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Abstract

The behavioral properties shown by people when they make selections between dif-

ferent choices will be studied. Based on empirical and logical data a mathematical

axiomatic model is built. D. Luce is a major contributor in this area. This thesis

is based on his works and those of his many co-authors. Three approaches will be

considered that lead to the rank-dependent utility representation of binary gambles

composed only of gains (losses) relative to a status quo. The proofs involve the the-

ory of functional equations which is a very powerful tool giving the precise numerical

representations.
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Chapter 1

Introduction

1.1 Alternatives and Gambles

A certain alternative or certain consequence is a result of some decision or some ac-

tion, that can be positively or negatively valued and necessarily or certainly following

from a set of conditions. For example, the result of the chess game between two play-

ers can be winning 20$ for one player if he wins, or losing 20$ if he loses (without any

losing or winning sides in the case of draw). Thus, the chess game is an action, and

the result of it is 20$ , that is obviously valued positively (in the case of winning) or

negatively (in the case of losing). Definitely the result follows from a set of conditions,

that determines if the player wins or loses the game and there is no ambiguity about

the benefit or cost if the game is placed. Together with the just defined terms we

will use other equivalent terms such as ”riskless” or ”pure” alternatives or ”riskless”

or ”pure” consequences. Here ”certainty” is an ideal concept, but is a very close

mathematical model in the modern world in some areas.
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CHAPTER 1. INTRODUCTION 2

We define a domain of certain alternatives as a set C. Since money is usually used to

value different objects in the modern world, it is very useful to assume that C includes

money as a special case , which is modeled as a subset R of the real numbers, R. So

R = C ∩R.

Further we assume that the set of certain consequences includes a distinguished el-

ement e, which is very important in the utility theory, called the status quo. Intu-

itively, status quo is a neutral or a null consequence that does not alter the decision

maker’s current state. The status quo separates gains and losses in C in the obvious

way, where the gains are consequences preferred to the status quo and the losses are

consequences less preferred than the status quo. In real life people always compare

consequences to the status quo, classifying consequences as losses or gains.

The next type of consequences arises when depending on the outcome of the

chance experiment (for example, the toss of a coin or the draw of a ball from a urn)

one of the finitely many pure consequences actually happens. This chance experiment

carries out some process or act whose outcomes have a random aspect (for example,

the chance experiment of tossing a dice has the face that comes up as the outcome

with a random aspect). Some pure consequences (such as losing or winning money

in the previous example of tossing a dice) may be attached to each outcome. The

uncertainty about which consequence takes place is resolved only after the chance

experiment is run. In this situation we speak about uncertain alternatives

If in an uncertain situation which a person (we will call him a decision maker)
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meets, there is some information, but no precise probability or certainty about likeli-

hood of different outcomes, known to the decision maker, then the process of choosing

among such outcomes is called decision making under uncertainty.

We distinguish risky alternative from uncertain alternative by defining the former

as an uncertain alternative for which the probability is known or given for each chance

outcome when the experiment is performed. The simplest risky alternatives, that are

called first-order or first-level involve only consequences that are certain. An example

is a bet on the toss of a dice, with consequences being the win of 20$ if the face with

”1” arises (probability is 1
6
), and the loss of 10$ if the face with ”5” or ”6” arises

(probability is 1
3
).

We can speak about second-order or second-level risky alternatives if one or more

of consequences are first order risky alternatives and the probabilities are known at

both levels. A common example is the playoff games when the winner of one pair

goes to the next stage or level to play with the winner of another pair, and so on,

assuming that probabilities are known.

Although it is widely accepted that the term gamble means anything that in-

volves risk or uncertainty or the act of risking anything that is valued on the result

of something involving chance, here we will expand the definition of a gamble to

include not only the risky and uncertain alternatives but also the certain ones. In-

deed, the certain consequences can be considered as the degenerate gambles where

the same consequences are attached to all outcomes of the chances experiment or



CHAPTER 1. INTRODUCTION 4

where the consequence is assigned to a certain outcome of the chance experiment and

this outcome occurs with probability 1. Let G denote the set of all gambles under

consideration and let E denote the set of all chance experiments that describes the

considered gambles. Then for each chance experiment E ∈ E we define ΩE as the set

of its possible outcomes. For example, in the experiment E of tossing a dice

ΩE = {1, 2, 3, 4, 5, 6},

where the digit from 1 to 6 means that the face showing it comes up.

Let EE denote a family of subsets of ΩE, for instance

EE = ({1, 2}, {1, 5, 6}, {4, 2})

in the previous example.

We assume that the following properties for EE are satisfied:

(i) ΩE ∈ EE.

(ii) If C ∈ EE, then the complement of C relative to the set ΩE denoted by C̄ is

also an element in EE.

(iii) If C,D ∈ EE, then C
⋃
D ∈ EE.

Therefore we have an algebra EE and the elements of EE are called events.

Our next aim is to define binary first-order and compound gambles. Let {E1, ..., En},
Ei ∈ EE denote a finite partition of ΩE for some chance experiment E ∈ E . We un-

derline finite partition here since it is not realistic to think about the infinite number
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of outcomes for any experiment. In other words for i, j ∈ {1, 2, ..., n} with i �= j,

Ei
⋂
Ej = ∅, and

n⋃
i=1

Ei = ΩE. We assign to each event in the partition a pure con-

sequence, and this assignment is called a first-order or simple gamble g, that is, the

just defined gamble g is a function

g : {E1, ..., En} → C. (1.1)

Here we note that the result of running experiment E is exactly one element Ei in

EE, that is, exactly one Ei in the partition occurs. Therefore if we denote g(Ei) = gi,

then the function g is the set

{(g1, E1), (g2, E2), ..., (gn, En)}. (1.2)

Even though the definition of the function g as a set is mathematically clear, in

behavioral sciences the convention that

gi is preferred to gj ⇐⇒ i < j

is commonly accepted. The notion of preference will be covered more fully in the

next section. According to this convention we can rewrite (1.2) into the form of an

ordered n-tuple

(g1, E1; g2, E2; ...; gn, En), (1.3)

which gives us another way of recording gamble g.

In this thesis we will be using n-tuple notation without assuming that the g’s are

ordered.

First-order binary gamble is the specific case of the just defined first-order gamble

when n = 2. These are the most common gambles and we will deal with them in most
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cases. In this particular case it is convenient to introduce new notations : x, y ∈ C,

g1 = x, g2 = y, E1 = C and E2 = C̄ = ΩE\C. Then the first-order binary gamble

becomes

(x,C; y,ΩE\C) ≡ (x,C; y, C̄) ≡ (x,C; y). (1.4)

Thus, in the case of binary gambles we do not assume the convention that the first

written outcome x is preferred to the second written outcome y, but still use the

n-tuple notation.

Let G0 = C and let G1 denote the union of the set of first-order gambles and

G0. Then by analogy with G1 we define G2 to be all assignments from a finite event

partition into G1 together with G1. We can continue this process infinitely : Gk is the

set of all assignments from a finite event partition into Gk−1 together with Gk−1. Or

in other words, the sets Gk are defined recursively by

1. G0 = C.

2. for k ≥ 0, Gk+1 = Gk
⋃ {(g1, E1; ...; gn, En) | gi ∈ Gk, Ei ∈ EE , n ≥ 1}.

It makes sense to define kth- order gamble or kth-level gamble to be any element in

Gk\Gk−1. Any gamble which is not first-order and not pure consequence is called

compound. It is obvious that the set Gn consists of all gambles of the level less than

n including the gamble of the ”zero” level i.e. pure consequences. We define the set

of all gambles of any level by G∞ =
∞⋃
i=0

Gi, however, as it is shown in [8], in practice

it is not realistic to suppose that a common person can perceive a compound gamble

of a level higher than 2. Therefore in the rest of this thesis we will consider the case

of gambles in G2 or in G1, and denote it by G.
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1.2 Choice, Preference and Utility Function

We recall that G is the set of all gambles under consideration and alternatives or

gambles can be positively or negatively valued by decision maker, and therefore it is

obvious to assume that some of the gambles can be more valuable or less valuable

than others. Also we will assume the fact that if one gamble is seen to be more

valuable than another, the more valuable one will be selected if we have to choose

between them. We will call this situation preference or revealed preference.

If g, h ∈ G, then we assume that just one of three situation must occur: g is seen to be

preferred to h, which we denote by g � h; or if h is seen to be preferred to g, then we

denote h � g; or if g and h are seen to be indifferent in preference, we denote g ∼ h.

Also we will meet situation when one gamble g is seen to be at least as preferred as

another gamble h, that is , g 
 h or the union of g � h and g ∼ h. Assumption that

this order is connected i.e. for all g, h ∈ G just one of three possibilities occurs either

g ≺ h, or g � h, or g ∼ h, together with the transitivity which will be introduced

later gives us the conclusion that � is a weak preference relation.

To evaluate a gamble we will establish its certainty equivalence or CE by connect-

ing it to the equivalent amount of money, CE(g) ∈ R = C ⋂
R, such that

CE(g) ∼ g. (1.5)

Since we can expect that preference between money agrees with the numerical order,

we have

g � h⇐⇒ CE(g) ≤ CE(h).
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More generally we introduce another numerical evaluation of a gamble which is called

a utility function. For given behavioral properties in some general context, there

exists a numerical function U over the domain of gambles which preserves preference

between gambles, that is, such that for g, h ∈ G,

g � h⇐⇒ U(g) ≤ U(h).

Thus, we have built the preference structure (C, E ,G,�, e), where C is a set of pure

or riskless consequences, E is a set of chance experiments, G is a set of gambles under

consideration (often G2), � is a binary preference relation on G, and e ∈ G is the

status quo.

1.3 Basic Assumptions

In this section we will formulate few basic assumptions which we will assume through-

out this thesis. There are many references and a lot of empirical information in the

book of Luce [8] showing that some of these assumptions have been questioned em-

pirically and proved right, but the rest of them was considered so obvious that they

do not have to be and have not been tested empirically.

There are three fundamental principles of rationality that are true for all gambles and

do not depend on any utility of gambling:

• Two distinct descriptions of an alternative should be seen as the same and

therefore be indifferent.
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• Consider a set S of alternatives with one gamble g being at least as preferred

as all other in S. If g′ is created by replacing some aspect of g by something at

least as preferred, all else fixed, then no alternative in S is preferred to g′.

• If the chance of receiving the result that is more valued is made more likely at

the expense of the result that is less valued, the modified alternative is preferred

to the original one.

According to above stated basic behavioral properties we will form the axiomatic

mathematical system, which consists of nine axioms: four of them are pure indiffer-

ence and the rest are preference axioms.

1.3.1 Elementary Indifferences

Axiom 1. For every E ∈ E , C ∈ EE, and g ∈ G1,

(g, C; g) ∼ g, (1.6)

where it is understood that the partition is {C,ΩE\C}.

If axiom 1 holds, we say that the preference substructure of binary gambles from

〈C, E ,G2,
〉 is idempotent. In words, here we have a gamble g′ = (g, C; g) and they

can not be equal since g ∈ G1, whereas g′ ∈ G2\G1. As the result of running an

experiment E the gamble g happens if C occurs and, equally, if C fails to occur,

the result is also the gamble g. This axiom asserts that for the decision maker it

is indifferent to choose between g and g′ as the preferable one. The decision maker

might still prefer one gamble to another, if, for example, there is a reason why the
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experiment should run or why time should be wasted for running this experiment. But

we ignore these behavioral reasons, and based on the nature of each gamble, consider

them equivalent. The first axiom is the direct consequence of the first fundamental

principle because running or not running experiment C does not influence on the

result of two gambles (g, C; g) and g and therefore these gambles are seen indifferent.

Axiom 2. For every E ∈ E , and g, h ∈ G1,

(g,ΩE;h) ∼ g. (1.7)

If axiom 2 holds than we say that the preference substructure of binary gambles from

〈C, E ,G2,
〉 is certain.

As well as Axiom 1 this axiom is based on the first fundamental assumption. Here the

gamble is very primitive in the sense that it gives only one result g whatever outcome

from ΩE occurs. Thus, for the decision maker it does not make any difference whether

one runs such an experiment or not since the result is obvious for him.

Axiom 3. For every E ∈ E , C ∈ EE, and g, h ∈ G1,

(g, C;h) ∼ (h, C̄; g), (1.8)

where C̄ = ΩE\C.

If axiom 3 holds than we say that the preference substructure of binary gambles from

〈C, E ,G2,
〉 is complemental. Here the two sides say exactly the same thing except

for the order of writing. If it is assumed that g 
 e 
 h i.e. a gamble between gains

and losses, then this axiom shows the connection between losses and gains, that is, we

have the gain h, if C occurs, and otherwise we have the loss g. This assumption also
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gives us the right to consider gambles as the class equivalence with respect to orders

of writing events and consequences, and therefore this is another interpretation of the

first principle.

Axiom 4. For all f, g, h ∈ G1,

If f � g and g � h, then f � h. (1.9)

If axiom 4 holds then we say that the preference substructure of binary gambles

from 〈C, E ,G2,
〉 is transitive. Transitivity is a special case of the second rationality

principle. Here for S = {f, g} we have that no element from S is preferred to g, and

if we create another gamble h such that it is at least as preferred as g, then no gamble

from S is preferred to g.

As a consequence of transitivity for the weak preference �, the indifference relation

∼ must also be transitive:

If f ∼ g and g ∼ h, then f ∼ h.

It is not necessary to check and it is obviously true that money preference is transitive

as well.

1.3.2 Preference Consequences

The following five axioms involve the full preference relation 
 over G, not just the

indifference relation ∼ as in the first four. These are all subject to some descriptive

doubt, so they have been explored empirically reasonably carefully by many authors
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(see the second chapter of [8]).

Axiom 5. If money is modeled as R, then for all α, β ∈ R

α 
 β ⇐⇒ α ≥ β. (1.10)

This axiom is believed to be truthful for all people and seems to be useless to check

empirically, since every decision maker prefers more money to less money if every-

thing else holds fixed.

Axiom 6. For all E ∈ E , gi, g′i ∈ G1, i ∈ {1, 2, ..., n}, and partitions

{E1, E2, ..., En} of ΩE, where Ei ∈ EE,

g′i 
 gi if and only if

(g1, E1; ...; g
′
i, Ei; ...; gn, En) 
 (g1, E1; ...; gi, Ei; ...; gn, En). (1.11)

If axiom 6 holds then we say that the preference substructure of gambles from

〈C, E ,G2,
〉 is consequence monotonic. In the binary case this axiom simplifies to

g′ 
 g ⇐⇒ (g′, C;h) 
 (g, C;h)

and

h′ 
 h⇐⇒ (g, C;h′) 
 (g, C;h).

Again we see that consequence monotonicity is another interpretation of the second

rationality principle in which S = {f}, where

f = (g1, E1; ...; gi, Ei; ...; gn, En),
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and if we replace gi by g′i which is at least as preferred as gi, then the transformed

gamble (g1, E1; ...; g
′
i, Ei; ...; gn, En) is seen at least as preferable as the original one.

Another interpretation of this axiom is that it shows the ”separable” form of the

gambles in the sense that the relation between gi and g′i is not influenced by the rest

of the gamble structure.

When we speak about monotonicity of the gambles, there are two quite different

forms to be considered. One involves consequences and is very close to the previous

axiom when improving one part of the gambles improves the whole gamble. Another

(which is considered below) arises when we have a binary operation and it is analogous

to the numerical monotonicity of addition, which says that α ≥ β if and only if

α+γ ≥ β+γ. This property is a mathematically strong condition and it can be seen

from [8] that there are some doubts about its validity, therefore we will not assume

it as an axiom. However this condition is important so we will introduce it here.

The preference substructure of binary gambles from 〈C, E ,G2,
〉 is said to be event

monotonic if and only if for all E ∈ E , A,B,C ∈ EE with A ∩ C = B ∩ C = ∅ and

g, h ∈ G1, with g � h

(g, A;h) 
 (g,B;h) if and only if (g, A ∪ C;h) 
 (g,B ∪ C;h). (1.12)

This condition can be established from the third fundamental principle. Since the de-

cision maker prefers the gamble which makes g more likely to occur than h, and since

a gamble (g, A;h) is at least as preferred as a gamble (g,B;h), the decision maker

sees from rationality principle that an event A happens at least as likely as an event

B. Therefore adjoining the disjoint event C to both sides, the order of preference is
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preserved. This principle can be easily transformed to the converse when the gamble

makes g less likely to occur than h, in this case by removing the common part we

still have the gamble that is at most as preferred as the first.

The next assumption is a special case of event monotonicity which seems to be

empirically right, and therefore we accept it as an axiom.

Axiom 7. For all E ∈ E , C,D ∈ EE and g, h ∈ G1,

if g � h and C ⊃ D, then (g, C;h) � (g,D;h). (1.13)

If axiom 7 holds then we say that the preference substructure of binary gambles from

〈C, E ,G2,
〉 is monotonicity of event inclusion. This is the first part of event mono-

tonicity which arises from the third basic principle. Here since a gamble g is preferred

to a gamble h, and an event C is more likely to occur than an event D, the decision

maker sees the gamble (g, C;h) preferable to the gamble (g,D;h). If we switch the

order of preference and the inclusion of the events, then this axiom is also true .

The next proposition shows the relation between event monotonicity and monotonic-

ity of event inclusion, and since the converse of this proposition is not generally true,

it shows that event monotonicity is a mathematically stronger property.

Proposition 1 Suppose idempotence,certainty, consequence monotonicity, and tran-

sitivity hold in the structure 〈C, E ,G2,
〉. Then event monotonicity implies mono-

tonicity of event inclusion.

Proof. Suppose C ⊃ D and g � h, and we have to prove that (g, C;h) � (g,D;h).

Since D is a proper subset of C, A = C\D is nonempty. By complementarity
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(g, ∅;h) ∼ (h,E; g), by certainty we have (h,E; g) ∼ h, further by idempotence h ∼
(h,A;h), and finally the consequence monotonicity axiom gives (h,A;h) ≺ (g, A;h).

Thus, (g, ∅;h) ≺ (g, A;h) and by event monotonicity adjoining D to both sides of

this relation , we conclude

(g,D;h) ≺ (g, A ∪D;h) ∼ (g, C;h)

which proves this proposition.

�

We note again that the converse of this theorem is not true. Intuitively, it is clear

since monotonicity of event inclusion depends on the order of inclusion , on the other

hand event monotonicity does not imply any event inclusion. The example known as

Ellsberg paradox that can be found in the book [8], page 55, proves this assertion.

Axiom 8. For all E ∈ E , C,D ∈ EE and g, h ∈ G1 with g, h � e

(g, C; e) 
 (g,D; e) ⇐⇒ (h,C; e) 
 (h,D; e). (1.14)

If axiom 8 holds we say that the preference substructure of binary gambles from

〈C, E ,G2,
, e〉, where e is the status quo shows order-independence of events.

It is possible to phrase this axiom in a different way using arbitrary z instead of e

with the same property g, h 
 z. This axiom also allows us to introduce an induced

order 
EE
over EE in the following way: we say that C 
EE

D if (g, C; e) 
 (g,D; e)

holds for all g ∈ G1.

Order-independence of events for the first-order gambles is intuitively

understandable, but for the second-order gamble it is not so clear. Indeed, in the



CHAPTER 1. INTRODUCTION 16

case of a first-order gamble since g is a gain, from the first inequality it follows that

the event C should occur more likely than the event D. Therefore, since h is also

the gain, the second inequality should hold. But it is not known, based on [8], page

58 , whether order-independence has been checked empirically.

It is now appropriate to put these axioms in one definition:

Definition. A preference structure of binary gambles from 〈C, E ,G2,
〉 is

said to be elementary rational if and only if it satisfies the following

conditions: 
 is a weak order (transitive and connected), idempotence,

certainty, complementarity, consequence monotonicity, monotonicity of event

inclusion , and order-independence of events.

Denote a second-order gamble with at least one gain and at least one loss by

g = (g1, E1; ...; gn, En), Ei ∩ Ej = ∅, i �= j, and
n⋃
i=1

Ei = E,

where the indices are chosen such that the consequences are ordered by preference,

i.e.

g1 
 g2 
 ... 
 gk 
 e 
 gk+1 
 ... 
 gn.

Thus, the first k consequences are gains and those from k + 1 to n are losses. The

status quo e is included in the first group.

The last axiom is based on the fact that people formulate a general gamble as a

binary one composed of two subgambles. One subgamble consists of those events

with only gains including the status quo as consequences; the other only of events

with only losses as consequences . Formally, define

E+ =
k⋃
i=1

Ei, and E− =
n⋃

i=k+1

Ei
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and

g+ = (g1, E1; ...; gk, Ek), and g− = (gk+1, Ek+1; ...; gn, En).

By this definition the subgamble g+ is conditioned on the subevent E+ of E and g−

is conditional on E−.

Axiom 9. For all E ∈ E , g ∈ G1 with at least one gain and at least one

loss consequence

g ∼ (g+, E+; g−, E−). (1.15)

These two gambles cannot be equal since g ∈ G1 whereas

(g+, E+; g−, E−) ∈ G2/G1.

If axiom 9 holds then we say that the preference substructure of binary gambles

from 〈C, E ,G2,
, e〉, where e is the status quo shows gain-loss decomposition.

It seems to be reasonable to assume this gain-loss decomposition since many people

including sophisticated decision makers, think about any gambles with at least one

gain and at least one loss in terms of such a decomposition. For example, most of us

deal with potential losses, such as losing job or accidents, as very distinct from the

gains associated with buying new car or house.

Mathematically this axiom simplifies a complicated gamble by reducing it to three

simpler ones: one deals only with losses, another with only gains and the third is

the binary mixed gamble. Then we can consider the case for losses to be the same

as for the gain case since we always can assume that a loss is a negative gain. But

again it is not known according to Luce [8], page 60, whether or not there is

empirical data for checking this axiom.
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1.4 Binary Rank-Dependent Utility (RDU)

Having built the axiomatical model we are about to define the notion of

rank-dependent utility representation. The main problem of this thesis is: under

what assumptions and how can we get the rank-dependent representation for the

binary gambles? From here on, according to the ninth axiom, we consider gambles

involving only gains as consequences. We will make slight changes in the notations

and we will also give the definition of RDU representation and state its three

properties.

At first we recall that G0 = C is the set of certain alternatives, G1 is the first-order

gambles together with G0, G2 is the second-order gambles together with G1, and 
 is

a weak preference order. We introduce more specific notations:

• G+
0 = C+ = {x : x ∈ C and x 
 e} is the set of certain gains including the

status quo e.

• G+
i is the subset of Gi for all gambles that are generated inductively from C+

and E .

• G+
i = 〈C+, E ,G+

i ,
, e〉 i.e. the substructure of the gain gambles.

We note here that when we deal with G+
i and its ordering 
, we simply mean the

restriction of the original ordering to the subsystem.

Definition. G+
2 is said to have a binary rank-dependent utility (RDU)

representation if and only if there exists a mapping U : G+
2 → R∗

+ = {α : α ∈ R
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and α ≥ 0} and , for each E ∈ E , a mapping WE : EE → [0, 1] with

WE(∅) = 0, WE(ΩE) = 1,

such that U is order preserving in the sense that for g′, h′ ∈ G+
2 ,

g′ 
 h′ ⇐⇒ U(g′) ≥ U(h′),

U(e) = 0,

and for g, h ∈ G+
1 ,

U(g, C;h, C̄) =




U(g)WE(C) + U(h)[1 −WE(C)], g � h

U(g), g ∼ h

U(g)[1 −WE(C̄)] + U(h)WE(C̄), g ≺ h.

(1.16)

This model is called ”rank-dependent” since we used different forms depending on

whether g � h, or g ∼ h, or g ≺ h. We will call U a utility function and WE a

weighting function which is defined for some particular experiment E and which

maps events into the closed interval [0, 1] . In the general case, when we consider

both gains and losses we distinguish weighting functions for gains and losses. WE

need not in general be an additive function, that is, we need not have

WE(C) +WE(C̄) = 1 since otherwise we would not need rank dependency. We also

notice that in equation (1.16) the second line follows directly from idempotence, and

the third line follows from the first by complementarity.

Definition. The representation is said to be dense in intervals if the images

of U and WE are each dense in an interval, i.e. for r, s in the interval with

r > s, there exists a t in the image of the function such that r > t > s.
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The representation is said to be onto intervals if U is onto a real interval

including 0 and there is at least one experiment K ∈ E with WK onto [0, 1].

Having one experiment (later defined as canonical) that has a rank - dependent

representation onto an interval gives us the chance to even further simplify the

consideration of all binary gambles to the binary gambles based on this experiment.

Definition. In a structure G+
2 of binary gambles of gains, an experiment

K ∈ E is said to be canonical if and only if for any E ∈ E and any C ⊆ ΩE,

there exists D ⊆ ΩK depending on C and ΩE such that for all g, h ∈ G+
1 with

g 
 h,

(g, C;h,ΩE\C) ∼ (g,D;h,ΩK\D). (1.17)

Theorem 1 If G+
2 has an RDU representation and there is an experiment K for

which WK is onto [0, 1], then K is canonical.

Proof . Because WE maps into the interval [0, 1] and WK is surjective onto [0, 1], for

any C ⊆ ΩE there exists D ⊆ ΩK such that WK(D) = WE(C). So by the RDU

representation for g 
 h

U(g, C;h,ΩE\C) = U(g)WE(C) + U(h)[1 −WE(C)]

= U(g)WK(D) + U(h)[1 −WK(D)] = U(g,D;h,ΩK\D),

and therefore (1.17) holds.

The existence of the canonical experiment is a strong property. But to have this

property it is not necessary to have RDU onto an interval, because it is enough to

have the specific property of the function WK for some experiment K.
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We now explore three necessary properties of the RDU representation which will

play the main role in axiomatizing it:

1. Separability.

For each E ∈ E the substructure 〈C+, EE,G+
1 ,
, e〉 is said to have a separable

representation if and only if there exist U : C+ → R∗
+ and WE : EE → [0, 1] such that

the product UWE is order preserving, that is,

(x,C; e, C̄) 
 (y,D; e, D̄) ⇐⇒ U(x)WE(C) ≥ U(y)WE(D) (1.18)

and WE(ΩE) = 1.

This property comes straightforward from the definition of the rank-dependent

utility, in particular, from equation (1.18) with h = e. There is a lot of empirical

data showing that this property of a representation commonly holds, for example

see [8], pages 67-72.

2. Rank-dependent additivity of consequences.

A structure G+
1 is said to have a rank-dependent additive representation (RDA) if

and only if for each E ∈ E there exists U1,E, U2,E : C+ × EE → R∗
+, such that the

following additive order-preserving representation holds: For x, x′, y, y′ ∈ C+ with

x 
 y and x′ 
 y′, and C ∈ EE,

(x,C; y) 
 (x′, C; y′)

if and only if

U1,E(x,C) + U2,E(y, C) ≥ U1,E(x′, C) + U2,E(y′, C),

and U1,E(e, C) = U2,E(e, C) = 0.
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Further, we can define U over G+
1 as

U(x,C; y) = U1,E(x,C) + U2,E(y, C), x 
 y. (1.19)

The representation for x ≺ y follows from the complementarity property

U(x,C; y) = U(y, C̄;x) = U1,E(x, C̄) + U2,E(y, C̄), x ≺ y.

The definition extends to G+
2 in the obvious way.

If we compare the rank-dependent additivity of consequences and the gain-loss

decomposition axiom we notice their similarity, indeed, in RDA representation the

utility function is expressed as the sum of two terms. Psychologically, it means that

people distinguish not only gains and losses but also less gains and larger gains and

treat them independently. This property has also been tested and proved

empirically in the works of few authors and some references can be found on the

pages 71-72 of [8].

3. Event commutativity.

The third consequence of RDU does not involve trade-off, but rather compound

games and shows a special kind of indifference.

A structure G+
2 satisfies event commutativity if for all x, y ∈ C+, E,F ∈ E , C ⊂ ΩE

and D ⊂ ΩF ,

((x,C; y,ΩE\C), D; y,ΩF\D) ∼ ((x,D; y,ΩF\D), C; y,ΩE\C).

When this is true just for y = e, we say that status-quo event commutativity holds.

This property seems to be quite rational: When two independent experiments E

and F are run, the outcome x occurs when both C happens in ΩE and D happens in
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ΩF , and the outcome y occurs, when either ΩE\C happens or ΩF\D happens. Thus,

for the decision maker it is indifferent in which order these two experiments are run.

The event commutativity follows from the rank-dependent utility representation if

we suppose x 
 y and therefore (x,C; y) 
 y.Thus,

U((x,C; y, E\C), D; y, F\D) = U(x,C; y, C\E)WF (D) + U(y)[1 −WF (D)]

= U(x)WE(C)WF (D) + U(y)[1 −WE(C)]WF (D) + U(y)[1 −WF (D)]

= U(x)WE(C)WF (D) + U(y)[1 −WE(C)WF (D)],

which is symmetrical in (C,E) and (D,F ). Therefore the utility function for both

gambles are equal, and thus two gambles are equivalent.

Even though this property seems to be quite rational, it is not always true according

to some analysis (see [8], pages 72-74). However, in most cases it is true.



Chapter 2

First axiomatization of RDU

After building our mathematical model the goal for the rest of this thesis is to

understand how the RDU representation onto an interval comes from behavioral

properties that we can observe. We will investigate three approaches that involves

examining some combinations of major features implied by the RDU representation,

deriving functional equations and based on their solutions proving some major

theorems for representations including RDU. In the first two approaches the

separability, rank-dependent additivity and event commutativity assumptions

together with some structural conditions will give rise to a new representation and

RDU is a special case of it.

2.1 Introduction

In this section we assume that both additive and separable representations are

satisfied and they both are onto intervals. We prove that the RDU representation

24
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exists. Returning to the definition of rank-dependent additive representation we can

write it in the form

U(x,C; y) = U1,E(x,C) + U2,E(y, C) x 
 y 
 e, (2.1)

where U1,E, U2,E : C+ × EE → [0, k[ are surjective and U1,E(e, C) = U2,E(e, C) = 0.

Letting y = e, we get

U(x,C; e) = U1,E(x,C).

Because the utility function preserves the order of preference restricted to gambles

of the form (x,C; e), U1,E(x,C) also preserves the order of preference. Now we recall

that the separable representation of RDU defined in chapter 1 preserves the order of

preference, i.e.

(x,C; e, C̄) 
 (y,D; e, D̄) ⇐⇒ U∗(x)W ∗
E(C) ≥ U∗(y)W ∗

E(D)

and W ∗
E(ΩE) = 1, where W ∗

E and U∗ play the role of WE and U in the definition of

the separable representation of RDU (equation (1.18)). The assumptions that this

representation holds for U1,E(x,C) and that both additive and separable

representation are onto an interval, give the conclusion that there exists a strictly

increasing function Ψ with Ψ(0) = 0 such that U1,E = Ψ[U∗(x)W ∗
E(C)]. Thus, we

justified the following expression for U(x,C; y)

U(x,C; y) = Ψ[U∗(x)W ∗
E(C)] + U2,E(y, C) x 
 y 
 e. (2.2)

Further we let C = ΩE and y = e. Because W ∗
E(ΩE) = 1, U2,E(e, C) = 0 and the

certainty axiom is satisfied, we have

U(x) = Ψ[U∗(x)].
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Thus, using certainty equivalence (1.5) and substituting this expression for U(x) to

the equation (2.2) we get

Ψ[U∗(x,C; y)] = Ψ[U∗(x)W ∗
E(C)] + U2,E(y, C) x 
 y 
 e, (2.3)

where Ψ(0) = 0, U2,E(e, C) = 0 and Ψ is strictly increasing.

Because of the rank dependence constraint x 
 y, we cannot use the same argument

to conclude that U2,E(y, C) has a separable representation. In [9], p.104 this mistake

was made, however, already in [11], p.283, D. Luce and A. Marley discussed this

case and made corrections by assuming, what they called the double separable

additive utility, that there also exist a strictly increasing function Φ with Φ(0) = 0,

and functions U∗∗,W ∗∗
E with U∗∗(e) = 0,W ∗∗

E (∅) = 0 and W ∗∗
E (ΩE) = 1 such that the

second term in (2.3) can be expressed in the form

U2,E(y, C) = Φ[U∗∗(y)W ∗∗
E (C̄)]. (2.4)

The authors could not justified this assumption in a fully satisfactory fashion,

although they outlined two approaches to this justification and stated their

drawbacks.

Collecting (2.3) and (2.4) together we get

Ψ[U∗(x,C; y)] = Ψ[U∗(x)W ∗
E(C)] + Φ[U∗∗(y)W ∗∗

E (C̄)], (2.5)

for all x 
 y 
 e. Setting C = ∅ in (2.5) proves that

Ψ[U∗(y)] = Φ[U∗∗(y)] x 
 y 
 e. (2.6)

Furthermore, letting v = U∗(y), w = W ∗
E(C), f = Ψ, and defining the function g by

U∗∗(y) = g[U∗(y)] = g(v), and the function q by q(w) = W ∗∗
E (C̄), we can write the
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equation (2.6) in the form

f(v) = Φ[g(v)] or Φ = f ◦ g−1, (2.7)

where we know that g−1 is defined because g : [0, l[→ [0, l[ is strictly monotonic and

surjective.

Finally, letting x = y in (2.5) and using (2.7) together with our new notations, we

derive the functional equation

f(v) = f(vw) + f(g−1[g(v)q(w)]) (v ∈ [0, l[;w, q(w) ∈ [0, 1]). (2.8)

Even though we know that f and q are strictly monotonic and continuous, in

solving this equation we will only suppose that f is nonnegative on [0, l[.

2.2 A Functional Equation Arising from the First

Axiomatization

In this section we will solve the equation, which arises from the additive and

separable utility as it was shown above i.e., the equation

f(v) = f(vw) + f(g−1(g(v)q(w))). (2.9)

It has been solved by Aczél, Maksa, Ng and Páles (cf. [3]) under the assumptions

that f : [0,l[ → [0,+∞[, q : [0,1]→ [0,1] , and g−1 is the inverse of g: [0,l[ → [0,l[,

strictly monotonic and surjective.

Let k = ln(l) ≥ −∞, I =]k,+∞[, R+ =]0,+∞[. Introducing new variables

t = − ln(v) and s = − ln(w) we can write equation (2.9) on the interior in the form

f(e−t) = f(e−(t+s)) + f(g−1(q(e−s)g(e−t))).
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Define


F (t) = f(e−t), G(t) = −ln g (e−t) (t ∈ I)

Q(s) = −ln (e−s), H(ψ) = f(g−1(e−ψ))(s ∈ R+, ψ ∈] − ln k,+∞[)

(2.10)

so that we can write equation (2.9) on the subdomain, where v �= 0, w �= 0 in the

additive form

F (t) − F (t+ s) = H(G(t) +Q(s)) (t ∈ I, s ∈ R+). (2.11)

We are going to find the solutions of this equation under the following assumptions

(a)F : I → R,

(b)G : I → R is strictly monotonic,

(c)Q : R+ → R,

(d)H : G(I) +Q(R+) → R+ is strictly monotonic.

We note that the strictly monotonicity of H can be assumed only if f is strictly

monotone, that will follow from theorem 5. The condition (d) also implies that the

function F is strictly decreasing, because the values of the function H and the

argument s are both positive.

Theorem 2 Suppose the equation (2.11) holds for all t ∈ I, s ∈ R+, where the

functions F,G,Q, and H satisfy the assumptions (a) - (d). Then

(i) F has right and left derivative everywhere on I , Q is differentiable everywhere

on R+ and G′
+ exists everywhere on I,

(ii) Q′, F ′
+ and G′

+ satisfy the differential-functional equation

Q′(s)[F ′
+(t+ s) − F ′

+(t)] = G′
+(t)F ′

+(t+ s)(t ∈ I, s ∈ R+), (2.12)
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(iii) F
′
+ , G′

+, and Q preserve signs on their domains.

Proof. (i) For all fixed s ∈ R+ (2.7), (b), and (d) imply that the function

t �→ F (t) − F (t+ s) (t ∈ I) is strictly monotonic. Therefore in the strictly

decreasing case,

F (t) − F (t+ s) > F (t+ s) − F ((t+ s) + s),

or

2F (t+ s) < F (t) + F (t+ 2s) (t ∈ I, s ∈ R+)

and thus F is strictly Jensen convex. Since F is locally bounded , F is strictly

convex (or strictly concave if we had chosen that F (t) − F (t+ s) is strictly

increasing), therefore, F is differentiable except for at most countably many points

and F ′
−(t) and F ′

+(t) exist and are strictly monotone (cf. [7], page 156).

According to (2.7) , F (t) − F (t+ s) is in the codomain of H for all t ∈ I, s ∈ R+

and since H is strictly monotonic , we can write (2.7) in the form

H−1(F (t) − F (t+ s)) = G(t) +Q(s) (t ∈ I, s ∈ R+). (2.13)

The set J = {F (t) − F (t+ s) : t ∈ I, s ∈ R+} is an open interval of positive length

in R+, due to strict monotonicity and convexity of F . Also H−1 is strictly

monotonic and by Lebesgue’s theorem ( cf. [5], page 264), H−1 is differentiable

almost everywhere on J . Having the differentiability of F almost everywhere, for

each s ∈ R+ we can choose such t0 ∈ I that F is differentiable at t0 + s, and H−1 is

differentiable at F (t0) − F (t0 + s). Thus the left-hand side of (2.13) is differentiable

with respect to s, and therefore Q is differentiable everywhere, since s has been



CHAPTER 2. FIRST AXIOMATIZATION OF RDU 30

taken arbitrarily. Choose z0 = F (t0) − F (t0 + s0) ∈ J for arbitrary t0 ∈ I, and

s0 ∈ R+. We note that s0 = F−1[F (t0) − z0] − t0. Since the map

(t, z) → F−1[F (t) − z] − t is well defined and jointly continuous on a neighbourhood

of (t0, z0) and s0 ∈ R+, there exists a neighbourhood T0 × Z0 of (t0, z0) such that

F−1[F (t) − z] − t ∈ R+ for all (t, z) ∈ T0 × Z0. We can take t1 ∈ T0 such that the

strictly decreasing F−1 is differentiable at F (t1) − z, and s = F−1[F (t1) − z] − t1 in

(2.13). We get

H−1(z) = G(t1) +Q(F−1[F (t1) − z] − t1) (z ∈ Z0). (2.14)

By the differentiability of Q and by the choice of t1 , the right side of (2.14) is

differentiable with respect to z at z0, therefore H−1 is differentiable at z0, and

therefore everywhere on J . The existence of G′
+ everywhere on I follows from

existence of F ′
+ everywhere and H−1 on J , and the chain rule.

We prove (ii) by differentiating (2.13) with respect to s and t , getting

−(H−1)′
(
F (t) − F (t+ s)

)
F ′

+(t+ s) = Q′(s),

(H−1)′
(
F (t) − F (t+ s)

)
(F ′

+(t) − F ′
+(t+ s)) = G′

+(t),

and eliminating (H−1)′
(
F (t) − F (t+ s)

)
from these two equations.

(iii) Because F is strictly decreasing and strictly convex or concave , we have (see

[14], page 5)

F ′
+(t) < 0,

and

(F ′
+(t) − F ′

+(t+ s)) preserves its sign for all t ∈ I, s ∈ R+.
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Since G is strictly monotone, there exists such t1 that G′
+(t1) �= 0, therefore

Q′(s) �= 0 for some s. Hence, fixing this s, we conclude that G′
+ preserves sign. Now

letting s vary again, Q′ also preserves sign.

�

Introducing new notations

γ(s) = Q′(s) (s ∈ R+), ϕ(t) = G′
+(t) and ψ(t) = F ′

+(t) (t ∈ I) (2.15)

we are able to rewrite equation (2.8) in the form

γ(s)(ψ(t+ s) − ψ(t)) = ϕ(t)ψ(t+ s)(t ∈ I, s ∈ R+), (2.16)

where the functions γ, ψ, and ϕ do not change signs on their domain.

We introduce the set P (I) of all pairs (c, µ) (c �= 0) for which the function

t �→ µ+ ect

does not equal to zero for all t ∈ I.

Theorem 3 The sign preserving functions γ : R+ → R,ψ, ϕ : I → R satisfy (2.16)

if , and only if, either

ϕ(t) =
p

t+ r
, ψ(t) =

q

t+ r
, γ(s) = −p

s
(t ∈ I �= R, s ∈ R+), (2.17)

where p, q, and r are real constants, pq �= 0,−r �∈ I ; or

ϕ(t) =
aect

µ+ ect
, ψ(t) =

b

µ+ ect
, γ(s) =

a

1 − ect
(t ∈ I, s ∈ R+), (2.18)

where a, b, c, and µ are constants, abc �= 0, (c, µ) ∈ P (I).
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Proof . Equation (2.16) can be in the form

l(t+ s) − l(t) = m(t)n(s) (2.19)

if we denote

l := 1/ψ,m := ϕ/ψ and n := −1/γ, (2.20)

that can be done since ϕ, ψ, and γ are sign preserving, and therefore l, n, and m

also preserve signs. Since n(s)m(t) is either positive or negative for all s and t, l is

strictly monotonic, and thus n is strictly monotone as well. From the proof of

theorem 2 it is obvious that l has right and left derivative everywhere, and it implies

that n also has right and left derivative. Now we differentiate (2.19) with respect to

s from the right to get the Pexider equation ([1])

l′+(t+ s) = m(t)n′
+(s) (t ∈ I, s ∈ R+) (2.21)

with solution

l′+(t) = a1e
ct,m(t) = a2e

ct, and n′
+(t) = a3e

ct,

where a1a2a3 �= 0 and a1 = a2a3. Since l and n have continuous right derivatives, by

[7], page 156, they are differentiable everywhere. Therefore if c �= 0 by integration

we get

l(t) =
a1

c
ect + b1, n(s) =

a3

c
ect + b3; (2.22)

or

l(t) = a1t+ b1, n(s) = a3t+ b3 (2.23)

when c = 0. Now substitute these solutions to (2.19) to get b2 = 0. Furthermore, if

c = 0, then b3 = 0, while if c �= 0, then b3 = a1/a2. It is easy to check that we get

(2.17) and (2.18) using (2.20) and relabelling the constants.
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Theorem 4 The functions Q,F,G, and H with the properties (a) -(d) are the

solutions of (2.11) for all t ∈ I and s ∈ R+ if and only if either


Q(s) = −p ln(s) + C1, F (t) = q ln(t+ r) +B1,

G(t) = p ln(t+ r) + A1, H(ξ) = −q ln(1 + e−
1
p
(ξ−A1−C1)),

(2.24)

where A1, B1, C1 and p, q, r, are constants with p �= 0, q < 0,−r �∈ I, or

Q(s) = −d ln
1 − e−cs

β
(s ∈ R+), (2.25)

G(t) = d ln |µ+ ect| + A2 (t ∈ I), (2.26)

F (t) =




α
µ

ln |µe−ct + 1| +B2 if µ �= 0

αe−ct +B2 if µ = 0

(t ∈ 0), (2.27)

H(ξ) =



−α
µ

ln |1 − ε(c, µ)βµe−
1
d
(ξ−A2| if µ �= 0

αβe−
1
d
(ξ−A2 if µ = 0

(ξ ∈ G(I) +Q(R+)), (2.28)

where

ε(c, µ) =




+1 if (c, µ) ∈ P+(I)

−1 if (c, µ) ∈ P−(I),

(2.29)

where P+(I) and P−(I) are the sets of all pairs (c, µ) for which the function

t �→ µ+ ect is everywhere positive or everywhere negative, respectively. Here

d, α, c, β, µ, A2, B2 are constants constrained by

d �= 0, βc < 0, (c, µ) ∈ P (I), ε(c, µ)αβ > 0 (We have ε(c, 0) > 0 and so

αβ > 0 if µ = 0).

Proof. The result follows straight from theorem 2 and (2.15). Indeed, we have either

G′
+(t) =

p

t+ r
, F ′

+(t) =
q

t+ r
,Q′(s) = −p

s
(t ∈ I �= R, s ∈ R+) (2.30)
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where p, q, and r are real constants, pq �= 0,−r �∈ I ; or

G′
+(t) =

aect

µ+ ect
, F ′

+(t) =
b

µ+ ect
, Q′(s) =

a

1 − ect
(t ∈ I, s ∈ R+) (2.31)

where a, b, c, and µ are constants, abc �= 0, (c, µ) ∈ P (I). Since F ′
+(t) and G′

+(t) are

continuous, F and G are differentiable everywhere (see [7], page 157). After

integrating (2.30) and substituting into the equation (2.11) we get (2.24). Since

F ′
+(t) < 0 , we have additional restriction q < 0. Next, by integrating (2.31) and

putting the resulting forms of Q,F,G into (2.11), we get (2.25)-(2.29) with d = a/c

and α = −b/c. Since H is positive, ε(c, µ)αβ > 0. Direct computation shows that

the functions (2.25)-(2.29) indeed satisfy equation (2.11) under the given restrictions

on constants.

�

The solution of the original equation

Let 0 < k ≤ +∞ be fixed. We consider our original equation

f(v) = f(vw) + f(g−1(g(v)q(w))) (v ∈ [0, k[, w ∈ [0, 1]) (2.9)

under the assumptions

(A) f : [0, k[→ [0,+∞],

(B) q : [0, 1] → [0, 1],

(C) g : [0, k[→ [0, k′[ is strictly monotonic and surjective.

Theorem 5 The functions f, g , and q with the properties (A), (B) , and (C)

satisfy (2.9) if and only if
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• either f ≡ 0 on [0, k[ , and g, q are arbitrary,

• or g is arbitrary and there exists a constant c > 0 such that

f(0) = 0, and f(v) = c (v ∈]0, k[),

0 < q(0) ≤ 1 q(w) = 0 (w ∈]0, 1]),

• or there exist constants α > 0, c > 0, d > 0 and µ ≥ −k−c such that

q(w) = (1 − wc)d (w ∈ [0, 1]),

g(0) = f(0) = 0, g(v) = δ(µ+ v−c)−d, and

f(v) =




α
µ

ln (1 + µvc) if µ �= 0

αvc if µ = 0

(v ∈]0, k[),

where the convention k−c = 0 if k = +∞ is assumed and

if k′ = +∞, then µ = −k−cand δ > 0 is arbitrary ;

if k′ < +∞, then µ > −k−cand δ = k′(µ+ k−c)d.

P roof . 1. It is obvious that if f ≡ 0 on [0, k[ , and g, q are arbitrary, then such

functions are the first family of solutions. Also we note here that even though g is

strictly monotonic in this theorem, in fact because of condition (C) we have only the

strictly increasing case as a possibility.

2. Suppose that f is not identically zero on [0,k[. Since g is strictly increasing and

surjective , it and its inverse equal to zero only if v = 0 . Let v = 0, then (2.9)

immediately implies that f(0) = 2f(0) = 0. Now let w = 0. If q(0) were equal to
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zero, we would get zero solution f(v) = 0 for all v ∈ I. Therefore we would be in

the first case. Thus, we have q(0) > 0. Now we suppose that q(w) = 0 for all w on

]0, 1], so we have f(v) = f(vw) for all v ∈ I and w ∈]0, 1], and therefore f(v) is

constant on ]0, k[. This yields the second family of solutions.

3. So far we have that g(0) = g−1(0) = f(0) = 0 q(0) > 0 and f �≡ 0 on [0, k[ and

q �≡ 0 on [0, 1]. Since f is non-negative function and w ∈ [0, 1], the equation (2.9)

implies that f is increasing, but not necessarily strictly increasing.

Fact 1. There exists a w1 ∈]0, 1[ such that q(w1) < 1.

Suppose that q(w) = 1 for all w ∈]0, 1[. Then equation (2.9) gives that f(vw) = 0

for all v ∈ [0, k[ and w ∈]0, 1[. Therefore f is identically zero on [0, k[.

Fact 2. f(v) > 0 for all k > v > 0.

Suppose that f(v0) = 0 for some v0 �= 0 and f(v) > 0 for all v > v0. Since f is

increasing function, we have that f(v) = 0 for all 0 ≤ v ≤ v0. By Fact 1 there exists

w1 such that q(w1) < 1. Choose v1 > v0 such that v1w1 < v0 , thus f(v1w1) = 0.

Since g is strictly increasing and q(w1) < 1, we can take v2 > v0 such that

g−1(g(v2)q(w1)) < v0. Thus f(g−1(g(v2)q(w1))) = 0. By the choice of v1 and v2 we

have that

f(v) = f(vw1) + f(g−1(g(v)q(w1))) = 0

for all v ∈ [0,min(v1, v2)]. This contradicts the definition of v0, since both v1 and v2

are greater than v0.
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Fact 3. If q(w) = 0 for some w ∈]0, 1[, then q(w) = 0 for all w ∈]0, 1[.

Suppose that q(w0) = 0 for some w0 ∈]0, 1[. Then from equation (2.9) we see that

f(v) = f(vw0) for all v ∈]0, k[ and 0 < w0 < 1. This proves the constancy of f on

]0,k[, thus, together with (2.9), it follows that q(w) = 0 for all w ∈]0, 1[. We note

here that if q(w) = 0 for some w ∈]0, 1[, then we get the second family of solutions.

Therefore we can disregard this case.

Now we suppose that q is nowhere zero on ]0, 1[. Thus we have that f(v) �= f(vw)

for all w ∈]0, 1[ and v ∈]0, k[ and therefore f is injective, and thus, strictly increasing

on [0, k[. This in turn implies that we can use theorem 3 to find a third solution of

equation (2.9). Also, we note that q(0) = 1 because of the strict monotonicity of f .

Substituting in (2.10), we conclude that all of the conditions of theorem 3 are

satisfied and hence F,G,Q, and H must be of the forms (2.25)-(2.29). However,

function F in (2.25) cannot be the solution, because this would give us that

lim
t→0

q ln(− ln t+ r) +B1 = −∞

with constants r, B1, and q < 0, but not 0.

Thus we are only left with (2.26) - (2.29). Using (2.10) we get

g(v) = eA2|µ+ v−c|−d, (2.32)

f(v) =




α
µ

ln |1 + µvc| +B2 if µ �= 0

αvc +B2 if µ = 0

(v ∈ I), (2.33)

and
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q(w) = (
1 − wc

β
)d (w ∈]0, 1[), (2.34)

where d, α, c, β, µ, A2, B2, are constants with

d �= 0, ε(c, µ)αβ > 0, βc > 0, and (c, µ) ∈ P (I).

By comparing the functions H in (2.28) to that obtained from (2.33) and (2.34) we

get

B2 = 0, β = 1,

and therefore c > 0. Hence µ+ ect > 0 for sufficiently large t. This implies

ε(c, µ) = 1, i.e. µ+ ect = µ+ v−c > 0 for all v ∈]0, k[. Further, α > 0 and d > 0

since q : [0, 1] → [0, 1]. Also taking into consideration the boundary conditions

f(0) = q(1) = 0 and q(0) = 1 and that g is surjective, we obtain the third family of

solutions.

�



Chapter 3

Second Axiomatization of RDU

3.1 Introduction

We begin as in the introductory part of chapter 2 by assuming that the additive and

separable representations holds for U1,E(x,C), that is,

Ψ[U∗(x,C; y)] = Ψ[U∗(x)W ∗
E(C)] + U2,E(y, C), (3.1)

where Ψ(0) = 0, U1,E(e, C) = 0, U2,E(y,ΩE) = 0, and Ψ is strictly increasing. Setting

x = y in the equation (3.1) and using the idempotence axiom we get

Ψ[U∗(y)] − Ψ[U∗(y)W ∗
E(C)] = U2,E(y, C).

Substituting it back to (3.1) gives us for x 
 y � e

Ψ[U∗(x,C; y)] = Ψ[U∗(x)W ∗
E(C)] + Ψ[U∗(y)] − Ψ[U∗(y)W ∗

E(C)], (3.2)

or, since Ψ is strictly increasing

U∗(x,C; y) = Ψ−1(Ψ[U∗(x)W ∗
E(C)] + Ψ[U∗(y)] − Ψ[U∗(y)W ∗

E(C)]). (3.3)

39
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Assuming event commutativity that is for each x 
 y 
 e, and events C,D,

((x,C; y), D; y) ∼ ((x,D; y), C; y)

and taking x′ = U∗(x), w′ = W ∗
E(C), y′ = U∗(y), and z = W ∗

E(D) and changing the

function Ψ to ϕ, we get the functional equation

ϕ(ϕ−1[ϕ(x′w′) + ϕ(y′) − ϕ(y′w′)]z′) − ϕ(y′z′)

= ϕ(ϕ−1[ϕ(x′z′) + ϕ(y′) − ϕ(y′z′)]w′) − ϕ(y′w′)

(0 ≤ y′ ≤ x′ < K; z′, w′ ∈ [0, 1]). (3.4)

Here y′ ≤ x′ since this equation was derived from y � x.

3.2 A Functional Equation Arising from the

Second Axiomatization

By analogy with the second chapter, we first find the solutions of the functional

equation, that was originally solved by J.Aczél and G.Maksa (see [2]). Consider

equation (3.4), where for simplicity we omit the primes but bear in mind that these

are real variables and not the gambles and events,

ϕ(ϕ−1[ϕ(xw) + ϕ(y) − ϕ(yw)]z) − ϕ(yz) =

ϕ(ϕ−1[ϕ(xz) + ϕ(y) − ϕ(yz)]w) − ϕ(yw), (3.5)

where 0 ≤ y ≤ x < K; z, w ∈ [0, 1[.

Function ϕ : [0, K[→ [0,+∞[ has the following properties:
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(i) ϕ is mapping the domain [0, K[ onto an interval [0, K∗[, K∗ > 0 ,

(ii) ϕ is twice differentiable on ]0, K[ and ϕ′(y) �= 0 for all y ∈]0, K[ and

(iii) ϕ(xw) + ϕ(y) − ϕ(yw) belongs to the range of ϕ for all

y ∈ [0, K[, x ∈ [y,K[, w ∈ [0, 1[.

It follows from (i) and (ii) that

(iv) ϕ is continuous, strictly decreasing on [0, K[ and ϕ(0) = 0.

The following theorem gives the solutions of the equation 3.5 under the described

above assumptions for function ϕ.

Theorem 6 Assuming properties (i) - (iii) the general solutions of equation (3.5)

are given by :

ϕ(x) = αxq (q > 0, α > 0)

and

ϕ(x)) = γ ln(µxq + 1) (q > 0, µγ > 0, µ > −K−q).

( In the subcase µ < 0, γ < 0 also K <∞.)

STEP 1. The First Step of the proof.

(a) We can always assume that K > 1 in equation (3.5). Indeed, if we introduce

new function ϕ̃(t) = ϕ( t
L
) with (0 < L <∞), then it satisfies equation (3.5) and

conditions (i) - (iv) for x, y ∈ [0, K/L[, x ≥ y; z, w ∈ [0, 1[. Also the restrictions on

constants remain the same.

(b) We introduce new variables and functions:

f(u) = ϕ(e−u), g(u, z) = − lnϕ−1[ϕ(e−uz) − ϕ(z) + ϕ(1)]

(z ∈ [0, 1[, u ∈ I), (3.6)
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where I :=] − lnK,∞[,

h(t, z) = ϕ
(
ϕ−1(t+ ϕ(1))z

)
− ϕ(z) (z ∈ [0, 1[, t+ ϕ(1) ∈ [0, K∗[. (3.7)

Now we choose y = 1, x = e−u ∈ [1, K[ (excluding values of y such that y = x since

equation (3.5) is identically satisfied for such values) so x > y = 1, that is,

u ∈ I0 where I0 :=] − ln K, 0[, and write w = e−v (v ∈ R+ = {α|α > 0}). Then we

can rewrite equation (3.5) in the form of

h(f(u+ v) − f(v), z) = f(g(u, z) + v) − f(v) (u ∈ I0, v ∈ R+, z ∈ [0, 1[). (3.8)

STEP 2. Functional differential equation and its solution.

We can differentiate (3.8) with respect to u and v since ϕ is twice differentiable and

therefore f, g, h are twice differentiable too. Respectively we get for all

u ∈ I0, v ∈ R+, and z ∈]0, 1[

∂1h(f(u+ v) − f(v), z)f ′(u+ v) = f ′(g(u, z) + v)∂1g(u, z)

and

∂1h(f(u+ v) − f(v), z)(f ′(u+ v) − f ′(v)) = f ′(g(u, z) + v) − f ′(v).

Elimination of ∂1h(f(u+ v) − f(v), z) gives

f ′(g(u, z) + v)[f ′(u+ v) + ∂1g(u, z)(f
′(v) − f ′(u+ v))] = f ′(v)f ′(u+ v)

(u ∈ I0, v ∈ R+, z ∈]0, 1[). (3.9)

Again differentiating with respect to u and to v and eliminating f ′′(g(u, z) + v) from

received two equalities we get the functional differential equation

∂1g(u, z)[∂1g(u, z) − 1]
[
f ′′(v)f ′(u+ v)2 − f ′(v)2f ′′(u+ v)

]
=
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∂2
1g(u, z)f

′(v)f ′(u+ v)[f ′(v) − f ′(u+ v)]. (3.10)

Introducing new functions F and G (we are allowed to do that since ϕ′(y) �= 0 for

all y ∈]0, K[ and therefore by (3.6) f ′(u) �= 0 and ∂1g(u, z) �= 0 for all

u ∈ I, z ∈]0, 1[) by

F (u) =
1

f ′(u)
, G(u, z) =

1

∂1g(u, z)
(u ∈ I =] − lnK,∞[, z ∈]0, 1[) (3.11)

we rewrite equation (3.10) in a different form

[G(u, z) − 1][F ′(u+ v) − F ′(v)] = ∂1G(u, z)[F (u+ v) − F (v)]

(u ∈ I0, v ∈ R+, z ∈]0, 1[). (3.12)

Suppose that G(u, z) = 1 for all u ∈ I0, z ∈]0, 1[. Then, by (3.11) it follows that

∂1g(u, z) = 1 for u ∈ I0 and z ∈]0, 1[, and moreover by (3.6),

g(u, z) =



u+ d(z) for u ∈ I0, z ∈]0, 1[

0 for u ∈ I0, z = 0.

(3.13)

with some twice differentiable function d :]0, 1[→ R. Also by (3.6) it follows that

g(u, z) is continuous for all z ∈ [0, 1[ with the arbitrary fixed u ∈ I0. Thus, by (3.13)

lim
z→0

g(u, z) = g(u, 0) = 0,

or,

lim
z→0

d(z) = −u,

which is impossible because u can be any value in I0. This shows that there exist

z0 ∈]0, 1[ and u0 ∈ I0 such that G(u0, z0) �= 1. Further, since G is continuous, there

also exists a neighbourhood U0 of point u0 such that G(u, z0) �= 1 for u ∈ U0.



CHAPTER 3. SECOND AXIOMATIZATION OF RDU 44

Therefore for all u ∈ U0, v ∈ R+ and for chosen z0 we get from (3.12)

F ′(v) − F ′(u+ v) =
∂1G(u, z0)

G(u, z0) − 1
[F (v) − F (u+ v)]. (3.14)

This is a first order homogeneous differential equation for the function

v �→ F (v) − F (u+ v) whose general solution is

F (v) − F (u+ v) = k(u)ep(u)v (u ∈ U0, v ∈ R+), (3.15)

where

p(u) =
∂1G(u, z0)

G(u, z0) − 1
.

Since v = 0 is in the domain of F and F is continuous function, we can take a limit

of (3.15) when v → 0 to get

k(u) = F (0) − F (u) (u ∈ U0). (3.16)

Since F is differentiable, we have that k(u) is differentiable, and therefore by (3.15)

so is p(u).

If we had k(u) = 0 for all u in some interval Ũ0 of positive length of U0, then by

(3.15), we would have F (v) − F (u+ v) = 0 for all u ∈ Ũ0 and v ∈ R+. Therefore,

F (v) = D for some nonzero constant D and all v ∈ R+. By (3.11) this would give us

f ′(v) = 1/D for all v in R+, thus f(v) = (1/D)v + E for all v ∈ R+ and some

constant E. Finally, by (3.6) it follows that ϕ(t) = −(1/D) ln t+ E for all t ∈]0, 1[,

which contradicts the fact that ϕ is continuous on [0, K[, therefore on [0, 1[ and

equal to zero in point u = 0. Therefore there exists a point u1 ∈ U0, and by

continuity a nonempty neighborhood U1 ∈ U0 such that k(u) �= 0 for all u ∈ U1.
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Substituting (3.16) into (3.15) and differentiating the result with respect to u we get

−F ′(u+ v) = −F ′(u) ep(u)v + (F (0) − F (u))p′(u)v ep(u)v =

ep(u)v
(
−F ′(u) + (F (0) − F (u))p′(u)v

)

u ∈ U1, v ∈ R+).

Fixing u = u1 ∈ U1 and writing u in place of u1 + v we get

−F ′(u) = ep(u1)ue−p(u1)u1

(
−F ′(u1) + (F (0) − F (u1))p

′(u1)(u− u1)
)

(u1 < u ∈ U1, v ∈ R+)

or with new notations

F ′(u) = Qu(Au+B) (u1 < u ∈ U1)

(A,B,Q, u1 are constants and Q > 0). Integrating we get

F (u) = Qu(Au+B) + C (u1 < u ∈ U1).

After substituting it into (3.15) and using (3.16) we have

Qv[A(1 −Qu)v − (Au+B)Qu +B] = k(u)ep(u)v =

[(B + C) − (Qu(Au+B) + C)]ep(u)v (u1 < u ∈ U1).

Thus ep(u) = Q and A(1 −Qu)v = 0, that is , either A = 0 or Qu = 1, i.e. Q = 1

since Q > 0. So we have either

F (u) = Au+B (A �= 0, and u1 < u ∈ U1) (3.17)



CHAPTER 3. SECOND AXIOMATIZATION OF RDU 46

or

F (u) = BQu + C (B �= 0, Q > 0, Q �= 1, and u1 < u ∈ U1). (3.18)

STEP 3. Solutions of the original equation.

Suppose ] − l,−m [ := {u ∈ U1 : u > u1} for convenience. Now substituting (3.17)

and (3.18) back to (3.16) gives k(u) = −Au, p(u) = 1 or

k(u) = B(1 −Qu), p(u) = Q on ] − l,−m[ , respectively. Thus (3.15) implies

F (v) − Av = F (u+ v) − A(u+ v) (u ∈] − l,−m[, v ∈ R+)

or

F (v) −BQv = F (u+ v) −BQu+v (u ∈] − l,−m[, v ∈ R+),

respectively. Introducing Φ(t) = F (t) − At, and respectively Φ(t) = F (t) −BQt

gives us that Φ(u+ v) = Φ(v) for all v ∈ R+ and for all u ∈] − l,−m[. Therefore by

fixing an arbitrary v = v0 ∈ R+ and letting Φ(v0) = Γ, we have

Φ(t) = Γ for t ∈]v0 − l, v0 −m[.

Now choose t = v1 = v0 − 1/2l, which is still in the domain of Φ. Then Φ(v1) = Γ

and

Φ(t) = Φ(v1) = Γ for t ∈]v1 − l, v1 −m[=]v0 − 3/2l, v0 −m− 1/2l[.

Continuing we get

Φ(t) = Γ for all t ∈] − lnK, v0 −m[.

Since we can take v0 as large as we want to, we have shown that

Φ(t) = constant for all t ∈ I = ] − lnK,∞[.
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Therefore (3.17) and (3.18) hold for all u ∈ I. More precisely

F (u) = Au+B (A �= 0, u ∈ I) (3.19)

or

F (u) = BQu + C (B �= 0, Q > 0, Q �= 1, u ∈ I). (3.20)

Finally, we find all necessary forms of solutions of (3.5) on [0, K[ for which the

conditions (i),(ii), and (iii) hold.

By (3.19 ) and by (3.11) , f ′(u) = 1
Au+B

, therefore integrating with the constant of

integrating ln |R| we get f(u) = 1
A

ln |RAu+RB| on I . Since ϕ and also f are

strictly monotonic, we have either RAu+RB > 0 (u ∈ I) or

−RAu−RB > 0 (u ∈ I) . From (3.6), with α = ±RA, β = ±RB, γ = 1/A, we get

ϕ(x) = γ ln (α lnx+ β) (3.21)

and since ϕ(0) is not defined, this is not one of the possible forms of solutions. For

(3.20) we consider two cases C = 0 and C �= 0. If C = 0 then, using (3.11),

f ′(u) =
1

B
Q−u, f(u) = − 1

B lnQ
Q−u + β

and using (3.6), with q = lnQ,α = −1/(B lnQ), we get

ϕ(x) = αxq + β (x ∈ [0, K[, α �= 0) (3.22)

and since ϕ(0) = 0, β = 0. Thus the first group of possible solutions is

ϕ(x) = αxq (x ∈ [0, K[, α �= 0. (3.23)

If the second case takes place when C �= 0 in (3.20) then, using (3.11), we get

f ′(u) =
1

BQu + C
=

Q−u

B + CQ−u , f(u) = − 1

B lnQ
ln |R(CQ−u +B|.
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Since f is strictly monotone, we have that either

RCQ−u +RB > 0 (u ∈ I) or RCQ−u +RB < 0 (u ∈ I).

At last using (3.6) and taking q = lnQ, γ = − 1
B lnQ

, µ = ±CR, and β = ±BR, we

have

ϕ(x) = γ ln(µxq + β) (x ∈]0, K[;µγ �= 0) (3.24)

and with the fact that ϕ(0) = 0 we get

ϕ(x) = γ ln(µxq + 1) (x ∈ [0, K[;µγ �= 0). (3.25)

The final step of the proof is to find all restrictions on the constants which have

been found.

a) Since ϕ is strictly increasing and maps into R+, for (3.23) we must have q > 0

and α > 0. The only condition we have to check is (iii). Indeed, the range of ϕ is

[0, αKq[ and α(xqwq + yq − yqwq) obviously belongs to this range for all

y ∈ [0, K[, x ∈ [y,K[, w ∈ [0, 1[.

b) For (3.25) again since ϕ is strictly increasing and maps into R+, we must have

µγ > 0, q > 0 and µ > −K−q. In the subcase µ < 0, γ < 0 also K <∞.

�

3.3 RDU Representation in the First Two

Axiomatizations

The study of the RDU representation is completed in the following theorem, where

the functions Ψ, U∗ and W ∗
E are from the introductory part of this chapter:
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Theorem 7 Suppose that separable and additive representations and event

commutativity hold, and the function Ψ is strictly increasing and twice differentiable.

Also assume that the image of U∗ is the real interval [0, k[, and W ∗
E is onto [0, 1].

Then letting U = (U∗)q and W = (W ∗)q gives for some real constant µ > − 1
kq

U(x,C; y) =




U(x)W (C)+U(y)[1−W (C)]+µU(x)U(y)W (C)
1+µU(y)W (C)

it x � y 
 e

U(X) if x ∼ y 
 e

U(x)[1−W (C̄)]+U(y)W (C̄)+µU(x)U(y)W (C̄)

1+µU(x)W (C̄)
if y � x 
 e.

(3.26)

This equation is called ratio rank-dependent utility. The case when µ = 0 is the

standard rank-dependent utility model.

Proof. According to theorem 6 the solutions of equation (3.5) are :

ϕ(x) = αxq (q > 0, α > 0) (3.27)

and

ϕ(x) = γ ln(µxq + 1) (q > 0, µγ > 0, µ > −K−q). (3.28)

Substituting the first family of solutions (3.27) into equation (3.2) gives

α(U∗(x,C; y))q = α(U∗(x)W ∗
E(C))q + α(U∗(y))q − α(U∗(y)W ∗

E(C))q.

Therefore, introducing

U = (U∗(x))q and W = (W ∗
E(C))q (3.29)

we get the standard RDU model

U(x,C; y) = U(x)W (C) + U(u)[1 −W (C)].
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If we substitute the second family (3.28) into (3.2) we get, using (3.29)

γ ln(µU(x,C; y) + 1) =

γ ln(µU(x)W (C) + 1) + γ ln(µU(y) + 1) − γ ln(µU(y)W (C) + 1) =

γ ln
((µU(x)W (C) + 1)(µU(y) + 1)

µU(y)W (C) + 1

)

and thus,

U(x,C; y) =
U(x)W (C) + U(y)[1 −W (C)] + µU(x)U(y)W (C)

1 + µU(y)W (C)
.

As we said repeatedly before, the case, when y 
 x 
 e, is obtained from the

complementarity axiom and the case when y ∼ x from the idempotence axiom. The

standard RDU representation is received when µ = 0. The condition 1 + µvq implies

that for µ < 0, U(x) < 1
|µ| .

�

Here we also notice that the same theorem is true for the case of the additive and

separable representations, which were considered in chapter 2 and gave rise to

different functional solution, but with nontrivial solutions in the forms (3.27) and

(3.28).



Chapter 4

Third Axiomatization of RDU

In our third approach we will use separability and gain partition properties together

with some structural conditions, which we will derive in this chapter, to get an RDU

representation. This may be the most efficient approach. However, in this

axiomatization, the consequences and the events have to be dense, as is shown in

[12] .

4.1 Additional Necessary Conditions of RDU

representation

There are a few more RDU representation properties that are required for the third

axiomatization. The main property is the Thomsen condition for binary gambles.

a) The Thomsen condition:

A structure G+
1 is said to satisfy the Thomsen condition if for all x, y, z ∈ C+ and

51
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for all E ∈ E and B,C,D ⊆ ΩE ,

if (x,B; e) ∼ (z,D; e) and (z, C; e) ∼ (y,B; e), then (x,C; e) ∼ (y,D; e).

Though it does not seem to be very natural, the following proposition gives us a

proof that the Thomsen condition is a property of RDU representation.

Proposition 2 Suppose the binary gambles from G+
2 satisfy transitivity,

consequence monotonicity, and status-quo event commutativity, then Thomsen

condition holds.

Proof. Suppose B,C,D ⊆ E, (x,B; e) ∼ (z,D; e) and (z, C; e) ∼ (y,B; e). By the

assumptions of status-quo event commutativity and consequence monotonicity, we

get:

((x,C; e), B; e) ∼ ((x,B; e), C; e) ∼ ((z,D; e), C; e)

∼ ((z, C; e), D; e) ∼ ((y,B; e), D; e) ∼ ((y,D; e), B; e)

whence by transitivity and consequence monotonicity, (x,C; e) ∼ (y,D; e). This

proves that the Thomsen condition holds.

�

b) Restricted solvability:

This property is said to hold if and only if, for all x∗, x, x∗, y, z ∈ G+
1 and

D,C∗, C∗ ∈ EE,

if (x∗, C; y) 
 (z,D; y) 
 (x∗, C; y),

then there exists v ∈ C+ such that (v, C; y) ∼ (z,D; y),
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and

if (x,C∗; y) 
 (z,D; y) 
 (x,C∗; y),

then there exists A ∈ EE such that (x,A; y) ∼ (z,D; y).

Proposition 3 Suppose G+
2 is an elementary rational structure that satisfies

restricted solvability. Then for any gamble (x,C; y) ∈ G+
2 , x 
 y, there exists

CE(x,C; y) ∈ C such that

CE(x,C; y) ∼ (x,C; y).

P roof . Suppose an elementary rational structure satisfies restricted solvability.

Then for all x, y ∈ G+
1 with x 
 y and C ∈ EE by complementarity, certainty,

idempotence and consequence monotonicity

(x,ΩE; y) ∼ (y, ∅;x) ∼ x ∼ (x,C;x) 
 (x,C; y)


 (y, C; y) ∼ y ∼ (y, ∅; y) ∼ (y,ΩE; y).

Further, by restricted solvability there exists z ∈ C+ such that (z,ΩE; y) ∼ (x,C; y).

We use certainty to get

z ∼ (z,ΩE; y) ∼ (x,C; y)

and taking CE(x,C; y) = z proves the proposition.

�

This simple proposition means that any second-order gamble is indifferent to a pure

consequence.

Before introducing the next property we need a few definitions:
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Definition. Sequences {xi} from G+
1 and {Cj} from EE are said to form standard

sequences if and only if respectively

(xi, C; z) ∼ (xi+1, D; z),

for some z ∈ G+
1 and some C,D ∈ EE with C �E D, where �EE

denotes the ordering

induced by the assumption of order independence of events, and

(x,Ci; z) ∼ (y, Ci+1; z),

for some x, y, z ∈ G+
1 with x � y.

If for some y, x ∈ G+
1 and all xi in a standard sequence y 
 xi 
 z holds, then the

sequence is said to be bounded.

c) Archimedeanness :

An elementary rational structure is said to be archimedean if every bounded

standard sequence is finite.

Let G+∗
1 = {g : g = (x,C; e) where x ∈ G+

0 }.
Definition. An ordering 
 is nontrivial if and only if there exist elements x, y in

the domain such such that x � y, and it is dense if and only if whenever x � y,

there exists z in the domain such that x � z � y.

Theorem 8 Suppose an elementary rational structure of binary gambles satisfies:

• The ordering over G+
2 and EE are both dense and nontrivial.

• Restricted solvability holds.

• Structure is Archimedean.
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• Status-quo event commutativity holds.

Then there exists a set I that is dense in an interval [0, a[, a > 0 such that

U : G+∗
1 → I is onto, and a set J that is dense in [0, 1] such that W : EE → J is

onto and UW is a separable order preserving representation of 〈G+∗
1 ,
〉.

Proof. By proposition 2 the Thomsen condition holds for the given elementary

rational structure. Therefore by the theorem of additive conjoint representation,

that can be found in the book [6], chapter 6, it follows that an order preserving

multiplicative representation exists, but is not defined on elements x ∼ e ∈ G1 and

C ∼E ∅ ∈ EE. By taking U(e) = W (∅) = 0 we include these points while preserving

multiplicative representation. Indeed, by using certainty and idempotence, we get

the required multiplicative forms

U(x, ∅; e) = U(e) = 0 = U(x)W (∅)

and

U(e, C; e) = U(e) = 0 = U(e)W (C).

The density of the order guarantees that the image of U is dense in an interval [0, l[,

where l = sup{ U(g) : g ∈ G∗
1 }, and the image of W is dense in [0,1[.

�

We need another necessary property to get an RDU representation.

d) Gain Partition:

Gain partition is said to hold if there exists a bijection M : EE → EE that inverts

the order 
EE
and for x, x′, y, y′ ∈ G+

0 , with x 
 y, x′ 
 y′, and C,C ′ ∈ EE,

(x,C; e) ∼ (x′, C ′; e) and (y,M(C); e) ∼ (y′,M(C ′); e)
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imply

(x,C; y) ∼ (x′, C ′; y′).

4.2 Third Functional Equation

At first we solve a functional equation which is used in the proof of the main result

in this section.

We consider the functional equation

z

p
γ−1[zγ(p)] = ϕ−1[ϕ(z)ψ(p)] (z, p ∈]0, 1[) (4.1)

with the following assumptions

(i) ϕ :]0, 1[→ R+ is onto and strictly increasing,

(ii) ψ :]0, 1[→]1,∞[ is strictly decreasing,

(iii) γ :]0, 1[→ R+ is onto, strictly decreasing and that

lim
p→0

pγ(p) = 1 and lim
z→1

ϕ(z) = ∞.

Since ϕ is onto and strictly monotonic we can write equation (4.1) in the form

ϕ
(
(z/p)γ−1[zγ(p)]

)
= ϕ(z)ψ(p) (z, p ∈]0, 1[). (4.2)

We will try to find solutions of (4.2) with more general assumptions that ϕ and ψ

are only strictly monotonic and map ]0, 1[ into R+, thus the solutions of original

problem will follow from it.

Introducing new variables u and v with z = e−u, p = γ−1(e−v) and taking

logarithms of both sides in (4.2), we get

ln
(
ϕ(e−u)ψ(γ−1(e−v))

)
= lnϕ

(
e−u+ln γ−1(e−u−v)+ln γ−1(e−v)

)
.
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Again with new notations of functions F,G : R → R and Φ : R+ → R defined by

Φ(u) = lnϕ(e−u) (u ∈ R+), (4.3)

F (v) = lnψ(γ−1(e−v)) (v ∈ R) (4.4)

and

G(v) = v − ln γ−1(e−v) (v ∈ R), (4.5)

the last equation can be written in the form

Φ(u) + F (v) = Φ
(
G(u+ v) −G(v)

)
(u ∈ R+, v ∈ R). (4.6)

We notice that since the logarithmic and exponential functions preserve

monotonicity , the new functions Φ and F are strictly monotonic. Furthermore,

since γ−1(e−v) is strictly decreasing by (iii), G is strictly increasing.

The solutions of the equation (4.6) are given by the following theorem.

Theorem 9 Let F : R → R,Φ : R+ → R be strictly monotonic, G : R → R strictly

increasing. They satisfy (4.6), if and only if, there exist nonzero constants a′, λ′ and

positive constants α′, β′, µ′ such that

F (v) =
a′

λ′
ln

(
1 +

1

µ′ e
λ′v

)
(v ∈ R), (4.7)

G(v) = − 1

λ′
ln(β′(1 + µ′e−λ

′v)) (v ∈ R), (4.8)

and

Φ(u) = −a
′

λ′
ln(α′|e−λ′u − 1|) (u ∈ R+). (4.9)
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Proof. Considering equation (2.11) in chapter 2

H−1(F (t) − F (t+ s)) = G(t) +Q(s) (t ∈ I =]k,+∞[, s ∈ R+, k ≥ −∞). (4.10)

with G and H strictly monotonic and comparing it with equation (4.6) in this

chapter

Φ(u) + F (v) = Φ
(
G(u+ v) −G(v)

)
(u ∈ R+, v ∈ R),

we can notice that (4.6) is the special case of equation (4.10). Indeed, the variables

t, s in equation (4.10) correspond to the variables v, u respectively, and the functions

H−1, F,Q and G in equation (4.10) correspond to the functions Φ,−G,Φ, and F

respectively. Thus, if we assume that

H−1 = Q and k = −∞ (4.11)

in equation (4.10), then we have equation (4.6) with all assumptions on functions

(theorem 2) and variables matching.

Theorem 4 gives all solutions of equation (4.10), and therefore it remains to check if

there are solutions of equations (4.6) in the form of solutions of equation (4.10) with

restriction (4.11). At first we check the first family of solutions



Q(s) = −p ln(s) + C1, F (t) = q ln(t+ r) +B1,

G(t) = p ln(t+ r) + A1, H(ξ) = −q ln(1 + e−
1
p
(ξ−A1−C1)),

(4.12)

where A1, B1, C1 and p, q, r, are constants with p �= 0, q < 0,−r �∈ I.

The restriction (4.11) gives that

−r �∈] −∞,∞[,
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which is impossible, therefore there are no solutions of equation (4.6) in the form

(4.12).

We now turn to check the second family of solutions of equations (4.10) given by

theorem 4

Q(s) = −d ln
1 − e−cs

β
(s ∈ R+), (4.13)

G(t) = d ln |µ+ ect| + A2 (t ∈ I), (4.14)

F (t) =




α
µ

ln |µe−ct + 1| +B2 if µ �= 0

αe−ct +B2 if µ = 0

(t ∈ 0), (4.15)

H(ξ) =



−α
µ

ln |1 − ε(c, µ)βµe−
1
d
(ξ−A2)| if µ �= 0

αβe−
1
d
(ξ−A2) if µ = 0

(ξ ∈ G(I) +Q(R+)), (4.16)

where

ε(c, µ) =




+1 if (c, µ) ∈ P+(I)

−1 if (c, µ) ∈ P−(I),

(4.17)

where P+(I) and P−(I) are the sets of all pairs (c, µ) for which the function

t �→ µ+ ect is everywhere positive or everywhere negative, respectively. Also here

d, α, c, β, µ, A2, B2 are constants constrained by d �= 0, βc < 0,

(c, µ) ∈ P (I), ε(c, µ)αβ > 0 (We have ε(c, 0) > 0 and so αβ > 0 if µ = 0).

The restriction (4.11) gives H−1 = Q or equivalently H = Q−1, thus considering the

first limb of (4.16) gives

−α
µ

ln |1 − ε(c, µ)βµe−
1
d
(ξ−A2)| = −1

c
ln(1 − βe−

1
d
ξ),

which gives two conditions on the constants

c =
α

µ
and ε(c, µ)µeA2/d = 1. (4.18)
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We will get solution (4.7) from (4.14) with

d =
a′

λ′
, c = λ′, µ = µ′, A2 =

a′

λ′
ln(1/µ′).

Also the second condition of (4.11) gives that |µ+ ect| = µ+ ect with µ > 0.

Solution (4.8) is received from (4.13) if µ
α

= λ′, µ = µ′, c = λ′, and B2 = 1
λ′ ln β′.

Again since t ∈ R, µ is positive.

And finally, if d = a′
λ′ , c = λ′, and since βc > 0 guarantees that 1−e−ct

β
> 0, |β| = 1

α′ ,

then (4.15) gives us solution (4.9).

To finish the proof of this theorem we notice that the second family of solutions of

equation (4.10) when µ = 0 will not give any solutions for equation (4.6) since the

condition H−1 = Q will not be satisfied.

�

Returning to our old notations in equation (4.6) with

f(v) = F ′(v), g(v) = G′(v) (v ∈ R), h(u) = Φ′(u) (u ∈ R+)

and using (4.3), (4.4) and (4.5) we get

F ′(v) =
aeλv

µ+ eλv
, G′(v) =

b

µ+ eλv
, (v ∈ R) and Φ′(u) =

a

1 − eλu
(u ∈ R+),

(4.19)

where µ ≥ 0, λ �= 0, a �= 0, b �= 0 are constants. Moreover, since G′(v) > 0, we have

stronger restriction

b > 0. (4.20)

We integrate (4.19) to get

Φ(u) = −a
λ

ln(α|e−λu − 1|) (u ∈ R+), (4.21)
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F (v) =
a

λ
ln(δ(µ+ eλv)) (v ∈ R) (4.22)

with the constants of integration − a
λ

lnα and a
λ

ln δ.

We now prove that µ �= 0. Indeed, if we had µ = 0, then (4.19) would give

F (v) = av + C1, G′(v) = be−λv, or G(v) = − b

λ
e−λv + C2.

Substitution into (4.6) with v = 0 would yield

ln(α|e−λu − 1|) − ln δ = ln(α|eb(e−λu−1) − 1|),

where δ = eC2 and with x = e−λu − 1 we would get

|x| = δ|ebx − 1|

which is not true for all x > 0 (if λ < 0) or for all x < 0 (if λ > 0). Thus we have

µ > 0 and , integrating (4.19), we obtain

G(v) = − b

λµ
ln(β(1 + µe−λv)) (v ∈ R) (4.23)

with − b
λ

ln β as a integration constant.

To find necessary restriction on the constants of integrating we substitute (4.21),

(4.22) and (4.23) into (4.6) to get after obvious simplifications

α|e−λu − 1|
δ(µ+ eλv)

= α
∣∣∣
(eλv + µe−λu

eλv + µ

)b/µ
− 1

∣∣∣. (4.24)

Letting eλv → 0 (i.e. v → +∞ if λ < 0, while v → −∞ if λ < 0), we have:

|e−λu − 1|
δµ

=
∣∣∣(e−λu)b/µ − 1

∣∣∣.

From here it follows that δ = 1
µ

and b = µ, and thus the proof is complete.
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Theorem 10 The functions ϕ, ψ :]0, 1[→ R+ are strictly monotonic and

γ :]0, 1[→ R+ strictly decreasing, surjective and they satisfy (4.2) if, and only if,

there exist constants A > 0, B > 0, K > 0 and c �= 0 such that for all z, p ∈]0, 1[

ϕ(z) = A(z−k − 1)c,

γ(p) = B(p−k − 1)1/k,

and

ψ(p) = pkc.

P roof. From theorems 9 and 10 we have the following results:

ϕ(z) = eΦ(−lnz) = (α|zλ − 1|)−a/λ = A|z−k − 1|c (z ∈]0, 1[), (4.25)

γ−1(y) =
1

y
e−G(− ln y) =

(β + βµyλ

yλ

)1/λ

= (βyk + βµ)−1/k (y ∈ R+), (4.26)

ψ(γ−1(y)) = eF (−lny) =
(
1 +

1

µ
y−λ

)a/λ
=

(
1 +

1

µ
yk

)−c
(y ∈ R+) (4.27)

(where k = −λ �= 0, c = − a
λ
�= 0, A = αc > 0). Since γ is supposed to be decreasing

and surjective, therefore limy→+∞ γ−1(y) = 0 and limy→0 γ
−1(y) = 1. Thus, in (4.26),

k > 0 and β = 1
µ
. Hence, from (4.25),(4.26), and (4.27) with B = µ1/k > 0, we get

ϕ(z) = A(z−k − 1)c (z ∈]0, 1[), (4.28)

γ(p) = (µp−k − µ)1/k = µ1/k(p−k − 1)1/k

= B(p−k − 1)1/k (p ∈]0, 1[), (4.29)

φ(p) = (1 +
1

µ
γ(p)k)−c = (1 +

1

µ
Bk(p−k − 1)−c
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= pkc (z ∈]0, 1[). (4.30)

Conversely , (4.2) is satisfied by (4.28),(4.29) and (4.30) with the constants

c �= 0, k > 0, A > 0, B > 0. Also,ϕ, ψ :]0, 1[→ R+ are strictly monotonic and

γ :]0, 1[→ R is strictly decreasing and surjective.

�

It is easy to see that the next corollary holds.

Corollary 1 1.If limp→0[pγ(p)] = 1, then B = 1.

2.If limz→1 ϕ(z) = +∞ is supposed, then c < 0. Thus, ϕ is strictly increasing and ψ

is strictly decreasing. Furthermore the codomains of ϕ and ψ are ]0,+∞[ and

]1,+∞[, respectively.

4.3 Main Theorem

One of the main results is due to Marley and Luce [12] and contained in the

following theorem.

Theorem 11 The following statements hold for the structure 〈G+
2 ,
〉:

(i) If 〈G+
2 ,
〉 has an RDU representation, then it is an Archimedean elementary

rational structure that satisfies event commutativity and gains partition with

W [M(C)] = 1 −W (C).

(ii) If in addition the representation is onto sets that are dense in intervals, then the

density property holds.
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(iii) If an Archimedean elementary rational structure 〈G+
2 ,
〉 satisfies event

commutativity and gains partition, as well as dense and restricted solvability

properties, then it has a RDU representation with W [M(C)] = 1 −W (C).

P roof. We start with a few propositions.

We define the set A = {(X,Y ) : ∃ x, y ∈ G0, C ∈ EE such that x 
 y,X =

U(x)W (C), Y = U(y)W [M(C)]).

Proposition 4 Under the same assumptions as in theorem 8 together with the gain

partition property and a separable representation UW , there exists a function

R : A→ I (we recall that the set I has been defined in theorem 8) that is surjective,

continuous and strictly increasing in each argument and such that for all x, y ∈ G0

with x 
 y,

U(x,C; y) = R(U(x)W (C), U(y)W [M(C)]), (4.31)

and

R(X, 0) = X, R(0, Y ) = Y. (4.32)

Proof. We first extend U to G1 since by theorem 8, function U is defined only on

G+∗
1 . To do that we use the property of the existence of certainty equivalents and set

U(x,C; y) = U [CE(x,C; y)]. Then for all (X,Y ) ∈ A, define R(X,Y ) = Z,Z ∈ I for

x, y ∈ G0, x 
 y and C ∈ EE with X = U(x)W (C), Y = U(y)W [M(C)] and

Z = U(x,C; y). R is well defined because of gains partition and thus, (4.31) holds.

By proving one of the equalities in (4.32) we will show that R is onto I. Let

X = U(x) = U(x)W (ΩE) and Y = U(y)W (∅) = U(y)W [M(ΩE)] = 0 (here

M(ΩE) = ∅ and also M(∅) = ΩE by theorem 8). Then by complementarity and
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certainty axioms and by proposition 3

R(X, 0) = R(U(x)W (ΩE), U(y)W [M(ΩE)]) = U [CE(x,ΩE; y)]

= U [CE(y, ∅;x)] = U(y, ∅;x) = U(x) = U(x)W (ΩE) = X.

By choosing respectively X = 0 and Y = U(y) and using the same method we will

get

R(0, Y ) = Y.

Therefore R is surjective. By consequence monotonicity, R is strictly increasing in

each argument and because it is onto an interval, which is dense in [0, a[ for some

a > 0, it is also continuous in each argument. The result follows.

�

For each P ∈ [0, 1] such that there exists C ∈ EE with P = W (C) we introduce a

function

π(P ) = W [M(C)].

It is not difficult to show that π : [0, 1]∗ → [0, 1] is a well defined strictly decreasing

function (here we should mention that [0, 1]∗ ⊆ [0, 1] is the domain of the function

π. This domain is not necessarily the whole interval [0, 1], since there may not exist

C ∈ EE for all P ∈ [0, 1], but later we will work with the extension of π, which has

[0, 1] as the domain). Indeed, taking C and C ′ such that P = W (C) = W (C ′) gives

C ∼EE
C ′ and W [M(C)] = W [M(C ′)], because both M and W preserve equivalence

with respect to the order 
EE
(relation 
EE

was introduced in the axiom 8). Since

M inverts the order 
EE
, π is strictly decreasing.
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We will use the following notations:

P = W (C) P ∈ [0, 1],

Z =
U(y)

U(x)
Z ∈ [0, 1] if x 
 y � e,

γ(P ) =
π(P )

P
γ :]0, 1[→]0,∞[.

We note here that π can be extended to a continuous, strictly decreasing function

on ]0,1[ because the range of W is dense in [0, 1], therefore γ is continuous on ]0,1[,

and R can be extended continuously to intervals for each of its two variables. For

the remainder of the proof of the main theorem we will work with these extension.

Proposition 5 Under the same assumption as in theorem 8 we have that for all

x, y ∈ G+
0 with x 
 y

U(x,C; y) =




U(x)P
γ−1[Zγ(P )]

, if U(x)P > 0

U(y)π(P ), if U(x)P = 0,

(4.33)

where P = W (C).

Proof. For the case U(x)P = 0,

U(x,C; y) = R[U(x)P,U(y)π(P )] = R[0, U(y)π(P )] = U(y)π(P ).

Thus, we assume U(x)P > 0. Letting v = CE(x,C; y) and Q = U(x)
U(v)

, where

Q ∈ [0, 1] by consequence monotonicity, gives

U(v) = U(x,C; y) ≥ U(x,C; e) = R(U(x)W (C), U(e)W [M(C)])

= R(U(x)W (C), 0) = U(x)W (C) = U(x)P.
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Let the image of W be J . Since J is dense in the unit interval, we may choose a

descending sequence Qi ∈ J converging to Q. Let Di ∈ EE be such that W (Di) = Qi

and W [M(Di)] = π(Qi). Therefore by the previous proposition

R[U(x)P,U(y)π(P )] = U(x,C; y) = U(v) = U(v,Di; v)

= R(U(v)W (Di), U(v)W [M(Di)]) = R[U(v)Qi, U(v)π(Qi)].

By continuity of R we can take limits to get

R[U(x)P,U(y)π(P )] = lim
i→∞

R[U(v)Qi, U(v)π(Qi)]

= R[U(v)Q,U(v)π(Q)] = R[U(x)P,U(v)π(Q)].

Using the monotonicity of R, we see U(y)π(P ) = U(v)π(Q). Thus,

γ(Q) =
π(Q)

Q
=
U(y)π(P )

U(x)P
= Zγ(P ).

Finally,

U(x,C; y) = U(v) =
U(x)P

Q
=

U(x)P

γ−1[Zγ(P )]
,

which proves this proposition.

Further, by monotonicity of consequences and idempotence it follows that for x 
 y

and C ∈ EE,

x 
 (x,C; y) 
 y. (4.34)

Therefore from (4.33) and (4.34) we have for Z, P ∈]0, 1[

P ≤ γ−1[Zγ(P )] ≤ P

Z
. (4.35)

We will introduce new notations,

F (Z, P ) = γ−1[Zγ(P )], where F :]0, 1[×]0, 1[→]0,∞[, (4.36)
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G(Z, P ) =
Z

P
F (Z, P ), where Z, P ∈]0, 1[, (4.37)

where we use the continuous extension of γ. Both F and G are continuous in both

variables. From equation (4.35) we have two bound for each F and G:

P ≤ F (Z, P ) ≤ P

Z
, Z ≤ G(Z, P ) ≤ 1. (4.38)

Finally, introducing iteration of G by

G1(Z, P ) = G(Z, P ),

Gi(Z, P ) = G[Gi−1(Z, P ), P ] i > 1,

we can state the last proposition.

Proposition 6 Under the same assumption as in theorem 8 together with gains

partition, G has the following properties:

(i) G is strictly increasing in the first variable and strictly decreasing in the

second.

(ii) For all Z, P,Q ∈]0, 1[,

G[G(Z, P ), Q] = G[G(Z,Q), P ]. (4.39)

(iii) G is Archimedean in the sense that for all Y, Z, P ∈]0, 1[, there exists a

positive integer m such that Gm(Z, P ) ≥ Y .

(iv) G is solvable in the sense that for all Y, Z, P ∈]0, 1[ if there exists a

nonnegative integer n such that

Gn+1(Z, P ) ≥ Y > Gn(Z, P ); (4.40)

then there exists Q ∈]0, 1[ with Y = G[Gn(Z, P ), Q].
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Proof. Since we have Z, P ∈]0, 1[ and x � y � e, we can assume that U(x)P > 0

and therefore we will consider the first limb of equation (4.33).

(i) Let Ĩ = {r|∃x, y ∈ G0 with r = U(y)
U(x)

}. For s, x, y ∈ G0 with s � x � y � e

consider Y, Z ∈ Ĩ such that Y = U(y)
U(s)

, Z = U(y)
U(x)

and Y < Z. Fix P such that there

exists C ∈ ΩE with W (C) = P , then by the first limb of equation (4.33) we have

Y < Z ⇔ U(s) > U(x) ⇔ U(s, C; y) > U(x,C; y)

⇔ U(y)

U(s, C; y)
<

U(y)

U(x,C; y)
⇔

⇔ Y

P
F (Y, P ) <

Z

P
F (Z, P ) ⇔ G(Y, P ) < G(Z, P ). (4.41)

Now we consider arbitrary Y, Z, P ∈]0, 1[ with Y < Z, then by density and

continuity of G there exist Y ′′, Z ′′ ∈ Ĩ such that Y < Y ” < Z” < Z and

max{|G(Y ′′, P ) −G(Y, P )|, |G(Z ′′, P ) −G(Z, P )|} < R/4, where

R = G(Z”, P ) −G(Y ”, P ). By (4.41) it follows that G(Y, P ) < G(Z, P ) and by

continuity of G it extends to any P ∈]0, 1[.

The fact that G is strictly decreasing in the second variable can be proved by

analogy with fixing Z = U(y)
U(x)

and considering C,D ∈ ΩE with

P = W (C), Q = W (D) and P > Q.

(ii) Since P,Z ∈]0, 1[, we are in the case where x � y � e and U(x)P > 0. Therefore

by equation (4.33)

U [((x,C; y), D; y)] = U [(CE(x,C; y), D; y)] =
U [CE(x,C; y)]W (D)

γ−1( U(y)
U [CE(x,C;y)]

γ[W (D)])

U(x,C; y)W (D)

γ−1( U(y)
U(x,C;y)

γ[W (D)])
=

U(x)PQ

F (Z, P )F [Z
P
F (Z, P ), Q]

.
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By the event commutativity axiom and by the continuity of F in each variable we

have

F (Z, P )F [
Z

P
F (Z, P,Q)] = F (Z,Q)F [

Z

Q
F (Z,Q), P ]

holds for all P,Q,Z ∈]0, 1[. Multiplying this equality by Z
PQ

and writing it in terms

of G gives us the desired result.

(iii) Because G is strictly increasing in the first variable, the Archimedean property

is satisfied in all cases, except one when Gm approaches a limit K < 1. But in this

case by definition of G

K = G(K,P ) =
K

P
γ−1[Kγ(P )],

thus, γ(P ) = Kγ(P ) and finally, K = 1 because γ(P ) > 0 for all P ∈]0, 1[.

(iv) Since G(Z, P ) is strictly decreasing in P , the equation (4.40) together with the

fact that G(Z, 1) = 1 gives

G[Gn(Z, P ), P ] = Gn+1(Z, P ) ≥ Y > Gn(Z, P ) = G[Gn(Z, P ), 1].

By continuity of G in the second variable there exists Q such that

Y = G[Gn(Z, P ), Q]. That concludes the proof of the proposition.

Now we are returning to the proof of the main theorem. We consider equation

(4.39). According to Marley (see [13]), if G is commutative, strictly monotonic in Z,

Archimedean and it is solvable, as we have in Proposition 6, there exist functions

ϕ :]0, 1[→]0,∞[ and ϕ :]0, 1[→]1,∞[ such that

G(Z, P ) = ϕ−1[ϕ(Z)ψ(P )]. (4.42)
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Since G is strictly increasing in Z , ϕ is strictly increasing, and because G is strictly

decreasing in P , ψ is strictly decreasing. From equation (4.38) we have

1 ≤ ψ(P ) ≤ ϕ(1)

ϕ(Z)
.

Putting together (4.36), (4.37), and (4.42) gives us

Z

P
γ−1[Zγ(P )] =

Z

P
F (X,Z)

= G(Z, P ) = ϕ−1[ϕ(Z)ψ(P )].

We have obtained the functional equation that has been solved in the previous

subsection and based on those solutions we have for some constants

A > 0, k > 0, c > 0

γ(P ) =
(1 − P k)1/k

P
,

ϕ(Z) = A(
1 − Zk

Zk
)c,

and

ψ(P ) = P kc.

Thus,

π(P ) = Pγ(P ) = (1 − P k)1/k,

and

ϕ(Z)ψ(P ) = ϕ
( Z

[(1 − P k)Zk + P k]1/k

)
. (4.43)

We now consider expressions for U(x,C; y), x 
 y. Let P = W (C) and consider

three possibilities:

(i) x � y � e. Then U(x) > U(y) > 0, and so Z = U(x)
U(y)

is in ]0, 1[. We again split

this case into three cases for P .
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For P ∈]0, 1[, by proposition (5) and the previous solutions, we have

U(x,C; y) =
U(x)W (C)

F
(
U(y)
U(x)

, γ[W (C)]
) =

U(x)P
P
Z
G(Z, P )

=
U(y)

G(Z, P )
=

U(y)

ϕ−1[ϕ(Z)ψ(P )
=

U(y)

ϕ−1[ϕ( Z
[(1−Pk)Zk+Pk]1/k )]

=
U(y)[(1 − P k)Zk + P k]1/k

Z
.

Thus, setting U∗ = Uk and W ∗ = W k, we have

U∗(z, C; y) = U∗(x)W ∗(C) + U∗(y)[1 −W ∗(C)],

which is the binary rank-dependent form for the case x 
 y � e.

For P = 0 , i.e. C ∼EE
∅, proposition 4 gives

U(x,C; y) = R(U(x)W (∅), U(y)W [M(∅)]) = R(0, U(y)W [M(∅)])

U(y)W ([M(∅)] = U(y)W (Ω) = U(y).

Taking k th power gives U∗(x,C; y) = U∗(y) which is the special case of the binary

RDU form.

For P = 1 i.e. C ∼EE
∅̄ complementarity gives

(x,C; y) = (x, ∅; y) ∼ (y, ∅;x),

and the binary RDU form follows by applying the above argument for the case

P = 0 to the term (y, ∅;x).

(ii) x ∼ y � e, i.e. U(x) = U(y). Using idempotence, we have

U(x,C; y) = U(x) = U(y), and with U∗ = Uk, we have

U∗(x,C; y) = U∗(x)W ∗(C) + U∗(y)[1 −W ∗(C)].
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(iii) y ∼ e, i.e. U(y) = 0. Using proposition 4

U(x,C; y) = R(U(x)W (C), U(y)W [M(C)]) = R[U(x)W (C), 0] = U(x)W (C).

Taking the k-th power gives us the binary RDU form.

Complementarity proves the case when x � y.
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