
Signature Schemes in the Quantum
Random-Oracle Model

by

Edward Eaton

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2017

c© Edward Eaton 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A signature scheme is a fundamental component in modern digital communication. It
allows for authenticated messages, without which it would be nearly impossible to ensure
security when using most modern technologies. However, there is a growing threat to this
fundamental piece of electronic infrastructure. Universal quantum computers, which were
originally envisioned by Richard Feynman, have moved from being a theoretical future
technology into one that could realistically be available in a matter of decades. In 1994,
Peter Shor devised an algorithm that would run on a quantum computer that could be used
to solve mathematical problems that formed the foundation of public-key cryptography.

While Shor’s algorithm clearly establishes that new mathematical problems must be
found and studied that can admit efficient cryptographic protocols, it is equally important
that the models in which we consider security are also updated to consider the possibility
of a malicious adversary having a quantum computer.

In the random-oracle model, a hash function is replaced by a truly random function
that any relevant party is able to query. This model can enable security reductions where
otherwise none are known. However, it has been noted that this model does not properly
consider the possibility of a quantum computer. For this, we must instead consider the
quantum random-oracle model.

In this thesis, we explain the basics of quantum physics and quantum computation in
order to give a complete motivation for the quantum random-oracle model. We explain
many of the difficulties that may be encountered in the quantum random-oracle model, and
how some of these problems may be solved. We then show prove three signature schemes
secure in the quantum random-oracle model: the LMS hash-based scheme, TESLA, a
lattice-based scheme, and the TOO transformation using chameleon hashes. The first two
schemes are strong candidates for post-quantum standardization.

iii

Acknowledgements

I would first like to thank my advisor, Alfred Menezes, for his support, helpful discus-
sions and comments, and editorial assistance in the creation of this thesis.

For chapter 3 I would like to thank my co-authors of the paper [1] from which this
chapter lends itself. They are Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür
Dagdelen, Juliane Krämer, and especially Gus Gutoski and Filip Pawlega.

For chapter 4 I would like to thank my co-author of the paper [21] from which this
chapter lends itself, Fang Song, as well as Andrew Childs for helpful discussions.

Lastly I would like to thank my readers for their helpful comments on an earlier draft
of this thesis.

iv

Dedication

For Ellen, John, and Maggie.

v

Table of Contents

1 Introduction 1

1.1 Quantum Computing Basics . 1

1.1.1 The Superposition . 1

1.1.2 Composite Systems and Entanglement 3

1.1.3 Transformations of States . 4

1.1.4 Measurement . 6

1.2 The Random-Oracle Model . 6

1.3 Common Mathematical Definitions and Results 7

1.4 ROM Example — Full Domain Hash . 8

1.5 Quantum Security Models . 11

1.6 QROM Basics and Challenges . 14

1.6.1 Oracle Simulation . 14

1.6.2 Query Lookup . 16

1.6.3 Rewinding . 17

1.6.4 Reprogramming . 18

1.6.5 Challenge Injection . 19

1.6.6 Query Categorization . 20

1.7 FDH in the QROM . 21

1.8 Thesis Roadmap . 22

vi

2 LMS in the QROM 24

2.1 Scheme Description . 24

2.1.1 One-Time Scheme . 24

2.1.2 Full Scheme . 27

2.2 LMS in the (Quantum) Random-Oracle Model 28

2.2.1 Second-preimage Resistance with Non-uniform First-preimage . . . 29

2.2.2 Second-preimage Resistance with Adversary Prefixes 31

2.2.3 Random Oracle Composition . 33

2.2.4 Merkle Trees in the Random-Oracle Model 34

2.3 Security Proof for OTLMS in the QROM 35

2.4 Security Proof for LMS in the QROM . 38

3 TESLA 42

3.1 Chapter Notation . 43

3.2 The Learning with Errors Problem . 44

3.3 The Signature Scheme TESLA . 45

3.4 Brief Sketch of Security Proof for TESLA 47

3.4.1 Yes-Instances of LWE . 48

3.4.2 No-Instances of LWE . 49

3.5 Overview of Security Proof . 50

3.5.1 Notation and Sizes for Various Sets of Vectors 52

3.6 Yes-Instances of LWE . 53

3.6.1 Adaptively Chosen Queries . 53

3.6.2 The Distinguisher’s State, a First Look 54

3.6.3 Mid-Sign . 55

3.6.4 Consistent-Mid-Sign . 57

3.6.5 Consistent-Mid-Sign is a Mixture of Real Sign Oracles 61

3.6.6 Re-Programming of Hash Oracles is Hard to Detect 62

vii

3.6.7 The Distinguisher’s State, Revisited 64

3.6.8 Probability of Well-Roundedness 66

3.6.9 Probability of Repetition . 68

3.7 No-Instances of LWE . 71

3.7.1 Correspondence Between Valid Signatures and Good Hash Inputs . 71

3.7.2 The Fraction of Hood Hash Inputs 72

3.7.3 Good Hash Inputs are Rare . 73

3.7.4 Forgers Cannot Forge on LWE No-Instances 75

3.8 Security: Putting it all Together . 76

4 Strong Unforgeability in the QROM 78

4.1 Chameleon Hash functions . 79

4.2 The TOO Transformation . 80

4.3 TOO Classical Proof . 81

4.4 Quantum Challenges and Tools . 84

4.5 TOO Quantum Proof . 90

4.5.1 Case 1 . 90

4.5.2 Case 2 . 91

4.6 Instantiation . 93

5 Conclusion 94

5.1 Future Work . 95

References 96

viii

Chapter 1

Introduction

1.1 Quantum Computing Basics

Models of computation are varied and complex, but ultimately they all come down to three
steps: information is encoded onto some physical construction, some physical transforma-
tions take place on this construction, and then information is somehow extracted from the
construction.

For example, in the Turing machine model of computation, information is initially
encoded by symbols on a tape, and then a machine reads and modifies the symbols on the
tape according to some instruction set, and when it is finished, the symbols on the tape
are read off.

Quantum computing is simply the idea that the physical construction that information
can be encoded into can be quantum mechanical in nature, as can the physical transfor-
mation that changes that construction. As this computation model is rooted in quantum
mechanics, a small amount of quantum mechanics basics is needed to understand this
model. For a more complete discussion of the principles of quantum mechanics and how it
leads to a formalism of quantum computing we refer to [29].

1.1.1 The Superposition

In classical physics, the state of a system is described by the values of a set of variables. For
example, a particle travelling through empty space has some position and momentum that
describes the system. For the purpose of computation, we generally consider systems in

1

which the relevant components take on binary values. A wire either has current travelling
through it, or doesn’t, a ferromagnetic film has one of two polarizations, or a cat in a box
is either alive or dead.

The concept of a superposition is a fundamentally new way of describing a system. It is
sometimes inaccurately described as being a probabilistic description of a system (e.g., the
cat is alive with probability 1/2 and dead with probability 1/2) or a continuous description
of a system (e.g., half of a unit of current travels through a wire). While the concept of a
superposition is related to these ideas, it cannot be fully described by either.

A superposition of a binary system corresponds to a two-dimensional Hilbert space
where the basis states correspond to the two ‘classical’ states. Consider a particle of light
propagating through space. This particle can either oscillate vertically, represented by the
state | l〉, or horizontally, represented by the state | ↔〉 (here we are using Dirac’s bra-ket
notation for quantum mechanical systems).

Working classically, we could only say that the polarization of the light is in the state
| l〉 or | ↔〉. But in fact the polarization of light allows for a superposition of these two
states. So the state of the system can also be mathematically described by expressions

such as 1√
2
| l〉+ 1√

2
| ↔〉, or 1

2
| l〉 −

√
3i
2
| ↔〉, or even

(
1√
3

+ i√
3

)
| l〉+

(√
2

3
− i

3

)
| ↔〉. The

general superposition is
α| l〉+ β| ↔〉

where α, β ∈ C such that |α|2 + |β|2 = 1.

While all superposition of the polarization of light can be described in this way, not all
values of α and β correspond to different superpositions. Superpositions are only unique
up to a unitary constant. So 1√

2
| l〉+ i√

2
| ↔〉 and i√

2
| l〉− 1√

2
| ↔〉 correspond to the same

superposition, as they are equal to each other up to a multiplication of i. For this reason,
we can write the general state instead as

cos
θ

2
| l〉+ sin

θ

2
eiφ| ↔〉

where θ, φ ∈ [0, 2π).

A natural question to ask is what a superposition corresponds to in physical reality.
For this example, this is not a complicated question — θ and φ correspond to the elliptical
polarization of the light. For general quantum mechanical systems however, this is a
philosophically complicated issue. The concept of a superposition does not correspond
to any notion that we, as macroscopic beings with a macroscopic view of the universe,

2

are comfortable with. Nonetheless, experiments have consistently confirmed it to be the
underpinning formalism of many systems, and so we are forced to accept and work with it.

While questions such as what it means for a cat to be in the state 1√
2
|alive〉+ 1√

2
|dead〉

are interesting, they are moot for our purposes, as we are more interested in the question
of what such a cat means for the purpose of computation. For encoding classical informa-
tion, a bit is encoded in some discrete two-state system. For quantum information, the
fundamental unit is a two-state quantum system, or a qubit.

1.1.2 Composite Systems and Entanglement

While we now have some formalism to describe a two-state system, we want to extend this
formalism for describing composites of these systems. If prepared in a certain way, the
current travelling through a loop of superconducting material forms a two-state quantum
system. The two basis states are whether the current travels clockwise, | �〉 or counter-
clockwise, | 	〉. So we may have a system, consisting of a loop prepared in the state

1√
2
| �〉 − 1√

2
| 	〉 This system may also have a particle of light, polarized to be in the state

1√
2
| l〉+ i√

2
| ↔〉.

Then the overall system is described by the state(
1√
2
| �〉 − 1√

2
| 	〉

)
⊗
(

1√
2
| l〉+

i√
2
| ↔〉

)
where ⊗ represents the tensor product. We will write the tensor product of two basis states
| �〉 ⊗ | l〉 as | �〉| l〉 or as | �l〉 depending on context (the difference is only notational).
This allows us to expand the tensor product as

1

2
| �〉| l〉+

i

2
| �〉| ↔〉 − 1

2
| 	〉| l〉 − i

2
| 	〉| ↔〉.

From this representation, it is natural to assume that the general system described by
this superconducting loop and particle of light is described by

α| �〉| l〉+ β| �〉| ↔〉+ γ| 	〉| l〉+ δ| 	〉| ↔〉

where α, β, γ, δ ∈ C and |α|2 + |β|2 + |γ|2 + |δ|2 = 1 (as before, a global phase makes
no meaningful difference). So our composition of two two-state systems has resulted in a
four-dimensional system. Note that the choice of writing the state with the superconduct-
ing loop before the polarized particle was arbitrary — writing the basis states with the
polarized particle first is entirely equivalent as long as we are consistent.

3

But note that this formalism allows for very strange effects. While we arrived at this
formalism by considering the tensor product of two two-state systems, this arbitrary four
dimensional system cannot always be decomposed into such a tensor product. For example,
the state 1√

2
| �〉| l〉+ 1√

2
| 	〉| ↔〉 cannot possibly be written as the tensor product of two

states.

At first, one may assume that such a state cannot exist, and that any system that can
be physically realised can be decomposed into its individual components. However this is
not true. Quantum mechanics allows for systems to be in these strange states where the
components cannot be separated out. This phenomenon is called entanglement, and its
use is an important reason why quantum mechanics allows for efficient computations not
possible classically.

The question of what entanglement means is similarly distressing as the concept of a
superposition. One can imagine an entangled system where the individual components are
separated by large amounts of space so that it is difficult to imagine a physical process
by which the components may interact. That quantum mechanics suggests a strong con-
nection between these objects despite the separation seems deeply troubling, and was the
inspiration for the EPR ‘paradox’, published in 1935 by Einstein, Podolsky, and Rosen.
But this formalism of quantum mechanics is correct, and these connections, called ‘spooky
action at a distance’ by Einstein, are a fact of quantum mechanics.

1.1.3 Transformations of States

In quantum mechanics, the time evolution of any closed system |ψ(t)〉 is described by the
Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉

where ~ is a constant, and Ĥ is a hermitian operator called the Hamiltonian. While the
exact details of the solution are not relevant for our purposes, there is one important
consequence: the time evolution of a state is unitary.

Specifically, if |ψ(t)〉 describes the state of a system at time t, and t1 < t2, then there is a
unitary operator U such that |ψ(t2)〉 = U |ψ(t1)〉. The fact that the time evolution is unitary
has several key consequences. Quantum computing is a transformation on a quantum state,
and so this property forces that any part of how our computation is performed must be
unitary. Unitary transformations have several key properties. One is that they are linear.
That is, if a quantum system |ψ〉 is in a superposition of states so that |ψ〉 = α|ψ1〉+β|ψ2〉

4

then
U |ψ〉 = U(α|ψ1〉+ β|ψ2〉) = αU |ψ1〉+ βU |ψ2〉.

The other key property is that transformations on quantum states are, in principle,
invertible. Unitaries satisfy the property that UU∗ = U∗U = I, (where U∗ is the adjoint
matrix) and so any transformation we make on our quantum states must be invertible.

At first, the invertibility of unitary transformations seems like a problem. Basic func-
tions such as computing the AND of two bits are not invertible. So there can be no physical
implementation of a quantum system that performs the mapping in a way that is capable
of respecting quantum effects like superposition. But non-invertible functions like AND can
be inverted as long as we do not ‘throw away’ the input. Let m and n be some integers.
Let f : {0, 1}m → {0, 1}n be any function, invertible or otherwise. Then we can define
another function, f : {0, 1}m+n → {0, 1}m+n by

f(x, y) = (x, y ⊕ f(x)).

Note that two applications of f always map to the original input. So f is its own inverse.

Because any classical function can be made invertible in this way, any efficient classical
algorithm or function can also be efficiently implemented on a quantum computer. A
unitary Uf can be created that maps

Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉. (1.1)

To consider how this operator acts on a superposition of states, we simply extend this
mapping to obey the linearity property. Let |ψ〉 be an arbitrary state of m + n qubits.
Then Uf acts on |ψ〉 as

Uf |ψ〉 =Uf

 ∑
(x,y)∈{0,1}m+n

αx,y|x〉|y〉


=

∑
(x,y)∈{0,1}n+m

αx,yUf |x〉|y〉

=
∑

(x,y)∈{0,1}n+m
αx,y (|x〉|y ⊕ f(x)〉) .

5

1.1.4 Measurement

We now know how to encode some information and perform transformations on it, but we
need to have a method to extract an answer after any transformations. Given an arbitrary
state |ψ〉 over n qubits, we can write it as∑

x∈{0,1}n
αx|x〉.

To be able to completely identify the state would be to be able to learn αx for all x (or some
suitable approximation of each αx). However, this is not possible in general. The rules
that specify how quantum information can be converted to classical information prevent
this.

To convert a quantum state into classical information, we perform a measurement
according to some basis. Let {|φi〉} be a set of basis states for n qubits (note that this
set has size 2n). Then any n-qubit state |ψ〉 can be written in terms of this basis, as∑2n

i=1 βi|φi〉. Then a measurement according to this basis will leave the system in the state
|φi〉, which is measurable with certainty, with probability |βi|2.

A measurement with respect to the basis {|x〉}x∈{0,1}n is called a measurement in the
computational basis, and any measurement of the previous type can be performed by an
application of a change-of-basis unitary and a measurement in the computational basis.

1.2 The Random-Oracle Model

Many (if not most) cryptographic protocols rely on the use of a hash function. A hash
function maps bitstrings of arbitrary length to bitstrings of some fixed length, such as 256
bits. While hash functions have very specific security properties that are expected and
relied on, these properties are meant to make hash functions resemble random oracles.

A random oracle O from a domain D to a codomain R is a uniformly random function
taken from the universe of all functions from D to R. To properly describe an entire
random oracle takes |D| · log2(|R|) bits, by listing what each element in D maps to.

As D generally has fully exponential size, and often is infinite in size, it is impossible
to describe or even generate a complete random oracle when D is large. This is why hash
functions are used instead, as a sort of efficiently computable and manageable random
oracle that anyone can implement or use.

6

While random oracles are not useful in the real world, they can still be incredibly
useful in the context of security reductions. Whereas protocols in the real world always
use hash functions, we can imagine someone using a random oracle, or at least using
some construction equivalent to a random oracle. Often we can prove the desired security
relations when a random oracle is used, but do not know how, or even cannot come up
with a proof when a hash function is used.

Models of security in which a real hash function is used are called standard models.
Models of security in which a random oracle is used in place of a hash function are called
random-oracle models.

An important discussion item is validity of using the random-oracle model in a security
reduction for a protocol. In the real world, such protocols are deployed with a hash
function, so to prove real world security, we want to prove a statement of the form if
an underlying problem is hard and a hash function is used then the protocol is secure.
But in the random-oracle model, we prove the statement if an underlying problem is hard
and a random oracle is used then the protocol is secure. As these are different theorems,
some cryptographers are concerned that reductions in the random-oracle model give no
guarantee of security in the real world.

However, the random-oracle model has yet to result in any significant lack in security
in practice. Specifically, there has yet to be a protocol that was designed to be secure in
the standard model, and proved to have a reduction in the random-oracle model, that was
later shown to be insecure in the standard model.

There have, however, been protocols that were intended to be insecure in the standard
model that can be shown to have a reduction in the random-oracle model. While this
certainly shows that the random-oracle model provides no unconditional guarantee of se-
curity, these schemes are structured to cause the scheme to interact with the hash function
in ways to purposely introduce security flaws [15].

The random oracle therefore continues to be immensely popular in establishing security
reductions. It enables security reductions that allow for simpler analysis of the generic
security of protocols.

1.3 Common Mathematical Definitions and Results

Definition 1.3.1 (Signature Scheme). A signature scheme is a triple of algorithms, Σ =
(KeyGen, Sign,Vrfy) such that:

7

• KeyGen takes in a security parameter 1n and returns a public key / private key pair,
(pk, sk).

• Sign takes in a message msg, and a secret key sk, and returns a signature σ.

• Vrfy takes in a message msg, a signature σ, and a public key pk, and outputs either
accept or reject.

Signature schemes also satisfy the correctness property, which is that if (pk, sk)← KeyGen(1n),
then for any msg we have that

Vrfy(msg, Sign(msg, sk), pk)→ accept.

Game 1.3.1 (Existential Unforgeability).

1. C runs Keygen and sends pk to A.

2. A queries a message M1 to C.

3. C returns σ1 ← Sign(M1, sk) to A.

4. A and C repeat steps 2-3 for M2,M3, . . . ,MqS .

5. A outputs (M∗, σ∗) such that M∗ 6= Mi for any i ∈ {1, . . . , qS}.

Definition 1.3.2 (Existential Unforgeability under Chosen Message Attack). A signa-
ture scheme Σ = (KeyGen, Sign,Vrfy) is said to be Existential Unforgeable under Chosen
Message Attack if the probability that any polynomially-bounded adversary A playing game
1.3.1 is able to produce a pair such that Vrfy(M∗, σ∗, pk) → accept is negligible in the
security parameter.

1.4 ROM Example — Full Domain Hash

The initial use of the random-oracle model was to establish a security reduction for the
RSA full domain hash. The reduction was shown by Bellare and Rogaway, in [6]. While
Bellare and Rogaway specifically reduced to the RSA problem, we will present a reduction
to a generic trapdoored permutation.

Definition 1.4.1 (Trapdoored Permutation). A trapdoored permutation on a set R is a
pair (f, f−1) where:

8

• f is some information (of poly-log size in |R|) that allows anyone to evaluate the
permutation f : R → R.

• f−1 is some information (also of size poly-log in |R|) that enables the ability to invert
f .

We can also define a game between an adversary A and a challenger C, where A is
trying to invert f without f−1.

Game 1.4.1 (Trapdoor Permutation Inversion).

1. C chooses a uniformly random r ∈ R and sends f, r to A.

2. A performs some computations, and then outputs an x ∈ R.

A is said to have won the game if f(x) = r.

Using a hash function H : D → R and the trapdoor permutation, we can construct a
signature scheme as follows:

Signature Scheme 1.4.1. Full Domain Hash Signature Scheme

Algorithm 1 FDHKeyGen
Input: Security Parameter 1n

Output: Public key f , secret key f−1

1: Generate and output f and f−1.

Algorithm 2 FDHSign

Input: Message msg ∈ D, secret key f−1

Output: Signature σ ∈ R
1: Compute σ ← f−1(H(msg))
2: Return σ

Algorithm 3 FDHVrfy
Input: Message msg ∈ D, public key f , signature σ ∈ R
Output: accept or reject

1: Check if H(msg) = f(σ). If so, output accept
2: Otherwise, output reject

9

We now show our first security reduction, originally established in [6].

Theorem 1.4.1 (Existential Unforgeability of Generic FDH in the ROM). Let A be an
adversary that wins game 1.3.1 with signature scheme 1.4.1 in time t with probability ε
having made qH queries to the random oracle and qS queries to the signing oracle. Then
there is an algorithm B that wins game 1.4.1 in time ≈ t with probability ε/qH .

Proof. We construct the reduction algorithm B to play game 1.3.1 with the adversary A
as the challenger, and taking the role of the adversary in game 1.4.1. Without loss of
generality, we assume that A runs FDHVrfy on their attempted forgery (msg∗, σ∗) and that
they never repeat a signature or random oracle query.

To begin, C sends (f, r) to B, who in turn chooses a random index i∗
$←− {1, . . . , q} and

sends the public key pk = f to A.

Whenever A submits a query di ∈ D, i 6= i∗ to the random oracle, B chooses a uniformly

random y
$←− R, and returns f(y), recording (di, y, f(y)) in a table to answer future queries

consistently.

When A submits di∗ to the random oracle, B simply responds with r.

When A submits msgi, their ith message query to the signing oracle, B checks the
random oracle table to see if msgi was ever submitted as a query to the random oracle. If
it was not, B queries it, adding it to the table in the usual way. Then, if msgi = di∗ , abort,
and stop the reduction. Otherwise, return the y such that f(y) = H(msgi), found in the
table.

When A submits their forgery (msg∗, σ∗), hope that msg∗ = di∗ . If not, abort. If so,
then if this is a valid forgery and f(σ∗) = H(msg∗) = H(di∗) = r. So σ∗ is a preimage of r
under f , and if we get to this point, then B has won game 1.4.1.

To analyse this reduction, note that we have assumed that A submits their forgery
message msg∗ as a hash query at some point. So when B chooses a random index for
di∗ , there is at least a 1/qH chance of being correct. Then if B did guess correctly, they
will be able to respond to all of the hash and sign queries correctly. Furthermore, since f
is a permutation on R, the method used to answer random oracle queries has the exact
same distribution as a truly random oracle. So if B guesses the correct forgery query with
probability 1/qH , then A succeeds with probability ε, and the chance of B winning game
1.4.1 is ε/qH , as expected.

10

1.5 Quantum Security Models

With the development of quantum information processing, and researchers becoming ever
closer to building a universal quantum computer, many previous assumptions made by
cryptographers have been shown to be invalid. The obvious false assumptions are of course
the computational difficulty of problems such as integer factorization and the discrete log-
arithm problem. However, other assumptions are challenged in more subtle ways. For
example, in security reductions, it is common to assume that the adversary interacts with
the reduction algorithm in some classical way, for example by sending oracle queries as
classical data that the reduction is allowed to both record and act upon. As we consider
the possibility of quantum adversaries, there has been a large amount of research into the
security of various schemes under various quantum assumptions. However, there has been
relatively little discussion on the motivation behind these assumptions, and more impor-
tantly, the justification and necessity of various assumptions for practical post-quantum
cryptography.

To begin with, we need to consider the threat model. The main threat model of
post-quantum cryptography is the possibility of an adversary with a quantum computer
attacking the classical systems and resources we use today, or in the near future. We
need classical computers to resist quantum attacks, and the ability to use classical (but
post-quantum) cryptography to defend against quantum attacks. It is certainly possible
that when quantum computers and quantum communication become widely available,
quantum resources will need to be protected and the threat model will need to be modified
accordingly. However, the bulk of post-quantum cryptography is concerned with the much
more imminent threat of quantum computers being used to attack classical resources.

When modelling an adversary, there are three main considerations:

• What the adversary’s goal is.

• What computational resources the adversary has access to.

• What information the adversary has access to, and how they can access it.

The adversary’s goal is specified by the security definition. For existential unforgeabil-
ity, the adversary’s goal is to find a valid message-signature pair that they have not seen
before. Usually (but not always) the goal does not change when considering a quantum
model of security. When we model security, the goal corresponds to what we want to not
happen, like decrypting a ciphertext or forging a signature. Because the threat model is

11

concerned with protecting classical resources, the adversary’s goal can generally be left
unchanged when considering an adversary with a quantum computer.

The computational resources of the adversary naturally becomes the biggest change
when considering a quantum adversary. Usually in security reductions, no assumptions are
made about the adversary’s computational resources, except that they run in polynomial
time. If this is the case, then when moving to a quantum threat model, we properly take
into consideration the adversary’s resources by considering the difficulty of the underlying
problem with respect to an adversary with a quantum computer. However this is not
always the case. One technique sometimes used in security reduction is that of rewinding.
In this technique, the internal state of the adversary is saved and copied, and the adversary
is started twice from two possible initial points. But if the adversary’s internal state is
quantum, rather than classical, then by the no-cloning theorem, its internal state cannot
be copied. This emphasizes the importance of being careful when using non-standard
techniques in reductions, and what assumptions these techniques make on the adversary.

The information the adversary has access to and how it is accessed is one of the more
subtle difficulties for quantum models. Consider the proof of the full domain hash signature
scheme. The adversary has access to three types of information:

1. The public key, f .

2. Signing queries from the signing oracle.

3. Hash queries from the random oracle.

The adversary is granted this information for simple reasons. They are provided the
public key because it is public, and therefore natural for an adversary to possess. They
are granted access to a signing oracle because there are situations where an adversary can
influence messages being signed. Since it is difficult to quantify how much influence an
adversary might have, we allow the adversary to request signatures on arbitrary messages.
Lastly, the adversary has access to evaluations of a hash function by way of a random
oracle. They are provided this because in the real world the adversary is able to evaluate
the hash function themselves.

Note that in the proof of theorem 1.4.1, all three of these information sources were
provided in totally classical ways. A classical public key is provided, classical signing
queries are returned, and access to the random oracle is provided by submitting a classical
query and getting back a classical response. Each of these types of information, as well as
how the information is accessed needs to be reevaluated to consider modelling a quantum
adversary.

12

How the public key is provided does not need to be changed. As we are still considering
the threat model of a quantum adversary attacking classical resources, the public key does
not need to be changed or reevaluated. It is possible that there are cases when an adversary
would want to prepare a superposition of public keys — for example if we are working in
the multi-target model. However even in this model they would presumably be provided
with the public keys classically, and then left to prepare such a state themselves.

Handling the signing queries classically is similarly motivated. A signing oracle is
provided to the adversary to model their potential ability to coerce the legitimate signer to
sign certain messages. But as long as the signing algorithm is implemented on a classical
computer, there is no reasonable way to expect an adversary to be able to coerce a target
into signing a superposition of messages. Authors have considered the possibility of security
under this attack model, and shown that it is achievable [11]. However, as long as the threat
model is a quantum adversary attacking classical resources, this is not necessary.

Queries to the random oracle is an entirely different matter. This behaviour is supposed
to model the adversary’s ability to implement and evaluate a hash function. If the adversary
has a quantum computer then they can create a quantum circuit that allows for evaluation
of the hash oracle in superposition. In our unitary model of quantum computing this means
that they can create a unitary UH that performs the mapping

UH : |x〉|y〉 7→ |x〉|y ⊕H(x)〉 (1.2)

on the basis states, and is extended linearly for superpositions of states. In our proof of full
domain hash, however, the adversary could not possibly recreate the ability to implement
such a mapping with how we have provided access to the random oracle in a purely classical
way, without making an exponential number of queries to the random oracle.

Imagine that there is a quantum attack on the FDH scheme, and that this attack relies
on the ability of the adversary to prepare the state 1

2n/2

∑
x |x〉|H(x)〉. In the real world a

quantum adversary could prepare such a state, but when we modelled the adversary in our
proof of FDH, we only allowed for classical queries, and so we have robbed the adversary
of an ability we should reasonably expect them to have in the real world. Therefore
when considering a quantum adversary, the random-oracle model is lacking in providing
the adversary with all capabilities they may reasonably be expected to have. This is
why the quantum random-oracle model is necessary to consider security against quantum
adversaries.

To model a quantum adversary and determine which aspects of the interaction should
be classical and which should be quantum, it is best to consider what these interactions

13

correspond to in the real world threat model. If they correspond to the adversary’s commu-
nication with some classical external component of the protocol, they can be left classical.
But if they correspond to the adversary’s personal computational abilities, they must be
made quantum.

1.6 QROM Basics and Challenges

As noted in the previous section, to model the abilities of a quantum adversary imple-
menting a hash function on a quantum computer, we have to provide access to the random
oracle H via access to the unitary mapping

UH : |x〉|y〉 7→ |x〉|y ⊕H(x)〉

and allow quantum access to this mapping. The problem of the classical random-oracle
model when considering quantum adversaries was first noted by Boneh et al. [10], who also
defined this way of generalizing the random-oracle model. However, the management and
use of the quantum random oracle immediately results in several issues, originally outlined
in the same paper. We repeat these here, as they provide an excellent list of challenges
that are faced when considering the quantum random-oracle model. The first five items in
the list were all described in [10], while the last item is a challenge not directly considered
in [10].

1.6.1 Oracle Simulation

Classically, the simulation of the random oracle by a reduction algorithm is handled in a
straightforward way. As queries to the random oracle are received, a table is built up of
queries and responses. When a query is submitted that isn’t in the table, a random output
is generated as a response, and the query and the output are recorded in the table. By
doing this, the simulation of the random oracle is entirely indistinguishable from a truly
random oracle, and the reduction algorithm only needs to maintain a table that has size
at most q.

In the quantum random-oracle model however, managing such a table is infeasible. The
adversary can submit, as their first query, a superposition of all inputs,

∑
x |x〉|0〉, which

requires the oracle to be defined for all possible inputs when the first query is made. A
table is not suitable for this, as its length would be the size of the domain, requiring an
exponential amount of work on the part of the reduction algorithm.

14

When this problem was noted in [10], the authors also proposed a solution in the form of
quantum-accessible pseudorandom functions. Classically, a pseudorandom function (PRF)
is a function f that can be implemented in an efficient way. However any distinguishing
algorithm D, when given black-box access either to f or a truly random oracle O (where
the choice of providinf f or O was made uniformly at random), cannot guess which they
were provided with probability non-negligibly higher than 1/2.

A quantum-accessible PRF is simply a PRF where the distinguisher is instead given
quantum access to O or f by way of the unitary mapping UO or Uf . If D’s chances of
success are still negligibly smaller than 1/2, then f can securely be used as a replacement
for a quantum random oracle.

While quantum-accessible PRFs were suggested in [10], no PRFs were suggested as
being secure against a quantum distinguisher. In a later work [47], Zhandry showed that
some classes of PRFs known to be classically secure, such as those in [24, 33, 5] are also
secure with respect to a quantum adversary, as long as a quantumized version of the
underlying assumptions holds.

Quantum-accessible PRFs are an efficient and flexible replacement for a quantum ran-
dom oracle. However they do introduce an additional computational assumption. Having
to consider this additional assumption is sometimes undesirable. The classical random-
oracle model needs no such assumption, as queries can be answered as they are made in a
uniform and independent way. This allows a reduction algorithm to act in a way that is
completely indistinguishable from a random oracle (even though the entire random oracle
is not constructed).

In another paper [46], Zhandry proposes a different way to simulate a quantum random
oracle, using k-wise independent functions.

Definition 1.6.1. A family of k-wise independent functions is a set F of functions f :
D → R such that if d1, . . . , dk are any k different elements of D and r1, . . . , rk are any k
elements of R (possible with repeats), then

Pr
f

$←−F [f(d1) = r1 ∧ f(d2) = r2 ∧ · · · ∧ f(dk) = rk] =
1

|R|k
. (1.3)

Intuitively, a k-wise independent function is a function that appears perfectly uniform
and independent if you look at no more than k input/output pairs. The following result
establishes how these functions may be used to replace a quantum random oracle.

Theorem 1.6.1 ([46]). Let A be a quantum algorithm outputting some classical state z,
that makes q quantum queries to a random oracle O : D → R, drawn uniformly from the

15

set of all such functions. If F is a family of 2q-wise independent functions f : D → R,
then

Pr[AO → z] = Pr
f

$←−F [Af → z]. (1.4)

That is, the output distribution of any quantum algorithm that makes q queries is
identical when given a 2q-wise independent function instead of a true random oracle. This
powerful result allows us to devise proofs in the quantum random-oracle model without
additional assumptions about PRFs. However, it is somewhat less flexible than quantum-
accessible PRFs, as it requires a priori knowledge (or at least an upper bound) on the
number of queries to the random oracle made by the adversary.

1.6.2 Query Lookup

When a classical adversary makes a query to a random oracle, the reduction algorithm is
able to see what the query is. Having knowledge of what queries the adversary is interested
in can often allow a reduction algorithm to succeed. But in the quantum random-oracle
model, the queries come in the form of superpositions. To extract (classical) information
about a superposition, a measurement needs to be performed. But a measurement on an
arbitrary superposition can never give complete information about that superpositioned
query. Furthermore, a measurement necessarily destroys some information, meaning that if
the reduction algorithm wants some information about a query being made, complications
could arise in both getting information about the query and responding with a consistent
output for the oracle.

It seems unlikely that any satisfying method to gain complete knowledge of an adver-
sary’s queries is possible, as the no-cloning theorem implies that it is impossible to create
a copy of an arbitrary query to the oracle. As complete information about a query would
allow for the creation of a copy, the no-cloning theorem suggests that this is impossible.

However there are other ways to get around this impossibility. For example, this prob-
lem arises when trying to establish a quantum random-oracle proof of the Fujisaki-Okamoto
transform [22], where a fundamental step in the reduction algorithm is to look up the
queries the adversary makes in order to be able to respond to decryption queries.

Recall that the Fujisaki-Okamoto transform is a hybrid encryption scheme that uses
a public key system and a symmetric key system. It uses two random oracles, H1 and
H2, which are entirely independent. Then the transformation, with security parameter n,
works as follows:

16

1. Choose a uniformly random bitstring δ of length n.

2. Encrypt the message with the symmetric key scheme, with the key being H1(δ), to
obtain ciphertext c1.

3. Encrypt δ under the public key scheme, with the randomness used by the scheme
being H2(δ||c1) to obtain ciphertext c2.

4. Send (c1, c2).

In [40], the authors proposed a modification to the transformation in order to establish
a quantum random-oracle model reduction. In their modification, before outputting the
ciphertext (c1, c2), a third (independent) random oracle H3 is used to hash the value δ,
and the outputted ciphertext is (c1, c2, H3(δ)).

The reduction algorithm needs to have a way to obtain δ from the ciphertext. Clas-
sically, this is done by looking at the queries made to H2, and looking for any one of the
form (δ′||c1), for some δ′. In the quantum random-oracle model, by appending H3(δ) to
the ciphertext, the reduction algorithm can obtain δ by using an invertible function for
H3. In our discussion of implementing a quantum random oracle, we noted that a 2q-wise
independent function is indistinguishable from a random oracle. There are constructions
of k-wise independent functions that can be inverted in polynomial-time [7]. By using such
a construction, the reduction algorithm is able to recover δ and complete the reduction.

1.6.3 Rewinding

The concept of rewinding was discussed in section 1.5. It is a technique that is not unique
to the random-oracle model, but often appears in random-oracle model proofs. In it, an
adversary’s internal state is saved, and then restarted from that point with some modifi-
cation to the interaction that occurs between the reduction algorithm and the adversary.
The no-cloning theorem (which follows directly from the fact that closed-system trans-
formations must be unitary) states that arbitrary quantum states can never be copied.
Rewinding a quantum adversary after extracting some information is therefore impossible
to do in a generic way.

This problem is in some sense independent from the random-oracle model, in that if
a proof requires rewinding a quantum adversary, this may be impossible whether using
the random-oracle model or not. However because this technique is often used in the
random-oracle model, it is often associated with it.

17

Rewinding is used in the proof of the Fiat-Shamir transform, which is commonly used
to construct signature schemes. In [19], the authors established a negative result for the
security of the Fiat-Shamir transform in the quantum random-oracle model. While their
results did not completely rule out security of the transform in all contexts, it did suggest
that its security will be difficult to establish. However, there have also been results in other
contexts that were able to show how a quantum adversary could be rewound [45].

1.6.4 Reprogramming

As discussed, a necessary consequence of allowing superpositions of queries to the random
oracle is that the oracle must be defined for all possible inputs when the first query occurs.
Thus after the first query, it is possible for the adversary to have information about any
one of the inputs to the oracle.

A common technique in the random oracle is that of oracle reprogramming. In this
technique, after some amount of interaction with the adversary, the reduction algorithm
chooses an input to the random oracle, say a domain point x. Their choice of this x may
be arbitrary, but due to being able to perform query lookups, the reduction algorithm can
ensure that the adversary has not queried x before, and thus has no information about
H(x). Then the reduction algorithm can choose H(x) to be whatever they would like, as
long as it has a distribution indistinguishable from uniform.

Due to similar reasons as query lookups, it is difficult to justify this technique in the
quantum random-oracle model. It is no longer clear which queries the adversary has
information on, and which they don’t, or how one can quantify how much information the
adversary has on a query.

One of the first papers on quantum computing and its limitations included a result that
would form a basis for discussing reprogramming in the quantum random oracle [8]. The
authors first defined the concept of query magnitude.

Definition 1.6.2 (Query Magnitude). Let |ψ〉 be a query to a quantum random oracle.
Write |ψ〉 as

|ψ〉 =
∑
x,y

αx,y|x〉|y〉. (1.5)

Then the query magnitude of x′ in |ψ〉 is

qx′(|ψ〉) =
∑
y

|αx′,y|2. (1.6)

18

Note that according to our rules of measurement, this value corresponds to the proba-
bility of obtaining x′ when measuring a query |ψ〉 in the computational basis.

Theorem 1.6.2 (Theorem 3.3 in [8]). Let A be a quantum algorithm that makes queries
|ψ1〉, . . . , |ψq〉 to a random oracle H, resulting in a final state |ψ〉. Let ε > 0. Define a new
random oracle H ′, which is the same as H except on some subset D ⊆ D. Let |ψ′〉 be the
state that results from running A on the same input but with H ′ rather than H. Then if

q∑
i=1

∑
d∈D

qd(|ψi〉) ≤
ε2

q
, (1.7)

we have that
||ψ〉 − |ψ′〉| ≤ ε. (1.8)

Theorem 1.6.2 will form the basis of our discussion of reprogramming in various contexts
in chapters 3 and 4.

Results related to reprogramming have also appeared in the context of revocable timed-
release encryption and position verification [43] [42]. These results similarly bound the
distance between the output distribution of a quantum algorithm when an oracle is modified
partway through interaction with a reduction algorithm.

1.6.5 Challenge Injection

Many reductions succeed in the random-oracle model by injecting a challenge into one
of the responses to the random oracle. This was seen in the proof of FDH. A random
query was selected, and rather than responding in the usual way, the reduction algorithm
responded with the element r that was provided by the challenger.

It is not immediately clear how to apply this technique to the quantum random-oracle
model. Certainly a random query can’t simply be responded to by returning the classical
element r. If a superposition query had already been made, a classical response would be
noticed as not acting in accordance to a random oracle.

Most obvious approaches to overcome this challenge would not work. For example, we
might try and embed the challenge y into a single point in the random oracle, that is choose
a domain point d ∈ D and set H(d) = y. But this offers no guarantee that the adversary
will choose d to be their forgery, and so the probability of the reduction algorithm being
able to invert the function is exponentially small, even if the adversary’s chances of success
are quite large.

19

A second approach might be to try something similar to how the classical case is
handled. That is, to choose a random index and simply reply with y. But in this case
we are not acting according to a ‘proper’ quantum random oracle. An adversary making
a superposition query could reasonably be expected to notice that the unitary applied to
their query wasn’t very random, and so their chances of success could be altered, and we
have no way to guarantee that their forgery would correspond to y.

One possible solution is to choose a random subset D of the domain D and define the
oracle H so that for any d ∈ D, H(d) = y, the challenge point. The question then is if
it is possible to choose D in such a way that it is large enough so that we can reasonably
hope for the forgery to be associated with y, but not so large that the adversary notices
that our oracle isn’t a true random oracle.

In [46], Mark Zhandry showed that this was possible, defining a construction called
semi-constant distributions.

Definition 1.6.3 (Semi-constant distribution, from [46]). The semi-constant distribution
SCλ,y is a distribution on mappings from a domain D to a range R. It is parameterized by
a value λ ∈ [0, 1] and an element y ∈ R. The distribution is defined by how it is sampled.
For each d ∈ D, with probability λ set H(d) = y. Otherwise set it to a uniformly random
element of R.

Then Zhandry proved the following theorem:

Theorem 1.6.3 (Corollary 4.3 in [46]). If y is a uniformly random element of R, then
the distribution of any quantum algorithm that makes q queries to a random oracle has
distance at most 8

3
q4λ2 from the distribution generated when SCλ,y is used instead.

In section 1.7, we will use this theorem to show that FDH is secure in the quantum
random-oracle model, assuming the existence of a quantum-secure trapdoored permutation.

1.6.6 Query Categorization

Query categorization is a technique related to, but distinct from, the concept of query
lookup. Often in the specification of a scheme, multiple variables are hashed together,
usually by concatenation. For example, the scheme may specify the hashing of two 128-
bit strings, where each string represents something different. Classically, we can then
categorize the queries made by the adversary by grouping together queries that are the
same on one of the registers. This can often be helpful in analysis, as the probability of

20

certain events may be conditioned on the number of queries made with respect to one
register being constant.

In the quantum random-oracle model, this categorization cannot be so easily done.
Each query is potentially a superposition of all possible classical queries, and so we may no
longer be able to cleanly categorize the queries the adversary makes. This can significantly
complicate the analysis required to determine the probability of certain events.

1.7 FDH in the QROM

We will now show how the generic FDH scheme using trapdoored permutations has a secu-
rity reduction in the quantum random-oracle model. Note that such a security reduction
is only meaningful if there is a trapdoored permutation that cannot be inverted by a quan-
tum computer. Trapdoored permutations based on problems such as the RSA problem are
of course useless against a quantum computer. To date, there are no known trapdoored
permutations secure against a quantum computer. Nonetheless, this proof at least shows
that the basic idea of the scheme is still sound. As well, there are trapdoored functions
that are not permutations [23], but can be used to construct essentially the same scheme.

Theorem 1.7.1 ([46] Existential Unforgeability of Generic FDH in the QROM). Let A
be a quantum adversary that wins game 1.3.1 with signature scheme 1.4.1 in time t with
probability ε, having made qH quantum queries to the random oracle and qS classical queries
to the signing oracle. Then there is an algorithm B that wins game 1.4.1 in time ≈ t with
probability poly(ε)/poly(qH , qS).

Proof. We will define an algorithm B that uses A as a subroutine in order to try and
win game 1.4.1. First, the challenger C gives B a uniformly random y ∈ R. B chooses a
parameter λ ∈ [0, 1] (how it is chosen will be discussed later).

First, B constructs a quantum random oracle O1 : D → {0, 1} such that for each
d ∈ D, Pr[O1(d) = 1] = λ, and these probabilities are independent. They also construct
a quantum random oracle O2 : D → R. These oracles can be instantiated with either
quantum-accessible PRFs or 2q-wise independent functions. Then, B can define the random
oracle H : D → R that A will be given access to as

H(d) :=

{
y if O1(d) = 1

f(O2(d)) if O1(d) = 0
. (1.9)

21

Note that since f is a permutation, and O2 is a random oracle mapping onto R, the
distribution of f ◦ O2 is the same as that of O2 (taken over the randomness of O2). Then
H has distribution SCλ,y, and so by Theorem 1.6.3, the distance between the adversary’s
output distribution is at most 8

3
q4
Hλ

2.

Then when A submits a signing query, di ∈ D, B does the following:

1. Check if O1(di) = 0. If not, abort.

2. Output O2(di) as a signature for di.

When the adversary submits a forgery (d∗, σ∗), hope that O1(d∗) = 1. If so, then
H(d∗) = y and so if the forgery is valid then f(σ∗) = y.

We now analyse the probability with which B successfully finds the preimage of y. Note
that assuming that the distribution of A’s signing queries are independent from O1, the
probability that all of their signing queries satisfy O1(di) = 0 is at least 1 − qsλ. Then
assuming that the distribution of the forgery is independent from O1, the probability that
the forgery satisfies O1(d∗) = 1 is λ. So ignoring that H doesn’t behave like a normal hash
function, we have that the probability of success is at least λ(1− qsλ).

While we have an upper bound on the change in the adversary’s output distribution,
this is complicated by the fact that the adversary’s interactions with the random oracle
and signing oracle are affected by the altered oracle. Nonetheless, as A has only qh and qs
signing queries, the success probability of B can be shown to be

3ε2

4(2qh + 3qs + 2)4
. (1.10)

For simplicity, we omit how this bound is fully established. The full proof can be found
in appendix E of [46].

1.8 Thesis Roadmap

In chapter 2 we will study LMS, a hash-based signature scheme. Jonathan Katz’s classical
security proof of LMS [28] upper bounded the success probability of any classical adversary
by categorizing the queries made to the oracle and considering the probability of these
events happening. As we can no longer categorize queries being made in such a way, we
need to reformulate the events and find different ways to upper bound the probabilities.

22

In chapter 3 we examine a lattice-based scheme, TESLA. A security reduction for this
scheme reduces to the LWE problem. However, the security reduction relies on the ability
to reprogram the quantum random oracle. We develop some theory and an approach that
will allow us to justify reprogramming the random oracle in this particular context.

In chapter 4 we look at a transformation on signature schemes that can generically up-
grade its security from existential unforgeability to something called strong unforgeability.
To establish a security reduction for the scheme, we need to again reprogram the random
oracle. However the results from chapter 3 do not apply to this context, so we have to
establish the soundness of reprogramming in this context.

23

Chapter 2

LMS in the QROM

In a recent paper [28], Jonathan Katz analyzed the security of the Leighton-Micali hash-
based signature scheme, which we will refer to as LMS. LMS has been proposed for stan-
dardization in [31].

Katz’s analysis used the random oracle to establish the security of LMS. However, as
the random-oracle model is insufficient for establishing the security of a protocol against
an adversary with access to a quantum computer, we must move to the quantum random
oracle, as discussed in section 1.5.

In this section, we reformulate and update Katz’s random-oracle model proof of security
for LMS to the quantum random-oracle model. As LMS is a hash-based scheme, this is
particularly important as it is a strong candidate for post-quantum standardization. We
also discuss some of the difficulties that need to be overcome in order to establish this
proof in the QROM.

2.1 Scheme Description

2.1.1 One-Time Scheme

The basic component of the full scheme is the one-time (OT) signature scheme, also known
as the Winternitz signature scheme. This scheme consists of OT key generation, signing,
and verifying algorithms. It uses, as a basic component, a hash function H : {0, 1}∗ →
{0, 1}n, where n is the security parameter.

The parameters are:

24

• n, the security parameter.

• w, the Winternitz parameter, which is a small divisor of n (generally less than or
equal to eight).

These parameters define the following values:

• E = 2w − 1

• u1 = n/w

• u2 = dblog2 (u1 · E) + 1c/we

• p = u1 + u2.

For our purposes, string concatenation is denoted by ||.

We can parse a string of n bits as the concatenation of u1 strings, each w bits long and
representing an integer from 0 to E. This allows us to define the checksum : ({0, 1}w)u1 →
({0, 1}w)u2 function as

checksum(h1, . . . , hu1) =

u1∑
i=1

(E − hi). (2.1)

We can then see that u2 was chosen so that w · u2 is the maximum bit length of the result
of the checksum function.

We define the function F as a repeated application of H, with each application also
adding some additional information, such as the number of times H has been applied. We
also include s = I||Q||i, a string consisting of an identifying string I for the owner of the
public key, a string Q indicating which instance of the scheme is being used, and a number
i indicating which chain of hashes we are referring to. This information is used in the
multi-user and multi-instance analysis of the scheme. For 0 ≤ b ≤ f ≤ E, define

Fs(x; b, f) =

{
x if b = f

Fs(H(x||s||b||00); b+ 1, f) if b < f.

Signature Scheme 2.1.1. OT-LMS

25

Algorithm 4 OTLMSKeyGen
Input: Security Parameter 1n, Winternitz parameter w.
Output: Public key pk, secret key sk.

1: Choose p values x0
1, x

0
2, . . . , x

0
p ∈ {0, 1}n, uniformly at random.

2: For i = 1 to p, let s = I||Q||i and compute xEi = Fs(x
0
i ; 0, E).

3: Let pk = H(xE1 ||xE2 || . . . ||xEp ||01).
4: The one-time public key is pk, and the secret key is sk = (x0

1, . . . , x
0
p).

Algorithm 5 OTLMSSign

Input: Message M ∈ {0, 1}∗, secret key sk.
Output: Signature σ.

1: Choose a uniformly random r ∈ {0, 1}n.
2: Compute h = H(M ||r||I||Q||02) and c = checksum(h). Set v := h||c and parse v as p
w-bit integers in {0, . . . , E}, v = (v1, v2, . . . , vp).

3: For i = 1 to p, let s = I||Q||i and compute σi = Fs(x
0
i ; 0, vi).

4: Output signature σ = (r, σ1, . . . , σp).

Algorithm 6 OTLMSVrfy

Input: Message M ∈ {0, 1}∗, public key pk (if being used as a standalone scheme), signa-
ture σ = (r, σ1, . . . , σp).

Output: accept or reject if being used as a standalone signature scheme, value pk′ if being
used as part of the full LMS scheme.

1: Compute h′ = H(M ||r||I||Q||02) and c′ = checksum(h). Set v′ = h′||c′, and parse v′ as
p w-bit integers in {0, . . . , E}, v′ = (v′1, v

′
2 . . . , v

′
p).

2: For i = 1 to p, let s = I||Q||i and compute x′Ei = Fs(σi; v
′
i, E).

3: Let pk′ = H(x′E1 ||x′
E
2 || . . . x′

E
p ||01). If the scheme is used as part of the full scheme,

output pk′. If it is being used as a standalone signature scheme, output ‘accept’ if and
only if pk′ = pk.

The correctness property can verified by inspection.

26

2.1.2 Full Scheme

In the full scheme, we combine the one-time scheme as a subroutine with a Merkle tree
construction in order to have a full (stateful) signature scheme.

In addition to the parameters for the one-time scheme, we have the parameter H. We
will create 2H separate instances of the one-time scheme.

Signature Scheme 2.1.2. LMS Signature Scheme

Algorithm 7 LMSKeyGen

Input: Security Parameter 1n, Winternitz parameter w, Merkle tree height 1H

Output: Public key pk, secret key sk

1: For i = 1 to 2H , obtain (pki, ski)← OTLMSKeyGen(1n, w).
2: For i = 1 to 2H , compute y0

i := H(pki||I||i||03).
3: For j = 1 to H:

1. For k = 1 to 2H−j, compute yjk := H(yj−1
2k−1||y

j−1
2k ||k||j||04).

4: Output pk = yH1 as the public key, and sk = (sk1, . . . , sk2H) as the secret key.
5: Initialize Q = 0.

Algorithm 8 LMSSign

Input: Message M ∈ {0, 1}∗, secret key sk
Output: Signature σ

1: Increment Q by 1. If Q = 2H + 1, STOP; all signatures have been used.
2: Obtain σ′ ← OTLMSSign(M, skQ).
3: Let c← Q. Update σ ← σ′||Q.
4: For j = 0 to H − 1:

1. If c is even, let σ ← σ||yjc−1 and c← c/2.

2. If c is odd, let σ ← σ||yjc+1 and c← (c+ 1)/2.

5: Output σ.

27

Algorithm 9 LMSVrfy

Input: Message M ∈ {0, 1}∗, public key pk, signature σ = σ′||Q||y0||y1|| . . . ||yH−1

Output: accept or reject

1: Obtain pk′ ← OTLMSVrfy(M,σ′).
2: Compute y = H(pk′||I||Q||03).
3: Let c← Q.
4: For j = 0 to H − 1:

1. If c is even, let y ← H(yj||y||c/2||j + 1||04) and c← c/2.

2. If c is odd, let y ← H(y||yj||(c+ 1)/2||j + 1||04) and c← (c+ 1)/2.

5: Output accept if and only if y = pk. Output reject otherwise.

2.2 LMS in the (Quantum) Random-Oracle Model

Katz’s classical proof of the security of LM-Winternitz takes place in the random-oracle
model. In this proof, we are running an experiment with an adversary A, who is attacking
the existential unforgeability of the scheme. Whenever this adversary wishes to evaluate
the hash function H on a point x, they must instead query us for the evaluation, and we
respond in a way that is (computationally) indistinguishable from truly random. Katz
shows that for any adversary that makes q queries, the probability that A can win a game
of existential-unforgeability is at most 3q/2n. He establishes this by showing that for the
adversary to win a game, one of a series of events must occur. Then by upper bounding
the probability of these events happening, the upper bound follows.

In the quantum random-oracle model however, new issues arise. Katz’s events are
defined by considering the queries that the adversary makes and the responses they receive.
However in the quantum random-oracle model, the queries the adversary makes no longer
need be classical, and so the definition of these events no longer quite makes sense. Instead
the events must be defined by considering what classical information the adversary is able
to find, rather than just what they query. Classically, the information the adversary has
about an oracle is entirely specified by the queries being made. Quantumly, the information
an adversary has about an oracle is much more challenging to classify.

Note that there is a slight issue in that the classical oracle is defined from {0, 1}∗
to {0, 1}n, that is, takes in variable length input. In our circuit model of computation,
we must specify the length of input to the oracle in advance. This issue is resolved by
considering an upper bound on the length of binary strings that the adversary needs to

28

query (such an upper bound must exist, and as long as the adversary runs in polynomial
time, this length is poly-log in the security parameter n).

2.2.1 Second-preimage Resistance with Non-uniform First-preimage

The concept of second-preimage resistance in the random-oracle model is an essential one to
the analysis of LMS. The usual game of second-preimage resistance (in the random-oracle
model) between an adversary A and a challenger C is defined as:

Game 2.2.1 (Uniform Second-preimage Resistance).

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible mappings, and
provides oracle access to H to A.

2. A makes q1 queries to H.

3. C selects an element x ∈ {0, 1}∗ uniformly at random, and sends x to A.

4. A makes q2 queries to H, and then submits an x′ ∈ {0, 1}∗, x′ 6= x.

We define q = q1 +q2. If H(x′) = H(x), we say that the adversary has won. Classically,
upper bounding the success probability of A is trivial. As H is a random oracle, the
adversay’s only choice is to submit q different x′ 6= x and hope that one of them maps to
H(x). This happens with probability ≤ q

2n
.

If A has quantum access to H, they gain an advantage, as they are now able to perform
Grover’s search to try and find such an x′. However by results on upper bounding quantum
search probability, such as those in [13], we have that the success probability is at most
2q/
√

2n.

However for our purposes, we need a somewhat different game. In particular, we
need to consider what happens when the first-preimage, x, is chosen from a non-uniform
distribution.

Game 2.2.2 (Non-uniform Second-Preimage Resistance).

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible mappings, and
provides A with oracle access to H.

2. A makes q1 queries to H.

29

3. C selects an element x ∈ {0, 1}∗ according to some distribution D on {0, 1}∗, and
sends x to A.

4. A makes q2 queries to H, and then submits an x′ ∈ {0, 1}∗, x′ 6= x.

As before, A wins this game if H(x) = H(x′).

We would like this game to be as difficult as the uniform second-preimage game, but
this is not true for all possible distributions D. In particular, D can depend on H. We can
imagine a challenger C who chooses the first-preimage x by querying H until they find an x
such that H(x) = H(0) and giving this x as the first-preimage. Then A can easily win the
game by simply returning x′ = 0. Although in this case D is exponentially (in n) difficult
to actually sample from, this does establish that D can matter in general. However D
was constructed to explicitly depend on H. Intuitively, it should be the case that if D is
independent of H, it should not matter if D were uniform or not.

We now establish that this intuition is perfectly sensible by a reduction from one game
to another. This reduction is valid whether A has classical or quantum access to H.
However this reduction is explicitly in the random-oracle model and does not carry over
to the case where H is a real hash function.

Theorem 2.2.1. Let A be an adversary capable of winning the game of non-uniform
second-preimage resistance with probability p in q queries to the random oracle, with the
distribution being D, which is independent of the random oracle. Then there is an algorithm
B, which samples from D once, and is capable of winning the game of uniform second-
preimage resistance with probability p in q queries.

Proof. We construct B, using A as a blackbox to solve the problem. B is attempting to
win the game of uniform second-preimage resistance, so they are provided with a uniform
x and access to a random oracle H. Then B first samples a d ← D, d ∈ {0, 1}∗. Then B
constructs a random oracle, H ′, as follows:

H ′(m) =


H(x) if m = d

H(d) if m = x

H(m) if m 6= x, d.

(2.2)

Intuitively, H ′ is constructed from H by swapping the outputs of x and d. Then
note that since x was sampled uniformly, and d was sampled from a distribution entirely
independent from H, H ′ still has the distribution of a random oracle. Also note that for

30

each query A makes to H ′, B can answer it by making precisely one query to H, and this
is true for classical or quantum queries.

B presents d to A and provides access to H ′. Eventually, A outputs a d′ 6= d. With
probability p, H ′(d′) = H ′(d) = H(x). On all inputs other than x and d, H ′(m) = H(m),
and so as long as d′ 6= x, we have that d′ is a second-preimage to x. If d′ = x then d is a
second preimage to x.

2.2.2 Second-preimage Resistance with Adversary Prefixes

Also important to the analysis of LMS is a slight modification of game 2.2.2, where the
adversary is able to specify a prefix of the element whose second preimage they are then
searching for. We again define this in terms of a game.

Game 2.2.3 (Second Pre-image Resistance with Adversary Prefixes).

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible mappings, and
provides access to H to A.

2. A makes q1 queries to H, and then submits a prefix M ′.

3. C selects some suffix r′ ← {0, 1}n uniformly at random, and sends r′ to A.

4. A makes q2 queries to H, and then submits an M∗, r∗ ∈ {0, 1}∗ × {0, 1}n, with
M ′ 6= M∗.

Again, we say that the adversary has won if H(M∗||r∗) = H(M ′||r′). Note that this
game is conceptually very similar to the game of non-uniform second-preimage resistance,
as the adversary may choose the distribution of the first portion of the first preimage
according to any distribution. However, the adversary is allowed to choose this prefix in
an arbitrary way, which can depend on the random oracle, so our result on the distribution
not being affected does not apply, and it is possible that some advantage can be gained by
the adversary over second-preimage resistance.

Classically, it is not difficult to show that an adversary does not obtain much of an
advantage. In Katz’s paper [28], he tackles this issue through the use of random oracle
reprogramming. Specifically, he considers the challenger that, when the adversary submits
their prefix M ′, modifies H to H ′ so that H(M ′||r′) = h′, where r′ and h′ are uniformly
random n bit strings that were chosen in step 1 of the game. The adversary will only notice

31

that C isn’t playing by the ‘real’ rules of the game if they had previously queried M ′||r′, and
since r′ is not disclosed to the adversary in advance, this happens with probability ≤ q1

2n
.

Then the probability that an adversary queries a different M∗||r∗ such that H(M∗||r∗) = h′

is simply q/2n. So we upper bound the probability that the adversary wins this game by
q1/2

n + q/2n ≤ 2q/2n.

This proof is much more difficult in the quantum setting however. In Katz’s proof,
an essential step was to reprogram the oracle to reduce to something that more closely
resembled second-preimage resistance. Since the adversary has a limited number of queries,
they don’t have any information about what is reprogrammed with high probability. In
the quantum case however, this is much more challenging. Since the adversary can make
a quantum superposition of queries, an adversary can make a query giving them some
information about the entire oracle. While there are existing results [21, 43, 42] discussing
reprogramming in the quantum random-oracle model, we instead avoid completely the
issue of reprogramming and show a reduction without it.

Without relying on reprogramming, it is not clear how to proceed with a proof. We
would like to establish that the difficulty of this game is roughly the same as that of
second-preimage resistance. But as the adversary is able to control the message being
chosen, we need to be able to quantify the adversary’s ability in finding oracles H(M ||·)
that can make their job easier in some sense. As a quantum computer is capable of seeing
the ‘forest rather than the trees’ in a certain sense, it is difficult to guarantee that any
quantum adversary cannot force an oracle to have certain properties.

However, any type of second-preimage always has the property the it forms a collision
in the oracle H. So we can always upper bound an adversary’s ability to win game 2.2.3 by
their ability to find a collision. Classically, this is somewhat unsatisfying. The probability
a classical adversary finds a second-preimage in q queries is q/2n, while their ability to find
a collision is roughly q/2n/2. For a quantum adversary, the ability of a quantum adversary
to find a second-preimage is roughly q/2n/2, and the ability to find a collision is roughly
q/2n/3. While it would still be preferable to have the stronger bound, the gap between the
two is much smaller for quantum adversaries. It has even been argued that this gap is very
minor. In fact in [9], Bernstein argues that because the best known quantum collision-
finding algorithms are not parallelizable, the bounds provided by a classical adversary may
better reflect the cost of an optimal attack.

This tells us that

Pr[A wins game 2.2.3] ≤ Pr[A finds a collision in H] ≤ q/2n/3. (2.3)

32

2.2.3 Random Oracle Composition

In the description of LMS, and occasionally in other constructions, a function is defined
by a composition of independent random oracles. It would be convenient for this function
to itself be a random oracle, or at least have certain properties of a random oracle, from
the perspective of both classical and quantum adversaries. However, this is not quite the
case.

Let O1, . . . ,OE be independent random oracles mapping n-bit strings to n-bit strings.
Consider the oracle O = OE ◦OE−1 ◦ · · · ◦ O1, O : {0, 1}n → {0, 1}n. We want to consider
properties of the combined oracle O with respect to standard properties like preimage
resistance.

Lemma 2.2.1. Let O be a random mapping from a domain D of size N to a codomain R
of size M . Then the expected size of the image of D under O is

M

(
1−

(
1− 1

M

)N)
.

Proof. Let R = {1, . . . ,M}. For each 1 ≤ i ≤ M , let Xi be a binary random variable
where Xi is 1 if there is an x ∈ D such that O(x) = i, and 0 otherwise. It is not hard
to see that E[Xi] = 1− (M−1

M
)N . Then the expected number of elements in the codomain

that are hit is E[X1 + X2 + · · · + XM] = E[X1] + E[X2] + · · · + E[XM], from which the
result follows.

Writing N = α · M , for sufficiently large N and M , Lemma 2.2.1 tells us that the
fraction of the codomain that is hit is roughly(

1− 1

eα

)
where e ≈ 2.71828 is Euler’s constant. So when k oracles, each of which maps to a codomain
of size 2n, are composed, the overall oracle maps to an image that has size roughly

2n ·

(
1−

(
1

e

)1−(1/e)1−(1/e)...
}
k

)
. (2.4)

For example, for k = 256, this tells us that after 256 applications of independent random
oracles, the final range will be roughly 2−7 the size of the original domain.

33

Leaf Nodes

Root Node

Figure 2.1: A Merkle Tree

2.2.4 Merkle Trees in the Random-Oracle Model

In this section we discuss how similar arguments from section 2.2.3 apply to Merkle trees.

Recall that Merkle trees are used to generically transform a one-time signature scheme
into a many-time signature scheme that uses multiple instances of the one-time scheme. It
takes in the parameter H which defines the height of the binary tree. Then there are 2H

one-time instances. By labelling the leaf nodes from 1 to 2H , we define the values of the
next level of the tree by hashing the values of adjacent leaf nodes (i.e., leaf nodes 1 and 2
are hashed together, 3 and 4 are hashed together, etc.), along with a string that identifies
the location of the nodes in the overall tree.

We recursively build up the next level of the tree in this way until we have a root node,
as in figure 2.1.

This definition allows us to consider the overall mapping from the set of leaf nodes
(here n-bit strings) to the root node:

T : ({0, 1}n)2H → {0, 1}n. (2.5)

In section 2.2.3, we noted that by recursively applying independent oracles, the overall
mapping had a somewhat smaller range than might be expected. Using similar analysis,
we can show that this is unlikely to happen for the Merkle tree mapping.

Consider the first oracle, which takes in two leaf nodes, which are n-bit strings, and
outputs the hash of their concatenation. This is a random mapping from {0, 1}2n to {0, 1}n.

34

From our analysis in section 2.2.3, we know that the expected size of the range is

2n

(
1−

(
1− 1

2n

)22n
)
≈ 2n

(
1− 1

e2n

)
= 2n − 2n−log2(e)·2n . (2.6)

So if we let M represent a random variable indicating the number of elements in the
codomain that are missed by the mapping. Then by Markov’s inequality,

Pr[M ≥ 1] ≤ Ex[M] = 2n−log2(e)·2n . (2.7)

For any reasonable value of n (such as 128 or 256), this probability is so incredibly small
that it essentially negates the entire possibility of a single point in the codomain being
missed. Considering that there are a total of 2H − 1 oracles, and H generally takes values
on the order of 20 or 40, this implies that with overwhelming probability, not a single point
in the codomain of the mapping T is missed.

2.3 Security Proof for OTLMS in the QROM

We define security in terms of the standard notion of existential unforgeability under
chosen-message attack. This standard notion of security is defined in terms of the following
interaction between an adversary A and a challenger C.

Game 2.3.1 (One-time existential-unforgeability under chosen-message attack (OTeucma)). 1.
C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible mappings (con-
sidering that there is in principle an upper bound on the length of binary strings A
will ask for evaluation on). C then creates a quantum random oracle that provides
quantum access to H as in equation 1.2.

2. C runs OTKeyGen, obtaining (pk, sk), and sends pk to A.

3. A makes q1 queries to the quantum random oracle and then submits a message M ′

for signing.

4. C runs OTSign(M ′, sk) and sends the resulting signature, σ′ to A.

5. A makes q2 queries to the quantum random oracle.

6. A submits a message-signature pair, (M∗, σ∗), such that M∗ 6= M ′.

35

We say that A has ‘won’ the OTeucma game if OTVrfy(M∗, σ∗, pk)→ accept.

Theorem 2.3.1. For any adversary A, the probability that they win the OTeucma game
in the random-oracle model is ≤ (2n/6 + 38)q/

√
2n.

Proof. We write a query |φi〉 to the quantum random oracle as

|φi〉 =
∑
x,y

αi,x,y|x〉|y〉.

As per our description of OTeucma, q1 is the number of queries prior to the signing
query, and q2 is the number of queries after the signing query. Then qH = q1 + q2 is the
total number of queries to the quantum random oracle.

To upper bound A’s chances of winning OTeucma, we define a few subsets of the
domain of H.

• S0,i,j := {x ∈ {0, 1}∗ : x = x′||I||Q||i||j||00, FI||Q||i(x; j, E) = xEi }

• S1 := {x ∈ {0, 1}∗ : x = x′E1 || . . . ||x′
E
p ||01, H(x) = pk, (x′E1 || . . . ||x′

E
p) 6= (xE1 || . . . ||xEp)}

• S2 := {x ∈ {0, 1}∗ : x = M ||r||I||Q||02, H(x) = h′,M 6= M ′}.

Then we define the following three events that may occur over the course of the game
OTeucma.

• E0 is the event that A has complete knowledge of some x ∈ S0,i,j for some i and j
where v′i > j.

• E1 is the event that A has complete knowledge of some x ∈ S1.

• E2 is the event that A has complete knowledge of some x ∈ S2.

Classically, it is simple to define what we mean by “complete knowledge” — it is
simply whether or not the adversary has queried such an x in one of the defined sets.
In our quantum setting, this is less meaningful, as a superposition of queries contains
some amount of information about such subsets. Instead, we define this as meaning that
the adversary has some classical information that allows the derivation of such an x with
probability 1.

36

We will establish that if (M∗, σ∗) is a valid forgery, at least one of the three events has
occurred. We do this by establishing that if a forgery has occurred, and events E1 and E2
did not occur, then E0 must have happened.

We are assuming that A has succeeded in submitting a forgery and that events E1 and
E2 have not occurred. We will examine the properties of (M∗, σ∗) and show that E0 must
have occurred.

When the adversary submits a forgery (M∗, σ∗), we can run the verification algorithm
on this pair. Then the following values are derived in the process of running the verification
algorithm.

• M∗||r∗||I||Q||02

• x∗E1 || . . . ||x∗Ep ||01

• σ∗i ||I||Q||i||v∗i ||00, for i = 1 to p.

Now E1 did not occur, and if the verification algorithm accepts (M∗, σ∗), then we must
have that H(x∗E1 || . . . ||x∗E1 ||01) = pk, so we must have that x∗E1 || . . . ||x∗Ep ||01 /∈ S1, and so
x∗E1 || . . . ||x∗Ep = xE1 || . . . ||xEp .

Similarly, E2 did not occur, and sinceM∗ 6= M ′, it must be the case thatH(M∗||r∗||I||Q||02) 6=
h′.

So we know that h∗ 6= h′, and that x∗E1 || . . . ||x∗Ep = xE1 || . . . ||xEp . Note that by the
construction of the checksum, when we compare v∗ and v′, there must be an index i for
which v∗i < v′i. But then since we have that x∗E1 = xE1 , we can see that this means that
σ∗i ||I||q||i||v∗i ||00 ∈ S0,i,v∗i

and E0 has occurred.

Now all we need to do is provide an upper bound on the probability of any of the events
occurring. To upper bound these, we consider the adversary that attempts to maximize
the probability of event Ei occurring, for i = 0, 1, 2.

Event E0 For event E0, we want to upper bound the adversary’s ability on finding any
new x, i, and j, with j < v′i and x ∈ S0,i,j. Note that finding an x ∈ S0,i,j implies complete
knowledge of some x′ ∈ S0,i,k, for j ≤ k < E. In particular, it implies complete knowledge
of some x ∈ S0,i,v′i−1. So we need to upper bound the adversaries ability to find such an x.

From the signing query, the adversary knows precisely one element of S0,i,v′i
. However,

we can imagine an adversary who knows this set entirely. We will show that finding an
element of S0,i,v′i−1 is still difficult. From section 2.2.3, we know that when considering
the function F as a composition of random oracles, we can expect the overall compression

37

from the domain to the codomain to be by a factor of roughly 2−7. One consequence is
that S0,i,v′i

will have size at most roughly 2−7. Similarly, we can expect that the size of the
range of the function FI||Q||i(·; 0, v′i − 1) is going to be larger than 2−72n. Let Ri be this
range.

So we can imagine an adversary that for each i, knows entirely Ri and the set S0,i,v′i
. In

particular they can search overRi and test membership in the set without any queries to an
oracle (in practice of course, this should not be possible). The adversary still needs to find
something in Ri that is mapped to a point in S0,i,v′i

by the oracle H(·||I||Q||i||v′i − 1||00).

In the worst case, we can imagine that S0,i,v′i
is a strict subset of the range ofH(·||I||Q||i||v′i−

1||00) acting on Ri. In this case, the adversary has to find one marked item out of a set
of size 2−72n where each item is marked with uniform and independent probability 2−7.
Therefore the adversary’s ability to find such an item is determined by the Grover’s lower
bound of 2q/

√
28/2n = 25q

√
2n.

Event E1 Event E1 is simply the adversary’s ability to find some distinct x 6= xe1|| . . . ||xep
that maps to pk under H(·||01), when the adversary is already given such an element. This
is a game of second-preimage resistance and the quantum adversaries success probability
is bounded by 2q/

√
2n.

Event E2 Event E2 refers to the adversary’s ability to find a distinct M∗ and any r∗

such that H(M∗||r∗||I||Q||02) = H(M ′||r′||I||Q||02), where M ′ is chosen by the adversary
and r′ is chosen uniformly at random. But this is precisely the game of second-preimage
resistance with adversary prefixes with respect to the random oracle H(·|| · ||I||Q||02). So,
the adversary’s probability of success is at most 2n/6q/

√
2n ≤ 22q/

√
2n.

Altogether, we have that

Pr(A wins OTeucma) ≤Pr(E0 or E1 or E2)

≤Pr(E0) + Pr(E1) + Pr(E2)

≤(25 + 2 + 2n/6)q/
√

2n

=(2n/6 + 34)q/
√

2n.

2.4 Security Proof for LMS in the QROM

For the full version of LMS, we proceed in a similar fashion, defining a full game of
existential-unforgeability under chosen-message attack, and upper bounding the success

38

probability of any adversary in this game with respect to a random oracle.

Game 2.4.1 (LMS Existential-unforgeability under chosen message attack (eucma)).

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible mappings. C
then creates a quantum random oracle that provides quantum access to H as in
equation 1.2.

2. C runs KeyGen, obtaining (pk, sk), and sends pk to A.

3. A makes quantum random oracle queries |φ1〉, . . . , and then submits a message M ′
1

for signing.

4. C runs Sign(M ′
1, sk) and sends the resulting signature, σ′1 to A.

5. A continues to make random oracle queries, as well as signing queriesM ′
2,M

′
3, . . . ,M

′
qS

.

6. A submits a message-signature pair, (M∗, σ∗), such that M∗ 6= M ′
1,M

′
2, . . . ,M

′
qS

.

As before, A is said to win if and only if Vrfy(M∗, σ∗, pk)→ ‘accept’.

Theorem 2.4.1. For any adversary A, the probability that they wins game 2.4.1 in the
random-oracle model is ≤ (2n/6 + 38)q/

√
2n.

Proof. To upper bound A’s probability of winning gamw 2.4.1, we again characterize sev-
eral subsets and events based on these subsets, and characterize what a forgery may look
like with respect to these subsets.

Parse the forged signature as σ∗ = σ′∗, Q∗, y∗0, . . . , y∗H−1. σ′∗ is the signature for the
one-time verification algorithm, Q∗ is the placement identifier, and y∗0, . . . , y∗H−1 form the
Merkle tree verification path. Let pk′∗ ← OTVrfy(M∗, σ′∗)

• EOT is the event that pk′∗ = pkQ∗ .

• E3 is the event that EOT did not occur and H(pk′∗||I||Q∗||03) = y0
Q∗ , where y0

Q∗ is
the value as defined in the KeyGen algorithm.

• E4 is the event that EOT and E3 did not occur and the adversary has complete
knowledge of values x′, x0, . . . , xH−1, as well as an index i such that x′ 6= y0

i and by
computing the Merkle tree verification path with respect to these values and this
index, we get the value pk.

39

It is straightforward to establish, as we did for the one-time signature scheme, that for
a forgery to occur, one of these events must happen. We establish it in the same way, that
is, if EOT and E3 do not occur for a forgery, then E4 must occur.

E3 and EOT not occurring means that H(pk′∗||I||Q∗||03) 6= y0
Q∗ , and so setting this

to x′, i = Q∗ and considering the y∗0, . . . , y∗H−1, we know that since the signature verified,
this verification path must lead to pk, and E4 has occurred.

Then we just need to upper bound the probability of any of these events occurring.

Event EOT This event corresponds to the possibility of an adversary breaking the one-
time signature scheme for one of the Q∗ instances of the one-time signature scheme. Note
that the adversary’s advantage in breaking any one of the one-time signature schemes is
at most 2H times their advantage in breaking one scheme, implying that their advantage
is certainly at most

2H
(2n/6 + 34)q√

2n
.

In fact their advantage should be much less than this. As each one-time instance is fully
independent due to the identifying information passed into each hash oracle, the adversary’s
advantage should simply be the same as it is for the one-time signature scheme. We note
that each event that determines EOT is reduced exactly to either collision resistance or
some second-preimage resistance problem. From a result in [27], no advantage is gained
in having mutliple targets for the second-preimage or collision resistance, as long as the
search spaces are disjoint. In this case, they are disjoint because of the identifier Q.

We can therefore bound the value EOT by

2n/6 + 34√
2n

. (2.8)

Event E3 This is the event that the adversary finds a second preimage of one of the leaf
nodes of the Merkle tree. As this is directly a second-preimage problem, the probability of
this event happening is

2q√
2n
.

Event E4 This is the event that the adversary obtains knowledge of a ‘false’ verification
path for the Merkle tree that leads to pk. Note that finding a verification path for an
x 6= y0

i implies finding a second preimage to one of the values of the Merkle tree. The
first preimage is the concatenation of the two values below that point on the tree. Note

40

that each point in the Merkle tree is generated by a random oracle that is independent
from the oracles in the rest of the tree. Therefore by our discussions in section 2.2.4, the
probability of event E4 happening is bounded by an adversary’s ability to break one of the
second-preimage instances of the Merkle tree, of which there are 2H − 1.

By the analysis in [27] we know that the probability of an adversary finding a second
preimage for any of these 2H − 1 instances is the same as finding them for one, namely
≤ 2q/

√
2n.

Altogether, we have

Pr(A wins eucma) ≤Pr(EOT or E3 or E4)

≤Pr(EOT) + Pr(E3) + Pr(E4)

≤(2n/6 + 34 + 2 + 2)q/
√

2n

=(2n/6 + 38)q/
√

2n.

41

Chapter 3

TESLA

When attempting to evaluate the security of a signature scheme, the security gap of the
reduction is an important consideration. This quantity measures how much extra work a
reduction must perform in order to convert an adversary capable of breaking the scheme
into solving an underlying problem.

To determine the security gap, a reduction that explicitly relates the costs of breaking
the scheme and carrying out the reduction is necessary. In contrast, many reductions
establish only asymptotic security, resulting in a mere heuristic argument of a scheme’s
security. Moreover, as pointed out by Chatterjee et al. [17], tight reductions, i.e., with a
security gap of approximately 1, provide a much higher degree of trust in the scheme’s
security. A large security gap could be explained by a yet to be discovered attack against
the scheme, and therefore a conservative approach to selecting parameters must take the
security gap into account.

To fully address the challenges in a quantum world, concrete instantiations of schemes
should be chosen and their security should be analyzed with respect to adversaries that
have access to large-scale quantum computers.

In the realm of lattice-based signature schemes, the only lattice-based signature scheme
that is proven secure in the QROM and accounts for its security gap (which is close to 1)
is the GPV-scheme by Gentry, Peikert, and Vaikuntanathan [23]. Lattice-based schemes
that are significantly more efficient with respect to run time and space [20, 4, 18, 25] have
not been proven secure in the QROM and/or do not account for their proven security gap.

In this chapter we consider a candidate signature scheme for standardization in a quan-
tum world: TESLA. We prove this signature scheme to be tightly secure in the QROM.

42

The scheme TESLA is a variant of Bai and Galbraith’s earlier construction [4]. Bai
and Galbraith give a (non-tight) security reduction from the Learning with Errors problem
(LWE) [37] and the Short Integer Solution (SIS) problem in the random-oracle model. This
scheme was then reconsidered (and called TESLA) in [2]. However the proof contained in
that document contained flaws, as pointed out independently by Gus Gutoski and Chris
Peikert. Additionally, the analysis in the quantum random-oracle model was somewhat
dissatisfying, as it required additional computational assumptions.

3.1 Chapter Notation

Integer scalars are denoted using Roman letters and if not stated otherwise, q is a prime
integer. For any positive integer n the set Zn of integers modulo n is represented by
{−b(n− 1)/2c, . . . , bn/2c}. Fix a positive integer d and define the functions [·], [·]L :
Z → Z as follows. For any integer x let [x]L denote the representative of x in Z2d ,
i.e., [x]L = x(mod 2d), and let [x] = (x − [x]L)/2d. Informally, [x] is viewed as the most
significant bits of x and [x]L is viewed as the least significant bits of x. The definitions are
easily extended to vectors by applying the operators for each component.

Vectors with entries in Zq are viewed as column vectors and denoted with lowercase
Roman letters in sans-serif font, e.g., y, z,w. Matrices with entries in Zq are denoted with
uppercase Roman letters in sans-serif font, e.g., A, S,E. The transpose of a vector or a
matrix is denoted by vT or MT , respectively. We denote by ‖v‖ the Euclidean norm of a
vector v, and by ‖v‖∞ its infinity norm. An integer vector y is B-short if each entry is at
most B in absolute value. All logarithms are base 2. A function is called negligible in the
security parameter n, denoted by negl(n), if it decreases faster than the inverse of every
polynomial in n, for sufficiently large n.

The centered discrete Gaussian distribution for x ∈ Z with standard deviation σ is
defined to be Dσ = ρσ(x)/ρσ(Z), where σ > 0, ρσ(x) = exp(−x

2

2σ2), and ρσ(Z) = 1 +
2
∑∞

x=1 ρσ(x).

For a finite set S, we denote sampling the element s uniformly from S by s
$←− U(S)

or simply s
$←− S. Let χ be a distribution over Z, then we write x ← χ if x is sampled

according to χ. Moreover, we denote sampling each coordinate of a matrix A ∈ Zm×n with
distribution χ by A ← χm×n with m,n ∈ Z>0. For an algorithm A, the value y ← A(x)
denotes the output of A on input x; if A uses randomness then A(x) is a random variable.
Aχ denotes that A can request samples from the distribution χ.

43

3.2 The Learning with Errors Problem

In the following we recall the decisional learning with errors problem (LWE) and define its
matrix varariant (M-LWE) 1.

Definition 3.2.1 (Learning with Errors Problem). Let n,m, q > 0 be integers and χ be a

distribution over Z. For s
$←− U(Znq) define As,χ to be the distribution that samples a

$←− Znq
and e ← χ and then returns (a, 〈a, s〉 + e) ∈ Znq × Zq. The decisional learning with errors
problem LWEn,m,q,χ is (t, ε)-hard if for any algorithm D, running in time t and making at
most m queries to the distribution As,χ, it holds that∣∣∣Pr

[
DAs,χ(·) = 1

]
− Pr

[
DU(Znq×Zq)(·) = 1

] ∣∣∣ ≤ ε .

We can also writem LWE instances to a secret s ∈ Znq as (A,As + e mod q) with A
$←− Zm×nq

and e← χm.

The security of the signature scheme covered in this paper is based on the matrix version
of LWE (M-LWE) defined in the following.

Definition 3.2.2 (Matrix Learning with Errors Problem). Let n, n′,m, q > 0 be inte-
gers and χ be a distribution over Z. Define AS,χ to be the distribution that, for S =

(s1, ..., sn′) with s1, ..., sn′
$←− U

(
Znq
)
, samples a

$←− Znq and e1, ..., en′ ← χ and then returns(
aT , aTS + (e1, ..., en′)

)
∈ Z1×n

q ×Z1×n′
q . The matrix decisional learning with errors problem

M-LWEn,n′,m,q,χ is (t, ε)-hard if for any algorithm D, running in time t and making at most
m queries to the distribution AS,χ, it holds that∣∣∣∣Pr

[
DAS,χ(·) = 1

]
− Pr

[
DU

(
Znq×Zn

′
q

)
(·) = 1

]∣∣∣∣ ≤ ε .

As before, m M-LWE samples to the secret matrix S = (s1, ..., sn′) ∈ Zn×n′q can be written

as (A,AS + E) ∈ Zm×nq × Zm×n′q with A
$←− Zm×nq and E← χm×n

′
.

We call (A,T) ∈ Zm×nq × Zm×n′q a yes-instance if there exists an S = (s1, ..., sn′) with
s1, ..., sn′ ∈ Znq and (A,T) are m M-LWE samples from the distribution AS,χ. Otherwise,

i.e.when (A,T)
$←− U

(
Zm×nq × Zm×n′q

)
, we call (A,T) a no-instance.

1Note that, in contrast with common terminology in papers about module lattices, we do not mean
Module LWE by the abbreviation M-LWE, but Matrix LWE.

44

Theorem 3.2.1. If LWEn,m,q,χ is (ε/n′, t)-hard then M-LWEn,n′,m,q,χ is (ε, t)-hard.

Intuitively, the reduction loss exists since an adversary that can solve LWE has n′

possibilities to solve M-LWE (see also [12, 36, 4]). The proof follows similar arguments as
given in [36].

For the remainder of this chapter, whenever we refer to LWE, we mean the matrix
version, M-LWE.

We note that the hardness of LWE (resp., M-LWE) is retained even if all coordinates
of the secret vector s are sampled according to the error distribution χ, known as the
“normal form” [32, 3]. We use the notation LWEn,m,q,σ if χ is distributed according to Dσ.
The LWE assumption comes with a worst-to-average-case reduction [37, 35, 14]; breaking
certain average instances of LWE allows one to break all instances of certain standard
lattice problems (namely GapSVP and SIVP).

3.3 The Signature Scheme TESLA

TESLA’s key generation, sign, and verify algorithms are listed in Algorithms 10, 11, and 12.
For more details, rationale, comparisons with other schemes, and implementation results,
see [1].

Parameters and Notation. TESLA is parameterized by positive integers q, m, n, n′,
h, d, B, L, LS, U , a positive real σ, a hash oracle H(·), and the publicly available matrix

A
$←− Zm×nq . Let H denote the set of vectors c ∈ {−1, 0, 1}n

′
with exactly h nonzero entries.

For simplicity we assume that the hash oracle H(·) has range H, i.e., we ignore how a
standard hash function like SHA-256 is converted into one which has range H. An integer
vector w is well-rounded if w is (bq/2c − L)-short and [w] is (2d − L)-short.

The parameters selected must satisfy the bounds in table 3.1.

Deterministic signatures. It is recommended that any implementation of TESLA em-
ploy standard techniques to achieve deterministic signatures. In particular, the key genera-
tion algorithm should produce a random seed as part of the secret key. The sign algorithm
should use this seed, along with the input message msg, to derive a deterministic sequence
of pseudorandom data that dictate the “random” choices of Algorithm 11.

45

σ > 2
√
n

LS 14σh

h 2h
(
n′

h

)
≥ 25λ

B ≥ 14n
√
hσ

U d14
√
hσe

d (1− 2L/2d)m ≥ 0.3

Table 3.1: TESLA parameter bounds

Fixed-weight hash outputs. Any implementation of the hash oracle H(·) will require
an encoding function that embeds the output of a concrete hash function such as SHA-
256 into the set H (see [25] for more information on embedding functions of this type).
Naturally, the output length of the underlying hash function should be large enough so as
to preclude collision attacks.

Additional checks in KeyGen and Sign. In contrast to earlier proposals [4, 18], we
add an additional check during the signature generation. Namely, to ensure correctness of
the scheme, we check that the absolute value of each coordinate of Ay− Ec is less than or
equal to bq/2c − L. To achieve better concrete bounds during the security reduction, we
add another check to ensure that no coefficient of the matrix S is too large. The parameter
LS is chosen such that the probability of rejecting S is smaller than 2−n.

Algorithm 10 KeyGen

Input: A.
Output: Public key T, secret key (S,E).

1: Choose entries of S ∈ Zn×n′q and E ∈ Zm×n′q from the centered discrete Gaussian
distribution with standard deviation σ.

2: If E has a row whose h largest entries sum to L or more then retry at step 1.
3: If S has a row whose h largest entries sum to LS or more then retry at step 1.
4: T← AS + E.
5: Return public key (A,T) and secret key (S,E).

46

Algorithm 11 Sign

Input: Message msg, secret key (S,E).
Output: Signature (z, c).

1: Choose y uniformly at random among B-short vectors from Znq .
2: c← H([Ay] ,msg).
3: z← y + Sc.
4: If z is not (B − U)-short then retry at step 1.
5: If Ay − Ec is not well-rounded then retry at step 1.
6: Return signature (z, c).

Algorithm 12 Verify

Input: Message msg, public key (A,T), purported signature (z, c).
Output: “Accept” or “reject”.

1: If z is not (B − U)-short then reject.
2: If H([Az− Tc] ,msg) 6= c then reject.
3: Accept.

3.4 Brief Sketch of Security Proof for TESLA

Our main theorem on the security of TESLA is as follows.

Theorem 3.4.1 (Security of TESLA). Let q, m, n, n′, h, d, B, L, LS, U , σ, λ, κ be
TESLA parameters that are convenient (according to Definition 3.8.1 in Section 3.8) and
that satisfy the bounds in table 3.1.2 If M-LWE is (t, ε)-hard then TESLA is existentially
(t′, ε′, qh, qs)-unforgeable against adaptively chosen message attacks with t′ ≈ t in (i) the
quantum random-oracle model with

ε′ < ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3
s + 2(qh + 1)

√
1

2h
(
n′

h

) , (3.1)

and in (ii) the classical random-oracle model with

ε′ < ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3
s + qh

1

2h
(
n′

h

) . (3.2)

2 It is not necessary that TESLA parameters be convenient in order to derive negligibly small upper
bounds on ε′; the definition of convenience merely facilitates a simplified statement of those bounds.

47

The proof of Theorem 3.4.1 is given in Sections 3.5, 3.6, 3.7, 3.8. In this section we
present a sketch of this proof and a selection of some intermediate results we feel are the
most significant technical contributions of the proof.

Let F be a forger that forges TESLA signatures with probability Pr [forge(A,T)]. We
build an LWE-solver S whose run time is close to that of F and whose success bias is close
to Pr [forge(A,T)]. It then follows from the presumed hardness of LWE that Pr [forge(A,T)]
must be small.

Given an LWE input (A,T), the LWE-solver S treats (A,T) as a TESLA public key;
S runs F on input (A,T) and outputs “yes” if and only if F succeeds in forging a TESLA
signature.

In order to run F , the LWE-solver S must respond in some way to F ’s quantum
queries to the hash oracle and to F ’s classical queries to the sign oracle. Our description
of S includes a procedure for responding to these queries.

That S solves LWE with success bias close to Pr [forge(A,T)] is a consequence of the
following facts:

1. For yes-instances of LWE, the probability with which S outputs “yes” is close to
Pr [forge(A,T)].

2. For no-instances of LWE, F successfully forges (and hence S outputs “yes”) with
only negligible probability.

3.4.1 Yes-Instances of LWE

We argue that S’s responses to F ’s oracle queries are indistinguishable from the responses F
would receive from real oracles, from which it follows that S reports “yes” with probability
close to Pr [forge(A,T)].

Each time S simulates a call to the sign oracle, it must “re-program” its simulated
hash oracle on one input. Because F is permitted to make quantum queries to the hash
oracle, we must show that F is unlikely to notice when a quantum random oracle has been
re-programmed.

To this end, let Y denote the set of vectors y ∈ Znq such that y is B-short and define
the following quantities for each choice of TESLA keys (A,T), (S,E):

nwr(A,E): The probability over (y, c) ∈ Y×H that Ay − Ec is not well-rounded.
coll(A,E): The maximum over all w ∈

{
[x] : x ∈ Zmq

}
of the probability over (y, c) ∈

Y×H that [Ay − Ec] = w.

48

We prove the following (cf. Proposition 3.6.3 in Section 3.6.6).

Proposition 3.4.1 (Re-Programming in TESLA, Informal Statement). The following
holds for each choice of TESLA keys (A,T), (S,E), each hash oracle H(·), and each γ > 0.

Suppose the quantum state ρH was prepared by some party D using t quantum queries to
H(·). Let H ′(·) be a hash oracle that agrees with H(·) except on a small number of randomly
chosen inputs (·,msg) for each possible message msg. Let ρH′ be the state prepared when
D uses hash oracle H ′(·) instead of H(·). Then ‖ρH′ − ρH‖Tr < γ except with probability
at most

t2

γ2

coll(A,E)

1− nwr(A,E)
(3.3)

over the choice of inputs upon which H(·) and H ′(·) differ.

We also prove bounds on nwr(A,E) and coll(A,E) that hold with high probability over
the choice of TESLA keys (A,T), (S,E).

3.4.2 No-Instances of LWE

We argue that, except with negligibly small probability over the choice of hash oracle H(·)
and LWE no-instance (A,T), a TESLA forger cannot forge a signature for (A,T) without
making an intractably large number of queries to the hash oracle.

To forge a signature for message msg a forger must find a hash input (w,msg) whose
output c = H(w,msg) has the property that there exists a (B − U)-short z ∈ Znq for
which [Az − Tc] = w. Let H(w,A,T) ⊂ H denote the set of all such c. A hash input
(w,msg) is called good for H(·),A,T if H(w,msg) ∈ H(w,A,T). (Once a good hash input
has been found, the forger must then somehow find the vector z witnessing this fact. For
our purpose, we assume that the forger gets it for free.)

For each LWE no-instance (A,T), a given hash input (w,msg) is good for H(·),A,T
with probability

#H(w,A,T)

#H
(3.4)

over the choice of hash oracle H(·). In Section 3.7 we argue that, except with negligibly
small probability over the choice of H(·), (A,T), the fraction of hash inputs that are good
is at most the expectation over LWE no-instances (A,T) of the ratio (3.4), maximized over
all w ∈

{
[x] : x ∈ Zmq

}
. We then prove the following (cf. Proposition 3.7.2 in Section 3.7).

49

Proposition 3.4.2 (Good Hash Inputs are Rare). If the TESLA parameters are convenient
(according to Definition 3.8.1 in Section 3.8) then

Ex
(A,T)

[
max
w

{
#H(w,A,T)

#H

}]
≤ 1

#H
. (3.5)

Thus, the fraction of good hash inputs is at most 1/#H except with vanishingly small
probability over the choice of hash oracle H(·) and LWE no-instance (A,T).

Since each hash input is good with a fixed probability independent of other hash inputs,
the set of all good hash inputs is a randomly selected set. Thus, the only way to discover
a good input is via search through an unstructured space. It then follows from known
lower bounds for quantum search over an unstructured space that the forger cannot find a
good hash input—and thus a TESLA forgery—using only qh quantum queries to the hash
oracle.

3.5 Overview of Security Proof

As in Section 3.4, let F be a forging algorithm that, on input a TESLA public key (A,T),
makes no more than qh quantum queries to a hash oracle H(·) and no more than qs
classical queries to a TESLA sign oracle for public key (A,T). Let Pr [forge(A,T)] denote
the probability that F produces a valid TESLA forgery. We build an LWE-solver S whose
run time is close to that of F and who solves LWE with success bias close to Pr [forge(A,T)].
It then follows from the presumed hardness of LWE that Pr [forge(A,T)] must be small.

The LWE-solver S is described in Algorithm 13. Classical queries made by F to the
sign oracle are simulated by S as specified in Simulated sign (Algorithm 14). Quantum
queries made by F to the hash oracle are simulated by S according to the construction
of Zhandry based on 2qh-wise independent functions [46]. (Alternately, if performance of
the simulator is a concern then one could instead use a quantum-resistant pseudorandom
function.)

That S solves LWE with success bias close to Pr [forge(A,T)] is a consequence of the
following facts, which are proven in subsequent sections:

Subsection 3.6: For yes-instances of LWE, the probability with which S outputs “yes”
is close to Pr [forge(A,T)].

Subsection 3.7: For no-instances of LWE, F successfully forges (and hence S outputs
“yes”) with only negligible probability.

50

Algorithm 13 LWE-solver S using a forger F .

Input: A LWE instance (A,T).
Output: “Yes” or “no”.

1: Invoke the forger F with public key (A,T).
Whenever F makes a hash or sign query, simulate that query as follows:

Classical sign queries. Execute Simulated sign (Algorithm 14).

Quantum hash queries. Apply a quantum circuit that implements a random but
fixed 2qh-wise independent function, except on inputs that have been re-
programmed by Simulated sign.

2: Eventually, F produces a purported forgery.
If that forgery is legitimate then output “yes”, otherwise output “no”.

Algorithm 14 Simulated sign

Input: Message msg, public key (A,T).
Output: Signature (z, c).

1: Choose z uniformly at random among (B − U)-short vectors from Znq .
2: Choose c ∈ H uniformly at random.
3: If Az− Tc is not well-rounded then retry at step 1.
4: Re-program the hash oracle H(·) so that H([Az− Tc],msg) = c.
5: Return (z, c).

51

3.5.1 Notation and Sizes for Various Sets of Vectors

Discussion in sections 3.6, 3.7, 3.8 refers to the following sets of integer vectors:

Y: The set of vectors y ∈ Znq such that y is B-short.
∆Y: {y − y′ : y, y′ ∈ Y}.
S: The set of vectors z ∈ Znq such that z is (B − U)-short.

∆S: {z− z′ : z, z′ ∈ S}.
H: The set of vectors c ∈ {−1, 0, 1}n

′
with exactly h nonzero entries.

∆H: {c− c′ : c, c′ ∈ H}.
W: The set

{
[w] : w ∈ Zmq

}
of integer vectors obtained from the high bits of a vector

in Zmq .
∆L:

{
x− x′ : x, x′ ∈ Zmq and [x] = [x′]

}
= [−(2d − 1), 2d − 1]m.

The sizes of some of these sets are listed below:

#Y = (2B − 1)n #∆Y = (4B − 1)n (3.6)

#S = (2(B − U)− 1)n #∆S = (4(B − U)− 1)n (3.7)

#H =

(
n′

h

)
2h (3.8)

#∆L = (2d+1 − 1)m (3.9)

The size of ∆H is computed as follows.

Lemma 3.5.1 (Size of ∆H). We have

#∆H =
h∑
k=0

h−k∑
i=0

(
n′

2i

)
22i

(
n′ − 2i

k

)
2k. (3.10)

Proof. For each k = 0, . . . , h let ∆Hk ⊂ ∆H denote the set of vectors in ∆H with ex-
actly k entries in {−2, 2} and exactly n′ − k entries in {−1, 0, 1}. Observe that #∆H =∑h

k=0 #∆Hk.

Fix k and for each i = 0, . . . , h− k let ∆Hk,i ⊂ ∆Hk denote the set of vectors in ∆Hk

with exactly 2i entries in {−1, 1}. Observe that #∆Hk =
∑h−k

i=0 #∆Hk,i.

One can count the number of elements in each ∆Hk,i as

#∆Hk,i =

(
n′

2i

)
22i

(
n′ − 2i

k

)
2k, (3.11)

from which the lemma follows.

52

3.6 Yes-Instances of LWE

In this section we establish a lower bound on the probability

Pr [S output “yes” | (A,T) yes-instance of LWE] (3.12)

in terms of Pr [forge(A,T)]. This is accomplished by proving that the simulated oracles are
indistinguishable from the real oracles.

To this end we consider an arbitrary distinguisher D who, like the forger F , makes at
most qh quantum queries to the hash oracle and at most qs classical queries to the sign
oracle. Unlike F , however, D’s goal is merely to distinguish the real oracles from the
simulated oracles.

3.6.1 Adaptively Chosen Queries

An arbitrary distinguisher could adaptively and arbitrarily interleave its hash and sign
queries. To facilitate our analysis we wish to model the distinguisher in such a way that
sign queries occur at fixed, predictable points throughout the protocol. This goal is accom-
plished by a continuous accounting method for hash queries that we describe presently.

Standard formalism specifies that a quantum oracle for H : X → Y be implemented
by a unitary channel |x〉|y〉 7→ |x〉|y + H(x)〉. We modify this formalism so that the
unitary channel for H(·) is a controlled unitary channel. Specifically, the channel acts on
an additional qubit, the state of which dictates whether the unitary channel is applied:

|off〉|x〉|y〉 7→ |off〉|x〉|y〉 (3.13)

|on〉|x〉|y〉 7→ |on〉|x〉|y +H(x)〉. (3.14)

Consider a new type of distinguisher with the following properties:

1. The distinguisher makes qhqs hash queries instead of just qh hash queries.

2. Exactly one sign query occurs after every qh hash queries.

3. For each choice of hash oracle H(·), the distinguisher’s total “query magnitude” (in
the BBBV sense — see Section 3.6.6) on query states with the control qubit set to
|on〉 over all qhqs hash queries does not exceed qh.

53

A distinguisher of this form is called a live-switch distinguisher. For later convenience,
we refer to the query magnitude on states with the control qubit set to |on〉 as the query
magnitude on the live-switch.

Intuition: a live-switch distinguisher can make “partial” queries to the hash oracle. If
its query state has only α amplitude on the live-switch then the distinguisher is “charged”
for only a a |α|2-fraction of a query.

It is clear that any ordinary distinguisher who makes qh hash queries and qs sign queries,
adaptively chosen and interleaved, could be simulated by a live-switch distinguisher. Thus,
live-switch distinguishers are at least as powerful as ordinary distinguishers, and possibly
more powerful. We will prove indistinguishability against a live-switch distinguisher, which
is more security than is strictly necessary.

The benefit of the live-switch distinguisher is that sign queries occur at fixed points
throughout the protocol — one sign query after every qh hash queries. This property allows
us to partition the interaction into qs blocks. Each block consists of qh quantum queries to
the hash oracle, followed by a single classical query to the sign oracle. We prove security
of each block and then claim security of the entire interaction inductively.

3.6.2 The Distinguisher’s State, a First Look

To begin, consider the state of D’s system immediately prior to the sign oracle query in
the first block. At this point in the interaction the real and simulated oracles are perfectly
identical — both respond to the first qh hash queries in accordance with some fixed choice
of hash oracle H(·). Let ρH denote the state of D’s system at this point in the interaction,
conditioned on H(·). The sign oracle (both real and simulated) acts as follows on D’s
system:

1. Measure the message register, resulting in outcome msg.

2. Select a signature (z, c) for message msg.

3. Prepare an output register in the classical basis state |msg〉|(z, c)〉.

These actions can be viewed as a quantum channel. If the sign oracle is a real sign oracle
then the signature (z, c) is a function of private randomness and the hash oracle H(·). In
this case, the channel is denoted Ψreal,H . If the sign oracle is a simulated sign oracle then
the signature (z, c) is a function only of private randomness. In this case, the channel is
denoted Ψsimsign.

54

Thus, the state of D’s system at the end of the first block, conditioned on the choice
of H(·), is either Ψsimsign(ρH) or Ψreal,H(ρH). We will argue that the state Ψsimsign(ρH) is
δ-close to a probabilistic mixture over re-programmed hash oracles H ′(·) of states of the
form Ψreal,H′(ρH′).

This δ-closeness is preserved by the hash queries in the second block of the interaction,
since both the real and simulated hash oracles remain consistent with H ′(·) in this block.
Let ρ2,H′ denote the state of D’s system immediately prior to the sign oracle query in the
second block. As above, we have that Ψsimsign(ρ2,H′) is δ-close to a mixture of states of the
form Ψreal,H′′(ρ2,H′′).

Continuing inductively, we see that the state of D’s system at the end of an interaction
with simulated oracles is qsδ-close to a probabilistic mixture over hash oracles of states of
D’s system at the end of an interaction with real oracles. Averaging over the choice of
initial hash oracle H(·), we then see that the simulated oracles are indistinguishable from
the real oracles.

We formalize these arguments in subsequent sections.

3.6.3 Mid-Sign

Consider the sign oracle Mid-sign of Algorithm 15. Mid-sign should be viewed as a hybrid

Algorithm 15 Mid-sign

Input: Message msg, public key (A,T), secret key (S,E).
Output: Signature (z, c).

1: Choose (y, c) ∈ Y×H uniformly at random.
2: z← y + Sc.
3: If z 6∈ S then retry at step 1.
4: If Ay − Ec is not well-rounded then retry at step 1.
5: Re-program the hash oracle H(·) so that H([Ay],msg) = c.
6: Return (z, c).

of Simulated sign (Algorithm 14) and the real sign oracle Sign (Algorithm 11).

In this section we prove that Mid-sign (Algorithm 15) and Simulated sign (Algorithm
14) are identical. This fact can be stated in terms of quantum channels as follows. Let
Ψmidsign denote the channel described by Algorithm 15. The claim of this section is that
Ψmidsign = Ψsimsign.

55

To this end, define the following sets for each choice of c ∈ H:

goodsimsign(c) := {z ∈ S : Az− Tc is well-rounded} (3.15)

goodmidsign(c) := {y ∈ Y : y + Sc ∈ S and Az− Tc is well-rounded} . (3.16)

We begin with a simple observation on these sets.

Lemma 3.6.1. The mapping f : y 7→ y+Sc is a bijection from goodmidsign(c) to goodsimsign(c)
with inverse f−1 : z 7→ z− Sc.

Proof. It is clear that f−1f is the identity function on goodmidsign(c). It remains to prove
the following:

1. For each y ∈ goodmidsign(c) it holds that f(y) ∈ goodsimsign(c).

2. For each z ∈ goodsimsign(c) it holds that f−1(z) ∈ goodmidsign(c).

To prove item 1 we must show (i) f(y) ∈ S, and (ii) Af(y) − Tc is well-rounded. Both
items are immediate from the definitions of goodmidsign(c) and f .

To prove item 2 we must show (i) f−1(z) ∈ Y, and (ii) Af−1(z) − Ec is well-rounded.
Item (i) follows from the fact that z is (B − U)-short and Sc is U -short. Item (ii) is
immediate from the definitions of goodsimsign(c) and f−1.

We now prove this section’s claim.

Proposition 3.6.1 (Equivalence of Mid-sign and Simulated sign). The observable be-
haviour of Mid-sign (Algorithm 15) is statistically identical to that of Simulated sign (Al-
gorithm 14). In terms of quantum channels, we have Ψmidsign = Ψsimsign.

Proof. The observable effects of both the Simulated sign and Mid-sign algorithms can
be summarized as follows. Given a message msg as input, the algorithm selects (i) a
signature (zmsg, cmsg) as output, and (ii) a vector wmsg inducing a hash input (wmsg,msg)
upon which the hash oracle is re-programmed. Thus, to establish statistical equivalence
betwen Simulated sign and Mid-sign it suffices to prove that, for each choice of message
msg, the joint distribution over (zmsg, cmsg,wmsg) induced by each algorithm is identical.

Fix an arbitrary message msg and let (Zsimsign, Csimsign,Wsimsign), (Zmidsign, Cmidsign,Wmidsign)
denote the joint random variables representing the observable behaviour of Simulated sign

56

and Mid-sign, respectively, on input message msg. We argue that the joint random vari-
ables (Zsimsign, Csimsign), (Zmidsign, Cmidsign) are identical. The proposition will then follow
from the observation that the hash input w to be re-programmed is specified in both algo-
rithms by the same deterministic function of (z, c). Specifically, in Simulated sign we have
w = [Az − Tc], whereas in Mid-sign we have w = [Ay]. Since Ay − Ec is well-rounded, we
have

w = [Ay] = [Ay − Ec] = [A(y + Sc)− Tc] = [Az− Tc] (3.17)

as desired.

To begin, we argue that

Pr [Zmidsign = z | Cmidsign = c] = Pr [Zsimsign = z | Csimsign = c] (3.18)

for each choice of c ∈ H. In Simulated sign, conditioned on a choice of c, the vector z
is chosen uniformly among those z ∈ goodsimsign(c). In Mid-sign, conditioned on a choice
of c, the vector y is chosen uniformly among those y ∈ goodmidsign(c) and the vector z is
computed as z← y + Sc. It follows from Lemma 3.6.1 that z is uniform on goodsimsign(c),
as desired.

Next, we argue that

Pr [Cmidsign = c] = Pr [Csimsign = c] (3.19)

for each choice of c ∈ H, from which it follows that the joint random variables (Zsimsign, Csimsign),
(Zmidsign, Cmidsign) are identical. It follows from Lemma 3.6.1 that # goodmidsign(c) =
goodsimsign(c) for each c ∈ H. Thus,

Pr [Cmidsign = c] =
goodmidsign(c)∑
c′ # goodmidsign(c′)

=
goodsimsign(c)∑
c′ # goodsimsign(c′)

= Pr [Csimsign = c]

(3.20)
as desired.

3.6.4 Consistent-Mid-Sign

Broadly speaking, Mid-sign (Algorithm 15) behaves like Sign (Algorithm 11) except that c
is selected freshly at random instead of according to some hash oracle H(·). It is tempting
to claim that the only difference between Mid-sign and Sign is that repeated invocations of
Sign always use the same hash oracle H(·), whereas each invocation of Mid-sign switches

57

to another hash oracle H ′(·) that differs from H(·) on a small number of randomly selected
inputs.

However, there is a small probability that the random choices in a given execution of
Mid-sign are not consistent with any hash oracle. To understand how such an inconsistency
can occur, observe that each candidate (y, c) selected by Mid-sign induces an associated
claim about the underlying hash oracle: that H([Ay],msg) = c. Suppose Mid-sign rejects
one candidate pair (y, c) because Ay−Ec is not well-rounded before finally accepting another
candidate pair (y′, c′). If [Ay] = [Ay′] but c 6= c′ then these two candidates represent
conflicting claims about the underlying hash oracle.

To address this problem we present a new sign oracle Consistent-mid-sign in Algorithm
16 and argue that its observable behaviour is negligibly close to that of Mid-sign (Algorithm
15). This fact can be stated in terms of quantum channels as follows. Let Ψcmidsign denote
the channel described by Algorithm 16. The claim of this section is that Ψcmidsign ≈ Ψmidsign,
meaning that Ψcmidsign(ρ) ≈ Ψmidsign(ρ) for all input states ρ.

Algorithm 16 Consistent-mid-sign

Input: Message msg, public key (A,T), secret key (S,E).
Output: Signature (z, c).

1: Initialize the dictionary A ⊂ (W 7→ H) to the empty dictionary A = ∅.
2: Choose y ∈ Y uniformly at random.
3: if [Ay] ∈ A then
4: c← A[[Ay]]
5: else
6: choose c ∈ H uniformly at random
7: add A[[Ay]]← c to the dictionary A.
8: end if
9: z← y + Sc.

10: If z 6∈ S then retry at step 2.
11: If Ay − Ec is not well-rounded then retry at step 2.
12: Re-program the hash oracle H(·) so that H([Ay],msg) = c.
13: Return (z, c).

The only difference between Consistent-mid-sign and Mid-sign is that each invocation
of Consistent-mid-sign remembers the random candidate pairs it selected throughout the
invocation and alters them as needed so as to maintain consistency with a hash oracle.
Thus, in order to prove Ψcmidsign ≈ Ψmidsign it suffices to prove that only a negligibly small

58

fraction of the random choices made by Mid-sign lead to an inconsistency that is corrected
in Consistent-mid-sign.

A sequence r = {(yi, ci)}∞i=1 of random choices made by Mid-sign leads to an incon-
sistently derived signature only if there exists k ≥ 2 such that the following conditions
hold:

1. Ay1 − Ec1, . . . ,Ayk−1 − Eck−1 are not well-rounded.

2. Ayk − Eck is well-rounded.

3. [Ayk] ∈ {[Ay1], . . . , [Ayk−1]}.

Consider the event that a random sequence r meets conditions 1–3 for some choice of k ≥ 2,
and let inconsistent(r) denote the infinite disjunction of these events over all k ≥ 2.3 We
seek an upper bound on the probability of event inconsistent(r) over the choice of r. To
this end, define the following quantities for each choice of TESLA keys (A,T), (S,E):

nwr(A,E): The probability over (y, c) ∈ Y×H that Ay − Ec is not well-rounded.
coll(A,E): The maximum over all w ∈ W of the probability over (y, c) ∈ Y × H that

[Ay − Ec] = w.

In symbols, these quantities are written

nwr(A,E) := Pr
(y,c)∈Y×H

[Ay − Ec not well-rounded] (3.21)

coll(A,E) := max
w∈W

{
Pr

(y,c)∈Y×H
[[Ay − Ec] = w]

}
(3.22)

In Sections 3.6.8 and 3.6.9 we prove bounds on these quantities that hold with high prob-
ability over the choice of TESLA keys (A,T), (S,E).

Broadly speaking, nwr(A,E) should be viewed as a constant that’s noticeably smaller
than 1 — for example, nwr(A,E) = 1/2. By contrast coll(A,E) is negligibly small. We
prove the following.

3In item 3 it suffices to look for a collision only between [Ayk] and any previous [Ayi]; we don’t need to
look for a collision among arbitrary [Ayi] = [Ayj]. This is because such a collision among the bad entries
is statistically identical to as if ci = cj . Namely, [Ayi] is rejected regardless of whether ci = cj . If however,
cj changes [Ayi] from bad to good then that difference will be detected at k = j. Thus, there’s no need to
check for this when k > j.

59

Proposition 3.6.2 (Probability of inconsistency). For each choice of TESLA keys (A,T),
(S,E) it holds that

Pr
r

[inconsistent(r)] ≤ coll(A,E)
nwr(A,E)

(1− nwr(A,E))2 . (3.23)

Proof. For each k ≥ 2 the probability with which events 1 and 2 hold is

nwr(A,E)k−1(1− nwr(A,E)). (3.24)

Conditioned on those events, the probability of event 3 is

Pr
(y1,c1),...,(yk,ck) 6∈WR(A,E)

(yk,ck)∈WR(A,E)

[
k−1∨
i=1

[Ayk] = [Ayi]

]
(3.25)

≤ (k − 1) max
w∈W

{
Pr

(y,c)∈WR(A,E)
[[Ay] = w]

}
(3.26)

≤ (k − 1)

max
w∈W

{
Pr

(y,c)∈Y×H
[[Ay − Ec] = w]

}
Pr

(y,c)∈Y×H
[Ay − Ec is well-rounded]

(3.27)

= (k − 1)
coll(A,E)

1− nwr(A,E)
. (3.28)

(Here we have used the notation (y, c) ∈WR(A,E) to mean that Ay− Ec is well-rounded.)
Thus,

Pr
r

[inconsistent(r)] ≤
∞∑
k=2

nwr(A,E)k−1(1− nwr(A,E))(k − 1)
coll(A,E)

1− nwr(A,E)
(3.29)

= coll(A,E)
∞∑
k=2

(k − 1) nwr(A,E)k−1. (3.30)

The proposition then follows from the formula for the derivative of a geometric progression.

An immediate corollary of Proposition 3.6.2 is that

‖Ψcmidsign(ρ)−Ψmidsign(ρ)‖Tr < 2 Pr
r

[inconsistent(r)] (3.31)

for all states ρ.

60

3.6.5 Consistent-Mid-Sign is a Mixture of Real Sign Oracles

In the previous section we introduced the sign oracle Consistent-mid-sign (Algorithm 16)
and claimed that it behaves exactly like Sign (Algorithm 11) with the following exception:
repeated invocations of Sign always use the same hash oracle H(·), whereas each invocation
of Consistent-mid-sign switches to another hash oracle H ′(·) that differs from H(·) on a
small fraction of randomly selected inputs.

Let us formalize this claim. Unfortunately, we must introduce some cumbersome nota-
tion. For each message msg define the symbols

ymsg: A sequence {ymsg,i}∞i=1 of elements drawn randomly from Y.
cmsg(ymsg): A sequence {cmsg,i}∞i=1 of elements drawn randomly from H subject to the

constraint that if [Aymsg,i] = [Aymsg,j] then cmsg,i = cmsg,j.

The output of Consistent-mid-sign on input msg is a deterministic function of the ran-
dom data ymsg, cmsg(ymsg). Specifically, let k(msg) denote the minimum index for which
Aymsg,k(msg) − Ecmsg,k(msg) is well-rounded. Then Consistent-mid-sign outputs the signature
(ymsg,k(msg) + Scmsg,k(msg), cmsg,k(msg)). For shorthand, write τmsg = (ymsg, cmsg(ymsg)).

Let y = {ymsg}msg and c(y) = {cmsg(ymsg)}msg denote selections of random data for
each possible message msg. For shorthand, write τ = (y, c(y)) so that the behaviour of
Consistent-mid-sign on all inputs is completely specified by τ .

For each choice of hash oracle H(·) and random data τ consider the hash oracle Hτ (·)
that agrees with H(·) everywhere except that Hτ ([Aymsg,i],msg) = cmsg,i for each message
msg and each i = 1, . . . , k(msg). In other words,

Hτ (w,msg) =

{
cmsg,i if w = [Aymsg,i] for some i ∈ {1, . . . , k(msg)}
H(w,msg) otherwise

. (3.32)

The behaviour of Sign (Algorithm 11) with hash oracle Hτ (·) on all inputs is completely
specified by y and Hτ (·). Moreover, the behaviour of Sign with hash oracle Hτ (·) and
random data y is identical to the behaviour of Consistent-mid-sign with random data τ .

For each choice of random data τ define the following quantum channels:

Ψcmidsign,τ : The quantum channel representing the actions of Consistent-mid-sign (Al-
gorithm 16) with randomness τ .

Ψreal,Hτ ,y: The quantum channel representing the actions of Sign (Algorithm 11) with
hash oracle Hτ (·) and randomness y.

61

The previous observations establish

Ψcmidsign,τ = Ψreal,Hτ ,y (3.33)

for each choice of τ . Because Ψcmidsign is simply a uniform mixture of channels Ψcmidsign,τ ,
it follows that4

Ψcmidsign =
∑
τ

Pr [τ] Ψreal,Hτ ,y. (3.34)

3.6.6 Re-Programming of Hash Oracles is Hard to Detect

Thus far we have proved that Consistent-mid-sign behaves like a mixture of real sign oracles
when viewed in isolation. That is, for all states ρ we have

Ψcmidsign(ρ) =
∑
τ

Pr [τ] Ψreal,Hτ ,y(ρ). (3.35)

But we must extend this proof so that it holds even in the presence of independent in-
formation on the underlying hash oracle. In particular, for any hash oracle H(·) and any
state ρH prepared using only a tractable number of queries to H(·) we must show that

Ψcmidsign(ρH) ≈
∑
τ

Pr [τ] Ψreal,Hτ ,y(ρHτ). (3.36)

To establish this claim it suffices to show that ρH ≈ ρHτ with high probability over the
choice of τ .

This claim is proven by an application of the BBBV Theorem [8, Theorem 3.3], so let
us introduce the formalism necessary to state this theorem. Suppose ρH was prepared by
some party R using t queries to some hash oracle H : X → Y . For each i = 1, . . . , t let ρi
denote the state of R’s system immediately prior to the ith query to H(·). For each hash
input x ∈ X let

QR(H)(x) :=
t∑
i=1

Tr (|x〉〈x|ρi) (3.37)

denote the query magnitude on input x for R’s interaction with hash oracle H(·). The
BBBV Theorem (or rather, a consequence of it) is as follows.

4 Strictly speaking, Pr [τ] is zero because it represents the uniform distribution over a countably infinite
set. We should switch to a probability measure on τ and use an integral instead of a summation over τ .

62

Theorem 3.6.1 ([8, Theorem 3.3]). The following holds for each ε > 0. Suppose ρH was
prepared by some party R using t queries to some hash oracle H : X → Y . Let H ′(·) be
a hash oracle that agrees with H(·) except on a subset X ′ ⊂ X of inputs with the property
that ∑

x∈X′
QR(H)(x) ≤ ε2

t
. (3.38)

Let ρH′ be the state prepared when R uses hash oracle H ′(·) instead of H(·). It holds that
‖ρH′ − ρH‖Tr ≤ ε.

We are now ready to prove the claim of this section.

Proposition 3.6.3 (Re-Programming in TESLA). The following holds for each choice of
TESLA keys (A,T), (S,E) and each δ > 0.

Suppose ρH was prepared by some party D using t queries to hash oracle H(·). Let τ be
random data and let Hτ (·) be a hash oracle derived from H(·) and τ as described in Section
3.6.5. Let ρH′ be the state prepared when D uses hash oracle H ′(·) instead of H(·).

Then ‖ρHτ − ρH‖Tr < δ except with probability at most

t2

δ2

coll(A,E)

1− nwr(A,E)
(3.39)

over the choice of τ .

Proof. By Theorem 3.6.1 it suffices to prove that the quantity

∑
msg

k(msg)∑
i=1

QD(H) ([Aymsg,i],msg) (3.40)

is at most δ2/t with high probability over the choice of τ . To this end, for each message
msg let

Xmsg = {([Ay],msg) : y ∈ Y} (3.41)

denote the set of hash inputs for message msg that are candidates for re-programming, and
let

tmsg =
∑

x∈Xmsg

QD(H)(x) (3.42)

denote the total query magnitude for message msg. Observe that t =
∑

msg tmsg.

63

The quantity (3.40) is maximized if for each message msg all the query magnitude tmsg

alloted to message msg is placed on the element w ∈ W most likely to collide with [Ay]
when y ∈ Y is chosen uniformly at random. In this case, the quantity (3.40) is at most∑

msg

k(msg)tmsg coll(A,E). (3.43)

By Markov’s inequality we have

Pr
τ

[∑
msg

k(msg)tmsg coll(A,E) ≥ δ2

t

]
≤ t

δ2
Ex
τ

[∑
msg

k(msg)tmsg coll(A,E)

]
(3.44)

=
t

δ2
coll(A,E)

∑
msg

tmsg Ex
τmsg

[k(msg)] (3.45)

Thus, it suffices to bound the expected number k(msg) of entries one must view from a
given list τmsg before encountering an entry (y, c) for which Ay − Ec is well-rounded. We
have

Ex
τmsg

[k(msg)] =
∞∑
k=1

k nwr(A,E)k−1(1− nwr(A,E)) =
1

1− nwr(A,E)
(3.46)

where the final equality follows from the formula for the derivative of a geometric progres-
sion. The proposition follows from

∑
msg tmsg = t.

3.6.7 The Distinguisher’s State, Revisited

Recall from Section 3.6.2 the state ρH , which is the state of D’s system immediately prior to
the sign query in the first block. Let κ1 ≤ qh denote the query magnitude on the live-switch
for the hash oracle in the first block. We proved the following in previous sections:

Ψsimsign(ρH) = Ψmidsign(ρH) (3.47)

‖Ψmidsign(ρH)−Ψcmidsign(ρH)‖Tr < 2 coll(A,E)
nwr(A,E)

(1− nwr(A,E))2
(3.48)

Ψcmidsign(ρH) =
∑
τ

Pr [τ] Ψreal,Hτ ,y(ρH) (3.49)

Pr
τ

[‖ρHτ − ρH‖Tr > ε] <
κ2

1

ε2
coll(A,E)

1− nwr(A,E)
(3.50)

64

We conclude that ∥∥∥∥∥Ψsimsign(ρH)−
∑
τ

Pr [τ] Ψreal,Hτ ,y(ρHτ)

∥∥∥∥∥
Tr

< δ(κ1) (3.51)

where5

δ(κ) := 2 coll(A,E)
nwr(A,E)

(1− nwr(A,E))2
+ ε+

κ2

ε2
coll(A,E)

1− nwr(A,E)
. (3.52)

That is, the state of D’s system at the end of the first block of an interaction with simulated
oracles is δ(κ1)-close to a probabilistic mixture over states of D’s system, each of which
could have been obtained from an interaction with real hash oracles.

As suggested in Section 3.6.2, we continue inductively throughout the qs blocks. As with
κ1, let κ2, . . . , κqs denote the query magnitude on the live-switch for blocks two through
qs. Define

δyes =

qs∑
i=1

δ(κi) (3.53)

and observe that the state of D’s system at the end of an interaction with simulated oracles
is δyes-close to a probabilistic mixture over states obtained from an interaction with real
hash oracles.

Let us compute an upper bound on δyes. Because each block includes information from
hash queries in previous blocks plus one additional hash query learned from the sign oracle,
we have

κi+1 ≥ κi + 1. (3.54)

Because D is permitted at most qh total query magnitude on the live-switch for its hash
queries, we have

κi ≤ qh + i− 1. (3.55)

It is clear that δyes is maximized when κ1 = qh, which corresponds to a distinguisher who
makes all qh hash queries before making any of the qs sign queries. Taking a loose bound
qh + qs for each κi, we obtain

δyes < qs

(
2 coll(A,E)

nwr(A,E)

(1− nwr(A,E))2
+ ε+

(qh + qs)
2

ε2
coll(A,E)

1− nwr(A,E)

)
(3.56)

5 The final two terms of (3.52) are due to the fact that a κ2

ε2
nwr(A,E)

(1−nwr(A,E))2 -fraction of τ lead to a hash oracle

Hτ (·) for which ‖ρH − ρHτ ‖Tr > ε, in which case we assume that ρH , ρHτ are perfectly distinguishable.
For all other τ it holds that ρH , ρHτ

are ε-close.

65

Finally, because the real and simulated oracles are δyes-close, it follows that

Pr [S output “yes” | (A,T) yes-instance of LWE] > Pr [forge(A,T)]− δyes (3.57)

as desired.

3.6.8 Probability of Well-Roundedness

Let φ denote the probability that a random vector in Zmq is not well-rounded:

φ := Pr
x∈Zmq

[x not well-rounded] ≤ m

(
2L

2d
+

2L

q

)
. (3.58)

The quantity φ is a function of the Tesla parameters q,m, d, L. It is a constant that’s
noticeably smaller than 1.

Recall the definition of nwr(A,E): for TESLA keys (A,T), (S,E) define nwr(A,E) as
the probability over (y, c) ∈ Y×H that Ay − Ec is not well-rounded:

nwr(A,E) := Pr
(y,c)∈Y×H

[Ay − Ec not well-rounded] . (3.59)

We prove the following.

Lemma 3.6.2 (Probability of well-roundedness). The following holds for all K > 0. With
probability 1− 1/K over the choice of TESLA keys (A,T), (S,E) it holds that

nwr(A,E) ≤ φ+

√
K(q + 1)

#Y
. (3.60)

Proof. Our strategy is to bound the variance of nwr(A,E) over the choice of TESLA keys
(A,T), (S,E) and use Chebyshev’s inequality. By definition,

Var
(A,E)

[nwr(A,E)] = Ex
(A,E)

[
nwr(A,E)2

]
− Ex

(A,E)
[nwr(A,E)]2 (3.61)

so it suffices to compute the expectation of nwr(A,E) and an upper bound on the expec-
tation of nwr(A,E)2.

66

We begin by computing the expectation of nwr(A,E). We have

Ex
(A,E)

[nwr(A,E)] (3.62)

=
∑
(A,E)

Pr[(A,E)]
1

#Y#H
∑
(y,c)

bool [Ay − Ec not well-rounded] (3.63)

=
1

#Y#H
∑
(y,c)

∑
(A,E)

Pr[(A,E)] bool [Ay − Ec not well-rounded] (3.64)

=
1

#Y#H
∑
(y,c)

Pr
(A,E)

[Ay − Ec not well-rounded] . (3.65)

(Here we have used the notation bool [s] for any statement s that can be either true or
false to mean that bool [s] = 1 if the statement is true and bool [s] = 0 otherwise.) So we
need to bound the probability

Pr
(A,E)

[Ay − Ec not well-rounded] (3.66)

for each fixed choice of (y, c) ∈ Y×H. There are two cases:

1. If y 6= 0 then Ay is a uniformly random vector in Zmq . So too is Ay − Ec, since c is
fixed and E is independent of A. In this case, the probability (3.66) equals φ.

2. If y = 0 then the probability (3.66) equals 0, since −Ec is well-rounded for all E, c.

Case 2 occurs with probability 1/#Y, from which it follows that

Ex
(A,E)

[nwr(A,E)] =

(
1− 1

#Y

)
φ. (3.67)

Next, we compute an upper bound on the expectation of nwr(A,E)2. Similar to the
above, we have

Ex
(A,E)

[
nwr(A,E)2

]
=

1

(#Y#H)2

∑
(y,c),(y′,c′)

Pr
(A,E)

[Ay − Ec,Ay′ − Ec′ not well rounded] (3.68)

and so we need to bound the probability

Pr
(A,E)

[Ay − Ec,Ay′ − Ec′ not well-rounded] (3.69)

for each fixed choice of (y, c), (y′, c′) ∈ Y×H. There are two cases:

67

1. If y, y′ are nonzero and linearly independent then Ay,Ay′ are uniformly random vec-
tors in Zmq ; so too are Ay − Ec,Ay′ − Ec′. In this case, the probability (3.69) equals
φ2.

2. If y, y′ are linearly dependent then the probability (3.69) is at most 1.

Case 2 occurs with probability at most (q + 1)/#Y, from which it follows that

Ex
(A,E)

[
nwr(A,E)2

]
≤
(

1− q + 1

#Y

)
φ2 +

q + 1

#Y
(3.70)

Combining these bounds on the expectation of nwr(A,E) and nwr(A,E)2 (and employing
the inequality 1− (q + 1)/#Y < (1− 1/#Y)2), we obtain the inequality

Var
(A,E)

[nwr(A,E)] ≤ q + 1

#Y
. (3.71)

By Chebyshev’s inequality it holds that

Pr
(A,E)

[∣∣∣∣nwr(A,E)− Ex
(A,E)

[nwr(A,E)]

∣∣∣∣ ≥
√
K(q + 1)

#Y

]
≤ 1

K
. (3.72)

The lemma follows from the expression (3.67) for the expectation of nwr(A,E).

3.6.9 Probability of Repetition

Let ψ denote the probability that a random vector x ∈ Zmq is in ∆L:

ψ := Pr
x∈Zmq

[x ∈ ∆L] ≤
(

2d+1

q

)m
. (3.73)

The quantity ψ is a function of the Tesla parameters q,m, d. It is negligibly small.

Recall the definition of coll(A,E): for TESLA keys (A,T), (S,E) define coll(A,E) as the
maximum over all w ∈W of the probability over (y, c) ∈ Y×H that [Ay − Ec] = w:

coll(A,E) := max
w∈W

{
Pr

(y,c)∈Y×H
[[Ay − Ec] = w]

}
. (3.74)

We prove the following.

68

Lemma 3.6.3 (Probability of repetition). The following holds for all K > 0. With prob-
ability 1− 1/K over the choice of TESLA keys (A,T), (S,E) it holds that

coll(A,E) ≤ Kψ. (3.75)

Before proving Lemma 3.6.3 let us introduce some notation. Define the set

G(A,E) := {(y, c) ∈ ∆Y×∆H : Ay − Ec ∈ ∆L} . (3.76)

Some basic facts about the set G(A,E) are listed below in Lemma 3.6.4.

Proof of Lemma 3.6.3. Let coll′(A,E) denote the probability over (y, c) ∈ ∆Y ×∆H that
(y, c) ∈ G(A,E):

coll′(A,E) := Pr
(y,c)∈∆Y×∆H

[(y, c) ∈ G(A,E)] . (3.77)

It follows from Lemma 3.6.4 that coll′(A,E) ≥ coll(A,E). Thus, it suffices to prove the
lemma with coll′(A,E) in place of coll(A,E).

Observe that coll′(A,E) ≥ 1/#∆Y, which follows from the fact that #G(A,E) ≥ #∆H
(Lemma 3.6.4). Our strategy is to bound the expectation of the positive random vari-
able coll′(A,E) − 1/#∆Y over the choice of TESLA keys (A,T), (S,E) and use Markov’s
inequality. To this end let us compute the expectation of coll′(A,E):

Ex
(A,E)

[coll′(A,E)] =
∑
(A,E)

Pr [(A,E)]
1

#∆S#∆H
∑
(y,c)

bool [(y, c) ∈ G(A,E)] (3.78)

=
1

#∆S#∆H
∑
(y,c)

∑
(A,E)

Pr [(A,E)] bool [(y, c) ∈ G(A,E)] (3.79)

=
1

#∆S#∆H
∑
(y,c)

Pr
(A,E)

[(y, c) ∈ G(A,E)] . (3.80)

So we need to bound the probability

Pr
(A,E)

[(y, c) ∈ G(A,E)] (3.81)

for each fixed choice of (y, c) ∈ ∆Y×∆H. There are two cases:

1. If y 6= 0 then Ay is a uniformly random vector in Zmq . So too is Ay − Ec, since c is
fixed and E is independent of A. In this case, the probability (3.81) is exactly ψ.

69

2. If y = 0 then the probability (3.81) is exactly 1.

Case 2 occurs with probability exactly 1/#∆Y over the choice of (y, c). It follows that

Ex
(A,E)

[coll′(A,E)] =

(
1− 1

#∆Y

)
ψ +

1

#∆Y
. (3.82)

Then by Markov’s inequality we have

Pr
(A,E)

[
coll′(A,E) ≥ K

(
1− 1

#∆Y

)
ψ

]
≤ 1

K
. (3.83)

That is, with probability at least 1− 1/K over the choice of TESLA keys (A,T), (S,E) it
holds that

coll′(A,E) ≤ K

(
1− 1

#∆Y

)
ψ (3.84)

from which the lemma follows.

Lemma 3.6.4. For all TESLA keys (A,T), (S,E) and all w ∈W it holds that

#G(A,E) ≥ #∆H (3.85)

#G(A,E) ≥ # {(y, c) ∈ Y×H : [Ay − Ec] = w} (3.86)

Proof. The inequality (3.85) is straightforward: For each c, c′ ∈ H we have [Ec] = [Ec′] =
[0], from which it follows that (0, c− c′) ∈ G(A,E).

It remains to prove the inequality (3.86). Let (y, c), (y′, c′) be elements of Y × H with
[Ay − Ec] = [Ay′ − Ec′] = w. We claim that (y − y′, c − c′) is in G(A,E). It is clear that
y − y′ ∈ ∆Y and c− c′ ∈ ∆H. It remains to verify A(y − y′)− E(c− c′) ∈ ∆L. We have

A(y − y′)− E(c− c′) = Ay − Ec− (Ay′ − Ec′). (3.87)

Since Ay− Ec and Ay′ − Ec′ have the same high bits, it must be that A(y− y′)− E(c− c′)
is the difference of two vectors from [−(2d−1 − 1), 2d−1]m, from which it follows that A(y−
y′)− E(c− c′) ∈ ∆L.

If (y1, c1), . . . , (yk, ck) are distinct elements of Y × H with [Ayi − Eci] = w for each
i = 1, . . . , k then (0, 0), (y1 − y2, c1 − c2), . . . , (y1 − yk, c1 − ck) must be distinct elements
of G(A,E)6. We have thus listed k distinct elements of G(A,E), from which the lemma
follows.

6 By contrast with no-instances, we cannot guarantee that the negations are distinct.

70

3.7 No-Instances of LWE

In this section we prove that the probability

Pr [S output “yes” | (A,T) no-instance of LWE] (3.88)

is small. Our strategy is to identify a correspondence between valid message-signature
pairs and “good” inputs to the hash oracle. We then argue that, with high probability
over the choice of LWE no-instance (A,T) and hash oracle H(·), the number of good inputs
is a very small fraction of the total number of inputs.

Moreover, whether a given input is good is determined solely by its corresponding
output from the hash oracle, implying that the only way to discover good inputs is to
perform a search through an unstructured space.

Thus, a computationally bounded forger cannot expect to find good input (and hence a
valid forgery), even with quantum access to the random oracle. This argument establishes
the claim that the LWE-solver S outputs “yes” only with small probability, as desired.

3.7.1 Correspondence Between Valid Signatures and Good Hash
Inputs

Let w ∈ W, and let msg be an arbitrary message. For any fixed choice of random oracle
H(·) and LWE no-instance (A,T) the hash input (w,msg) is called good for H(·),A,T if
there exists z ∈ S with

[Az− TH(w,msg)] = w. (3.89)

Proposition 3.7.1 (Correspondence between valid signatures and good hash inputs). If
(msg, (z, c)) is a valid message-signature pair for public key (A,T) and hash oracle H(·)
then ([Az− Tc],msg) is good for H(·),A,T.

Proof. Write w = [Az− Tc]. Because (z, c) is a valid signature for msg we have

H(w,msg) = H ([Az− Tc],msg) = c. (3.90)

Then
[Az− TH(w,msg)] = [Az− Tc] = w (3.91)

as desired.

71

A corollary of Proposition 3.7.1 is that the ability to find a message-signature pair
(msg, (z, c)) that is valid for public key (A,T) using qh classical or quantum queries to H(·)
implies the ability to find a hash input (w,msg) that is good for H(·),A,T using the same
number of classical or quantum queries to H(·).

3.7.2 The Fraction of Hood Hash Inputs

We wish to bound the probability over hash oracles H(·) and LWE no-instances (A,T) that
a non-negligible fraction of hash inputs (w,msg) are good. To this end, define the sets

M := {(w,msg) : w ∈W,msg is a message} (3.92)

M(H,A,T) := {(w,msg) ∈M : (w,msg) is good for H(·),A,T} (3.93)

Discussion is somewhat complicated by the fact that there is an infinite number messages,
and hence M and M(H,A,T) are infinite sets. For ease of exposition we presume a fixed,
large upper bound such as 22λ on the size of M. After all, no computationally bounded
forger could possibly query the hash oracle on inputs whose bit length exceeds 2λ. Under
this presumption, M is a finite set and so #M is a positive integer. The ratio

#M(H,A,T)

#M
(3.94)

is the fraction of inputs that are good.

Our goal is to show that the ratio (3.94) is negligibly small with high probability over
the choice of H(·),A,T. To this end, for each message (w,msg) ∈ M define the boolean
random variable

X(w,msg) =

{
1 if (w,msg) is good for H(·),A,T
0 otherwise

(3.95)

and observe
#M(H,A,T)

#M
=

1

#M
∑

(w,msg)∈M

X(w,msg), (3.96)

which is an average over boolean random variables. Moreover, the random variables
X(w,msg) are independent and so we may apply Hoeffding bounds to obtain

Pr
H,(A,T)

[
#M(H,A,T)

#M
− Ex

H,(A,T)

[
#M(H,A,T)

#M

]
≥ δ

]
≤ exp

(
−2#Mδ2

)
. (3.97)

72

Because #M is very large relative to other TESLA parameters, we may choose δ so small
that it can safely be assumed to equal zero. For example, if #M = 22λ then the probability
(3.97) is negligibly small even when δ is as small as 2−2λ−2

. Thus, the ratio (3.94) is almost
certain to be very close to its expecation

Ex
H,(A,T)

[
#M(H,A,T)

#M

]
. (3.98)

This expectation equals
1

#M
∑

(w,msg)∈M

Ex
H,(A,T)

[
X(w,msg)

]
(3.99)

and by definition,

Ex
H,(A,T)

[
X(w,msg)

]
= Pr

H,(A,T)
[(w,msg) is good for H(·),A,T] . (3.100)

It remains to bound this probability for each hash input (w,msg).

3.7.3 Good Hash Inputs are Rare

For each choice of w ∈W and LWE no-instance (A,T) we define the set H(w,A,T) ⊂ H as

H(w,A,T) := {c ∈ H | ∃z ∈ S : [Az− Tc] = w} . (3.101)

Observe that a hash input (w,msg) is good for H(·),A,T if and only if H(w,msg) ∈
H(w,A,T). Thus,

Pr
H,(A,T)

[(w,msg) is good for H(·),A,T] = Ex
(A,T)

[
#H(w,A,T)

#H

]
. (3.102)

We prove the following.

Proposition 3.7.2 (Good Hash Inputs are Rare). For all w ∈W it holds that

Ex
(A,T)

[
max
w∈W

{
#H(w,A,T)

#H

}]
≤ 1

2#H

(
1 +

#∆H#∆S#∆L
qm

)
. (3.103)

Proof. Define the set

D(A,T) := {b ∈ ∆H : ∃y ∈ ∆S with Ay − Tb ∈ ∆L} . (3.104)

73

In Lemma 3.7.1 below we prove

#H(w,A,T) ≤ #D(A,T) + 1

2
(3.105)

for all w ∈W. Thus, it suffices to bound the expectation

Ex
(A,T)

[
#D(A,T) + 1

2#H

]
=

1

2#H

(
1 + Ex

(A,T)
[#D(A,T)]

)
. (3.106)

We have

Ex
(A,T)

[#D(A,T)] =
1

#(A,T)

∑
(A,T)

{b ∈ ∆H : ∃y ∈ ∆S with Ay − Tb ∈ ∆L} (3.107)

=
1

#(A,T)

∑
(A,T)

∑
b∈∆H

bool [∃y ∈ ∆S with Ay − Tb ∈ ∆L] (3.108)

≤ 1

#(A,T)

∑
(A,T)

∑
b∈∆H

∑
y∈∆S

bool [Ay − Tb ∈ ∆L] (3.109)

=
∑
b∈∆H

∑
y∈∆S

1

#(A,T)

∑
(A,T)

bool [Ay − Tb ∈ ∆L] (3.110)

=
∑
b∈∆H

∑
y∈∆S

Pr
(A,T)

[Ay − Tb ∈ ∆L] . (3.111)

For each fixed choice of y ∈ ∆S, b ∈ ∆H, if A,T are uniformly random matrices then Ay−Tb
is a uniformly random vector from Zmq . Thus, the probability Pr(A,T) [Ay − Tb ∈ ∆L] is
simply the probability that a random vector lands in ∆L. That is,

Pr
(A,T)

[Ay − Tb ∈ ∆L] =
#∆L
qm

. (3.112)

Thus, the expectation becomes

Ex
(A,T)

[#D(A,T)] ≤
∑
b∈∆H

∑
y∈∆S

#∆L
qm

=
#∆H#∆S#∆L

qm
(3.113)

as desired.

Lemma 3.7.1. Let D(A,T) be as defined in (3.104). For all LWE no-instances (A,T) and
all w ∈W it holds that

#H(w,A,T) ≤ #D(A,T) + 1

2
. (3.114)

74

Proof. Let c, c′ ∈ H(w,A,T) as witnessed by z, z′ ∈ S, respectively. We claim that c−c′ is in
D(A,T). It is clear that c−c′ ∈ ∆H and z−z′ ∈ ∆S. It remains to verify A(z−z′)−T(c−c′) ∈
∆L. We have

A(z− z′)− T(c− c′) = Az− Tc− (Az′ − Tc′). (3.115)

Since Az− Tc and Az′ − Tc′ have the same high bits, it must be that A(z− z′)− T(c− c′)
is the difference of two vectors from [−(2d−1 − 1), 2d−1]m, from which it follows that A(z−
z′)− T(c− c′) ∈ ∆L. A similar argument proves that the negation c′ − c ∈ D(A,T).

If c1, . . . , ck are distinct elements of H(w,A,T) then 0, c1−c2, . . . , c1−ck must be distinct
elements of D(A,T). Similarly, the negations c2 − c1, . . . , ck − c1 are also distinct elements
of D(A,T). To see that c1 − c2, . . . , c1 − ck are all distinct from their negations, observe
that

c1 − ci = −(c1 − cj) =⇒ 2c1 = ci + cj =⇒ ci = cj (3.116)

where the final implication follows from the fact that the entries of c1, ci, cj are all in
{−1, 0, 1}. We have thus listed 2k− 1 distinct elements of D(A,T), from which the lemma
follows.

3.7.4 Forgers Cannot Forge on LWE No-Instances

Proposition 3.7.2 provides a bound on the fraction δno of hash inputs that are good. More-
over, since the goodness of a hash input (w,msg) depends solely on whether H(w,msg) is
in H(w,A,T), the set of all good hash inputs is a randomly selected set. Thus, the only
way to find a good hash input is via search through an unstructured space.

It then follows from lower bounds for quantum search [13] that any algorithm making no
more than qh quantum queries to H(·) finds a good hash input—and thus a valid TESLA
forgery—with probability no larger than

2(qh + 1)
√
δno. (3.117)

We therefore obtain

Pr [S output “yes” | (A,T) no-instance of LWE] ≤ 2(qh + 1)
√
δno. (3.118)

75

3.8 Security: Putting it all Together

Assuming that no algorithm with run time comparable to that of S can solve LWE with
success bias exceeding ε, we have:

ε ≥ Pr [S output “yes” | (A,T) yes-instance of LWE] (3.119)

− Pr [S output “yes” | (A,T) no-instance of LWE] . (3.120)

We know that

Pr [S output “yes” | (A,T) yes-instance of LWE] ≥ Pr [forge (A,T)]− δyes. (3.121)

Against a quantum forger, we have that

Pr [S output “yes” | (A,T) no-instance of LWE] ≤ 2(qh + 1)
√
δno, (3.122)

implying that

Pr [forge(A,T)] ≤ δyes + 2(qh + 1)
√
δno + ε. (3.123)

Against a classical forger, we can remove the quadratic speedup on the lower bound query
complexity, and the probability becomes

Pr [forge(A,T)] ≤ δyes + qh · δno + ε. (3.124)

We now incorporate our bounds on δyes and δno in order to derive an explicit upper
bound on the forger’s success probability. It is convenient to make some simplifying as-
sumptions on the choice of TESLA parameters. These assumptions are not necessary in
order to derive a negligibly small upper bound on the forger’s success probability—they
merely facilitate a simplified statement of the upper bound.

Definition 3.8.1 (Convenient TESLA Parameters). TESLA parameters are convenient if

1. With probability 1 − 2−λ over the choice of TESLA keys (A,T), (S,E) it holds that
nwr(A,E) < 1/2.

2. #∆H#∆S#∆L < qm.

76

For a given choice of TESLA parameters, condition 1 can be verified via Lemma 3.6.2.
(One can check that all proposed TESLA parameter sets meet this condition.)

Using condition 1 of Definition 3.8.1, we can simplify equation 3.56 to

δyes ≤ qsγ + 4qs coll(A,E)

(
1 +

(qh + qs)
2

2γ2

)
. (3.125)

From lemma 3.6.3, we have a bound on coll(A,E) that holds with probability 1− 1/Kcoll:

δyes ≤ qsγ + 4qs

(
2d+1

q

)m
Kcoll

(
1 +

(qh + qs)
2

2γ2

)
. (3.126)

At this point, we note that our result on this bound holds for whatever γ we may choose.
As we want the first term to be exponentially small, we will select γ = 1

2λqs
. Then, using

the simplification that 1 + (qh+qs)2

2γ2
≈ (qh+qs)2

2γ2
we get

δyes ≤
1

2λ
+

2m(d+1)+2λ+1

qm
(qh + qs)

2q3
sKcoll. (3.127)

From proposition 3.7.2 we have

δno ≤
1

2#H

(
1 +

#∆H#∆S#∆L
qm

)
. (3.128)

Using condition 2 of Definition 3.8.1, we can simplify this bound on δno to

δno ≤
1

#H
. (3.129)

Finally, we substitute this, and our bound for δyes into (3.123). We also note that #H =

2h
(
n′

h

)
. We also must consider the probability with which our bounds do not hold. Doing

this, we get that Pr [forge(A,T)] is at most

ε+
1

2λ
+

2m(d+1)+2λ+1

qm
(qh + qs)

2q3
sKcoll + 2(qh + 1)

√
1

2h
(
n′

h

) +
1

Knwr

+
1

Kcoll

. (3.130)

Then by choosing each K value to be 2λ, we get that this is equal to

ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3
s + 2(qh + 1)

√
1

2h
(
n′

h

) . (3.131)

Classically, we can similarly derive that the adversary’s success is bounded by

ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3
s + qh

1

2h
(
n′

h

) . (3.132)

77

Chapter 4

Strong Unforgeability in the QROM

In the previous chapters, we have worked with the concept of existential-unforgeability
(definition 1.3.2). This is the standard notion of security for a signature scheme. However,
there are situations where existential-unforgeability is not sufficient. In some cases, the
notion of strong unforgeability is needed.

Game 4.0.1 (Strong Unforgeability).

1. C runs Keygen and sends pk to A.

2. A queries a message M1 to C.

3. C returns σ1 ← Sign(M1, sk) to A.

4. A and C repeat steps 2-3 for M2,M3, . . . ,MqS .

5. A outputs (M∗, σ∗) such that (M∗, σ∗) 6= (Mi, σi) for all i ∈ {1, . . . , qS}.

Definition 4.0.1 (Strong Unforgeability under Chosen-Message Attack). A signature
scheme Σ = (KeyGen, Sign,Vrfy) is said to be strongly unforgeable under chosen-message
attack if the probability that any polynomially-bounded adversary A playing game 4.0.1
is able to produce a pair such that Vrfy(M∗, σ∗, pk) → accept is negligible in the security
parameter.

Note that this definition is nearly identical to that of existential unforgeability. The
only difference is in the adversary’s output, (M∗, σ∗). In existential unforgeability, the
condition is that M∗ cannot be equal to any of the signing queries M1, . . . ,MqS . In strong

78

unforgeability, (M∗, σ∗) cannot be equal to any of the signing query and response pairs,
(M1, σ1), . . . , (MqS , σqS). However, one part of the pair can be equal to one part of a query,
as long as both are not. In particular, this means that M∗ can be equal to Mi for some i,
as long as the forged signature, σ∗, is different from σi.

As a result, a forgery is considered valid ifA is able to find a new signature on a message-
signature pair they have already seen. As this provides more ways for an adversary to create
a forgery, if any polynomially-bounded adversary can still not create a forgery in this
game, the scheme satisfies a strictly stronger notion of security. However not all schemes
that satisfy the definition of existential unforgeability also satisfy strong unforgeability.
For these schemes, there exist transformations [39, 26, 41] that modify any existentially
unforgeable scheme in a generic way to make it strongly unforgeable.

The transformation in [41] (referred to as TOO hereafter) is particularly interesting
because it only needs a mild computational assumption and the overhead it causes to the
efficiency is small. However the security reduction for the transformation is in the random-
oracle model, and uses techniques such as reprogramming. Therefore its security needs to
be reexamined in the quantum random-oracle model.

4.1 Chameleon Hash functions

Chameleon hash functions were introduced by Krawczyk and Rabin [30]. We need a slight
generalization proposed in [16]. A family H of chameleon hash function is a collection of
functions h that takes in a message m from a message space M and some randomness
r from a randomness space R, and outputs to a range Y , i.e., h : M× R → Y . The
randomness space is associated with some efficiently sampleable distribution, DR.

In a chameleon hash scheme, there exists a polynomial-time algorithm HG, which upon
input of a security parameter 1n, provides a uniformly random h ← H as well as some
trapdoor information td. If (h, td) ← HG(1n), then for any m ∈ M and y ∈ Y , it is
possible to efficiently sample r ← h−1

td (m, y) such that h(m, r) = y.

There are three properties we need for a chameleon hash scheme:

• (Chameleon property) If (h, td) ← HG, then for any m1,m2, . . . ,mqS ∈ M, and
y1, y2, . . . , yqS sampled uniformly and independently from Y , (h−1

td (m1, y1), . . . , h−1
td (mqS , yqS))

has distribution computationally indistinguishable from DqS
R .

79

• (Uniformity) For h← H and r1, r2, . . . , rqS ← DR, and any m1, . . . ,mqS ∈M,
(h, h(M1, r1), . . . , h(Mqs , rqs)) is uniform over (H,Y , . . . ,Y) up to negligible statistical
distance.

• (Collision resistance) For a hash function h ← H, it is computationally infeasible
for an adversary to find (m, r), (m′, r′), with (m, r) 6= (m′, r′) such that h(m, r) =
h(m′, r′).

4.2 The TOO Transformation

Let Σ = (KeyGen, Sign,Vrfy) be a signature scheme, H be a hash function, and HG be
a chameleon hash generation algorithm. Then we define a new signature scheme, Σ′ =
(KeyGen′, Sign′,Vrfy′) as follows.

Signature Scheme 4.2.1. TOO signature scheme Σ′

Algorithm 17 KeyGen′

Input: Security Parameter 1n

Output: Public key pk′, secret key sk′

1: Obtain (pk, sk)← KeyGen(1n).
2: Obtain (h, td)← HG(1n).
3: Output pk′ = (pk, h), sk′ = (sk, td).

Algorithm 18 Sign′

Input: Message M ∈ {0, 1}∗, secret key sk′ = (sk, td)
Output: Signature σ′

1: Sample a uniform C
$←− Y .

2: Obtain σ ← Sign(C, sk).
3: Compute m← H(M ||σ).
4: Using td, compute r ← h−1

td (m,C).
5: Output σ′ = (σ, r).

80

Algorithm 19 Vrfy′

Input: Message M ∈ {0, 1}∗, public key pk′ = (pk, h), signature σ′ = (σ, r)
Output: accept or reject

1: Compute m← H(M ||σ).
2: Compute C ← h(m, r).
3: Output Vrfy(C, σ, pk).

The correctness property of the transformed scheme can be verified by inspection,
assuming that Σ satisfies the property.

4.3 TOO Classical Proof

Let A be the forger, B the reduction, and C be the challenger. The proof has two cases.
In each case, B and A will be playing a game of strong unforgeability. Let the probability
that A succeeds be ε. In case 1, C and B will play a game of existential unforgeability on
the signature scheme σ. In case 2, C and B will play a game of collision resistance on the
chameleon hash function h. We show that if the probability A succeeds in her forgery is ε,
then the probability that B succeeds is ≥ 1

2
ε− negl(n). At the beginning of the reduction,

B will flip a coin, and guess which case the adversary’s forgery will fall under. Clearly, B
will be correct with probability 1

2
.

In our reduction, let the forgery that A eventually submits be (M∗, σ′∗ = (σ∗, r∗)). Let
C∗ = h(H(M∗||σ∗), r∗). Similarly, for each Mi the forger submits to the signing oracle for
signing, there is an associated σ′i and Ci.

Case 1: C∗ 6= Ci for all i

We show that whenever the forger succeeds in creating a valid forgery of this type, the
reduction succeeds in breaking the existential unforgeability of the original scheme Σ =
(KeyGen, Sign,Vrfy).

C and B will be playing a game of existential unforgeability, while B and A will be
playing a game of strong unforgeability. We will show that whenever A wins their game,
B wins theirs (so long as the forgery is of the type described above).

The games will play out as follows:

81

First, B will act as the random oracle for A. In the first case at least (and this will
change only slightly case to case), he can do this in the following way. Whenever A queries
the random oracle with a query, B looks up in a maintained table if that query has been
made before. If it has, he responds with the value he responded with before. If it has not,
he generates a random number and responds with that.

Now we discuss how the game of strong unforgeability transpires.

C sends B a public key pk from the Σ scheme. B will generate a chameleon hash function
h (with corresponding trapdoor td), and send the public key and hash function to A as
pk′ = (pk, h).

A will start submitting messages Mi to B for signing. For each query, B does the
following:

• Choose a random m̃i and r̃i ← DR and compute Ci = h(m̃i, r̃i).

• Sign Ci by submitting it to C as a signing query, obtaining σi.

• Query Mi||σi to the random oracle, obtaining mi = H(Mi||σi).

• Using the trapdoor information td, find an ri such that h(mi, ri) = Ci.

• Let σ′i = (σi, ri) and send σ′i to A.

Eventually, A will submit a valid forgery M∗, σ′∗ = (σ∗, r∗). Then, B computes
C∗ = h(H(M∗||σ∗), r∗). Noting that C∗ 6= Ci for all i, and the Ci’s are precisely what
was submitted to C for signing queries, and finally, seeing as this is a valid forgery, so
Vrfy(C∗, σ∗) = ‘accept′, we can see that B submits (C∗, σ∗) as a valid new forgery, breaking
the existential unforgeability of Σ and winning his game with C.

Thus in this case, wheneverA succeeds so does B, and so the probability that B succeeds
given that they correctly guessed that they were in this case is ε.

Case 2: C∗ = Ci for some i

In this case we will show a reduction to break the collision resistance of the chameleon
hash function.

To start with, C sends B the description of a chameleon hash function h, which B will
find a collision for.

82

B then runs the key generation algorithm of the signature scheme Σ, obtaining (pk, sk).
They then sends pk′ = (pk, h) to A.

For each signing query Mi that A sends to B, B does the following:

• Choose a random mi and ri ← DR and compute Ci = h(mi, ri).

• Sign Ci using the signing algorithm Sign, obtaining σ = Sign(Ci, sk).

• Reprogram the random oracle so that H(Mi||σi) = mi.

• Send σ′i = (σi, ri) to A.

Note that we have now permitted B to reprogram the random oracle for the purposes
of this proof. Thus it is necessary to show that A will still output a valid forgery.

When A eventually submits her forgery, (M∗, σ∗), we can see that if B was correct in
their guess of being in case 2, C∗ = Ci for some i. This implies that h(H(Mi||σi), ri) =
h(H(M∗||σ∗), r∗) for that i. This yields a collision for the chameleon hash function h,
which is what B is looking for. But we must show that the inputs are distinct.

Note that (Mi, σi, ri) 6= (M∗, σ∗, r∗), simply because both the message and signature of
the forgery can’t be the same as that of one of the Mi’s. So at least one of these values is
different.

If ri 6= r∗, we are done. Otherwise, it must be the case that M∗||σ∗ 6= Mi||σi. In
this case, since the values for the random oracle are chosen uniformly at random, with
overwhelming probability, H(M∗||σ∗) 6= H(Mi||σi), giving B a collision for h.

So in this case, B will succeed as long as A does up to a negligible probability by
Lemma 4.3.1. So the probability that B succeeds is ≥ ε− negl(n).

Lemma 4.3.1. For a forger A, let B1 and B2 be as below, and have them play a game of
strong unforgeability with A. Then

|PrB1(A wins)− PrB2(A wins)| ≤ negl(n),

as long as the underlying signature scheme is existentially unforgeable.

B1 is defined to operate exactly as the transformation dictates. B2 will operate as B
was defined in Case 2 above.

83

Proof. Say the difference in probability that A wins was not negligible. As the distribution
of all values is the same, the only difference from A’s perspective was that the value of
H(Mi||σi) was changed for each i.

But clearly the only way to have the information that they changed is if A had already
queried H(Mi||σi). But if A does this with non-negligible probability, then we could
construct a reduction to break the existential forgeability of the signature scheme by playing
strong unforgeability with A, and before submitting each Ci to the signing oracle, checking
to see if A had queried Mi||σi to the random oracle. With non-negligible probability, the
reduction finds a σi that is a valid forgery. So he submits this along with Ci and has broken
the existential unforgeability of the scheme.

Therefore in both cases, as long as B successfully guesses which case the forgery will
fall under, he manages to successfully break either the collision resistance of the chameleon
hash function h, or the existential unforgeability of the original signature scheme Σ. Since
B correctly guesses which case he is in half of the time, his probability of success is ≥
1
2
ε− negl(n).

4.4 Quantum Challenges and Tools

The bulk of the classical proof carries through to the quantum setting. The reduction
algorithm B can be constructed in the same way and the reduction will still work. However
there is a considerable problem in justifying the security of the scheme. The only problem
is in Lemma 4.3.1. The proof of the lemma is inherently classical, as it creates an upper
bound by looking at the queries A makes to the random oracle. But in a quantum setting
it is impossible to look at a query in its entirety, and even extracting some partial classical
information about the query necessarily disturbs the query.

The intuition however, remains the same. If an adversary was able to notice repro-
gramming, it must be because they had made a query that included |Mi||σi〉 in some large
amplitude, where σi is a signature under Σ for Ci. The adversary can only do this if they
were able to break the existential unforgeability of the scheme. Note that unlike in Chapter
3, the challenge here is that the point being reprogrammed is hidden from the adversary in
a computational sense. The adversary can’t find it because they (presumably) can’t break
the existential unforgeability of Σ.

To prove the reduction still works, we demonstrate a new scenario where we can adap-
tively program a quantum random-oracle. This extends existing works (e.g [43, 42, 44])

84

from information-theoretical settings to a computational setting, and we believe it is po-
tentially useful elsewhere. We will formalize a probabilistic game which we call witness-
search. It potentially captures the essence of numerous security definitions for crypto-
graphic schemes (e.g. signatures). Then we show that the (computational) hardness of
witness-search allows for adaptively programming a quantum random-oracle.

Let Samp be an instance-sampling algorithm. On input 1n, Samp generates public
information pk, description of a predicate P , and a witness w satisfying P (pk, w) = 1.

Define a witness-search game WS as below.

Game 4.4.1 (Witness-Search Game WS).

1. Challenger C generates (pk, w, P)← Samp(1n). Ignore w. LetWpk := {w : P (pk, w) =
1} be the collection of valid witnesses.

2. A receives pk and produces a string ŵ as output.

3. We say A wins the game if ŵ ∈ Wpk.

We say WS(Samp) is hard if, for any polytime A, Pr[A wins] ≤ negl(n). For instance,
Samp could be the KeyGen algorithm of a signature scheme. pk consists of the public key
and description of the signature scheme. Predicate P is the verification algorithm and a
witness consists of a valid message-signature pair. Security of the signature scheme implies
hardness of WS(Samp).

Lemma 4.4.1 (Hardness of Witness-Search to Programming QRO). Let two experiments
E and E ′ be as below. If WS is hard, then Adv := |PrE[b = 1]− PrE′ [b = 1]| ≤ negl(n) .

Note that E ′ differs from E only in that we reprogram the random oracle at some point
in E ′.

Game 4.4.2 (Experiment E).

1. Generate (pk, w, P)← Samp(1n).

2. O ← F is drawn uniformly at random from the collection of all functions F .

3. A1 receives pk as input and makes at most q1 queries to O. A1 produces a classical
string x.

85

4. Set z = O(x‖w).

5. A2 gets (x,w, z) and may access the final state of A1. A2 makes at most q2 queries
to O. It outputs b ∈ {0, 1} at the end.

Game 4.4.3 (Experiment E ′).

1. Generate (pk, w, P)← Samp(1n).

2. O ← F is drawn uniformly at random from the collection of all functions F .

3. A1 makes at most q1 queries to O. It produces a classical string x.

4. Pick z ∈R Range(O). Reprogram O to O′: O′(y) = O(y) except that O′(x‖w) = z.

5. A2 gets (x,w, z) and may access the final state of A1. A2 makes at most q2 queries
to O′. It outputs b ∈ {0, 1} at the end.

To prove Lemma 4.4.1, we need another lemma below to pave the road. Roughly
we want to argue that if witness-search is hard, then given an oracle which is either the
all-zeros function or a function that marks the witness set Wpk, no efficient algorithms
can distinguish them. This may be intuitively interpreted as a computational analogue of
Grover search lower bound.

Lemma 4.4.2. Let f be the all-zeros function, and fS be the characteristic function of a set
S. Namely, fS(x) = 1 iff x ∈ S. Define two experiments G and G′ as below. If WS(Samp)
is hard, then for any efficient A making q ≤ poly(n) queries, |PrG[b = 1]− PrG′ [b = 1]| ≤
negl(n).

Game 4.4.4 (Experiment G).

1. Generate (pk, w, P)← Samp(1n).

2. A is given pk and (quantum) access to f . A makes at most q queries to f and
afterwards w is given to A. It outputs b ∈ {0, 1} and aborts.

Game 4.4.5 (Experiment G′).

86

1. Generate (pk, w, P)← Samp(1n). Let fpk = fWpk
, where Wpk = {w : P (w) = 1} (i.e.,

fpk(x) = 1 iff x ∈ Wpk).

2. A is given pk and (quantum) access to fpk. A makes at most q queries to fpk and
afterwards w is given to A. It output b ∈ {0, 1} and aborts.

Proof. Let A be an arbitrary algorithm running in G (or G′). Consider another algorithm
B that runs in an experiment EXT as follows:

Game 4.4.6 (Extraction Experiment EXT).

1. Generate (pk, w, P)← Samp(1n). Ignore w.

2. B receives pk and picks j ∈R {1, . . . , q} at random.

3. B simulates A on pk and (quantum) access to f . Just before A making the jth query
to f , B measures the register that contains A’s query. Let z be the measurement
outcome.

Let pB = PrEXT [z ∈ Wpk] be the probability that the output of E is a valid witness.
Let ε = |PrG[b = 1]− PrG′ [b = 1]|. In both experiments G and G′, pk is selected at random
according to Samp. Let Ppk be the probability that pk is outputted. Then

ε =
∣∣∣Pr
G

[b = 1]− Pr
G′

[b = 1]
∣∣∣

=

∣∣∣∣∣∑
pk

Pr
G

[b = 1|pk] · Ppk −
∑
pk

Pr
G′

[b = 1|pk] · Ppk

∣∣∣∣∣
=
∑
pk

Ppk

∣∣∣Pr
G

[b = 1|pk]− Pr
G′

[b = 1|pk]
∣∣∣ .

Let εpk = |PrG[b = 1|pk]− PrG′ [b = 1|pk]|. Let |φi〉 be the superposition of AG on input
pk when the i’th query is made. Then let qy(|φi〉) be the sum of squared magnitudes in A
querying the oracle on the string y.

Let S = [q] ×Wpk and δpk =
∑

(i,y)∈S qy(|φ
pk
i 〉). We employ a theorem by Bennet et

al. [8] which states that ‖|φpki 〉 − |φ̃
pk
i 〉‖ ≤

√
q · δpk. Here |φ̃pki 〉 is defined in the same way

as |φpki 〉 but with G′ rather than G.

87

The same paper [8] also bounds the probability of being able to distinguish the two
states, which corresponds to our probability of distinguishing the two experiments, εpk,
telling us that

εpk ≤ 4 ·
∥∥∥|φpki 〉 − |φ̃pki 〉∥∥∥ ≤ 4

√
q · δpk .

Now note that P pk
B (that is, the probability that EXT outputs a valid witness given pk

is chosen) can be written as

P pk
B =

∑
i∈[0,q]

Pr[i chosen] ·
∑

(j,y)∈S:j=i

qy(|φpkj 〉)


=

1

q

∑
i∈[0,q]

∑
(j,y)∈S:j=i

qy(|φpkj 〉)

=
1

q

∑
(i,y)∈S

qy(|φpki 〉) =
1

q
δpk.

So we can see that εpk ≤ 4q
√
P pk
B . Then

ε =
∑
pk

Ppkεpk ≤ 4q
∑
pk

Ppk

√
P pk
B

(∗)
≤ 4q

√∑
pk

PpkP
pk
B = 4q

√
PB ,

where (*) applies Jensen’s inequality. Finally, notice that B can be viewed as an adversary
in the witness-search game WS(Samp). Therefore, we conclude that pB ≤ negl(n) by the
hypothesis that WS(Samp) is hard and hence |PrG[b = 1]− PrG′ [b = 1]| ≤ negl(n).

Proof of Lemma 4.4.1. We use a hybrid argument to prove the lemma. Define Ei, i =
1, . . . , 4 as follows.

• E1 = E. (AO1 /AO2 in short.)

• E2: identical to E1 except that in step 3, O is replaced by Ō where Ō(y) = O(y)
except Ō(y) = 0 for any y = ·‖w with w ∈ Wpk. (AŌ1 /AO2 in short.)

• E3: identical to E2 except that after step 3, we use O′ as defined in E ′ instead of
O. Observe that E3 can also be obtained from E ′ by substituting Ō for O in step 3.
(AŌ1 /AO

′
2 in short.)

88

• E4 = E ′. (AO1 /AO
′

2 in short.)

Define Advi =
∣∣PrEi [b = 1]− PrEi+1

[b = 1]
∣∣. We will show that Adv1 and Adv3 are

both negligible using Lemma 4.4.2. Adv2 = 0 since in both E2 and E3, the function values
for Wpk are assigned uniformly at random and independent of anything else. Therefore we
conclude that Adv = |PrE[b = 1]− PrE′ [b = 1]| ≤

∑
Advi = negl(n).

We are only left to prove that Adv1 ≤ negl(n), and Adv3 ≤ negl(n) follows by similar
argument. Suppose for contradiction that there exist (A1,A2) such that Adv1 ≥ 1/p(n) for
some polynomial p(·). We show that this will lead to a contradiction to Lemma 4.4.2 that
|PrG[b = 1] − PrG′ [b = 1]| ≤ negl(n), which in turn contradicts the hardness of witness-
search. To see this, we construct an algorithm D from (A1,A2) that runs in G and G′ such
that |PrG[b = 1 : D] − PrG′ [b = 1 : D]| ≥ 1/p(n). Let F be an oracle which ignores the
first part of the input and then applies either the all-zeros function f or fpk (as defined in
G′) on the second part. Let g be a random function. Define another oracle H = g ◦F that
implements the following transformation:

|x, y〉 7→|x, y〉 ⊗ |0〉 append an auxiliary register

7→|x, y〉 ⊗ |F (x)〉 compute the negation of F on aux.

7→|x, y ⊕ F (x) · g(x)〉 ⊗ |F (x)〉 controlled-g

7→|x, y ⊕ F (x) · g(x)〉 uncompute negation of F and disgard aux.

Observe that if F is induced from f then H is identical to a random function O. On
the other hand, if F comes from fpk then H is identical to Ō as in E2. For an algorithm
that queries at most q times to H, we can sample h from a family of 2q-wise independent
functions and simulate H efficiently (with access to F) without any noticeable difference.

Construction of D

1. D receives pk and an oracle F (one of the two candidates above).

2. D simulates oracle H = g ◦ F as defined above. D then simulates A1; each query
from A1 is answered by H with (two) oracle calls to F . Let x be the output of A1.

3. D receives w (from external challenger). It then simulates A2 on input (x,w, z :=
H(x‖w)) and oracle queries are answered by h.

4. D outputs the output of A2.

89

It is easy to see that if F is induced from f , the views of A1 and A2 are identical to that of
E1. Likewise, if F is induced by fpk then it is the same view as in E2. Therefore |PrG[b =
1 : D]−PrG′ [b = 1 : D]| = |PrE1 [b = 1 : (A1,A2)]−PrE2 [b = 1 : (A1,A2)]| ≥ 1/p(n). This
gives a contradiction.

4.5 TOO Quantum Proof

Theorem 4.5.1. Assuming that Σ is an existentially-unforgeable quantum-safe signature
scheme, and that we have a family of quantum-safe collision-resistant chameleon hash
functions H, the TOO signature scheme (signature scheme 4.2.1) is strongly-unforgeable
against adaptive chosen-message attack in the quantum random-oracle model.

Recall that the classical proof roughly goes as follows: consider a forger A. If (M∗, σ′∗)
is the forgery that A eventually submits, we will let C∗ = h(O(M∗‖σ∗), r∗). Similarly,
for a signing query made by the forger Mi, we let Ci = h(O(Mi‖σi), ri). We then analyze
two separate cases. First the instance where C∗ 6= Ci for all i. In this case we show that
this gives a break to the existential unforgeability of the signature scheme Σ, by way of
(C∗, σ∗). Next, we examine the case where C∗ = Ci for some i. In this case we show
that (O(M∗||σ∗), r∗) and (O(Mi||σi), ri) provide a break to the collision resistance of the
chameleon hash function.

Proof. Let A be the forger making at most q queries, and let ε be the probability that A
succeeds in her forgery. We construct B that either breaks existential unforgeablity of Σ
or finds collisions for H.

4.5.1 Case 1

We define this case as occurring when C∗ 6= Ci for all i.

First, B will be acting as a quantum random oracle for C. To do this, B simply chooses
a 2q-wise independent hash function O, and for any query Σαx,z|x, z〉 that A makes, B
responds with Σαx,z|x,O(x)⊕ z〉.
Construction of Existential Forger B

1. B receives a public key pk from the challenger C.

90

2. B simulates a variant of the strongly-unforgeable game with A:

(a) B generates (h, td)← HG(1n). Initiate A with pk′ = (pk, h).

(b) B simulates a random oracle using a 2q-wise independent hash function.

(c) On the ith signing query Mi from A, B chooses a random Ci. It then signs Ci
by submitting it to C, obtaining σi. It computes mi = O(Mi||σi), and using
the trapdoor information td, finds an ri such that h(mi, ri) = Ci. It sends
σ′i = (σi, ri) to A.

3. Let (M∗, (σ∗, r∗)) be the final forgery produced by A. Output (C∗, σ∗) as the forgery.

From A’s point of view, a 2q-wise independent function is identical to a random func-
tion (theorem 1.6.1). Noting that C∗ 6= Ci for all i, and the Ci’s are precisely what
was submitted to C for signing queries, and finally, seeing as this is a valid forgery, so
V (C∗, σ∗) = ‘accept′, we can see that B submits (C∗, σ∗) as a valid new forgery, breaking
the existential unforgeability of Σ and winning his game with C. Thus in this case whenever
A succeeds, so does B, and so the probability that B succeeds given we are in this case is
ε.

4.5.2 Case 2

This case is defined as occurring when C∗ = Ci for some i. In this case we will show a
reduction to break the collision resistance of the chameleon hash function.

Construction of Collision-Finding Adversary B

1. B receives h from the challenger, which is sampled from the Chameleon hash function
family.

2. B, playing the role of a challenger, simulates a variant of the strongly-unforgeable
game with A:

(a) B generates (pk, sk) ← G(1n). Initialize A with pk′ = (pk, h). For i =
{1, . . . , q}, B generates mi uniformly at random and ri ← R (according to
the specification of h). B computes Ci = h(mi, ri) and σi = S(sk, Ci).

(b) B simulates a random oracle in the usual way (i.e., 2q-wise independent hash
function).

91

(c) On the ith signing queryMi fromA, B reprograms the random-oracle: O(Mi‖σi)←
mi and returns (σi, ri) to A.

3. Let (M∗, (σ∗, r∗)) be the final forgery produced by A. We know C∗ = Ci for some i.
Output (O(M∗||σ∗), r∗), (O(Mi||σi), ri) as the collision.

It is easy to see that B finds a valid collision with overwhelming probability as long
as A produces a valid forgery. This is because if C∗ = Ci, then h(O(M∗||σ∗), r∗) =
h(O(Mi||σi), ri). We simply need to ensure that this is not a trivial collision. Note that
since this must be a new forgery, (M∗, σ∗, r∗) 6= (Mi, σi, ri). If r∗ 6= ri, we are done.
Otherwise, we can see that M∗||σ∗ 6= Mi||σi, and thus since the values for O(Mi||σi) were
chosen uniformly at random, O(M∗||σ∗) 6= O(Mi||σi) with overwhelming probability.

Therefore if we let EVT be the event that A produces a valid forgery, we only need
to show that EVT occurs with probability Ω(ε) in the construction of B. We prove it
by a hybrid argument which transforms the standard strongly unforgeable game into the
variant as in the construction of B. We will show that the probability of EVT is essentially
preserved in the hybrid argument.

Let Hyd0 be the standard strongly-unforgeable game with A. By hypothesis Pr[EVT :
Hyd0] ≥ ε. Consider the first hybrid Hyd1 that makes only one change to Hyd0: when the
challenger answers a signing query, instead of querying the random oracle O to obtain mi =
O(Mi‖σi), it samples a random mi and programs the random oracle so thatO(Mi‖σ) = mi.
Note that in particular the challenger still uses the trapdoor to find ri ← h−1(Ci,mi). By
Lemma 4.4.1, we claim that1 Pr[EVT : Hyd0]− Pr[EVT : Hyd1]| ≤ negl(n). Specifically we
instantiate Samp as follows. pk will consists of a public key for Σ, hash function h, and
random messages Ci. P will be the verification algorithm of Σ. w = σi = S(sk, Ci) is the
signature generated by B in 2.a), and Wpk consists of all strings that form a valid signature
of Ci under Σ. WS(Samp) is hard because Σ is existential-unforgeable.

Hyd2 is obtained by a small change in Hyd1. Instead of sampling a random Ci, it is
obtained by computing h(mi, ri) from random (mi, ri). This change only causes (statisti-
cally) a negligible error. This is because if h← H and ri ← R, then Ci = h(mi, ri) will be
uniformly random by the uniformity property of H. In addition the chameleon property
of H tells us that ri ← h−1

td (Ci,mi) is distributed statistically close to sampling ri ← R.
Therefore the order of generating Ci and ri does not matter.

Thus we see that B is able to break the collision-resistance property of the Chameleon
hash function.

1More precisely, we need to introduce sub-hybrids and each sub-hybrid makes such a change for just
one signing query.

92

In summary, we have shown that if there is an adversary A breaking Σ′, then there
is an adversary who manages to break either the collision resistance of the chameleon
hash function H, or the existential unforgeability of the original signature scheme Σ with
probability Ω(ε). This contradicts the security of Σ and H if ε ≥ 1/poly(n). Thus we
conclude that Theorem 4.5.1 holds.

4.6 Instantiation

The TOO transformation requires an existentially unforgeable quantum-safe signature
scheme and a collision-resistant quantum-safe chameleon hash scheme. There are a variety
of candidate quantum-safe signature schemes that are existentially-unforgeable, including
those in chapters 2 and 3. For a quantum-safe chameleon hash scheme, there is a lattice-
based scheme from [16]. This scheme satisfies the properties of a chameleon hash scheme,
with a tight security reduction to the SIS problem.

93

Chapter 5

Conclusion

In this thesis, we discussed the necessity and use of the quantum random-oracle model,
as opposed to the classical random-oracle model. We explored its motivations in classical
cryptography and how it arises from the fundamentals of quantum physics and quantum
computation. We explained how many techniques that can be easily used and justified
in a classical sense can be complicated and difficult to justify in this new model. We
reviewed some of the previous work that has been done to overcome these problems and
the techniques that have been developed for establishing security reductions.

In chapter 2, we adapted Jonathan Katz’s proof of the Leighton-Micali signature scheme
from the random-oracle model to the quantum random oracle-model. This generalization
of Katz’s proof required several new techniques. These included new arguments to reduce
the security of oracle composition to that of a single random oracle. It also included a
discussion of the security of the Merkle tree construction against a quantum adversary.

Next, in chapter 3, we examined a reformulation of a signature scheme by Bai and
Galbraith [4] in the quantum random-oracle model. By applying a result of Bennett et
al. [8], we showed how one can justify reprogramming the quantum random oracle. This
result applies to the setting where what is being reprogrammed is hidden information
theoretically. We also applied some quantum lower bounds and lattice results in order to
establish a tight security reduction between the existential unforgeability of the scheme
and the LWE problem.

Finally, in chapter 4, we established the security of the TOO transformation, taking
a chameleon hash scheme and an existentially unforgeable signature scheme and making
it strongly unforgeable. Establishing the security of the scheme in the quantum random-
oracle model required another result about oracle reprogramming. While chapter 3 dis-

94

cussed the problem of reprogramming when the reprogrammed item was hidden in an
information-theoretic sense, we needed to consider reprogramming when that item is hidden
in a computational sense. We defined new notions of quantum games, and this formalism
allowed us to establish the security of the protocol.

5.1 Future Work

While many techniques that cryptographers frequently use in the random-oracle model
have now been shown to be sound in the quantum random-oracle model, there has been
little work to understand a general framework for working within the random-oracle model
and using various techniques. As well, some techniques remain unproven. One of the most
important of these is that of rewinding, as it is used in the Fiat-Shamir transformation.
Many signature schemes are constructed using this transformation, and so exactly char-
acterizing to what extent this technique is secure in the quantum random-oracle model
would be very helpful for designing post-quantum secure signature schemes.

The most fundamental question remains: If a cryptographic protocol has a security
reduction in the random-oracle model, under what conditions does this imply the existence
of a reduction in the quantum random-oracle model. This question was originally addressed
in [10], and the authors established some conditions (which they called a ‘history-free
reduction’) under which classical security reductions also held in a quantum environment.
However, as we have seen in the previous chapters, many security reductions that do not
satisfy these conditions can still be modified to work against a quantum adversary.

Most techniques that have been shown to work in the quantum random-oracle model
have only been used for specific, isolated schemes. It would be helpful for cryptographers
who have less familiarity with quantum computational models to be able to quickly cate-
gorize a new security reduction in order to determine if it meets the conditions to imply
a quantum security reduction, and what the nature (e.g., tightness) of this reduction is.
This would mean that cryptographers could establish the security of a protocol by using
only standard fundamental theorems and techniques, rather than having to reprove basic
quantum information-theoretic results for each protocol.

95

Bibliography

[1] Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür Dagdelen, Edward Eaton,
Gus Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA in the quantum
random oracle model. In PQCRYPTO 2017, Proceedings, 2017. To appear.

[2] Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür Dagdelen, and Peter
Schwabe. TESLA: Tightly-secure efficient signatures from standard lattices. Cryptol-
ogy ePrint Archive, Report 2015/755, 2015. https://eprint.iacr.org/2015/755/

20161117:055833, revision from 16-Nov-2016.

[3] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-
graphic primitives and circular-secure encryption based on hard learning problems.
In Advances in Cryptology – CRYPTO 2009, volume 5677 of LNCS, pages 595–618.
Springer, 2009.

[4] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures
based on learning with errors. In Topics in Cryptology – CT-RSA 2014, volume 8366
of LNCS, pages 28–47. Springer, 2014.

[5] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In Advances in Cryptology – EUROCRYPT 2012, volume 7237 of LNCS,
pages 719–737. Springer, 2012.

[6] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. In 1st Conference on Computer and Communications
Security, pages 62–73, 1993.

[7] Michael Ben-Or. Probabilistic algorithms in finite fields. In 22nd Annual Symposium
on Foundations of Computer Science, pages 394–398, 1981.

96

https://eprint.iacr.org/2015/755/20161117:055833
https://eprint.iacr.org/2015/755/20161117:055833

[8] Charles Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–
1523, 1997.

[9] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? In SHARCS’09: Special-purpose Hardware for Attacking Crypto-
graphic Systems, 2009.

[10] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Advances in Cryptology –
Asiacrypt 2011, volume 7073 of LNCS, pages 41–69. Springer, 2011.

[11] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in
a quantum computing world. In Advances in Cryptology – CRYPTO 2013, volume
8043 of LNCS, pages 461–478. Springer, 2013.

[12] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from LWE. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1006–1018, 2016.

[13] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quan-
tum searching. Fortschritte der Physik, 46(4-5):493–505, 1998.

[14] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing (STOC 2013), pages 575–584. ACM, 2013.

[15] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, July 2004.

[16] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In Advances in Cryptology – EUROCRYPT 2010, volume
6110 of LNCS, pages 523–552. Springer, 2010.

[17] Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar. Another look
at tightness II: Practical issues in cryptography. Cryptology ePrint Archive, Report
2016/360, 2016. http://eprint.iacr.org/2016/360.

97

http://eprint.iacr.org/2016/360

[18] Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias Oder,
Thomas Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. High-speed signatures
from standard lattices. In Progress in Cryptology – LATINCRYPT 2014, volume 8895
of LNCS, pages 84–103. Springer, 2015.

[19] Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. The fiat-shamir trans-
formation in a quantum world. In Advances in Cryptology – Asiacrypt 2013, volume
8270 of LNCS, pages 62–81. Springer, 2013.

[20] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice sig-
natures and bimodal gaussians. In Advances in Cryptology – CRYPTO 2013, volume
8042 of LNCS, pages 40–56. Springer, 2013.

[21] Edward Eaton and Fang Song. Making existential-unforgeable signatures strongly
unforgeable in the quantum random-oracle model. In 10th Conference on the Theory
of Quantum Computation, Communication, and Cryptography (TQC), pages 147–162,
2015.

[22] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. Journal of Cryptology, 26(1):80–101, 2013.

[23] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, STOC ’08, pages 197–206, New York, NY, USA,
2008. ACM.

[24] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, August 1986.

[25] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-
based cryptography: A signature scheme for embedded systems. In Cryptographic
Hardware and Embedded Systems – CHES 2012, volume 7428 of LNCS, pages 530–
547. Springer, 2012.

[26] Qiong Huang, Duncan S Wong, and Yiming Zhao. Generic transformation to strongly
unforgeable signatures. In Applied Cryptography and Network Security, volume 4251
of LNCS, pages 1–17. Springer, 2007.

[27] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks
in hash-based signatures. In Public-Key Cryptography – PKC 2016, volume 9614 of
LNCS, pages 387–416. Springer, 2016.

98

[28] Jonathan Katz. Analysis of a proposed hash-based signature standard. In Security
Standardisation Research: Third International Conference, SSR 2016, volume 10074
of LNCS, pages 261–273. Springer, 2016.

[29] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to Quantum
Computing. Oxford University Press, 2006.

[30] Hugo Krawczyk and Tal Rabin. Chameleon hashing and signatures. In Proceedings of
NDSS 2000, pages 143–154. Internet Society, 2000.

[31] David McGrew, Michael Curcio, and Scott Fluhrer. Hash based signatures — draft-
mcgrew-hash-sigs-06. Technical report, Cisco Systems, 03 2017.

[32] Daniele Micciancio. Improving lattice based cryptosystems using the Hermite normal
form. In Cryptography and Lattices, volume 2146 of LNCS, pages 126–145. Springer,
2001.

[33] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. Journal of Computer and System Sciences,
58(2):336 – 375, 1999.

[34] Daniel Panario. What do random polynomials over finite fields look like? In Finite
Fields and Applications: 7th International Conference, volume 2948 of LNCS, pages
89–108. Springer, 2004.

[35] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing (STOC 2009), pages 333–342. ACM, 2009.

[36] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC
2008), pages 187–196. ACM, 2008.

[37] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC
2005), pages 84–93. ACM, 2005.

[38] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26:1484–1509, 1997.

99

[39] Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. How to strengthen any weakly
unforgeable signature into a strongly unforgeable signature. In Topics in Cryptology–
CT-RSA 2007, volume 4377 of LNCS, pages 357–371. Springer, 2006.

[40] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the fujisaki-
okamoto and oaep transforms. In Theory of Cryptography: TCC 2016-B, volume 9986
of LNCS, pages 192–216. Springer, 2016.

[41] Isamu Teranishi, Takuro Oyama, and Wakaha Ogata. General conversion for obtaining
strongly existentially unforgeable signatures. In Progress in Cryptology-INDOCRYPT
2006, volume 4329 of LNCS, pages 191–205. Springer, 2006.

[42] Dominique Unruh. Quantum position verification in the random oracle model. In
Advances in Cryptology – CRYPTO 2014, volume 8617 of LNCS, pages 1–18. Springer,
2014.

[43] Dominique Unruh. Revocable quantum timed-release encryption. In Advances in
Cryptology – EUROCRYPT 2014, volume 8441 of LNCS, pages 129–146. Springer,
2014.

[44] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In Advances in Cryptology-EUROCRYPT 2015, volume 9057 of LNCS,
pages 755–784. Springer, 2015.

[45] John Watrous. Zero-knowledge against quantum attacks. SIAM Journal on Comput-
ing, 39(1):25–58, May 2009.

[46] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model.
International Journal of Quantum Information, 13(4), 2-15.

[47] Mark Zhandry. How to construct quantum random functions. In Proceedings of FOCS
2012, pages 679–687, 2012.

100

	Introduction
	Quantum Computing Basics
	The Superposition
	Composite Systems and Entanglement
	Transformations of States
	Measurement

	The Random-Oracle Model
	Common Mathematical Definitions and Results
	ROM Example — Full Domain Hash
	Quantum Security Models
	QROM Basics and Challenges
	Oracle Simulation
	Query Lookup
	Rewinding
	Reprogramming
	Challenge Injection
	Query Categorization

	FDH in the QROM
	Thesis Roadmap

	LMS in the QROM
	Scheme Description
	One-Time Scheme
	Full Scheme

	LMS in the (Quantum) Random-Oracle Model
	Second-preimage Resistance with Non-uniform First-preimage
	Second-preimage Resistance with Adversary Prefixes
	Random Oracle Composition
	Merkle Trees in the Random-Oracle Model

	Security Proof for OTLMS in the QROM
	Security Proof for LMS in the QROM

	TESLA
	Chapter Notation
	The Learning with Errors Problem
	The Signature Scheme TESLA
	Brief Sketch of Security Proof for TESLA
	Yes-Instances of LWE
	No-Instances of LWE

	Overview of Security Proof
	Notation and Sizes for Various Sets of Vectors

	Yes-Instances of LWE
	Adaptively Chosen Queries
	The Distinguisher's State, a First Look
	Mid-Sign
	Consistent-Mid-Sign
	Consistent-Mid-Sign is a Mixture of Real Sign Oracles
	Re-Programming of Hash Oracles is Hard to Detect
	The Distinguisher's State, Revisited
	Probability of Well-Roundedness
	Probability of Repetition

	No-Instances of LWE
	Correspondence Between Valid Signatures and Good Hash Inputs
	The Fraction of Hood Hash Inputs
	Good Hash Inputs are Rare
	Forgers Cannot Forge on LWE No-Instances

	Security: Putting it all Together

	Strong Unforgeability in the QROM
	Chameleon Hash functions
	The TOO Transformation
	TOO Classical Proof
	Quantum Challenges and Tools
	TOO Quantum Proof
	Case 1
	Case 2

	Instantiation

	Conclusion
	Future Work

	References

