudduth & Drummond (2007) state that there 

is no standard method for cleaning yield surges, although many different techniques have been 
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suggested to address the specific error in applications of precision agriculture.  Several global 

statistical techniques have been proposed and widely applied in the context of cleaning crop 

yield datasets (Shekhar et al., 2003; Lu et al., 2003). Global statistical tests remove extreme 

observations without considering their spatial arrangement, so they cannot detect spatial 

outliers but global ones. Local neighbourhood statistics became the standard approach to 

dealing with local errors and have also been widely utilized (Kleinjan et al., 2002; Simbahan et 

al., 2004; Ping & Dobermann, 2005). More elaborate spatial outlier algorithms have been 

proposed by the data mining community (Shekhar et al., 2003; Lu et al., 2003; Kou et al., 2006). 

However, these techniques have yet to be utilized for applications in precision agriculture.  

Regardless, outlier detection in spatial data remains a challenge for various reasons. First, the 

choice of algorithm is non-trivial. Numerous spatial outlier detection techniques have been 

proposed to supersede previous techniques, but it is unclear whether the new algorithms are 

better. There is a lack of systematic comparisons of multiple algorithms as many authors have 

not attempted to compare new algorithms to earlier ones. In addition, the comparisons of 

spatial outlier detection techniques have been performed by qualitative methods. The current 

approach at assessing spatial outlier detection techniques is by ranking the top spatial outliers 

identified by each technique for a particular spatial dataset (Lu et al., 2003; Kou et al., 2006; 

Kou et al., 2007). However, ranking each detected outlier does not quantitatively measure the 

performance of each technique, especially when true spatial outliers are unknown.     

Second, the choice of a spatial neighbourhood used to calculate the outlierness of an 

observation is also non-trivial. In all proposed local neighbourhood statistics, the shape of the 

neighbourhood is distinct. Thylen et al. (2000) and Bachmaier & Auerhammer (2004) utilize 

Euclidean metrics that result in a circular neighbourhood. However, the neighbourhood of 

Simbahan et al. (2004) and Ping & Dobermann (2005) resembles a cross band, “+”, with three 

succeeding and three preceding observations on each direction. Noack et al. (2003) 

neighbourhood is similar to a letter “H”, where the vertical lines correspond to the 

neighbouring harvest tramline. And the neighbourhood proposed by Bachmaier (2010) 
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resembles a butterfly. In all cases, the number of neighbouring observations is left to the 

analyst’s discretion. Innately, the definition of spatial neighbourhood affects the effectiveness 

of detecting true spatial outliers.  

Lastly, false positives (swamping effects) and false negatives (masking effects) are not properly 

explored or treated, which implies most of the study on spatial outliers has been focused on 

detecting single point outliers. Spatial point outliers are single spatial outliers whose nearest 

neighbours are all non-outliers. Point outliers can create situations of false positive when an 

observation is wrongly identified as an outlier because it is surrounded by at least one true 

outlier. However, region outliers, which are spatial outliers that are clustered together, cause 

instances of not only false positives but also false negatives. In this particular situation, a true 

outlier is misclassified as a non-outlier because of the presence of true outliers in its 

surroundings that make it appear to be a normal observation. This case of region outlier 

remains largely unexplored in spatial data.       

 

Figure 1.1: Masking and Swamping Effects 

Neighbours of S3 are masked; their outlier score will  be inflated because of the presence of outlier S3. Outlier E1 

and E2 are swamped; their outlier score will  be diminished because of the presence of the other outlier. 

Source: Lu et al. (2003).  
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Many authors interested in the analysis of yield data for site-specific management, particularly 

for crop yield economic analyses such as Long (1998), Lambert et al. (2003) and Anselin et al. 

(2004) perform statistical analysis without outlier pre-processing steps. Others such as Anselin 

et al. (2004a), Lee et al. (2005), and Vrindts et al. (2005) overlook outliers by only removing 

extreme values without any focus on removing on local instabilities. Griffin et al. (2008) 

analyzed seven field-scale on-farm experiments conducted by farmers and concluded that yield 

data quality affects farm management decisions as five experiments would have led to different 

farm management recommendations depending upon whether the yield data were adjusted. 

However, case studies were used by Griffitn et al. (2008) because of insufficient farm 

management information available as relatively few farmers quantitatively analyze yield data. 

As such, a need exists to quantitatively determine whether removing outliers quantitatively 

affects the decision-making in a site-specific management context. As Hadi et al. (2009) notes, 

outlier detection is much similar to the ‘chicken’ and ‘egg’ problem. In order to obtain reliable 

model estimates, outliers need to be known in the data. But to know outliers in the data, model 

estimates should not be affected by outliers.  

 

1.3. Structure of Thesis 

The rest of the thesis consists of the following five chapters: 

Chapter 2 provides an introduction to precision agriculture, followed by an overview of its 

technological components. 

Chapter 3 presents a review of previous studies on outlier and spatial outlier detection, and 

reviews outlier-generating mechanism that are present in yield data. 

Chapter 4 introduces the proposed methodology to evaluate spatial outlier detection 

techniques. This will include a detailed description of the outlier techniques  under evaluation.  
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Chapter 5 presents statistical results for the performance assessment of outlier techniques, 

followed by a discussion of the findings. 

Chapter 6 provides a summary and conclusions of the findings, a discussion about the 

suggested practices for cleaning yield datasets, and recommendations for future work.       

Appendix A provides the results of the Shapiro-Wilk test statistic as a requirement for 

subsequent statistical tests that appear in Chapter 5. 

Appendix B, similar to Appendix A, provides the results of the Brown-Forsythe test statistic as a 

requisite for subsequent statistical test that appear in Chapter 5. 

Appendix C lists all acronyms used throughout this thesis. 

Appendix D lists all spatial outlier detection techniques that appear in this thesis.  

In this work, spatial outlier detection techniques are referred as spatial outlier detection 

algorithms. Throughout the text, each algorithm is distinguished by being capitalized and italics 

(see Appendix D). Similarly, written summary statistics such as the mean and the median will be 

in italics.  
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CHAPTER 2:                                      

OVERVIEW OF PRECISION AGRICULTURE 

 

2.1. Precision Agriculture:  An Introduction 

In the literature and industry, the term “precision agriculture” (PA) has been associated with 

many terms: “precision farming” (PF), “site-specific crop management” (SSCM), “site-specific 

management” (SSM), and “precision crop management” (PCM). All of these terms attempt to 

address the same revolutionary agricultural phenomenon that started approximately 30 years 

ago. In this work, the term “precision agriculture” will be referring to this agricultural 

phenomenon. The United States National Research Council (1997) defines precision agriculture 

as a management strategy that incorporates information technology for making decisions 

associated with agricultural crop production.  

In precision agriculture, information technology and technological advances such as  the Global 

Positioning System (GPS) and Variable Rate Technology (VRT) are used in order to geolocate the 

required information for spatial decision-making and apply the decision about the kind, 

location, and amount of agricultural input needed to match with the actual crop needs. In this 

regard, precision agriculture is not only the management and decision-making of labour, 

equipment, finance, production, but also of information.  
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The ultimate goal of precision agriculture is to improve economic returns and reduce 

environmental impact (Fountas, 2004). Economic return and environmental protection is not 

obtained by maximizing crop yield, but by managing and distributing agricultural inputs 

efficiently. Through precision agriculture, the farmer administers the exact amount of inputs 

needed at the exact location on the farm so the use of fertilizer and pesticides is reduced. The 

economic return is due to the fact that savings in inputs will offset the reduction of crop yield in 

the long term.  

Environmental protection is enhanced by the use of optimal amounts of agricultural inputs, 

fertilizers and pesticides. The environmental impacts of input application in precision 

agriculture have not been extensively studied (Pedersen, et al., 2004). Nevertheless, the 

expected environmental benefits of precision agriculture include reduction of soil erosion, soil 

compaction, nitrate and pesticide leaching, and energy consumption, as well as focusing on 

habitat conservation and species protection (Werner, et al., 1999). For instance, Whitley et al. 

(2000) demonstrates the use of VRT in reducing ground water contamination while Schumacher 

et al. (2000) examines topographic data used with precision agriculture technologies for 

reducing erosion. However, the bulk of the literature on precision agriculture focuses on the 

quantity and quality of crop production, increased labour production, minimization of 

expenditure in resources, and production profitability (Yakushev et al., 2008).  

Not all farms are suitable for precision agriculture because the economics of agriculture is 

affected by several internal and external factors. The most crucial internal factor for precision 

agriculture is the degree of spatial variation in the farm. A farm needs to be exhibit spatial 

variability, and this spatial variation of crop yield is the result of many complex anthropogenic, 

biological, edaphic, topographic, and climatic factors and their interaction among each other 

(Corwin & Lesch, 2010). The greater the spatial variation in farming data, the greater the 

potential of economic return for precision agriculture compared to conventional agriculture 

practice.  



10 
 

Conventional agricultural practice is based on managing the farm upon a hypothetical average 

condition, which may not exist anywhere in the farm. It involves constant input application, 

which is highly inefficient because some locations obtain inadequate inputs; others obtain 

excessive. In precision agriculture, every location in a farm that exhibits spatial variation can be 

evaluated according to its site specific characteristics and assigned an optimal input application 

rate unique to that location, so all locations in the farm obtain optimal inputs. However, if 

spatial variation is absent or insignificant, precision agriculture is ineffective and therefore not 

required.  

External factors that affect precision agriculture include, but are not limited to, the different 

crops and their response at different nutrient levels, cost of fertilizer, pesticides and other 

inputs, market value of crops, and cost of spatial data, equipment, and labour (Lowenberg-

DeBoer & Swinton, 1997). A determinant for optimal application rate is the cost of inputs and 

the crop market value (Havlin & Heiniger, 2009). Other major external factors are the cost of 

spatial data and VRT equipment.  

Decision-making plays an important role for precision agriculture. Farming decisions can be 

classified into strategic, tactical, and operational decisions (Bouma, 1997). Strategic decisions 

deal with the overall management of the farm, focusing on issues with long-term 

consequences, usually 10 years or more. Tactical decisions deal with specific issues of farming, 

usually spanning 2 to 5 years. Operational decisions are made on a day-to-day basis. These day-

to-day decisions include planting, fertilizer and pesticide application, harvesting, yield 

monitoring, and crop protection measures such as weed detection. Operational decisions are 

the focus of precision agriculture.        

Both traditional agriculture and precision agriculture incorporate management and decision-

making in day-to-day activities. The key distinction between both is the quality of information. 

Traditional agriculture relies on the farmer’s mental information approach, whereby the 

information and knowledge is obtained by years of observation, experimentation, trial and 
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error, and implementation (Davis, et al. 1998). This kind of information is subjective because it 

is derived from experience and belief. The information is not exact and prone to errors. With 

years of practice, the farmer will most likely know that spatial variability exists in the farm, and 

may administer inputs accordingly. However, the farmer does not know the exact magnitude of 

the variation, or the exact amount of inputs needed to achieve optimal results.  

In precision agriculture, information is measured numerically. Advances in information and 

telecommunication technologies have enabled farmers to collect vast amounts of precise site-

specific data with relative ease, and have provided powerful analytical tools for better farm 

management. This reduces uncertainty in the operational decision-making process (National 

Research Council, 1997; Blackmore, 2000b). Ultimately, farmers who incorporate better 

information to their practices are more likely to earn higher economic returns than farmers 

who do not.  

Worldwide adoption of precision agriculture is mostly based on the level of general economic 

development, the level of government supporting agriculture, and the nature of the production 

unit (McBratney, et al., 2005a). The bulk of literature about precision agriculture mostly 

originates in developed countries with strong government support in agriculture such as USA, 

Japan, and the European Union (McBratney, et al., 2005a). Literature originating from Canada is 

limited, as the development of precision agriculture practices has been largely driven by 

technology innovation, private sector crop consultants, and equipment providers (Haak, 2010). 

Haak (2010) sent a survey to 14,000 Canadian farmers in 2006 and revealed that 23% of them 

use GPS equipment or products such as digital maps, with greater overall use reported in the 

Prairie Provinces and Ontario due to larger cropland areas . Out of this 23%, 78% use GPS as a 

tracking or guidance system on machinery to improve field operations; 50% for VRT input 

application; 32% for collecting spatial information for soil and crop management; and 4% for 

water management.  
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Nonetheless, the precision agriculture community in Canada is strengthening as academia and 

government has conducted research since the 1990s and provided funding incentives to 

producers since 2005 (Haak, 2010). As such, there is a strong presence of companies in Canada 

that provide a variety of precision agriculture services: Geonics Ltd is a worldwide company that 

provides electromagnetic instrumentation for non-invasive soil sampling; Prairie Precision 

Network provides differential GPS correction to Western Canada; DynAgra provides VRT service 

for fertilizer, herbicides, pesticides, fungicides, and insecticides; and companies such as SIGA, 

Landwise Inc, and Agri-Trend offer multiple services. In addition, indices initially suggested by 

Swinton & Lowenberg-DeBoer (2001) suggest that among all countries, Canada ranks first for 

overall suitability for precision agriculture based on a simple index about the number of 

hectares of cropland per worker. On average, environmental variation increases with area, 

therefore greater spatial potential for precision agriculture exis ts.  

Given the identified potential for precision agriculture in Canada, the number of farming 

projects has been steadily increasing over the years. Haak (2010) reports approximately 9,000 

precision agriculture projects funded by the National Farm Stewardship Program (NFSP) in 

Alberta, Saskatchewan, and Manitoba, totalling an amount of $34.5 million in funding.  

 

2.2. Components of Precision Agriculture 

2.2.1. Global Positioning System 

Perhaps the most important component for precision agriculture, the GPS system allows users 

to automatically determine their location anywhere on Earth, in real time, and while in motion. 

The GPS consists of a constellation of 24 satellites, a ground station, and a GPS receiver. 

Launched by the United States Department of Defence (U.S. DOD), the satellites orbit the Earth 

while broadcasting almanac information of two radio signals with different frequencies (Pfost 

et al., 1998).  
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The ground stations continuously adjust the almanac information for each satellite in order to 

reflect the actual orbit path. Due to gravitational forces from the Sun, moon and Earth, 

satellites are constantly pulled towards the Earth, causing minor orbital variations and 

substantial errors while determining the location of the receiver. And a GPS receiver, analogous 

to an AM/FM radio, receives the satellite signals and translates the almanac information to 

determine the position of the receiver.  

Precision agriculture started during the late 1980s with the introduction of GPS technology into 

the agriculture sector. One of the first ideas was to mount a GPS receiver and a yield monitor 

onto a combine harvester (Searcy et al. 1989). While the combine is harvesting the farm field, a 

yield monitoring system is automatically recording yield at every one or two seconds, and the 

GPS receiver is obtaining positional information. The result of this combination is geo-

referenced yield data. This data collection arrangement has provided empirical evidence of how 

farming data was spatially autocorrelated.  

To obtain better GPS accuracy, signal correction is required. Differential correction, or DGPS, is 

a technique that adjusts the GPS signals to improve positional accuracy. Corrected GPS signals  

can achieve 1 to 3 metres accuracy, depending on calibration. Differential correction requires a 

static and a roaming GPS receiver. The static GPS receiver is placed on a location of known co-

ordinates so the actual distance, the true range, between the static receiver and satellites is 

known and correct at all times. The pseudo-range, the distance between the static GPS receiver 

and satellites calculated by the static receiver, is a signal that contains the true distance and all 

the accumulated errors from the atmospheric condition. The difference between the true range 

and the pseudo-range is the differential correction (Figure 2.1). 

The application of GPS technology has been fundamental to the development of precision 

agriculture. GPS receivers without differential correction can be used for crop scouting, which is 

an on-site assessment of crops made by farmers or other professionals. Crop scouting is usually 

required on a mixed-farm system, where a variety of species are grown on different fields. 
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DGPS is more valuable for precision agriculture as it is utilized for yield mapping, yield 

monitoring, and soil sampling, which are essential procedures for the characterization of spatia l 

variability of the farm. Real-Time Kinematic GPS (RTK-GPS) is an emergent GPS technology that 

can be utilized for variable-rate fertilizer application down to centimetre-level accuracy. 

However, RTK-GPS is still relatively expensive, and requires expensive mapping software and 

highly accurate soil maps, yield maps, and treatment maps among other deliverables (Stafford, 

2000).   

 

Figure 2.1: The concept of Differential GPS correction 

Source: http://www.wirelessdictionary.com/Wireless -Dictionary-Real-Time-Kinematic-RTK-Definition.html 

 

2.2.2. Yield Mapping 

Yield mapping is considered the initial stage of implementing precision agriculture (Blackmore, 

1998). Yield mapping is the process of collecting geo-referenced crop yield data while the crop 

is being harvested (National Research Council, 1997). Yield mapping was first introduced by 
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Massey Ferguson in 1982 when a yield meter was mounted onto a combine harvester to obtain 

continuous yield measurements for the first time, although GPS technology was not available in 

1982 (Oliver, 2010).  

For yield mapping to work, crop yield per unit area must be determined at exact locations. 

Indirect methods of measuring crop yield include measurement of the combine engine speed or 

the torque of the tank filling auger, while direct methods include volumetric flow and mass flow 

measurements via proximal sensors (Stafford et al. 1996). Mass flow sensors are preferred due 

to the variation in bulk density and moisture content of volumetric flow sensors (Stafford et al. 

1996). Mass flow sensors measure the crop mass as it enters the combine header. For mass 

flow sensors, grain yield can be calculated as: 

    
 

    
 

  is the instantaneous yield (volume per unit area),   is the mass flow entering the combine 

(mass per unit area),  is the combine header width (the cutting width),   is the travel velocity 

of the combine (distance per unit time), and   is a conversion coefficient (Griffin, 2010). The 

suitability of DGPS over GPS is implied by the fact that the positional accuracy of yield 

measurement are required to be better than the width of the combine header. The combine 

header mixes grain across its width, which limits the spatial resolution of yield data up to the 

width of the header (Blackmore, 1998). Combine headers are approximately seven to eleven 

metres in width, which satisfies the DGPS accuracy requirements.   

The result of yield monitoring is a yield map, which is a document that represents the spatial 

pattern of crop yield, and all the variables and side effects that were present during the 

plantation period (Blackmore, 2003). Yield maps are most commonly used for monitoring crop 

moisture and soil fertility, conducting on-farm experiments, and tile drainage management 

(Griffin, 2009). 
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Because some of the variables affecting crops change over time such as weather and nutrient 

levels, yield maps are only applicable for the survey year and should not be utilized for future 

years. This concept of variability is addressed in Blackmore & Larscheid (1997). They argue that 

besides spatial variation, temporal variability and predictive variability are important aspects 

for precision agriculture. Predictive variability refers to the difference between the farmer’s 

prediction and the actual outcome (Blackmore & Larscheid, 1997). Temporal variability is 

identified when variables change over time, for example, crop yield has shown change over 

time.  

Since yield mapping has become a less cumbersome process due to GPS and yield sensor 

technology, it is highly recommended that yield mapping is conducted during each plantation 

year in order to determine whether the observed yield is accredited to management practice or 

to environmental conditions (Blackmore, 1998).  

 

Figure 2.2: Yield map overlaid on top of an aerial photograph 

Source: http://www.cropstarconsulting.com/id30.html  
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2.2.3. Soil Sampling  

After yield maps have been produced, there will be evidence whether the farm has enough 

spatial variability to implement site-specific nutrient and fertilizer management. If enough 

spatial variation exists, then further soil sampling is required for characterizing soil properties. 

Since soils are the medium for crop growth, characterizing and understanding the spatial 

variation of soil properties will enable the farmer to manipulate crop growth to meet their 

economic and environmental goals (McBratney & Pringle, 1998). The ultimate purpose of soil 

sampling for precision agriculture is to provide enough quality information in order to define 

management zones (MZ) for the application of inputs. Soil sampling allows farmer to determine 

the location and magnitude of fertilizer, lime, among other application input (Brase, 2006).   

Traditional soil sampling techniques, grid soil sampling and directed soil sampling, are relatively 

expensive and intensive. When soil sampling is finished, samples need to be taken to laboratory 

for analysis. Laboratory analysis is required for functional characterization, which is the process 

of describing the samples in terms of their water regime and nutrient dynamics, as opposed to 

taxonomic characterization (van Alphen & Stoorvogel, 2000).  When functional characterization 

is done, crop nutrient needs are derived for each soil sample.            

The problem is that soil maps produced by field surveys are often not suitable for site-specific 

management although they are exploited in precision agriculture in practice. In the past, much 

of the information used in agriculture was coarse information based on field averages which is 

only adequate for uniform application and field-level management (Kerry et al., 2010). This soil 

information is not at the appropriate level of detail, and therefore does not have importance 

for explaining the variation of crop yield nor is useful for reaching the desired economic and 

environmental goals. This is not a surprise given that soil mapping was not intended for 

precision agriculture in the first place (van Alphen & Stoorvogel, 2000).  

Ground-based proximal sensors can address the soil information needs of precision agriculture. 

These devices allows for non-invasive sampling as they can measure soil, plant, and crop 
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information from within 2 metres distance from the soil surface (Corwin & Lesch, 2010). 

Proximal sensors fall into six main categories: electrical and electromagnetic, optical and 

radiometric, mechanical, acoustic, pneumatic, and electrochemical (Adamchuk et al ., 2004). 

Electrical and electromagnetic sensors are perhaps the most utilized type of proximal sensors in 

precision agriculture. They include capacitance, electromagnetic induction (EMI), electrical 

resistivity (ER), and time domain reflectometry (TDR) sensors. Out of these, EMI and ER are the 

most common whithin-field level devices for soil mapping (Corwin & Lesch, 2005). EMI and ER 

measure the apparent soil electrical conductivity (ECa).  

Soil conductivity measurements are suitable for soil mapping because soil conductivity is highly 

correlated with soil properties (Pedersen, 2003; Corwin & Lesch, 2005; Kühn et al., 2009). The 

most cited EMI commercial device in the precision agriculture literature is the EM-38 

conductivity meter. The advantage of the EM-38 is that it can be mounted onto a vehicle along 

with a GPS receiver for automatic and dense sampling (Figure 2.3). The sampling density can be 

approximately one sample every three metres or even less.  

In addition, remote sensing imagery is increasingly being used as a non-invasive approach at 

soil sampling, particularly hyperspectral imagery (Personal Communication, Brenning, 2011). 

Before 1970s, aerial photographs were used for large-scale soil mapping, and subsequently, 

multispectral satellite imagery, such as Landsat TM, SPOT and AVHRR among others, provided 

the ability to map soils at a small scale, which is only applicable for regional soil mapping 

requirements (Manchanda et al., 2002). High resolution multispectral imagery such as IKONOS 

and QuickBird provide the resolution needs required by precision agriculture (Begiebing, et al., 

2005). And satellite imagery such as Compact High Resolution Imaging Spectrometer (CHRIS) 

and Airbourne Visible Imaging Spectrometer (AVIS) provide hyperspectral information, as its 

narrower bands provide much more detailed information on crop and soil information 

(Begiebing, et al., 2005).   
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Figure 2.3: Soil conductivity measurements with the EM-38 on an all-terrain vehicle  

Source: http://www4.agr.gc.ca/AAFC-AAC/display-afficher.do?id=1185562262407&lang=eng 

 

2.2.4. Digital Soil Mapping 

Soil mapping is conducted after soil samples have been collected. Traditional soil mapping 

involved the grouping of continuous pedons together to form polygons representing an area 

with the same soil type (Rossiter & Hengl, 2002). This exercise requires a thorough knowledge 

of the soil-landscape model: the relationship between soil and landscape characteristics such as 

landform, vegetation, geology, and geomorphology (Dobos & Hengl, 2009). Such subjective 

requirements and the need for accuracy and uncertainty modelling leads to criticism of 

traditional soil mapping as being too qualitative in nature, especially for precision agriculture 

(McBratney et al., 2000). 

With the emergence of computational statistics, GIS, GPS technology, and remote sensing data, 

various quantitative methods have been established and subsequently categorized in the 

emerging field of pedometrics (McBratney et al., 2000). Similarly, the availability secondary 

variables have aided soil surveyors to estimate soil variables based on these ancillary data 

(Hengl et al., 2007). This emergent extension of soil prediction has been known as digital soil 

mapping. Digital soil mapping (DSM) is defined as the creation and population of a 



20 
 

geographically referenced soil database generated at a given resolution by using field 

laboratory observation methods coupled with environmental data through quantitative 

methods (McBratney & Lagacherie, 2004). 

McBratney et al. (2003) proposed a generic framework for soil prediction known as the 

SCORPAN model: 

Sa = f(s, c, o, r, p, a, n) 

Scl = f(s, c, o, r, p, a, n) 

The estimated soil attribute value (Sa) and estimated soil class (Scl) are a function of soil 

property (s), climate (c), organisms (o), relief (r), parent material (p), age (a), and position (n). 

Soil property (s) is usually referred as soil information from a previous soil map or prior expert 

knowledge. Note that position (n) and age (a) are implicitly stated in the equation.  

Based on this definition and the SCORPAN model, DSM has three components: field 

observations (Sa and Scl), environmental variables (s, c, o, r, p, a, n), and quantitative methods (f). 

Field observations are obtained by soil sampling (reviewed in Section 2.2.3). In terms of 

environmental variables, the sources of data are becoming more available and accessible. 

Remote and proximal active and passive sensors along with pre-existing soil maps or expert 

knowledge give detailed information about soil properties. Particularly, climate information 

includes temperature, precipitation, and evapotranspiration, which are derived from remote 

sensing imagery or gauge measurements (McBratney et al., 2003). Information about organism 

can be obtained by vegetation, land-cover and land-use, and biomass and crop yield maps 

(McBratney et al., 2003). These maps are usually derived from remote sensing imagery or from 

ground measurements as in the case of yield maps. 

Variables regarding relief are now mainly derived from digital elevation models (DEMs) 

(McBratney et al., 2003). These include primary terrain attributes such as slope, aspect, and 

curvature, while secondary attributes include topographic wetness index and incoming solar 
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radiation among others. And parent material information can be mainly obtained from digitized 

geological maps (McBratney et al., 2003).          

Various quantitative methods have been used to model the relationship between soil and 

environmental variables. These methods include linear models such as generalized linear 

models and generalized additive models, non-linear models such as decision tree classification 

and regression, support vector machines and artificial neural networks, fuzzy sys tems and 

expert-knowledge based systems, and geostatistical techniques such as ordinary kriging and co-

kriging, among others (McBratney et al., 2003).  

Digital soil mapping is a fairly new approach at solving conventional problems by incorporating 

quantitative techniques. The importance in precision agriculture is emphasized by the fact that 

efficient, cost-effective, consistent, and reliable techniques are used for the production of soil 

maps. A comprehensive review of digital soil mapping techniques can be found in McBratney et 

al. (2003). Their main message is that no singular quantitative technique is best for precision 

agriculture; all have substantial predictive power and inherent problems. It is the context that 

determines which particular method is selected. 

 

2.2.5. Management Zones 

Management zones are defined as farm areas that exhibit relatively little variation in crop 

growth conditions (Bouma et al., 1999). The areas in each management zone are treated 

homogeneously, so application of inputs and decision-making in general, are unique to each 

zone. The main purpose of defining management zones is to limit the infinite variability of 

growth conditions throughout the field to a limited set for efficient management. Without this 

generalization, an extreme amount of zones would encourage the farmer to spend unnecessary 

time managing inputs, which may not earn him a higher net economic return relative to the 

committed time and effort.  
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A significant component of agricultural research has been directed towards delineating 

management zones. Generally, three factors affect the delineation of management zones: the 

quality of information, the procedures to process information, and the selection of the optimal 

number of zones (Fridgen et al., 2004). Many information sources have been postulated. The 

first information gathering approach is based on the farmers’ mental information approach. 

This approach is subjective since it is based on experience through trial and error.  

The second approach is by way of yield mapping successive years. This approach will allow 

farmers to identify areas where high and low yield occurs, zones where yield growth is most 

stable, and high grossing zones (Blackmore, 2000a). However, yield mapping alone may not 

successfully define management zones in terms of site-specific management because the 

dominance of a factor or a set of factors may change from season to season (Diker et al ., 2004). 

Soil mapping is another information source for defining management zones because it 

integrates a host of soil physical and chemical properties. However, a large number of samples 

are required to define statistically significant management zones, which is labour intensive and 

expensive (Franzen et al., 2002). ECa measurements are an option for soil mapping. They are 

fast, relatively inexpensive, and have been used for delineating management zones (McBratney 

et al., 2005; Kühn et al., 2009).  

A third information source is remote sensing imagery, which has been used for agriculture since 

1929 (Seelan et al., 2003). It can provide information for the entire farmland without 

conducting sampling, and is perhaps the easiest and least expensive approach at obtaining 

spatially intensive farmland information over large areas. Remote sensing for precision 

agriculture is based on crop spectral reflectance, which can indicate the status of the crop 

(Seelan et al., 2003). Remote sensing imagery such as aerial photography and high resolution 

multispectral satellite imagery such as IKONOS and QuickBird are most appropriate for this type 

of precision agriculture application (Begiebing, et al., 2005).  
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However, drawbacks of remote sensing imagery, not only for management zone delineation 

but also for soil mapping includes high cost, dependence on weather and seasonal conditions, 

and represent static information. Nonetheless, remote sensing remains a viable technological 

advancement for precision agriculture. Moran et al. (1997) identify eight applications of remote 

sensing imagery in precision agriculture; in addition to, management zone delineation and soil 

mapping, they include: crop yield prediction, mapping seasonal variation, production of Digital 

Elevation Models (DEMs), pest and damage control, recognizing time-critical crop management 

applications, and mapping spatially-distributed information on climate and meteorological 

conditions.  

The usage of more than one source of information for delineating management zone is highly 

desirable and practiced. The combination of farmer’s experience, soil information and aerial 

photographs (Fleming et al., 2004), eCa maps and soil mapping (McBratney et al., 2005), eCa 

maps with topographical information (Kühn et al., 2009), satellite imagery and soil properties 

(Moran et al., 1997) are some examples of multi-information usage for defining management 

zones.   

To process the information, classification schemes are utilized. Unsupervised classification is 

most applicable to management zone delineation because the analyst does not have a priori 

knowledge regarding the labels of the outcome management classes.  In particular, fuzzy k-

means clustering has been utilized to delineate management zones (Odeh et al., 1992; Fridgen 

et al., 2000; Song et al., 2009; Zhang et al., 2010). One particular advantage of the fuzzy k-

means clustering approach is the ability to optimize the number of classes by deriving two 

measures: the fuzziness performance index (FPI), and the normalized classification entropy 

(NCE) Odeh et al. (1992).  
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Figure 2.4: Managament Zones overlaid on top of Google Maps 

http://www.wnif.co.uk/articles/385/1/New-Holland-Precision-farming-systems-for-any-tractor-brand/Page1.html 

 

2.2.6. Variable Rate Technology 

Input application will be uniform for areas within the management zones, but vary between 

management zones. This is all possible with variable rate technology (VRT).  VRT, arguably one 

of the most critical components in precision agriculture, allows agricultural inputs such as 

fertilizers (nitrogen, potassium, and phosphorous), seeding, pesticides and herbicides, liming, 

and tillage, to be applied on-the-go throughout the field at appropriate rates according to the 

pre-set application map (Virin et al., 2008). The application map is loaded onto a computer 

mounted on a tractor with GPS, fertilizer spreader, speed sensor, and an actuator (Virin et al., 

2008). As the tractor is moving, the computer locates the position of the tractor in relation to 

the application map, and the actuator directs the spreader controller to change the amount or 

kind of inputs (Virin et al., 2008). Lesser amounts of inputs are applied to areas where they are 
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not needed in excess for optimal crop growth, and saved for areas in the field that need greater 

amounts.  

The two most common VRT fertilizer spraying systems are the centrifugal spreader and the 

pneumatic boom spreader (Pedersen, 2003). The resulting spread pattern of the centrifugal 

spreader is about 24 to 36 metres, with a spatial distribution similar to an inverted boomerang 

with considerable overlap (Pedersen, 2003). The pneumatic spreader uses various nozzles, four 

to eight on each side, attached to a boom, which are controlled via air flow. The length of the 

spread is about 18 to 24 metres, and the spread area obtains high uniformity (Scottish Natural 

Heritage, 2009).  

The benefit of VRT is the proper distribution of inputs, which has the potential to reduce 

environmental impacts, and improve economic returns and crop quality (Pedersen, 2003). For 

most crops, nitrogen (N) is the most important nutrient, and the right amount at the right 

place, right time can improve crop yield dramatically. However, inappropriate N application can 

result in leaching, denitrification, volatilization, and immobilization (Hatfield, 2000). In the case 

of N-leaching, nitrogen is washed away by excess water, either caused by rainfall or excess 

irrigation. This runoff can enter nearby biological systems such as lakes or wetlands and can 

cause eutrophication.  

Phosphorous (P) and potassium (K) are more stable nutrients than nitrogen because they are 

easily held by soil particles (Pedersen, 2003). The precision of their application to the field is not 

as critical as nitrogen. However, the current practice is the use of pre-mixed NPK fertilizers that 

also contain essential macro- and micronutrients. Pre-mixed fertilizers allow farmers to 

efficiently handle and distribute inputs. However, to lessen the environmental impacts of N, P, 

and K, their ideal application should be separate.  

From an economic standpoint, VRT has demonstrated to be mostly profitable. Lambert & 

Lowenberg-DeBoer (2000) reviewed 108 economic studies of different VRT implementation 

(VRT N, VRT PK, VRT NPK, VRT pH, VRT seeding, etc) and 69% of them reported positive net 
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returns, 12% indicated negative results, and the remaining 19% indicated mixed results. VRT 

negative net returns can be associated with insufficient or inappropriate quality of information 

(Bullock et al., 2002).  

Pederson (2003) sent a survey to farmers from Denmark, United Kingdom, and United States 

about their experiences with precision agriculture technologies. VRT of fertilizers was the most 

cited practice that would increase profits, either by VRT of phosphorous and potassium, or VRT 

of phosphorous alone. However, a major drawback about the economics of VRT is the inability 

to quantify all the benefits and costs in a comprehensive manner. However, many of the 108 

studies reviewed in Lambert & Lowenberg-DeBoer (2000) did not consider costs such as 

information and data collection, labour and time, training, technology, and environmental 

impact.  

 

Figure 2.5: Example of VRT for Pest management 

Source: http://www.agricon.de/en/company/downloads/photos -of-n-sensor/ 
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2.3. Chapter Summary 

Precision agriculture is a management strategy that incorporates information technology for 

making decisions associated with agricultural crop production. Precision agriculture deals not 

only with the management of labour, equipment, finance, production, but also of information. 

Overall, precision agriculture requires a relatively large field area with enough spatial variability 

within the fields, a good farm management system already in place, and relatively low market 

cost of inputs, information, equipment, labour, and specialized skills. In addition, several 

components such as GPS, VRT, yield sensors, soil sampling and mapping, and management 

zones, have to be established for a successful agricultural regime.                         
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CHAPTER 3:                                                     

OUTLIER DETECTION 

 

3.1. Outlier Detection: An Introduction 

Hawkins (1980) defines an outlier as an observation that deviates so much from other 

observations as to arouse suspicion that it was generated by a different mechanism. Similarly, 

Barnett and Lewis (1994) state that an outlying observation, or outlier, is one that appears to 

deviate markedly from other members of the sample in which it occurs. Consensually, outliers 

are a minority of observations that are different from the majority of the observations  in a 

dataset. The majority, referred as the in-lying observations, therefore, consists of at least 50% 

of the observations of the total dataset that share the same common characteristics, while the 

remaining outlying observations are different from this common characteristic. Spatial outliers 

may share the same common characteristic with the remaining data; they are just different in 

comparison to the characteristics of their spatial neighbours.  

Hawkins (1980) identifies two mechanisms by which outliers are generated. The first 

mechanism is a long-tailed distribution. Depending on the shape of the distribution, 

observations that arise from the tails of the distribution are considered to be erroneous 

observations. Barnett and Lewis (1994) refer to the tailed observations as extreme 

observations, and declaring them as outlier would depend on how they appear in relation to 

the distribution model. Note that an outlier is always an extreme or relatively extreme 
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observation in the sample, but an extreme observation may not always be an outlier but a form 

of natural variation in the dataset. The second outlier-generating mechanism is that the data 

comes from at least two distributions. The in-lying observations come from one distribution 

while the outliers come from a second distribution. In this mechanism, observations from the 

second distribution are said to be contaminants of the first distribution (Hawkins, 1980; Barnett 

& Lewis, 1994).  

There are generally three types of outliers: point, contextual, and collective outliers (Chandola, 

et al., 2009). Point outliers are data instances that are inconsistent with respect to the rest of 

the dataset. Consider for instance, crop yield measurements with a calibrated mass flow sensor. 

Let the dataset be repeated yield measurements of the same bulk of yield. A point outlier, or 

point outliers would be the instance or instances in which the mass flow sensor improperly 

measured the bulk. 

Contextual or conditional outliers are data instances that appear inconsistent to the rest of the 

data in a specific context, but not otherwise (Song et al., 2007). These outliers are defined by 

two sets of attributes: contextual and behavioural attribute. The former is used to determine 

the context in which outliers are assessed, and the latter is any attribute that is tested for 

outlierness. Defining the context is of particular importance. An observation may be an outlier 

in a given context, a normal observation given a different context. For example, consider a new 

house in an established neighbourhood. This house can be considered a contextual outlier in 

terms of age as its behavioural attribute, but not necessarily in terms of size or in terms of city-

wide distribution of the ages of residential houses. 

A collective, region, or cluster outlier is a group of observations that are clustered together 

which have low variance among them but are inconsistent to the rest of the dataset. Unlike 

point outliers, collective outliers can only occur in sequential datasets, for instance, time-series 

and spatiotemporal datasets (Chandola, et al., 2009). On the other hand, point or collective 
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outliers can be contextual outliers by defining the contextual attribute in which outliers are 

assessed. 

Point outlier is the simplest type of outlier and is the focus for the majority of research in 

outlier detection community (Chandola, et al., 2009). Many outlier detection techniques have 

been proposed as early as in the 19th century, such as Peirce’s criterion, Chauvenet’s criterion, 

Grubbs’ test, and in the mid-20th century techniques such as Tukey’s box plot and Hampel‘s test 

(Barnett & Lewis, 1994). This collection of outlier techniques are referred as discordancy tests 

or distribution-based techniques.  

The general idea of discordancy tests is to fit the data set to a known distribution, and develop 

a test based on the distribution properties, and observations which deviate from the model 

assumptions are identified as outliers. Discordancy tests rely on the assumption that the data 

distribution is known, that observations are identically and independently distributed (i.i.d.), 

that the distribution parameters are known, and that the number of expected outliers are 

known beforehand (Barnett & Lewis, 1994). 

Discordancy tests are unsuitable when model assumptions are not met. Particularly, 

assumptions are violated for data mining datasets. These datasets are usually of unknown 

distribution which are high-dimensional and with very large number of observations. Several 

collections of non-parametric data mining techniques have been proposed, including distance-

based, density-based, clustering-based, and depth-based techniques (Preparata & Shamos, 

1988; Knorr & Ng, 1997; Breunig et al., 2000; Acuna & Rodriguez, 2004).  

Outliers in spatial data are point and collective outliers that occur in a spatial framework. In 

other words, spatial outliers are a form of contextual outliers, whereby the contextual attribute 

would be the spatial attributes, for example geographic co-ordinates or spatial relationship 

such as distance or adjacency.  The behavioural attribute would often be a non-spatial 

attribute, for example, tons per hectare of agricultural yield. Previous data mining techniques 
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are not able to detect spatial outliers with their current definition, as they would identify global 

extreme observations as spatial outliers (Shekhar et al., 2003).   

 

3.2. Spatial Outlier Detection 

The identification of outliers took on a new direction with Shekhar et al. (2003) introducing the 

notion of “spatial outlier”, or S-outlier. Previous research in outlier detection focused on the 

identification of “global outliers” relative to an entire sample. The outlier definition provided by 

Hawkins (1980) and Barnett and Lewis (1994) are appropriate only for global outliers. Spatial 

outliers on the other hand, are contextual outliers formally defined as spatially referenced 

observations whose non-spatial attribute values are significantly different from those of other 

spatially referenced observations in its spatial neighbourhood (Shekhar et al., 2003). Spatial 

outliers represent local instability because the outlier observations are extreme relative to its 

neighbours, even though they may not be markedly different from the entire population (See 

Figure 3.1). 

 

Figure 3.1: Example of a discrete spatial outlier 

Source: http://fanaee.wordpress.com/2011/05/10/spatial -data-mining/ 
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Shekhar et al. (2003) proposes a unified definition of “spatial outlier”, stating that various 

statistical techniques for outlier detection in a spatial context can be expressed within this 

general framework. They include two sets of S-outlier tests: graphical and quantitative. 

Graphical S-outlier methods are based on the visualization of spatial data to identify spatial 

outliers. They include the Variogram Cloud and the Moran Scatterplot. Quantitative methods 

are based on statistical test to distinguish between spatial outliers from the remainder of the 

dataset. They include the Scatterplot, also known as linear regression, and Spatial Statistic Z. All 

algorithms are introduced formally in Chapter 4.  

Lu et al. (2003) identifies a major drawback in Shekhar et al. (2003) general framework of 

spatial outlier detection techniques: swamping and masking effects are not considered or 

suppressed when defining the aggregate neighbourhood function. Depending on the spatial 

relationship of outliers, true outliers can be ignored while in-lying observations can be 

incorrectly flagged as outliers. The former is referred as masking effect, or false negative 

classification, while the latter is a known as swamping effect, or false positive classification. Lu 

et al. (2003) propose three S-outlier algorithms to minimize swamping and masking effects: 

Iterative Z, Iterative R, and Median Z algorithm.  

Lu et al. (2003) compare Iterative Z, Iterative R, Median Z, Spatial Z, Scatterplot, and Moran 

Scatterplot with a synthetic dataset. Their result shows Iterative Z, Iterative R, and Median Z 

successfully identify the top three outliers in the dataset, while Scatterplot, Moran Scatterplot, 

and Spatial Z incorrectly flagged in-lying observations as outliers due to masking and swamping. 

However, the synthetic dataset had a small population size of 36 observations, with a total of 

three spatial outliers and two global outliers. Additionally, the detection exercise was 

performed without replication, which does not provide a measure of reliability.     

Also, Lu et al. (2003) compare the algorithms on an experimental dataset based on various non-

spatial attributes of the U.S Cities compiled by the U.S. Census Bureau. They rank the top 10 

spatial outliers detected by each algorithm. The results show the outlierness rank of each City is 
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different for each algorithm, noting that eight spatial outliers are detected by their proposed 

algorithms but in different order. Chen et al. (2009) update Median Z by proposing the use of 

the median and median absolute deviation instead of the mean and standard deviation for the 

normalization of differences. They compare Spatial Z with Median Z on a West Nile virus 

dataset to identify the top seven counties with West Nile cases. Their results indicate that the 

top-ranked spatial outliers are different for each algorithm.    

Spatial autocorrelation is formally introduced to spatial outlier detection techniques by Kou et 

al. (2006). Tobler’s first law of Geography notes that observations which are closer to each 

other are most similar than observations farther apart, as “everything is related to everything 

else, but near things are more related than distant things” (Tobler, 1970). Previous algorithms 

ignore the idea that neighbours closer to true spatial outliers have more impact in the 

calculation of the spatial outlier test statistic. Kou et al. (2006) propose two algorithms: 

Weighted Z and Averaged Difference, or AvgDiff. Weighted Z is simply Spatial Z with the 

neighbourhood aggregated function being calculated by how close the neighbours  are to the 

observation. AvgDiff is based on the average absolute difference between an observation and 

each of its neighbours. Kou et al. (2006) compare Spatial Z, Weighted Z, and AvgDiff using real 

dataset on Counties infected by West Nile virus. They select the top 30 spatial outliers, which 

accounts for 1% of all the 3,109 counties. The results show the top-ranked spatial outliers are 

different for each algorithm.    

Chawla and Sun (2006) explore the characteristics of spatial autocorrelation and 

heteroscedasticity with their measure of spatial outliers: SLOM or Spatial Local Outlier 

Measure. Spatial autocorrelation is accounted for by  ̅( ), which is a measure similar to the 

Spatial Z Algorithm       ( ).  ̅ and       represents the distance (Euclidean) between the non-

spatial component of object   and its nearest neighbours. The only difference is that  ̅( ) 

factors out the effect of a neighbour p, which has the maximum difference between 

observation o compared to all of o’s neighbours. The benefit of using  ̅ instead of       is that if 
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o is indeed an outlier, then  ̅ will amplify the effect of o in its neighbourhood; however, if p is 

not an outlier but a neighbour of o, then  ̅( ) will be suppressed.  ̅( ) behaves much like a 

trimmed mean. 

In the SLOM algorithm, heteroscedasticity is accounted for by a parameter that captures the 

net variation within a neighbourhood. The idea is that outliers should be more prominent in 

neighbourhoods with little variation than in neighbourhoods with more variation. Chawla and 

Sun (2006) compare SLOM against Spatial Z with a synthetic dataset. Their synthetic dataset 

consists of a 10 x 10 data matrix. The non-spatial attribute values were simulated with a 

Gaussian generator. The locations of some values were changed in order to create a cluster of 

similar values and a spatial outlier in the centre of the cluster. They also use SLOM on a real 

dataset compiled by the U.S Census Bureau to detect the top five counties with the highest 

proportion of people identified as a minority group.  The main criticism that can be applied to 

their simulation study, besides the use of a small dataset and lack of replication, is that no 

indication was provided whether spatial autocorrelation was included with the Gaussian 

simulation.   

Kou et al. (2007) propose a graph-based approach to detecting spatial outliers. Their motivation 

is threefold: (1) to minimize masking and swamping, (2) to evaluate region outliers instead of 

singular outliers and (3) to avoid normalization across the entire dataset. Masking and 

swamping can lead to erroneous identification of outliers. A similar concept tied to masking and 

swamping is region outliers. If a region outlier is present, S-outlier algorithms will mask outlying 

observations and swamp in-lying ones (Lu et al., 2003). Further, the normalization across the 

entire dataset may be inappropriate for datasets consisting of a number of spatial clusters, with 

spatially correlated observations in the cluster, while observations in other clusters have no 

direct correlation (Kou et al., 2007).  

Their approach involves a graph where each observation is connected to its k nearest 

neighbours, creating a network. The magnitude of the connection is the absolute difference 
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between observations, so outliers will tend to have larger connections. The algorithm starts by 

clearing the largest connections until an observation or a region is disconnected from the entire 

network. This is repeated until m spatial outliers are identified. Kou et al. (2007) compare 

Spatial Z, Scatterplot, Moran Scatterplot, and their graph-based algorithm, based on rental 

information for each U.S. city. Their objective is to identify the top 10 outliers. Their results 

indicate that the top spatial outliers detected for each City is different for each algorithm. 

 

3.3. Crop Yield Errors and Outliers 

While the previous section reviewed the research on spatial outlier detection by the data 

mining community, this section addresses the possible sources of error and outliers in precision 

agriculture datasets. In precision agriculture, most of the research has been conducted on 

errors in yield data due to its importance for site-specific crop management. Yield datasets 

often contain several errors that arise from a combination of known and unknown sources. 

These sources of errors can be classified into natural, management, and measurement error 

(Stafford et al., 1996).  Natural sources of error include climate, topography, and soil-landscape 

features, and site characteristics. For example, poor weather condition affecting the crop 

growth during a single farming season. These sources are uncontrolled factors that cannot be 

changed by the farmer, and therefore, cannot be removed from the dataset. The farmer can 

only identify the factors that were present during the growing season.  

Management sources of error are random events that usually occur in small areas due to 

management decisions, for example, poor crop establishment, inadequate fertilizer or 

herbicide application, among others, or due to stochastic events such as equipment handling 

errors (Stafford et al., 1996).  
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Measurement error is the third source of error and is of particular interest. Measurement error 

in yield data has been the most studied of the three. This error is further classified into: sensor, 

positional, and operational errors (Arslan and Colvin, 2002). 

Sensor errors are related to the yield sensing mechanism, such as the actual accuracy of the 

sensor, the sensor response, improper calibration, and grain flow delay (Blackmore & Marshall, 

1996; Arslan and Colvin, 2002).  Unless multiple harvesters are used in one field (personal 

communication, Brenning, 2011), these errors mostly affect the entire dataset, and therefore, 

they are not corrected but acknowledged. However, for yield mapping and analysis of yield 

data, grain flow delay has to be corrected. Grain flow delay is the time it takes for the crop to 

move from the cutter bar to the grain tank where the yield flow sensor is located (Blackmore 

and Marshall, 1996). This delay offsets the position of the observations by a time delay of about 

10 to 14 seconds, depending on the combine model, speed, incline, and load (Nolan et al., 

1996; Sudduth & Drummond, 2007).  

Positional error is the error introduced by the GPS receiver due to calibration, atmospheric 

condition, measurement noise, signal loss, or any other similar limitation (Rands, 1995). The 

result is that yield points are incorrectly located, which includes points outside of the field 

boundary or points that are too far apart (Rands, 1995; Beck et al., 1999). Positional errors are 

in practice resolved by removal (Rands, 1995). Points outside the field boundary are easy to 

identify; they are deleted if they do not fall within the field boundary. Points too far apart are 

identified with a maximum distance threshold, which is derived with knowledge of the combine 

maximum speed, the time interval between points and the GPS resolution (Rands, 1995).   

Operational errors are error introduced to the value, not the location, of the measurements by 

certain operations during the measurement activity. According to Murphy et al. (1994), Rands 

(1995), Blackmore and Marshall (1996), Kleinjan et al. (2002), Beck et al. (1999), and Sudduth 

and Drummond (2007), the sources of operational errors include the following: 
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1. start-pass & end-pass delay 

2. combine header up 

3. break-in operations 

4. unknown crop width entering the header 

5. changes in combine speed 

Start-pass and end-pass delays are errors that are always present when measuring yield. Start-

pass delay is the error introduced when the combine enters all the tramlines. As the combine 

starts harvesting at the beginning of each tramline, grain flow storage is not full and takes time 

to fill up, so yield is underestimated at the beginning of each tract (Figure 3.2). Similarly, as the 

combine finishes a tramline, the cutting mechanism stops, but the header has not been raised 

yet. This is commonly referred as end-pass delay, which overestimates yield. These two errors 

are easy to identify because they are at the beginning and end of each tramline. Start-pass and 

end-pass delay are estimated to be less than 40 seconds (Thylen and Murphy, 1996; Nolan et 

al., 1996). 

 

Figure 3.2: Example of Start-pass delay for yield data logged for the first 60 s of four harvester runs 

Source: Thylen & Murphy (1996). 
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Another error that is easy to identify is when the combine header is up while the yield sensor is 

active. Since no crop is entering the combine, yield measurements when the header is up is 

always zero or small values. 

Break-in operations, also known as overlaps, are errors that occur when the combine travels to 

previously harvested areas with the combine header down and with an active yield sensor. 

Break-in operations occur when the combine was not able to completely harvest the area due 

to acute angle turns, narrow lands, or obstacles on the way such as electric posts (Beck et al. 

1999). The combine has to return to these areas and harvest the missing crops. The problem is 

the underestimation of yield in the first and subsequent passes (Figure 3.3).  

 

Figure 3.3: Example of break-in operations (highlighted) in a sorghum field 

Source: Beck et al. (1999). 

 

An error similar to break-in operations is the error of not knowing the crop width as it enters 

the combine. In the equation to determine yield (p. 11),  , involves the parameter  , the 
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width of the combine header. The equation assumes that the crop width is constant and equal 

to the combine header at all locations.  Problems with yield measurement arise because the 

combine header does not always have a full width of crop entering it. This has been 

acknowledged as a major problem in yield data collection (Stafford et al., 1996). Yield is 

underestimated proportionally to the width of the harvested crop. For example, if the combine 

harvest the entire field with half of the cutter width, then twice as many points will be recorded 

than if combining with a full cutter width. The problem is that each point will be 

underestimated by 50% (Figure 3.4), thus, any summary statistic or yield mapping via 

interpolation will be significantly underestimated. 

     a)      Header Full  of crop     b)      Header half full  of crop 

Figure 3.4: Example of Unknown crop width  

Source: Blackmore & Marshall (1996) 

 

Changes in the combine speed cause erroneous measurements. Again, in the equation of yield 

(p. 15), if the speed is too slow approaching 0, then the area being harvested will approach 0. 

So, the grain mass divided by 0 will result in infinite yield, which is incorrect. Similarly, sudden 

changes in speed introduce errors to the observations. High acceleration or deceleration occurs 

because of rough changes in the topography or during sharp turns.     
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3.4. Outlier Detection in Yield Datasets 

All sources of errors affect yield measurements by creating unrealistic measurements of yield 

moisture, grain flow, speed of combine, and/or position. Yield minimum and maximum are 

unrealistic compared to the crop yield’s biological potential. Similarly, yield surges, which are 

the abrupt change of yield values, are widely present in erroneous datasets. Manual filtering by 

an expert is the common approach at treating erroneous yield observations. The expert starts 

with identifying and where possible, correcting or removing points affected by primary errors 

that are known in advance such as combine header up, start- and end-pass delay, grain flow 

delay, and positional errors. Combine header up errors are dealt by removing yield 

measurements equal to zero. Start-pass and end-pass delay correction removes the first and 

last twelve observations, which is about 40 seconds, from each tramline. Grain flow delay 

assigns a positional shift of approximately 14 seconds to all observations, and positional errors 

are dealt with deleting the points outside the field and points that are separated by more than 

a distance threshold. 

Secondary filtering attempts to remove errors caused by combine operations, yield sensing, and 

uncertain values due to localized and extreme variation (Ping & Dobermann, 2005). These 

errors are removed by using several global statistical tests. Lee et al. (2005) and Vrindts et al. 

(2005) utilize the frequency distribution of the observations to delete erroneous extreme 

values. Anselin et al. (2004a) create an outlier percentile map that displays six categories for 

classification of ranked observations. Outliers are found in the lowest, 0-1, and highest, 99-100, 

percentile and are labelled as outliers. Robinson and Metternicht (2005) declare yield surges as 

observations that are outside the lower (upper) quartile – (+) 1.5 times the interquartile range. 

Similarly, Sudduth and Drummond (2007) identify yield surges as observations that are outside 

a standard deviation interval. 

Local neighbourhood statistics have also been widely utilized and are standard practice. Thylen 

et al. (2000) identify yield surges as any measured value that falls outside the mean yield of 10 
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nearest neighbours plus or minus a threshold of acceptance. Kleinjan et al. (2002) advise local 

outliers as exceeding   3 standard deviations within a user-specified moving block. Similarly, 

Beck et al. (1999) uses the average mean of a moving window composed of 25 nearest 

neighbours. If the observation falls outside the   3 standard deviations, then it is declared a 

local outlier. Simbahan et al. (2004) and Ping & Dobermann (2005) utilize local inverse distance 

weighting to detect local outliers (see Table 3.1).   

Examples of expert filters are in Rands (1995), Kleinjan et al. (1998), Beck et al. (1999), 

Simbahan et al. (2004), Ping and Dobermann (2005), and Sudduth and Drummond (2007). And 

Table 3.1 provides a summary of the secondary filters applied in crop yield data by the precis ion 

agriculture literature. 

Table 3.1: Summary of Secondary Filtering 

Global Methods Outlier threshold Neighbourhood Examples 

Histogram (Grubb’s Test)   2 or 3 standard 
deviations;  
1

st
 & 99

th
 percentile 

N.A. Lee et al. (2003); Anselin et 
al. (2004a); Vrindts et al. 
(2005) 

Boxplot (Tukey’s Test)   1.5 interquartile 
range 

N.A. Robinson & Metternicht 
(2005) 

Local Methods Outlier threshold Neighbourhood Examples 

Beck et al. (1999)   3 standard 
deviations 

25 nearest neighbours N.A. 

Thylen & Algebo (2000)   2 standard 

deviations 

10 nearest neighbours  N.A. 

Kleinjan et al. (2002)   3 standard 
deviations 

30ft by 30ft neighbourhood N.A. 

Noack et al. (2003) undefined Adjacent tracks resembling 

an “H” 

N.A. 

Simbahan et al. (2004); 
Ping & Dobermann (2005) 

  2 or 3 standard 
deviations 

3 neighbours in the North, 
South, East, West direction, 
resembling a “+” 

N.A. 
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3.5. Chapter Summary 

Outliers are observations that deviate so much from other observations as to arouse suspicion 

that they were generated by a different mechanism (Hawkins, 1980). Spatial outliers, on the 

other hand, are spatially referenced observations whose non-spatial attribute values are 

significantly different from those of other spatially referenced observations in their spatial 

neighbourhood. They are generated under two mechanisms: local extreme observations and 

contamination from another distribution.  

Sources of yield error include natural, management, and measurement. Measurement error is 

further divided into sensor, positional, and operational, with much of the research emphasis on 

operational sources of error. Several statistical spatial outlier techniques have been proposed 

by the data mining community, although the standard approach at removing errors have been 

via filtering algorithms, either globally or locally, proposed by the precision agriculture 

community. While the precision agriculture community has not set out to verify detected 

outliers, the data mining community has investigated them by ranking the top outliers in real 

datasets or conducting experiments with synthetic datasets composed of small population and 

lack of replication.   
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CHAPTER 4:           

METHODOLOGY 

Chapter 4  
4.1. Introduction 

The proposed framework for determining the effects of outliers and the effectiveness of spatial 

outlier detection algorithms is unique among the previous studies reviewed in Chapter 3. The 

proposed approach is to utilize a simulated spatial dataset with known characteristics and 

errors known in advance. Simulation is the approach that is often used in statistical literature to 

assess novel methods as it allows generating datasets with known and controllable properties 

with an arbitrary replication (Personal Communication, Brenning, 2011). Unlike the approaches 

reviewed in Chapter 3, a real dataset should not be used to determine whether an algorithm 

performs better than another because spatial outliers are really not known. In real datasets, 

spatial observations whose non-spatial attributes significantly deviates from their spatial 

neighbours can be either real spatial outliers, i.e. observations in a spatial framework that were 

indeed produced by a differing mechanism, or simply due to the inherent (natural) variability of 

the spatial data. Algorithms for spatial outlier detection or expert knowledge cannot distinguish 

between such data properties.  

In addition, knowing exactly the characteristics of spatial datasets also allows the effects of the 

spatial outliers to be determined with great precision because no coefficients have to be 

estimated from the data. In real experiments, the treatment effects are superimposed onto the 
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natural variability of the data, causing parameters to be unknown (Ver Hoef & Cressie, 2001). 

Furthermore, because each spatial outlier is known in the dataset, the assessment of spatial 

outlier algorithms can be conducted as a binary classification problem composed of an outlier 

and a non-outlier class. Instead of ranking the top outliers of each spatial outlier in the dataset 

as conducted by the previous studies and making comparisons between algorithms, effective 

performance measures available for classification problems can be utilized. Lastly, replication 

has to be emphasized in order to obtain reliable results , as the reliability of results must be 

inferred from multiple datasets that inherit the same data collection procedures , processes, 

and environmental variables.             

Thus, the idea is to use a geostatistical simulation technique to generate a dataset with known 

characteristics (refer to section 4.2.1). After the simulation, contaminated datasets are created 

by randomly adding errors to the simulated the dataset (refer to section 4.2.2). Ten spatial 

outlier techniques that have been widely used either in data mining or in precision agriculture 

literature will be compared and assessed with respect to how well they detect the errors in 

these contaminated datasets (refer to section 4.3). And to determine the effects of spatial 

outlier algorithms in statistical modeling, each algorithm will be used as a pre-processing step 

prior to estimating crop yield response function.         

All statistical analyses: unconditional simulation, detection of spatial outliers, performance 

assessment of each algorithm, and modelling crop yield response function are performed with 

the R statistical language (R Core Development Team, 2010). R is a free language and 

environment for statistical computing and graphics. It provides a wide variety of statistical and 

graphical techniques, and is easily extended via the addition of free packages available on the 

internet through the Comprehensive R Archive Network (CRAN).          
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4.2.  

 

Figure 4.1: Workflow of Methodology 

 

4.2. Spatial Data Generator 

4.2.1. Simulation of On-Farm Experiments 

To obtain spatial data that conforms to the objectives and the specifications mentioned above, 

a stochastic simulation approach must be employed. Stochastic simulation is the process  of 

selecting random numbers from a predefined probability distribution (Webster & Oliver, 2007). 

Geostatistical simulation, a particular form of stochastic simulation, is a popular set of 

techniques that can be used to reproduce spatial variation and uncertainty that is present in 

precision agriculture datasets.  

This simulation design is based on Brenning et al., (2008). Yield point measurements are 

simulated for a hypothetical on-farm experiment with three treatments on a Gaussian random 

field  ( )    ( )    ( ) on a rectangular 40 ha field (400 m by 1,000 m). An on-farm 

experiment is a scientifically valid research method to test species varieties, products or 

equipment performance under specific conditions. The setting of an on-farm experiment is the 

random application of a treatment in a field to obtain statistical evidence on the treatment 

effect (Top Crop Manager, 2007). A 40 ha field is relatively common in Southern Ontario farms. 

The sampling density consists of 50 strips along the length of the farm with 400 data points for 

each strip, a total of 20,000 raw points. This sampling density is consistent with farming 
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machinery.  For each strip, combine harvesters can obtain one sample every one metre and a 

half or less. For simplicity, the sampling interval is increased to one sample every one metre. 

The separation distance between strips is usually about 17 m. For simplicity, this distance is 

increased to 20 m.  

The Gaussian random field consists of spatially correlated residual random field  ( ) and a 

deterministic trend modelled as: 

 ( )         ( )      ( )       ( )      ( ) 

   and    represent spatially varying environmental variables,    and    are 0 and 1 indicator 

variables indentifying the farmer’s treatment over the farm.   is the average crop yield of the 

farmer’s standard treatment approach, and     and    represent two innovative site-specific 

management practices. When both    and    are equal to 0, the farmer’s standard treatment 

was applied, in this case, uniform application of agricultural inputs. These three treatments are 

applied to 12 alternating blocks, each block containing four strips per treatment, with the 12 th 

block containing two additional strips for a total of 50 strips.   ,   , and   are simulated 

unconditionally with sequential Gaussian simulation with mean value of 0 and a spherical 

semivariogram model.    and    have a sill of 1, nugget 0, while   has a partial sill of 70 and a 

nugget value of 3.5 bushels per acre, which represents a 5% relative nugget effect. All three 

variables have an autocorrelation range of 150 metres.  

In this simulation model,   is set equal to 76 bushels per acre, which is consistent with the 

production of winter wheat (Triticum aestivum) in Southern Ontario for the 2009 season 

(Ministry of Agriculture Food & Rural Affairs, 2009). The effect of environmental variable     is 

set to increase crop yield by 6 units, while innovative practice 1 was is set to increase crop yield 

by 3 units. Environmental variable    and innovative practice 2 are set to have no effect on crop 

yield. Therefore, the yield model equates to: 

 ( )        ( )     ( )     ( )     ( )    ( )      (Equation 1) 
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An unconditional sequential Gaussian simulation is utilized to generate the spatial data. 

Sequential simulation is widely used and computationally feasible method for simulating 

continuous variables (Gebbers & Bruin, 2010). Each value is simulated following a random path 

according to its conditional cumulative distribution function (ccdf), which is determined at each 

location (Webster & Oliver, 2007). Unconditional simulation is utilized because no initial sample 

data is available to be conditioned upon. Thus, all distributional characteristics of the simulated 

data are known, and no initial assumptions have to be made, which allows the testing of any 

statistical or computational techniques; in this case, to evaluate whether one technique is 

better than other techniques in a wide variety of situations.  

The unconditional sequential simulation algorithm for point simulation is as follows (Gebbers & 

de Bruins, 2010): 

1. Specify the coordinates of the points at which simulation is to be conducted 

2. Prescribe the experimental semivariogram 

3. Determine the random path in which the points will be simulated  

4. Simulate values at each point: 

a. At each un-sampled location, simple kriging with the model semivariogram are 

used to estimate the sample mean and variance. The estimate will be based on 

the previously simulated data within a specified search radius or consisting of n 

neighbouring observations.   

b. Use the estimated kriging mean and kriging variance to model the Gaussian 

cumulative distribution function at the location to be simulated  

c. Draw a random value from the distribution function and insert the value to the 

point 

d. Proceed to the next un-sampled point of the random path, and repeat from a to 

c until all points have been visited 
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Unconditional sequential Gaussian simulations are conducted with R statistical language (R 

Core Development Team, 2010). Package gstat (Pebesma, 2004) is an R package that provides 

basic functionality for univariate and multivariate geostatistcal analysis. gstat uses sequential 

simulation algorithm as its default geostatistical simulation platform because it is versatile,  

efficient, and suitable for very large datasets (Pebesma, 2004).  

In order to generate fast and correct simulations, one technicality had to be modified; that is, 

the a moving window radius for local kriging, or     .      finds the number of n neighbouring 

observations used for the kriging mean and kriging variance estimate at each single un-sampled 

point. By default, gstat uses all observations. However, this setting significantly slows down the 

simulation process given that n = 20,000. Pebesma (2004) recommends setting the      value 

no smaller than the range of autocorrelation, in this case, 150 m. To be more conservative,      

value is set to 400 m.  

The simulation is then replicated 20 times in order to obtain a measure of uncertainty. 

However, because stochastic simulation requires the generation of a large set of random 

numbers, random number produced by modern computer algorithms are pseudo-random 

numbers because true random numbers are very difficult to obtain (Gebbers & Bruin, 2010). 

Pseudo-random number generators (PRNG) are algorithms that generate deterministic series of 

numbers that are sufficiently similar to random numbers following a uniform distribution. 

Pseudo-random numbers depend on an initial number, a “seed”, and using the same seed will 

reproduce the same sequence of numbers. Thus, simulation can be repeated if the seed is 

known. In this work, each simulation is given a unique seed number multiplied by a constant in 

order to mimic a truly random set of simulations and achieve reproducible results. Figure 4.2 

summarizes the yield simulation procedure. 
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Initialize Yield.Simulation Script 

   Create.Grid(x = 50, x.separation = 20, y = 400, y.separation = 1) 

   N = Number.of.Simulations 

   FOR (i in N){ 

 Set.Seed(i * Constant) 

 Simulate.Env.Variables(formula = trend ~ 1, location =  ~  x + y, sill = 1, model = Spherical, range = 150, 

nugget = 0, beta = 0, n.simulations = 2, nmax = 400)   

 f1 = Simulation1; f2 = Simulation2 

 Create.Block.in.XCoord(t0, t1, t2, Blocks = 12, Alternating) 

 Simulate.Yield.Variable(formula = trend ~ 1 +  f1 + f2 + t1 + t2, location = ~ x + y, sill = 70, model = 

Spherical, range = 150, nugget = 0.05, coefficients = (76, 3, 0, 3, 0), n.simulations = 1, nmax = 400) 

   } END FOR   

   End Script 

Figure 4.2: Yield Simulation Procedure in R-pseudo code 

 

4.2.2. Addition of Spatial Outliers 

Since the simulated fields do not have any errors and no outliers have been added so far, any 

spatial outliers identified in these simulated fields with any spatial outlier algorithm would be 

erroneous and could be attributed to the “natural” variability among simulations. Spatial 

outliers are added once simulated yield measurements are generated. The idea is to randomly 

select a percentage of the population, add or subtract a substantial error term to the yield 

value, and label them as spatial or global outliers. Global outliers could be generated by adding 

and substracting a large error term to a large simulated value. Two scenarios of spatial outliers 

are used.  

The first scenario is the addition of individual point spatial outliers, which are random points in 

the field that are contaminated. A small percentage of the simulated observations are randomly 

selected, and these points are further divided randomly into two groups of equal size. In one 
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group, an error term is added to the yield measurement while in the other, the error is 

subtracted from it. If any of these resulting contaminated yield measurements are greater than 

the maximum of all original yield values or smaller than the minimum of all original values, then 

they are labelled as global outliers, otherwise, they are referred as spatial outliers. The outlier 

term is simulated from a Gaussian distribution with a mean value of two times the nugget (7.0 

bu/acre), and with a standard deviation of 1 bu/acre (see Figure 4.3).  

    

Initialize Single.Outlier Script 

   M = SOutlier.Amount 

   Pool.SOutliers = Random.Sample(Population, Size = M) 

   Positive.SOutliers = Random.Sample(Pool.SOutliers, Size = M/2) 

   Negative.SOutliers = Difference.Between(Pool.SOutliers, Positive.SOutliers) 

   Contaminated.Yield[Positive.SOutliers] = Original.Yield + Gaussian(mean = 2*Nugget, st.dev = 1)  

   Contaminated.Yield[Negative.SOutliers] = Original.Yield - Gaussian(mean = 2*Nugget, st.dev = 1) 

   IF (Contaminated.Yield > Original.Yield OR Contaminate.Yield < Original.Yield ){ THEN “Global.Outlier” 

               ELSE “Spatial.Outlier” 

   } End IF 

   End Script 

 
 

Figure 4.3: Procedure for adding Point Outliers 

 

The second scenario involves the addition of region outliers, which are groups of contaminated 

observations clustered together at random locations. For the number of simulated observations 

N, given a set cluster size G for the number of spatial outliers in a region, random points are 

selected from the N – G + 1 uncontaminated observations. For each random point, the point 

observation and the next G – 1 observations are set as region outliers. This is accomplished by 

generating a Gaussian error term for each of the observations in a region, and adding or 

subtracting the error term, as proposed in the single outlier scenario. All observations in a 
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region will have either a positive or negative error, and s imilarly, the labelling of global and 

spatial outliers is conducted. The result is a spatial dataset of agricultural yield measurements 

with a known number of spatial outliers that are clustered together randomly in the dataset 

(see Figure 4.4).  

 

Initialize Region.Outlier Script 

M = SOutlier.Amount 

G = Region.Size 

Pool.Seeds = Random.Sample((Population – G + 1), Size = M/G) 

FOR (i  in Pool.Seeds){ 

             R.Outliers = Population[Pool.Seeds[i]:Pool.Seeds[i + Region.Size] 

            IF (Random.Number(from 0 to 1) > 0.5){ THEN Contaminated.Yield [R.Outliers] = Original.Yield +            

                               Gaussian(mean = 2*Nugget, st.dev = 1) 

                               ELSE Contaminated.Yield [R.Outliers] = Original.Yield - Gaussian(mean = 2*Nugget, 

                              st.dev = 1)  

           } End IF 

} End FOR 

IF (Contaminated.Yield > Original.Yield OR Contaminate.Yield < Original.Yield ){ THEN “Global.Outlier” 

          ELSE “Spatial.Outlier” 

} End IF 

End Script  

 

 

Figure 4.4: Procedure for adding Region Outliers 
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4.3. Detection of Spatial Outliers 

Once the simulation is conducted and spatial outliers are added to the dataset, each algorithm 

will be used for spatial outlier detection. The following section provides a description of all 

spatial outlier algorithms used for detection. Given the diverse notation encountered in the 

literature, a need exists to provide a unified notation to describe all spatial outlier algorithms. 

This section fulfills this need by providing a unified notation to describe spatial outlier 

algorithms. The key publications from which these algorithm are drawn include works by Han & 

Kamber (2001), Shekhar et al. (2003), Lu et al. (2003), Simbahan et al. (2004), Ping & 

Dobermann (2005), Chawla & Sun (2006), Kou et al. (2006), and Chen et al. (2008). In terms of 

naming convention, algorithm names will be simplified in the text as follows (see Table 4.1): 

Spatial Statistic Z will be referred as Spatial; Median Statistic Z as Median; Local Area Mean as 

Local; Scatter Plot as Scatter; Spatial Local Outlier Measure as SLOM; Weighted Z as Weighted; 

Inverse Distance Weighting Interpolation as IDWP; Kriging Interpolation as Kriging or Krige; 

Averaged Difference as AvgDiff; and Spatial Outlier Test as SOTest. Appendix D provides a full 

list of naming conventions of all the spatial outlier algorithms reviewed in this work.   

 

Notation: 

The following notation conventions are used in the sequel: 

 : an ordered set representing the entire dataset; all locations in the spatial domain. For 

example,    〈       〉. Ordered set, i.e.  〈        〉    〈        〉 

 : two-dimensional scalar; location of an observation in the spatial domain,  . 

 : integer; number of nearest neighbours 

  (   )      (        (   ))  an ordered set of size   relative to the distance away from 

 , i.e.   (   )   〈             〉  
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 ( )   〈        (   )     〉: ordered set of size  , representing locations that are 

neighbours of  , excluding   

 ( ): scalar; attribute value at location   

     ( ): scalar or vector; an algorithm-specific aggregate function that summarizes the 

attribute at locations  ( ) 

     ( ): scalar or vector; a comparison function between  ( ) and      ( ) 

 ( ): scalar; spatial outlier score for location   

  = mean of a vector 

   = standard deviation of vector 

    = median absolute deviation of a vector 

 

Nine of the most popular statistical spatial outlier algorithms are used on the spatial data 

created with the above process to detect the spatial outliers that were introduced. These 

include five algorithms that do not account for spatial autocorrelation, and four algorithms that 

do account for spatial autocorrelation. A proposed novel spatial outlier algorithm, noted as 

Spatial Outlier Test (SOTest), is formulated as an exploratory exercise using the principles of the 

spatial algorithms reviewed in here. These 10 algorithms include: 
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Table 4.1: Spatial Outlier Detection Algorithms 

Without Spatial Autocorrelation With Spatial Autocorrelation 

Spatial Statistic Z Inverse Distance Weighting to the Power (IDWP) 

Median Statistic Z Kriging Interpolation 

Scatter Plot Weighted Z 

Local Area Mean Averaged Difference (AvgDiff) 

Spatial Local Outlier Measure (SLOM) Spatial Outlier Test (SOTest) 

 

All spatial algorithms are based on similar principles: compare the attribute value at each 

location against an aggregrate function that summarizes the neighbourhood attribute values. 

This comparison is then normalized across the entire dataset, and observations with the highest 

outlier score are considered more likely to be spatial outliers than observations with low score. 

In this work, the attribute refers to crop yield, but these algorithms for spatial outliers are 

general in nature and apply, in principle, to other numerical spatial variables.  

For this spatial data configuration whereby observations are point measurements, the 

neighbourhood  ( ) can be defined as either consisting of the   nearest neighbours (k-NN) of 

  (excluding   itself) according to the Euclidean distance in the two-dimensional spatial domain, 

or via a search radius, i.e. as consisting of all points within a Euclidean distance from   equal to 

 . k-NN is used to define  ( ) and the subsequent measures for all algorithms because it is the 

most common among the two in this context (Shekhar et al., 2003; Lu et al., 2003; Kou et al., 

2006). k-NN always guarantees the same number of neighbours for each  , unlike search 

radius. k-NN is useful especially for spatial data that is evenly spaced, while search radius is 

more suitable for unevenly-spaced spatial data because it can filter out observations that are so 

far away that they may not be considered actual neighbours .  

After defining  ( ), an aggregate function,      ( ), is computed to summarize the attribute 

values of  ( ). Such function can be classified as distributive, algebraic, or hollistic (Han and 
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Kamber, 2001). Distributive aggregate functions are functions that can be applied to each 

partition of the dataset that would be identical as applying the same function to all the data 

without partition. count, max, min are some examples of distributive aggregate functions. For 

example Figure 4.4 shows that the min and count of the entire dataset is the same irrespective 

of whether the dataset was partitioned based on columns or rows.   

 

Figure 4.5: Example of Distributive Agreggate Function: Minimum & Count 

Source: Shekhar et al. (2001). 

 

Following the classification and notation of Han & Kamber (2001), algebraic aggregate functions 

are functions that can be computed using a constant number of distributive aggregate 

functions for each data partition. average, standard deviation, variance are examples of 

algebraic aggregate function. In the case of average aggregate function, it can be computed 

with two distributive functions: sum divided by count. Holistic aggregate functions on the other 

hand, are functions that cannot be computed with a constant number of distributive aggregate 

functions. median, rank, mode are some examples of holistic aggregate functions. After deriving 

     ( ),      ( ) is computed by comparing      ( ) to  ( ). Such comparison is usually by 

way of computing their difference, but can also be computed as a ratio, among other measures 

(Lu et al., 2003). In this work, the arithmetic difference between      ( ) and      ( ) will be 

used throughout the detection of spatial outliers. Finally,      ( ) is normalized by finding the 

centre and spread of      . 
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A brief technical description of the spatial algorithms is as follows. This description is based on 

the references indicated above in Table 4.1. 

 

4.3.1. Spatial Statistic Z 

     ( )    ( ( ( ))) 

     ( )     ( )        ( ) 

 ( )    
       ( )    (     ( ))   

  (     ( ))
  

For Spatial Statistic Z (Shekhar et al., 2003),      ( ) is calculated by first ranking the 

neighbouring observations of    based on Euclidean distance, and then selecting the   

observations that are ranked the highest, excluding  .      ( ) calculates the mean attribute 

value of neighbours of  , written as  ( ( ( ))).      ( ) subtract the attribute value of   

with the mean attribute value of its neighbour. This is repeated for all observations in the 

spatial domain, and the outlier score for   is found by standardizing      ( ) across the entire 

dataset,  . Note that       ( )   〈     (  )      (  )      (  )        (  )〉        

Most of the computation time is allocated to the calculation of      . The      operation is 

similar to     , which has on average a quadratic time complexity (Knuth, 1998). Given that 

      is a computation within a     loop that runs over all observations, the time complexity of 

      is increased to at least cubic runtime.       applies one basic operation outside the     

loop. Similarly,  (     ( )),   (     ( )), and   are basic operations that are computed 

outside the     loop across the entire dataset in a single scan. Unless the sample size is a very 

small number, each of their time complexities can be considered as constant, without much 

influence to the overall algorithm runtime. 
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4.3.2. Median Statistic Z 

     ( )         ( ( ( ))) 

     ( )     ( )        ( ) 

 ( )    
       ( )         (     ( ))   

   (     ( ))
  

Median (Chen et al., 2008) is identical to Spatial, except that the mean is replaced by the 

median, and the standard deviation is replaced by the median absolute deviation. The median 

absolute deviation is calculated as follows: 

          (          ( ) ) 

Where   is the vector of values and    is the value for the  ith observation in the vector.  

  

4.3.3. Local Area Mean  

     ( )    ( ( ( ))) 

       ( )     ( ( ( ))) 

     ( )     ( )        ( ) 

 ( )    
       ( )   

       ( )
  

As appearing in Kleinjan et al. (2002), Local Area Mean’s neighbourhood aggregate function is 

composed of two functions:       and        .       is calculated identical to Spatial, thus, 

their complexity time is the same. However, unlike Spatial or Median, Local does not 

standardize globally, but uses a local standardization method for each neighbourhood. This 
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local standardization is based on        .         ( ) computes the standard deviation of the 

attribute value of neighbours of  . This means that each observation is standardized differently.      

 

4.3.4. Scatter Plot  

     ( )    ( ( ( ))) 

     ( )         ( )   (  ( )    ) 

 ( )    
       ( )    (     ( ))   

  (     ( ))
  

Unlike Spatial, Median, and Local, Scatter is a graphical spatial outlier technique (Shekhar et al., 

2003). If plotted,  ( ) is on the X-axis, and      ( ) on the Y-axis. Then, a least-square 

regression line      ( )    ( )      ( ) is fitted, and observations with the largest 

residuals,  , are considered as probable spatial outliers. Thus, 

     ( )     ( )        ( )   (  ( )    ), where   is the estimated slope of the line and 

  is the estimated intercept.   and    can be found by using the following formula: 

   
∑ ( (  )  ( (  )) )
 
     ∑ (     (  )    (     (  )))

 
   

∑ ( (  )  ( (  )))
 

 
   

 

    (     ( ))     ( ( ))  

  ,  ,      , and    are based on basic operations across the entire dataset without the use of a 

    loop; thus, their time complexity is almost quadratic.  
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4.3.5. Spatial Local Outlier Measure  

     ( )   
( ( )        ( ))

(    ( )        ( )) 
 

     ( )    ( ( )) 

     ( )        ( )        ( ) 

 ( )  
 ∑|     ( )|     |     ( )| 

     
, where the sum is over the set      ( ), which has   elements  

    ( )    ( ( ( )) 

             ( )        ( ( )     ( ( )))  

         ( )    ( ( ( )) 

             ( )        ( ( )    ( ( ))) 

       

  ( )  
  ( ) 

(   )    
 

 

    ( ( ( )))
 

 ( )     ( )  ( )  

Unlike other spatial outlier algorithms, SLOM does not standardize the outlier score but it 

standardizes the attribute (Chawla and Sun, 2006). SLOM starts with the normalization of  ( ) 

such that  ( ) is between 0 and 1 (i.e.      ( )). This requires searching for     ( ) and 

    ( ) which are basic operations.      ( ) is then computed similar to Median; thus, the 

same time complexity. However, unlike Median where      ( ) is aggregated during its 

computation, SLOM has a “dynamic” aggregate and comparison function, because it performs 

the aggregation and the comparison altogether during the computation of  ( ). The 
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aggregation function is technically ∑|     ( )|     |     ( )| , and since      ( )  

      ( )        ( ),   ( ) can be re-written as: 

 ( )  
 ∑|     ( )        ( )|     |     ( )        ( )| 

     
 

 

     ( ) only searches for the neighbours of  ( ).      ( ) and      ( ) are not aggregated; 

they are vectors, not scalars. Because  ( ) is computed in a     loop, its time complexity is at 

least quadratic. The algorithm then calculates  ( ) which is the net number of times the values 

around   are bigger or smaller than its neighbours. The idea is that if a neighbourhood has low 

deviation, a spatial outlier within the neighbourhood would be easier to detect rather than a 

neighbourhood with high deviation. This concept resembles the Local Area Mean algorithm. 

The neighbourhood deviation, or oscillation, is captured by  ( ). After computing  ( )  ( ) is 

divided by (   )     for a boundary correction and to standardize   so its maximum value is 

1.  ( ) is further divided by      ( ( ( ))) which allows to penalize situations where large 

values of  ( ( )) exists around  ( ). 

 

4.3.6. Weighted Z  

     ( )   ∑ ( ( ( ))         ( ( ))), where   is used to denote the element-wise 

vector product 

      ( )   
        (   )  

∑        (   ( ))
     for    ( ) 

∑      ( ( ))     

     ( )     ( )        ( ) 
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 ( )    
       ( )    (     ( ))   

  (     ( ))
  

Kou et al. (2006) introduces the Weighted Z algorithm.      ( ) calculates the weighted 

average of the non-spatial attribute of the neighbours of  . This is performed by first 

determining  ( ) with the      function. The weight represent the impact of each neighbour 

in relation to  . If   is the nearest neighbour of  , then   has more impact in  

     ( ) calculation. The weight value for neighbour   is between 0 and 1, and the sum of 

weights for all  ’s neighbours is 1. Thus, the weight of    is calculated by inverting the Euclidean 

distance of (   ) and dividing it with the sum of all the inverse distances between  ’s 

neighbours.  

 

4.3.7. Inverse Distance Weighted to a Power (IDWP) 

     ( )   ∑( ( ( ))        ( ( ))) 

      ( )   
        (   )  

∑        (   ( ))
         for    ( ) 

∑      ( ( ))     

     ( )     ( )        ( ) 

 ( )    
       ( )    (     ( ))   

  (     ( ))
  

Inverse Distance Weighted to a Power is very similar to Weighted. The only difference is that an 

exponent is applied to the inverse distances. Thus, closer observations will have more impact in 

the calculation of        than in Weighted. Similarly, observations farther from   will have less 

influence in the calculation of      ( ) than in Weighted. In this case, the power function,  , is 
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set to equal to 2, which is the same exponent used by Simbahan et al. (2004) and Ping & 

Dobermann (2005).  

 

4.3.8. Kriging Interpolation  

     ( )   ∑( ( ( ))        ( ( ))) 

      ( ( ))  ( ( ( )))
  

 ( )  where  ( ( )) and  ( ) are a matrix and vector of 

semivariances as defined later in this section 

     ( )     ( )        ( ) 

 ( )    
       ( )    (     ( ))   

  (     ( ))
  

Kriging is an interpolation technique that estimates the value at a location based on linear 

weighted combination of the neighbouring locations. Thus, the idea is to interpolate each point 

in the dataset and compare the interpolated value against the true value to test for outlierness. 

Kriging starts by calculating the experimental semivariogram. For observations,  (  )   

      at locations           the empirical semi-variogram is defined as (Cressie, 1993): 

  ( )   
 

 | ̇( )|
∑ ( (  )    (  ))

 

(   )  ̇( )

 

where   is the lag distance between    and    such that |      |   , and | ̇( )| is the 

number of pairs in the set. Since a spherical semivariogram is used in the sequential simulation, 

a spherical model is used here as well, which has the form: 
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    (        
       )  

{
 
 

 
       

                           

  (
  

  
 
  

   
)          

                                             

 

where      
    is the nugget semivariance,    is the sill, and   is the range of 

autocorrelation. Semivariogram functions available in gstat are utilized to calculate the 

empirical and model semivariogram. Both semivariograms are computed only once, globally for 

all observations. As the default, gstat uses iteratively reweighted least-squares (WLS) (Cressie, 

1985) to estimate model semivariogram parameters but estimation by generalized least-

squares (GLS) and restricted maximum likelihood (REML) are also available (Pebesma, 2004).     

 ( ( )) is a     by     matrix of model semivariances between neighbours of  . This 

matrix characterizes the spatial autocorrelation of  ( ). Prior to computing this matrix,   has 

to be determined, which are pairwise Euclidean distances among points . Once   is determined, 

    (        
       ) is utilized to calculate matrix  ( ( )).  

 ( ) is a     vector that characterizes the spatial autocorrelation between   and its 

neighbours,  ( ), which is computed with     (        
       ).         is then calculated 

by multiplying   with the inverse of  . The (   )   row in        is then removed in order 

for ∑        . This is the effect of the Langrange multiplier.    

Kriging interpolation is perhaps the most complex among all algorithms used.   is computed for 

 ( ( )) in a     loop with Euclidean distance. Given that   is computed for each observation, 

the computation requires a nested     loop; the inner loop is   times, and the outer loop 

which is   times.   ( ( )) and  ( ) are simple calculations, but are calculated   times. So, 

their complexity is at least   times each.   has to be inverted, and matrix inversion is at most 

cubic runtime (Strassen, 1969). Matrix multiplication is at most a     runtime for a      and 

    matrix (Strassen, 1969). And  ( ( )) is computed identical as in Weighted’s  ( ( )), 

thus the same time complexity. 
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4.3.9. Averaged Difference (AvgDiff) 

     ( )    ( ( )) 

     ( )      ( )        ( )  

 ( )    ∑     ( )         ( ( )) 

      ( )   
        (   )  

∑        (   ( ))
     for    ( ) 

∑      ( ( ))     

As appearing in Kou et al. (2006), AvgDiff has a dynamic aggregate function because 

neighbourhood aggregation does not occur at the initial stages of the algorithm, which is similar 

to SLOM.      ( ) only searches for the neighbours of  ( ).      ( ) computes the absolute 

difference between  ( ) and      ( ), and the actual aggregation occur during the 

computation of  .        is calculated same as Weighted with the same time complexity. But 

unlike Weighted, AvgDiff does not standardize outlier scores.   

 

4.3.10. Spatial Outlier Test  

     ( )    ( ( )) 

     ( )       (   ( ))   
 ( )        ( )

        (   ( ))
 

 ( )   ∑|     ( )|  |   (     ( ))|  |   (     ( ))| 

The idea of SOTest is to compare the slope, rise over run, between   and its neighbours,  ( ), 

over their respective distances. If the sum of all of these slopes is a large value, then   is likely a 
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spatial outlier. However, given that there may be more than one (positive or negative) spatial 

outlier in  ( ), the maximum slope and the minimum slope are taken away from the sum, i.e. 

a trimmed sum is used. The maximum slope is taken in order to suppress spatial outliers that 

are above the neighbourhood average, while the minimum slope is taken away to suppress 

spatial outliers that are below the neighbourhood average. If there are no spatial outliers in 

 ( ), then removing both the maximum and minimum would not make a significant change to 

the computation of the outlier score.  

 

4.4. Assessment of Spatial Outlier Techniques 

4.4.1. Introduction 

The previous section on detecting spatial outliers involves using each spatial outlier algorithm 

to assign an outlierness score to each observation in the simulated dataset. This section 

evaluates whether the outlier scores derived by each algorithm is correct. Previous 

performance assessments of spatial outlier techniques involved the ranking and the 

comparison of the top   spatial outlier detected by each algorithm (Lu et al., 2003; Chandola et 

al., 2006; Kou et al., 2006; Chen et al., 2008). This is problematic because experiments were 

conducted on real datasets whereby the spatial outliers are really not known in advance. Thus, 

the comparison between algorithms by ranking top outliers does not necessarily determine the 

algorithm correctness because there is no point of reference of what a spatial outlier really is. 

On the other hand, the simulated spatial data contains known spatial outliers, which is the 

point of reference needed to make such comparisons. Given that there are only two class 

labels, outliers and non-outliers, the assessment of algorithms can be conducted as a binary 

classification problem, treating each spatial outlier algorithm as a classifier. Thus, the question 

is, ‘how accurate are the prediction and classification of each algorithm?’  
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The answer is to use performance measures available in classification problems such as 

accuracy, misclassification error, sensitivity, specificity, among others. Two very popular 

analytical tools that encompass such performance measures are a confusion matrix and the 

receiver operating characteristics (ROC) curve. Both the ROC curve and the confusion matrix are 

techniques to visualize, organize, and select classifiers based on their performance (Fawcett, 

2006). However, the ROC curve is utilized to assess the algorithm performance because  it 

summarizes multiple confusion matrices at different decision thresholds. 

  

4.4.2. ROC Curve 

The ROC curve is constructed by plotting the sensitivity (true-positive rate or    ) and 1 – 

specificity (false-positive rate or    ) of the classifier against each other as a function of  , a 

threshold criterion (Hanczar et al., 2010). In this case, the threshold criterion is the spatial 

outlier score,  . Informally, the ROC curve is equal to the collection of multiple confusion 

matrices with differing thresholds for class selection. This means that the information of one 

confusion matrix represents a single point, (   ( )    ( )) in the ROC curve. Thus, the ROC 

curve can be used to summarize all the confusion matrices that could have been produced with 

differing thresholds.  

A simple method to compare classifiers is to reduce the information contained in the ROC curve 

down to a single convenient scalar value that represents the classifier performance. Various 

indices have been used to summarize the ROC curve. The most popular one is the AUC, the area 

under the ROC curve, noted as the most recommendable index of detectability (McClish, 1989). 

The AUC is a scalar that summarizes across all thresholds, reflecting the overall quality of the 

classifier. The AUC of a classifier is equivalent to the probability that the classifier will score a 

randomly chosen positive sample higher than a randomly negative sample (Fawcett, 2006).  



67 
 

The AUC is a portion of the area of the unit square, so AUC  [   ],    (   )   ∫    ( )  
 

 
. 

AUC = 1, corresponds to the perfect classifier that will correctly detect all spatial outliers 

without any false positives. AUC = 0.5 corresponds to an uninformative classifier that is not 

better than a classifier that randomly guesses whether observations are spatial outliers or not. 

Technically, AUC = 0.5 usually corresponds to the diagonal of the ROC curve,    , although it 

can sometimes meander around the diagonal. When a straight diagonal line is depicted, TPR 

will always equal to FPR. For example, the classifier may correctly detect 80% of the spatial 

outliers, but will also incorrectly detect 80% of non-outliers. If there are 100 outliers and 100 

non-outliers, the classifier will label 160 observations as outliers; 80 of them correctly, 80 of 

them incorrectly. AUC = 0 corresponds to a classifier assigning all observations to the wrong 

class. In this situation, all spatial outliers would be classified as non-outliers and all non-outliers 

as spatial outliers.       

The AUC may be a misleading measure for classifier performance. Total area is, in some sense, 

not the ideal measure of the classifier performance. AUC is a single global measure that 

summarizes over the region of the ROC curve in which one would rarely operate (Dodd & Pepe, 

2003). In practical situations, researchers may only be interested in a few situations rather than 

all of them. For instance in medical studies, population screening may result in large monetary 

costs of follow-up examinations if FPR is high; thus, the focus would be on the ROC areas 

corresponding to low FPR. Similarly, in diagnostic testing, high TPR is emphasized in order to 

not miss-detecting subjects with disease; hence the area with high TPR is of particular interest 

(Dodd & Pepe, 2003).  

Similarly, when comparing ROC curves, the curves may be identical for some range, but one 

curve may be superior to the other in other ranges. This can imply that a high-AUC classifier can 

perform worse than a low-AUC classifier for a particular range of the curve. This subtlety is not 

captured with the AUC. One naive approach is to compare ROC curves at individual points on 

the curve (McClish, 1989). The novel approach would be to compare the partial area under the 
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ROC curve,     (     )   ∫    ( )  
  
  

, for a fixed range of FPR or TPR values (see Figure 

4.5).   

The 5% FPR and 80% TPR are chosen as the performance thresholds to compare the algorithms. 

This is because outlier detection algorithms with a high TPR and a low FPR are highly desirable. 

For FPR,               and for TPR,              . These two conditions are evaluated 

for each algorithm. Note that for ROC curves, the FPR is on the x-axis and TPR on the y-axis. 

Thus theoretically, finding the PAUC with respect to TPR will involve integrating on the y-axis.   

 

Figure 4.6: Selected partial area under ROC curve at 5% FPR (blue) and from 80% TPR (red) 

 

The R package ROCR provides the tools to construct ROC curves along with performance 

measures such as the AUC, and PAUC up to a fixed FPR can be computed by passing an optional 

parameter, fpr.stop=0.05. However, ROCR is not capable of restricting a fixed TPR to calculate 

PAUC. It can only restrict the ROC region of interest to FPR. The solution has been to transform 

the ROC curve to a specificity-ROC curve, which is a 270o rotation of the original curve having 

the TPR on the x-axis (Dodd & Pepe, 2003). However, ROCR does not recognize this re-
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configuration. The alternative solution to find the PAUC from 80% TPR, based on simple 

considerations, is as follows: 

1. compute the AUC, 

2. find the FPR in which TPR = 0.8,  

3. compute the PAUC at this FPR, and 

4. Subtract the AUC in (1) minus the PAUC in (3) and minus 0.8 multiplied by (1 – FPR). 

 

4.4.3.  Sensitivity Analysis 

An additional increased uncertainty exists regarding algorithm ROC performance under 

differing parameters, particularly when different numbers of nearest neighbours can be used to 

compute the neighbourhood aggregation function,      . Uncertainty arises because there is 

no consensus regarding how many nearest neighbours to use, and subsequently, no knowledge 

about how the ROC performance of an algorithm is influenced by the number of nearest 

neighbours. As such, determining the uncertainty of algorithm performance can be 

accomplished by way of a sensitivity analysis. The basic idea of sensitivity analysis is to change a 

single parameter while holding all remaining parameters constant. This would determine the 

influence of the single parameter in relation to the remaining parameters, which would allow 

the identification of algorithms that are unstable under a user-specified number of nearest 

neighbours. Thus, the investigation of neighbourhood definition in spatial outlier detection is 

conducted by applying spatial outlier algorithms to the simulated dataset at different user-

specified number of nearest neighbours and utilizes the ROC measures to determine algorithm 

performance at each defined neighbourhood.  The number of nearest neighbours under 

investigation will range from four nearest neighbours to 20.   

A need also exists to determine the robustness of each algorithm given that algorithm 

performance may be influenced by the structure of the dataset. For example, algorithms may 
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perform differently in local areas with large variation (large nugget effect) than in areas with 

little local variation. Certainly, spatial outliers located in areas with large variation would be 

harder to detect than spatial outliers that occur in areas with little variation. Similarly, 

algorithm performance may be influenced by the overall dataset itself. An approach to 

determine algorithm robustness is by way of exploring the variation of ROC performance 

measurements obtained from all 20 simulations. Particularly, the standard deviation would 

convey whether an algorithm is capable of obtaining consistent performance under different 

data structures. Thus, the approach is to calculate the standard deviation of the ROC curve 

measures for each of the investigated number of nearest neighbours used to compute       . 

20 replications are performed for each NN setting. 

 

4.4.4. Neighbourhood Sensitivity 

A statistical approach at determining the algorithms’ neighbourhood stability, i.e. to determine 

whether changing the NN parameter alters algorithm performance, is to perform a one-way 

analysis of variance (ANOVA) test. ANOVA provides a test to determine whether or not multiple 

means or proportions are statistical different (De Veaux et al., 2005). ANOVA relies on the F-

statistic, which is the ratio between the treatment mean square (MST), the variation between 

groups, and the error mean square (MSE), the variation within groups (De Veaux et al., 2005). 

Three assumptions must be satisfied: independence, equal variance, and normality. 

Independence is checked for between and within groups. Between-group independence may 

be questionable. ROC performances, AUC, PAUC TPR, and PAUC FPR, in the groups are 

generated from the same algorithm but with different NN parameter; they are nonetheless 

derived from the same dataset. Within-group independence is met as each group contains 20 

datasets that were simulated independently.  
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Equal variance can be checked by observing the spread of the boxplots, particularly the spread 

of the IQR. A more objective approach is to use a statistical equal variance test such as the 

Brown-Forsythe homogeneity of variance test (Appendix B).  Normality can also be checked by 

visual inspection of the boxplot, normal quantile plot, or histogram, or via a normality test such 

as the Shapiro-Wilk test (Appendix A). Both Brown-Forsythe test and Shapiro-Wilk test are 

preferred because they provide a test statistic. The null hypothesis for the Brown-Forsythe test 

is that the population variances are equal while the null hypothesis from the Shapiro-Wilk test 

is that the sample comes from a normally-distributed population.   

The Kruskal-Wallis test, a non-parametric extension to ANOVA test, can be utilized to assess 

neighbourhood impact on AUC score without making the assumption of a normally-distributed 

population. Because the Kruskal-Wallis test first ranks all observations for all groups together, 

the test is analogous to testing population medians instead of means (Hollander & Wolfe, 

1973).  

 

4.4.5. Algorithm Performance Similarity 

This section evaluates whether algorithms are statistically similar or different. The parametric 

statistical approach to determining whether algorithms are different is by way of performing a 

two-sample t-test or a paired t-test. The idea is to perform the test on the ROC performance 

measures: AUC, PAUC at TPR and PAUC at FPR. The two sample t-test is commonly used to 

determine if two independent means or proportions are statistically different. However, 

independence assumption is broken because the data, in this case the ROC performance 

measures, come from the same simulated datasets but generated from different algorithms. In 

such situation, a paired t-test is more appropriate.  

A paired t-test requires two assumptions to be met. First, the data has to be paired. Pairing is 

met, as mentioned. ROC performance measurements are derived from the same set of 
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simulations for each algorithm. This is analogous to having the same subjects try different 

treatments. Secondly, the data must follow a normal distribution. Normality is checked with the 

Shapiro-Wilk test (Appendix A). Again, the normally-distributed population assumption is 

broken for SLOM. Thus, a non-parametric approach is utilized. The paired Wilcoxon test, also 

known as the Mann-Whitney test, is the non-parametric version of the paired t-test which does 

not require a normal distribution (Hollander & Wolfe, 1973).     

 

4.5. Evaluating Spatial Outlier Effects in Site-Specific Management  

The most common approach at determining the effects of spatial outliers have been the ex ante 

and ex post analysis of yield for a particular statistical analysis; that is, comparing the raw data 

against the pre-processed data. For example, such analyses include the ex ante and ex post 

estimation of the summary statistics of crop yield and its  semivariogram parameters as well as 

yield mapping (Thylen & Murphy, 1996; Beck et al., 1999; Kleinjan et al., 2002;  Simbahan et al., 

2004; Ping & Dobermann, 2005; Sudduth & Drummond, 2007). With the exception of yield 

mapping, there is little of or no value for site-specific management regarding the information 

conveyed in summary statistics and semivariogram parameters because the true parameters 

are unknown in real situations. In addition, it is difficult to observe differences in yield maps 

obtained in ex ante and ex post yield mapping, as the maps will appear almost identical, 

depending on the spatial resolution and level of outlier contamination. 

Several studies have been conducted to investigate crop yield response functions (Long, 1998; 

Bullock & Lowenberg-DeBoer, 2002; Lambert et al., 2003; Anselin et al., 2004; Liu et al., 2006; 

Brenning et al., 2008). A few of them have compared the effectiveness of different spatial 

regression models regarding coefficient estimation (Lambert et al., 2003; Anselin et al., 2004; 

Brenning et al., 2008). But none have addressed the potential effects of spatial outliers in their 

spatial analysis. The proposed approach takes a similar path at comparing coefficient estimates 
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derived from a spatial regression model. Here, different spatial outlier detection algorithms will 

be applied and each resulting dataset will be then used to estimate the crop yield coefficients. 

In this case, spatial outlier algorithms are being compared in terms of how effectively 

coefficients are estimated after outlier detection algorithms are applied. 

Several types of spatial regression models are popular for estimating crop yield response 

functions. Classical ordinary least-squares (OLS) regression has been shown to underestimate 

field heterogeneity and has led to biased or misleading inferences about crop response function 

because crop yield data is almost always spatially correlated (Bullock & Lowenberg-DeBoer, 

2002). As a response, regression models that account for spatial correlation have been 

proposed. Particularly, four spatial regression models are commonly used, which include 

classical nearest neighbour, polynomial trend, spatial autoregressive model (SAR), and a 

geostatistical approach (Lambert et al., 2003; Brenning et al., 2008). SAR and geostatistical 

approach remain the most popular techniques among agronomists.   

In this work, the geostatistical approach is chosen for coefficient estimation. This is because 

although SAR and geostatisical are similar in obtaining similar parameter estimates, the latter 

approach is about 30% more efficient in terms of computation time (Brenning et al., 2008). In 

addition, SAR can fail because of numerical singularities that cannot be avoided by sub-

sampling (Brenning et al., 2008). And both SAR and geostatistical approach have shown to be 

more precise than the classical nearest neighbour and polynomial trend approaches in terms of 

coefficient estimation (Lambert et al., 2003).  

The geostatistical approach in Cressie (1993) serves a backbone for spatial regression, but 

several geostatisticians have elaborated upon the approach. To estimate coefficients, the 

approach that appears in Goovaerts (1997) is going to be utilized, which is as follows:  

1. Determine a linear model of the variables. In this case, Ordinary Least-Squares: 

       , which   is the regressed value,   is the regressors,   is the vector of 
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coefficients, in this case, coefficients for the environmental variables and treatment 

variables (           ), and   is the error term at all locations. 

2. Derive OLS residuals in the form        

3. Compute the empirical semivariogram for the OLS residuals, obtain the model 

semivariogram, and model  , the covariance matrix of the OLS residuals, with the 

nugget, sill, and range of the computed model semivariogram,      , and   respectiely. 

4. Use Generalized Least-Squares (GLS) to determine coefficients. Cressie (1993) provides 

the estimation of the coefficients, which are solved by  ̂   (      )          

 

However, a disadvantage of using spatial regression models is that they are computationally 

intensive. Neither GLS nor SAR can be computed for a spatial dataset consisting of 20,000 point 

because of insufficient random-access memory (RAM), even for a computer equipped with 4 

gigabytes of RAM. The common approach is to spatially aggregate the data to a point density 

that is consistent with the scale at which agricultural machinery operates (Brenning et al., 

2008). Aggregation of spatial point data consists of summarizing points by computing the mean 

centre of a local neighbourhood within a user-specified distance and then taking the local 

neighbourhood median attribute value. For instance, if three spatial points were to be 

aggregated, the centre location would obtain the median attribute value. In this case, a three-

metre nearest neighbour distance is utilized, which would derive a point density of 

approximately 5,000 points.   

The R package nlme provides functions to fit linear and non-linear mixed effects models, in this 

case, generalized least squares (GLS) linear regression. In GLS, the errors are allowed to be 

correlated and/or have unequal variances. The covariance matrix constructed with the spatial 

correlation structure given by the spherical model, or any user-specified semivariogram model, 

is also derived with functions in the nlme package. Calculation of the empirical semivariogram 

and semivariogram modelling is implemented in the R package gstat.  
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4.6. Chapter Summary 

Unconditional sequential Gaussian simulation is performed to generate crop yield data along 

with two explanatory variables. Point and region spatial outliers are added separately to the 

simulated datasets by randomly picking observations and adding or subtracting a Gaussian 

error term to the observed value. Given that each spatial outlier is known in advance, the 

assessment of spatial outlier techniques can be conducted as a binary classification problem, 

treating each spatial algorithm as a classifier. Performance assessment is evaluated with the 

area and partial area under the ROC curve at 80% true positive and 5% false positive rates. Two 

additional analyses involves determining whether changing the number of nearest neighbours 

affect the algorithm performance, and determining which algorithms are most similar in terms 

of ROC performance. Further investigation of the spatial outlier effects is conducted by 

coefficient estimation with a geostastical approach, which involves incorporating 

semivariogram parameters into the covariance matrix of a generalized least-square regression 

to fit a model into the dataset that has been spatially aggregated.    
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CHAPTER 5:                                                         

RESULTS AND DISCUSSION 

Chapter 5  
5.1. Geostatistical Simulation  

The results of the simulations are summarized in Table 5.1. The minimum yield value of 46.04 

bu/acre and the maximum of 107.55 bu/acre correspond to a three and a half standard 

deviations away from the mean. This spread is reasonable given the large sample size. The 

fourth column indicates the simulation with the addition of 2,000 point spatial outliers, which 

amounts to 5% of the total number of observations. And the fifth column depicts the addition 

of region outliers of size 5 for the same 5% contamination. A few differences can be inferred 

between both. 

First, the addition of point and region spatial outlier has generated global outliers since the 

minimum has decreased about 2.5 bu/acre and the maximum has increased 2 bu/acre. As such, 

the standard deviation has been inflated, but other summary measures remain almost 

unchanged. The reason global outliers appeared on the simulation is because the spatial outlier 

generator selects random observations as spatial outliers. Thus, observations which are 

relatively extreme could be selected and superimposing the outlier term on them could result 

in the generation of global outliers. 
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Table 5.1: Summary of Simulations 

Summary Statistics 
 Initial  

Parameters 
         

Yield  Mean Between-
replication 
std. error 

Mean Between-
replication 
std. error 

Mean Between-
replication 
std. error 

Minimum  46.04  0.80 43.37 0.81 43.87 0.78 
1st Quartile  70.92 0.30 70.85 0.30 70.74 0.31 
Median  76.80 0.27 76.82 0.27 76.81 0.27 
Mean 76 76.81 0.29 76.83 0.29 76.81 0.28 
3rd Quartile  82.71 0.31 82.82 0.32 82.90 0.32 
Maximum  107.55 0.65 109.48 0.54 110.53 0.64 
Standard Deviation  8.77 0.14 8.92 0.13 9.06 0.13 

Semivariogram Parameters of Yield 

Nugget 3.5 3.65 0.52 6.07 0.56 8.25 0.57 
Sill 70 73.67 3.17 73.77 3.23 74.19 3.27 
Range 150 145.62 3.27 145.47 3.24 145.23 3.36 
Nugget-to-Sill ratio 5.0% 4.9%  8.2%  11.1%  

 

   – original simulation;    – simulation after adding point outliers;    – simulation after adding region outliers. 

Units is bushels per acre. 

 

The most significant difference between the original simulations and the simulation with spatial 

outliers is the inflation of the estimated nugget effect. For point outliers, the nugget almost 

doubled from 3.65 bu/acre to 6.07 bu/acre, making the nugget-to-sill ratio increase to 8.2%, 

and for region outliers, the nugget almost tripled with an 11% nugget-to-sill ratio. This can be 

attributed to the simulated spatial outliers. The nugget describes the short range micro-scale 

variability that is present because of measurement error or in this case, inherent variability. 

Spatial outliers produce local instability by introducing observations that are markedly different 

from their nearest neighbours. This implies that micro-scale variation is increased as nearest 

neighbours are on average more different when spatial outliers are present.  This is further 

exasperated by region outliers given that a cluster is now more dissimilar to nearest 

observations.   
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Table 5.2: Average Pearson correlation between simulated variables 

 

         

   0.98 
     0.31 0.32 

    0.02 0.03 -0.01 

 

   – original simulation;    – simulation after adding point outliers ;    – environmental variable 1;     – 

environmental variable 2 

 

The average Pearson correlation between the simulated variables for the 20 simulations  is 

shown in Table 5.2. This table suggests that the spatial outliers have the slightest impact on the 

correlation between simulated variables as the correlation difference is 0.01 between 

coefficients of    and    . This may be credited to the magnitude and quantity of spatial 

outliers. The correlation structure between variables may have been affected significantly if 

more spatial outliers were introduced with a higher error value.  

 

5.2. Point Outlier Algorithm Performance 

5.2.1. Area under ROC curve 

Figure 5.1 shows the area under ROC curve for each algorithm under different number of 

nearest neighbours used to compute      . All algorithms that do not account for spatial 

autocorrelation, Spatial, Median, Local, Scatter, and SLOM falter against the number of nearest 

neighbours (NN). As the number of neighbours increases, the AUC decreases rapidly, even for 

Median. Median has the highest AUC between 4 and 8 NN but decreases rapidly once NN 

reaches to 20. The AUC pattern for Local differs from all other algorithm. This is perhaps 
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because Local Area Mean restricts each observation to the statistics computed from the moving 

window, unlike all other outlier algorithms.     

 

Figure 5.1: AUC Sensitivity analysis over 20 simulated datasets 

 

Algorithms that account for spatial autocorrelation are less influenced by the change of NN. 

This may be related to the fact that spatial autocorrelation algorithms assign a different weight 

to each neighbour during the computation of      . So, observations in the neighbourhood 

which are weakly autocorrelated will therefore provide a minor contribution to the spatial 

neighbourhood. AUC for Weighted, Kriging, AvgDiff, and SOTest decrease slightly as NN 

increases. However, AUC increases for Inverse Distance Weighting as NN increases.  

Spatial autocorrelation based algorithms obtain the lowest standard deviation as well as two 

standard techniques, Spatial and Median (Figure 5.2). In particular, Median obtains the lowest 

variation across most of the NN settings, which suggests that Median is an algorithm that 

performs consistently on different datasets across all NN definition. SOTest, AvgDiff, Weighted, 

and Kriging are subsequent algorithms that have lowest standard deviation across the NN 

settings. 
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Figure 5.2: Standard deviation of AUC over 20 simulated datasets 

 

5.2.2. Partial area under ROC curve from 80% true positive rate 

Given that in this case TPR is restricted at 0.8, the maximum area that can be obtained is 0.2 or 

20%. As evidenced, spatial autocorrelation algorithms obtain higher PAUC than algorithms  that 

do not account for spatial autcorrelation. Median performs well with small number of nearest 

neighbours (Figure 5.3). The biggest contrast is the poor PAUC performance of SLOM. SLOM 

obtains less than a 10% PAUC for all tested nearest neighbours. This implies that SLOM obtains 

a very high rate of false positives when obtaining a true positive rate of 80%.  
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Figure 5.3: PAUC from 80% TPR sensitivity analysis over 20 simulated datasets 

 

SLOM obtains significantly the highest error across all NN settings, which is about four times 

higher than all other algorithms (Figure 5.4). Given that SLOM obtains the lowest PAUC and the 

highest variation for all NN settings suggests that SLOM does not adapt too well to different 

datasets and has difficulties detecting different spatial outliers.   

Given that the variation of SLOM ROC performance is extreme, Figure 5.5 depicts the standard 

deviation for all algorithms with the exception of SLOM. There is no discernable pattern as most 

algorithms fluctuate with the change of NN. Nevertheless as depicted, the two most stable 

algorithms with the smallest error are AvgDiff and SOTest, in which the error slightly increases 

as the NN increases.     
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Figure 5.4: Standard deviation of PAUC at 80% TPR over 20 simulated datasets 

 

 

Figure 5.5: Standard deviation of PAUC at 80% TPR without SLOM over 20 simulated datasets 
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5.2.3. Partial area under ROC curve at 5% false positive rate 

Figure 5.6 provides the partial area under ROC curve at 5% false positive rate for each algorithm 

under different number of nearest neighbours. The maximum area that can be obtained is 5% 

given that the FPR is restricted at 0.05. In this case, obtaining a large PAUC by implies that an 

algorithm obtains a relatively high true positive rate given a false positive of 5%. Figure 5.8 

shows spatial autocorrelation algorithms obtain the highest PAUC, much similar to the AUC in 

Figure 5.1. The revealing information is that Local is the algorithm with poorest performance, 

especially when NN is small.  

 

Figure 5.6: PAUC at 5% FPR sensitivity analysis over 20 simulated datasets 

 

Figure 5.7 provides the standard deviation for the PAUC at 5% FPR. SOTest and IDWPP obtain 

the lowest variation while SLOM and Scatter obtain the highest variation in most of the NN 

settings. However, the total variation range is very small compared to the range in PAUC TPR 

and AUC. Range for AUC variation is about 0.35% and for PAUC TPR is approximately 2.5% 

(0.25% without SLOM), while PAUC FPR is about 0.05%. A clear trend can be evidenced in all the 

figures depicting standard deviation. Local obtains a sudden change in error when NN equals 8. 
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In Figure 5.2, error drops the lowest when NN is 8 and then increases almost linearly. Similarly, 

Figure 5.5 shows the error dropping when NN is 8 and then a sudden increase and fluctuation. 

Finally, Figure 5.7 depicts the error suddenly drop and then remaining constant after NN equals 

8. This trend may be evidence of Local algorithm over-fitting the data.  

 

Figure 5.7: Standard deviation of PAUC at 5% FPR over 20 simulated datasets 
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dissimilar to the neighbourhood. When an algorithm fails to detect a spatial outlier, then it is 

due to the confusion exhibited in the inherent natural variability of the spatial data.  

However, this section explores the situations of region outliers where multiple spatial outliers 

are clustered together, which is implicative that more than one spatial outlier are present in the 

computation of the neighbourhood aggregate function. In addition to confusion with natural 

inherent variability and swamping effects, masking effects affecting true spatial outliers is 

present. 

Again, a sensitivity analysis is a viable approach at determining the influence of parameter on 

algorithm performance. This time two parameters exist: the number of nearest neighbours 

utilized in the computation of the spatial neighbourhood function and the number of spatial 

outliers clustered in the region. The following section investigates the sensibility of these two 

parameters for the AUC, PAUC 80% TPR, and PAUC at 5% FPR. 

  

5.3.2. Area under ROC curve 

As evidenced, all algorithms are weakened by the size of the region outlier (Figure 5.8). The 

algorithm performances drop approximately linear, and this is not of much surprise. The larger 

the region outlier size, the more instances of masking occurs. And this is particularly critical for 

Local. Local drops to an AUC close to 50% when the region size equals to 5. At this point, Local 

is no longer an informative algorithm as it obtains the same number of true positives as false 

positives for any detection threshold.  
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Figure 5.8: AUC sensitivity at 8 NN over 20 simulated datasets 

 

Figure 5.9 shows the AUC performance against the sensitivity of NN used to calculate the 

neighbourhood aggregate function. The clear best algorithm is AvgDiff because it obtains the 

highest AUC in all NN settings followed by Spatial, Median, and surprisingly, SLOM, although 

SLOM deteriorates with increasing NN. Spatial autocorrelation techniques perform variably. 

Very poor performance is evidenced in IDWP, while Kriging, Weighted, and SOTest are inferior 

to Spatial and Median. This time, spatial outliers are clustered together. So, spatial 

autocorrelation algorithms assign more weight to neighbours which are spatial outliers. In turn, 

the aggregate function and subsequent statistics are contaminated by multiple spatial outliers.  

Note that, unlike point outlier situations where all algorithms, especially algorithms  that do not 

account for spatial autocorrelation, are weakened by increasing NN, here the opposite is true 

for region outlier. In this situation, AUC performance increases as NN increases, which would 

ultimately reach a plateau where AUC performance can no longer increase.  
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Figure 5.9: AUC sensitivity at region outlier size 2 over 20 simulated datasets 

 

Figure 5.10 now presents the AUC performance given region outlier of size 5. Not much 

difference exists between Figure 5.9 and Figure 5.10. For example, AUC performance for Spatial 

and Median remain identical along with Scatter and SOTest. This evidence suggests that the size 

of the region size has the same influence on the performance of all algorithms. This time 

however, the AUC performance increase more sharply as NN increases, compared to the 

smooth increase as depicted in Figure 5.9. The reason for this sharp increase is due to the size 

of the region outlier. As the region outlier size increases, the number of nearest neighbours 

required to properly describe the spatial property of the dataset also increases.  

Another difference between Figure 5.9 is that all spatial autocorrelation algorithms, except for 

AvgDiff, perform worse than standard algorithm. In particular, Figure 5.9 depicted Kriging, 

SOTest, and Weighted obtaining higher AUC performance than Scatter. At region outlier size of 

5, Scatter outperforms Kriging, SOTest, and Weighted.  
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Figure 5.10: AUC sensitivity at region outlier size 5 over 20 simulated datasets 

 

Figure 5.11 depicts that all algorithms, except Kriging, obtain low standard deviation across all 

NN settings, suggesting that these algorithm obtains consistent performance for different 

datasets. Kriging approximately obtains more than double the variation of the rest algorithms. 

Kriging requires the computation of the semivariogram parameters: nugget, sill, and range. The 

nugget, as evidenced in section 5.1, is clearly affected by spatial outliers. Given the pair-wise 

comparisons in order to compute the semivariogram, region outliers of size 2 are mostly 

influential in contaminating the semivariogram parameters. Because the nugget is computed 

globally, it would not fit well locally on areas in which region outliers of size 2 occur, sug gesting 

that a local computation of semivariogram parameters would be preferred.     
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Figure 5.11: Standard deviation of AUC at region outlier size 2 over 20 simulated datasets 

 

Now in Figure 5.12, Kriging obtains about three times variation as all other algorithms. Since 

more outliers are clustered in a region, the nugget is more contaminated and harder to be 

correctly fitted by the model semivariogram. This contamination is accredited to the fact that 

small variation exists within the outliers in a region, thus, the interpolated values would not 

correctly match the true values. Consequently, Kriging performs less consistently with larger 

size of region outliers. Further revealing information from Figure 5.12 is that Scatter has higher 

standard deviation value, which are about double the variation obtained in Figure 5.10.  
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Figure 5.12: Standard deviation of AUC at region outlier size 5 over 20 simulated datasets 

 

5.3.3. Partial area under ROC curve from 80% true positive rate 

The performance of all algorithms is weakened by the region outlier size (Figure 5.13). All 

algorithms except AvgDiff, IDWP, and SLOM succumb in a linear fashion. In particular, SLOM 

obtains lowest PAUC when detecting region outliers of size 3 and 4, but PAUC strangely 

increases when region outliers equal 5.  On the contrary, the decay of AvgDiff PAUC 

performance occurs smoothly. At region size of 5, the difference in performance between 

AvgDiff and all other algorithms is evident.   
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Figure 5.13: PAUC 80% TPR at 8 NN over 20 simulated datasets 

 

For region outlier size 2, Figure 5.14 resembles the AUC performance of the same region outlier 

size (see Figure 5.9). The only difference is the performance of SLOM. Unlike AUC performance 

whereby SLOM obtained the fourth highest performance, here SLOM obtains the worst 

performance among all algorithms, which is the same trend evidenced for the single outlier 

situation. This suggests that for single and region outliers, SLOM perform relatively well on all 

decision thresholds with the exception of decision thresholds that achieve high sensitivity.  
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Figure 5.14: PAUC 80% TPR at region outlier size 2 over 20 simulated datasets 

 

 

Figure 5.15: PAUC 80% TPR at region outlier size 5 over 20 simulated datasets 
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Spatial and Median. This is surprisingly unexpected given that the performance gap between 

these algorithms is approximately less than 2% for detecting region outliers of size 2. As a 

result, AvgDiff is able to obtain the lowest FPR when obtaining 80% TPR for all region outliers, 

as compared to other algorithms, and the performance gap increases with increasing region 

outlier size.  

Figure 5.16 provides the variation of the PAUC performances from 80% TPR for detecting region 

outliers of size 2. Similar to the single outlier situation, SLOM obtains the highest variation 

across all NN settings, approximately five times the variation evidenced in all other algorithms. 

This further proves SLOM is a very inconsistent algorithm at obtaining high sensitivity 

performance not only for situations of single outlier but also of region outliers. Other than 

SLOM, all algorithms obtain similar variation.  

 

Figure 5.16: Standard deviation of PAUC 80% TPR at region outlier size 2 over 20 simulated datasets 

 

Figure 5.17 depicts the standard deviation for the algorithms at PAUC 80% TPR for region 

outliers of size 5. Again, SLOM obtain considerable higher variation than other algorithms. 

However, the standard deviation is variable across NN settings, with the lowest value at 12 NN. 
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Notice that in Figure 5.17, PAUC for SLOM is lowest at NN equals 12, which may suggest that 

SLOM over-fits the data at this neighbourhood configuration as it obtains lowest performance 

and lowest variation at the same time.   

 

Figure 5.17: Standard deviation of PAUC 80% TPR at region outlier size 5 over 20 simulated datasets 

 

5.3.4. Partial area under ROC curve at 5% false positive rate 

Figure 5.18 shows the PAUC at 5% FPR performance at 8 NN. Similar to its AUC and PAUC TPR 

counterpart, all algorithms drop performance as the region outlier size increases. Note that, 

PAUC of Local drops to almost zero when detecting group outliers of size 5. This suggests that 

Local detects only 95% of inliers without detecting any spatial outliers. And similar to previous 

evidence, Spatial and Median, and Weighted and SOTest obtain identical PAUC trend. The 

difference here however, is that SLOM obtains much better PAUC at FPR performance than 

PAUC at TPR. SLOM is third only to Spatial and Median.  
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Figure 5.18: PAUC 5% FPR sensitivity at 8 NN over 20 simulated datasets 

 

The results in Figure 5.19 depict the same similarities as the AUC and PAUC TPR performance. 

The only difference is that AvgDiff obtains the third highest PAUC FPR behind Spatial and 

Median, whereas AvgDiff obtained the highest overall AUC and PAUC TPR performance. This 

suggests that AvgDiff performs best on all decision thresholds with the exception of decision 

thresholds that achieve 5% false positive rate or less. Notice that Local and IDWP are 

significantly inferior to all other algorithms.  Additionally, SLOM and Kriging are very similar. 

Not of much surprise, the performances of all algorithms in Figure 5.20 resemble the PAUC FPR 

performances at region outlier of size 2. The main distinction is the SLOM and Kriging are no 

longer similar. Kriging stabilizes by obtaining a PAUC of 1.0%, while SLOM continues to increase.  
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Figure 5.19: PAUC 5% FPR at region outlier size 2 over 20 simulated datasets 

 

 

Figure 5.20: PAUC 5% FPR at region outlier size 5 over 20 simulated datasets 
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Figure 5.21 provides the variation of the PAUC performances at 5% FPR for detecting region 

outliers of size 2. Not surprisinglyg, Kriging obtains the highest variability due to the inability to 

correctly to compute the nugget semivariogram because of the presence of region outliers. 

However, the range of the standard deviation quite low about less than 0.16%, which is not an 

indication that the algorithm is significantly inconsistent. Besides Kriging, all spatial 

autocorrelation algorithms obtain lower standard deviation than algorithms  that do not 

account for spatial autocorrelation, except Local for the lower range of NN.   

 

Figure 5.21: Standard deviation of PAUC 5% FPR at region outlier size 2 over 20 simulated datasets 

 

Figure 5.22 shows the PAUC 5% FPR performance variation for detecting region outliers of size 

5. Local obtains lowest standard deviation among all NN settings, while Scatter obtains 

relatively high variation, and Kriging obtains the highest variation. However, similar to the 

single outlier scenario, the range of the variation, about 0.16%, is not substantial to suggest 

significant performance inconsistency among NN settings.  
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Figure 5.22: Standard deviation of PAUC 5% FPR at region outlier size 5 over 20 simulated datasets 

 

5.4. Neighbourhood Size Stability 

The test results for the Shapiro-Wilk are shown in Appendix A. Most of the p-values are higher 

than 0.2, which suggest that there is no statistical evidence to reject the null hypothesis that 

the ROC samples for each NN setting come from a normally-distributed population. However, 

SLOM obtains p-values of less than 0.01 for few NN settings which suggest that normality 

assumption may be broken only for SLOM. To be more conservative, an alternative test, the 

Kruskal-Wallis rank sum test is implemented as well (Table 5.3). 

In terms of the Brown-Forsythe test (Appendix B), there is no evidence for non-equal variances 

among NN groups (all p-values are not significant at a 5% critical level). Therefore, all statistical 

assumptions precluding the comparisons of multiple means are met.   
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Table 5.3: Point outlier test for neighbourhood stability. Only reported test statistics that are not 

significant at a 1% significance level 

 Spatial Median Local Scatter SLOM Weighted  IDWP Kriging AvgDiff SOTest 

 ANOVA Test 
AUC      0.03  0.32 0.01  
TPR     0.19 0.26 0.03 0.84 0.13 0.97 
FPR      0.01  0.31   

 Kruskal-Wallis Rank Sum Test 
AUC      0.06  0.47 0.02 0.33 
TPR     0.16 0.47 0.03 0.93 0.11 0.97 
FPR      0.01  0.26   

 

 

For AUC, all spatial outlier detection algorithms that account for spatial autocorrelation except 

IDWP and SOTest were not significant at a 1% level, which suggests that means and/or medians 

of ROC performance from the several NN groups are statistically equal. This implies that varying 

the NN parameter for the calculation of       does not have a significant effect on the 

algorithm AUC performance (see Table 5.3).  

In regards to PAUC 80% TPR, there is more consistency among performance within different 

nearest neighbour aggregation. Unlike the neighbourhood stability results for AUC, 

performance for IDWP and SLOM are statistically stable. SLOM is resistant to changes in the 

neighbourhood definition at a 10% significant level. However, its TPR performance is 

significantly low compared to all others, which may imply that SLOM obtains a very high and 

relatively constant number of false positives at any given user-specified neighbourhood.   

For PAUC at 5% FPR, only Weighted and Kriging are stable across the tested neighbourhood 

definitions at 1% significance. Overall, there is indication that most spatial autocorrelation 

algorithms, especially Kriging, are capable of maintaining high performance, whether obtaining 

high true positive and/or low false positive rate, at most given user-specified neighbourhood.     

In terms of performance stability with respect to neighbourhood size for situations of region 

outlier (table not shown), test statistics of IDWP for AUC, PAUC TPR, and PAUC FPR is not 
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significant at a 5% level. All other algorithms were significant. That is, IDWP is the lone 

algorithm in which altering its nearest neighbour parameter does not influence performance 

significantly. 

    

5.5. Algorithm Performance Similarity 

Given that there are ten algorithms, nine NN settings, and three ROC performance measures, 

which give 1,215 totals number of Wilcoxon tests, the best approach at summarizing all tests is 

by way of counting the number of times the test statistic is greater than a particular significance 

level. If the p-value is greater than a significance level, then the null hypothesis is retained, 

meaning that the difference between population means is expected to be zero, which implies 

that the algorithm performance is statistically similar. However, given that the Wilcoxon is a 

two-tailed test, if the test statistics are less than the significant level, conclusions cannot be 

made regarding which of the two algorithms performs better.  

Table 5.4: Number of non-significant Wilcoxon tests at 1% significance out of 27 tests performed for 

each combination of algorithm for point outlier 

 
Spatial Median Local Scatter SLOM Weighted IDWP Krige AvgDiff 
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 AvgDiff 1 5 
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SOTest 1 4 
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5 11 
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Table 5.4 summarizes the Wilcoxon tests for all nine NN settings and three ROC performance 

measures a 1% significant levels. Each number in the table represents the number of times the 

p-value is greater than the significance level, or the number of times the difference of means 

are within the specified confidence level. For example, Table 5.4 shows that the Wilcoxon tests 

between Kriging and Weighted 21 times a p-value greater than 0.01 was obtained, or 21 times 

that the difference of means between Kriging and Weighted is within the 99% confidence 

interval. The total number of possible counts is 27 given that there are 9 NN settings and 3 ROC 

performance measures. 

As evidence in Table 5.4, there is strong evidence that the performance of Kriging and 

Weighted are similar across the NN settings. There is also some evidence that SOTest and 

AvgDiff, SLOM and Scatter, and SOTest and Weighted are statistically similar. In the case of 

Spatial and Median, both obtain a few matches with spatial autocorrelation algorithms, which 

indicate performance similarities at specific NN settings. This is evidenced in the sensitivity 

analysis in Section 5.2.2, Spatial and Median are most similar to spatial autocorrelation 

algorithms when NN is small However, as NN increases, the performance of Spatial and Median 

drop substantially while performance of spatial autocorrelation algorithms remains stable.      

The algorithm performance similarity for region outliers is shown in Table 5.5. Now, the total 

number of possible counts is 48 as there are 3 ROC measures (AUC, PAUC TPR, and PAUC FPR), 

8 NN settings, and 2 region outlier settings (region 2 and region 5). Spatial and Median perform 

identical, along with Weighted and SOTest. Other than this, there is moderate similarity 

between Krige and Weighted, and SOTest and Krige. Note that algorithms considering spatial 

autocorrelation differ statistically to algorithms without considering spatial autocorrelation 

(Table 5.4). However, in terms of region outliers (Table 5.5), there is a mix of similarities 

between algorithms considering spatial autocorrelation to algorithms without spatial 

autocorrelation. SLOM and Local are similar to Krige, SOTest, and Weighted. Such trend 

suggests that algorithms considering spatial autocorrelation are most suitable for detecting 

point outliers, while spatial autocorrelation algorithms work best for region outliers.  
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Table 5.5: Number of non-significant Wilcoxon tests at 1% significance out of 48 tests performed for 

each combination of algorithm for region outlier 

 
Spatial Median Local Scatter SLOM Weighted IDWP Krige AvgDiff 

Spatial - 
        Median 48 - 

       Local 
  

- 
      Scatter 

  
4 - 

     SLOM 8 8 1 
 

- 
    Weighted 

  
3 8 5 - 

   IDWP 
  

2 
 

3 
 

- 
  Krige 1 1 4 3 9 16 

 
- 

 AvgDiff 3 3 
  

3 
  

3 - 

SOTest 
  

3 8 5 48 
 

16 
  

 

5.6. Effects of Spatial Outliers on GLS Regression 

Table 5.6 shows the results of the bias in coefficient estimation by incorporating the different 

methods of outlier removal (recall Equation 1, pg. 47).  

Unlike algorithm performance depicted in the ROC analysis that consisted of 20 equiprobable 

simulations, here 100 simulations are conducted. Because coefficient estimation depends more 

on the properties of each simulated field, 20 simulations may not be enough to obtain a reliable 

coefficient estimate. For instance, in Sections 5.2 and 5.3, it has been determined that the 

performance of most algorithms is consistent at different detection rates; however algorithm 

performance is less dependent on model coefficients. Thus, a need exist to obtain coefficient 

estimates from more trials. The approach is to simulate additional 80 on-farm trials with the 

original simulation parameters. Then, for each of the 100 simulated fields, one thousand 

random observations are contaminated by introducing an error; 500 random observations are 

point outliers while the remaining 500 are random region outliers. Each spatial algorithm is 

applied to the simulations, and the top 5% are removed for each algorithm before spatially 
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aggregating the dataset. Finally, the geostatistical regression approach is applied to estimate 

coefficients.    

An assumption must be made to effectively compare the coefficients . First, because unknown 

effects have been introduced to the simulations by spatial aggregation, it is assumed that the 

coefficients in Clean are the initial input coefficients. For example,   is initially set to 3 before 

spatial aggregation. After spatial aggregation,   is unknown, and has to be estimated. And the 

closest estimate to    is Clean as it does not contain any spatial outliers prior to the spatial 

regression analysis 

Table 5.6 indicates the capabilities of each spatial outlier removal method to effectively 

estimate coefficients. Methods Raw, Global, and Random produce unacceptable estimations, 

each obtaining at least four significantly different coefficient estimates out of the total seven. 

Particularly, Global obtains five unacceptable estimates, which leads to the conclusion that the 

choice of utilizing global outlier tests to detect spatial outliers will lead to making totally wrong 

estimates of agricultural fields. Random produces better estimates than Global although 1,000 

in-lying observations were incorrectly removed. This observed contrast is explained by the fact 

that Global eliminates all extreme observations which have a significant effect on the statistics 

of each simulation, and in the case of Random, the removed in-lying observations may not have 

as significant impact as evidenced in Global. For example, Global’s estimated range of 

autocorrelation of 137 m is significantly lower than the true value of 150 m.  

Local, Scatter, and SLOM are also incapable algorithms, as each obtain three unacceptable 

estimates.  Spatial, Median, and three spatial autocorrelation techniques, Weighted, IDWP, and 

SOTest each obtain two unacceptable estimates. Lastly, Kriging and AvgDiff only produce one 

unacceptable estimate. Note that almost all techniques are incapable of correctly estimating 

the farmer’s innovative treatment 1 (  ) and the nugget (the nugget-to-sill ratio), which may 

suggest that the spatial aggregation introduced somewhat substantial unknown effects, and/or 

the lack of simulated iterations.    
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Table 5.7 is a supplementary table to Table 5.6. It depicts the empirical Type I errors of the t-

tests on coefficients at the 5% significance level. Type I error (coefficient     , and     ) is 

an important assessment criterion for decision-making. Table 5.6 demonstrate the percentage, 

or the number of times the Type I error occurred to each technique given a 5% significance 

level. For instance, in Global, the frequency of Type I error for     and    are 12% and 25% 

respectively. Given that 100 simulations were performed and tested at 5% significance level, 

Global technique would have led farmers to believe that environmental variable 2 (  ) has a 

significant effect on crop yield (i.e.     ) in 12 out of 100 simulations, while Global depicts 

innovative treatment 2 (  ), which does not influence crop (    ), having an effect on yield 

in 29 of the total 100 simulations.       

Evidence in Table 5.7 reinforce the idea that in a decision-making context, Raw, Global, and 

Random produce relatively elevated Type I errors, followed by Scatter, Local, and SLOM. The 

remaining techniques obtain similar Type I error frequencies to Clean without evidence of 

superiority. However, given that the high frequency of Type I errors suggests again, the lack of 

simulations and/or the effects of spatial aggregation and/or the choice of spatial model may 

have caused the Type I error divergence. That is, given that the Type I error is tested at a 5% 

level; the frequency of errors should converge to 5%, which is not the case as evidenced in 

Table 5.6.    
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Table 5.6: Coefficient Estimation. Raw indicates spatial aggregation and spatial regression model 

performed without any prior spatial outlier removal. Clean indicates all spatial outliers, 1,000 or 5% of 

the dataset, were correctly removed. Global indicates the removal of the 1,000 most extreme 

observations via Grubbs’ Test. Random is the incorrect removal of spatial outliers by randomly picking 

in-lying observations instead of actual true spatial outliers. The numbers indicate the mean value over 

the 100 simulations, while the ones in parenthesis refer to the standard error. Numbers in bold indicate 

that they are significantly different from the true coefficient (coefficient in Clean) by way of a paired t-

test at the 5% critical level. 

                           * 

Clean 76.06(0.50) 5.77(0.64) 0.14(0.83) 2.93(0.06) -0.02(0.06) 150.22(3.94) 0.04(0.00) 

Raw 76.16(0.57) 5.66(0.74) -0.06(1.00) 2.88(0.05) -0.03(0.05) 150.62(3.23) 0.03(0.00) 
Global 76.45(0.42) 4.77(0.55) 0.02(0.67) 2.59(0.04) -0.03(0.04) 137.53(2.81) 0.07(0.00) 
Random 75.97(0.48) 5.62(0.62) -0.13(0.82) 2.88(0.06) -0.02(0.06) 151.03(3.90) 0.04(0.00) 
Spatial  76.11(0.50) 5.82(0.65) -0.04(0.83) 2.88(0.06) -0.01(0.06) 150.65(3.84) 0.04(0.00) 

Median 76.14(0.50) 5.71(0.64) -0.03(0.85) 2.81(0.06) -0.02(0.06) 150.88(3.95) 0.03(0.00) 
Local 76.05(0.51) 5.85(0.66) 0.11(0.87) 2.86(0.06) -0.02(0.06) 150.65(3.95) 0.03(0.00) 
Scatter 76.02(0.49) 5.88(0.65) 0.17(0.84) 2.82(0.06) -0.02(0.06) 150.90(3.87) 0.03(0.00) 

SLOM 76.29(0.48) 5.62(0.61) -0.35(0.79) 2.95(0.06) -0.02(0.06) 150.66(3.96) 0.05(0.00) 
Weighted 76.08(0.51) 5.77(0.66) 0.08(0.85) 2.86(0.06) -0.02(0.06) 150.50(3.99) 0.03(0.00) 
IDWP 76.09(0.50) 5.78(0.65) 0.05(0.85) 2.86(0.06) -0.01(0.06) 150.77(3.91) 0.03(0.00) 
Krige 76.09(0.45) 5.75(0.59) 0.08(0.77) 2.95(0.06) -0.02(0.06) 150.67(3.89) 0.04(0.00) 

AvgDiff 76.04(0.49) 5.84(0.63) 0.13(0.83) 2.85(0.06) -0.01(0.06) 150.45(3.89) 0.04(0.00) 
SOTest 76.24(0.50) 5.77(0.64) -0.04(0.84) 2.87(0.06) -0.03(0.05) 150.84(3.90) 0.04(0.00) 

True values  76.00 6.00 0.00 3.00 0.00 150.00 0.05 

 

* –        refers to the nugget effect, the nugget-to-sil l  ratio 

 

Table 5.7: Frequency of Type I Errors 

            ( ) 

       

Clean 12 25 

Raw 15 26 
Global 16 29 
Random 15 28 
Spatial  13 26 

Median 13 26 
Local 15 28 
Scatter 15 29 

SLOM 16 29 
Weighted 13 26 
IDWP 13 28 
Krige 13 26 

AvgDiff 13 26 
SOTest 13 26 
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The parallel coordinates plot for all outlier removal techniques is shown in Figure 5.23. The 

parallel coordinates plot is a visualization tool to explore high-dimensional data with multiple 

variables. The parallel lines/axes represent each dimensional space, in this case, the 14 outlier 

removal techniques; the colours represent each variable, in this case, the four coefficients. The 

y-axis depicts the coefficient value, and each line represents a single simulation result.  Sharp 

angles in a line or line-crossing imply that the coefficient estimate is substantially incorrect for 

that particular parallel line (outlier technique). Similarly, a straight line along all parallel lines 

indicates that all techniques obtained similar or identical estimates. Figure 5.23 mostly depicts 

Global as having sharp angles and line-crossings which indicates that most of its coefficient 

estimates are far different that all other techniques. Local, Scatter, SLOM, and IDWP are 

depicted to have few sharp angles, but other than these, the plot does not depict substantial 

sharp angles or line-crossings. This indicates that no clear evidence exists about which outlier 

techniques are most successful in coefficient estimation and subsequent decision-making.  

 

Figure 5.23: Parallel Coordinates Plot of Coefficients 

1:Raw, 2:Global, 3:Random, 4:Spatial, 5:Median, 6:Local,7:Scatter, 8:SLOM, 9:Weighted, 10:IDWP  11:Krige, 
12:AvgDiff,13:SOTest, 14:Clean   
Red:   , Black:   , Green:   , Blue:     
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5.7. Discussion of Findings 

Previous work in spatial outlier detection overlooks the quantitative performance of detection 

algorithms and lacks the comparison of the numerous detection algorithms proposed by 

various authors. That is, the studies on spatial outlier detection algorithm are not as 

comprehensive given that comparisons are made between few algorithms, usually three or 

four. In this work, the objective is to compare multiple spatial outlier detection algorithms in 

hopes to determine their performance and the conditions in which these algorithms perform 

best and worst. However, as comprehensive as this study can be, the weakness remains in the 

fact that no real-life dataset is utilized to conduct the analysis, which may limit the results to a 

limited range of outcomes. The main reason at rejecting the usage of real-life datasets is that 

the assessment of spatial outlier detection algorithm performance will be flawed as  all spatial 

outliers are not known in advance.  Identifying all spatial outliers in a real-life dataset is likely 

impossible since natural variability can introduce confusion. Even if the possibility exists for 

identifying all spatial outliers, the time requirement for this feat would be substantial. Thus, 

having a simulated dataset with known spatial outliers seems the most feasible approach at 

determining spatial outlier detection algorithm performance.  

On another note, although the sensibility of ROC performance measures and variation is 

studied, the sensibility of the error term added to the simulated dataset in relation to the ROC 

measures is excluded from analysis. Even though not reported, it is found the higher value 

added (or subtracted) to the original yield values, the better the ROC values (AUC, PAUC TPR, 

PAUC FPR) for all algorithms. For example, AUC for Spatial is on average 92% for point outlier 

with errors having a mean value of 7 bu/acre. At a mean of 3.5 bu/acre, Spatial obtains about 

88% AUC. This omission is due to the fact that varying the error term affects equally all 

algorithms in terms of their ROC performance, which makes sense because no algorithm should 

have a special association with the value of the error; they should instead have an association 

with the location of the error in the spatial dataset, as evidenced. For instance, AvgDiff is 
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considerably effective in detecting spatial outliers clustered together. Similarly, although not in 

the analysis, the change of TPR and FPR threshold for PAUC analysis affects equally a ll spatial 

outlier algorithms. Keeping these considerations in mind, the following section provides a 

technical discussion of the results.        

Shekhar et al. (2003) introduces Spatial and Scatter, but do not to provide evidence of 

algorithm performance. Similarly, Kou et al. (2007) compares Spatial and Scatter against a 

Graph-Based approach, but do not provide information about the performances of Spatial and 

Scatter. In this work, results suggest Spatial is a much better spatial outlier detection algorithm 

than Scatter, as Spatial obtains higher overall ROC measures (AUC, PAUC TPR, and PAUC FPR), 

lower ROC measure variation, lower number of significantly different coefficients, and lower 

number of Type I errors (Table 5.7). Scatter obtains poorer ROC performance most probably 

because it requires the estimation of slope,  , and intercept,  , both which are sensitive to 

outliers, and masking and swamping effects. Thus, it can be generalized that spatial outlier 

detection algorithm s with more operations, particularly involving operations using the mean, 

will most likely be less efficient in detecting spatial outliers. 

Lu et al. (2003) are the first to compare the performance of spatial outlier algorithms  as they 

evaluated Median and Spatial, and concluded Median performed better because it detected 

the top 10 spatial outliers while Spatial miss-detected one outlier. Similarly, Wang et al. (2004) 

and Chen et al. (2008) confirm Median is a more robust spatial detection algorithm than Spatial 

because Spatial falsely judged spatial objects as outliers in their study. Both studies conclude 

Median is effective in reducing the risk of falsely identifying regular spatial points as outliers, 

and this work confirms Median a superior spatial outlier detection algorithm than Spatial. 

However, this is true only for point outlier situations. For region outlier situations, with the 

exception of this work, no study has been conducted to compare Median against Spatial.   

For point outlier situations, Median is statistically superior to Spatial in all ROC aspects. Median 

computes       with the        and standardizes       with        and    . Thus, effects 
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of masking and swamping are more properly suppressed when       is computed with        

than the     . However, in terms of region outlier situation, Median and Spatial obtain 

identical AUC, PAUC TPR, and PAUC FPR. This suggests that both algorithms obtain identical 

outlier scores. This may be accredited to the low variance in       due to absent extreme 

values. A spatial neighbourhood that contains a region outlier will be of low variance because 

the outliers tend to have similar values. Therefore,       will be identical or very similar when 

computed either by      or       . Overall, Spatial and Median are very similar; Median is 

slightly superior, but both obtain the same results in terms of coefficient estimation (Table 5.8), 

suggesting that the slight superiority in performance is not of much importance for site-specific 

decision-making.  

Table 5.8: Summary of Results. Overall Performance is calculated by standardizing all the AUC, PAUC 

TPR, and PAUC FPR values to percentage up to 100% and a nested average approach is applied in order 

to avoid weighting the two region outlier situations (region outlier 2 and region outlier 5)  in the 

calculation. Average Variation refers to the average standard deviation of all ROC values  that were 

tested.  

 ROC Curve Coefficient Estimation 

Algorithm Overall  

Performance 

Average 

Variation 

Average 

Performance 
 Stability 

Number of  

Significant 
Coefficients  

Combined 

Type I Errors 

AvgDiff 71.8 0.26 0.01 1 39 

IDWP 58.3 0.30 0.53 2 41 

Kriging 65.1 0.62 0.18 1 39 

Local 55.4 0.30 0.00 3 43 

Median 68.4 0.30 0.00 2 39 

Scatter 60.3 0.42 0.00 3 44 
SLOM 55.3 1.14 0.02 3 45 

Spatial 67.3 0.30 0.00 2 39 

SOTest 65.5 0.28 0.14 2 39 

Weighted 64.8 0.29 0.06 2 39 

 

Chawla and Sun (2006) compare SLOM and Spatial, and conclude SLOM is sharper in detecting 

spatial outliers. However, their performance lacked quantitative evidence. According to the 

results in this work, Spatial is a better spatial outlier algorithm than SLOM in terms of higher 

overall ROC performance, lower variation in ROC measures, and less number of significantly 

different coefficients and Type I errors. Similar to SLOM, Local is a poor spatial outlier 
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algorithm. Both SLOM and Local are the worst spatial outlier detection algorithms, as they 

obtain the lowest overall ROC performance, and lowest correct coefficient estimates.  

Unlike all other spatial outlier algorithms, SLOM and Local require the calculation of two values 

that are influenced by the neighbourhood structure of the dataset. SLOM is the product 

between a difference function and an oscillation parameter while Local is a difference function 

divided by the neighbourhood’s standard deviation. There may be instances where the one of 

those two components may not be able to clearly distinguish between spatial outliers. SLOM’s 

oscillation parameter and Local standard deviation may add additional error to the outlier score 

computation. In the case of SLOM, a high oscillation parameter multiplied by a low difference 

score will produce a similar score to a low oscillation parameter multiplied with a high 

difference value. 

A unique feature of SLOM is that it uses a deterministic value to capture the neighbourhood 

variation, which is essentially based on a count of neighbouring observations which are larger 

or smaller than that of the observation (whichever returns the more neighbours) divided by the 

average of the neighbour’s difference value. Changes in the number of neighbour count 

substantially affect the resulting computation of the outlier score (Figure 5.24).  

In Figure 5.24(a), the count in SLOM’s oscillation parameter is 4 since four observations are 

higher and four are lower than the value at (2,2). In Figure 5.24(b), three observations (1,1), 

(2,1), and (3,1) are changed so their value are a bit larger but very similar to (2,2). In this case, 

there are six neighbours larger and two neighbours smaller than (2,2). Thus, the oscillation 

parameter is calculated with six (the highest among the two counts), producing a value of 0.49, 

which is larger than in Figure 5.24(a). However, the local standard deviation for both Figure 

5.24(a) and 5.24(b) remain unchanged, suggesting that counting the number of nearest 

neighbours may not be a good indicator for representing the neighbourhood variation in point 

outlier situations. On the other hand, in region outliers, if (2,2), (1,1), (2,1), and (3,1) is defined 
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as a region outlier because of similar values, the oscillation parameter at (2,2) would correctly 

incorporate the region neighbourhood because of their similarities.  

Xue et al. (2008) argue SLOM is more biased in detecting global outliers. However, it seems 

SLOM is a much more appropriate algorithm for region outlier, although it was proposed to 

detect point outliers in the first place (Chawla and Sun, 2006). This is shown inSection 5.3 

where SLOM performs much better in region outlier situations than in point outlier situations 

(Section 5.2). However, SLOM obtains the highest performance variation, perhaps due to its 

deterministic value representing neighbourhood variation, which suggests that it does not 

perform consistently on different dataset.        

 
Figure 5.24(a)  
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Figure 5.24(b):  
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Figure 5.24: Comparing SLOM and Local 

On the other hand, neighbourhood standard deviation may be responsible for the Local’s 

inferior AUC, PAUC TPR, and PAUC FPR performance, especially for region outliers. For 

detecting region outliers,       for true outliers will most likely be a small value because       is 

masked by several region outliers in the neighbourhood. However, Local’s         will be also 

small value since small variation occurs in neighbourhoods with region outliers. As a result, the 

detection of spatial outliers for Local will not truly reflect region outliers.  
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Kou et al. (2006) conclude Weighted and AvgDiff are better spatial outlier detection algorithms 

than Spatial. However, in this work, this claim is only applicable to point outlier situations. For 

region outlier detection, Spatial is superior to Weighted given that Weighted assigns more 

weight to adjacent neighbours, which can be region outliers . SOTest and Weighted are very 

similar algorithms when applied to point outliers, but identical when applied to region outliers. 

In addition, Weighted and IDWP obtained results that are relatively distinct, as Weighted and 

IDWP are statistically different (Table 5.4 & 5.5). This is particularly revealing as Weighted and 

IDWP are similar algorithms with the only difference that the distance decay function of IDWP 

is twice the value in Weighted. IDWP  has a quadratic distance decay function, which allocates 

more importance to closer neighbours for the computation of       than Weighted’s linear 

distance decay function.  

In this regard, masking problems are exacerbated in IDWP when spatial outliers are present or 

when high natural variability is present. For example, the nearest observations to each spatial 

outliers would give more importance to the spatial outliers in the calculation of      , resulting 

in erroneous estimated neighbourhood average value. This is evidenced in the region outlier 

situations where Weighted substantially outperforms IDWP in all ROC performance measures. 

Similarly, a noisy local neighbourhood where substantial variability exists would introduce more 

confusion to outlier scores in IDWP than in Weighted. This is particularly evidenced in region 

outlier scenarios where IDWP obtains significantly inferior performance than Weighted, which 

suggest that IDWP is most susceptible to masking effects. Therefore, the choice of the power 

parameter for the distance decay function should be kept to a minimum value.  

In point outlier scenario, Kriging obtains better ROC performance than Weighted and IDWP, 

although not significantly higher than Weighted, by being able to model the changes in spatial 

autocorrelation. Additionally, Kriging obtains a higher test statistic for the ANOVA and Kruskall-

Wallis, implying higher neighbourhood stability among all other algorithms. Kriging is unique in 

the calculation of distance weights, as it depends on the autocorrelation structure set by the 

semivariogram. For instance, neighbours which are far away and not autocorrelated obtain 
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negative weights. In contrast, algorithms Weighted, AvgDiff, IDWP, and SOTest incorporate 

spatial autocorrelation by assigning positive weights to all neighbours. Thus, neighbours which 

are not autocorrelated will obtain a minor but positive weight, and will add an error to the 

computation of      .  

In addition, unlike all other spatial algorithms, Kriging requires additional input parameters 

from the semivariogram. Kriging has to first compute the empirical semivariogram and then 

model it to obtain the nugget, sill, and range for the computation of Kriging weights. There is an 

additional uncertainty about selecting the correct semivariogram model and semivariogram 

parameters which can result in reduced performance (Table 5.9).  

Table 5.9: Kriging ROC performance measures at 8 NN 

 
Single Outlier Region Outlier (size 5) 

Model AUC (%) PAUC TPR (%) PAUC FPR (%) AUC (%) PAUC TPR (%) PAUC FPR (%) 

Spherical  94.5 (0.08) 15.0 (0.02) 3.3 (0.02) 69.3 (0.07) 3.9 (0.08) 0.7 (0.02) 

Gaussian 94.2 (0.08) 14.7 (0.02) 3.2 (0.02) 73.3 (0.14) 4.9 (0.05) 0.9 (0.02) 

Exponential  93.4 (0.19) 14.2 (0.04) 3.1 (0.04) 65.6 (0.11) 3.3 (0.08)  0.7 (0.02) 

Power 93.4 (0.10) 14.2 (0.09) 3.1 (0.01) 62.9 (0.15) 3.0 (0.04) 0.6 (0.03) 
sss  

Note: reported mean and, in parenthesis, standard error for the 20 simulated datasets 

 

Although all ROC measures are very similar for single outliers, each semivariogram model 

obtains statistically different performance measures given the low standard error value 

(Table5.9). This is suggestive the choice of NN for Kriging is irrelevant as long as the correct 

semivariogram model is selected. In addition, in region outlier situations, the region outliers 

introduce error to the computation of the semviariogram parameters, particularly the nugget, 

which in turn cause Kriging to be a very inconsistent algorithm as evidenced in the high 

standard deviation of AUC, PAUC TPR, and PAUC FPR.   

Another major drawback of utilizing Kriging is its computational time complexity (Figure 5.27). 

Each algorithm was run on a DELL laptop equipped with an Intel Core i7 820 QM at 1.6 GHz and 
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4 GB of RAM. The procedures taken to determine computation time without bias was to run a 

single algorithm, turn the laptop off when completed, wait a couple of minutes, re-boot the 

laptop, and run the subsequent algorithm.  

Spatial and Scatter obtain the lowest computation time because they are mostly composed of 

basic operations. As predicted, Median is more complex than Spatial as it takes about twice the 

computation time given that        and     are more complex operations than      and 

                  . Also, spatial autocorrelation algorithms are approximately twice the 

computation time of Spatial mainly because of their computation of distance weight for each 

observation. Local and SLOM take about three times more than Spatial and Scatter because 

they both have to calculate two local statistics: local centre and local spread for each 

observation’s neighbourhood. And the computation time for Kriging is about nine times more 

than all other spatial autocorrelation algorithms because of the combination of computing the 

empirical and model semivariogram, and for all observations, matrix multiplication and matrix 

inversion to calculate weights, and of course, calculating the neighbourhood function.  

 

Figure 5.25: Computing time of spatial outlier algorithms 
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Thus, according to the results summarized in Table 5.7, the best algorithm is AvgDiff. For single 

outlier scenario, AvgDiff obtains the highest AUC, PAUC TPR, and PAUC FPR at most NN settings 

and lowest variation for all ROC measures. For region outlier scenario, it obtains the lowest 

performance decay for AUC and PAUC TPR, highest AUC and PAUC TPR performance at all NN 

and region outlier size settings. Additionally, AvgDiff obtains a relatively fast computation time. 

Two technical reasons can be formulated on why AvgDiff is the better algorithm.  

AvgDiff compares an observation with each of its neighbours on a one-by-one basis and then 

averaging the comparisons, whereas all other algorithms start by averaging the neighbourhood 

value and then making comparisons with the average neighbourhood value. This is 

advantageous because the averaging of neighbourhood values before comparison may conceal 

their variance (Kou et al., 2006). For example, if one observation   has a value of 50, with two 

neighbours of value 0 and 100 that are spaced evenly so distance weight will be 0.5 and 0.5, 

then Weighted’s      ( ) will be (      )  (        )    , and       ( ) will be 

       . However, 0 and 100 are quite different from 50. AvgDiff retains variance by first 

calculating the absolute differences,           and            , and then calculating 

the weighted average,       ( )   (       )  (       )     . Weighted’s      ( ) of 0 is 

quite different from AvgDiff’s      ( ) of 50. Thus, the first advantage of AvgDiff is its capability 

of properly adapting to the neighbourhood variance. When the neighbourhood variance is high, 

which may be accredited to masking and swamping, AvgDiff will reveal it, and when variance is 

low, AvgDiff will obtain the same or similar results as in Weighted.  

The second advantage evidenced in AvgDiff is that unlike all other algorithms, outlier scores are 

not normalized, which also allows the algorithm perform faster than other spatial 

autocorrelation algorithms. Since the difference between an observation and its neighbours are 

absolute, the resulting scores will not follow a normal distribution, thus normalization is not 

required (Kou et al., 2006). Normalization may add additional confusion to detecting spatial 

outliers since the distribution of       will contain outliers, so estimates of centre and spread 
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will be biased. Although the bias may not be substantial, the confusion that will be introduced 

to the scores will be substantial given the class disproportion between outlier and non-outlier.  

Next to AvgDiff in overall ROC performance is Median and Spatial (Table 5.7). Both are very 

influenced by the NN used to define the neighbourhood aggregate function. In detecting point 

outliers, ROC performance rapidly decays with increasing NN; however, in region outliers, ROC 

performance increases rapidly with increasing NN. Spatial outlier detection algorithms 

considering spatial autocorrelation, Kriging, SOTest, and Weighted, are the subsequent 

algorithms. The ROC performances of these three are not influenced by the change of NN; 

however, they cannot properly deal with region outliers because their neighbourhood 

aggregate function is computed by incorrectly assigning higher weights to adjacent outliers that 

are present in the spatial neighbourhood. Finally, Scatter, IDWP, SLOM, and Local are at the 

bottom four in overall performance. Scatter requires the estimating slope and intercept, both 

which are affected by spatial outliers. IDWP performs poorly especially for detecting region 

outliers because its power function assigns more weight to adjacent spatial outliers than other 

spatial autocorrelation algorithms. And, SLOM and Local have two local statistics that can 

introduce confusion to detecting spatial outliers.  

Differences in ROC performances can be attributed to the estimation of coefficients. The 

evidenced trend is that algorithms obtaining higher overall ROC performance for instance, 

AvgDiff, Spatial, Median, Krige, obtain better coefficient estimates, and lower Type I error. 

Similarly, lower performance algorithms such as SLOM and Local obtain poor coefficient 

estimates and higher Type I errors. As such, the level of correct decisions made based on the 

coefficients obtained through the GLS regression approach will be influenced by the spatial 

outlier detection algorithm chosen for pre-processing. Evidence suggests the possibility of 

classifying spatial outlier detection algorithm into four classes in terms of their decision-making 

effect: “poor decisions” (Random, Global, and Raw), ‘moderate decisions’ (Local, Scatter, & 

SLOM), “good decisions” (Spatial, Median, IDWP, Weighted, and SOTest), and “great decisions” 

(Kriging and AvgDiff). However, the difference in decision-making (i.e., coefficient estimates 
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and Type I errors) is not substantial between classes perhaps because of the effect of spatial 

aggregation or because each spatial outlier detection technique is tested with the same 

coefficient estimation approach. Investigating different coefficient estimation techniques may 

provide more depth to the assessment of spatial outlier detection techniques in site-specific 

decision-making. Overall, there are differences in coefficient estimates if data is pre-processed 

by removing global extremes versus removing spatial outliers. However, little difference exists 

regarding the choice of spatial outlier technique.  
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CHAPTER 6:                                              

CONCLUSIONS 

Chapter 6  
6.1. Summary 

This thesis has set out to investigate the random and systematic error-generating mechanisms 

that occur during the collection of crop yield data, the performance of detection techniques 

that are utilized to clean spatial yield datasets, and the effects of cleaned datasets  on site-

specific decision-making. To determine the correctness of spatial outlier techniques, a 

geostatistical simulation study was conducted to generate crop yield data that contains known 

spatial errors in advance. Given the known information about yield errors, the assessment of 

each spatial outlier technique is conducted as a binary classification exercise, treating each 

spatial technique as a classifier. Classifier performance was evaluated with the area and partial 

area under the ROC curve from 80% sensitivity and at 5% false positive rate. The value of each 

spatial outlier technique for statistical inference in GLS models was investigated with the bias in 

coefficient estimation of a spatial linear model that utilizes semivariogram parameters of OLS 

residuals as the spatial correlation structure for a generalized least-squares regression.         

The results indicate that in situations with point outliers, techniques which account for spatial 

autocorrelation are far superior to techniques that do not account for spatial autocorrelation in 

terms of higher sensitivity and lower false positive detection rate at any given decision 

threshold. Spatial autocorrelation techniques are also more resistant to changes in the 
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definition of spatial neighbourhood, and obtain more consistent performance results across 

different datasets than algorithms that do not account spatial autocorrelation. In terms of 

region outlier situations, the latter are superior in all performance aspects because they are less 

affected by masking and swamping effects.  

In terms of algorithms that do not account for spatial autcorrelation, Median obtains better and 

more consistent performance results because it is composed of robust, outlier-resistant 

operations that suppress masking and swamping effects. Scatter, SLOM, and Local on the other 

hand, perform poorly because of additional operations which add unnecessary confusion to the 

outlier scores. In particular, SLOM and Local require more computational requirements given 

their additional local neighbourhood operations. 

In terms of spatial autocorrelation techniques, AvgDiff obtains the best results because of its 

ability to reveal variance among neighbours and because its outlier scores do not require 

standardization. On the other hand, IDWP performs relatively poorly because masking and 

swamping have a substantial effect on the inverse distance weight calculation. Kriging, 

Weighted, and SOTest are closely similar to AvgDiff in performance. However, the computation 

of Kriging is significantly far more complex than all other algorithms, and it also requires further 

user-input semivariogram parameters. Overall, spatial autocorrelation techniques, especially 

techniques that assign more weight to closest observations such as IDWP and Kriging, obtain 

good performance on single outlier scenario but perform poorly in situations where region 

outliers are present.  

In terms of outlier removal for decision-making, all algorithms have led to different coefficient 

estimates, and therefore, distinct decisions for site-specific management. For instance, an 

incorrectly estimated coefficient would have led to a Type I error; suggsting that such 

coefficient significantly influences yield when in fact it does not, or a Type II error; suggesting 

that the coefficient is not significant when in fact it is. In both situations, farmers may have 

made investments to improve the wrong explanatory variable. 
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However, evidence suggests four distinct classes can be elaborated to classify algorithms in 

terms of their decision-making effect: ‘poor decisions’ (Random, Global, and Raw), ‘moderate 

decisions’ (Local, Scatter, & SLOM), ‘good decisions’ (Spatial, Median, IDWP, Weighted, and 

SOTest), and ‘great decisions’ (Kriging and AvgDiff).  

 

6.2. Implications 

Erroneous data and associated variability that result from inconsistent data collection practices 

can corrupt data analysis and produce poor decisions. The results outlined here will allow a 

producer to remove many of the harvest yield data points that are potentially problematic.  Not 

only the data mining algorithms are applicable for precision agriculture applications, their 

algorithms far exceed the common techniques used by the precision agriculture community. 

Three types of spatial algorithms have been utilized by the precision agriculture community for 

filtering yield datasets: Local, IDWP, and Kriging. The data mining community have developed 

the remaining algorithms. 

Both communities have overlooked instances of region outliers, and have only focused on 

single outlier scenarios. For instance, although SLOM obtains better performance in region 

outlier than single outlier situation, it was never proposed to detect the former. Yield surges are 

errors that occur randomly, unlikely to occur in the same areas on successive years. In this 

respect, yields surges are not only single outliers, but region outliers, as outliers can randomly 

be clustered together. In this regard, the precision agriculture techniques will most likely fail 

against determining true spatial outliers.  What has been determined here is the 

recommendation to use Averaged Difference algorithm for cleaning yield surges and all other 

spatial datasets that exhibits spatial dependence. Determining the optimal nearest neighbour 

parameter for the neighbourhood aggregate function is still non-trivial. As evidenced in the 

results, the recommendation is to specify a large number of nearest neighbours, large enough 
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to capture the region size as AvgDiff performance does not decrease substantially with a high 

nearest neighbour value. In addition to superior performance in scenarios of single and region 

outliers, and fast computational requirement, correctness of the majority of estimated 

coefficients is obtained with AvgDiff, suggesting it is the best method for pre-processing spatial 

outliers for crop yield data.     

 

6.3. Recommendations for Future Research 

Although this thesis has investigated computational effectiveness and efficiency of spatial 

outlier algorithms in precision agriculture yield datasets, there are still several topics that 

remain unexplored. The following section addresses the selected topics for further 

investigation. 

First, a need exists to investigate the computational efficiency and correctness  of iterative and 

spatial outlier algorithms: Iterative Z, Iterative R, and Graph-Based. These algorithms were 

specifically proposed to deal with masking and swamping problems, but their actual 

effectiveness remains unknown. These algorithms were left out of the analysis because they are 

extremely difficult to be evaluated with ROC performance measures as they are sequential 

outlier techniques based on inward procedures. They do not provide outlier scores, but classify 

the utmost outlier at each step. In other words, unlike the algorithms evaluate in here, they do 

not require a thresholding value, but a stopping criteria. As such, they are highly computational 

intensive.  

For example, given the same 5% outlier contamination rate in the dataset, Iterative Z and 

Iterative R are estimated to take approximately 1,000 longer than Spatial, about 17 hours for a 

single run. The computational time for Graph-Based is projected to be more intensive, 

depending on the complexity of the spatial neighbourhood definition. Similarly, iterative 

versions, inward or outward procedures, of other algorithms such as Median, Weighted, 
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AvgDiff, among others, can be postulated and investigated. Thus, the question that may be 

posed is “whether iterative spatial algorithms are more effective than non-iterative spatial 

algorithms in dealing with masking and swamping situations? If so, would the discrepancy in 

performance offset their high computational complexity?“    

Similarly, a need exists to explore graphical methods for spatial  outlier detection, mainly the 

Variogram Cloud and Moran Scatterplot. The Variogram Cloud is based on pair-wise 

comparisons, which would flag a spatial outlier and its spatial neighbour for all point clouds. 

Post-processing is required to separate and identify between the real spatial outlier and its 

neighbour. And Moran Scatterplot identifies spatial outliers as points that are situated in the 

upper left and lower right quadrants of the Moran graph, which indicates that the spatial 

association of these observations is dissimilar to their neighbourhood: they are either low 

values surrounded by high neighbours or vice versa. They key issue with graphical methods is 

the difficulty to use ROC performance measures because an additional step to summarize the 

visualization of spatial outliers into a scalable calculation is required.  

Second, multivariate spatial outlier algorithms remain unexplored. In many cases, outliers 

cannot be detected when multiple non-spatial attributes are considered independent. The 

standard approach has been to detect spatial outliers for a single attribute, independently of 

other attributes. Expert filters examine observation outlierness based on one attribute at a 

time; most commonly crop yield, combine velocity, and crop moisture.  

For multivariate attributes, the definition of spatial neighbourhood will remain the same, but 

the neighbourhood aggregate function, the comparison function, and the statistic test will have 

to be modified. Additionally, a distance function, such as the Mahalanobis  distance, has to be 

defined to convey the multivariate data space. And the correlation structure of the attributes 

has to be modelled as well.  

Another option for multivariate spatial outlier detection would be to create spatial versions of 

different data mining outlier algorithms. Distance-based, density-based, clustering-based, and 
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depth-based algorithms are non-parametric techniques that are capable of dealing with high 

dimensional datasets. The problem remains that they are not capable of detecting spatial 

outliers, but global outliers. The idea would be to utilize the spatial relationship among 

observations as an additional variable; however, the weight of each variable remains in 

question.  

Another obstacle is the approach to contaminating multiple attributes. The issue is the lack of 

knowledge about the relationship between multiple attributes, for example, the relationship 

between combine velocity, crop moisture, and crop yield. Most importantly, there is a lack of 

knowledge about the relationship between their outliers. In addition, spatial versions of data 

mining outlier algorithms will require additional input parameters, which translate to additional 

uncertainty and more complex sensitivity analyses. These new spatial algorithms will also imply 

more complex computational requirements, perhaps double the time required for the current 

spatial outlier algorithms. Thus, the question is “whether multivariate spatial outlier methods 

are be more convenient and more effective than analyzing spatial outliers on an attribute-by-

attribute basis?”  

Third, all algorithms for spatial outlier detection do not provide a natural critical value for the 

final classification of outliers. The final output of each algorithm is a list of all observations with 

the spatial outlier score. The user is required to decide upon a suitable threshold between the 

outlier and non-outlier space. This can be accomplished by selecting out a specified percentage 

of the outlier histogram, for example, selecting the top 5% observations with the highest outlier 

score, as in this case. The option to automatically select spatial outliers would be to implement 

histogram-based thresholding techniques. However, there is simply no knowledge about how 

many outliers are present in the dataset. Therefore, the detection of spatial outliers is very 

sensitive and dependent on the threshold value. Histogram thresholding remains an impending 

topic in outlier detection.  
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An innovative alternative to histogram thresholding involves an entropy-based approach at 

detecting the number of spatial outliers present in a spatial dataset (Liu et al., 2008). In 

information theory, entropy is a measure of uncertainty in a random variable (Liu et al., 2008). 

A dataset with more outlying observations has naturally higher entropy value than one with 

less outlier. The idea is to continually remove top spatial outliers until the entropy value of the 

dataset stabilizes, which would imply that most if not all spatial outliers have been removed 

from the dataset. Given the iterative nature however, this entropy-based method is surely 

computational intensive for large datasets.       

Lastly, further research is needed to develop scalable and numerically stable spatial algorithms 

with reduced computational requirements on large datasets. Currently, a single for loop for 

nearest neighbour search for large datasets require the usage of substantial physical memory. 

Processing each algorithm requires approximately 3.0 GB of physical memory on a Dell Intel 

Core i7 laptop with 4 GB of RAM. Furthermore, the geostatistical or the spatial autoregressive 

approach for estimating model coefficients would fail because of insufficient memory 

requirements that are currently ameliorated by spatially aggregating the data. 

A promising solution is to parallelize task elements to increase performance by reducing the 

amount of load over many processors. Parallel computing enables the simultaneous use of 

multiple computer resources to solve a computation task. The task is broken down into 

independent sub-tasks, and each sub-task is processed simultaneously on different central 

processor units (CPUs). However, this solution not only requires compatible and correct 

computer hardware structure but also well-designed software interface that matches user-end 

requirements. Solving these requirements would be a major undertaking given the diverse 

hardware and software configuration. For example, R CRAN lists about 57 packages for parallel 

computing, each with differing level of usability, performance, and acceptance. Consequently, 

migrating current spatial outlier algorithms to a parallelized version would be a challenging 

activity.     
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APPENDIX A:  

SHAPIRO-WILK TEST 

Chapter 7  
Analysis of variance test requires the observations, in this case the ROC performance scores, to 

be normally distributed. The Shapiro-Wilk test of normality tests whether the null hypothesis 

that a sample came from a normally distributed population (Shapiro & Wilk, 1965). The test 

statistic is as follows (Shapiro & Wilk, 1965): 

   
(∑     

 
   ) 

∑ (    ̅)
  

   

 

where    is the ith–smallest ROC value in the sample,  ̅ is the mean ROC value, and    is a 

constant given by: 

(       )  
     

(         )   
 

where     (       ) is a vector of the expected value of standard normal order statistics, 

and        is the corresponding      covariance matrix.  

If the test statistic,  , is small enough, the null hypothesis that the sample comes from a 

normally distributed population is rejected. Table 7.1 through 7.3 provides the test statistic for 

the Shapiro-Wilk test. 
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Table 7.1: p-values from AUC Shapiro-Wilk test  

  Groups: Number of Nearest Neighbours 
Algorithm 4 6 8 10 12 14 16 18 20 

Spatial 0.85 0.91 0.85 0.60 0.64 0.65 0.96 0.97 0.66 
Median 0.70 0.53 0.80 0.66 0.76 0.93 0.97 0.99 0.84 

Local 0.74 0.49 0.76 0.84 0.58 0.28 0.64 0.81 0.91 
Scatter 0.93 0.40 0.32 0.48 0.86 0.52 0.38 0.15 0.87 

SLOM 0.02 0.01 0.38 0.32 0.34 0.15 0.03 0.02 0.03 
Weighted 0.77 0.62 0.77 0.60 0.51 0.37 0.42 0.51 0.82 

IDWP 0.92 0.92 0.84 0.79 0.80 0.80 0.78 0.76 0.75 
Krige 0.32 0.24 0.26 0.19 0.17 0.16 0.12 0.17 0.92 

AvgDiff 0.21 0.36 0.29 0.53 0.90 0.86 0.84 0.81 0.16 
SOTest 0.35 0.22 0.14 0.08 0.12 0.18 0.19 0.17 0.62 

 

 

Table 7.2: p-values from PAUC TPR Shapiro-Wilk test 

 Groups: Number of Nearest Neighbours 
Algorithm 4 6 8 10 12 14 16 18 20 

Spatial 0.78 0.80 0.99 0.18 0.98 0.51 0.23 0.71 0.66 
Median 0.95 0.70 0.65 0.68 0.28 0.65 0.64 0.70 0.84 

Local 0.98 0.39 0.24 0.99 0.07 0.60 0.47 0.15 0.91 
Scatter 0.78 0.27 0.06 0.67 0.88 0.28 0.65 0.08 0.87 

SLOM 0.42 0.07 0.09 0.58 0.09 0.11 0.10 0.18 0.03 
Weighted 0.96 0.51 0.85 0.73 0.92 0.72 0.82 0.95 0.82 

IDWP 0.50 0.41 0.04 0.38 0.45 0.44 0.29 0.26 0.75 
Krige 0.70 0.34 0.05 0.37 0.96 0.19 0.32 0.52 0.92 

AvgDiff 0.19 0.22 0.26 0.42 0.75 0.75 0.57 0.40 0.16 
SOTest 0.40 0.40 0.53 0.27 0.24 0.34 0.34 0.27 0.62 
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Table 7.3: p-values from PAUC FPR Shapiro-Wilk test 

 Groups: Number of Nearest Neighbours 
Algorithm 4 6 8 10 12 14 16 18 20 

Spatial 0.65 0.71 0.89 0.85 0.77 0.47 0.27 0.30 0.66 
Median 0.91 0.53 0.96 0.78 0.75 0.39 0.33 0.28 0.84 

Local 0.95 0.56 0.37 0.26 0.12 0.04 0.04 0.55 0.91 
Scatter 0.66 0.27 0.50 0.41 0.60 0.63 0.33 0.61 0.87 

SLOM 0.00 0.19 0.11 0.23 0.83 0.46 0.66 0.64 0.03 
Weighted 0.35 0.85 0.63 0.81 0.78 0.85 0.89 0.91 0.82 

IDWP 0.04 0.07 0.08 0.09 0.11 0.11 0.14 0.17 0.75 
Krige 0.55 0.60 0.56 0.69 0.76 0.83 0.88 0.86 0.92 

AvgDiff 0.42 0.84 0.81 0.73 0.80 0.82 0.80 0.86 0.16 
SOTest 0.93 0.52 0.54 0.58 0.52 0.43 0.47 0.39 0.62 

 

Bold denotes significant at a 1% critical level 
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APPENDIX B:  

BROWN-FORSYTHE TEST 

Chapter 8  
Analysis of variance requires the group variances are statistically equal. If this assumption is 

violated, then ANOVA’s F-statistic is invalid. The Brown-Forsythe test of homogeneity tests for 

the equality of group variances by performing an ANOVA test on a transformation of the 

response variable (Brown et al., 1974). The test is as follows (Brown et al., 1974): 

   
(   )∑   (     )

  
   

(   )∑ ∑ (       )
   

   

 

   

 

where     is the transformed ROC value,     |     ̃ |, where  ̃  is the median of group j.   is 

the number of groups,    is the number of observations in group j, and N is the number of total 

observations. If the test statistic is small enough, then the null hypothesis that the group exhibit 

equal variance is rejected. Table 8.1 provides the Brown-Forsythe p-values. 
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Table 8.1: p-values from Brown-Forsythe test 

Algorithm AUC PAUC 80% TPR PAUC 5% FPR 

Spatial 0.997 0.991 0.992 

Median 0.994 0.954 0.995 

Local 0.987 0.850 0.793 

Scatter 1.000 0.938 0.996 

SLOM 0.977 1.000 1.000 

Weighted 0.999 0.963 1.000 

IDWP 1.000 0.998 1.000 

Krige 1.000 0.340 1.000 

AvgDiff 1.000 0.999 1.000 

SOTest 1.000 1.000 1.000 
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APPENDIX C:  

LIST OF ACRONYMS 

 

AUC – area under ROC curve 

DEM – digital elevation model 

DGPS – differential global positioning system 

DSM – digital soil mapping 

EMI – electromagnetic induction 

ECa – apparent soil electrical conductivity  

ER – electrical resistivity 

FPI – fuzzy performance index 

FPR – false positive rate 

GIS – geographic information systems 

GLS – generalized least squares 

GPS – global positioning system 
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MZ – management zones 

NCE – normalized classification entropy 

NN – nearest neighbour 

NFSP – National Farm Stewardship Program  

PA – precision agriculture 

PCM – precision crop management 

PF – precision farming 

PAUC – partial area under ROC curve 

ROC – receiver operating characteristic 

RTK GPS – real-time kinematics global positioning system 

SAR – spatial autoregressive model 

SSCM – site-specific crop management 

SSM – site-specific management 

TDR – time domain reflectometry 

TPR – true positive rate 

VRT – variable rate technology 
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APPENDIX D:  

LIST OF SPATIAL OUTLIER ALGORITHMS 

 

Averaged Difference (AvgDiff) 

Graph-based 

Inverse Distance Weighted to a Power (Inverse Distance Weighting, IDWP) 

Iterative R (Iterative Ratio) 

Iterative Z (Iterative Spatial Statistic Z) 

Kriging Interpolation (Kriging, Krige) 

Local Area Mean (Local) 

Median Statistic Z (Median) 

Moran Scatter Plot (Moran)  

Scatter Plot (Linear Regression, Scatter) 

Spatial Local Outlier Measure (SLOM) 

Spatial Outlier Test (SOTest) 
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Spatial Statistic Z (Spatial, Spatial Z, Z algorithm)  

Variogram Cloud 

Weighted Z (Weighted, IDW) 

 

 

 

 


