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Abstract

Optionally and gradually-typed languages allow types to be introduced to dynamic

code as needed. While this approach allows some gradual movement from dynamically

to statically-typed code, it requires rewriting object-constructing code to use conven-

tional static types. We introduce a flexible notion of type, deemed “locus types”,

that aims to minimize syntactic burden and the need for refactoring when introduc-

ing types to dynamic code. Locus types are gained by objects that pass through

an annotated code site, following the creed of “code is types”. Their structure is

inferred from local type information computed through flow-based type refinement.

The design of LocusTypeScript, a language extending TypeScript with locus types, is

detailed. Tooling support, building on that of TypeScript, for programming with lo-

cus types is described. As well, the general properties and applicability of locus types

are explored. LocusTypeScript’s simple algorithm for computing stable flow-based

refinement types is presented. The implications and performance impact of making

locus types sound are discussed.
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Chapter 1

Introduction

As the scope of dynamically-typed languages increases dramatically past that of basic

scripting, partial static type checking increasingly becomes an attractive tool to re-

duce the burden of software maintenance. While introducing mandatory static type

checking is often impractical and detracts from the flexible nature of dynamically-

typed languages, introducing partial static type checking presents design challenges

not present with full static type checking. When a portion of a program is dynamically-

typed, a strategy for handling the interaction between statically and dynamically-

typed components is needed. This strategy leads to the distinction between option-

ally and gradually-typed languages. Optionally-typed languages allow for annotating

a subset of a program with type annotations, which is statically checked up to in-

teraction with unannotated code, with no impact on dynamic execution and thus

performance. Gradually-typed languages similarly allow typing for a subset of the

program, but provide stronger soundness guarantees, usually realized by run-time

checks. Both optionally and gradually-typed languages allow for introducing types as

required to a dynamic program, while optionally-typed languages do not emphasize

soundness.

Parallel to this, systems using flow-based type refinement can determine type in-

formation in highly dynamic or otherwise unamenable languages, for purposes of type

checking [9][10][12]. These systems observe statically how conditions and mutations

in the code affect the possible types of a value, and in doing so, identify code points

where types are used incorrectly, even without types being explicitly specified. Such

type systems can describe quite precisely how values change within a constrained

block of code, typically a single function.

Optional and gradual typing allow type specification, whether for program main-

tainability, or the stronger goal of type soundness, while type refinement allows for

types to be inferred from existing, dynamic code. The goal of this thesis is to im-

prove the convenience of introducing types to dynamically-typed code by using these
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two tools in concert: Type refinement is used to determine the type of objects at a

specified location in code, such as a constructor, and that type is made manifest like

any named, explicitly defined type in the optional or gradually-typed language. This

simplifies the task of introducing static type checking to dynamically-typed code and

reduces its syntactic burden. We deem types introduced through this manner “locus

types”, and their annotation sites “locus type declarations”.

The applicability of locus types to this goal is shown through the design and imple-

mentation of LocusTypeScript, an extension to the JavaScript language that allows for

using locus types in either an optionally- or gradually-typed setting. LocusTypeScript

builds on the TypeScript [13] and StrongScript [17] languages, which, respectively,

provide frameworks for optional and gradual typing in JavaScript. Through locus

types, types inferred locally by flow-based type refinement are reified into globally

usable named types.

These types are then used identically to the types already in TypeScript and

StrongScript.

1.1 JavaScript, TypeScript, StrongScript

As the primary language available to program web applications, JavaScript has re-

ceived a great deal of attention towards managing programs at ever-increasing scale.

Part of this effort are a number of derivative languages that add support for partial

static typing, aiming to ease the burden of testing large dynamically-typed programs.

Industrial languages such as Microsoft’s TypeScript [13] and Facebook’s Flow [5]

have introduced optional types to the popular dynamic language JavaScript, form-

ing derivative optionally-typed languages. StrongScript [17] is a derivative of Type-

Script which adds optional soundness, enabling gradual typing. While TypeScript

and StrongScript adopt a largely traditional type system, Flow additionally features

flow-based type refinement to capture precise type information without the need for

explicit types.

1.2 Optional and gradual typing

Optional type systems were introduced with Strongtalk [4], which added type anno-

tations to Smalltalk. The philosophy behind Strongtalk is mirrored in TypeScript:

Optional types have no effect on the program’s run-time semantics [3], and are never

mandatory. These optional type systems are purely type-erased (i.e., types have

no effect on semanatics), and highlight the impact of pure type erasure. Any pro-

gram which uses types everywhere—as would be mandatory in a purely static type
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system—is itself sound, and thus any unsoundness is caused by components of the

program which lack types.

The term “gradual typing” arose from Siek and Taha [18][19], who used it to

refer to languages in which type annotations can be added gradually to untyped

code. In their setting, like with software contracts, wrappers are used to enforce

types. LocusTypeScript builds on the gradually-typed language StrongScript, which

includes optional typing features. LocusTypeScript uses StrongScript’s type enforce-

ment capabilities to implement locus types with opt-in soundness.

1.3 Flow-based type refinement

Parallel but unrelated to gradual typing, various systems have been used to deter-

mine statically the run-time types of values in dynamically-typed languages. Using

information flow analysis to conservatively estimate types yields the type refinement

technique [10][12]. Type refinement takes advantage of information flow to make

precise statements about the types of values at particular points in the program.

This work uses type refinement as a means of inferring the definition of types

in a gradually-typed system, encapsulating local type information in globally usable

types. Since we aim to capture general types, we do not require (or desire) the full

depth of type refinement’s analysis. The light type refinement presented infers fairly

precise types using only data-flow analysis local to a specific function or block.

1.4 Locus Types

Locus types are a form of type annotation used to give a name to a type discovered

by flow-based type refinement, thereby turning the site at which an object is created

or extended into a type declaration. A variable that is subject to type refinement is

annotated with a locus type declaration, which gives an explicit name to the refined

type. This explicit name can then be used globally to refer to this type, just like a

typical type in an optionally- or gradually-typed language. In essence, a locus type

declaration determines the structure of the type implicitly from how an exemplary

instance is used, allowing the programmer to specify nothing more than the type’s

name:

// Simple example , ‘Point’ type introduced based on context:

var point: declare Point = {x: 1, y: 1};

Outside the scope of their declaration, locus types are used exactly like explicitly

declared types; the only difference is that their declaration is not explicit. Within
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the scope of their declaration, a variable annotated with a locus type declaration

can be modified like an untyped object. This capacity gives the power of dynamic

languages where it is needed, in creation, and the static guarantees of optional or

gradual typing where they are needed, in use. Locus types allow programmers to

use type annotations without explicitly declaring the structure of the objects in their

programs.

1.5 LocusTypeScript

LocusTypeScript, the implementation of locus types presented herein, is an extension

to StrongScript [17], which is in turn an extension of TypeScript. The ideas, however,

are valid for any optionally- or gradually-typed language in which objects may be

extended at run-time. Locus types can complement any gradually-typed language

of this form, and primarily offer a new way of specifying types, not a semantically-

distinct feature. Introducing explicit types in other optionally- or gradually-typed

languages often requires explicitly noting details already known to the type system.

Consider, for instance, the simple snippet from above which creates a point object in

JavaScript:

// No type given , fully dynamic semantics:

var point = {x: 1, y: 1};

As was shown above, in LocusTypeScript, it is enough to add a single type annotation

to introduce a globally usable Point locus type:

var point: declare Point = {x: 1, y: 1};

This is equivalent to writing an explicit Point type with x and y number-typed mem-

bers, but syntactically more brief. In essence, declare exposes the type information

inferred into a globally usable type. This generalizes to more sophisticated decla-

rations, reducing the burden of both writing type annotations and keeping them in

sync with declaring code. Further, when the programmer is satisfied that the type

isn’t going to change, IDE tools allow them to convert the implicit locus type to an

explicit interface, promoting a smooth transition to more stable types.

TypeScript’s tooling API was extended for LocusTypeScript to provide support for

refactoring with locus types, realized in an Atom plugin building on atom-typescript.

The refactoring techniques readily generalize to other languages, as well.
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1.6 Thesis Outline

The goal of this work is to present a scheme for using type information uncovered from

flow-based type refinement techniques to reduce the syntactic burden of introducing

static types to dynamically-typed programs. The contributions of this work are a

broadly applicable design for language annotations that specify explicit names for

otherwise implicitly derived types, a JavaScript-compatible implementation of such

a language based on TypeScript, and a brief exploration of tooling for locus types.

As well, this work presents a system of integrating flow-based type refinement into a

gradually-typed language amenable to run-time enforced soundness. The performance

impact of applying this protection scheme to emitted JavaScript is explored.

Specifically, the following contributions are made:

• Introduce the new concept of “locus types”, a widely applicable scheme for using

flow-based type refinement as an evolutionary step towards, or light-weight

replacement for, conventionally specified types.

• Explore and evaluate how locus types interact with soundness.

• Design and implementation of LocusTypeScript, applying locus types in a Java-

Script setting (through extensions to TypeScript).

• Demonstrate how locus types can be used by IDE’s, through tool support for

LocusTypeScript, allowing smooth movement from locus types to conventional

types.

The contents of this thesis are as follows:

Chapter 2 presents additional details about background concepts related to locus

types and LocusTypeScript.

Chapter 3 presents motivating examples of cases where locus types fit particularly

naturally when introducing types to code.

Chapter 4 details the design and features of LocusTypeScript.

Chapter 5 presents the relevant formal details of locus types in a gradual typing

setting with respect to λJS, a formalization of JavaScript.

Chapter 6 presents the locus type derivation algorithm, and some of its properties.

The algorithm is presented in a general form that applies to any imperative language.

Chapter 7 presents an evaluation of the performance of enforcing soundness in Locus-

TypeScript.

Chapter 8 briefly describes the software behind LocusTypeScript, and where it can

be obtained.
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Chapter 2

Background

2.1 JavaScript

JavaScript is an imperative, object-oriented dynamically typed programming lan-

guage made popular as “the language of the web” due to its inclusion in web browsers.

JavaScript lacks type annotations, but is otherwise syntactically similar to Java and

other languages in the C family:

function adder(x, y) {

return x.value + y.value;

}

The object model underlying JavaScript is based on Self’s [23]. Objects in Java-

Script may be specified with constructors, granting them prototypes that create a

dynamic class-like hierarchy, or may be specified as object literals, which inherit only

from the root of the inheritance hierarchy, Object.prototype. Function-valued fields

act as methods when called after access, with an implicit this parameter provided.

These two features can be used to create objects that behave similarly to classes:

function Circle(radius) {

this.radius = radius;

}

// Implicitly passed ‘this’ when called:

Circle.prototype.area = function () {

return Math.PI * this.radius * this.radius;

}

var c = new Circle (1);

print(c.area ()); // => 3.141592...

This mechanism allows a highly dynamic form of inheritance and overriding.
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Objects may also be specified as object literals, which inherit only from the root of

the inheritance hierarchy, Object.prototype.

Fields may be added to objects or their prototypes at any time, with the conse-

quence that it can be difficult to predict the API of an arbitrary object at run-time.

JavaScript hides much of the details of field membership through a special value,

undefined. Undefined fields evaluate to this value rather than producing an error.

var c = new Circle (1);

print(c.notFound ); // => undefined

Several other behaviors that would traditionally be considered type errors also

evaluate to undefined. As a consequence, JavaScript rarely outright fails at run-

time, but often produces erroneous or nonsensical results.

2.2 TypeScript

Microsoft’s TypeScript extends JavaScript by adding optional types. It does so with

full type-erasure, and allows values to flow from untyped to typed expressions with

no run-time checks. As such, it is unsound, but its type system has no impact on

performance relative to JavaScript. In TypeScript, the Circle example above would

be written as a class:

class Circle {

constructor(public radius: number) {} // assigns member

public area() {

return Math.PI * this.radius * this.radius;

}

}

// Usage and semantics remain the same:

var c = new Circle (1);

print(c.area ()); // => 3.141592...

Parameters to the constructor are treated specially. In the above instance, radius

is a field of Circle with type number. Parameters not marked public (or private)

do not become fields, and fields may be specified outside the constructor’s parameter

list.

Any misuse of the Circle type detectable at compile time raises a type error:

var c = new Circle (1);

print(c.notFound ); // compile -time error

new Circle("Foo"); // compile -time error

However, types can be ignored, and the underlying semantics is still JavaScript:
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// cast away types , no error

var c = <any > new Circle(<any > "Foo");

print(c.notFound ); // prints "undefined"

TypeScript’s types are structural, and so an object need not, e.g., be an instance

of the Circle class in order to satisfy the Circle type:

function circumference(c: Circle) {

return 2 * Math.PI * c.radius;

}

// object literal compatible with Circle type ,

// no error at compile -time or run -time:

circumference ({ radius: 1, area: function () {

return Math.PI;

}});

The core of TypeScript’s type system is sound [1]. Unsoundness arises from the

boundary between typed and untyped code, and downcasts, which are unchecked.

Even without soundness, however, optional types are useful for catching a class of

errors at compile time, and for software engineering concerns such as autocompletion

in development environments. This guarantee is similar to gradually-typed languages,

but TypeScript allows programs to continue with types violated due to unsoundness,

where a gradually-typed system would reject them at run-time.

2.3 StrongScript

StrongScript [17] is a derivative of TypeScript that adds optional soundness. While

TypeScript never enforces any types at run-time, StrongScript adds a “concrete” type

constructor “!”, which, when added to a suitable type, enables run-time enforcement.

LocusTypeScript uses StrongScript and its “!” type constructor so that locus types

can also benefit from run-time enforcement, but is otherwise an orthogonal extension

to TypeScript. For instance, one can enforce that Circle’s have numeric radiuses by

changing their constructor as follows:

constructor(public radius: !number) {}

With !number replacing number, any attempt to violate the contract that Circle’s

have numeric radiuses will result in an error:

c = new Circle (1); // OK, verified at compile -time

c = new Circle(<any > 1); // OK, verified at run -time

c = new Circle(<any > "Foo"); // error at run -time

c.radius = 1; // OK , verified at compile -time
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c.radius = <any > 1; // OK , verified at run -time

c.radius = <any > "Foo"; // error at run -time

To enable eager run-time enforcement, StrongScript introduces nominal types to

TypeScript, which otherwise uses structural typing exclusively. These nominal types

have intrinsic identity, and any subtypes are declared explicitly. In order for a value

to be typed as a Circle, it must have been created by new Circle. This strictness

allows for classes to be concretely typed:

function circumference(c: !Circle) {

return 2 * Math.PI * c.radius;

}

// fails at run -time with cast (or statically without ):

circumference(<any > {radius: 1, area: function () {

return Math.PI;

}});

To allow for certain run-time checks, StrongScript’s types are nominal, unlike

TypeScript’s. LocusTypeScript inherits this change to TypeScript, and so Locus-

TypeScript’s locus types are nominal as well. The concept of locus types is not tied

to nominality, however. The impacts of nominal typing on locus types, and how locus

types can be implemented in a structural setting, are discussed in Section 4.7.

2.4 Gradual typing

StrongScript and TypeScript are, to different degrees, examples of gradually-typed

programming languages. They did not introduce the concept, however, and differ in

crucial ways from other gradually-typed languages.

Gradual typing itself relates to research on software contracts [6]. Contracts allow

the enforcement of constraints considerably more rich and semantically meaningful

than types (e.g., enforcing arbitrary relationships between object components). In-

deed, through wrappers [7], even contracts for higher-order functions are possible,

as wrappers can validate pre- and post-conditions. Wrappers preserve invariants by

adding layers of indirection that check arbitrary conditions on objects while other-

wise preserving object behaviour. Typed Racket exemplifies later work in this line of

research [21][22].

These two related lines of research have cemented many ideas of gradual typing, in

particular how blame (i.e., which part of code is at fault) may be assigned in a system

using wrappers to enforce contracts [26]. Both approaches do have the same significant

drawback, however: Wrappers impose a significant performance penalty [20]. Various

solutions have been investigated, but significant slowdowns are still reported.
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An alternative approach has been to eschew higher-order contracts and define the

underlying type system such that types can always be checked immediately, with no

wrappers required. Typically this is done by using nominal types. This line of work

began in the Thorn [2] language. As nominal type systems are less flexible than

structural and higher-order type systems, several systems in this vein have adopted

“like-types” [27]. Like types optionally remove contracts, and are thus equivalent

to optional types: Erased and unsound. Systems with like types allow sound but

inflexible nominal types, unsound but flexible like types, and of course untyped code.

StrongScript, which LocusTypeScript builds upon, is one such system.

2.5 Flow-based type refinement

The type refinement technique allows for extracting type information from program

control flow. As an example, consider attempting to assign a static type to x:

x = {radius: 1};

It is fairly obvious that x can be typed as an object, and x.radius can be typed

as a number. In fact, x.radius could (hypothetically) be typed as the value 1.

Information flow affects types when control flow occurs. For instance, a näıve type

checker may give y the type boolean ∪ string in this example:

if (x.radius === 1) {

y = true;

} else {

y = "whoops";

}

However, this analysis can be refined to boolean by observing the type-related effects

of the conditional. The second branch is unreachable, and so y cannot be a string.

In the absence of whole-program analysis, which is often impossible for JavaScript,

as soon as a value is known to escape a function, its type becomes unknown. This los

losss is simply because JavaScript is highly dynamic, and so predicting the effect of

such flows is not generally possible. As such, type refinement tends to be quite precise

as an intraprocedural technique, but less so as an interprocedural technique. In the

presence of dynamic features such as reflection, code-loading, and polymorphism,

useful analysis typically requires assuming some “well-behaved” subset of possible

program behavior. Flow [5] takes this approach, assuming that certain dynamic

features do not interfere with its analysis, at the cost of soundness. This work makes

similar assumptions, but allows for ensuring soundness through optional run-time

protection.

10



2.6 Related work

“Brand objects for nominal typing” by Jones et al [11] explores the introduction

of types associated with a brand for gradual typing in a declaratively-typed setting.

Declarative typing gives their system a superficial similarity to the one presented here,

but is more restrictive in terms of when types can be declared. Because locus types

are an application of type refinement, they can be applied to any object, including

for instance mutations of existing objects with no prior type information, and to any

method of object creation supported by the host language.

“The ins and outs of gradual type inference” by Rastogi et al [15] and “Principal

type schemes for gradual programs” by Garcia and Cimini [8] also aim to reduce the

syntactic burden of programmers in gradually-typed languages using type inference.

However, their goals are mainly to determine the type of unannotated values based

on their use, as in conventional type inference in languages like ML. Our goal is to

make globally avaiable types that otherwise exist only locally. There is no reason

that both systems could not be combined to further reduce the annotation burden

on programmers.

“Refinement Types for TypeScript” by Vekris et al [24] suggests a system of

refinement types in TypeScript, which again are orthogonal to type refinement. Note

that while unfortunately similarly named, type refinement and refinement types are

unrelated concepts: Refinement types are types with predicates, while type refinement

is a procedure for determining precise types with imprecise or no types as input.

The type refinement presented herein yields fairly conventional structural types, as

the resulting types are simple and follow intuitive. Combining this näıvely with

refinement types would likely not be useful, as any generated predicates would be

as restrictive as the constructor, rather than general use of the object. Nothing in

type system presented herein is incompatible with explicitly specified predicates, but

explicit specification would be necessary.
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Chapter 3

Motivation

In a setting such as JavaScript, the type of an object is not fixed by a type declaration;

instead, type is a fluid notion which can change as an object is modified at run-time

and its API evolves. Much of an object’s API that would be fixed under a statically-

typed language can be changed at run-time. A programmer’s intuition of an object’s

type is often shaped by these dynamic changes. Indeed, this iterative mutation is

the standard style of object creation in JavaScript, and so every notion of type the

programmer has is locked to it.

In dynamic languages like JavaScript, even common idioms for object creation can

confound traditional type systems. The conventional, widespread JavaScript practice

is to create abstractions through fairly mechanical means:

function Point(x, y) {

this.x = x;

this.y = y;

}

Point.prototype.zeroDist = function () {

return Math.sqrt(this.x*this.x + this.y*this.y);

}

Traditional gradually-typed languages like TypeScript introduce types like tra-

ditional statically-typed languages: Through type declarations. In TypeScript, the

Point class must be rewritten using declarative syntax to be understood by the type

checker:

class Point {

constructor(public x, public y) {}

public zeroDist () {

return Math.sqrt(this.x*this.x + this.y*this.y);

}
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}

This rewriting builds on the syntax of the new 6th version of the ECMAScript stan-

dard. While the latter construction may be typed easily, it is quite rigid, and is a

significant syntactic change from convention. With locus types, imperative definitions

can be analyzed as declarations. In LocusTypeScript, it is enough to add a single

type annotation to introduce a globally usable Point locus type:

function Point(this: declare Point; x, y)

Using locus types, the assigned x, y fields along with the zeroDist method from

Point’s prototype are automatically inferred. To have the coordinate fields typed

with the desired number type one needs only to add local type annotations:

function Point(this: declare Point; x: number , y: number) {

...

}

Point.prototype.zeroDist = function () {...}

While TypeScript is able to provide a Point type with some refactoring, other com-

mon idioms are handled awkwardly at best. Consider a JavaScript programmer in-

terfacing with a Connection API and wishing to add functionality for a game. The

functionality consists of new player and sendName fields:

var conn = new Connection ();

conn.player = player; // add player field dynamically

conn.sendName = function () { // add function field dynamically

this.send(this.player.name); // assume ‘player.name’ exists

};

In a dynamically-typed language this behavior is easy to write and understand, but

typing this behavior in a gradually-typed setting has traditionally been difficult. In

TypeScript, providing an appropriate type to conn requires an unchecked downcast,

and explicit specification.

Using locus types, with a single annotation, an augmented type can be extracted:

var conn: declare PlayerConnection = new Connection ();

conn.player = player;

conn.sendName = function () {

this.send(this.player.name);

};

To aid gradual typing, the inferred type is enforced during usage:

conn.sendName = "whoops"; // static error , incompatible type
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In LocusTypeScript, it is dynamically checkable in a similar manner to Java-

Script’s ‘instanceof’:

// checks for a tag associated with PlayerConnection:

if (conn declaredas PlayerConnection) {

... game -specific logic ...

}

Object creation in dynamic languages often follows patterns such as these. How-

ever, traditional static type systems such as that of TypeScript do not support such

flow-sensitive forms of object creation. Because locus types are derived directly from

analysis of imperative language constructs, they support this common style of object

creation directly.
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Chapter 4

Locus Types and LocusTypeScript

Conceptually, locus types are simply type annotations which reify the types in-

ferred by type refinement. This concept is demonstrated by its implementation in

LocusTypeScript. As a complete implementation with significant analogies to other

languages, the properties of locus types are introduced by presenting the design of

LocusTypeScript. As mentioned, LocusTypeScript is an an extension of Strong-

Script, which in turns extends TypeScript, which in turn extends JavaScript. While

LocusTypeScript builds upon significant additions to the JavaScript language, its

core purpose remains to show the utility of locus types in a JavaScript setting. Locus

types, as a modular type system feature aimed at increased programmer convenience,

require a conventional type system to be in place to truly be useful.

4.1 Overview

We intend to demonstrate the utility and applicability of locus types in a suitable

gradually-typed language, through the design and implementation of LocusType-

Script.

From TypeScript and StrongScript, LocusTypeScript inherits the ability to anno-

tate expressions with types: The special any type indicates that any type is accept-

able. Expressions with the any type are essentially untyped. Types without a leading

exclamation, e.g., number, represent optional types, and are checked statically if pos-

sible, and otherwise simply trusted. Types with a leading exclamation, e.g., !number,

represent gradual types, and are checked statically if possible, and, failing that, at

run-time. 1

1Throughout this thesis the optionally-typed version of types is preferred in examples. The

examples would trivially work with the concrete versions of types. The result would not change

semantics apart from additional soundness checks (if needed).
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To declare and use locus types, LocusTypeScript introduces two new annotations:

declare and becomes. declare annotations act as locus type declarations, triggering

analysis of the variable or parameter they annotate, as in the Point example. A

declare annotation takes the form:

x : BaseType declare NewType

indicating that the object held by variable or parameter x begins as type BaseType,

and, once the object is “complete”, it is of type NewType. The structure of NewType

is defined as the type which refinement infers for x at the end of its lexical scope. An

object is considered complete at a code location if its inferred type at that location

is a subtype of its type at the end of its scope:

function augment(x : BaseType declare NewType) {

x.newField = 1; // derives ‘newField : number ’

var xComplete : NewType = x; // ‘x’ must be complete

x.newField = x.newField + 1; // valid , preserves structure

// x.anotherNewField = 1; // invalid , changes structure

}

Assuming type refinement is correct, a complete object is therefore by definition

compatible with its declared type. Typically, this occurs after the last field added to

x is first assigned, as it must be a subtype of the final derived type.

The choice to install the new type at the end of a variable’s scope has two surprising

benefits: (1) It resolves the so-called “constructor problem”, and (2) it supports

multiple inheritance in a semantically-simple way.

The constructor problem, in short, is that an object must have a type during its

own construction, but it cannot satisfy its own type until construction is complete.

The type an object has mid-construction is the type derived by refinement up to that

point, which is the lowest supertype of the declare type that it already satisfies.

Multiple inheritance is supported by flow-based type refinement unambiguously,

in a manner similar to gaining fields:

var c: declare ColoredDrawableCircle = new Circle ();

becomeColoredCircle(c); // gains ‘ColoredCircle ’ base type

becomeDrawable(c); // gains ‘Drawable ’ base type

Through the call to becomeColoredCircle, the relation ColoredDrawableCircle <:

ColoredCircle is derived, and, similarly, through the call to becomeDrawable, the

relation ColoredDrawableCircle <: Drawable is derived. By this mechanism, mul-

tiple inheritance is naturally supported, with predictable semantics.

The complementary becomes annotation takes the form:

x : BaseType becomes NewType
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becomes annotations act as a means of expressing expected type transitions to

the type system without introducing new types. Variables and parameters anno-

tated with becomes are analyzed identically to those annotated with declare, but

instead of giving a name to the inferred type, the inferred type is checked against

the specified type. When used on a parameter, this allows functions to specify their

type-transitioning behavior without declaring new types.

Because the annotations of parameters are part of a function’s signature, declare

and becomes declarations on parameters allow local type refinement information to

be propagated across function boundaries.

For each declare, a locus type is defined, checkable by standard TypeScrip-

t/StrongScript rules. Flow-based type refinement is used to infer the structural prop-

erties of the annotated field or variable when it goes out of scope, and the inferred

type becomes the structure of the declared locus type.

This concept can handle sophisticated dynamic cases. For instance, in the Conn-

ection example, the type of the connection object changes. The typical technique for

handling this in a statically-typed language would be to make PlayerConnection a

subclass of Connection, and override its constructor as appropriate. That technique

is inflexible, as an object must gain its complete type during its initial construction.

No such restriction exists in a dynamic language.

In our system, the type of PlayerConnection is the subtype of Connection with

the additional fields player and sendName defined. All that was necessary to declare

this type was to add an annotation to the variable representing PlayerConnections

during their initialization. Type refinement is sufficient to determine the struc-

ture of PlayerConnection, and because the base type of the declaring variable is

Connection, PlayerConnection is a subtype of Connection.

Type refinement can be done lazily, as the full type needs to be known only when

it is used in other code. As such, locus types can easily be recursive. Supporting

recursive locus types without lazy evaluation is also possible.

Since type refinement provides a rich type for every variable at every code point,

it is unnecessary for the variable to have its declared type within its scope. That is,

the type specified to declare goes into effect when the value assigned to that variable

goes out of scope, not locally.

4.2 Deriving Locus types

For the PlayerConnection example from chapter 3, assuming player and sendName

do not already have incompatible types in the base type Connection, we trivially

analyze the types of player and sendName as their last assigned type in the defining

17



scope. Conceptually, every field assignment causes a type refinement of conn, until

the object has gained its final shape. Equivalently, we can describe these type-refining

field assignments as the assignment plus a binding to a new variable of a more precise

type, where all future references to the same variable are replaced with the further-

refined version. Once the object gains its final shape, we use this shape to define

PlayerConnection, as shown by the following pseudo-code representing locus type

elaboration:

// Represents the steps towards locus type elaboration

// with pseudo -code type -refining assignments:

var conn0: Connection = new Connection ();

conn0.player := player; // Add ‘player ’ to type

// Re-assignment for clarity:

var conn1: Connection & {player: Player} = conn0;

conn1.sendName := function () {...} // Add ‘sendName ’

var conn2: typeof(conn1) & {sendName: () => void} = conn1;

// Finish locus type elaboration:

resolve PlayerConnection as typeof(conn2); // pseudo -code

Here := represents a (hypothetical) type-refining assignment, with the type refinement

made explicit through new declarations (for illustrative purposes). After intermediate

type refinements, we resolve PlayerConnection to be equal to the final type of conn2,

which is the input type of conn, Connection, with player and sendName fields added.

Object definition sites frequently have complications such as more than one possi-

ble exit path, causing conditional logic. Consider a directory type in LocusTypeScript

defined with declare that gathers a file list from a directory, if possible.

function Dir(this: declare Dir; path) {

var rd = readDirectory(path);

if (rd === undefined) {

this.good = false; // : boolean

return; // Early exit!

}

this.good = true; // : boolean

this.files = rd.getFiles ();// : File[]

}

As with Connection, LocusTypeScript computes the members of Dir from its

use in the lexical scope of its declaration. However, here we must take into account

branches and exits in the code when analyzing this:

var this0: {} = this;

if (...) {
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this0.good := false;

var this1: typeof(this0) & {good: boolean} = this0;

resolve Dir as typeof(this1); // Exit 1, pseudo -code

return; // Early exit!

}

// If branch may not have happened

var this2: typeof(this0) & {good: undefined|boolean} = this0;

this2.good := true;

var this3: typeof(this2) & {good: boolean} = this2;

this3.files := rd.getFiles ();

var this4: typeof(this3) & {files: File []} = this3;

// Finish locus type elaboration:

resolve Dir as typeof(this4); // Exit 2, pseudo -code

Here we have multiple resolve points for PlayerConnection, representing places

where the variable goes out of scope. Once the algorithm has propagated types,

LocusTypeScript computes the union of the types found at each scope exit. Thus, for

PlayerConnection, the final type of good is analyzed as boolean ∪ boolean i.e.,

boolean, while files is analyzed as undefined ∪ File[], i.e. File[]2.

The analysis for LocusTypeScript, in constrast with that of languages such as

Flow, does not attempt to reason semantically if rd could truly ever be undefined.

Furthermore, when typing this2, the good field is considered to possibly be assigned,

even though language semantics make this impossible. Since locus types are globally

usable, a simple scheme for handling control flow aids programmer reasoning and

prevents brittleness. The details of this derivation process are shown in Section 6.

4.3 Handling interprocedural flow

When analyzing the Connection example, it is enough to consider the starting type

and subsequent assignments to compute the final type. Consider, however, if the

Connection example is defined through the use of a helper function instead of direct

assignments:

function addPlayerMethods(conn) {

conn.player = player;

conn.sendName = function () {

this.send(this.player.name);

};

2Array types in LocusTypeScript are non-concrete, and non-concrete types are supertypes of

undefined.
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}

var conn: declare PlayerConnection = new Connection ();

addPlayerMethods(conn);

The previous local analysis does not suffice. While a PlayerConnection type

is still computed, it is no longer able to analyze the assignment of the player and

sendName types. Some languages such as Flow eagerly investigate the effects of func-

tions such as addPlayerMethods. To avoid unexpected dependencies that can hinder

modularity, however, LocusTypeScript requires the programmer to opt-in to inter-

procedural analysis. LocusTypeScript provides two semantically equivalent ways

to achieve this. Firstly, the definition of PlayerConnection can be moved to the

addPlayerMethods parameter:

function addPlayerMethods(

conn: Connection declare PlayerConnection) {

conn.player = player;

conn.sendName = function () {

this.send(this.player.name);

};

}

var c = new Connection ();

addPlayerMethods(c);

By moving the declare annotation to the conn parameter, we are able to include

the results of flow-based analysis from that function. After the call to addPlayerMethods,

conn becomes an object of type PlayerConnection.

However, moving the declaration site is not always possible. For example, after

calling addPlayerMethods, we might perform additional changes. To support this, we

add a simple facility to LocusTypeScript to inherit changes undergone by a function

parameter:

function addPlayerMethods(conn: Connection declare) {

conn.player = player;

conn.sendName = function () {

this.send(this.player.name);

};

}

var c: declare PlayerConnection = new Connection ();

addPlayerMethods(c);

// Example additional change , an additional field in

// PlayerConnection:

c.gameState = getGameState ();
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Here we use a declare without a type name, avoiding namespace pollution but

still propagating an intermediate type. The fact that c is extended to include the new,

anonymous type is part of the signature of addPlayerMethods. PlayerConnection is

known to be a subtype of the anonymous type defined by addPlayerMethods, through

analysis of the addPlayerMethods call.

While declare allows for type modifications to propagate across procedures, it

introduces essentially dynamic semantics on the variable, which is not always desired.

To that end, the similar becomes annotation allows for specifying exactly the changes

that are expected:

// Defines the ‘PlayerConnection ’ type:

function addPlayerMethods(

conn: Connection declare PlayerConnection) {

conn.player = player;

conn.sendName = function () {

this.send(this.player.name);

};

}

// Uses the ‘PlayerConnection ’ type , ensuring it propagates:

function handshake(

conn: Connection becomes PlayerConnection) {

addPlayerMethods(conn);

conn.sendName ();

}

var c = new Connection ();

handshake(c); // ‘c’ gains ‘PlayerConnection ’

During the analysis of c, it is assumed that the becomes specification is true (i.e.,

conn does become a PlayerConnection). This becomes type is used as a requirement

when analyzing handshake. If conn does not indeed become a PlayerConnection,

the analysis fails and the program does not type check. This is in contrast to declare,

which allows arbitrary type expansions.

To type check the becomes specification, we analyze conn in handshake. Since

conn is known to pass through a parameter that gains the PlayerConnection type,

we can infer that conn is of type PlayerConnection when the function ends, and the

becomes specification type checks.

4.4 Type granularity

Type refinement generalizes to data-flow analysis. In theory, locus types could be as

specific as individual values or ranges. For instance, if false is assigned to a field,
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the field could, in theory, be given the type false instead of boolean. In practice,

it is unlikely to capture the intent of code. There is no “perfect” type, so when

determining types of object members, we generalize by following the type inference

rules already present in TypeScript for assignments. It is presumed that these mirror

programmer intent.

4.5 Soundness

declare-typed references have some of the dynamic properties of dynamically-typed

(any-typed) references, in that they allow fields not specified in the type to be written,

extending the object. These references can have a base type, in which case assign-

ments that conflict with the base type are not allowed, but this still allows a source

of unsoundness: If the declared base type is not the most specific correct type for the

object, then the declaration may attempt to add a field that conflicts with an existing

field not specified in the type. This is a natural consequence of objects gaining types

through mutation. Other aliases to the same value with more specific types may find

that their types are unexpectedly violated, and changes made through aliases with

less specific types will not be reflected into the locus type. Nonetheless, if declare is

only used for initial construction of objects, equivalently to conventional static types,

it is trivially sound: The value cannot have a more specific type than Object, and

its extension cannot fail. Using declare to extend objects in other circumstances

exposes this unsoundness, but is a power not offered by other optionally or gradually-

typed systems, and there is likely no sound equivalent. It is thereby contended that

declare behaves like a principled any, and likely reflects exactly the unsoundness

that a user of an optionally or gradually-typed language would expect it to.

In the gradual typing community, substantial work has been done on assigning

blame when such violations occur from dynamic code[26], and declare code is no

different. In the setting of a checked, gradually-typed language, these unsound field

additions would fail, either due to a contract violation or, in the case of LocusType-

Script, due to the member type protection inherited from StrongScript, as discussed

in Section 4.7.

Finally, our IDE tools provide a path from locus types to conventional, TypeScript

types, which makes explicit where dynamic behavior occurs.

4.6 Nominality and checkability

LocusTypeScript takes the design choice of making locus types nominal and run-

time checkable through brands like in Modula-3 [14]. Conceptually, brands take a
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structural type system and make it a nominal type system through fields (termed

brands) unique to a certain type. This branding causes minor run-time overhead,

with the benefit that locus type membership can easily be checked. This checkability

aids the task of gradual typing. For example, when calling a function of unsure

origin with a “becomes” or “declare” annotation, it must be checked that the target

type is actually achieved at run-time. The trivial checkability of locus types through

their installed brands helps in this case. However, checkability is not fundamental to

locus types. Locus types work equality well as structural types without additional

brand members. This design is a good fit for an optionally-typed language such as

TypeScript (without StrongScript extensions).

4.7 Interaction with gradual types

There is a range of design decisions in a gradually-typed programming language,

and those decisions affect locus types. We chose to implement LocusTypeScript on

StrongScript, as it provided an environment for sound, gradual typing on top of

JavaScript.

In the absence of StrongScript’s concrete types, LocusTypeScript has the same

dynamic semantics as JavaScript, and only adds static type checking. The only new

run-time operation is the installation of a checkable brand on the object, indicating

that it is a complete object of the analyzed type. Since each brand associated with a

type is unique, this installation never fails3. Thus, locus type reification itself is trace

preserving (i.e., does not alter semantics) [17].

StrongScript’s types are always checkable eagerly because its type system is nom-

inal. Type checks are fast and nonrecursive. Locus types complement nominal types

well: The name corresponds precisely to those objects that have reached the locus

type declaration. With run-time enforcement, branded objects have the same type

correctness as objects of other nominal types. Locus types can thereby be treated

similarly to brands [14] by simply adding a marker to the relevant objects. Code is

inserted wherever locus types are declared to mark objects with a “brand” unique to

that type. This branding is done invisibly4 in a hidden object field, and allows all

locus types to have an eagerly checkable concrete type.

Another obvious choice in the design spectrum is unsound, structural types. This

option creates types as in TypeScript, and would be a reasonable approach for that

3In ECMAScript, objects can be “frozen”, preventing all updates, including branding. A frozen

object is not brandable, but since it cannot be modified, it would probably have failed to assume

the type long before it failed to be branded.
4To the degree allowed by JavaScript.
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language. All that is necessary is to not brand or perform run-time checks.

Other gradually-typed languages [22][25] use sound structural typing. Locus types

infer a structural type, so all that is necessary to use them in such a language is to

not implement branding. The resulting inferred types have all the same benefits and

drawbacks as existing structural types in these systems.

4.8 Run-time protection

While not fundamental to the concept of locus types, some design decisions aiding

gradual typing have an impact on run-time behavior. Inheriting from StrongScript,

run-time protection is applied to certain language constructs, such as concrete type

annotations, and function or method members of modules and classes. This protec-

tion allows for stronger reasoning guarantees about these annotations and functions,

used to guarantee type constraints are sound. While this may cause some run-time

incompatibility, for example by disallowing dynamic replacement of module func-

tions, immutability generally is intended when using these construct. These features

of StrongScript are largely unchanged, and discussed in detail in [17].

Additionally, LocusTypeScript uses run-time protection at locus type declara-

tion sites. When used with sound types, such as StrongScript’s concrete types, the

analyzed structure must be protected at run-time to assure that inferred type in-

formation remains valid. In LocusTypeScript, this is implemented via JavaScript

accessors. Through this mechanism, flow-based type refinement can be made sound

in the face of uncertainty due to dynamic features. Most gradually-typed program-

ming languages have some system of contracts, wrappers or accessors to assure this.

Locus types need only to use the same system.

Runtime protection is only applied to members that evaluate to a concrete type, or

a union of concrete types. Consider the following (sanitized for readability) run-time

output produced from the Connection example:

// In module scope:

var PlayerConnection = new LocusType ();

// In defining scope:

var conn = new Connection ();

// Restrict ‘player ’ re -assignment:

add(conn , "player", player , Player );

// Install unwrapped method:

addHidden(conn ,"raw_sendName",function (){

this.raw_send(this.raw_player.raw_name );

});
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// Install proxy method:

addFunc(conn , "sendName", function () {

check(this , PlayerConnection ); // perform type check

this.raw_sendName ();

});

addLocusType(conn , PlayerConnection ); // brand once complete

In the outer scope of the LocusTypeScript module, a PlayerConnection lo-

cus type object is created, used to mark objects as belonging to that locus type.

addLocusType then installs this type on a cached immutable list in conn, dynami-

cally enforceable via the check function.

Note that the raw_* fields and functions are name-mangled in actual implementa-

tion to indicate they are not intended for use by the programmer. Due to the nature

of JavaScript, however, defeating the type system by accessing them directly is always

possible [17]. ECMAScript 6 symbols can be used to create truly private members

if certain run-time facilities are overridden. However, as ECMAScript 5 is currently

the most widely used version of JavaScript, backwards compatibility was desired.

In the run-time protection illustrated above, the addHidden function operates like

a normal assignment, except configuring the JavaScript property to be unenumerable

if not already configured (hidden from object reflection).

The add run-time function acts like a special assignment operator which installs

validated accessor functions (getter/setter pair) for untyped code.

The addFunc function is stricter. While allowing access from untyped code, all

attempts to set the field that do not stem from properly typed function literals will

result in errors. This strictness could be loosened somewhat if function types were

run-time checkable in the underlying system.

All of the add functions utilize JavaScript’s Object.defineProperty. If an exist-

ing property created with Object.defineProperty is detected, object creation fails

and an exception is thrown.

In StrongScript, fields and parameters with “concrete” annotations protect their

type declarations by intercepting accesses from untyped code and eagerly checking

the types. Concrete types, written with the ! symbol in StrongScript, are subtypes of

their non-concrete equivalent. For instance, !Connection <: Connection. With-

out the concreteness annotation, types are unsound by design. Locus type inference

is orthogonal to concreteness; values that are specified or inferred as concrete derive

concrete types. This does imply that adding a declare can have semantic effects:

Since typed objects protect themselves, incorrect access raises errors, equivalently to

having manually specified the corresponding type for the field. Assuming protections
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can be installed5, semantic differences other than raising such type errors do not

occur.

4.9 Backwards compatiblity

Locus types are first and foremost an alternative way of specifying types. It is pos-

sible, however, that they allow for certain values to be typed in a way that the host

language cannot specify, due to their dynamic nature. For instance, in LocusType-

Script, it is possible for an object to gain a new nominal type at run-time, which is

impossible in StrongScript. Used for more traditional types, in particular during ob-

ject construction, they can always be expressed equivalently with some explicit type.

In languages with wrappers for sound structural typing, and of course in unsound

languages, every locus type could be expressed equivalently with some explicit type.

Since the underlying type system is unmodified, there is no consequence to mixing

locus types with other gradual types. Theoretically, a system could have any mix of

dynamic, locus and traditional static types. We expect that the usual evolution of

any given type would be from purely dynamic, to locus, to traditional static.

LocusTypeScript aims to remain run-time compatible to JavaScript to the ex-

tent possible. Run-time protection means that adding a declare annotation can

affect the semantics of a program. However, the same changes would occur had the

code been rewritten with explicit types in a gradually-typed language. This protec-

tion is a common trade-off when soundness is desired, and is encountered in existing

gradually-typed programming languages. Dynamic type guarantees for LocusType-

Script are achieved through run-time checks and protection on fields through the use

of JavaScript accessors. If existing accessors are present on that field not known

to LocusTypeScript, then a run-time error occurs. Objects correctly inherit these

custom fields through their prototype objects.

LocusTypeScript protects the most general derived type it computes for a member.

As a result, some usage patterns require type annotations to ensure correct type

inference, such as when assigning an instance of a derived type, when the base type

was intended:

var obj: declare HasBase = {};

// Must annotate to preserve intent:

obj.base = <Base > new Derived ();

Locus type objects are imported to other modules when the locus type names

are imported, allowing for modular programming. In LocusTypeScript, each object

5Accessor installation can fail if existing accessors have already been installed.

26



maintains a cached list of locus types they belong to. This side information does not

interfere with the existing prototype object hierarchy. Immutability ensures the list

is properly shared between a prototype object and its extenders.

Since function objects do not have associated signature information, reassigning

bound function expressions is allowed only in typed code. Accomodating this re-

striction typically only requires minor adjustment, such as adding additional type

declarations. If this protection is too strict, an indirect assignment can be used.

Consider a modification of the PlayerConnection example, designed to sidestep this

protection:

var conn: declare PlayerConnection = new Connection ();

conn.player = player;

var sendName = function () {

this.send(this.player.name);

};

conn.sendName = sendName;

Unlike in the original example, the function is first assigned to a temporary vari-

able. As a result, no run-time protection occurs, since function objects cease to be

concretely typed once they are assigned. This level of protection was chosen as we an-

ticipate that method replacement is rare, and so being conservative in their protection

is reasonable.

In general, if an error is raised and exits the defining scope, locus type objects

such as conn are left in an incomplete state. However, either the object is completed

or the addLocusType call is not reached. Without the locus type attached to the

object, it fails to coerce to a locus type at run-time, preventing misuse.

The installation of a locus type is semantically similar to the construction of a

class in StrongScript. Because the branding occurs at the end, it additionally avoids

the constructor problem. The StrongScript paper [17] includes proofs that the type

system of LocusTypeScript without locus types is sound.

Concrete/sound type annotations are checked at run-time. Function members in

modules and classes are frozen to enable optimizations that avoid dynamic checks.

Runtime protection facilities are inherited from StrongScript.

4.10 Tooling

To aid programming with locus types, a modified version of the atom-typescript

plugin was developed using TypeScript’s tooling API. This plugin brings traditional

IDE features for LocusTypeScript to the Atom text editor. On-the-fly type checking
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is provided, allowing locus type sites to be changed with automatic feedback pro-

vided if existing types are broken. Type introspection and field autocompletion allow

programmers to scrutinize locus types, mitigating disadvantages their implicit nature

may have.

Standard refactoring options such as variable renaming are inherited from Type-

Script, as well as features specifically for working with locus types. As the inferred

type is available to the IDE, a refactoring option exists to make the inferred type

explicit. This feature allows programmers to use the inferred structure as a quick

starting point. Even a programmer uninterested in the benefits of locus types could

benefit from the concept by writing syntactically-light locus types and refactoring

them automatically into explicit types.

It is additionally possible that a static or dynamic analysis tool could automat-

ically find sites likely to be viable for locus types by using heuristics. With such a

tool, a programmer could quickly move from wholly untyped code to code with at

least some useful types.
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Chapter 5

Formal Properties

Locus types are a merger of two orthogonal technologies, namely gradual typing and

type refinement, and for brevity we do not reiterate the formal properties of both.

Instead, we focus on presenting the issues specific to implementing locus types. In

contrast to a typical JavaScript semantics, we require the ability to represent type

expanding objects, and we introduce primitives for protected fields and a form of

object tagging that upholds type invariants for locus type brands. We assume that

a set of locus type brands L has been provided, and a function that gives the addi-

tional object fields/brands, which necessarily accompany it, denoted elaborate(L).

elaborate essentially encompasses the inference necessary to discover locus types,

while we present here a core semantics, assuming elaborate has been resolved, that

allows for expanding objects in a manner the type system is aware of. elaborate

is resolved at a higher level, through flow-based type refinement discussed in Section

4.3.

5.1 Core semantics

We formalize the relevant core language of LocusTypeScript in a similar fashion as

[17]. We present relevant deviations from [17], which itself builds upon the func-

tional core of λJS. We formalize LocusTypeScript as an extension to λJS of [9]; a

distilled formal semantics for JavaScript. We equip λJS with a structural type sys-

tem, describing object types that contain protected type fields and locus type brands.

The interaction between concrete and non-concrete types remains largely inherited

from StrongScript, and is formalized in [17]. Unlike [17], we formalize only the in-

teraction between the any dynamic type and concrete types. The relevant typing

and evaluation rules are given in Figure 5.1, which formalizes the core typesystem

of LocusTypeScript. The structural type system is inherited from TypeScript and
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formalized in [1].

Syntax. A program consists of a collection of locus types plus an expression to

be evaluated. The type of dynamic expressions is any. C ranges over core classes, and

classifies core language types such as null, undefined, as well as number, boolean,

and string objects. In addition to unprotected fields (regular JavaScript fields), ob-

jects can have protected fields that protect writes to an object, ensuring that the field

is always a subtype of some type. Unlike StrongScript, union types feature in the for-

malization, as they occur naturally when deriving locus types. s represents the type

of string literals, t1 .. → t denotes function types, and the object type {s1:t1 .. | L1 ..}
denotes objects with protected fields s1:t1 .. and locus type brands L1 ..

1:

t ::= C | any | t1 .. → t | { s1:t1 .. | L1 .. } | t1 ∪ t2

As object types deal with rigidly protected fields, an object subtype must contain the

exact field types of the supertype, as stated by SObj (Figure 5.1):

{s1:t1.. sm:tm.. | L1.. L2..} <: {s1:t1.. | L1..}

This implies that a more specific protected field cannot act as a less specific protected

field, and vice versa. However, the actual value held by the field can be of a subtype.

We assume the presence of two conversion functions, toString and toBoolean, which

coerce values into the relevant JavaScript primitives. We omit the definition of these

standard JavaScript operations.

We omit the definition of a type function for values, which categorizes values into

their corresponding types. This function essentially applies rules TObj and TFunc

(defined in Section 5.1).

Expressions are inherited from λJS with some modifications:

e ::= x [Var] | { (s1:e1 | t1 ) .. | L1 .. } [Object]

| e1[e2] [Get] | e1[t ][e2] = e3 [Update]

| 〈t〉e [Cast]| e declare L [AddBrand]

| let (x :t = e1) e2 [Let] | delete e1[e2] [Delete]

| func(x1:t1..){return e : t} [Func] | e(e1..) [App]

| if (e) {el} else {er} [If]
1 Throughout, we denote lists l1 through ln simply as “l1..”. This list may be empty. If there

is only one list of its type and its contents are not relevant, we abbreviate it further as simply “..”.

We denote the concatenation of two lists as “l1.. lm..”. We denote an element appended to the list

as “l1..l”. We assume lists to have set-like semantics, such that appending duplicate elements is a

no-op.
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Functions and let bindings are explicitly typed, and expressions can be cast to ar-

bitrary types (with run-time validation). Objects, denoted {(s1:e1|t1 ) .. | L1 ..}, in

addition to the fields’ values, carry type tags for protected fields, and locus type

brands. Field tags allow for enforcing type soundness when objects are used dynam-

ically, with any representing unprotected fields. Typical dynamic JavaScript objects

have fields only tagged with any, and no locus type brands.

We assume the presence of a type function for values, which categorizes values into

the appropriate type, by categorizing primitives and applying rules such as TObj

and TFunc.

Evaluation contexts are defined as follows:

E ::= • | let (x :t = E )e2 | E〈t〉[e] | v〈t〉[E ] | E [e2] = e3 | v [E ] = e3

| v1[v2] = E | E (e1 .. en) | v(v1 .. vn , E, e1 .. ek) | E declare L

| {(s1:v1 | t1).. (s:E | t) (sm:em | tm).. | L1..} | deleteE [e] | delete v [E ]

| 〈t〉E | if (E ) {e2} else {e3} | if (v1 ) {E} else {e3}
| if (v1) {v2} else {E}
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[SFunc]

t <: t ′ t ′1 <: t1 ..
t1.. → t <: t ′1.. → t ′

[SUnionTo]
t1 <: t3 t2 <: t3

t1 ∪ t2 <: t3

[SUnionFrom]
t3 <: t2 ∨ t3 <: t1

t3 <: t1 ∪ t2

[SObject]

{s1:t1.. sm:tm.. | L1.. L2..} <: {s1:t1..|L1..}

[TVar]

Γ ` x : Γ (x )

[TSub]

Γ ` e : t1 t1 <: t2
Γ ` e : t2

[TFunc]

x1:t1.., Γ ` e : t

Γ ` func(x1:t1..){return e : t} : t1.. → t

[TAppAny]

Γ ` e : any

Γ ` e1 : t1 ..

Γ ` e(e1..) : any

[TApp]

Γ ` e : t1.. → t

Γ ` e1 : t1 ..

Γ ` e(e1..) : t

[TLet]

Γ ` e1 : t

x :t , Γ ` e2 : t ′

Γ ` let (x :t = e1) e2 : t ′

[TAddBrand]

Γ ` e : {s1:t1..|..} {s1:t1..|..} <: elaborate(L)
Γ ` e declare L : {s1:t1..|.. L}

[TGetDynamic]

Γ ` e1 : any Γ ` e2 : t
Γ ` e1[e2] : any

[TGet]

Γ ` e1 : {s1 : t1.. s : tr | ..}
Γ ` e1[s] : tr

[TDelete]

Γ ` e1 : any Γ ` e2 : t
Γ ` delete e1[e2] : any

[TIf]

Γ ` e : t1 Γ ` el : t2 Γ ` er : t2
Γ ` if (e) {el} else {er} : t2

[TCast]

Γ ` e : t1
t1 = any ∨ t2 = any ∨ t1 <: t2 ∨ t2 <: t1

Γ ` 〈t2〉e : t2

[TUpdateDynamic]

Γ ` el:tl Γ ` es:ts Γ ` er:tr
is not string literal(es)

Γ ` el[any][es] = er : tl

[TUpdate]

Γ ` e1 : {s1:t1.. s:tp|..}
Γ ` er : tr
tp = any ∨ tr <: tp
Γ ` el[tp][s] = er : {s1:t1.. s:tr|..}

[TUpdateCreate]

Γ ` el : {s1:t1..|..}
Γ ` er : tp
s 6∈ {s1..}
Γ ` el[tp][s] = er : {s1:t1.. s:tp|..}

[TObj]

∀Li ∈ {L1..}. {s1:t1..|L1..} <: elaborate(Li)

Γ ` {(s1:v1|t1)..|L1..} : {s1:t1..|L1..}

Figure 5.1: The type system
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[EApp]

(func(x1:t1..){return e : t})(v1..) −→ e{v1/x1.. }

[EGetNotFound]

s 6∈ {s1..}
" proto " 6∈ {s1..}
{(s1:v1|t1).. | ..}[s] −→ undefined

[EGetToString]

¬is string(v)

{..}[v ] −→ {..}[toString(v)]

[EGet]

{.. (s:v |t).. | ..}[s] −→ v

[EGetProto]

s 6∈ {s1..}
{(s1:v1|t1).. (" proto ":v |t).. | ..}[s] −→ v [s]

[ECast]

is not func(v)

type(v) <: t

〈t〉v −→ v

[ECastFun]

t ′ = t ′1.. → t ′′ ∨ (t ′ = any ∧ t ′1 = any .. ∧ t ′′ = any)

〈t ′〉(func(x1:t1..){return e : t}) −→
func(x1:t

′
1..){return 〈t ′′〉((func(x1:t1..){return e : t ′})(〈t1〉x1)..) : t ′′}

[EUpdate]

(tp = any ∧ t = t ′) ∨ (tp = t = t ′) ∨ (tp = t ′ ∧ t = any)

{.. (s:v |t).. | ..}[tp][s] = v ′ −→ {.. (s:〈t ′〉v ′|t ′).. | ..}
[ECtx]

e −→ e ′

E [e] −→ E [e ′]

[EUpdateNotFound]

s 6∈ {s1..}
{(s1:v1|t1).. | ..}[t ][s] = v ′ −→ {(s1:v1|t1).. (s:v ′|t) | ..}

[EIfTrue]

toBoolean(v) = true

if (v) {el} else {er} −→ el

[EIfFalse]

toBoolean(v) = false

if (v) {el} else {er} −→ er

[EDelete]

delete {.. (s:v |any).. | ..}[s] −→ { .. | ..}

[EUpdateToString]

¬is string(v)

{..}[tp][v ] = v ′ −→ {..}[toString(v)] = v ′

[EDeleteToString]

¬is string(v2)

delete v1[v2] −→ delete v1[toString(v2)]

[EAddBrand]

{ .. | ..} declare L −→ { .. | .. L}
[EDeleteNotFound]

s 6∈ {s1..}
delete {(s1:v1|t1).. | ..}[s] −→ {(s1:v1|t1).. | ..}

[ELet]

let (x :t = v) e −→ e{v/x }

Figure 5.2: The run-time semantics
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5.2 Metatheory

In LocusTypeScript, values are expressions that have evaluated to functions, and

objects whose fields contain values. We say that an expression is stuck if it is not

a value and no reduction rule applies. We say that an expression is well-typed if a

type can be given to it through the typing rules (intuitively representing a program

without type errors).

Lemma 5.2.1 (Step-wise Preservation). Given a well-typed expression Γ ` ebefore :

tbefore , if ebefore −→ eafter, then Γ ` eafter : tbefore .

Proof: The lemma is considered for every possible construction of ebefore.

If ebefore is a Var or Func then the expression is a value and the lemma is

vacuously true (since no further evaluation occurs).

If ebefore is an Object, and presuming the lemma holds for its component expres-

sions e1.., then ECtxt preserves the object type tbefore, and eafter : tbefore.

If ebefore is an If, then both sub-expressions el and er are typed as tbefore. Re-

gardless of which is used when evaluating EIf, eafter : tbefore.

If ebefore is an App, then EApp substitutes x1.. for v1.., where x1.. and v1.. match

in type, and evaluates e with this substitution. Since e : tbefore, and the substitution

e{v1/x1..} does not change this type, then eafter : tbefore.

If ebefore is a Let and typed as tbefore, this implies the evaluated expression e2 is

also typed as tbefore. Since e2 : tbefore, and the substitution e{v/x} does not affect

this type, then eafter : tbefore.

If ebefore is an AddBrand then tbefore = {.. |.. L}, modifying the type of e to add

a type tag L if it is not already present. Since this mirrors the addition of L during

EAddBrand, eafter : tbefore.

If ebefore is a Delete then eafter : tbefore = any from the definition of TDelete.

If ebefore is an Update where TUpdateDynamic applies, then either evaluation

gets stuck and the lemma is vacuously true, or a field is updated with an appropriate

type. Since the object type is preserved, eafter : tbefore.

If ebefore is an Update where TUpdate applies, then either evaluation gets stuck

and the lemma is vacuously true, or a field without protection is updated/created.

Since fields without protection do not affect the objects type, eafter : tbefore, then

tbefore = any, which can apply to any expression, thus eafter : tbefore.

If ebefore is a Cast, and the casting type (tbefore) is a non-function type, evaluation

gets stuck during ECast if e is not typable as tbefore. If ebefore is a Cast, and tbefore
is a function type, then the value is wrapped in a function of the appropriate type.

Therefore, in both cases, after the cast evaluates then eafter : tbefore.
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If ebefore is a Get where TGetDynamic applies and does not get stuck then

trivially eafter : tbefore = any. If ebefore is a Get where TGet applies. Since ebefore is

defined as well-typed, then e1 has a component s of type tr = tbefore. Through rule

EGet, we extract this component as eafter, and thus eafter : tbefore.

The lemma is true for every possible construction of ebefore, and thus the lemma

holds. �

Theorem 5.2.2 (Preservation). Given a well-typed expression Γ ` e : t , if e −→∗ v,

then Γ ` v : t .

Proof: Preservation follows from the Step-wise Preservation lemma. Since the Step-

wise Preservation lemma ensures that types are preserved for any individual step,

they must also be preserved for an arbitrary sequence of steps. Note that Step-wise

Preservation lemma requires each intermediate step to be well-typed; this condition

is preserved along with typings. �

Lemma 5.2.3 (Step-wise Progress). A “strictly-typed” expression Γ ` e : t is defined

as a well-typed expression with each sub-expression esub satisfying esub : tsub 6= any,

each Cast sub-expression 〈tcast〉esub satisfying esub : tsub <: tcast (i.e, no down-

casts), and each Update sub-expression having the form el[tp ][s ] = er satisfying

tp = tfield(s) 6= any, where tfield is a function relating each label s to a consistently

used type tfield(s), and each Object sub-expression having its labels s1.. : tfield(s1)..

.

Given a “strictly-typed” expression Γ ` ebefore : tbefore , either ebefore −→ eafter for

a “strictly-typed” eafter, or ebefore is a value.

Proof: We show, through deconstruction of every case, that either ebefore −→ eafter or

ebefore is a value. It is implied that eafter is “strictly-typed” due to lack of introduction

of sub-expressions that would break the conditions presented, unless otherwise noted

(namely, for Cast and Update).

If ebefore is a Var or Func then ebefore is a value.

If ebefore is an Object, then ebefore −→ eafter through ECtxt unless ebefore is a

value. Therefore, either ebefore −→ eafter or ebefore is a value:

If ebefore is an If, then ebefore −→ eafter through EIf.

If ebefore is an App, then the typing rule TApp is used (since e : tsub 6= any), then

EApp always applies, as e must evaluate to a function value of the correct arity, then

ebefore −→ eafter through EApp.

If ebefore is a Let, then ebefore −→ eafter through ELet.

If ebefore is an AddBrand then EAddBrand applies as e : {.. |.. } (by TAd-

dBrand), and thus ebefore −→ eafter through EAddBrand, which applies to any

value with an object type.
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If ebefore is a Delete, then TDelete cannot apply as e1 : any would be a

contradiction. The hypothesis is vacuously true.

If ebefore is an Update then the typing rule TUpdate is used, as only Update’s

with string literal indices can occur in the expression ebefore. If the field s is not

already present, then ebefore −→ eafter through EUpdateNotFound. If the field is

present, then, due to ebefore being “strictly-typed”, Object and Update operations

are constrained such that if a field s is ever introduced, then el[s] : tfield(s) = tp.

Then, since the field type is consistent with the protection type, ebefore −→ eafter
through EUpdate. While EUpdate introduces a cast, this must necessarily be an

up-cast (allowed) as TUpdate ensures that er : tr <: tp (recall tp 6= any, due to

the expression being “strictly-typed”). Since only up-casts are introduced, eafter is

maintained as “strictly-typed”, as desired.

If ebefore is a Cast, then TCast applies with t1 <: t2 (due to up-casts not

being allowed in a “strictly-typed” expression). If t2 is not a function type, then

ebefore −→ eafter through ECast and the expression remains “strictly-typed” triv-

ially (as no problematic constructs are introduced). If t2, however, is a function type,

then ebefore −→ eafter through ECastFun, then a wrapper function is used and each

argument of e is cast to the argument types of t2, and the return value of e is cast to

the return value of t2. Since e : t1 <: t2, through SFunc, these are guaranteed to be

up-casts, and the expression remains “strictly-typed”, as desired.

If ebefore is a Get, then TGet applies as e1 cannot have type any. Since ebefore
is well-typed, then e1 has a component s of type tr = tbefore. Thus ebefore −→ eafter
through EGet, which extracts this s component.

Theorem 5.2.4 (Progress). Given a “strictly-typed” (as defined above) expression

Γ ` e : t , then if e −→∗ e′, then e′ is a value. In other words, e does not get stuck.

Proof: Progress follows from the Step-wise Progress lemma. Since the Step-wise

Progress lemma ensures that a “strictly-typed” expression either takes a single step

while staying “strictly-typed”, or is a value, we can take this over an arbitrary number

of steps to show that a terminating program eventually produces a value, and a

“strictly-typed” e does not get stuck. �

The Progress theorem implies that a well-typed expression that avoids the type

any and applies a strategy for avoiding clashing protections (such as a global one

type per field name policy, as in the definition of “strictly-typed”, or only creating

protected fields on objects for which the exact type is known) does not cause run-time

errors. While, the “strictly-typed” condition has quite a strict restriction on updates,

managing potential run-time errors that can occur in a well-typed program does not

require as stringent constraints as presented, due to the inherently structured nature
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of how updates are used in real LocusTypeScript programs. In LocusTypeScript,

protected fields occur only in locus type declaration sites, and run-time errors can

be avoided by having well-defined locus type hierarchies. For context, consider the

PlayerConnection example: Assuming a fully typed expression, the only possible

cause of unsoundness (run-time error) is if the Connection object already contains

incompatible player and sendName members, and those members are not statically

known. As long as no such assignments are possible, the resulting expression is

guaranteed to be sound.

Theorem 5.2.5 (Locus Type Consistency). Given a well-typed expression Γ ` e : t ,

then if t <: {|L}, then necessarily t <: elaborate(L).

Proof: Locus Type Consistency follows from restrictions on both the AddBrand

and Object expressions, the only expressions which can introduce a locus type L.

Locus Type Consistency is enforced by only typing expressions where elaborate(L)

are statically known to be present and L is to be added/included. �

Due to Locus Type Consistency, a single check for an object brand implies all the

type information in elaborate(L). As well, this invariant is necessary for locus types

to have a predictable structure when used as types throughout the program that is

richer than just a single type tag.

5.3 Imperative extensions

We extend the language presented with imperative constructs, illustrating how the

functional core can be augmented to easily support the operations found in impera-

tive languages. These constructs are analyzed at a high level during the resolution of

elaborate, described in chapter 6. The additions presented here focus on introducing

local mutable state. Global mutable state, like that in LocusTypeScript, can likewise

be formalized in terms of this local state by passing state to every function and return-

ing the resulting modifications. Object aliasing, another feature of LocusTypeScript,

however, would require extensions to the core functional language. These extensions

have been omitted as they are largely orthogonal issues, which would add baggage

to the formalization, requiring some formalization of the JavaScript heap. The type

preservation problems potentially faced by object aliasing are handled via run-time

protection of object constraints. Furthermore, any program that is fully typed and

has a global policy of avoiding protection clashes remains sound under aliasing, as

the Safety rule remains applicable.

The SetVar operations allow for modifying variable bindings, making the local con-

text act as if it were mutable. These bound variables are used exactly as normal
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[DSetVarNotFound]

s 6∈ {s1..}
set s t e −→ func(s1:t1..){return {(s1:v1|t1).. (s:e|t) | } : {s1:t1.. s:t| }}

[DSetVarUpdate]

set s t e −→ func(s1:t1.. s:t){return {(s1:v1|t1).. (s:e|t) | } : {s1:t1.. s:t| }}
[DEval]

Γ ` stmt : () → {s1:t1..|}
eval stmt e −→ func(s1:t1..){return e : t}(stmt( ))

[DPair]

Γ ` stmt1 : t1.. → {s′1:t′1..|}
Γ ` stmt2 : t ′1.. → {s′′1:t′′1..|}
stmt1 stmt2 −→ func(s1:t1..){return stmt2(stmt1(s1..)) : {s′′1:t′′1..|}}

[DWhile]

loop = func(s1:t1..){return if (e) {loop(stmt(s1..))} else {s1..} : {s1:t1..|}}
while (e) {stmt} −→ loop

Figure 5.3: The imperative desugaring

function/let bindings in the core language presented. To read the current variable re-

sult, we introduce the GetVar expression, and the Eval expression, which evaluates

an expression in terms of a statement:

stmt ::= stmt1 stmt2 [Pair]

| set s t e [SetVar]

| while (e) {stmt} [While]

e ::= ...

| eval stmt e [Eval]

The imperative language extensions are defined using a simple desugaring scheme

to the base language. An imperative program consists of an Eval operation, which

executes a statement and returns an evaluated expression. In this context, the “−→”

operator indicates ‘desugars to’, and is assumed to complete entirely before evaluation,

using information from typing judgements. String literals s1.. are used to signify

members of an intermediate object holding the evaluation state, as well as the labels

for intermediate function arguments. We implement the stmtoperations by desugaring

them to a function that takes the previous state s1:t1.. and returns the changed result

(wrapped in an object).
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Minor syntactic leniences and points of ambiguity were used for brevity. We abuse

syntax somewhat by assuming implicit unboxing of objects passed to a statement op-

eration, such that passing an object {s1:v1|t1.. | } implies passing the arguments v1..

in the correct order. Conversely, returning the values v1.. is assumed to appropri-

ately box the arguments into an object. The correct order of unboxing would be

resolved during the desugaring phase. The unboxing and boxing operations are es-

sentially boilerplate to allow for passing along local binding contexts as values, and

their details are intuitive. There are ambiguities of how to apply types to the desug-

aring, reflecting different types that are possible in a sound system. For example, in

While desugaring, a uniform type must be assigned to the two possible results of a

conditional. In LocusTypeScript, the union of the two possible results is used. We

present how these and other imperative constructs are analyzed by LocusTypeScript

in chapter 6.
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Chapter 6

Locus Type Elaboration

We present the algorithm for computing the fields and brands in elaborate(L) of

section 5.1, from the modifications made to a locus type variable. The locus type

structure is determined from this variable, and implicit AddTag operations are

added when the defining scope exits. The algorithm presented here applies broadly

to imperative languages. The algorithm is presented using a simplified imperative

language, with Update operations to a single object field. An extension to analyzing

full objects is discussed.

6.1 Language abstraction

The algorithm performs conservative flow-based type refinement, assuming that all

code paths are possible. As such, the features of the imperative language being ana-

lyzed are distilled to only a few relevant details needed for analysis of some particular

object member. Loops and conditionals are simply represented as branches, as only

the control flow details necessary for analysis are preserved. The only relevant detail

for a block is whether it definitely occurs, or conditionally occurs. Similarly, all state-

ments that change the type of the analyzed member are represented as an Update

operation.

〈statement〉 ::= Update 〈type〉
| Branch 〈statement〉 〈statement〉
| Block 〈statement-list〉
| Exit 〈number of blocks to exit〉

〈statement-list〉 ::= ε

| 〈statement〉 〈statement-list〉
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An Update represents any operation that can change the type of the currently

analyzed object member. This covers direct language constructs such as an assign-

ment to the object member, as well as indirect constructs such as function calls that

pass the object to a parameter with a locus type declaration.

A Branch abstracts any code-flow that causes mutually exclusive code paths to

be taken. Any structured control flow maps trivially to one or more Branch nodes.

A Block bundles a series of sequentially evaluated statements. Blocks exit

naturally when the series of statements end, as well as from relevant Exit statements.

An Exit represents an imperative language control-flow jump statement such as

JavaScript ‘continue’, ‘break’, or ‘return’. It has an associated number indicating how

many blocks down it exits from.

6.2 Overview

The algorithm presented here computes a single member of elaborate(L). The input

to the algorithm consists of a function distilled to the abstraction presented here-in,

with respect to some object member m. The distillation treats all blocks that occur

0 or more times as conditional Branchs, and all blocks that definitely occur at

least once as unconditional Blocks. The output of the algorithm is a final type T

computed for the member. Intuitively, for accepted inputs, the algorithm considers

the permutations of each code branch (one branch or the other occurring) and exit

(occurring or not occurring, note that unconditional exits are not modeled), and

calculates T to be the union of the last assigned types in each permutation of control

flow. Correct implementation of this is argued in Section 6.5, under Union of all

possible results.

Certain inputs, however, are rejected (i.e., cause a static error) to avoid assign-

ments that are considered error-prone. If two or more assignments exist in the same

block and nesting level, each assignment must be either a subtype or supertype of

the previous assignment. This prevents the first assigned type from being overridden

by assignments that follow, preventing potentially inconsistent usage of the member.

This limitation is applied only to assignments in the same nesting level and block to

allow for conditional assignment to different types. Correct implementation of this is

argued in Section 6.5, under Disjoint type assignments.

As an example, consider the analysis of an object member obj.x in a contrived

function gainsX:

function gainsX(obj: declare HasX) {

obj.x = 1;

if (Math.random () > .5) {
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obj.x = "string";

}

while (Math.random () > .5) {

obj.x = "string";

}

}

The following intermediate form results:

function gainsX(obj: declare HasX) {

Update number

Branch // if

Block {Update string} // obj.x = "string"

Block {} // empty else case

Branch // while

Block {Update string} // obj.x = "string"

Block {} // loop never occurs case

}

After calculating the union of the final assigned type after all possible permuta-

tions of control flow, the final type of obj.x is analyzed as number ∪ string. Note

that the fact that the body of the while loop may occur multiple times does not

change the result of analysis, and as such the if statement and while statement are

represented identically.

As another example, consider the analysis of an object member obj.x in a function

gainsXIndirectly that calls gainsX:

function gainsXIndirectly(obj: becomes HasX) {

gainsX(obj);

}

Here, the following intermediate form results, after analysis of gainsX:

function gainsXIndirectly(obj: becomes HasX) {

Update number ∪ string
}

6.3 Internal analysis state

The algorithm internally keeps a state tuple (T,E,A) used to compute the updated

type after each program statement.

T represents the type previously assigned to the component (i.e, the field under

analysis).
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E is a list of pairs (b, Texit) holding the type Texit analyzed at an exit statement

(e.g., continue, break, return in JavaScript). A block number b is associated, signifying

how many nested blocks the exit escapes from.

A represents the assignability status of the analyzed object member. In the al-

gorithm presented here, a simple rule enforces that two unrelated types cannot be

assigned in the same block. This is an arbitrary heuristic, used to disallow direct

member overwriting, which can occur easily from programmer mistakes. The A tuple

member is used to track this. If A is true, the component can be locally overriden

with any type. Otherwise, the overriding type must be a subtype of the current type,

or vice versa.

Initially, the state tuple holds (undefined, ε, true), signifying that the object

member is not yet assigned, the exit list is empty, and the object member is freely

assignable.

6.4 Algorithm

The algorithm shown in figure 6.1 is defined as a function on the 〈statement〉 and

〈statement-list〉 grammar elements.

Rule (1) handles assignments and type changes due to function calls, T ′ is either

a special error value or the assigned type.

Rule (2) handles branches, analyzing them both with the same state tuple, and

returning a union of the results.

Rule (3) handles exit statements, adding a (b, Texit) pair to the E list of pending

exits, where b signifies number of blocks to exit from, and Texit the type analyzed at

that block.

Rule (4) handles block entry, starting analysis of the S statements with an empty

E pending exit list, and A being true.

Rule (5) handles the block body, sequentially updating the (T, E, A) tuple over

the block statements.

Rule (6) handles the block exit. The list E has all its b values decremented, and

elements with b = 0 are removed. T ′ is the union of the normal exit type with the

removed Texit values.

6.5 Proof of properties

Termination: Since all algorithm rules recursively destructure a finite tree the

algorithm must always terminate.
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type (Update Ta) T E A = (T ′, E, false) (1)

where T ′ = if A ∨ (Ta <: T ) ∨
(T <: Ta) then Ta else error

type (Branch sl sr) T E A = (T ′, E ′, A) (2)

where T ′ = union Tl Tr

E ′ = concat E El Er

(Tl, El, ) = type sl T E A

(Tr, Er, ) = type sr T E A

type (Exit b) T E A = (T, E ′, A) (3)

where E ′ = append E (b, T )

type (Block S) T E A = ( T ′, E ′, A) (4)

where E ′ = concat E Enew

(T ′, Enew, ) = type S T ε true

type (shead Stail) T E A = (T ′′, E ′′, A′′) (5)

where (T ′′, E ′′, A′′) = type Stail T
′ E ′ A′

(T ′, E ′, A′) = type shead T E A

type ε T E A = (T ′, E+, A) (6)

where T ′ = union T (map E0 λ(b, Texit).Texit)

E+ = filter Edec λ(b, Texit).¬(equals b 0)

E0 = filter Edec λ(b, Texit).(equals b 0)

Edec = map E λ(b, Texit).(b− 1, Texit)

Figure 6.1: Flow-based type refinement
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Sequential handling: We show that the algorithm propagates assignments through

the program tree sequentially. Observe that rules (2) and (4) simply recurse. As well,

rule (5) computes T ′′ with the list tail from T ′ with the list head from T . This is

the correct ordering. Other rules compute their type without recursion. Thus the

program tree is handled sequentially.

Union of all possible results: We show that blocks consider the union of all possible

exits as their final type. We consider each rule, showing they are correct in isolation:

(1) No effect on exits.

(2) Returns E ′, a concatenation of the previous E and the new El and Er. Assuming

that ‘type’ is correct over sl and sr, this rule is correct as all exits are considered.

(3) Appends a single exit. At this point, it has a correct b value by definition, and

captures Texit as the current type, as desired.

(4) Concatenates Enew to the exit list. It gives ε to the ‘type’ function, thus assum-

ing the statement list is analyzed correctly, Enew should correctly be the exits

defined in that block.

(5) Applies sequential application over statements. Since we conservatively consider

all exits as conditional, the sequential consideration of every statement is the

expected behaviour here.

(6) Always invoked exactly once per block, as a block exits. The assumed correctness

of the other operations implies that we have a correct list of exits at this point,

except their b values are off by 1. Edec remedies this. Next, the b = 0 cases

in Edec are discarded and used to find the appropriate exit types. Inductively,

since this scheme works for b = 1 exits in one block, it will correctly handle

exits with arbitrary b.

Disjoint type assignments: We show that the A heuristic correctly only bars type

over-writing within the same block:

(1) Correctly sets A to false, indicating only types with a subtyping relation can be

assigned.

(2) Simply preserves A, as a Branch is considered a block for this purpose.

(3) Preserves A.

(4) Preserves A, and unconditionally starts the block with an A value of true, iso-

lating it.
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(5) Irrelevant to correctness: Enforces sequential evaluation.

(6) Irrelevant to correctness: the A value returned is not used in 4.

6.6 Extension to full objects

In implementation, we perform flow-based refinement over the entire defining object,

as opposed to a single member at a time, as we require the entirety of the structure

for typing judgements. Consider a variable that holds an object, annotated with a

locus type declaration defining a type L. Let R be the set of intermediate references

to that variable. To inform the type system from the host language, we must com-

pute the final shape before the variable leaves scope (elaborate(L)), along with the

intermediate shape of o for each reference r ∈ R. We compute whether the current

object’s type t <: elaborate(L). 1 If that is the case, we insert an AddBrand

operation, and the object is of type L.

While the type function is defined above for a single object member, it is trivially

extended to analyze an object’s member set and locus type brands. We track the

current shape of the object with an object type from 5.1, {s1:t1 .. | L1 ..}. Update

nodes can represent a call site from which the object o is known to have gained a locus

type brand Ld. If the object o is passed to a parameter with a locus type declaration

Ld, it gains the fields and brands of Ld (if valid). Unlike the single-field Update

shown, however, this type information is discarded if the type is gained in only one

side of a Branch.

The flow-based refinement algorithm is used in parallel with existing type inference

to define types. The flow-based reasoning informs type inference, and vice versa.

However, since flow-based reasoning can invoke more flow-based reasoning indirectly,

some circular cases arise. These cases have been observed to be rare.

6.7 Handling recursive types

Consider if during analysis of a locus type TA we arrive at a type TB, which in turn

uses components of type TA. To avoid circular dependence, TA instead must use a

computed T ′B type, a version of TB that does not depend on TA. T ′B is itself computed

with flow analysis, but treats members that exhibit circular dependence as untyped.

The flow-based refinement algorithm can be used in parallel with existing type

inference to define types, with the flow-based reasoning informing type inference and

1Note, however, unlike the subtyping rule of section 5.1, field types may be subtypes of those in

elaborate(L).
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vice versa. However, since flow-based reasoning can invoke more flow-based reasoning

indirectly, some circular cases arise. In the case that resolving the algorithm for

a single member exhibits a circular dependency, the member should be considered

untyped if its type is needed during its own resolution. While a more precise type

may be possible to derive, leaving a value dynamically-typed is a pragmatic solution

to this relatively rare case.

Consider the following (contrived) example of mutually recursive types Chicken

and Egg:

function Chicken(this: declare Chicken; egg: Egg) {

if (egg === undefined)

this.cameFirst = "chicken";

else

this.cameFirst = egg.cameFirst;

}

function Egg(this: declare Egg; chicken: Chicken) {

if (chicken === undefined)

this.cameFirst = "egg";

else

this.cameFirst = chicken.cameFirst;

}

When, for example, Chicken is evaluated, the circular dependency is detected

during analysis, and egg.cameFirst is computed using Egg’, an intermediate type

computed assuming all Chicken members are untyped. Since string ∪ any is any,

Chicken.cameFirst has type any (i.e., is untyped). The judgement Egg.cameFirst

: any follows similarly. While an analysis of string would be ideal, deriving this

type would require significant additional complexity. If a single annotation were to

be added, for example, in Egg:

this.cameFirst =

<string > chicken.cameFirst;

Then Egg.cameFirst : string would result regardless of analysis of Chicken, and

Chicken.cameFirst : string would follow.

6.8 Variations and extensions

The algorithm model does not support statements such as C’s ‘goto’, which would

require support for labeling code positions. However, the algorithm would treat it

similarly to Exit, simply unioning with a stored type when a label is crossed.
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The choice to disallow two assignments of unrelated types in the same block is ar-

bitrary. This heuristic can be made more strict to disallow unrelated types in general.

This strictness would suit type systems without union types, as there would always

be a base type that covers both types, but not allow very common JavaScript use

cases such as boolean ∪ string. Alternatively, to remain true to dynamic semantics,

this heuristic can be simply dropped, at risk of not catching type errors.
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Chapter 7

Performance

7.1 Performance

We measure the performance impact of locus types in LocusTypeScript. LocusType-

Script’s only overheads arise from the installation of brands and type protection,

neither of which are fundamental to locus types. With both of these features dis-

abled, LocusTypeScript completely erases types, creating no overhead at all, so we

measure the performance with these features enabled. For this experiment, we aug-

mented a small number of programs with locus types and compared the result of

running those on the V8 optimizing virtual machine and compared the program at 3

levels of run-time enforcement. The results are shown in Figures 7.1 and 7.2.

Firstly, the “Erased” level of run-time enforcement refers to locus types compiled

with complete type erasure. The emitted code is just a type-erased form of the original

code, making it equivalent to JavaScript.

Secondly, the “Reified” level of run-time enforcement refers to locus types compiled

only with the operations required to support declaredas. The emitted code tracks

the locus types declared for every object.

Thirdly, the “Protected” level of run-time enforcement refers to locus types com-

piled with full run-time protection, building on that of StrongScript. The emitted

code installs getters and setters for protected fields.

As a baseline we used the benchmark suite provided by SafeTypeScript [16], which

is in turn based on Octane 7. The benchmarks are crypto, navier-stokes, raytrace,

richards and splay, presented in that order. These benchmarks were readily avail-

able in TypeScript, allowing for easy translation to LocusTypeScript. TypeScript

ES6-style classes were translated to traditional JavaScript classes, annotated with

locus types. Each benchmark times long-running iterative processes; iterations are

performed before timing begins to allow the JIT a warmup period. We ran each
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Erased Reified Protected

runtime std dev runtime std dev runtime std dev

383 0.5 382 0.5 635 2.2

392 0.9 389 2.4 788 7.6

37 0.4 61 0.3 3808 1.6

120 1 120 0.5 819 9.3

317 3.5 334 4.5 2186 21.5

Figure 7.1: Performance comparison of differing levels of enforcement.

Reified Protected

Benchmark slowdown slowdown

crypto 1% 66 %

navier-stokes 0% 110%

raytrace 96% 10192 %

richards 0% 583 %

splay 5% 590 %

Figure 7.2: Performance comparison on the V8 VM. Times are in milliseconds, lower

is better.

of these benchmarks 20 times for the three levels of enforcement. Performance for

“Reified” is reasonable, given that it simply tracks a list on locus type objects. Per-

formance problems for “Protected” largely stem from the installation of protection

accessors. During tuning for the these bench marks, small differences were found to

have profound effect on performance. The raytrace test was found to be particularly

brittle, with dramatic slowdown with just an additional brand field being installed

for every constructor. Extreme slowdowns occur with full protection due to the poor

optimization of special fields in JavaScript. If locus types were supported at the level

of the virtual machine, that cost would almost entirely vanish.

The benchmarks were run on Node.js 4.4.5, on an Intel i7-4770k with 16GB of

RAM, running Fedora 20.
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Chapter 8

Software

The implementation of LocusTypeScript was built on the StrongScript compiler as a

practical means of focused work on locus types. While providing rich type concepts,

the TypeScript compiler lacks facilities for types that change code semantics. These

facilities are desirable for implementing sound locus types through run-time protec-

tion. StrongScript’s system for run-time checks was amenable to our needs, and thus

it was chosen as a base. The StrongScript compiler was updated to be in-sync with

TypeScript 1.6, and thus the implementation fluently supports the majority of the

features of TypeScript 1.6.

The implementation is open source, and can be found at https://github.com/

ludamad/LocusTypeScript. The installation requires the use of “jake” build sys-

tem, and can be built with the instructions listed at the provided URL.

To support programming in LocusTypeScript, the IDE API of the TypeScript

compiler was extended. Using this extended API, a plugin for the Atom text edi-

tor was created, based on the atom-typescript plugin. The plugin can be found at

https://github.com/ludamad/atom-locustypescript, with installation instruc-

tions provided. With this plugin, a fully featured IDE for programming in multifile

LocusTypeScript programs is made available, with refactoring options for turning

locus types into conventionally explicit types.
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Chapter 9

Conclusions and Future Work

Locus types are a new technique for declaring types in a syntactically-minimal way.

By marrying existing flow-based type refinement with existing gradual typing, much

of the tedium of explicit specification can be eliminated. We believe that locus types

fit dynamically-typed programming languages well, as “code is types”. Locus types

embody intuitive notions of type, as they type objects based on code sites they have

flowed through. Locus types can be used to type objects created with a constructor,

akin to traditional classes, as well as to express types with a temporal meaning such

as “objects that have passed some security check”. Since enforcement depends on

techniques already available in gradually-typed languages, locus types are usually

semantically equivalent to explicitly-specified types, and so can be used transparently

in existing systems. We believe that locus types provide a useful stepping stone

in gradually-typed languages, making the declaration of types easier on dynamic-

language programmers, and are relatively uninvasive for implementers.

At present, LocusTypeScript’s error messages are essentially StrongScript’s error

messages, with some additional errors about incompatible types. Because locus types

are derived from type refinement, these error messages could be made much more

expressive. Every type error involving a locus type can refer to the exact line(s) of

code which caused the refinement engine to infer the incompatible type. Because

these errors would allow programmers to compare the types inferred to the relevant

parts of code, we believe they could be more useful than the simple type errors already

provided.

The design of locus types as presented highlighted concerns found in JavaScript.

However, it is likely other languages have their own unique considerations for locus

types that can be explored. Likewise, alternate designs for defining types using flow-

based type refinement in JavaScript could also be explored.
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