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Abstract

This dissertation deals with the channel estimation techniques for orthogonal frequency

division multiplexing (OFDM) systems such as in IEEE 802.11. Although there has been

a great amount of research in this area, characterization of typical wireless indoor envi-

ronments and design of channel estimation schemes that are both robust and practical

for such channel conditions have not been thoroughly investigated. It is well known that

the minimum mean-square-error (MMSE) estimator provides the best mean-square-error

(MSE) performance given a priori knowledge of channel statistics and operating signal-

to-noise ratio (SNR). However, the channel statistics are usually unknown and the MMSE

estimator has too much computational complexity to be realized in practical systems. In

this work, we propose two simple channel estimation techniques: one that is based on mod-

ifying the channel correlation matrix from the MMSE estimator and the other one with

averaging window based on the LS estimates. We also study the characteristics of several

realistic indoor channel models that are of potential use for wireless local area networks

(LANs). The first method, namely MMSE-exponential-Rhh, does not depend heavily on

the channel statistics and yet offer performance improvement compared to that of the LS

estimator. The simulation results also show that the second method, namely averaging

window (AW) estimator, provides the best performance at moderate SNR range.
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Chapter 1

Introduction

Multimedia wireless services require high data-rate transmission over mobile radio channels.

Orthogonal Frequency Division Multiplexing (OFDM) is widely considered as a promising

choice for future wireless communications systems due to its high-data-rate transmission

capability with high bandwidth efficiency. In OFDM, the entire channel is divided into

many narrow subchannels, converting a frequency-selective channel into a collection of

frequency-flat channels. Moreover, intersymbol interference (ISI) is avoided by the use of

cyclic prefix (CP), which is achieved by extending an OFDM symbol with some portion

of its head or tail [16]. In fact, OFDM has been adopted in digital audio broadcasting

(DAB), digital video broadcasting (DVB), digital subscriber line (DSL), and wireless local

area network (WLAN) standards such as the IEEE 802.11a/b/g/n [1–4]. It has also been

adopted for wireless broadband access standards such as the IEEE 802.16e [5], and as the

core technique for the fourth-generation (4G) wireless mobile Communications [26].

To eliminate the need for channel estimation and tracking, differential phase-shift keying

(DPSK) can be used in OFDM systems. However, this results in a 3 dB loss in signal-
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2 Introduction

to-noise ratio (SNR) compared with coherent demodulation such as phase-shift keying

(PSK) [37]. The performance of OFDM systems can be improved by allowing for coherent

demodulation when an accurate channel estimation technique is used.

1.1 Channel Estimation in OFDM Systems

Channel estimation techniques for OFDM systems can be grouped into two categories:

blind and non-blind. The blind channel estimation method exploits the statistical be-

haviour of the received signals, while the non-blind channel estimation method utilizes

some or all portions of the transmitted signals, i.e., pilot tones or training sequences,

which are available to the receiver to be used for the channel estimation.

The main advantage of the blind channel estimation is the possible elimination of train-

ing sequences, which decrease the system bandwidth efficiency [18, 45]. Additionally, due to

the time-varying nature of the channel in some wireless applications, the training sequence

needs to be transmitted periodically, causing further loss of channel throughput. Due to

these reasons, reducing the number of training symbols becomes a major concern, and

the blind channel estimation algorithms have received considerable attention [18]. There

are several types of blind channel estimation techniques found in literature. For example,

the subspace-based algorithms using redundant linear precoding are considered in [40, 54]

and nonredundant linear precoding in [6, 36]. In these methods, a linear block precoder

is applied at the transmitter and the channel information is extracted by exploiting the

covariance matrix of the received signals. Other subspace-based blind channel estimators

make use of the cyclostationarity inherent in OFDM signal due to CP [11, 15, 19, 33, 51].

Specifically, the authors in [19] proposed a method based on the cyclostationarity property
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of the time-varying correlation of the received data samples caused by the CP insertion at

the transmitter. Cai et al. [11], on the other hand, developed a noise subspace method by

utilizing the time-invariant correlation of the received data vector. Other than the use of

CP, the subspace-based blind channel estimation using virtual carriers in OFDM symbols

is also proposed in [29]. Although these blind channel estimation techniques may be a

desirable approach as they do not require training or pilot signals to increase the system

bandwidth and the channel throughput, they require, however, a large amount of data in

order to make a reliable stochastic estimation. Therefore, they suffer from high computa-

tional complexity and severe performance degradation in fast fading channel [8, 50, 53].

On the other hand, the non-blind channel estimation can be performed by either in-

serting pilot tones into all of the subcarriers of OFDM symbols with a specific period or

inserting pilot tones into some of the subcarriers for each OFDM symbol [39]. In the first

case, an OFDM symbol with pilot tones in all the subcarriers is often called a training

sequence and this type of pilot arrangement is referred to as block-type pilot arrangement.

Block-type channel estimation is usually developed under the assumption of slow fading

channel, where the channel is assumed to be constant over one or more OFDM symbol

periods. The channel estimation for this block-type pilot arrangement can be based on

Least Square (LS) or Minimum Mean-Square Error (MMSE) [22, 34, 52]. It is well known

that the MMSE estimator has good performance but suffers from a high computational

complexity. On the other hand, the LS estimator has low complexity, but its performance

is not as good as that of the MMSE estimator. In [22], the MMSE estimate has been

shown to give up to 4 dB gain in SNR over the LS estimate for the same mean square

error (MSE) of the channel estimation. To reduce the complexity of the MMSE estimator,
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Edfors et al. [34] applied the theory of optimal rank-reduction to linear MMSE estimator

by using the singular value decomposition (SVD) [41] and the frequency correlation of the

channel.

In the latter case of the non-blind channel estimation, the pilot tones are multiplexed

with the data within an OFDM symbol and it is referred to as comb-type pilot arrangement.

The comb-type channel estimation is performed to satisfy the need for the channel equal-

ization or tracking in fast fading scenario, where the channel changes even in one OFDM

period. The main idea in comb-type channel estimation is to first estimate the channel

conditions at the pilot subcarriers and then estimate the channel at the data subcarriers by

means of interpolation. The estimation of the channel at the pilot subcarriers can be based

on LS, MMSE or Least Mean-Square (LMS). Once channel coefficients are estimated at

the pilot subcarriers, they are tracked by using adaptive Wiener filters such as Normalized

Least Mean-Square (NLMS) and Recursive Least Square (RLS) [14]. In these methods,

the channel impulse response (CIR) taps are updated based on the cost functions defined

for NLMS and RLS. Although NLMS is less complex and less accurate compared to RLS,

care must be taken in RLS algorithm for oversampled systems, as the performance can be

faulty due to implicit matrix inversion needed during update operation [44]. In [20, 39], a

variety of interpolation schemes are investigated and compared, including linear interpo-

lation, second-order interpolation, low-pass interpolation, spline cubic interpolation, and

time domain interpolation. The authors showed that the performance among these inter-

polation techniques range from the best to the worst, as follows: low-pass, spline cubic,

time domain, second-order and linear interpolation. Regardless of the use of interpolation

scheme, the performance of the channel estimation using comb-type pilot arrangement is
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directly influenced by the number and/or locations of pilot subcarriers used for the initial

estimation [35]. In other words, the number of pilot subcarriers needs to be high enough

such that the frequency spacing between the pilot subcarriers is smaller than the channel

coherence bandwidth in order to obtain a reliable estimation. Therefore, the comb-type

channel estimation may not be suitable for some applications, such as the wireless LANs

[1–4] where the number of pilot tones is too small compared to the number of data tones

and their locations are fixed.

Another type of non-blind channel estimation technique is called a Decision Directed

Channel Estimation (DDCE). The main idea behind DDCE is to use the channel estimation

of a previous OFDM symbol for the data detection of the current estimation, and thereafter

using the newly detected data for the estimation of the current channel [27, 32]. Once

the data at the subcarriers is detected, any methods described above can be used to

estimate the current channel. The major benefit of the DDCE scheme is that in contrast

to purely pilot assisted channel estimation methods, both the pilot symbols as well as all

the information symbols are utilized for channel estimation [9]. On the other hand, the

DDCE inherently introduces two basic problems: the use of outdated channel estimates,

and the assumption of correct data detection. The use of outdated channel estimates

does not pose a serious issue when the channel is varying very slowly. However, when the

channel starts varying faster, then the outdated channel estimates for the previous OFDM

symbol are no longer valid for the use of the data detection in the current OFDM symbol.

Hence, the error in the channel estimation and data detection build up to make the system

performance unacceptable [12]. In addition, this error propagation can be also amplified

by any discrepancies in the system, which limits its use in practical systems.
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1.2 Contributions of Thesis

This thesis focuses on the non-blind channel estimation techniques that are based on the

block-type pilot arrangement. Once we establish reliable and practical channel estimation

schemes for this type of pilot arrangement, we expect that our proposed schemes can

be simply applied to the systems with comb-type pilot arrangement (or DDCE) and use

the interpolation methods discussed previously. A second objective of this thesis is to

investigate the characteristics of the typical indoor environments in which actual wireless

network such as WLAN is deployed. Having understood the behaviour of radio propagation

in such environments, we then present the performance analysis of our proposed techniques.

1.3 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, the OFDM system model

under investigation is described. In Chapter 3, we present the LS and MMSE estimator,

along with our proposed methods. We also remark on some interesting aspects of the

estimators. In Chapter 4, we investigate the realistic indoor channel models and analyze the

mean-square-error (MSE) and bit-error-rate (BER) performance of the proposed methods.

Design considerations and trade offs are also discussed in this chapter. Lastly, conclusions

and future research are presented in Chapter 5.



Chapter 2

OFDM System Description

The basic idea underlying OFDM systems is the division of the available frequency spec-

trum into several subcarriers, converting a frequency-selective channel into a parallel col-

lection of frequency flat subchannels [42]. To obtain a high spectral efficiency, the signal

spectra corresponding to the different subcarriers overlap in frequency, and yet they have

the minimum frequency separation to maintain orthogonality of their corresponding time

domain waveforms [17]. The use of a CP both preserves the orthogonality of the tones and

eliminates ISI between consecutive OFDM symbols.

A block diagram of a baseband OFDM system is shown in Figure 2.1. After the

information bits are grouped, coded and modulated, they are fed into N -point inverse fast

Fourier transform (IFFT) to obtain the time domain OFDM symbols, i.e.,

xn = IFFTN {Xk} (2.1)

=
N−1∑
k=0

Xke
j2πnk/N , 0 ≤ n, k ≤ N − 1 (2.2)

7



8 OFDM System Description

, where n is the time domain sampling index, Xk is the data at kth subcarrier, and N is

the total number of subcarriers. Following IFFT block, a cyclic extension of time length,

TG, chosen to be larger than the expected maximum delay spread of the channel [28], is

inserted to avoid intersymbol and intercarrier interferences.

IFFT

X0
X1

XN-1

P/S CP 
Insertion D/A Channel 

g(τ)

n(t)

A/D CP 
Removal S/P FFT

x0
x1

xN-1

y0
y1

yN-1

Y0
Y1

YN-1

Figure 2.1: Baseband OFDM

The digital-to-analog (D/A) converter contains low-pass filters with bandwidth 1/Ts,

where Ts is the sampling interval or an OFDM symbol period. The channel is modeled as

an impulse response, g(τ), followed by the complex additive white Gaussian noise (AWGN),

n(t) [43].

g(τ) =
M−1∑
m=0

αmδ(τ − τmTs) (2.3)

, where M is the number of multipaths, αm is the mth path gain in complex, and τm is

the corresponding path delay. At the receiver, after passing through the analog-to-digital

(A/D) and removing CP, the N -point FFT is used to transform the data back to frequency

domain. Finally, the information bits are obtained after the channel equalization/decoding,

and demodulation.
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Under the assumption that the use of a CP preserves the orthogonality of the tones

and the entire impulse response lies inside the guard interval, i.e., 0 ≤ τmTs ≤ TG [17, 22],

we can describe the received signals as

Y = FFTN {IFFTN {X} ⊗ g + ñ} (2.4)

, where Y = [Y0 Y1 · · · YN−1]
T is the received vector, X = [X0 X1 · · · XN−1]

T is a vector

of the transmitted signal, and g = [g0 g1 · · · gN−1]
T and ñ = [ñ0 ñ1 · · · ñN−1]

T are the

sampled frequency response of g(τ) and AWGN, respectively. Note that both Y and X

are frequency domain data.

In fact, the expression in equation (2.4) is equivalent to a transmission of data over a

set of parallel Gaussian channels [34], as shown in Figure 2.2.

Therefore, the system described by equation (2.4) can be written as

Y = XFg + F ñ (2.5)

, where X is a diagonal matrix containing the elements of X in equation (2.4), and

F =


W 00
N · · · W

0(N−1)
N

...
. . .

...

W
(N−1)0
N · · · W

(N−1)(N−1)
N

 (2.6)

is the FFT matrix with

W nk
N =

1√
N

e−j2π nk
N . (2.7)
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X0

h0 n0

Y0

X1

h1 n1

Y1

XN-1

hN-1 nN-1

YN-1

Figure 2.2: The OFDM system, modeled as parallel Gaussian channels

Also, let h = FFTN {g} = Fg and n = FFTN {ñ} = F ñ. Thus, equation (2.5) now

becomes

Y = Xh + n. (2.8)

In this work, we assume that the noise n is a vector of independent identically dis-

tributed (i.i.d.) complex zero-mean Gaussian noise with variance σ2
n. We also assume that

n is uncorrelated with the channel h.



Chapter 3

Channel Estimation Techniques

As discussed in Section 1.1, there are two different ways of arranging pilot tones in OFDM

transmission: block-type pilot arrangement and comb-type pilot arrangement, as shown in

Figure 3.1.

Time

Fr
eq

ue
nc

y

Time

Fr
eq

ue
nc

y Data Subcarrier

Pilot Subcarrier

(a) (b)

Figure 3.1: Two different types of pilot arrangement: (a) block-type pilot arrangement and
(b) comb-type pilot arrangement

11



12 Channel Estimation Techniques

For the channel estimation based on block-type pilot arrangement, the spacing between

consecutive training sequences needs to be determined carefully. When the channel varies

across OFDM symbols in time, the training sequence must be inserted at a ratio that is

determined by the coherence time or Doppler spread. In [38], a quantitative expression,

based on the Nyquist sampling theorem for the maximum spacing of training sequence in

time, Nt,max, is given by

Nt,max ≤
1

2nfD,maxTs
(3.1)

, where n is the oversampling factor, fD,max, is the maximum Doppler spread, and Ts is

the OFDM symbol duration. Therefore, if the training sequence is inserted at the start of

the packet or block similar to those in WLAN, the packet length should be smaller than

Nt,maxTs in time.

Similarly, the spacing of pilot tones within an OFDM symbol, in the case of comb-type

channel estimation, should also be small enough so that the variations of the channel in

frequency can be captured. That is,

Nf,max ≤
1

nτmax∆f
(3.2)

, where τmax is the maximum delay spread and ∆f is the subcarrier spacing in OFDM

symbol. Here, the pilot spacing should be smaller than Nf,max∆f in frequency or simply

Nf,max subcarrier spacings in order to be able to perform an interpolation.

Regardless of which pilot arrangement scheme is used for the non-blind channel esti-

mation, the basic channel estimation technique is the same for both schemes. That is,

the comb-type pilot channel estimation can be treated as a special case of the block-type
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pilot channel estimation, where the channel estimation technique is performed only at the

pilot subcarriers, followed by the interpolation at the data subcarriers. In this work, we

only consider the frequency domain initial channel estimation techniques based on the

block-type pilot arrangement, assuming equation (3.1) is satisfied.

In this chapter, the LS estimation technique is presented as it is needed by many

estimation techniques as an initial estimation, followed by the MMSE estimator. Then,

the modified MMSE estimator is proposed in an attempt to reduce the computational

complexity and eliminate the need for a priori knowledge of the channel statistics. We

also propose another simple and effective channel estimator which is based on the LS

estimate.

3.1 Least-Square Estimator

From equation (2.8), the LS estimator minimizes the following cost function [47]

min
ĥ

(Y − Xĥ)
H

(Y − Xĥ) (3.3)

, where [·]H is the Hermitian (conjugate) transpose operator. Then, the LS estimation of

h is given by

ĥLS =
Y

X
=

[
Yk
Xk

]T
(3.4)

, where [·]T is the transpose operator and k = 0, 1, · · · , N − 1. This LS estimator is

equivalent to what is also referred to as the zero-forcing estimator [22, 30] since it can also

be obtained from the time domain LS estimator with no assumption on the number of CIR



14 Channel Estimation Techniques

taps or length. That is,

ĥLS = FQLSF
HXHY (3.5)

, where

QLS =
(
F HXHXF

)−1
. (3.6)

Note that this simple LS estimator does not exploit the correlation of channel across

subcarriers in frequency and across the OFDM symbols in time. Without using any knowl-

edge of the statistics of the channel, the LS estimator can be calculated with very low

complexity, but it has a high mean-square error since it does not take into account of the

effect of noise on the signal.

3.2 Minimum Mean-Square Error Estimator

The minimum mean-square error is widely used in the OFDM channel estimation since it

is optimum in terms of mean square error (MSE) in the presence of AWGN [7]. In fact, it

is observed in [35] that many channel estimation techniques are indeed a subset of MMSE

channel estimation technique. The MMSE estimator employs the second-order statistics

of the channel, channel correlation function, and the operating SNR.

Let us define Rgg, Rhh, and RY Y as the autocovariance matrix of g, h, and Y , re-

spectively. We also define RgY as the crosscovariance matrix between g and Y . Assuming

the channel vector, h, and the noise vector, n, are uncorrelated, we derive that

Rhh = E
{
HHH

}
= E

{
(Fg)(Fg)H

}
= FRggF

H , (3.7)
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RgY = E
{
gY H

}
= E

{
g(XFg + n)H

}
= RggF

HXH (3.8)

, and

RY Y = E
{
Y Y H

}
= XFRggF

HXH + σ2
nIN (3.9)

where σ2
n is the noise variance, E

{
|n|2

}
, and IN is the N ×N Identity matrix. Assuming

the channel correlation matrix, Rhh, and the operating SNR, σ2
n, are known at the receiver,

the MMSE estimator of g is given by [22, 34, 39, 49]

ĝMMSE = RgY R−1
Y Y Y . (3.10)

Finally, combining the above equations, the frequency domain MMSE estimator can be

calculated by

ĥMMSE = F ĝMMSE

= F [(FHXH)−1R−1
gg σ

2
n + XF ]−1Y

= FRgg[(FHXHXF )−1σ2
n + Rgg]F −1ĥLS

= Rhh[Rhh + σ2
n(XXH)−1]−1ĥLS. (3.11)

The above MMSE estimator yields much better performance than LS estimator, espe-

cially under the low SNR scenarios. However, a major drawback of the MMSE estimator

is its high computational complexity, since the matrix inversion of size N × N is needed

each time data in X changes.

Another drawback of this estimator is that it requires one to know the correlation of the

channel and the operating SNR in order to minimize the MSE between the transmitted and
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received signals. However, in wireless links, the channel statistics depend on the particular

environment, for example, indoor or outdoor, Line-Of-Sight (LOS) or Non-Line-Of-Sight

(NLOS), and changes with time [52]. Therefore, MMSE estimator may not be feasible in

a practical system.

3.3 Proposed Methods

As discussed in the previous section, the channel estimation based on MMSE is the best

estimator in terms of MSE performance at a cost of high computational complexity. In

this section, we propose two different channel estimation techniques with low complexity

and robustness against channel conditions.

3.3.1 Modified MMSE Method

In addition to a high computational complexity, the MMSE estimator requires a priori

knowledge of the second-order statistics of the channel condition, i.e., the channel corre-

lation function across the frequency tones. Such information is embedded in the channel

correlation matrix Rhh from equation (3.11), which plays a critical role in reducing noise

that is added on top of the LS estimation.

First, we examine the expression of Rhh, proposed by Edfors et al. [34]:

Rhh = E
{
hhH

}
= [rm,n] (3.12)

and

rm,n =
1− e−τmax((1/τrms)+2πj(m−n)/N)

τrms(1− e−(τmax/τrms))( 1
τrms

+ j2πm−n
N

)
(3.13)
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, where m,n = 0, 1, · · · , N − 1, τrms is a root-mean square (rms) delay spread, and τmax

is the maximum delay spread. Here, it is assumed that an exponentially decaying power-

delay profile θ(τm) = Ce−τm/τrms and delays τm from equation (2.3) are uniformly and

independently distributed over the length of the maximum delay spread.

In practice, however, the true channel information and the corresponding delay spread

values are not known. Hence, as pointed out in [52], it is not robust to design a MMSE

estimator that tightly matches the channel statistics. It is also computationally very heavy

that it is not feasible to update Rhh every time the channel changes. Therefore, we propose

a different approach of modeling the channel correlation matrix, which is described in the

following section.

Exponential Rhh Model

Here, we adopt a concept of first-order finite-state Markov chain [10, 13] to represent the

channel correlation matrix Rhh, such that it eliminates the need for a priori knowledge of

the channel (rms/maximum delay spread and assumptions imposed on multipath delays)

and reduces the computational complexity, while it closely follows the behaviour of the

true channel correlation matrix. In general, a first-order Markov chain is widely used to

represent a slowly time-varying channel and defined by its initial-state occupancy prob-

abilities and its transition probabilities [25]. As stated in [48], the first-order Markovian

assumption implies that, given the information on the state immediately preceding the

current one, any other previous state should be independent of the current state. In our

case, we assume that the channel correlation matrix depends only on the correlation of two

consecutive channel attenuations (having a memory of 1), with such correlation parameter
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being analogous to state in Markovian model. The correlation parameter ρ is modeled as

a magnitude of the channel autocorrelation function where the distance between the tones

is 1. For example,

ρ =
∣∣E {hp+qh∗p}∣∣ =

∣∣∣∣∣
N−q−1∑
p=0

hp+qh
∗
p

∣∣∣∣∣ , q = 1. (3.14)

Then, a new channel correlation matrix R̃hh is constructed such that its elements are

the exponential series of ρ. That is,

<{r̃m,n} =
[
ρ|m−n|

]

=



1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

...
...

...

ρN−1 ρN−2 ρN−3 · · · 1


(3.15)

and

={r̃m,n} =


[
1− ρ|m−n|

]
, m ≤ n[

−
(
1− ρ|m−n|

)]
, otherwise

=



0 1− ρ 1− ρ2 · · · 1− ρN−1

−(1− ρ) 0 1− ρ · · · 1− ρN−2

...
...

...

−(1− ρN−1) −(1− ρN−2) −(1− ρN−3) · · · 0


(3.16)

, where m,n = 0, 1, · · · , N − 1. Combining equation (3.15) and equation (3.16), we have
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R̃hh as a form of symmetric or Hermitian Toeplitz matrix, same as Rhh. In this modi-

fication, we aim to remodel Rhh using properties of first-order Markov chain, such that

the new channel correlation matrix R̃hh has similar properties as the true channel corre-

lation matrix Rhh, which is a correlation between the channel attenuations hm and hn,

not the data subcarriers Xm and Xn. The analytical comparison between Rhh and R̃hh is

discussed in the following section.

Analysis of Channel Correlation Matrices

To illustrate the characteristics of the channel correlation matrices, Rhh and R̃hh, let us

assume a system with N = 64 tones and a channel with τrms = 15ns and τmax = 80ns.

Since they are both Hermitian Toeplitz matrices, we will consider the elements on the first

row, which represent the correlation of the channel attenuation at the first tone m = 1

against the channel attenuations at the rest of the tones. As can be seen from Figure 3.2,

the correlation decreases as the distance of the tones m− n increases for Rhh (labeled as

Edfors Rhh).

For R̃hh (labeled as Exponential Rhh), it behaves similarly to that of Rhh as the

correlation of channel attenuations decreases while the distance of the tones increases.

However, its correlation curve levels out for the second half of the tones. This can be

interpreted as the channel correlation being more or less the same for the tones with a

distance larger than N/2.
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Figure 3.2: The channel correlation of the attenuation at m = 1 with the rest of attenua-
tions in case where N = 64, τrms = 15ns, τmax = 80ns, and ρ = 0.98

3.3.2 Averaging Window Method

We propose another channel estimation technique, which demonstrates a low computa-

tional complexity and effectively reduces the noise that comes with the LS estimate. The

goal here is to reduce the effect of noise, especially when the channel SNR is low, by aver-

aging a few LS estimates around the tone of interest. For example, if the averaging window
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size is M , the final estimate at the kth subcarrier can be expressed as

ĥAW ;k =
1

M

∑
i

ĥLS;i , k −
⌊
M

2

⌋
≤ i ≤ k +

⌊
M

2

⌋
(3.17)

, where ĥLS;i is the LS estimate at the ith subcarrier. This method can be viewed as

an averaging window sliding across the tones that are circularly arranged. The size of

averaging window, M , should be carefully selected such that the Averaging Window (AW)

method minimizes the MSE for a given operating SNR, i.e., M should be large in the low

SNR range and small in the high SNR range. It should also depend on how much the

channel fluctuates across the tones (frequency selectivity). That is, the more frequency-

selective channel is, the smaller the averaging window should be. The relationship between

the averaging window size and frequency selectivity (along with SNR) is studied in the next

chapter.



Chapter 4

Estimator Performance and

Simulation

4.1 Channel Models and Scenarios

There has been much effort in indoor channel modeling by many different groups, such as

ETSI BRAN [23], ITU-R [31], and the IEEE 802.11 Working Group [46]. For example,

the popular TGn channel models developed by the IEEE 802.11 for indoor WLAN are

described in Table 4.1.

Although the channel models proposed by these institutes try to generalize the channel

statistics for different environments, they lack details about the measurement settings,

such as the shape or dimensions of the environment, physical orientation of obstacles, and

the whereabouts of Tx/Rx. In addition, none of these models investigates the channel

behaviour in other typical indoor environments, e.g., small/large office, corridor, or a large

open space like foyer. To understand the channel behaviour in such environments, we

22
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Models
Parameter A B C D E F

Avg 1st Wall Distance (m) 5 5 5 10 20 30
RMS Delay Spread (ns) 0 15 30 50 100 150
Maximum Delay Spread 0 80 200 390 730 1050
Number of Taps 1 9 14 18 18 18
Number of Clusters 1 2 2 3 4 6

Table 4.1: TGn Channel Model by the IEEE 802.11

have conducted several channel measurements at the University of Waterloo (UW). The

measurement setups and environments are described in the following sections.

4.1.1 Measurement Setup

The channel measurement was performed using the Wireless open-Access Research Plat-

form (WARP1) designed at the Rice University. The WARP platform, shown in Figure 4.1,

is a programmable wireless research tool which provides a general environment for a clean-

slate MAC/PHY development. There are three main components of the WARP platform

that are of interest: (A) Xilinx Virtex-II Pro FPGA in which MAC protocols are written in

C and targeted to embedded PowerPC cores, and PHY protocols are implemented within

the FPGA fabric using MATLAB Simulink, (B) 2.4/5GHz Radio Board which supports

wideband applications such as OFDM, and (C) 10/100 Ethernet port which serves as the

interface between the board and the wired Internet.

The PHY/MAC implementation we adopted for the channel measurement is analogous

to the mechanisms in the IEEE 802.11 which operates at channel 11 of 2.4GHz band

with Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). The over-the-

1http://warp.rice.edu
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Figure 4.1: The WARP board as the IEEE 802.11 interface

air system bandwidth is 10MHz with a sampling rate of 40MHz. The OFDM symbol

consists of 64 subcarriers (52 data subcarriers with 4 pilot subcarriers) and supports BPSK,

QPSK, and 16-QAM modulation schemes. The PHY OFDM packet format is illustrated

in Figure 4.2.

20μs 8μs

Preamble Training Data

Figure 4.2: The OFDM packet structure for WARP implementation

The preamble is a hard-coded 320-sample (5 OFDM symbol length where one OFDM
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symbol duration is 8 µs) sequence used by the receiver for AGC, carrier frequency offset

estimation and symbol timing estimation. This field is analogous to that of Short Training

Field (STF) in the IEEE 802.11a standard. The training field consists of a fixed sequence

repeated one after another (2 OFDM symbol length) and it is mainly used for channel

estimation, similar to Long Training Field (LTF) in the IEEE 802.11a. The channel es-

timation is performed such that the receiver independently estimates the channel using

the LS method (refer to Section 3.1) for each training period and averages them out to

produce a smoother channel estimate. This estimated channel is used for equalization and

decoding in the data part until the next packet arrives.

Using this channel estimation method, the channel response in frequency domain was

captured while we performed video streaming between two laptops each attached to a

WARP board. The equipment setup is depicted in Figure 4.3.

Laptop Laptop

WARP
Board

WARP
Board

Wired
Ethernet

Wired
Ethernet

Figure 4.3: The equipment setup for channel measurement
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4.1.2 Measurement Environments

The channel measurements were conducted on the second floor of South-East wing of Davis

Centre (DC) building in the UW, where a fair mix of small offices, large offices, corridor,

and wide open area are available. In this setup, we chose five different indoor environments

which represent typical indoor scenarios where the WLAN is deployed. The description

of the channel scenarios and their layouts in DC floor plan2 are shown in Table 4.2 and

Figure 4.4, respectively.

Scenario Condition LOS distance Avg 1st wall Model
(m) distance (m)

Inside small office LOS 3 3 A1
NLOS 3 3 A2

Office - office LOS 4 3 B1
NLOS 4 3 B2

Corridor - corridor LOS 8 2 C1
NLOS 8 2 C2

Inside large office LOS 8 5 D1
NLOS 8 5 D2

WOA - WOA LOS 15 10 E1
(wide open area) NLOS 15 10 E2

Table 4.2: Description of channel scenarios

These locations were carefully chosen to represent the LOS and NLOS for each scenario.

In case of channel model A2, C2 and E2, the effect of NLOS was artificially introduced by

blocking the LOS with a large object, such as a desk or a cabinet.

The measurements were conducted during normal office hours with no restrictions im-

posed on the channel as people were free to move. Therefore the data collected and used

2Available at http://plantoperations.uwaterloo.ca/floor plans
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B1
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A1

B2 B2

C1C1

D2D2

E2E2E1E1

D1D1

C2C2

2.5m

Figure 4.4: Layout of the channel scenarios at South-East wing of DC building

in the analysis are obtained from a realistic indoor radio environment and the statistical

model deduced from this work is also practical for simulations explained in the next section.

The channel capturing was conducted in such a way that both the Tx and Rx were fixed

at one location as planned in Figure 4.4 and the snapshots of frequency channel estimate

were recorded over time while the video images were transmitted over the air from one

WARP board to another.
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4.1.3 Measured Channel Frequency Responses

In Figure 4.5, we present the measured channel frequency responses using the WARP

boards described previously. For each channel scenario, several responses were captured

and their averaged response was calculated in order to eliminate the channel noise (shown

as red and bold curve).
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Figure 4.5: Channel frequency response for channel model (a) A1, (b) A2, (c) B1, (d) B2,
(e) C1, (f) C2, (g) D1, (h) D2, (i) E1, and (j) E2
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As shown in Figure 4.5, it is observed that the channel variations between consecutive

packets increase as the dimensions of indoor environment are increased. In other words,

the amount of variation from one channel response to another is increased over time.

For example, most of the channel responses in scenario A1 are concentrated around the

averaged response whereas many of responses deviating from the averaged response are

observed in scenario E1. This is an interesting observation as the channel exhibits a time

selectivity even though both Tx and Rx were set stationary for the entire time. Also, a

theoretical coherence time is much larger than the time difference between capturing each

consecutive responses. This can be explained by the fact that there are more traffic by

people and changes in environment in a large office (D) or wide open area (E) than an

area like a small office (A or B). To illustrate the finding more quantitatively, the variance

per subcarrier of all the channel responses is calculated and then they are averaged out

to represent the time variance for each channel scenario. In Figure 4.6, we see that the

time variance increases proportionally with the size of the indoor environment, and this

relationship is more evident in the NLOS cases. It is also observed that the variation is

larger in case of LOS than of NLOS for a given channel scenario. We can then conclude

that NLOS not only introduces frequency selectivity but also time selectivity in a wireless

radio channel.

Another interesting finding is observed in the channel model C2. The radio propagation

in a long and narrow indoor environment with very short distance to the surrounding

walls exhibits a similar behaviour as in wide-open-area environment, when there is no

dominant multipath component. This illustrates that the statistics of the channel are also

significantly affected by the specific indoor settings and these factors should be taken into
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Figure 4.6: Variance of channel frequency response over time

account when designing an indoor wireless network such as WLAN.

In general, the channel response becomes more frequency selective as the distance be-

tween the Tx and Rx and/or the dimension of the indoor environment increases. However,

the overall amount of channel fluctuation on average is insignificant (maximum 3dB in case

of C2). Therefore, we conclude that the channel scenarios under investigation generally

exhibit a frequency-flat.
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4.2 Simulation Settings

The fundamental requirements and the parameters of the OFDM systems investigated

for simulation are shown in Table 4.3. These parameters are chosen because they are

the same as the ones that the WARP platform is used for its channel measurements. For

simulation purposes, the characteristics of the above realistic channel models are translated

into tapped-delayed-line models, where each channel model is represented with delays and

their relative powers. The power intensity profile is listed in Table 4.4.

Parameter Specification

Carrier frequency 2.4GHz
System Bandwidth 10MHz
Number of data subcarriers 52 (including 4 pilots)
FFT size N = 64
CP length 16
Subcarrier frequency spacing ∆f = 156.25kHz (10MHz/64)
OFDM symbol duration Ts = 8µs (6.4µs+ 1.6µs)
Number of training symbols per packet 2
Number of data symbols per packet 20
Data symbol mapping uncoded 16-QAM
Number of simulation runs per SNR 10000

Table 4.3: OFDM system parameters

In terms of modeling indoor channels using tapped delay line, we assume an expo-

nentially decaying power-delay profile (linear in log-scale), but not necessarily uniformly

distributed delays. We also assume that the only difference between LOS and NLOS is

in the dominant LOS component and other multipath components are maintained the

same. This means that the NLOS multipath components experience the same propagation

behaviour as in the case of LOS setting.
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Model Tap Delay (ns) Gain (dB)

A1 1 0 0
2 60 -19

A2 1 3 -0.9
2 60 -19

B1 1 0 0
2 120 -19.5
3 200 -22.5

B2 1 3 -0.9
2 120 -19.5
3 200 -22.5

C1 1 0 0
2 170 -17.2
3 200 -22.5

C2 1 40 -6.5
2 170 -17.2
3 200 -22.5

D1 1 0 0
2 210 -15.5
3 290 -20.1
4 340 -24.6

D2 1 4 -0.9
2 210 -15.5
3 290 -20.1
4 340 -24.6

E1 1 0 -4.5
2 230 -20.7
3 380 -23.5
4 420 -26.6

E2 1 150 -5.3
2 230 -20.7
3 380 -23.5
4 420 -26.6

Table 4.4: Indoor channel models using tapped delay line
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4.3 MSE Performance

From Figure 4.7 to Figure 4.16, we compare the normalized MSE of the proposed channel

estimators: MMSE-exponential-Rhh and AW, for the channel models described in Sec-

tion 4.1. The normalized MSE of the LS and MMSE by Edfors [34] (simply MMSE hence-

forth for readability) are also included for performance comparison. Here, the normalized

MSE is defined as

MSEnormalized = E
{

(ĥ − h)H(ĥ − h)/hHh
}

(4.1)

, where ĥ and h are the estimated and true channel response, respectively.

First, we observe that the proposed modified MMSE estimator, MMSE-exponential-

Rhh, performs better than the LS estimator at low SNR and performs almost the same as

the LS estimator at high SNR. The MMSE-exponential-Rhh estimator also outperforms the

MMSE estimator in NLOS channel scenarios where the irreducible MSE floors by MMSE

estimator are much more severe than that of the proposed estimator. For example, in

Figure 4.12, the performance degradation of the MMSE estimator is more apparent than

other proposed estimator. This irreducible error floor is due to the channel parameter

mismatch by the MMSE estimator. Namely, the MMSE estimator’s channel correlation

matrix Rhh is modeled using TGn channel model in Table 4.1, while the actual channel

is modeled using the parameters in Table 4.4. The assumption of uniformly distributed

delays over the length of the CP also contributes to the channel mismatch when the true

channel is clearly not the case. Although the MMSE estimator may perform the best under

the perfect channel match, we find that it is not practical and cannot guarantee the best
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performance under many indoor environments. On the other hand, our proposed estimator

is rather loosely based on the true channel statistics and shown to be much more robust

against the channel mismatch.
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Figure 4.7: Normalized MSE for channel model A1
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Figure 4.8: Normalized MSE for channel model A2
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Figure 4.9: Normalized MSE for channel model B1
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Figure 4.10: Normalized MSE for channel model B2
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Figure 4.11: Normalized MSE for channel model C1
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Figure 4.12: Normalized MSE for channel model C2
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Figure 4.13: Normalized MSE for channel model D1
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Figure 4.14: Normalized MSE for channel model D2
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Figure 4.15: Normalized MSE for channel model E1
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Figure 4.16: Normalized MSE for channel model E2
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Secondly, the AW estimator shows that it is very effective in reducing noise at middle

SNR range (10 to 20dB). The averaging window size is chosen such that it minimizes the

MSE across all SNR regions since there is a trade off between the size of averaging window

and performance gain. For example, a large averaging window size is preferable at low SNR

in order to minimize the effect of noise. On the other hand, a small averaging window size

is more desirable at high SNR otherwise the performance will become worse than that of

the LS estimator. This trade off is illustrated in Figure 4.17, where the averaging window

size is naturally optimized for middle SNR range.
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Figure 4.17: Effects of averaging window size for channel model C1
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4.3.1 Significance of ρ in MMSE-Exponential-Rhh Method

In this section, we analyze the relationship between the correlation parameter ρ (in MMSE-

exponential-Rhh estimator) and the channel models. In Figure 4.18, the ρ value calculated

by equation (3.14) for each channel model is plotted.
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Figure 4.18: Correlation parameter ρ for each channel model

As expected, the correlation parameter decreases as the channel experiences more fre-

quency selectivity. A legitimate question at this point is: how well does the correlation

parameter ρ in MMSE-exponential-Rhh estimator reflect the channel statistics in terms

of minimizing the MSE? How sensitive is the MSE performance towards the parameter

mismatch? In Figure 4.19, we plot the MSE performance of the MSE-exponential-Rhh es-

timator when several values of ρ are used in the channel scenario A1, in order to illustrate

the effect of parameter mismatch. The actual ρ value for this channel is calculated to be
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0.9796.
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Figure 4.19: Influence of ρ in MMSE-exponential-Rhh estimator for channel model A1

From the results in Figure 4.19, we observe that the MSE curves are very sensitive to

changes in ρ and even a minor mismatch can cause a significant performance degradation.

Thus the MMSE-exponential-Rhh estimator requires a precise correlation calculation for

the best performance.

4.3.2 Significance of the Averaging Window Size in AW Method

We investigate the relationship between the averaging window size in AW method and the

frequency selectivity for each channel model. The frequency selectivity for each channel

scenario is quantified by calculating a variance of the channel frequency response across

the tones. The optimal averaging window size and the variance of the channel frequency
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response are compared in Figure 4.20.
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Figure 4.20: Relationship between the averaging window size and the frequency selectivity

It is shown that the size of averaging window gets smaller as the channel variance

across the tones increases. We see that the window size reaches its minimum value3 once

the channel variance exceeds 0.02. This means that the AW estimator will always have a

minimum averaging window size for any channel worse than the channel scenario D2 and

its performance will be limited. Therefore it is recommended that the AW method should

be used under the frequency-flat channel for a maximum design flexibility.

4.4 BER Performance

We study the BER performance of the proposed channel estimators under realistic indoor

channel environments described in Section 4.1.2. In Figure 4.21 and Figure 4.22, we present

3The minimum averaging window size is set to 3 since the size is set to be odd number and the size of
1 has no effect.
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the BER results for the proposed methods along with the LS and MMSE estimators for

channel model A1 and C2. The results with perfect channel knowledge are also given for

comparison. For complete BER performance results in all channel models, see Appendix

A.
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Figure 4.21: BER performance for channel model A1

As predicted from the MSE performance analysis, the proposed estimators outperform

the LS estimator under all channel scenarios, except the AW estimator at high SNR. We

observe that the MMSE-exponential-Rhh estimator typically has 2-3dB performance gain

over the LS estimator when BER is 10−2. For the same BER, the AW estimator also shows

a superior performance gain over the LS estimator especially when the channel is very

flat across the tones. For example, in Figure 4.21, the AW estimator has about 5dB gain

compared to that of the LS estimator. Furthermore, it has almost the same performance
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Figure 4.22: BER performance for channel model C2

as the MMSE estimator at low and mid SNR range.

From Figure 4.22 in which the channel exhibits a lot of time variations, the MMSE and

AW estimators show a trend of BER floor at high SNR whereas the MMSE-exponential-

Rhh estimator continuously brings the BER curves below the LS estimator. In fact, their

BER performance at low-to-mid SNR range is very comparable to that of the MMSE

estimator. This shows that the performance loss by modeling the channel correlation

matrix Rhh with an exponential and/or linear function is insignificant, and they are also

robust against the changes of the channel in time.

In comparison between the proposed methods, the MMSE-exponential-Rhh estimator

shows a similar BER performance as the AW estimator at low and mid SNR range, but

better in suppressing the BER at high SNR range.



Chapter 5

Conclusion and Future Work

With ever-increasing interest in OFDM and its adoption in many wireless communication

systems such as the IEEE 802.11, channel estimation becomes one of the most essential

tasks in compensating distortion from the channel. Although active investigation in this

area has resulted in a variety of research, there has been very little effort in understanding

typical indoor environments and designing channel estimation schemes that are both robust

and practical for such channel conditions.

In this work, we have proposed two simple channel estimation techniques: MMSE-

exponential-Rhh that is based on the traditional MMSE estimator with the channel corre-

lation matrix modeled by exponential function, and AW estimator which is based on the

sliding window averaging the LS estimate across the frequency tones. We have also mea-

sured the channel frequency responses under 10 different typical indoor channel scenarios

and translated their information into tapped-delayed-line models for simulation purposes.

The channel measurements have shown that the statistics of the channel are affected

not only by the distance between Tx and Rx, but also by the physical orientation of the
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particular indoor environment. Although the channel statistics differ from one to another,

it is shown that the variances of their channel frequency responses are insignificant and

the channels under investigation can be considered as frequency-flat.

The simulation results have demonstrated that all of our proposed estimators outper-

form the LS estimator under all channel models. In general, the MMSE-exponential-Rhh

estimator gives about 2-3 dB improvement over the LS estimator while maintaining robust-

ness under channel mismatch. The investigation also shows that AW estimator performs

the best especially at low and mid SNR range, offering up to 5 dB performance gain. It

is recommended that the AW estimator would be used in low-to-mid SNR range and the

MMSE-exponential-Rhh estimator at high SNR range.

For future research, developing a hardware implementation of our proposed schemes on

WARP boards and conducting their BER performance under the same channel scenarios

are of great interest. To build upon this thesis, the performance evaluation of the proposed

schemes under more severe time- and frequency-selective channel can also be considered.

Another interesting future research would be an investigation into further improving the

AW estimator by adaptively adjusting its window size depending on the system SNR,

and/or multiplying the LS estimates by the optimal weights before averaging as to minimize

the MSE.



Appendix A

BER Performance for All Channel

Models
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Figure A.1: BER performance for channel model A1
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Figure A.2: BER performance for channel model A2
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Figure A.3: BER performance for channel model B1
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Figure A.4: BER performance for channel model B2
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Figure A.5: BER performance for channel model C1
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Figure A.6: BER performance for channel model C2
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Figure A.7: BER performance for channel model D1
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Figure A.8: BER performance for channel model D2
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Figure A.9: BER performance for channel model E1
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Figure A.10: BER performance for channel model E2
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