Static Conflict Analysis of Transaction Programs

Connie Zhang

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2000

(©Connie Zhang, 2000

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my

examiners.

I understand that my thesis may be made electronically available to the

public.

11

Abstract

Transaction programs are comprised of read and write operations issued
against the database. In a shared database system, one transaction pro-
gram conflicts with another if it reads or writes data that another transac-
tion program has written. This thesis presents a semi-automatic technique
for pairwise static conflict analysis of embedded transaction programs. The
analysis predicts whether a given pair of programs will conflict when executed

against the database.

There are several potential applications of this technique, the most obvious
being transaction concurrency control in systems where it is not necessary to
support arbitrary, dynamic queries and updates. By analyzing transactions
in such systems before the transactions are run, it is possible to reduce or

eliminate the need for locking or other dynamic concurrency control schemes.

111

Acknowledgment

I would like first to acknowledge the guidance given me by Dr. Ken Salem. In
his role as supervisor, he continuously advised and aided me. It is my extreme
good fortune to have studied under Ken, who is a wonderful person and an
amazing professor. I am sincerely thankful for his patience and support.

My readers also deserve special commendation for their diligence in identify-
ing shortcomings in the thesis and in suggesting solutions. Thank you very
much, Professors David Toman and Grant Weddell.

Additional thanks are due to the DEMO lab members, Mr. Tim Snider
and Dr. Tan Davis, for their co-operation and patience in dealing with my
questions and requests.

I'had a marvelous time as a graduate student in the Database Research Group
and the Computer Science department. Extra thanks must go to Professor
George Labahn for his help and encouragement. As well, I wish to thank
David, Grant, Tim, lan, Professor Frank Tompa, and all my friends in the
Department for the many stimulating discussions that I will dearly miss.

Financial support from Communications and Information Technology On-
tario (CITO), Ontario Graduate Scholarship (OGS), the Department of Com-
puter Science and the University of Waterloo is gratefully acknowledged.

Finally, deepest thanks to my mum who is also my good friend and my best
role model. Last, but not least, I want to thank Jeff for everything — what
would I have done without you.

Connie Zhang

Department of Computer Science
University of Waterloo
September 2000

v

Contents

1 Introduction
2 Overview

3 Description of Techniques
3.1 Modeling Transaction Programs
3.1.1 Definitions and Notation
3.1.2 Read Selects and Write Selects
3.2 Pairwise Transaction Analysis
3.2.1 Combining Selects Lo

3.3 Implementation L

4 Generating Read and Write Selects
4.1 Generating Read and Write Operations
4.2 Generating Read and Write Selects
4.2.1 Generating Read Selects

4.2.2 Generating Write Selects

5 Examples
51 Examplel oo
5.2 Example2o

5.3 Exampledo

6 Applications and Related Work
6.1 Application 1: Transaction Management
6.2 Application 2: Active Databases
6.3 Application 3: Standing Queries L.

6.4 Predicate Satisfiabilityo 000

7 Summary and Future Work

A Database Model

B Sample Employee Database

C The DEMO System
C.1 Query Canonical Form
C.2 Existential Query Graph (EQG)

Vi

44

45

48

30

54

o4

39

60

61

63

66

71

74

List of Tables

3.1

4.1

4.2

Al

Notations Representing Elements in an EQG

Generating Read Selects from Database Write Operations . . .

Generating Write Selects from Database Write Operations

Syntax of Database Read and Write Operations

Vil

List of Figures

2.1

3.1

3.2

4.1
4.2

4.3

5.1

6.1

B.1

C.1

Pairwise Transaction Analysis 6
Creating the Union of Two Queries 16
Creating the Intersection of Two Queries 18
Generating Read and Write Selects 31
Generating Read Selects: “Pumping” 35
Generating Read Selects: “Exploding” 36
Example 3: Segment of Existential Graph 53
Layering of a Transaction System 55
E-R Diagram of the Employee Database 71
A Sample Existential Grapho 78

V1ii

Chapter 1

Introduction

A transaction program is a program with operations that access and possibly
update various objects in a shared database [1]. One transaction program
conflicts with another if it reads or writes data that the other has written. If
the sets of objects to be read or updated by the program could be described,
then these sets could be compared to similar sets from another transaction
program. The transaction programs may conflict if there exist common ele-

ments in the sets,

The main contribution of this thesis is a semi-automatic technique for pair-
wise static conflict analysis of transaction programs. The analysis predicts
whether a given pair of programs will conflict when executed against the

database.

CHAPTER 1. INTRODUCTION 2

The thesis presents a procedure for transforming a transaction program into
a read query that describes all of the objects on which the transaction pro-
gram might depend, and a write query that describes all of the objects the
same transaction program might insert, delete or modify. Next, the thesis
describes a method of analyzing conflicts between two transaction programs
by intersecting the read and write queries from one transaction program
with the read and write queries from the other. By using a tool developed
by the Design Environment for Memory-resident Object-oriented databases
(DEMO) project at the University of Waterloo, the DEMO query optimizer
(Appendix C), it can then be determined whether the intersection of the sets
is empty. A non-empty intersection implies a potential conflict between the
two input transaction programs. If the input programs contain parameters,
then the result returned from the DEMO query optimizer can be analyzed to
determine conditions under which the intersection of the transaction access

sets may not be empty.

The thesis is organized as follows. Chapter 2 provides an overview of the
technique: what steps are involved in the conflict analysis, and how the
steps fit together. Chapter 3 describes the steps in more detail: what algo-
rithms are used, what input each step expects, and what output it produces.
Chapter 5 contains a number of examples that illustrate how the technique is
applied. The basic concept in the thesis is reminiscent of predicate locks used

for concurrency control [2]. Chapter 6 describes this and other related work

CHAPTER 1. INTRODUCTION 3

and compares it to the approach presented in the thesis. There are several
potential applications of the technique, the most obvious being concurrency

control. Such applications are also discussed in Chapter 6.

Finally, Chapter 7 sums up the results of this work, and notes possible av-

enues for future work.

Chapter 2

Overview

The goal of the semi-automatic process described in this thesis is to take a
pair of transaction programs and analyze them for potential run-time con-
flicts. That is, the process determines whether the changes made to the
database by the execution of one program might affect the execution of the

other program.

Transaction programs may be parameterized. Values are bound to the pa-
rameters each time the program is executed. The conflict analysis process
occurs before the transaction programs are executed. Therefore, parameter
values are not known at the time of the analysis. For this reason, the re-
sult of the analysis is also parameterized. Specifically, the result is a conflict

predicate written in terms of the parameters of the transaction programs.

CHAPTER 2. OVERVIEW 3

A transaction is the execution of a transaction program with a particular
set of values bound to its parameters. Two transactions can be checked for
potential conflicts by substituting their parameter values into the parame-
terized conflict predicate for the corresponding pair of transaction programs.
A conflict predicate that evaluates to TRUE indicates that the transactions
may conflict. A conflict predicate that evaluates to FALSE indicates that

conflict will not occur.

The conflict analysis is based on sets of queries (called read selects and write
selects) that characterize the behaviour of the transaction programs. Given
the read and write selects for two transaction programs, the analysis process
generates a conflict predicate for that program pair. Figure 2.1 depicts in
more detail the steps involved in the analysis of a pair of transaction pro-

grams, T} and T5.

Initially, the input read and write selects are combined to form a read query
and a write query for each transaction program. In the conflict query gener-
ation stage, first, the read query (Jg; of the transaction program 7T}, and the
write query Qwo of the transaction program T, are intersected to create an
intersection query @) gw. Similarly, the write query Qywy for Ty and the read
query QQro for T are intersected to create an intersection query Qwg. A final
query Qconfiic merges the result the two intersection queries. The result of

Qcon flict includes all of the objects on which 7} and 7% could conflict.

Qconflict 1s then passed to the DEMO optimizer (Appendix C) in the EQG

CHAPTER 2. OVERVIEW

T1 read T1 write T2 write T, read
Combining selects selects selects selects
Read/Write
Selects
T1 write query W, T2 write query W,
— | Tiread query R, T, read query R,
Conflict
Query
Generation
intersection intersection
query Qg query Qg
conflict query Q it
EQG DEMO Query
Generation Optimizer
— existential query graph
(EQG)
Predicate
Extraction
‘ conflict predicate P ‘

Figure 2.1: Pairwise Transaction Analysis

CHAPTER 2. OVERVIEW 7

generation step. The optimizer produces a representation of certain prop-
erties of objects in Qeonfrice- From this, it is possible to extract a conflict
predicate. The predicate extraction step analyzes the result from the op-
timizer, and constructs a conflict predicate. The predicate will evaluate to
FALSE for a particular set of parameter bindings only if Qconfrice 18 known
to be empty under those bindings for all possible databases. In other words,

it evaluates to FALSE only if the two transactions do not conflict.

Chapter 3

Description of Techniques

Chapter 2 presented an overview of the steps involved in finding conflicts
in transaction programs. In this chapter, the details of each step will be
presented. A sample employee database is defined in Appendix B. The
query examples used in this and subsequent chapters are issued against this

sample database.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 9

3.1 Modeling Transaction Programs

3.1.1 Definitions and Notation

Transaction programs are assumed to operate against an object database.
The database has an associated schema, which defines the types of objects
that may be present in the database. The schema may also define additional
database constraints. A database D is a set of objects that is consistent
with the schema. The set of possible databases that conform to the database
schema will be denoted by D. The universe of possible database objects will
be denoted by U.

Definition 3.1.1 (Database Delta)
A delta A for database D is a set of objects to be inserted into D (denoted
by AT) and a set of objects to be deleted from D (denoted by A~) such that

all of the following conditions hold:

o At g2U-D
e A- 2P
e (DUAT)—AT)eD
A database delta can be used to transform one database into another. If A

is a delta for D, the notation D 4+ A will be used to denote the database

obtained by applying A to D, ie., D+ A= ((DUAT)—A7).

CHAPTER 3. DESCRIPTION OF TECHNIQUES 10

A partial order < is defined over the set of possible deltas for database D as
follows. Given two deltas Ay and A, for D, Ay < Ay if and only if A} C AT
and A7 C A7 and Ay # A,

A transaction program is a program that can be executed to perform a
database transaction. The execution of a transaction program occurs as
a sequence of discrete operations. Each operation may change the internal
state of the program, and may modify the database. The execution of the
operations of a program is controlled by a scheduler, which is not modeled
here. The scheduler determines when the executing program performs its
next operation. Note that the series of operations that result from the exe-
cution of a transaction program may depend on the contents of the database

at the points in time at which the operations are initiated by the scheduler.

Definition 3.1.2 (Transaction Program)

A transaction program T consists of the following seven elements:

St: a set of possible internal program states.

Pr: a set of formal program parameters. Each parameter consists of a name
and an associated value domain. The set of possible distinct assign-
ments of domain values to the parameters of a program will be denoted
by Pr and T'(p) will represent a transaction resulting from the execution

of T with parameter values p € Pr.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 11

initialy : Pr — Sti a function that determines the initial state of the pro-

gram given a set of parameter values.

nexty : St X D — Sp: a function that determines the new internal state into
which T will move as a result of an operation performed from a given

internal state and a given database.

inserty : Sy x D — 247P: 4 function that determines the objects inserted
into the database as a result of an operation performed from a given

internal state and a given database.

deleter : St x D — 2%: a function that determines the objects deleted from
the database as a result of an operation performed from a given internal

state and a given database.

For every state s € St and every database D € D, the functions insertr(s, D)
and deleter(s, D) are required to define a database delta for database D,
with insertr(s, D) defining AT and deleter(s, D) defining A~. The notation
nextDB(s, D) will be used to refer to the state D+ A, i.e., the new database
that results from the execution of an operation of T from state s and database

D.

The program-identifying subscripts used in Definition 3.1.2 will be dropped
when it is clear from the context which transaction program is being referred

to.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 12

For a given set of program parameter values p € P, there may be some states
in S that the program will never enter. Those states that transaction T'(p)

may enter are said to be reachable by T'(p).

Definition 3.1.3 (Reachable States)
For any transaction T (p) with parameter values p € Pr, the set reachable(p) C

S is defined (recursively) as follows:

o The state initial(p) is in reachable(p)

o A state s’ is in reachable(p) if there exists a state s in reachable(p)

and a database instance D such that next(s, D) = s'.

3.1.2 Read Selects and Write Selects

The conflict analysis procedure assumes that the behaviour of each transac-
tion program has been characterized by two sets of parameterized queries.
One set characterizes the database objects read by the program, the other
characterizes the objects inserted or deleted by the program. The elements
of the first set are called read selects. The elements of the second are called

write selects.

The read selects for T are denoted by Ry and the write selects for T' are
denoted by Wr. Like T itself, the read and write selects for T' are parame-

terized using Pr. If @ is a query in Ry or in Wr, then Q(p, D) represents

CHAPTER 3. DESCRIPTION OF TECHNIQUES 13

the result of evaluating () using parameter values p € Pr and database D.
As was the case for transaction programs, the program-identifying subscripts

will be dropped from Ry and Wy when the program is clear from context.

The read and write selects characterize the behaviour of transaction programs
in the sense that the selects have certain properties that relate them to the
execution of the program. Specifically, for each T, the write selects are
assumed to have the write subsumption property and the union of the read
and write selects is expected to have the read subsumption property with

respect to T'.

Definition 3.1.4 (Transaction-Disturbing Delta)
A database delta A for state D is said to disturb transaction T(p) (in state
D) if there exists a reachable program state s € Sy such that at least one of

the following conditions holds

e next(s,D) # next(s,D + A)
e insert(s, D) # insert(s, D + A)
o delete(s, D) # delete(s, D + A)
A delta A for state D is a minimal disturbing delta for T'(p) in D if it

disturbs T'(p) and there is no delta A, for D such that Ay also disturbs T'(p)
and Ay < A,

CHAPTER 3. DESCRIPTION OF TECHNIQUES 14

Definition 3.1.5 (Read Subsumption Property)

Let T be a transaction program and let Q be a set of queries, where each query
is parameterized by Pr. Q is said to have the read subsumption property
with respect to T if both of the following conditions hold for all databases
D in D, all parameter value assignments p € Pr, all program states in s €

reachable(p), and all minimal disturbing deltas A for T(p) in state D:

.xEA_j(HQEQxEQ(va))

e r EAT=(AQ e Q2 €Q(p, D+ A)

The read subsumption property states that if some change to the database
would cause the behaviour of T'(p) to change, then the changing database
objects are returned by some query in the query set. In other words, the
query set @ identifies that portion of the database to which T’s behaviour is

sensitive.

Definition 3.1.6 (Write Subsumption Property)

Let T be a transaction program and let Q be a set of queries. Q@ has the write
subsumption property with respect to T if the following conditions hold for
all databases D € D, all parameter value assignments p € Pr, all states
s € reachable(p), and all database deltas A (from D) such that AT C

insertr(s, D) and A~ C deletep(s, D):

.xEA_j(HQEQxEQ(va))

CHAPTER 3. DESCRIPTION OF TECHNIQUES 15

e 1 c At =(3Q € Q:x€Q(p,D+A))

The write subsumption property implies that if T inserts an object into the
database, then at least one of the queries in @ would retrieve that object if
it was evaluated after the insertion. Similarly, if T deletes an object from
the database, at least one of the queries in @ would retrieve that object if it

was evaluated prior to the deletion.

3.2 Pairwise Transaction Analysis

Figure 2.1 on page 6 illustrated the steps involved in pairwise transaction

analysis. This section describes those steps in more detail.

3.2.1 Combining Selects

For each transaction program, the read selects are combined to produce a
single read query, which is used as input to the pairwise analysis process.
The read query for program T is the union of T’s read selects. Similarly, the

union of the T”s write selects becomes the write query for 7.

OQL and SQL both have a “union” operator. However, queries can be
combined using the union operator only if the query result tuples are type-

compatible. In general, the various queries in Ry and Wy will not be union

CHAPTER 3. DESCRIPTION OF TECHNIQUES 16

compatible. Therefore, the OQL/SQL built-in union operator cannot be used

to combine them.

Figure 3.1 illustrates how a union query can be created from two input
queries. The procedure can be expanded to generalize the creation of the

union of more than two queries.

select path,, path,, ... , path, select path;, path,,... , path’
from var ,vaer, ,... ,var, from var ,var,,... ,va
where pred where pred’

select X

from var ,var,,... ,var,,vag,va’,,... ,varg, Any asx

where (pred and
(x = path, or x=path, or ...or x=path,))

or (pred and
(x = path} or x =path’, or ...or x = path))

Figure 3.1: Creating the Union of Two Queries

The result of the union query represents the set of objects that exist in either
one of the result sets of the input queries. The objects in the result set of
the union query have type Any. Any is explained in Appendix A. It is a

supertype of every type. The DEMO optimizer is capable of reasoning about

CHAPTER 3. DESCRIPTION OF TECHNIQUES 17

queries involving Any.

If the set of write selects has the write subsumption property, so will the
write query. Similarly, if the set of read selects has the read subsumption
property, so will the read query. This follows directly from the definitions of

the subsumption properties and the construction of the queries.

Conflict Query Generation

Transactions conflict if they perform operations that do not commute.

Definition 3.2.1 (Transaction Conflict)
Suppose that T1(p1) and Ts(p2) are transactions. Ty(p2) conflicts with T1(p1)
if there exists a database D, and program states s; € reachablei(pr) and

Sy € reachables(py) such that either

e nexty(s1, D) # nexty(sy,nextDBsy(sqe, D)), or

e nextDBy(sy, D) # nextDBy(s1,nextDBs(sq, D))
That is, T3(ps) conflicts with Ti(ps) if database insertions or deletions made
by T(p2) can cause the behaviour of Ti(p;) to change. Ti(p;) and Ts(p2)

are said to be conflicting transactions if Ty (p;) conflicts with T3(p2) or T (p2)

conflicts with Ty(py) or both.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 18

Conflict queries are used to identify transactions that conflict. Conflict
queries are generated from the read and write queries of two transaction
program in two steps. The first step intersects the read query R; of the
transaction program 77 and the write query W5 of the transaction program
T; to produce Qprw. The second step intersects the write query Wi of T and

the read query Rj of T3 to produce Qwr.

Figure 3.2 illustrates how the intersection queries are created. The procedure
is similar to the procedure used earlier to define the union of queries that

may be type-incompatible.

select path,, path,, ... , path, select path;, path,,... , path’
from var ,vaer, ,... ,var, from var ,var,,... ,va
where pred where pred’

select X

from var ,var,,... ,var,,vay,va’,,... ,varg, Any asx

where (pred and
(x = path, or x=path, or ...or x=path,))

and (pred and
(x = path} or x =path’, or ...or x = path))

Figure 3.2: Creating the Intersection of Two Queries

CHAPTER 3. DESCRIPTION OF TECHNIQUES 19

Lemma 3.2.1 Let Qpw be the read/write query produced from the read
query for program Ty and the write query for program Ty. If Qrw (p1,p2, D) =
0 for all databases D in D, then Ty(ps) does not conflict with Ty(p1).

Proof: Suppose that, for all databases D, Qrw(p1,p2, D) = 0 and that T>(p2)
conflicts with 71 (p1). By Definition 3.2.1 there is a database D and reachable
program states sy (for Ty(p1)) and sy (for Tz(p2)) for which the database delta
performed by Ty(p2) affects the behaviour of T1(p1). Let A represent Tz(p2)’s
T1(p1)-disturbing database delta from D. Let A,,;, be any minimal T (p;)-
disturbing delta from D such that A,,;,, < A. Since Ti’s read query (Q gy) has
the read subsumption property, it must be the case that A, ;. C Qri(p1, D)
and that At. C Qri(p1, D + Apin). Since Ty’s write query (Qw-) has the
write subsumption property, it must be the case that A . C Qwa(ps2, D)
and that AT

tin © Qwa(p2, D + Apin). This implies that the intersection
of Qr1 and Qw, is non-empty either in state D or in state D + A,;n. By
construction, Q) gpw 1s the intersection of Qr; and Qyw so it is also non-empty

in at least one database state, a contradiction.O

Finally, a single query is produced to capture all objects on which the two
transaction programs could conflict. This is achieved by taking the union of
Qrw and Qwr to get a final query Qeonjiict- Since the intersection queries
may not be union-compatible, the method of Figure 3.1 (page 16) is used to

define their union.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 20

Theorem 3.2.1 Suppose that Qcongiice 15 the conflict query generated for
transaction programs Ty and Ty. For all parameter assignments p; € Py and

p2 € Pe, Ti(p1) and Ta(p2) do not conflict if Qconfiict(p1,p2, D) = O for all
DeD.

Proof: This follows immediately from Lemma 3.2.1 and the construction of

Qconflict- u

EQG Generation

To eventually generate a conflict predicate, it is necessary to determine con-
ditions under which Qconfiice Will be empty. To achieve this goal, the conflict
query is first submitted to the DEMO query optimizer (Appendix C) along
with the database schema. The optimizer represents the query internally as
an existential query graph (EQG, [3], Appendix C). It applies previously
defined inference rules to the graph. If successful, the optimizer returns the
modified existential graph as well as an evaluation plan for Qconfiice- As the
optimizer is only allowed to run for a fixed time, it may fail to produce the

result in this time.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 21

Predicate Extraction

The existential graph and the evaluation plan for Qconsiice are then analyzed
to produce a conflict predicate C. A conflict predicate is a predicate (in
terms of the transaction parameters) which is FALSE only if the result of

the conflict query is known to be empty for all possible databases.

If the DEMO optimizer fails to finish in the allotted time, the query result is
conservatively assumed to be non-empty, i.e., it is assumed that there might

exist databases and parameter values for which the two transaction programs

conflict. The conflict predicate C' is defined to be TRUE.

If the DEMO optimizer can infer that the conflict query result must always be
empty, then it will return an empty query evaluation plan. In this case, it can
be concluded that the two transaction programs do not have common objects

upon which they perform conflicting operations. The conflict predicate C' is

defined to be FALSE.

If an evaluation plan for the conflict query is successfully generated and is
non-empty, then the two input transaction programs may potentially conflict.
In this scenario, the predicate extraction step analyzes the EQG returned by
the optimizer and attempts to extract a conflict predicate from it. As noted

in Appendix C, the EQG returned by DEMO describes a conjunctive formula

CHAPTER 3. DESCRIPTION OF TECHNIQUES 22

of the form

VQ|Qisaqueryresult : (I(ve,...v,)|[(v1 = Q) A (condz) A ... A (cond,,))

The analysis examines the graph for conjuncts that relate query parameters
to other query parameters, or to constants. The conflict predicate C is then
defined to be the conjunction of any such conjuncts found by the analysis. (If

none are found, then C is defined to be TRUE.) Clearly, if such a predicate

is FALSE then the result of the conflict query must be empty, as required.

The predicate extraction step searches for particular structural patterns in
the EQG which correspond to specific kinds of conjuncts. Five specific pat-
terns are considered. Table 3.1 describes the notation that will be used to
present these structural patterns. Note that the parameters of the conflict

query appear attributes of the query node in the EQG..

Notation Denotes

V.V, nodes V. V;

S; the ' sheet of control

Vels,; node V in the i sheet of control

arc(Vi,p,V2) | an arc labelled p that originates from node V; and points
to node V,

loi(Vi, V) a line of identity arc connecting V; and V;

V] the literal or constant range stored in node V

(V) the type of the object stored in node V

Table 3.1: Notations Representing Elements in an EQG

CHAPTER 3. DESCRIPTION OF TECHNIQUES 23

The five patterns are:

1. a node that has several parameter arcs pointing towards it:
AV, W, Vi, loi(V, V1), are(Vi,p1, Va), ..., are(Va, pn, Va)
s.b. 7(V) = “query,” V € Sy, and V1, V; € Sy,
This corresponds to a conjunct of the form
pPr=p2=...= Pn-

Here is an example:

1st SOC Queryl

2nd SOC

‘ _v1{Query1} ‘ _Vv3{Employee} ‘

LN

‘ _v2{Integer} ‘

This graph indicates that every “Queryl” object has four parameters:
“pl,” “p2)” “p3,” and“p4.” For every Queryl object, there exists an
“employee” object with an attribute “age” whose value matches the
query parameters. In this case, the extracted conjunct is pl = p2 =

p3 = p4.

2. anode represents a literal, and has parameter arcs pointing towards it:

AV, W, Vi, loi(V, V1), are(Vi,p1, Va), ..., are(Va, pn, Va)

CHAPTER 3. DESCRIPTION OF TECHNIQUES 24

s.b. 7(V) = “query,” V € S1, V1, V4 € Sy, and |V3] is a literal,
This corresponds to a conjunct of the form
pL=p2=...=p.=|Val.

In these two existential graphs:

1st SOC 1st SOC
Query
2nd SOC 2nd SOC
_v1{Query1} _v3{Query2}

p3

‘ _v2{Integer 50:50} ‘ ‘ _v4{String "john"} ‘

the first existential graph indicates that pl = p2 = 50. The second

graph indicates that p3 = 'john’.

3. a node represents a constant range, and has a parameter arc pointing

towards it:

AV, W, Vi, loi(V, V1), are(Vi, p1, V2)

s.b. 7(V) = “query,” V € 51, V1, V4 € 53, and |V3] is a range,
This corresponds to a conjunct of the form

[Valimin < p1 < [Valmas

Here are two examples of such existential graphs:

CHAPTER 3. DESCRIPTION OF TECHNIQUES 25

15t SOC 15tS0C [Quenyz |

2nd SOC 2nd SOC
pl p2 p3
‘ _v2{Integer 25:50} ‘ ‘ _v4{Integer 50:+inf} ‘

The first graph indicates that
21 <pl <50A21 <p2 <30

In addition, because of the first pattern, the graph also indicates that

p1 = pz. The second existential graph implies that
p3 > 50.

4. two nodes that have parameter arc pointing to them are involved in a

“<” or a “<” relationship:
IV, Vi, Vo, Vi, Vi, loi(V, V1), are(Vi, p1, Va), are(Vi, pa, V3),
arc(Vy, A1, Va), and are(Vy, Ay, Vi)
s.b. 7(V) = “query,” 7(Vy) = “<-class” or “<-class,”
Ves,Vies,i=1,223,4
This corresponds to a conjunct of the form:

p1 < p2 or p1 < po.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 26

“A1” and “A2” are key words built into the DEMO system. They rep-
resent, respectively, the first and second arguments of a mathematical

”

comparison such as “<,” “>.7 etc. In the DEMO query optimizer, only

“<” and “<” comparisons are used. (“>"and “>” comparisons can

be made using “<” and “<” operators.) Hence, when a directed arc

labelled p; and a second directed arc labelled Al (or A2) both point to
p p

node V3, it follows that p; is involved in a “<” or a “<” comparison.

In this example, the graph indicates that pl < p2:

1st SOC Queryl

2nd SOC
_v1{Queryl} _v2{LtClass}

pl{integer} p2{Integer}

5. a node has a parameter arc pointing towards it; the parameter arc is

involved in an identity relation or the negation of an identity relation.
= V7 ‘/17 ‘/27 ‘/237 ZOZ(Vv‘/I)v ZOZ(%,‘/E;), and arc(‘/lvplv‘/Z)
s.t. 7(V) = “query,” V€ 51, Vi, Vo € Sy, and V3 € S;, 1 > 2,

and |V5] is a literal.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 27

This corresponds to conjuncts of the form

p1 = |Vs| or p1 # V5

Every sheet of control in an existential graph introduces a new nested
scope for additional nodes and graphical elements, and constitutes a
negation. If the number of sheets nested between V, and V3 is even,
then the even number of negation operations will produce a positive
operation: p; = |V5|. If the number of sheets nested between V; and V3

is odd, then a negation operator must be inserted: p; # |V5|.

Here are two examples:

’ﬁ‘ 1st SOC
uery

2nd SOC
_v1{Queryl}

pl

LOI
p1{integer} _v2{Integer 50:50} ‘

’ﬁ‘ 1st SOC
uery

2nd SOC
_v3{Query2}

p2

LOI
p2{Integer} % _V4{Integer 50:50} ‘

CHAPTER 3. DESCRIPTION OF TECHNIQUES 28

The first graph indicates that pl = 50. In the second graph, the line of
identity crosses from one sheet of control into another which implies a

negation relation. This indicates that pl # 50.

The predicate extraction step will scan an input existential graph, and search
for patterns in the graph that match the descriptions of any of the above five
cases. Whenever a matching pattern is found, the predicate implied by the
pattern is inserted into a predicate set. Finally, after the entire existential
query graph has been scanned, all of the predicate expressions in the result-
ing predicate set are “AND-ed” together to form a conjunctive expression.
This expression represents the conflict predicate, C, that is, the predicate

condition under which the result of the intersection query is non-empty.

It must be pointed out that C' could be simplified, and some simplification
attempts have been made in the subprocedures that perform the analysis of

EQG’s. For example, nested negations are simplified:

E if n is even
not(not(...(not(E))...)) =

n times

not(E) ifnis odd

However, currently, the simplification is incomplete. For example, if an ex-
istential graph indicates that “pl” and “p2” are equivalent, both (pl = p2)
and (p2 = pl) will appear as conjuncts in the conflict predicate C, even

though one of them would suffice.

CHAPTER 3. DESCRIPTION OF TECHNIQUES 29
3.3 Implementation

OQL query parsing and manipulation routines are required for a number of
the procedures described in this chapter and the next, such as the trans-
formation of insert, delete and update statements into corresponding select
statements, the “pump-and-explode” method, the query union procedure,
and the query intersection procedure. The DEMO canonicalizer and its OQL

parser are used as tools to assist in implementing these procedures.

The DEMO canonicalizer transforms OQL queries into a canonical form (de-
scribed in more detail in Appendix C). The main advantage of the canonical
form is that a canonicalized query can be easily mapped into an existential
query graph. The existential graph of a query captures the query and all
of the information associated with it, such as schema information, attribute
constraints, subclass definitions, property definitions, path equations, func-
tional dependencies, etc. (See Section 3.2.1 on page 21 for more details.)
In terms of query processing, the canonical form also offers a uniform, pre-
defined structure into which all OQL queries can be converted. Having a

uniform structure for queries simplifies parsing and manipulation of queries.

The canonicalizer is part of DEMO’s OQL parser. The parser also contains
other data structures used to represent OQL queries. The algorithms and
procedures described in this thesis make extensive use of the data structures

and methods defined and implemented by the parser.

Chapter 4

Generating Read and Write

Selects

As described in Chapter 3, the analysis of a pair of transaction programs
requires, as input, sets of read and write selects for each program. In general,
these queries must be generated manually by inspection of the transaction
programs. However, for some restricted classes of programs it may be possible
to automate the extraction of read and write selects from the transaction
programs themselves. This section illustrates some of the issues involved by
considering how to extract read and write selects for a restricted class of

transaction programs that interact with the database using embedded SQL.

Figure 4.1 illustrates in more detail the steps involved in the process. In the

30

CHAPTER 4. GENERATING READ AND WRITE SELECTS

operation extraction stage, a given transaction program 7' is scanned and
embedded SQL statements are extracted from the program. The output is a
set of read operations and a set of write operations that describe the database
operations performed by the transaction program. Next, a set of read selects

and a set of write selects are produced from the read and write operation

sets for the given program 7.

Operation
Extraction

Read Selects
Generation

transaction
program

database read
operations

database write
operations

Write Selects
Generation

Figure 4.1: Generating Read and Write Selects

CHAPTER 4. GENERATING READ AND WRITE SELECTS 32
4.1 Generating Read and Write Operations

The operation extraction steps involve scanning a given transaction program
to extract embedded database operations. These operations are assumed to
be extended SQL select, insert, delete and update statements of the restricted
forms described in Appendix A. The statements may involve host program
variables, but such variables must be input parameters of the transaction
program. Furthermore, it is assumed that the program does not change the
values of any such parameters prior to their use in any embedded statement.
It would be possible for the generation process to support more general rela-
tionships between database operation parameters and program parameters.
However, such support would require control-flow and data-flow analysis of

the transaction program, which is beyond the scope of the thesis.

4.2 Generating Read and Write Selects

In this section, the database read and write operations are further processed
and transformed into a set of read select statements and a set of write select

statements which can be used as input to the pairwise conflict analysis.

CHAPTER 4. GENERATING READ AND WRITE SELECTS 33

4.2.1 Generating Read Selects

The goal of these steps is to produce a set of read operations (the read
selects). The read selects should have the read subsumption property defined

in Chapter 3.

Intuitively, the read selects are expected to capture those database objects
that, if changed, could affect the set of database objects read, inserted,
deleted, or updated by an operation. For example, the following database
read operation

select E.salary

from employee as E
where E.age > 21

returns the salary attributes of the employee objects. The age attributes of
the employee objects are not returned by the database operation. However,
the “where” clause of the select statement ensures that only the salary values
of employees over the age of 21 are included in the result of the operation.
That is, objects that are not actually returned to the host application by the
read operation can nonetheless affect what it reads. Therefore, the read select
generated for a database query is a query that returns all of the database

objects on which the original query depends.

The generation of read selects involves two sub-procedures. First, the “pump-

ing procedure” adds all of the path expressions from the “where” clause to

CHAPTER 4. GENERATING READ AND WRITE SELECTS 34

the “select” list of the read operation. Figure 4.2 explains the procedure
in detail. The pumping procedure is necessary because when given a select
statement that represents a database read operation, any change to an ob-
ject appearing in the “where” clause may affect which objects the operation

reads.

The second sub-procedure is the “exploding procedure”. For each path ex-
pression in the “select” list, the exploding procedure adds all of the prefixes
of that path expression to the “select” list. Figure 4.3 explains the procedure

in detail.

In the object-oriented database model described in Appendix A, a path
expression P refers to a particular object X. The path expression P =
P1-P2.P3-.-Pru—1-Pn also specifies the objects through which X is reached. Any
change to one of these intermediate objects may cause the path expression
to refer to a different object. The exploding procedure ensures that these

objects are included in the result sets of the read selects.

CHAPTER 4. GENERATING READ AND WRITE SELECTS

35

//
//
//
Li
{

//
//
//
//
Li
{

pump
input: database read operation
output: a new 'select'" list

st pump(Select readOp)

// The list is initialized to contain the original
// "select" list of the database read operation.
List sList = readOp.getSelectList();

// Call the actual recursive pumping procedure.
return pumpWhereClause(readOp, sList);

pumpWhereClause

input: the select statement and the input '"select' list

output: the new '"select" list containing all of the
path expressions in the '"where' clause
st pumpWhereClause(Select sel, List sList)

// Retrieve the path expressions in the "where" clause
List pathExplList = sel.getPathExpsInWhere();

// Add each path expression to the output "select" list

for (each path expression, p, in pathExpList) {
sList.insert(p);

b

// Go through subqueries recursively.
for (each subquery select statement, q, in "sel") {
sList = pumpWhereClause(q, sList);

b

return slList;

Figure 4.2: Generating Read Selects: “Pumping”

CHAPTER 4. GENERATING READ AND WRITE SELECTS

// explode

// input: a "select" list (of objects)
// output: the exploded '"select" list
List explode(List sList)

{

List newlList = slList;

newList = explodePath(pathExp, newlList);
b

return newlList;

b

// explodePath

// input: the path expression and the existing

// "select" list

// output: the exploded '"select" list

List explodePath(PathExpression pathExp, List sList)
{

List newlList = slList;

// If "pathExp" can be parsed into [HEAD].[tail],
// where pathExp=p(1).p(2)...p(n),
// HEAD=p(1).p(2)...p(n-1), and tail=p(n)
if ("pathExp'" has format [HEAD].[tail]) {
newlList = explodePath(pathExp.getHEAD(), newList);
t

if ("pathExp'" does not exist in '"newList" already) {
// Add the path expression into the list
newList.insert(pathExp) ;

b

return newlList;

for (each object path expression, pathExp, in "sList'") {

Figure 4.3: Generating Read Selects: “Exploding”

36

CHAPTER 4. GENERATING READ AND WRITE SELECTS

Here is an example. Given the following database read operation:

select E.salary
from employee as E
where E.age > 21
and E.dept.name = "CS"

The pumping procedure transforms it into:

select E.salary, E.age, E.dept.name
from employee as E

where E.age > 21
and E.dept.name = "CS"

and the exploding procedure transforms the above statement into:

select E, E.salary, E.age, E.dept, E.dept.name
from employee as E

where E.age > 21
and E.dept.name = "CS"

37

This query returns all of the database objects on which the original query

depends.

Similarly, a database write operation (represented by an insert, delete or

update statement) produces a read select that describes all of the database

objects that might affect the set of objects inserted, deleted, or updated

by the statement. The method used to achieve this goal is summarized in

Table 4.1.

CHAPTER 4. GENERATING READ AND WRITE SELECTS

Database Write Operation Read Select
insert into 0bj;
attry, attry, ...
values wvaluey, value,, ...
delete o0bj; select lust
where pred from obj
where pred
update o0bj; select lust
set attr; = expry, from obj
attry = exprsg, where pred
where pred

Table 4.1: Generating Read Selects from Database Write Operations

38

The format of the insert statement indicates that the objects being added

into the database have values that are explicitly specified in the “values” list.

Since the object to be inserted depends only on the values list and not on

the database, the insert statement does not result in a read select.

For the database write operation represented by a delete statement, the set

of objects to be deleted depends on the “where” clause. As a result, the read

select produced from “delete” has the same “where” clause as the “delete.”

The “select” list of the read select is then created using the pump-and-explode

method (Figure 4.2 and Figure 4.3).

For example, the delete operation

delete employee as E
where E.age <= 21

CHAPTER 4. GENERATING READ AND WRITE SELECTS 39

will be transformed into the read select

select E.age, E
from employee as E
where E.age <= 21

An update statement can be viewed as a delete operation followed by an
insert operation. The set of deleted objects includes all of the objects whose
attribute values satisfy the predicate in the “where” clause of the update
statement. The inserted objects have attribute values are determined by the
expressions (expr;) in the “set” clause of the update statement. Since the set
of objects to delete depends on the objects appearing in the “where” clause
of the update statement, the read select produced from “update” has the
same “where” clause. The final select list is then generated using pump-and-

explode.

The “set” clause allows the new attribute values of the object being updated
to depend on the objects appearing in the expressions on the right hand side
of the equations. Any change to these objects may affect the set of new
objects. Therefore, these objects must be included in the “select” list of the

read select for “update.”

Here is a simple example. The following update operation:

CHAPTER 4. GENERATING READ AND WRITE SELECTS 40

update employee as E
set E.salary = E.salary + 100,
E.dept.name = "CS"
where E.age > 21

will produce the following read select:

select E, E.age, E.salary
from employee as E
where E.age > 21

The path E. age is placed in the select list when the “where” clause is pumped.
The path E.salary comes from the “set” expression in the original query.

Finally, the path E is generated when E.age and E.salary are exploded.

4.2.2 Generating Write Selects

The goal of the steps here is to produce a set of write selects that have the

write subsumption property. Table 4.2 summarizes the method used.

The “values” list of the insert statement explicitly specifies the attribute
values of the objects being added into database D. The write select will thus
have a “where” clause that is a conjunction of equalities. For example, an

insert statement such as the following:

CHAPTER 4. GENERATING READ AND WRITE SELECTS 41

Database Write Operation Write Select

insert into 0bj; select obj;
attry, attry, ... from o0bj;
values wvaluey, valuey, ... | where attry = valuey
and attrs = value
and ...
delete o0bj; select obj;
where pred from o0bj;
where pred
update o0bj; select obj;
set attr; = expry, from o0bj;
attry = exprsg, where pred’

where pred

Table 4.2: Generating Write Selects from Database Write Operations

insert into employee as E
E.salary, E.age
values 1000, 40, "CS"

will produce the following write select:

select E
from employee as E
where E.salary = 1000
and E.age = 40

For the delete statement, the “where” clause of the delete statement describes
the deletion condition. The “where” clause of the write select will have

exactly the same condition. For example, if given a database write operation

CHAPTER 4. GENERATING READ AND WRITE SELECTS 42

delete employee as E
where E.age <= 21

then using Table 4.2, it will generate the write select

select E
from employee as E
where E.age <= 21

The update statement is viewed as a delete operation followed by an insert
operation. The deleted objects are those whose attribute values satisfy the
predicate pred in the “where” clause of the update statement. If none of
the attributes that appear in the “where” clause are modified by the “set”
clause, then the deleted objects will also satisty pred. In this case, pred is
used as the predicate for the write select. Otherwise, the inserted objects
may not satisfy pred. In this case, the simple, conservative approach of using

TRUE as the write select’s “where” predicate is taken.

Here are two examples. First, using Table 4.2, the update operation

update employee as E
set E.salary = E.salary + 100
where E.age > 21

will produce the following write select

CHAPTER 4. GENERATING READ AND WRITE SELECTS 43

select E
from employee as E
where E.age > 21

On the other hand, if the update operation is

update employee as E
set E.salary = E.salary + 100
where E.salary > 1000

then the write select becomes

select E
from employee as E

Note that it would have been possible to infer that the write select set could
be limited to include only those employees with salaries greater than 1000,
since the update statement increases salaries. However, this would require

interpretation of the expressions in the set clause.

Chapter 5

Examples

This chapter contains three examples that illustrate how the semi-automatic
technique can be applied to analyze conflicts in transaction programs. Each
example shows the results of the individual steps of the technique and the

final result.

The input in Example 1 consists of two basic transaction programs. One
of them is comprised of a simple read operation that conflicts with a sim-
ple write operation in the other transaction program. In Example 2, the
two transaction programs perform non-conflicting database operations. Ex-
ample 3 demonstrates the analysis of transaction programs whose database

operations contain parameters.

An implementation decision has been made to convert intermediate queries

44

CHAPTER 5. EXAMPLES 45

in the semi-automatic process into DEMO canonical forms. (The decision
is justified in Section 3.3 on page 29 and in Appendix C). The use of the
DEMO query canonical forms simplifies query processing, but canonicalized
queries are not (nor are they meant to be) easy for humans to read. The
queries in the examples below have been kept in SQL-like forms to improve

readability.

5.1 Example 1

The input in Example 1 consists of two database transaction programs. The
first program, T}, reads all of the employee objects from the sample database
(Appendix B), and the second program, Ty, sets the salary attribute of every
employee object to “100.” The steps in Figure 4.1, “Generating Read and

Write Selects,” are applied first to T3, and then to 7.

In the process described in Chapter 4, “Generating Read and Write Selects,”
the read and write operations in T3 are first manually separated and rewrit-

ten. T7 can be described by the database read operation:

select E
from employee as E.

This read operation is transformed into a read select statement using the

“pump-and-explode” method:

CHAPTER 5. EXAMPLES 46

select E
from employee as E

Due to the simplicity of the input select statement, the “pump-and-explode”
method does not actually change the query. Since T} does not contain any
write operations, at the end of generating read and write selects, the output

read query (Qgp is the same as the above read select, and the output write

query Qw is null.

The same steps are now applied to T5. T, can be described by a database

write operation:

update employee as E
set E.salary = 100

Using the third rule in Table 4.1, this write operation is transformed into a

read select:

select E
from employee as E

and a write select using the third rule in Table 4.2:

select E
from employee as E

CHAPTER 5. EXAMPLES 47

These are the corresponding read query (Qr2) and write query (Qwz) for Ts.

Now that the read and write queries for both T} and T, have been produced,
the process proceeds to pairwise transaction analysis. First, QQpy of T} is
intersected with Qo of Ty. Using the method described in Figure 3.2, the
resulting query Qryw 1s:
select x
from employee as E, employee as E2, Any as x

where (x = E)
and (x = E2)

Next, Qwi is intersected with QQro to generate Qwpr. Since Qywy is null,
Qwr 1s also null. Thus, the conflict query generation step which produces
the union of the queries Q) pw and Qwr is simplified. The final query Qcon fiict
is the same as Q gy . The result of Qconfrice contains all of the objects on which

Ty and Ty might perform conflicting operations.

In the EQG generation step, Qeonfiicc and the database schema defining
Q con flict are submitted to the DEMO query optimizer. The optimizer applies
previously defined inference rules to Qconjfiict, and successfully generates a
query evaluation plan and an existential graph. Since there are no parame-
ters in Ty or Ty, the existential graph does not contain any patterns involving
parameters. Therefore, the conflict predicate P is set to TRUFE and returned
as the result of the conflict analysis. This means that, as expected, T} and

T, might perform conflicting operations.

CHAPTER 5. EXAMPLES 48

5.2 Example 2

In this example, T} deletes all of the employee objects whose salary attribute
values are greater than 100, and T3 reads the name and age attributes of an

employee object if the salary attribute value of the object is equal to 100.

Using the syntax for database operations defined in Appendix A, T} can be

described by the database read operation:

delete employee as E
where E.salary > 100

This write operation is transformed into a read select using the second rule

in Table 4.1:

select E, E.salary
from employee as E
where E.salary > 100

and a write select using the second rule in Table 4.2:

select E
from employee as E
where E.salary > 100

These are QQry and Qyq for Th at the end of generating read and write selects.

Next, T, goes through the same steps. The actions in T can be described as

the following read operation:

CHAPTER 5. EXAMPLES 49

select E.name, E.age
from employee as E
where E.salary = 100

Using the “pump-and-explode” method, the above read operation is trans-

formed into a read select:

select E, E.name, E.age, E.salary
from employee as E
where E.salary = 100

This read select becomes Qre. Qwo 1s null because Ty does not modify the

database.

In the conflict query generation stage of the pairwise transaction analysis,
since Qo is null, the only intersection query that is not null is Qwpr which

results from intersecting Quwy with QQre. Using the method described in

Figure 3.2, Qwgr becomes:

select x
from employee as E, employee as E2, Any as x
where ((E.salary > 100) and
(x = E))
and ((E2.salary = 100) and
(x = E2 or x = E2.name or
x = E2.age or x = E2.salary))

This is the final query Qcon fict-

CHAPTER 5. EXAMPLES 30

In the EQG generation step, Qeonfiicc and the database schema defining
Qconflice are submitted to the DEMO query optimizer. The optimizer ap-
plies previously defined inference rules to Qeonjiict, and cannot generate a
query evaluation plan because of the unsatisfiable condition in the “where”

clause of Qcon fict:

(employee.salary > 100) and (employee.salary = 100)

Therefore, T1 and T, do not perform conflicting operations, and the predicate

extraction step returns the conflict predicate FALSE.

5.3 Example 3

The transaction programs in Example 3 are similar to those in Example 2.
The only difference is, in this example, instead of deleting all of the employee
objects whose salary attribute values are greater than 100, 7 deletes all of the
employee objects whose salary attribute values are greater than “pl,” where
“pl” is a parameter whose value is unknown at the time of the analysis.
Similarly, T5 reads the name and age attributes of an employee object if the
salary attribute value of the object is equal to an unknown value represented

by the parameter “p2.”

Therefore, T can be described by a database write operation as:

CHAPTER 5. EXAMPLES 51

delete employee as E
where E.salary > :pl

and Ty by a database read operations as:

select E.name, E.age
from employee as E
where E.salary = :p2

The steps to generate read and write selects are applied to Ty and T3 much

like in Example 2. At the end of the process, Qg is created as

select E, E.salary
from employee as E
where E.salary > :pl

and Qw as

select E
from employee as E
where E.salary > :pl

QRQ of T2 1s

select E, E.name, E.age, E.salary
from employee as E
where E.salary = :p2

CHAPTER 5. EXAMPLES 32

and Qw2 is null.

Similarly, Qcongiict 18 generated as

select x
from employee as E, employee as E2, Any as x
where ((E.salary > :pl) and
(x = E))
and ((E2.salary = :p2) and
(x = E2 or x = E2.name or
x = E2.age or x = E2.salary))

The result of Qeonfiic contains all of the objects on which T} and T might

perform conflicting operations.

In the EQG generation step, Qeonfiicc and the database schema defining
Q con flict are submitted to the DEMO query optimizer. The optimizer applies
inference rules to Qcon fiict, and successtully generates a query evaluation plan
and an existential graph for Qconsiice- The complete graph for Qconfrict 1s very
large. Figure 5.1 displays a segment of the graph that contains the relevant

patterns.

The graph segment matches the pattern described in case 4 of the EQG

analysis, (see Section 3, page 25). The resulting conflict predicate is
pl < p2.

When T and T, are executed, the actual values for “pl” and “p2” will be

substituted into the expression to determine whether conflicts can occur. If

CHAPTER 5. EXAMPLES 33

classouter Queryl

classinner

| _vi{Query1)

_v2{LtClass} v12{employee}

pl{integer} p2{Integer}

Figure 5.1: Example 3: Segment of Existential Graph

the value of “pl” is less than that of “p2,” then (pl < p2) evaluates to
TRUE, which means that T} and T3 may perform conflicting operations. On
the other hand, if for the given values of “pl” and “p2,” (pl < p2) evaluates

to FALSE, then T} and T do not perform conflicting operations.

Chapter 6

Applications and Related Work

There are several possible applications of the technique described in the the-
sis. Three particular areas of application will be discussed: transaction man-

agement, active databases and the processing of standing queries.

6.1 Application 1: Transaction Management

The concept of transactions originated in the 1950’s [4, 5, 1]. Since then,
research in the area has resulted in a conceptual transaction system structure

shown in Figure 6.1 [4].

The transaction manager manages the execution of transactions that access

data stored in a local site. The scheduler interprets all calls as sequences

o4

CHAPTER 6. APPLICATIONS AND RELATED WORK 35

Trans.1 Trans.2 ... Trans. n

\

Transaction
manager

Scheduler

Figure 6.1: Layering of a Transaction System

of reads and writes, and assures a serializable schedule. In such a system,
transactions usually run concurrently to improve performance, but appear

to have been executed sequentially.

The concurrency control problem is the problem of ensuring serializability
by controlling the interleaving of read and write operations of conflicting
transactions. Concurrency control schemes are typically designed to support
dynamically created and executed queries and updates against disk resident
databases. However, for certain types of systems, such as embedded control
systems, it is not necessary to support arbitrary, dynamic queries and up-
dates. Transaction types in these systems are known in advance, and stay

relatively static. By analyzing such transactions before they run, it is pos-

CHAPTER 6. APPLICATIONS AND RELATED WORK 36

sible to reduce or eliminate the need for locking or other dynamic controls,

and thus optimize transaction concurrency control.

The basic idea of the thesis comes from [2], in which Eswaran et al. suggested
using predicate locks to ensure consistency. Instead of locking an individual
object in a database, predicates are used to specify a logical subset of the

database. In general, a transaction, T', could request a lock:
< t, [slock|xlock], predicate >.

Two predicate locks < t,mode,p >, < t',mode’, p' > are compatible if [6]:

e t =t (a transaction does not conflict with itself), or
e both modes are SHARE (shared locks do not conflict), or

e the predicate (p AND p’) is not satisfiable (no object can satisfy both

predicates).

In this algorithm, transactions dynamically request locks on sets of objects.
Each object set is described by a predicate. One possible implementation
of a predicate lock system is as follows [6]: when a transaction requests a
predicate lock, the system compares the lock request with the other granted
predicate locks. If the lock request is compatible with all of the granted
requests, it 1s added to the granted list and granted immediately. Otherwise,

the lock request is added to a waiting list. As soon as a transaction ends, its

CHAPTER 6. APPLICATIONS AND RELATED WORK 37

predicate locks are removed from the granted list. Afterwards, the requests
in the waiting list will be re-evaluated against the requests in the granted
list. Each predicate compatible with the new granted group of predicates is

added to the granted list and granted.

There are a number of differences between the use of predicates in the above
implementation of a predicate locking system and the conflict analysis tech-
nique described in this thesis. First, the predicate definitions in predicate
locks contain no parameters because the parameter values are known at run-
time. The cost of comparing predicates is paid at run-time. In embedded
systems where transactions are known in advance, conflict expressions for
pairs of transactions can be defined statically (before transaction run-time),
stored in the system, and evaluated at run-time. Therefore, the expressions
generated by the technique of the thesis allows parameterized queries and

produces a predicate (in the parameters) as its result.

A second difference is the granularity of coverage of the predicates. The
analysis required by predicate locking is performed each time a transaction
program performs a database operation. Each predicate defines the footprint
of a single operation. The conflict analysis described in the thesis is intended
to detect conflicts between complete transactions. In addition, Chapter 4
addresses in more detail on which objects database read and write operations
(represented by SQL queries) depend, and how to extract those objects from

the SQL queries in an object database. The predicate locking scheme assumes

CHAPTER 6. APPLICATIONS AND RELATED WORK 38

the existence of a predicate that specifies the logical subset of objects in a

transaction request.

Because its predicates cover individual operations, predicate locking may
involve multiple predicate tests during the lifetime of a transaction. An
advantage of this is that it is not necessary to have a complete description
of what the transaction will need to read/write before it starts running. A
disadvantage is that a transaction might have to abort if it asks for some part

of the database that it cannot have. This cannot happen with PAPRICCA.

The conflict analysis in this thesis, when combined with the algorithm PA-
PRICCA [7], results in a concurrency control algorithm. In PAPRICCA,
a transaction undergoes a single concurrency control test before it starts.
Once it passes this test, it is free to run without any further concurrency
control. This is possible because the transaction read/write sets essentially
pre-declare all parts of the database that the transaction will need. The al-
gorithms proposed in this thesis can be used to generate conflict predicates

required to perform the concurrency control test in PAPRICCA.

The issue of recovery arises alongside concurrency control as recovery is
needed to guarantee atomicity and durability when failures occur. Raj
Rathee’s thesis [8] presented a recovery algorithm (Fuzzy PBL) that takes
advantage of known transaction data access patterns to reduce recovery re-
lated overhead. Fuzzy PBL takes checkpoints, and performs a combination

of transaction level logging and page level logging. Transaction logging is

CHAPTER 6. APPLICATIONS AND RELATED WORK 39

very efficient but can only be used if the transaction being logged does not
interfere with an ongoing checkpoint. The static conflict analysis presented
here can be used to generate a predicate conflict expression that will eval-
uate to FALSE only if the transaction does not interfere with a checkpoint

(described by a transaction program).

6.2 Application 2: Active Databases

Another possible application area is active database systems [9, 10, 11]. An
active database system consists of a (passive) database and a set of active
rules. Typically, a rule consists of an event, a condition, and an action. An
event is usually an insertion, deletion, or update into a table. A condition is
similar to a query, except that the query may be able to refer to the inserted
or deleted tuples, as well as the database. An action is a transaction (a
program) that may make changes to the database. When triggered by an
event, an active database performs an action according to the predefined rule
conditions. For example, a rule (often called a trigger) might say: If a tuple
is modified in the Emp table (the event), and if the “age” field of the tuple
becomes greater than 55 (the condition), then add a new tuple to some other

table (the action).

Suppose that there exists a pre-defined update transaction that updates the

Emp table tuples whose “age” field values are less than x. Using the technique

CHAPTER 6. APPLICATIONS AND RELATED WORK 60

presented in this thesis, it is possible to create a predicate expression that
evaluates to FALSE if there is no overlap between the tuples updated by
the transaction (¢ in Emp such that t.age <) and the tuples satisfying the
rule condition (¢ in Emp such that t.age > 55). In this particular case, the
predicate expression is (v > 55). Before the update transaction is processed,
x is bound to an actual value, and the predicate expression is evaluated. If
the expression evaluates to FALSE (i.e. there is no overlap), then the update

transaction need not cause the particular trigger to be activated.

The analysis described in this thesis can create a predicate expression which
describes the overlap between the update transaction and the rule conditions
of a trigger. The predicate expression provides a way to optimize the eval-
uation of a rule condition. That is, if the predicate expression is FALSE,
the evaluation of the rule condition can be omitted, but if the expression is

TRUE, the rule condition must be evaluated.

6.3 Application 3: Standing Queries

Similar to an active database, a standing query performs an action when it is
triggered by an event [12]. A common scenario using standing queries is the
“pub-sub” model. In it, a client subscribes to a set of things described by
a query, and the server publishes material. The client wants to know if any

new publication is relevant with respect to his subscription. Here, the event

CHAPTER 6. APPLICATIONS AND RELATED WORK 61

is the arrival of a new publication. The standing query defines the client
subscription. The action will be to notify the client of a newly available

relevant publication.

If server publications can be constructed as pre-defined transactions, then
the conflict analysis algorithm of this thesis can be employed to produce a
predicate expression that evaluates to FALSE only if there is no overlap be-
tween such a transaction and the standing query. When the server publishes
new material using one of the pre-defined transactions, the predicate expres-
sion will be tested. In the case of the result being FALSE, the corresponding

standing query need not be re-evaluated.

One other similar topic is the efficient maintenance of materialized views
[13]. There, the result of a query is stored (materialized), and the question
becomes whether an update to the database will cause the materialized result
to change. The static analysis can be used to discover the overlap between
the stored result (described by a query) and the update action (described by

a transaction).

6.4 Predicate Satisfiability

The problem of generating a conflict predicate from Qon fiict 1s closely related
to the predicate satisfiability problem. The predicate satisfiability problem is

known to be undecidable in general. It is the problem of determining whether

CHAPTER 6. APPLICATIONS AND RELATED WORK 62

there exists a variable assignment that will cause a given predicate to evaluate
to TRUE. For a more restricted version of the general case, studies ([14], [15])
have considered the satisfiability problem of conjunctive predicates of the
form (X op C),or (XopY),or (XopY + C), where X and Y are attributes, C
is a constant and op € {<,<,=,#,>,>}. This type of satisfiability problem
is also NP-complete. However, for the same problem in the real domain [14],
or in the integer domain [15] where # is removed from the set of operators,

there exist polynomial algorithms to solve the problem.

By imposing resource bounds on the computation, the DEMO optimizer
avoids spending a very long time trying to generate a conflict predicate. If
the computation is taking too long, the DEMO optimizer simply gives up.
That is, DEMO may fail to recognize an empty Qconsiict (2 conflict query

with an unsatisfiable set of predicates) as such.

Chapter 7

Summary and Future Work

This thesis describes a semi-automatic process that takes a pair of transaction
programs and analyzes them for potential run-time conflicts. Transaction
programs may be parameterized. The conflict analysis process occurs before
the transaction programs are executed. At this time, parameter values are
not known. For this reason, the result of the analysis is a conflict predicate
written in terms of the parameters of the transaction programs. The DEMO
optimizer is the main tool used during the analysis process to generate the

conflict predicate.

Values will be bound to the parameters each time the program is executed.
Two transactions can be checked for potential conflicts by substituting their
parameter values into the parameterized conflict predicate for the correspond-

ing pair of transaction programs. A conflict predicate that evaluates to TRUE

63

CHAPTER 7. SUMMARY AND FUTURE WORK 64

indicates that the transactions may conflict. A conflict predicate that eval-

uates to FALSE indicates that conflict will not occur.

The conflict analysis technique described in this thesis is suited for use in
main memory database systems [16] where high transaction throughput is
required, or embedded control systems where transactions are known in ad-
vance. Chapter 6 describes several potential applications of the technique,

such as transactional recovery (the Fuzzy PBL algorithm [8]) and concur-

rency control (the PAPRICCA algorithm [7]).

In order to simplify the conflict analysis, the input transaction programs need
to be processed manually first to create database read and write operations
that conform to the the syntax of Table A.1 (Appendix A and Chapter 4).
Possible future studies could look into automating the extraction of database
read and write operations from transaction programs written in a common
embedded query language (for example, embedded SQL in C). This will

improve the usability of the conflict analysis process.

A closer look at the steps described in Chapter 3 points out that the technique
is conservative. Improvements can be made on the existing steps to increase
concurrency. For instance, it is possible to interpret the expressions in the set
clause of an update statement representing a database write operation (see
the end of Chapter 4). The result can be used to narrow the sets described by
the write selects, which may reduce the size of the conflict set at the pairwise

analysis stage. A smaller conflict set can potentially increase transaction

CHAPTER 7. SUMMARY AND FUTURE WORK 65

concurrency.

In Chapter 3 on page 28, it was mentioned that the final conflict predicate
expression can be further simplified. Converting a predicate to a “simpler”
form will reduce the time required to evaluate the predicate against a set
of parameter values. Simplifying predicates will involve looking into the

problem of predicate equivalence.

Appendix A

Database Model

Because DEMO, the main tool required for implementation, provides an
object-oriented database model, this thesis also assumes an object-oriented
database model. The model follows the object model defined in DEMO.
DEMO in turn follows the ODMG’93 standard for object-oriented databases

[17]. The main elements of this object database model are:

o A database stores objects, enabling them to be shared by multiple users

and applications.

e The basic database modeling primitive is the object. Objects are cate-

gorized by their types.

e The type of an object defines a set of properties. These properties can

66

APPENDIX A. DATABASE MODEL 67

be attributes of the object itself or relationships between the object and

one or more other objects.

e An attribute of an object has a name, a type and a value. The value

of the attribute is an object of the type of the attribute.

e A database is based on a schema; The database contains instances of

the types defined by its schema.

e The types of a schema form a lattice, which defines subtype/supertype
relationships. Specifically to DEMO, the top of the lattice is a type

named “Any.”

The relational data model can be seen as a special case of the object data
model, where relation schemas are type definitions, tuples are objects, and

the fields of a tuple are its attributes.

The database read and write operations of transactions programs are created
in the operation extraction steps detailed in Chapter 4, “Generating Read
and Write Selects.” These operations are described using the SQL-like se-
lect, insert, delete and update statements shown in Table A.1. The select
statements of Table A.1 are also used to describe the transaction program

read and write operations.

The variables path; in the “select” list of the select statement are object path

expressions that originate from the variables listed in the “from” list. The

APPENDIX A. DATABASE MODEL

attry, attry, ...

Syntax Comment

select pathy, paths, ... representing a read

from objy, 0bja, ... operation to the database
where pred

insert into 0bj; representing an insert

operation to the database

values valuey, values, . ..

delete objy representing a delete

where pred operation to the database

update objy representing an update

set attry = expry, operation to the database
attry = expry,

where pred

Table A.1: Syntax of Database Read and Write Operations

68

variables 0bj; in the queries represent sets of objects upon which the database

operations are performed. The variables attr; in the queries represent prop-

erties of 0by;.

The variables pred in the “where” clauses of the queries represent query pred-

icates. Predicates are restricted to those that are accepted by the DEMO

OQL parser and canonicalizer [18]. Currently, these SQL operators are al-

lowed in pred: “exists,” comparison operators (=, >=, >, <=, <, <>),

and boolean operators (AND, OR, NOT). These operators are not allowed:

“between ...and,” “like,” “in,” “all,” and arithmetic operators (+, -, *, /,

mod).

APPENDIX A. DATABASE MODEL 69

Only those select statements whose syntax is recognized by the parser and
the canonicalizer are allowed. Presently, for instance, queries that employ
set operators (union, intersect, except) are not accepted by the DEMO OQL

canonicalizer. Such queries are not included in Table A.1.

The variables value; in the insert statement represent new values that the
attributes attr; of object 0bj; will have. value; can be literals (i.e., constant
integers, floats, characters and strings), or references to other objects. The
variables expr; in the update statement allow simple mathematical functions

of the form

<attribute> <op> {<constant> | <attribute>}

The variable <attribute> represents properties of the object obj;. The
variable <constant> represents literals. The variable <op> represents a
mathematical operator that is any of +, —, / and mod. Hence, the “set” list

in the update statement has the form

<attribute> = <attribute> <op> {<constant> | <attribute>}

where the variable <attribute> on the left-hand side may symbolize the
same object attribute as one or both of the variables <attribute> on the

right-hand side.

The syntax for the insert statement also requires that the attribute list of the

insert statement not be null. This is because, during the steps in generating

APPENDIX A. DATABASE MODEL 70

read and write selects, database schema information is not incorporated into
the process, and queries are manipulated purely syntactically for efficiency
and simplicity. As a result, during an insertion, all values of all attributes

within an object must be explicitly specified.

The database read and write operations in Table A.1 may contain transaction
program parameters (but no other program variables). Parameters may occur
inside the select, insert, delete and update statements wherever literals are

allowed.

Appendix B

Sample Employee Database

Employee

Figure B.1: E-R Diagram of the Employee Database

Figure B.1 contains an Entity-Relationship diagram that represents, at a

conceptual level, the sample Employee database.

71

APPENDIX B. SAMPLE EMPLOYEE DATABASE 72

Database schemas are passed into the DEMO optimizer using UDR (Univer-
sal Data Representation) declarations. UDR is a fine-grained language that
was designed to capture both conceptual and internal views of main-memory

databases [3]. The following UDR statements define the Employee database.

(:class Employee
(:prop name
(:type String:40)
)
(:prop age
(:type Integer)

(:prop salary
(:type Integer)

:prop dept
(:type Department)

(:prop elndex
(:type Eindex)
)
(:eq [1 [eIndex iEmployeel])

(:stored name age salary dept)
(:class Eindex
(:prop iEmployee
(:type Employee)
)
(:pfd {[iEmployeel} {[1})

(:index Eindex)

APPENDIX B. SAMPLE EMPLOYEE DATABASE

:class Department
(:prop name
(:type String:10)
)
(:prop dIndex
(:type Dindex)
)
(:eq [1 [dIndex iDepartment])

:stored name)
:class Dindex
(:prop iDepartment
(:type Department)
)
(:pfd {[iDepartment]l} {[13})

:index Dindex)

73

Appendix C

The DEMO System

The Design Environment for Memory-resident Object-oriented databases
(DEMO) project explores how to adapt object-oriented database technol-

ogy to manage control data for embedded control applications.

The semi-automatic process in this thesis employs two major components of
DEMO: 1) the query canonicalizer; and 2) the query optimizer. The canoni-
calizer transforms queries into a canonical form. The optimizer maps a canon-
icalized query into an existential query graph (EQG). The semi-automatic
process described in this thesis then scans the EQG to construct a conflict

predicate.

74

APPENDIX C. THE DEMO SYSTEM 75
C.1 Query Canonical Form

The DEMO Canonical Form is based on the syntax of OQL queries, but
stretches the OQL semantics by allowing the quantification of an infinite
class (e.g. Any, Integer, String, etc.) in a “from” list [3]. Informally, the

form has the following format

select

from

where exists (
select *
from

where bool Exprqy and . ..and bool Expr,)
where bool Expr; can be one of

[] Um :Un
® Uy = Up.d

e 1ot exists (
select
from
where bool Exprp41 and ...and bool Expr, i)

*

In the “from” lists of the canonical form, an object type could be “Any,”
which means unknown in DEMO, or “Any_P.” which means a parameter
of unknown type. Later, by using its knowledge of the database schema, the
DEMO optimizer will attempt to deduce the actual type of the objects to

form a semantically correct OQL query.

APPENDIX C. THE DEMO SYSTEM 76

A list of transformation rules have been developed to map an OQL query
to a canonical form. (For more information on the rules, see [3].) The

transformation preserves the semantics of the input query.

Here is a simple example that illustrates the conversion of an OQL query to

the DEMO canonical form. The query below

select E
from Employee as E

1s canonicalized into

select v1 AS z1
from Employee as E, Any as vl
where exists
select *
from Any as v2, Any as v3
where (vl = v2)
and (v2 = v3)
and (v3 E)

The canonical form offers a uniform structure into which OQL queries can
be converted. The main advantage of having an OQL query in the canonical
form is that a canonicalized query can be easily mapped into an existential

query graph.

APPENDIX C. THE DEMO SYSTEM 77
C.2 Existential Query Graph (EQG)

DEMO uses existential graphs as a graphical syntax to capture schema dec-
larations, data constraints, and queries ([3]). The DEMO query optimizer
applies previously defined inference rules to generate an EQG as a semantical

representation of an input query in canonical form.

The nodes in an EQG represent query variables, and the labels of the nodes
indicate variable types. A labelled arc with an arrow pointing from node
V to node V' indicates that V has the named property of type V'. Every
sheet of control, illustrated by a rectangle, introduces a new nested scope
for additional nodes and graphical elements, and constitutes a negation. An
undirected arc connecting a pair of nodes, called a line of identity, asserts that
the two nodes denote the same individual. Each query has a corresponding
type, and a query variable (node in the graph) representing the result of the
query. The parameters of a query are attributes of the query node in the

graph.
For example, when defined by the Employee database schema, the query

SampleQuery:
select Employee.salary as sal
from Employee
where Employee.salary > 50
and Employee.salary = :pl

generates the EQG in Figure C.1.

APPENDIX C. THE DEMO SYSTEM

78

classouter SampleQuery

classinner

‘ _vl{SampleQuery} ‘ v12{Employee}

va{integer 50:50} |

salary

sal

Y

‘pl{lnteger 51:+inf}‘ ‘_vS{Integer} ‘ ‘_v4{Department} ‘ ‘_VS{Eindex}‘
_v2{String:40}
iEmployee
name
dindex
_Vv6{String:10} ‘ ‘ _v7{Dindex}
iDepartment

Figure C.1: A Sample Existential Graph

APPENDIX C. THE DEMO SYSTEM 79

Figure C.1 indicates that every “SampleQuery” object has an attribute “sal”
(the query result) and a parameter “pl.” When several labelled arcs have
arrows pointing from nodes Vi, V3, ..., V, to the same node V', then the
nodes V; all share the named property of type V’'. In this instance, it is
depicted that for every query object (i.e., for every query result), there exists
an “employee” object with an attribute “salary” whose value matches not

only the query result “sal” but also the query parameter “pl.”

The EQG generated by DEMO for a query () is a graphical representation

of a conjunctive formula of the form:

VQ|Qisaqueryresult : (I(vy,...v,)|(v1 = Q) A (conds) A ... A (cond,,))

where the conjuncts cond; are conditions involving variables v; and Q).

For details on existential graphs, reference [3], [19] and [20].

Bibliography

1]

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques, chapter 1, What Is a Transaction Processing System?, pages

5—6. Morgan Kaufmann Publishers, Inc., 1993.

K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger. The Notions of
Consistency and Predicate Locks in a Database System. Communica-

tions of the ACM, 19(11):624-633, 1976.

Petrus Kai Chung Chan. Optimizing oql on legacy main-memory data
structures with existential graphs. Master’s thesis, University of Water-

loo, 1997.

Patrick O’Neil. Databases - Principles, Programming, Performance,
chapter 9, Update Transactions, pages 672-673. Morgan Kaufmann
Publishers, Inc., 1994.

80

BIBLIOGRAPHY 81

[5]

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database
System Concepts, chapter 9, Update Transactions, pages 439-442. The

McGraw-Hill Companies, Inc., 3 edition, 1997.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques, chapter 7, Isolation Concepts, pages 404-405. Morgan Kauf-

mann Publishers, Inc., 1993.

Peter Shawn Yang. PAPRICCA: A Pre-Analyzing Predicate-Based Con-
currency Control Algorithm. Master’s thesis, University of Waterloo,

1998.

Raj K. Rathee. Using Advance Knowledge of Transactions to Provide
Efficient Recovery Management. Master’s thesis, University of Waterloo,

1997.

M. Berndtsson and J. Hansson. Issues in Active Real-Time Databases. In
Proceedings of the 1st International Workshop on Active and Real-Time
Database Systems, Workshops in Computing, pages 142-157. Springer,
1995.

Dale Skeen. Real-Time Queries in the Enterprise. BYTE, pages 47-48,
Feb 1998.

S. Chakravarthy. Early Active Databases: A Capsule Summary. I[EEE
Transactions on Knowledge and Data Engineering, 7(6):1008-1011,

1995.

BIBLIOGRAPHY 82

[12]

[13]

[14]

[15]

[16]

S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying
changes in semistructured data. Technical report, Stanford University,

1997.

Jose A. Blakeley and Frank Wm. Tompa Per-Ake Larson. Efficiently
Updating Materialized Views. SIGMOD Conference, pages 61-71, 1986.

Sha Guo, Wei Sun, and Mark A. Weiss. On Satisfiability, Equivalence,
and Implication Problems Involving Conjunctive Queries in Database

Systems. [EEE Transactions on Knowledge and Data Engineering,
8(4):604-616, 1996.

Daniel J. Rosenkrantz and Harry B. Hunt. Processing Conjunctive Pred-
icates and Queries. In Proceedings of the 6th International Conference

on Very Large Databases, pages 64-72, 1980.

H. Garcia-Molina and K. Salem. Main memory database systems: An

overview. I[FEEFE Transactions on Knowledge and Data Engineering,

4(6):509-516, 1992.

R.G.G. Cattell, editor. The Object Database Standard: ODMG - 93,
chapter 4, Object Query Language, pages 53-85. Morgan Kaufmann
Publishers, Inc., 1996.

DEMO Project Team, University of Waterloo. DEMO OQL Parser and

Canonicalizer Manual, 1999.

BIBLIOGRAPHY 83

[19] D.D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton,
The Hague, 1973.

[20] M. Gyssnes, J. Paredaens, and D. Van Gucht. A graph-oriented ob-
ject database model for databases and end-user interfaces. Proceedings

SIGMOD 90, pages 24-33, 1990.

