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Abstract

Many financial contracts can be regarded as derivative securities where the underlying
state variable is one or more rates of interest. A partial list of such contracts would
include zero-coupon bonds, coupon paying bonds, callable bonds, convertible bonds, re-
tractable/extendable bonds, etc., along with a number of popular interest rate derivatives
such as swaps, swaptions, caps, and floors. A commonly used strategy for valuing these
contracts is to base a continuous time model for the stochastic behaviour of the short term
rate of interest. Three key features of most of the models currently in use are (i) the drift,
or expected change over a short time period in the level of the short term interest rate,
is a linear function; (ii) the conditional variance of changes in short term interest rates is
not strongly related to the level of interest rates; and (iii) the short term interest rate is
assumed to follow a diffusion process, which effectively means that it cannot change too
rapidly over short periods of time. Each of these assumptions appears to be made primar-
ily for modelling convenience, as they make it possible in some cases to derive analytical
expressions for the values of bonds and European-style bond options. If such solutions are
not available, then numerical techniques such as Monte Carlo simulation or the numerical
solution of partial differential equations are needed.

However, available econometric evidence indicates that all of the assumptions noted
above are questionable: changes in short term interest rates may be characterized by drift
which is nonlinear and by conditional variance that depends more heavily on the level of
interest rates than is assumed in models with analytic solutions. Moreover, they may be
better approximated by a jump-diffusion process which allows for sudden discontinuous
changes. Consequently, it is of interest to develop numerical techniques to value interest
rate derivative securities for cases where the short term interest rate follows a jump-diffusion
process featuring non-linear drift. This thesis describes and illustrates the use of such
techniques.
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Chapter 1

Introduction

Fixed income markets are some of the largest financial markets in the world. According
to the Bank for International Settlements [18], the global amount of international debt
securities outstanding at the end of 2008 was about $23.9 trillion (all amounts in USD).
At the same time, the global amount of domestic debt securities outstanding was around
$60 trillion ($24.6 trillion of which was U.S. domestic debt). As a point of comparison, the
world’s largest stock exchange group is NYSE Euronext. Trading takes place in almost
5,000 firms from more than 50 different countries, with slightly over 2/3 of the world’s 100
largest firms included. As of June 2008, the total market capitalization of the firms listed
on the NYSE Euronext group was about $27 trillion [17]. These figures indicate that the
overall size of fixed income markets is substantially larger than that of equity markets.

Even this understates the case, however, as it overlooks the size of derivatives markets.
According to [18], the notional principal of exchange-traded futures contracts outstanding
world wide as of December 2008 was $19.4 trillion, of which $18.7 trillion were interest rate
futures contracts. The notional principal of outstanding exchange-traded options contracts
was $37.2 trillion, with interest rate contracts accounting for $33 trillion. Moreover, in the
“over-the-counter” (OTC) markets, the global notional amounts outstanding of derivatives
in December 2008 was almost $600 trillion, of which some $420 trillion were interest rate
contracts.

Given the enormous size of these markets, it is important for issuers of interest rate
dependent contracts (bonds and their derivatives) to have good models for valuing the con-
tracts and assessing risk exposures. A wide variety of different models have been proposed
in the literature. For general reviews, see for example [7] or [22]. In broad terms, following
[21], these can be classified into equilibrium models and no-arbitrage models. Equilibrium
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models are based on developing a model for the process for the evolution of the short term
rate of interest r and exploring its implications for pricing bonds and derivatives such as
bond options. A potential downside to this is that it is not possible for such models to
exactly fit the prices of all observed bonds. This can lead to very inaccurate values for
bond options. By contrast, no-arbitrage models are designed to exactly fit observed prices
of bonds, typically by modelling changes in the entire term structure from its given current
state. In general, such models exhibit path-dependency and can be relatively complicated
to implement, especially for derivative contracts with early exercise features. As noted
by [16], it is possible to make ad hoc adjustments to equilibrium models by incorporating
time-dependent parameters so as to ensure that they do capture the current term structure.
While this is not entirely satisfactory from a modelling standpoint because it can lead to
overfitting, it is relatively easy to implement compared to most no-arbitrage models.

In addition to ease of use, another potential advantage offered by equilibrium models is
bond valuation. The equilibrium approach allows one to compare observed bond prices and
model prices. In principle, this might lead to profitable trading strategies among bonds.
Of course, this is most likely to occur in markets where bonds are relatively thinly traded.
On the other hand, no-arbitrage models simply assume that all existing bonds are correctly
priced and proceed from there to derivative valuation, without considering the possibility
of the bonds themselves being mis-priced (and, if such mis-pricing is present, impounding
these errors into the prices of derivatives).

Based on the considerations outlined above, this thesis will focus exclusively on the
equilibrium approach. Relative to the existing literature, the primary focus is on the im-
plications of discontinuous jumps and non-linear drift. The motivation for this is primarily
based on existing empirical evidence about changes in short term interest rates. Many
current pricing models are based on modelling these changes as continuous time diffusion
processes. In general terms, this means that over short time intervals, changes in inter-
est rates arise from two factors: an expected change or drift, and a random noise term.
However, the drift in the pricing models is typically assumed to be a mean-reverting linear
function of the level of interest rates. There is a tendency for interest rates to return to
some long run average level, but the speed at which that happens does not depend on how
far away interest rates are from their long run average. The advantage of a nonlinear drift
specification is that it allows for much faster reversion when interest rates are extremely
high or low. For example, suppose the long run average level is 6%. Nonlinear drift means
that interest rates will be moving back towards this average more quickly if they are cur-
rently at 20% than if they are at 8%. This makes sense intuitively since it would be difficult
for the economy to sustain very high interest rates for a long time. The second feature of
a diffusion process is that the noise term cannot be very large because the sample paths
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of such a process are continuous. This means that sudden large changes in interest rates
cannot be captured by such a model. However, interest rates often move quickly and by
large amounts, perhaps due to factors such as macroeconomic news announcements. This
can only be modelled by allowing for discontinous jumps in the path of interest rates.
Overall, there seems to be evidence that changes in interest rates should be modelled using
more flexible specifications than linear drift diffusion processes.

The balance of the thesis is organized as follows. Chapter 2 reviews the the relevant
literature in general terms, highlighting the main issues to be addressed in this thesis.
Chapter 3 reviews the established theory in the pure diffusion case. Chapter 4 extends this
to cases where the short term interest rate r can exhibit discontinuous jumps. Chapter 5
describes the proposed numerical algorithms. Chapter 6 then provides a series of tests
to evaluate the convergence of the algorithms. Chapter 7 provides a sensitivity analysis,
showing the effects of changes in the values of the various parameters on bond and bond
option prices. Chapter 8 summarizes and concludes.
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Chapter 2

Review of Relevant Prior Literature

As noted above, the prior literature is extensive, but we will focus only on equilibrium
models. We will concentrate on single factor models. This is primarily for simplicity, but
it should also be noted that studies such as [25, 26] have reported that on the order of 90%
of the variation in bond returns can be explained by a single factor.

2.1 One-Factor Models of the Short Rate

This material is standard in the literature, and may be found in sources such as [6]. It is
provided here for convenience. Let B(t) be the value of a bank account (or money account)
at time t ≥ 0. The dynamics of the bank account happen according to:

dB(t) = r(t)B(t)dt, (2.1)

where r(t) is a function of time. Assuming B(0) = 1,

B(t) = exp

{∫ t

0

r(u)du

}
. (2.2)

Since investing a unit amount at time 0 yields the value B(t) at time t, r(t) is called
the instantaneous rate at which the bank account accrues. We refer to this rate as the
instantaneous spot rate, or simply as the short rate. One can easily see that the discount
process at any point of time becomes

1

B(t)
= exp

{
−
∫ t

0

r(u)du

}
. (2.3)
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The simplest model for the short rate is represented by the following stochastic differ-
ential equation

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW (t) (2.4)

in which µ(t, r(t)) and σ(t, r(t)) denote the instantaneous drift and diffusion of the process
at any point of time and W (t) is a Brownian motion under the real-world probability
measure P . Since the above interest rate is defined by one stochastic differential equation,
we call the model a single factor model. Although these types of models are too simplistic
in some contexts because they imply that changes in yields of all maturities are (locally)
perfectly correlated, they enable us to lay a foundation for more elaborate models.

We will now examine two classic models, those of Vasicek [30], and Cox, Ingersoll,
and Ross [11]. We will compare these models and discuss some of the advantages and
shortcomings of each of them. Our discussion of their drawbacks will serve as a basis for
the types of models that we will be implementing in this work.

2.1.1 Vasicek Model

The Vasicek model [30] assumes that the instantaneous short rate under the actual or real
world probability measure P evolves according to an Ornstein-Uhlenbeck process:

dr(t) = κ[θ − r(t)]dt+ σdW (t), r(0) = r0,

where θ, κ, and σ are positive constants and dW (t) is the increment of a Wiener process.
By integrating the above equation over the time interval [s, t] where 0 ≤ s ≤ t, we obtain

r(t) = r(s)e−κ(t−s) + θ
(
1− e−κ(t−s))+ σ

∫ t

s

e−κ(t−u)dW (u)

This implies that r(t) is normally distributed with mean and variance given respectively
by

E(r(t)|r(s)) = r(s)e−κ(t−s) + θ
(
1− e−κ(t−s))

V ar(r(t)|r(s)) =
σ2

2κ

[
1− e−2κ(t−s)]

The above equations imply that as t goes to infinity, the expected level of this process
approaches θ; The constant κ is the speed of mean reversion. Note that the drift of the
process is positive for r(t) < θ and negative for r(t) > θ. Therefore the process tends to
drift back to θ.
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One of the positive aspects of this model is having a closed form solution for r(t). The
fact that the process is mean-reverting is another desirable property, since it is consistent
with the empirical observation that interest rates tend to remain within certain ranges, as
opposed to growing very large or small over the long run.

These properties make the model analytically tractable, i.e. both analytic expressions
and distributions of several useful interest rate derivative claims such zero-coupon bonds,
interest rate caps, floors and swaptions are obtained easily under this model. (This applies
only to European-style derivatives, where the contract holder does not have the right to
determine when to exercise any embedded optionality.) A major deficiency of the Vasicek
model is that there is a positive probability that the process r(t) assumes a negative value.
This would represent an arbitrage opportunity since one could borrow a quantity of funds,
hold it as cash and pay back less than the amount borrowed. This makes the model
unrealistic at times, producing inaccurate values for derivative claims such as options.

2.1.2 Cox-Ingersoll-Ross (CIR) Model

Cox, Ingersoll and Ross (CIR) [11] introduced their model in 1985. They incorporated
a “square-root” term in the diffusion coefficient of the spot rate dynamics proposed by
Vasicek. This model has provided a solid foundation for many years due to its analytic
tractability and the fact that a negative spot rate cannot happen under this model. The
process under the real-world probability measure P is defined by:

dr(t) = κ[θ − r(t)]dt+ σ
√
r(t)dW (t), r(0) = r0,

where κ, θ and σ are positive constants. Note that the drift of the process is the same as
the Vasicek model while the new

√
r(t) term is introduced in the diffusion.

The origin remains inaccessible to the process (i.e. the process remains strictly positive)
as long as the condition 2κθ > σ2 is met. The fact that negative interest rates cannot
happen can be regarded as one of the advantages of the CIR model over the Vasicek model.
If this condition is not satisfied and r(t) reaches zero, the square-root term multiplying
dW (t) will disappear and the drift term will reduce to κθ. Since κθ > 0 the process will
be reflected back above zero.

Under the real world measure P , the process r(t) has a noncentral chi-squared distri-
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bution. Let pY denote the density function of the random variable Y ,

pr(t)(x) = pχ2(ν,λt)/ct(x) = ctpχ2(ν,λt)(ctx)

ct =
4κ

σ2(1− exp(κt))

ν = 4κθ/σ2

λt = ctr0 exp(−κt)

where the noncentral chi-squared distribution function χ2(ν, λ) with ν degrees of freedom
and non-centrality parameter λ has density

pχ2(ν,λ)(z) =
∞∑
i=0

e−λ/2(λ/2)i

i!
pΓ(i+ν/2,1/2)(z),

pΓ(i+ν/2,1/2)(z) =
(1/2)i+ν/2

Γ(i+ ν/2)
zi−1+ν/2e−z/2 = pχ2(ν+2i)(z)

The CIR model retains the analytic tractability of the Vasicek model, while offering the
advantage of avoiding negative interest rates. It is also worth noting that both the CIR and
Vasicek models are special cases of the general affine yield framework developed in [15].
This class of models is popular because it is analytically tractable and can incorporate
multiple factors.

2.1.3 A Generalized Approach

As noted by Longstaff et al. [8], both the Vasicek and CIR short-rate models can be nested
in the following stochastic differential equation:

dr(r) = [α + βr(t)]dt+ σrγdWt

The Vasicek model is derived by setting γ to zero and the CIR model by setting γ to 0.5. In
general, other values of γ do not lead to analytically tractable models. In addition to these
two models, a variety of others in the literature such as Merton, Dothan, GBM, Brennan-
Schwartz, CIR VR and CEV fall under this category as well. More detailed descriptions
of these models can be found in [8] or [7]; here we simply note the differences in the model
specifications in Table 2.1:
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Model Short rate evolution
Merton dr = αdt+ σdW
Vasicek dr = (α + βr)dt+ σdW
CIR SR dr = (α + βr)dt+ σr1/2dW
Dothan dr = σrdW
GBM dr = βrdt+ σrdW
Brennan-Schwartz dr = (α + βr)dt+ σrdW
CIR VR dr = σr3/2dW
CEV dr = βrdt+ σrγdW

Table 2.1: Alternative short rate models with linear drift.

2.2 Empirical Evidence

As indicated in Table 2.1, a wide variety of specifications are nested in the linear drift
single factor diffusion

dr(t) = [α + βr(t)]dt+ σrγdW (t). (2.5)

Recall that the drift in the Vasicek and CIR models was written in the form κ(θ − r).
Matching coefficents, we see that κ = −β and θ = −α/β. Therefore, in equation (2.5),
the desirable feature of mean-reversion requires that β < 0, and the implied reversion level
of the short rate is −α/β. While analytic tractability is one criterion by which to judge
the usefulness of these models, it should also be noted that the availability of reliable and
robust numerical methods implies that, at a more fundamental level, the models should be
judged on their empirical performance.

A variety of empirical studies have attempted to evaluate how well the various models
nested in equation (2.5) perform in terms of capturing the statistical behaviour of changes
in short term interest rates. In general, it can be difficult to draw firm conclusions because
different authors use different proxies for the short rate r (e.g. 1-month Treasury bill yields,
3-month Treasury bill yields, the U.S. Federal funds rate, short-term Eurodollar deposit
rates, etc.) and because the studies sometimes use quite different sample periods (e.g.
studies which exclude the early 1980s in which very high interest rates were observed reach
somewhat different conclusions than studies which incorporate this period). However, three
main themes emerge from this empirical literature. These are summarized in the following
(sub)sections.
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2.2.1 Conditional Heteroskedasticity

Most studies which attempt to estimate the parameter γ in equation (2.5) find a value sub-
stantially above zero. For example, γ is estimated to be approximately 1.5 in [8] and about
1.3 in [29]. This implies that changes in interest rates are conditionally heteroskedastic, in
that that the conditional variance of interest rate changes strongly increases with the level
of interest rates. Models such as Vasicek [30] assume that this volatility is constant, and
appear to be seriously mis-specified from this perspective. While the CIR [11] model does
incorporate conditional heteroskedasticity, the value of γ = 0.5 assumed in that model is
far lower than what appears to be needed to capture this aspect of the data. Note that the
inability of standard models to match the conditional variance of changes in interest rates
has led some authors (e.g. [4, 31]) to investigate stochastic volatility models, which are
basically extensions of equation (2.5) to cases where σ follows a second diffusion process.

2.2.2 Linearity of Drift

Linear drift is a feature of specification (2.5). In other words, the drift term is a linear
function of the level of the short rate. As noted above, if α > 0 and β < 0, the short
rate reverts to the level −α/β. However, the speed of mean reversion (measured by β) is
constant, independent of the level of interest rates. This means that interest rates do not
revert faster (or slower) if they are far from their long run reversion levels. This aspect of
these models has been intensively debated in the literature (see [29] for a more detailed
review). Studies such as [2, 28, 3, 24, 29] all report evidence that is inconsistent with the
hypothesis of linear drift. It is worth noting that the statistical methods used in some of
these studies have been criticized in [9], which shows using Monte Carlo experiments that
the estimation techniques are unreliable, finding evidence of nonlinear drift even when the
model is known (in the experiment) to be linear. The authors of [9] conclude that there is
“no definitive answer” (p. 387) to the question of whether the short rate drift is nonlinear,
because “time series methods alone are not capable of producing [reliable] evidence of
nonlinearity” (p. 387). However, in [29] both time series and cross-sectional methods are
used, and the short rate drift is found to be nonlinear.

In general, there are two ways that non-linear drift has been modelled. First, a non-
parametric function µ(r, t) has been estimated by some authors. Second, a parametric
functional form has been specified which incorporates nonlinearity. The typical represen-
tation of this form is

dr(t) =
[
α−1/r(t) + α0 + α1r(t) + α2r(t)

2
]
dt+ σr(t)γdW (t) (2.6)
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where α−1, α0, α1, α2, and γ > 0 are constant parameters. Due to the presence of the
quadratic term r2 in the drift, we will refer to this specification as a quadratic term structure
(QTS) model.

2.2.3 Sample Path Continuity

All of the models discussed thus far are continuous-time diffusion models. They imply
that the sample paths of the short rate are continuous functions. Several studies have
investigated the suitability of this modelling assumption compared to the alternative of a
jump-diffusion process which allows for continuity most of the time but also for discrete
discontinuous jumps of random size at random points in time. Evidence in favour of such
models is reported in [12, 24, 23], among others. In particular, it is reported in [24] that
“jumps are both economically and statistically important . . . and generate more than half
the conditional variance of interest rate changes” (p. 255). One reason for this is the impact
of macroeconomic news announcments on bond markets ([5, 20]).

To briefly summarize the three main empirical findings reported here:

• Changes in interest rates consistently exhibit conditional heteroskedasticity across
many empirical studies;

• Changes in interest rates are found by some authors to be characterized by nonlinear
drift (though the evidence for this is perhaps less solid than for heteroskedasticity);

• Several relatively recent studies have reported that changes in interest rates can be
usefully modelled by a jump-diffusion process.

Note that each of these on its own casts significant doubt on the empirical suitability of
the classic models of Vasicek [30] and CIR [11]. Taken together, the evidence against these
models is convincing. Consequently, our main focus from here on will be on numerical
methods which can be used in more general short rate models.
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Chapter 3

Underlying Structure of Model

This chapter reviews the pricing theory for single factor short rate models. Although this
material is standard, and can be found in many sources in the literature, we include it here
for completeness. The treatment here closely follows that of [6].

Let P (t, T ) denote the price at time t of a pure discount bond paying $1 at maturity
time T . Since the dynamics of the short rate r play an important role in determining
P (t, T ) over the interval [t, T ], a reasonable starting point to specify the behaviour of
r. Suppose that the dynamics of r under the objective probability measure P is given
by equation (2.4). Assume further that the dynamics of the money account B(t) follow
equation (2.1), and that bonds are available for every maturity. We can express the above
assumptions more formally:

Assumption 1: We assume the existence of one externally given (locally risk-free) asset.
The price dynamics of this asset is given by equation (2.2), for which the dynamics of the
short rate of interest, under the objective probability measure P , is given by equation (2.4).

Assumption 2: We assume that there exists a market for zero coupon T -maturity bonds
for every value of T .

Thus our market contains an infinite number of bonds plus a risk-free asset. In other
words, in our market, the risk-free asset is regarded as the underlying asset, while all
bonds are derivatives of the externally given short rate of interest. We will proceed to
investigate the relationship between the price processes of bonds with different maturities
in the absence of arbitrage.

As an important observation, one shall keep in mind that while bonds are viewed as
interest rate derivatives, they are not uniquely determined by P -dynamics of the short
rate. This can be shown in light of the following theorem (for proof please see [6]):
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Theorem 1. Let M denote the number of underlying traded assets in the model not count-
ing the risk-free asset, and let R denote the number of random factors. Generically we
have the following relations:

• The model is arbitrage free if and only if M ≤ R.

• The model is complete if and only if M ≥ R.

• The model is complete and arbitrage free if and only if M = R.

Proof. See [6].

In our case the number of externally given traded assets excluding the risk-free asset
M = 0. Also the fact that we have one driving Wiener process in equation (2.4) gives
the number of random factors R = 1. Therefore, according to the above theorem we
have an arbitrage free incomplete market. Intuitively, an investor has only the option of
investing money in the bank account and waiting for it to grow according to the dynamics
of equation (2.2); thus it is impossible to replicate any interesting derivative, even such a
simple one as T -maturity pure discount bond.

So, we have the following results:

• We cannot completely determine the price of a particular bond using the dynamics
of the short rate of interest (2.4) in the absence of arbitrage.

• This is a direct consequence of having insufficient number of underlying assets in our
market, making it impossible for us to price a derivative in terms of the price of some
underlying assets using arbitrage pricing techniques.

Therefore, we will not be able to derive a unique price for a particular bond. However, this
does not imply that bond prices can take any arbitrary form. Instead:

• In order for bond market to be arbitrage free, the prices of bonds with different
maturities should satisfy a certain internal consistency relationship.

• We should be able to uniquely determine the prices of all bonds in terms of price of
a given particular “benchmark” bond and the assumed dynamics of r.

The new benchmark bond will increase the number of externally given assets to M = 1;
as a result of that we achieve completeness in the market, since we have R = M = 1.

12



3.1 The Market Price of Risk

A concept of fundamental importance in our context is the market price of risk. This
will be used to link the prices of bonds of all maturities. Although we are concentrating
exclusively on the single factor context, the ideas can be easily extended to multi-factor
models.

Recall that we are assuming that the prices of pure discount bonds P (t, T ) depend on
the single stochastic variable r and that such bonds are available for every maturity T .
Denote the price of a T -maturity bond by

P (t, T ) = F (t, r(t);T ),

where F is a smooth function of three variables. To further simplify notation, since we
can regard T as a parameter, we will let F (t, r(t);T = F T (t, r(t)). Since at T the bond is
worth $1, we have the following simple boundary condition:

F T (T, r(T )) = 1, ∀r. (3.1)

Suppose we form a portfolio consisting of two bonds with different times to maturitiy
S and T . We are interested in the evolution of the value dynamics of our portfolio. To
start, we need to apply Itô’s formula to F T . Recall that:

Itô’s formula: Assume that the process X(t) has a stochastic differential given by

dX(t) = µ(t)dt+ σ(t)dW (t)

and let f be a twice differentiable function. Define the process Z by Z(t) = f(t,X(t)).
Then Z has the stochastic differential given by

df(t,X(t)) =

{
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

}
dt+ σ

∂f

∂x
dW (t)

Using this, we can derive the price dynamics of the T - maturity bond (with a cor-
responding equation for the S-maturity bond) when the short rate of interest evolves
according to equation (2.4):

dF T = F T {αTdt+ σTdW (t)} (3.2)
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where

αT =
1

F T
(F T

t + µF T
r +

1

2
σ2F T

rr), (3.3)

σT =
1

F T
(σF T

r ). (3.4)

Let π = (wT , wS) denote the portfolio weights with wS + wT = 1, and let V be the
value of this portfolio. Then the value dynamics of our portfolio are:

dV = V

{
wT

dF T

F T
+ wS

dF S

F S

}
(3.5)

Substituting the appropriate differentials for T and S from (3.2) gives:

dV = V {(wTαT + wSαS)dt}+ V {(wTσT + wSσS)dW} (3.6)

If the portfolio V satisfies the following system of equations

wS + wT = 1

wTσT + wSσS = 0,

we have a locally risk-free portfolio, since the dW term in equation (3.5) will disappear.
Therefore the value dynamics are reduced to

dV = V {wTαT + wSαS} dt (3.7)

By solving the above system of equations we have:

wT = − σS
σT − σS

(3.8)

wS =
σT

σT − σS
(3.9)

By substituting these coefficients in the equation (3.7), we will have

dV = V

{
αSσT − αTσS
σT − σS

}
dt (3.10)

Since this portfolio is risk-free, the no-arbitrage principle implies that it must have a rate
of return equal to the risk-free rate:

αSσT − αTσS
σT − σS

= r(t) ∀t. (3.11)
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By reshuffling the terms we get

αS(t)− r(t)
σS(t)

=
αT (t)− r(t)

σT (t)
(3.12)

A close examination of equation (3.12) shows that the left hand is independent of T and
the right hand side is independent of S; this leads to the following crucial result:

Proposition 2. Assume that we have an arbitrage free bond market. Then there exists a
process λ such that the relation

αT (t)− r(t)
σT (t)

= λ(t) (3.13)

holds for all t and for every choice of maturity time T .

An important characteristic of the process λ(t) is that it holds regardless of the choice of
time to maturity T . In the numerator of (3.13) we have the term αT (t)− r(t). According
to equation (3.2), αT is the local rate of return on the T -maturity bond, whereas r is
the rate of return of the risk-free asset. Therefore the difference αT (t) − r(t) is the risk
premium of the T -maturity bond. In the denominator, we have σT (t), the local volatility
of the T -maturity bond. Thus we can think of λ as representing the risk premium per unit
volatility. The process λ is known as the market price of risk. Using this terminology, we
can rephrase Proposition 2 as follows: In an arbitrage free market, all bonds will have the
same market price of risk, regardless of their maturity times.

3.2 The Term Structure Equation

One of the most fundamental results in the theory of interest rates can be obtained by
substituting αT and σT from (3.3) and (3.4) into equation (3.13) for the market price of
risk. The result is presented in the following proposition:

Proposition 3. In an arbitrage free bond market, F T will satisfy the term structure equa-
tion:

F T
t + {µ− λσ}F T

r +
1

2
σ2F T

rr − rF T = 0, (3.14)

subject to the boundary condition (3.1).
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Although the term structure equation above is a standard partial differential equation
(PDE), it is important to note that λ is not determined inside the model. In particular, it
must be specified exogenously, as with the drift µ and volatility σ.

It is also important to note that we can express the solution to the term structure
equation (3.14) in the form of an expectation under an alternative “risk-neutral” probability
measure Q:

F T (t, r(t)) = EQ
t [e−

∫ T
t r(s)ds]. (3.15)

In (3.15, EQ denotes expectation under the measure Q, for which the dynamics of the
short rate is governed not by (2.4), but instead by:

dr(t) = {µ(r, t)− λ(t)σ(r, t)}dt+ σ(r, t)dW (t) (3.16)

Proofs of this result rely on the Feynman-Kac formula and can be found in sources such
as [6]. For completeness, we provide a proof in Appendix A. This important result implies
that Monte Carlo methods can be used to find numerical solutions for bond prices by re-
peatedly simulating the process for r under the Q measure and calculating the expectation
in (3.15). More generally, a European-style derivative with payoff function H(T, r(T ))
at maturity T solves the term structure equation (3.14) subject to the boundary condi-
tion F T (T, r(T )) = H(T, r(T )). Moreover, the value of such a contract can be found by
calculating

EQ
t

[
e−

∫ T
t r(s)dsH(T, r(T ))

]
.

The bond pricing result (3.15) is a simple special case where H(T, r(T )) = 1.

3.3 Bond Price Under Classic Models

As mentioned above in Sections 2.1.1 and 2.1.2, analytic solutions are available for bond
prices for the Vasicek [30] and CIR [11] models. However, an implication of the results
above is that this will require us to specify the market price of risk λ(t). In fact, the analytic
solutions rely on particular forms of the market price of risk function which preserve the
analytic tractability of the model when we switch to the Q measure from the P measure.

Consider first the Vasicek model, and assume that:

λ(t) = λ0 + λ1r(t)/σ,
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where λ0 and λ1 are constants. Under the Q-measure, we have

dr(t) = [κ(θ − r(t))− λ0σ0 − λ1r(t)]dt+ σdW (t)

= [(κθ − λ0σ)− (κ+ λ1)r(t)]dt+ σdW (t),

which can be expressed in the form:

dr(t) = [a(b− r(t))]dt+ σdW (t),

where a and b are constants. As shown in [30], we can then analytically calculate the price
of a zero-coupon bond at time t for a payoff of $1 at the maturity T as:

P (t, T ) = A(t, T )e−B(t,T )r(t) (3.17)

where

B(t, T ) =
1− e−a(T−t)

a

A(t, T ) = exp

{
[B(t, T )− T + t][ab − σ2/2]

a2
− σ2B(t, T )2

4a

}
.

Similarly, for the CIR model, if we assume that λ(t) = λ1

√
r(t)/σ, we find that under

measure Q:

dr(t) = [κθ − (κ+ λ1)r(t)]dt+ σ
√
r(t)dW (t),

which can be expressed in the form:

dr(t) = [a(b− r(t))]dt+ σ
√
r(t)dW (t),

with a and b being constants. From [11], we have the analytic solution:

P (t, T ) = A(t, T )e−B(t,T )r(t) (3.18)

where

B(t, T ) =
2[ec(T−t − 1]

[c+ a][ec(T−t) − 1] + 2c

A(t, T ) =

(
2ce(a+c)(T−t)/2

[c+ a][ec(T−t − 1] + 2c

)2ab/σ2

c =
√
a2 + 2σ2.
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It is worth emphasizing that the Vasicek and CIR models are two of the only cases for short
rate models where analytic solutions are known. In almost every other model (including
variations of the Vasicek and CIR specifications with different forms of the market price
of risk), numerical methods must be relied on. Moreover, such methods are necessary in
every non-trivial case for American-style interest rate derivatives.
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Chapter 4

Short Rate Models With Jumps

We now proceed to present an extension of the term structure equation (3.14) which
incorporates the assumption that changes in the short rate are modelled by a jump-diffusion
process. We begin by briefly outlining the stochastic setting of the models.

The general single factor model for r is assumed to be replaced by

dr(t) = µ(t, r(t))dt+ σ(r, r(t))dW (t) + r(t) {j(t)− 1} dN(t). (4.1)

As in (3.14), the diffusive drift µ and volatility σ are assumed to be functions of time and
the short rate r. However, we now have the additional feature of a Poisson process N(t)
which has an assumed intensity λ̂. This implies that during a small time interval dt:

Prob(short rate jumps once) = Prob(dN(t) = 1) ' λ̂dt,

Prob(short rate jumps more than once) = Prob(dN(t) ≥ 2) ' 0,

Prob(short rate does not jump) = Prob(dN(t) = 0) ' 1− λ̂dt.

Assume that during dt a jump occurs, taking the short rate from its level immediately
before the jump of r(t−) to r(t) = j(t)r(t−). The percentage change in the short rate due
to the jump is given by

dr(t)

r(t)
=
j(t)r(t−)− r(t−)

r(t−)
= j(t)− 1.

We have two independent sources of randomness creating jumps. The first is the Poisson
process N(t), which accounts for the timing of jumps. Conditional on a jump occurring,
the size of the jump is independently determined by j(t), with the relative jump size being
j(t)− 1.
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4.1 The Pricing Equation of The Short Rate Model

With Jumps

While it is possible to use general equilibrium arguments to derive the pricing equation
for a short rate model with jumps (see [1] for example), we will use much simpler hedging
arguments along the lines presented in [19]. We begin by noting Itô’s formula for a jump-
diffusion process:

Itô’s formula for a jump-diffusion process: Assume that the process X(t) is a jump-
diffusion:

X(t) = X(0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)ds+

N(t)∑
i=1

∆X(i),

where N(t) is a compound Poisson process. Then for a twice differentiable function
f(t, (X(t)) we have:

df(t,X(t)) =

{
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

}
dt+ σ

∂f

∂x
dW (t) + f(X(t−) + ∆X(t))− f(X(t−)).

As above, let F T (r, T ) denote the value of a T -maturity pure discount bond. Applying
Itô’s formula and simplifying notation, we have:

dF T = αTdt+ σTdW (t) + JTdN(t) (4.2)

where

αT = F T
t + µF T

r +
1

2
σ2F T

rr, (4.3)

σT = σF T
r , (4.4)

JT = F T (j(t)r, t)− F T (r, t). (4.5)

We will assume for the moment that there is only one possible jump size J , i.e. following
a jump r → Jr, with J being a known constant. In order to hedge the two sources of
randomness caused by the diffusion dW and the jump dN , we need to form a portfolio V
containing three bonds. Let the maturities of these bonds be denoted by S, T , and U . Our
portfolio weights will be assumed to satisfy wS +wT +wU = 1. The value of our portfolio
will evolve according to:

dV =
{
wSdF

S + wTdF
T + wUdF

U
}
. (4.6)
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By substituting (4.2) and its counterparts for S and U in (4.6) we have:

dV = (wSαS + wTαT + wUαU)dt

+ (wSσS + wTσT + wUσU)dW

+ (wSJS + wTJT + wUJU)dN(t)

By setting the coefficients of dW (t) and dN(t) to zero, we can hedge the randomness
caused by both the diffusion and jump terms. Therefore if we define the portfolio V by
the following system of equations (in addition to the constraint that the portfolio weights
sum to one):

wSσS + wTσT + wUσU = 0

wSJS + wTJT + wUJU = 0,

we have a portfolio which is locally risk-free. The value of the porfolio should then grow
at the risk-free rate:

dV = rV dt = r(wSF
S + wTF

T + wUF
U)dt.

Consequently:

(wSαS + wTαT + wUαU) = r(wSF
S + wTF

T + wUF
U),

or equivalently,

wS(αS − rF S) + wT (αT − rF T ) + wU(αU − rFU) = 0.

This implies that we have the system:

wSσS + wTσT + wUσU = 0

wSJS + wTJT + wUJU = 0

wS(αS − rF S) + wT (αT − rF T ) + wU(αU − rFU) = 0.

In order for this system to have a nontrivial solution, the equations must be linearly
dependent. In other words, we need to be able to write the coefficients of the last equation
as a linear combination of the previous equations:

αS − rF S = λWσS + λJJS

αT − rF T = λWσT + λJJT

αU − rFU = λWσU + λJJU .
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After dropping the maturity indices, we have:

α− rF = λWσ + λJJ.

By substituting the definitions of α, σ and J from (4.3), (4.4), and (4.5) and rearranging
the terms we derive the following:

F T
t +

1

2
σ2F T

rr + (µ− λWσ)F T
r − rF T + λJ(F T (Jr, t)− F T (r, t)) = 0. (4.7)

Now suppose that there is a finite number n of possible jump states which occur with
probability λiJ (i = 1, . . . , n), where after each jump the short rate jumps to j(ti)r(ti), i.e.

r(ti)→ j(ti)r(ti), i = 1, . . . , n.

We can form a hedging portfolio using (n + 2) bonds with different maturities Ti (i =
1, . . . , n+ 2):

V =
n+2∑
i=1

wiF
Ti where Ti 6= Tk for i 6= k.

If we follow a similar approach to hedge diffusion and jumps, we obtain the following:

F T
t +

1

2
σ2F T

rr + (µ− λWσ)F T
r − rF T +

n∑
i=1

λiJ(F T (j(ti)r(ti), ti)− F T (r(ti), ti)) = 0. (4.8)

Define

p(ji) =
λiJ∑n
i=1 λ

i
J

λ∗ =
n∑
i=1

λiJ .

By using the above identities, we can rewrite equation (4.8) as:

F T
t +

1

2
σ2F T

rr+(µ−λWσ)F T
r −rF T +λ∗

n∑
i=1

p(ji)(F
T (j(ti)r(ti), t)−F T (r(ti), ti)) = 0. (4.9)

Observe that since λij ≥ 0, p(ji) ≥ 0 and thus λ∗ ≥ 0. If we take the limit as the number of
jump states tends to infinity, p(ji) will tend to a continuous distribution, and equation (4.9)
becomes the following partial integro differential equation (PIDE):

F T
t +

1

2
σ2F T

rr+(µ−λWσ)F T
r −rF T +λ∗

∫ ∞
0

p(j(t))[F T (j(t)r, t)−F T (r, t)]dj(t) = 0. (4.10)
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By breaking the integral into two parts and simplifying, we can rewrite (4.10) in the form:

F T
t +

1

2
σ2F T

rr + (µ− λWσ)F T
r − (r + λ∗)F T + λ∗

∫ ∞
0

p(j(t))F T (j(t)r, t)dj(t) = 0. (4.11)

Note that the jump intensity λ∗ in equation (4.11) will not generally be the same as the
actual jump intensity λ̂. This should not come as a surprise. We are effectively using
a risk-adjusted jump intensity, much like the market price of risk changes the expected
drift of the diffusion term. Similarly, the parameters of the jump size distribution can
be different under the risk-adjusted pricing measure as compared to the actual physical
measure. Of course, if we estimate parameters by calibrating to observed prices of financial
instruments, we will be finding the risk-adjusted jump parameters.

Equation (4.11) is the general form of the pricing PIDE that will be used in our nu-
merical tests. It is worth concluding this section by noting that this equation is somewhat
different from the standard pricing PIDE for equity options (see, e.g. [13]). The reason is
that in this interest rate derivative context, the basic underlying state variable r is not a
traded asset. If we imagine that r is a traded asset, then it must satisfy equation (4.10).
Suppose that we rewrite this equation, using some other state variable x in place of the
short rate r (and dropping the T -superscript for simplicity):

Ft +
1

2
σ2Fxx + (µ− λWσ)Fx − rF + λ∗

∫ ∞
0

p(j(t))(F (j(t)x)− F (x)) = 0.

If x is a traded asset, then F = x must satisfy the above equation. This implies that
Fxx = Ft = 0 and Fx = 1, and in turn:

(µ− λWσ)− rx+ λ∗
∫ ∞

0

p(j(t))x[j(t)− 1]dj(t) = 0

⇒ (µ− λWσ) = [r − λ∗E(j(t)− 1)]x.

This implies that we would replace the term in the pricing PIDE involving the risk-adjusted
drift (µ− λWσ) by the risk-free rate minus the expected relative jump size. The standard
PIDE for equity options reflects this change because the underlying stock price is a traded
asset.
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Chapter 5

Numerical Methods

This chapter describes the numerical techniques that will be used to solve the various
pricing equations. We start by considering the case where there are no jumps. The methods
used in this case are somewhat similar to those described in [32].

5.1 Numerical Solution Without Jumps

In the case where there is diffusion but no jumps, interest rate derivatives can be valued
by solving equation (3.14). We can rewrite equation (3.14) in the form:

Fτ = {µ− λσ}Fr +
1

2
σ2Frr + rF, (5.1)

where τ = T − t denotes time running in the backwards direction from the expiration date
T to the current time t. With this change, the terminal payoff condition for the contract
of interest (F (r, T ) = 1 ∀ r in the case of a pure discount bond having a par value of $1)
becomes an initial condition for our numerical methods.

In this section, we will describe the general numerical methods that we use for solving
this class of PDEs numerically. Equation (5.1) is of the general form:

uτ = a(x)uxx + b(x)ux + c(x)u (5.2)

where uτ , ux and uxx represent first and second derivatives with respect to time and state
variable. In order to introduce the different numerical schemes which we use for solving
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this type of equation, we start by defining general approximation methods of the terms
present in equation (5.2). Central, forward, and backward derivative approximations for
ux on a discrete grid xi, i = 1, . . . , N are defined as:

ux =
ui+1 − ui−1

∆xi+1 + ∆xi
(central)

=
ui+1 − ui

∆xi+1

(forward)

=
ui − ui−1

∆xi
(backward)

where the grid spacing is given by:

∆xi+1 = xi+1 − xi
∆xi = xi − xi−1

Similarly, uxx and uτ are approximated by:

uτ =
un+1
i − uni

∆τ

uxx =
(ui+1 − ui)/∆xi+1 + (ui−1 − ui)/∆xi

(∆xi+1 + ∆xi)/2

where the time step size is ∆τ . Note that we are using an unevenly-spaced grid for x. This
offers considerable advantages because we can use a fine spacing in regions where we want
the computed solution to be highly accurate and a coarse spacing for other regions. It is
also possible to use an unevenly spaced grid in the time direction, but as our descriptions
to follow just depend on the solution values at two different time points, we will just let
the time step size be denoted by ∆τ . As we will see, it is advantageous to use central
differences for some parts of the grid and forward or backward differences for other parts
of it. The spatial derivative approximations ux and uxx can be evaluated either at time
level n or at time level n + 1. If we use the time level n, we will have an explicit scheme.
If we use the time level n + 1, then our scheme is implicit. We can also combine them,
averaging the values at the two time levels. This is known as a Crank-Nicolson scheme.
In the following (sub)sections, we will describe the resulting discrete equations for these
various cases.
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5.1.1 Explicit Scheme, Central Difference

In this method, we use (i− 1)-th, i-th and (i + 1)-th grid nodes at the n-th time step for
calculating un+1

i :

un+1
i − uni

∆τ
= ai

[
(uni+1 − uni )/∆xi+1 + (uni−1 − uni )/∆xi

(∆xi+1 + ∆xi)/2

]
+ bi

[
uni+1 − uni−1

∆xi+1 + ∆xi

]
+ ciu

n
i .

In the above, ai, bi, and ci denote the values of a(x), b(x), and c(x) at the i-th grid node.
For future reference, note that in our applications ai ≥ 0and ci = −ri ≤ 0, while bi can be
of either sign. The expression above can be written in the form:

un+1
i = uni−1

[
ai∆τ/∆xi

(∆xi+1 + ∆xi)/2
− bi∆τ

∆xi+1 + ∆xi

]
+ uni

[
1 + ci∆τ −

ai∆t/∆xi+1 + ai∆τ/∆xi
(∆xi+1 + ∆xi)/2

]
+ uni+1

[
ai∆τ/∆xi+1

(∆xi+1 + ∆xi)/2
+

bi∆τ

∆xi+1 + ∆xi

]
⇒ un+1

i = αci∆τu
n
i−1 + [1− (αci + βci − ci)∆τ ]uni + βci∆τu

n
i+1,

where

αci = ai/ [∆xi(∆xi+1 + ∆xi)/2]− bi/ [∆xi+1 + ∆xi]

βci = ai/ [∆xi+1(∆xi+1 + ∆xi)/2] + bi/ [∆xi+1 + ∆xi] .

5.1.2 Implicit Scheme, Central Difference

In this method, we use (i− 1)-th, i-th and (i+ 1)-th grid nodes at the (n+ 1)-th time step
for calculating uni :

un+1
i − uni

∆τ
= ai

[
(un+1

i+1 − un+1
i )/∆xi+1 + (un+1

i−1 − un+1
i )/∆xi

(∆xi+1 + ∆xi)/2

]
+bi

[
un+1
i+1 − un+1

i−1

∆xi+1 + ∆xi

]
+ciu

n+1
i .
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This can be written in the form:

uni = un+1
i−1

[
− ai∆τ/∆xi

(∆xi+1 + ∆xi)/2
+

bi∆τ

∆xi+1 + ∆xi

]
+ un+1

i

[
1− ci∆τ +

ai∆t/∆xi+1 + ai∆τ/∆xi
(∆xi+1 + ∆xi)/2

]
+ un+1

i+1

[
− ai∆τ/∆xi+1

(∆xi+1 + ∆xi)/2
− bi∆t

∆xi+1 + ∆xi

]
⇒ uni = −αci∆τun+1

i−1 + [1 + (αci + βci − ci)∆τ ]un+1
i − βci∆tun+1

i+1 ,

where, as for the explicit case:

αci = ai/ [∆xi(∆xi+1 + ∆xi)/2]− bi/ [∆xi+1 + ∆xi]

βci = ai/ [∆xi+1(∆xi+1 + ∆xi)/2] + bi/ [∆xi+1 + ∆xi] .

5.1.3 Explicit Scheme, Forward Difference

When a scheme with central difference approximations is used,

αci = ai/ [∆xi(∆xi+1 + ∆xi)/2]− bi/ [∆xi+1 + ∆xi]

can become negative. This is due to presence of the term bi/ [∆xi+1 + ∆xi] in αci (assuming
bi > 0). As discussed below, this can lead to undesirable effects in our numerical solution.
As an alternative, we can use a forward difference approximation for ux. For the explicit
case:

un+1
i − uni

∆τ
= ai

[
(uni+1 − uni )/∆xi+1 + (uni−1 − uni )/∆xi

(∆xi+1 + ∆xi)/2

]
+ bi

[
uni+1 − uni

∆xi+1

]
+ ciu

n
i ,

so

un+1
i = uni−1

[
ai∆τ/∆xi

(∆xi+1 + ∆xi)/2

]
+ uni

[
1 + ci∆τ −

ai∆t/∆xi+1 + ai∆τ/∆xi
(∆xi+1 + ∆xi)/2

− bi∆τ

∆xi+1

]
+ uni+1

[
ai∆τ/∆xi+1

(∆xi+1 + ∆xi)/2
+

bi∆τ

∆xi+1

]
⇒ un+1

i = αfi ∆τuni−1 +
[
1− (αfi + βfi − ci)∆τ

]
uni + βfi ∆τuni+1,
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where

αfi = ai/ [∆xi(∆xi+1 + ∆xi)/2]

βfi = ai/ [∆xi+1(∆xi+1 + ∆xi)/2] + bi/ [∆xi+1] .

5.1.4 Implicit Scheme, Forward Difference

As above, it is possible for the central difference approximation to lead to a negative
coefficient. If this happens when bi > 0, then we can use a forward difference instead:

un+1
i − uni

∆τ
= ai

[
(un+1

i+1 − un+1
i )/∆xi+1 + (un+1

i−1 − un+1
i )/∆xi

(∆xi+1 + ∆xi)/2

]
+ bi

[
un+1
i+1 − un+1

i

∆xi+1

]
+ ciu

n+1
i ,

so

uni = un+1
i−1

[
− ai∆τ/∆xi

(∆xi+1 + ∆xi)/2

]
+ un+1

i

[
1− ci∆τ +

ai∆τ/∆xi+1 + ai∆τ/∆xi
(∆xi+1 + ∆xi)/2

+
bi∆τ

∆xi+1

]
+ un+1

i+1

[
− ai∆τ/∆xi+1

(∆xi+1 + ∆xi)/2
− bi∆τ

∆xi+1

]
⇒ uni = −αfi ∆τun+1

i−1 +
[
1 + (αfi + βfi − ci)∆τ

]
un+1
i − βfi ∆τun+1

i+1 ,

where, as for the explicit case:

αfi = ai/ [∆xi(∆xi+1 + ∆xi)/2]

βfi = ai/ [∆xi+1(∆xi+1 + ∆xi)/2] + bi/ [∆xi+1] .

5.1.5 Explicit Scheme, Backward Difference

Recall that in a scheme with central difference approximations, we have:

βci = ai/ [∆xi+1(∆xi+1 + ∆xi)/2] + bi/ [∆xi+1 + ∆xi] .

This can potentially become negative if bi < 0. In this case, we can use a backward
difference approximation for ux. This will remove the term bi/ [∆xi+1 + ∆xi] from the
above expression. The scheme is:

un+1
i − uni

∆τ
= ai

[
(uni+1 − uni )/∆xi+1 + (uni−1 − uni )/∆xi

(∆xi+1 + ∆xi)/2

]
+ bi

[
uni − uni−1

∆xi

]
+ ciu

n
i ,
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so

un+1
i = uni−1

[
ai∆τ/∆xi

(∆xi+1 + ∆xi)/2
− bi∆τ

∆xi

]
+ uni

[
1 + ci∆τ −

ai∆τ/∆xi+1 + ai∆τ/∆xi
(∆xi+1 + ∆xi)/2

+
bi∆τ

∆xi

]
+ uni+1

[
ai∆τ/∆xi+1

(∆xi+1 + ∆xi)/2

]
⇒ un+1

i = αbi∆τu
n
i−1 +

[
1− (αbi + βbi − ci)∆τ

]
uni + βbi∆τu

n
i+1,

where

αbi = ai/ [∆xi(∆xi+1 + ∆xi)/2]− bi/ [∆xi]

βbi = ai/ [∆xi+1(∆xi+1 + ∆xi)/2] .

5.1.6 Implicit Scheme, Backward Difference

As for the explicit case, we may need to turn to a backward difference approximation of
ux if the central difference leads to a negative coefficient because bi < 0:

un+1
i − uni

∆τ
= ai

[
(un+1

i+1 − un+1
i )/∆xi+1 + (un+1

i−1 − un+1
i )/∆xi

(∆xi+1 + ∆xi)/2

]
+ bi

[
un+1
i − un+1

i−1

∆xi

]
+ ciu

n+1
i ,

so

uni = un+1
i−1

[
− ai∆τ/∆xi

(∆xi+1 + ∆xi)/2
+
bi∆τ

∆xi

]
+ un+1

i

[
1− ci∆τ +

ai∆τ/∆xi+1 + ai∆τ/∆xi
(∆xi+1 + ∆xi)/2

− bi∆τ

∆xi

]
+ un+1

i+1

[
− ai∆τ/∆xi+1

(∆xi+1 + ∆xi)/2

]
⇒ uni = −αbi∆τun+1

i−1 +
[
1 + (αbi + βbi − ci)∆τ

]
un+1
i − βbi∆τun+1

i+1 ,

where, as for the explicit case:

αbi = ai/ [∆xi(∆xi+1 + ∆xi)/2]− bi/ [∆xi]

βbi = ai/ [∆xi+1(∆xi+1 + ∆xi)/2] .
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5.1.7 Upstream Weighting

As pointed out above, when we use central difference approximations, we can get negative
coefficients. This happens when the magnitude of b gets relatively large—this will occur for
extreme values on our grid. As the interest rate gets very high, the drift will become more
and more negative, and as the interest rate gets very low, the drift becomes more positive.
We can avoid negative coefficients by switching to backward or forward differences. This
“upstream weighting” is described in the following algorithm:

/∗ D e f i n i t i o n o f upstream weight ing ∗/
i n t i ;
f o r ( i = 0 ; i < n ; i++)
{

i f ( a lpha forward [ i ] >= 0 && beta forward [ i ] >= 0)
{

alpha upstream [ i ] = a lpha forward [ i ] ;
beta upstream [ i ] = beta forward [ i ] ;

}
e l s e
{

alpha upstream [ i ] = alpha backward [ i ] ;
beta upstream [ i ] = beta backward [ i ] ;

}
}
/∗ Choice o f c e n t r a l or upstream ∗/
f o r ( i =0; i<n ; i++)
{

i f ( a l p h a c e n t r a l [ i ] >= 0 && b e t a c e n t r a l [ i ] >= 0)
{

alpha [ i ] = a l p h a c e n t r a l [ i ] ;
beta [ i ] = b e t a c e n t r a l [ i ] ;

}
e l s e
{

alpha [ i ] = alpha upstream [ i ] ;
beta [ i ] = beta upstream [ i ] ;

}
}

30



In other words, we start with central weighting at all nodes, and switch to upstream
weighting at a node if a discrete coefficient at that node is negative.

5.1.8 Summary of Implicit and Explicit Schemes

From now on, we will use the coefficients αi and βi with the understanding the central/up-
stream weighting has been selected so that these coefficients are non-negative. With this
in mind, we can write an explicit method in the form:

un+1
i = αi∆τu

n
i−1 + [1− (αi + βi − ci)∆τ ]uni + βi∆τu

n
i+1.

Similarly, an implicit scheme is defined as:

uni = −αi∆τun+1
i−1 + [1 + (αi + βi − ci)∆τ ]un+1

i − βi∆τun+1
i+1 .

We can take a weighted average of these two methods:

(1− θ)[un+1
i − uni ] = (1− θ)

{
αi∆τu

n
i−1 + [−(αi + βi − ci)∆τ ]uni + βi∆τu

n
i+1

}
+θ[un+1

i − uni ] + θ
{
αi∆τu

n+1
i−1 − [(αi + βi − ci)∆τ ]un+1

i βi∆τ
n+1
i+1

}
.

Choosing θ = 0 gives the explicit scheme and setting θ = 1 gives us the implicit scheme.
A Crank-Nicolson method results from the choice of θ = 1/2.

We can rewrite the above scheme in the form:

− αiθ∆τun+1
i−1 + [1 + (αi + βi − ci)θ∆τ ]un+1

i − βiθ∆τun+1
i+1 =

αi(1− θ)∆τuni−1 + [1− (αi + βi − ci)(1− θ)∆τ ]uni + βi(1− θ)∆τuni+1.

This can be written in matrix form as:

[I + θA∆τ ]un+1 = [I − (1− θ)A∆τ ]un, (5.3)

where the i-th row of the tridiagonal matrix A is given by

[A]i = [. . . ,−αi, (αi + βi − ci), − βi, . . .] .
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5.1.9 M-Matrices

It will turn out that a monotonicity property will be a desirable feature for our numerical
scheme. In matrix form, this property is related to the concept of an M-matrix. A matrix
B is an M-matrix if

• diag(B) > 0;

• offdiag(B) ≤ 0;

• rowsum(B) > 0.

If B is an M-matrix, then

• B−1 ≥ 0;

• diag(B−1) > 0.

In other words, B−1 is a matrix which has nonnegative entries. Moreover the diagonal
entries of B−1 are strictly positive.

Consider the fully implicit case where θ = 1, so that

[I + A∆τ ]un+1 = un ⇒ un+1 = [I + A∆τ ]−1un.

In this case, we would like [I + A∆τ ] to be an M-matrix. The use of upstream weighting
guarantees that αi and βi are nonnegative, and ci is just minus one times the rate of interest
(which is assumed to be nonnegative). Therefore, [I + A∆t] is an M-matrix.

5.1.10 Boundary Conditions

The discussion thus far has focussed just on interior nodes, ignoring boundary conditions.
Although the payoff will generate an initial condition u0

i , i = 1, . . . , N , we also need to
consider the specification of boundary behaviour at the extreme edges of our computational
domain, i.e. un1 and unN for all time levels n. In order to incorporate the effects of boundary
conditions, we should consider several cases:

Case 1: Suppose that we are given Dirichlet conditions at xmin = x1 and xmax = xN . This
just involves specifying u1 = u∗1 and uN = u∗N , where u∗1 and u∗N are given values. This
means that the first and last rows of A are identically zero, so I+A∆t will be an M-matrix.
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Case 2: If a(x) = b(x) = 0 at x1 then the PDE will reduce to c(x)u = uτ at x1. An
example of this is the Black-Scholes equation for equity options. When we use an explicit
scheme (for i = 1) we will have:

un+1
i − uni

∆τ
= ciu

n
i

un+1
i = uni [1 + ci∆τ ].

Simlarly, for an implicit scheme (at i = 1) we get:

un+1
i − uni

∆τ
= ciu

n+1
i

un+1
i [1− ci∆τ ] = uni

The first row of A becomes −c1 ≥ 0 on the diagonal, and so [I + A∆t] is an M-matrix.

Case 3: Assume a(x) = c(x) = 0, b(x) > 0 at x1, so that our PDE becomes b(x)ux = uτ
at x1. An example of this is the CIR model. (Note that this does ignore some subtle issues
about whether this boundary is attainable, see [14] for further discussion). We will use a
one-sided (forward) difference for the ux term.

With an explicit scheme (for i = 1) we will have:

un+1
i − uni

∆τ
= bi

[
uni+1 − uni

∆xi+1

]
,

so

un+1
i = uni

[
1− bi∆τ

∆xi+1

]
+ uni+1

[
bi∆τ

∆xi+1

]
⇒ un+1

i = [1− γi∆τ ]uni + γi∆τu
n
i+1,

where

γi =
bi∆τ

∆xi+1

.

Similarly, for an implicit scheme (at i = 1) we get:

un+1
i − uni

∆τ
= bi

[
un+1
i+1 − un+1

i

∆xi+1

]
,
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so

uni = un+1
i

[
1 +

bi∆τ

∆xi+1

]
− un+1

i+1

[
bi∆τ

∆xi+1

]
⇒ uni = [1 + γi∆τ ]un+1

i − γi∆τun+1
i+1 ,

where, as for the explicit case:

γi =
bi∆τ

∆xi+1

The first row of A has γ1 > 0 on the diagonal and −γ1 on the upper off-diagonal, and so
[I + A∆t] is an M-matrix.

Case 4: Assume a(x), b(x), c(x) 6= 0 at x1. The PDE remains a(x)uxx+ b(x)ux+ c(x)u =
uτ . An example of this is the case of quadratic term structure models, where the drift
b(x1) > 0 and b(x1) � a(x1) (recall that the drift term in these models contains a term
involving 1/x, so we cannot have x1 = 0, but the first order term will get larger and
larger as x1 → 0). We can use one-sided difference approximations, as follows. The nodes
to be used are ui, ui+1, ui+2 (with i = 1), and the grid spacing is ∆xi+1 = xi+1 − xi,
∆xi+2 = xi+2 − xi+1. We can use Taylor’s series expansions to write:

ui+1 = ui + (ux)i∆xi+1 + (uxx)i
∆x2

i+1

2
+ · · ·

ui+2 = ui + (ux)i [∆xi+1 + ∆xi+2] + (uxx)i
[∆xi+1 + ∆xi+2]2

2
+ · · · .

We can just use a forward difference to approximate the first derivative:

(ux)i =
ui+1 − ui

∆xi+1

.

To approximate the second derivative, rewrite the equations above (ignoring higher order
terms) as:

ui+1 − ui
∆xi+1

= (ux)i + (uxx)i
∆xi+1

2

ui+2 − ui
∆xi+1 + ∆xi+2

= (ux)i + (uxx)i
[∆xi+1 + ∆xi+2]

2
.
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Subtract the first equation from the second to get:

ui+2 − ui
∆xi+2 + ∆xi+1

− ui+1 − ui
∆xi+1

= (uxx)i

[
∆xi+1 + ∆xi+2

2
− ∆xi+1

2

]
= (uxx)i

[
∆xi+2

2

]
.

This gives the second derivative as:

(uxx)i =
ui+2 − ui

∆xi+2 [∆xi+1 + ∆xi+2] /2
− ui+1 − ui

∆xi+2∆xi+1/2
.

For an explicit scheme we have:

un+1
i − uni

∆τ
= ai

[
uni+2 − uni

∆xi+2 [∆xi+1 + ∆xi+2] /2
−

uni+1 − uni
∆xi+2∆xi+1/2

]
+ bi

[
uni+1 − uni

∆xi+1

]
+ ciu

n
i ,

so

un+1
i = uni

[
1 + ci∆τ −

ai∆τ

∆xi+2 [∆xi+1 + ∆xi+2] /2
+

ai∆τ

∆xi+2∆xi+1/2
− bi∆τ

∆xi+1

]
+ uni+1

[
bi∆τ

∆xi+1

− ai∆τ

∆xi+2∆xi+1/2

]
+ uni+2

[
ai∆τ

∆xi+2 [∆xi+1 + ∆xi+2] /2

]
⇒ un+1

i = uni [1− (γi + δi − ci)∆τ ] + γi∆τu
n
i+1 + δi∆τu

n
i+2,

where

γi =
bi

∆xi+1

− ai
∆xi+2∆xi+1/2

δi =
ai

∆xi+2 [∆xi+1 + ∆xi+2] /2
.

Similarly, for an implicit scheme:

un+1
i − uni

∆τ
= ai

[
un+1
i+2 − un+1

i

∆xi+2 [∆xi+1 + ∆xi+2] /2
−

un+1
i+1 − un+1

i

∆xi+2∆xi+1/2

]
+ bi

[
un+1
i+1 − un+1

i

∆xi+1

]
+ ciu

n+1
i ,
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so

uni = un+1
i

[
1− ci∆τ +

ai∆t

∆xi+2 [∆xi+1 + ∆xi+2] /2
− ai∆τ

∆xi+2∆xi+1/2
+

bi∆τ

∆xi+1

]
+ un+1

i+1

[
− bi∆τ

∆xi+1

+
ai∆τ

∆xi+2∆xi+1/2

]
+ un+2

i+2

[
− ai∆τ

∆xi+2 [∆xi+1 + ∆xi+2] /2

]
⇒ uni = un+1

i [1 + (γi + δi − ci)∆τ ]− γi∆τuni+1 − δi∆τuni+2

where, as for the explicit case:

γi =
bi

∆xi+1

− ai
∆xi+2∆xi+1/2

δi =
ai

∆xi+2 [∆xi+1 + ∆xi+2] /2
.

The first row of A has γ1 + δ1− c1 on the main diagonal, and all of these terms are positive
since b1 � a1, γ1 > 0.1 The first term to the right of the diagonal is −γ1 and the second
one is −δ1, so [I + A∆τ ] is an M-matrix. However, it is no longer tridiagonal.

If desired, tridiagonality can be restored as follows. The first two equations of the linear
system for the general Crank-Nicolson scheme are:

[1 + (γ1 + δ1 − c1)θ∆τ ]un+1
1 − γ1θ∆τu

n+1
2 − δ1θ∆τu

n+1
3 = y1

−α2θ∆τu
n+1
1 + [1 + (α2 + β2 − c2)θ∆τ ]un+1

2 − β2θ∆τu
n+1
3 = y2,

where

y1 = [1− (γ1 + δ1 − c1)(1− θ)∆τ ]un1 + γ1(1− θ)∆τun2 + δ1(1− θ)∆τun3
y2 = α2(1− θ)∆τun1 + [1− (α2 + β2 − c2)(1− θ)∆τ ]un2 + β2(1− θ)∆τun3 .

1More accurately, the terms might not all be positive, because γi depends on the grid spacing. However,
if necessary we can change the grid spacing so that the terms are positive.

36



Take the first equation and subtract δ1/β2 times the second equation to get:[
1 + (γ1 + δ1 − c1)θ∆τ +

δ1

β2

α2θ∆τ

]
un+1

1

+

[
−γ1θ∆t−

δ1

β2

(1 + (α2 + β2 − c2)θ∆t)

]
un+1

2

+

[
−δ1θ∆t−

δ1

β2

β2θ∆t

]
︸ ︷︷ ︸

0

un+1
3 = y1 −

δ1

β2

y2.

Case 5: a(x), b(x), c(x) 6= 0 at xN = xmax. This can be used in mean-reverting cases
(CIR, quadratic term structure) when b(xN) < 0 and −b(xN) � a(xN) (so that the PDE
is essentially hyperbolic). We can use one-sided difference approximations, as follows. The
nodes to be used are ui, ui−1, ui−2 (with i = N), and the grid spacing is ∆xi = xi − xi−1,
∆xi−1 = xi−1 − xi−2. Taylor’s series expansions give:

ui−1 = ui − (ux)i∆xi + (uxx)i
∆x2

i

2
+ · · ·

ui−2 = ui − (ux)i [∆xi + ∆xi−1] + (uxx)i
[∆xi + ∆xi−1]2

2
+ · · · .

To approximate the first derivative, use a backward difference:

(ux)i =
ui − ui−1

∆xi
.

For the second derivative, rewrite the equations above (ignoring higher order terms) as:

ui − ui−1

∆xi
= (ux)i − (uxx)i

∆xi
2

ui − ui−2

∆xi + ∆xi−1

= (ux)i − (uxx)i
[∆xi + ∆xi−1]

2

Subtract the first equation from the second:

ui − ui−2

∆xi + ∆xi−1

− ui − ui−1

∆xi
= −(uxx)i

[
∆xi + ∆xi−1

2
− ∆xi

2

]
= −(uxx)i

[
∆xi−1

2

]
.
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This gives an approximation to the second derivative as:

(uxx)i =
ui−2 − ui

∆xi−1 [∆xi + ∆xi−1] /2
− ui−1 − ui

∆xi−1∆xi/2
.

For an explicit scheme we will have:

un+1
i − uni

∆τ
= ai

[
uni−2 − uni

∆xi−1 [∆xi + ∆xi−1] /2
−

uni−1 − uni
∆xi−1∆xi/2

]
+ bi

[
uni − uni−1

∆xi

]
+ ciu

n
i ,

so

un+1
i = uni−2

[
ai∆τ

∆xi−1 [∆xi + ∆xi−1] /2

]
+ uni−1

[
−bi∆τ

∆xi
− ai∆τ

∆xi−1∆xi/2

]
+ uni

[
1 + ci∆τ −

ai∆τ

∆xi−1 [∆xi + ∆xi−1] /2
+

ai∆τ

∆xi−1∆xi/2
+
bi∆t

∆xi

]
⇒ un+1

i = δi∆τu
n
i−2 + γi∆τu

n
i−1 + uni [1− (γi + δi − ci)∆τ ] ,

where

δi =
ai∆τ

∆xi−1 [∆xi + ∆xi−1] /2

γi =
−bi∆t
∆xi

− ai∆τ

∆xi−1∆xi/2
.

Similarly, for an implicit scheme we get:

un+1
i − uni

∆τ
= ai

[
un+1
i−2 − un+1

i

∆xi−1 [∆xi + ∆xi−1] /2
−
un+1
i−1 − un+1

i

∆xi−1∆xi/2

]
+ bi

[
un+1
i − un+1

i−1

∆xi

]
+ ciu

n+1
i ,

so

uni = un+1
i−2

[
− ai∆τ

∆xi−1 [∆xi + ∆xi−1] /2

]
+ un+1

i−1

[
bi∆τ

∆xi
+

ai∆τ

∆xi−1∆xi/2

]
+ un+1

i

[
1− ci∆τ +

ai∆τ

∆xi−1 [∆xi + ∆xi−1] /2
− ai∆τ

∆xi−1∆xi/2
− bi∆τ

∆xi

]
⇒ uni = −δi∆τun+1

i−2 − γi∆τun+1
i−1 + un+1

i [1 + (γi + δi − ci)∆τ ] ,
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where, as for the explicit case:

γi =
−bi∆τ

∆xi
− ai∆τ

∆xi−1∆xi/2

δi =
ai∆τ

∆xi−1 [∆xi + ∆xi−1] /2
.

The last row of A has γN +δN−cN on the main diagonal, and all of these terms are positive
since bN < 0 and −bN � aN .2 The term to the left is −γN and the second one is −δN , so
I + A∆t is an M-matrix. However, it is no longer tridiagonal.

If desired, tridiagonality can be restored as follows. The last two equations of the linear
system (for the general Crank-Nicolson scheme) are:

−αN−1θ∆τu
n+1
N−2 + [1 + (αN−1 + βN−1 − cN−1)θ∆τ ]un+1

N−1 − βN−1θ∆τu
n+1
N = yN−1

−δNθ∆τun+1
N−2 − γNθ∆τu

n+1
N−1 + [1 + (γN + δN − cN)θ∆τ ]un+1

N = yN ,

where

yN−1 = αN−1(1− θ)∆τunN−2 + [1− (αN−1 + βN−1 − cN−1)(1− θ)∆τ ]unN−1

+ βN−1(1− θ)∆τunN
yN = δN(1− θ)∆τunN−2 + γN(1− θ)∆τunN−1 + [1− (γN + δN − cN)(1− θ)∆τ ]unN .

Subtract δN/αN−1 times the first equation from the second equation to get:[
−δNθ∆τ +

δN
αN−1

αN−1θ∆τ

]
︸ ︷︷ ︸

0

un+1
N−2+

[
−γNθ∆τ −

δN
αN−1

(1 + (αN−1 + βN−1 − cN−1)θ∆τ)

]
un+1
N−1+[

1 + (γN + δN − cN)θ∆τ +
δN
αN−1

βN−1θ∆τ

]
un+1
N = yN −

δN
αN−1

yN−1.

2As with the previous case, it is more accurate to note that the terms might not all be positive because
γi depends on the grid spacing. If necessary, however, the spacing can be changed so that all of the terms
are positive.
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5.1.11 Stability and Monotonicity Considerations

Much of the discussion above has focussed on coefficients being positive, M-matrices, etc.
Here we give an informal discussion as to why this matters. For simplicity, we will ignore
boundary conditions here. Recall that an explicit method can be written as

un+1
i = αi∆τu

n
i−1 + [1− (αi + βi − ci)∆τ)]uni + βi∆τu

n
i+1.

Assuming that we have used upstream weighting, then αi ≥ 0 and βi ≥ 0. If we make the
further assumption that ∆τ is small enough that 1− (αi + βi − ci)∆τ ≥ 0, then∣∣un+1

i

∣∣ ≤ αi∆τ
∣∣uni−n∣∣+ [1− (αi + βi − ci)] |unn|+ βi∆τ

∣∣uni+1

∣∣ .
Let ‖un‖ be the maximum value of uni across all nodes i, and substitute in the above to
get ∣∣un+1

i

∣∣ ≤ ‖un‖ (1 + ci)∆τ ≤ ‖un‖ .

Since this will hold for any i, we have∥∥un+1
∥∥ ≤ ‖un‖ .

Assuming that the initial condition u0 and boundary conditions are bounded, this means
that our method will be stable, so that small errors will not become very large over time.
Note that this requires that ∆τ be sufficiently small.

Now consider a fully implicit method

un+1
i [1 + (αi + βi − ci)∆τ ] = αi∆τu

n+1
i−1 + uni + βi∆τu

n
i+1,

so ∣∣un+1
i

∣∣ [1 + (αi + βi − ci)] ≤ αi∆τ
∣∣uni−1

∣∣+ |uni |+ βi∆τ
∣∣uni+1

∣∣
≤ ‖un‖+ (αi + βi)∆τ

∥∥un+1
∥∥ .

Let j be the index for which
∣∣un+1
i

∣∣ attains its maximum value. Then∥∥un+1
∥∥ [1 + (αj + βj − cj)∆τ ] ≤ ‖un‖+ (αj + βj)∆τ

∥∥un+1
∥∥

⇒
∥∥un+1

∥∥ (1− cj∆τ) ≤ ‖un‖

⇒
∥∥un+1

∥∥ ≤ ‖un‖
1− cj∆τ

≤ ‖un‖ ,
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showing that a fully implicit method is unconditionally stable (i.e. there is no time step
size restriction). More sophisticated methods can be used to show that Crank-Nicolson
schemes are also unconditionally stable.

Moreover, we can write an implicit method in the form

un+1
i =

αi∆τu
n+1
i−1 + uni + βi∆τu

n+1
i+1

1 + (αi + βi − ci)∆τ
.

The coefficients multiplying the terms on the right hand side are all non-negative and add
up to a number that is at most one (assuming r = −c ≥ 0). We will refer to this property
as being a “positive coefficient discretization”. This is important because it implies that
the values of un+1

i are bounded by the maximum and minimum values of the nodes on
either side of i at the new time step and the value of uni . This means that our numerical
solution will be free of any spurious oscillations, which is a very desirable feature. In matrix
form, the counterpart to a positive coefficient scheme is an M-matrix. It is important to
note that an explicit scheme will also be a positive coefficient scheme, provided that the
time step stability limitation is satisfied. However, because Crank-Nicolson is an average
of explicit and implicit schemes, it is not a positive coefficient discretization unless the
time step size is less than double the maximum stable explicit time step size.

In the following, we will ignore explicit methods due to the time step size stability
restriction. However, there are advantages and disadvantages to Crank-Nicolson and fully
implicit, so we will consider both of them. In particular, Crank-Nicolson methods are un-
conditionally stable and second order accurate in time, but not positive coefficient, whereas
fully implicit schemes are unconditionally stable and positive coefficient, but only first or-
der accurate in time. We want to use Crank-Nicolson to exploit its higher convergence
rate, but there are times when this can be costly. The fact that it is not positive coefficient
means that spurious oscillations can form in our numerical solution, making it less accurate
and slowing down our rate of convergence.

5.2 Numerical Solution in the Presence of Jumps

Remember that as we showed in Chapter 4, the bond pricing equation (4.11) in the presence
of jumps has the following form:

F T
t +

1

2
σ2F T

rr + (µ− λWσ)F T
r − (r + λ∗)F T + λ∗

∫ ∞
0

p{j(t)}F T (j(t)r, t)dj(t) = 0. (5.4)
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All terms which do not involve the integral will to be handled according to the methods
described for the no-jump case in Section 5.1. The methods used here for the jump in-
tegral closely follow those developed in [13]. In order to discretize the new integral term
in equation 5.4, we will transform it into a correlation integral. This allows us to use
computationally efficient Fast Fourier Transform (FFT) techniques. Let

I(r) =

∫ ∞
0

p{j(t)}F T (j(t)r, t)dj(t),

or, more compactly,

I(r) =

∫ ∞
0

p{j}F T (jr)dj.

Using the change of variables

y = log(jr), j =
exp(y)

r
, and dj =

exp(y)

r
dy, (5.5)

we obtain:

I =

∫ ∞
−∞

F T (exp(y))p

(
exp(y)

r

)
exp(y)

r
dy. (5.6)

Now let f(u) = p(u)u. Hence equation (5.6) becomes:

I =

∫ ∞
−∞

F T (exp(y))f

(
exp(y)

r

)
dy. (5.7)

Let x = log(r), F̄ T (x, τ) = F T (exp(x), τ) = F T (r, τ), and f̄(log y) = f(y). By substituting
into equation (5.7), we have:

I =

∫ ∞
−∞

F̄ T (y)f̄(y − log(r))dy

=

∫ ∞
−∞

F̄ T (y)f̄(y − x)dy

=

∫ ∞
−∞

F̄ T (x+ y)f̄(y)dy. (5.8)

Note that f̄(x) is the probability density function of a jump of size x = log(j). As shown
in [33], equation 5.8 corresponds to the correlation product ⊗̄ of F̄ (y) and f̄(y). This can
be written as:

I = F̄ ⊗̄f̄ (5.9)
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Recall that the correlation integral is defined as

I(x) =

∫ ∞
−∞

F̄ (x+ y)f̄(y)dy. (5.10)

Now let

xi = xmin + i∆x

∆x =
xmax − xmin

N − 1
,

where xmin = log(rmin) and xmax = log(rmax). rmax is the largest value of r on the grid,
while rmin is a point selected near r = 0. Let

Ii = I(xmin + i∆x) i = 0, . . . , N − 1

F̄i = F̄ (xmin + i∆x) i = 0, . . . , N − 1,

and

f̄j =

∫ xj+∆x/2

xj−∆x/2

f̄(x)dx

xj = j∆x, j = −N/2 + 1, . . . , N/2. (5.11)

The correlation integral is then approximated by:

Ii =

j=N/2∑
j=−N/2+1

F̄i+j f̄j∆y. (5.12)

where ∆y = ∆x. Note that in equation (5.12), there is an approximation error of order
(∆y)2. Moreover, we have assumed that the number of points N on this log-spaced grid
is large enough so that f [±(N/2)∆y] ' 0. The next step is to write equation (5.12) in a
way that is suitable for evaluation using FFT methods. Begin by breaking it up into two
parts:

Ii =
−1∑

j=−N/2+1

F̄i+j f̄j∆y +

N/2∑
j=0

F̄i+j f̄j∆y. (5.13)

Concentrating on the sum over values where j < 0, we can write:

−1∑
j=−N/2+1

F̄i+j f̄j∆y =
N−1∑

k=N/2+1

F̄i+k−N f̄k−N∆y (5.14)
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by letting k = j+N . FFT methods effectively assume that the input data is periodic. We
therefore need to consider a periodic extension to F̄j:

F̄j−N = F̄j+N = F̄j. (5.15)

We also need to define

f̄ ′ =

{
f̄i for i = 0, . . . , N/2

f̄i−N for i = N/2 + 1, . . . N − 1
. (5.16)

Then we can express equation (5.14) in the form:

N−1∑
k=N/2+1

F̄i+k−N f̄k−N∆y =
N−1∑

j=N/2+1

F̄j+kf̄
′
j∆y. (5.17)

This means that by combining (5.14) and (5.17) we have:

−1∑
j=N/2+1

F̄i+j f̄j∆y =
N−1∑

j=N/2+1

F̄i+j f̄
′
j∆y, (5.18)

and equation (5.12) can be written in the form:

Ii =
N−1∑
j=0

F̄i+j f̄
′
j∆y, (5.19)

which is in the standard form for use in an FFT routine.

Three issues need to be considered at this point, however. First, the input data is
not periodic, but we have assumed that it is. This can cause “wrap-around pollution”.
Following [13], this issue can be addressed by defining three regions for our original grid in
r-space. For large values of r, we extend the grid past our original value rmax to some new
value rextended. Recall also that we have selected some point rmin as a point near r = 0.
Values near the extremes of the grid (i.e. above rmax and below rmin will be most affected
by wrap-around. In these regions, we will assume that the jump intensity λ∗ = 0, and
discard any computed values of the integral. In other words:

• In the region below rmin, suppress jumps by setting λ∗ = 0.

• In the region above rmax, suppress jumps by setting λ∗ = 0.
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• In the region, between rmin and rmax, use the FFT approach described here to evaluate
the jump integral.

The second issue to be addressed is the fact that we have two different grids: an
unevenly-spaced grid for r, and an evenly-spaced grid for log(r). The r grid is efficient
for the parts of equation (5.4) that do not involve jumps, but the FFT requires an evenly
spaced (log) grid. Again following [13], we simply use interpolation as required to go back
and forth between these two grids.

The third issue is that, as noted in [13], using an implicit method involves a nonlinear
iterative scheme. A detailed discussion of the stability and convergence of this type of
approach to handling the jump integral term can be found in [13].
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Chapter 6

Numerical Tests

This chapter provides a series of tests to evaluate the performance of the numerical al-
gorithms described above in Chapter 5. Our focus is on two simple types of contracts:
pure discount (i.e. zero coupon) bonds and European call options on these bonds. From
these call options, European put option values can easily be obtained using put-call parity.
Moreover, these contracts serve as basic building blocks for a wide variety of interest rate
derivative contracts [21]. For example, coupon-paying bonds are just portfolios of pure
discount bonds. Interest rate caps and collars are portfolios of European bond options.
Interest rate swaps effectively involve the exchange of fixed rate coupon bonds for floating
rate bonds. (Floating rate bonds have coupon rates that are reset periodically so that
the bonds are worth their par values, so these are easy to value.) Options to enter swaps
(“swaptions”) are just options to exchange fixed and floating rate bonds.

The tests will proceed as follows. First, we consider three models in the absence of
jumps in the context of pure discount bonds. Following this, we will examine the pricing
of European call options. The models used are the CIR [11], CKLS [8], and nonlinear drift
(QTS) [3] models. The evolution of the short rate under each of these models is shown in
Table 6.1, along with the values of the input parameters. In order to provide a fair basis
for comparison of the pricing results across the models, the input parameters chosen are
approximately equal to those estimated for each of the models in [3], using monthly U.S.
Federal Funds interest rate data from 1963 to 1998. The reason for this choice is that this
is one of the only studies available which has estimated the parameters of each of these
models using the same data set. Note that we will not be using different values of γ, rather
we just keep the value of 0.5 in the CIR case and 1.5 in the other two models, as in [3].
Also note that the parameters shown were estimated under the P measure. Recall from
Chapter 3 that our pricing PDE includes an adjustment from the P measure to the Q
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Model Short Rate Evolution (P measure) Parameters
CIR dr = (α + βr)dt+ σrγdW (t) α = .014, β = .20, σ = .065, γ = .5
CKLS dr = (α + βr)dt+ σrγdW (t) α = .0085, β = .10, σ = .80, γ = 1.5
QTS dr = (a−1/r + a0 + a1r + a2r

2)dt a−1 = .001, a0 = −.035, a1 = .70,
+ σrγdW (t) a2 = −4.00, σ = .80, γ = 1.50

Table 6.1: Short rate evolution and input parameters for the various models.

measure which involves adding a term involving the market price of risk λW . This will end
up changing the effective drift of the different models. For simplicity, we will set λW = 0
throughout. For each test, we start with an initial grid for r and a specified number of time
steps per year. We then examine the convergence of our calculated values as the initial
r-grid is refined by inserting new nodes midway between existing nodes and the number of
time steps per year is doubled (i.e. the time step size is divided by two). Having examined
bond prices and bond option prices in the no-jump context, we then repeat the numerical
tests for bond and bond-option prices in the jump-diffusion context.

6.1 Bond Prices Without Jumps

For the numerical tests presented here, we used the following unevenly-spaced grid with
43 nodes for the short rate r:

0.0, .001, .01, .02, .03, .035, .04, .045,

.05, .052, .054, .056, .058, .06, .062, .064,

.066, .068, .07, .072, .074, .076, .078, .08,

.084, .088, .092, .096, .10, .105, .11, .115,

.12, .13, .14, .16, .18, .20, .24, .28, .35, .50, .75

Note that, for the QTS model, due to the a−1/r term we replaced the first grid point of
0 by 0.0001. We will report calculated bond prices for three different current levels of the
short rate (r = .04, r = .07, and r = .10), and three different bond maturities (1 year, 5
years, and 10 years).

We begin by considering the CIR model. In this case, we have an analytic solution
available, as indicated in equation (3.18). Table 6.2 reports the analytic values for the
cases to be considered here. In other cases, such analytic solutions will not be available,
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r 1-year maturity 5-year maturity 10-year maturity
4% 0.958118 0.776373 0.571187
7% 0.932433 0.706853 0.503394
10% 0.907438 0.643557 0.443648

Table 6.2: Analytic bond prices for the CIR model.

r = .04 r = .07 r = .10
Standard Standard Standard

Maturity Value error Value error Value error
1 year .958124 .000021 .932443 .000027 .907450 .000031
5 years .776331 .000155 .706822 .000173 .643538 .000181
10 years .571276 .000252 .503491 .000256 .443748 .000252

Table 6.3: Monte Carlo simulation of bond prices for the CIR model. The values reported
are based on 100,000 simulations with 100 time steps per year.

so as a further check we calculate bond prices using Monte Carlo simulation. We report
these values for the CIR model in Table 6.3. These prices are calculated using 100,000
simulation runs with 100 time steps per year. A comparison of Tables 6.2 and 6.3 shows
that the Monte Carlo numbers are quite accurate, closely corresponding to the analytic
solutions with small standard errors. Based on this, our Monte Carlo results for other cases
reported below will use the same number of simulation runs and time steps as here.

Bond values calculated using our PDE algorithm for the fully implicit and Crank-
Nicolson cases are reported in Table 6.4. The first two columns of the table report the
number of grid nodes and time steps per year. The next three columns contain the cal-
culated bond value, its change (the absolute value of the difference between the value at
the current grid refinement and the previous grid refinement), and its ratio (the ratio of
successive changes) for the case of r = 4%. Note that the change is calculated using more
digits than is reported in the table for the value. The remaining columns of the table
repeat this for the cases of r = 7% and r = 10%. To interpret the ratio numbers, note
that with first order (i.e. linear) convergence, we should expect to see a ratio of around 2,
since doubling the number of time-steps and grid points reduces our computational error
by a factor of two. With second order (i.e. quadratic) convergence, doubling the number of
time-steps and grid points will reduce the error by a factor of four, so the ratio should be
4. As can be seen from Table 6.4, the reported values are consistent with the expected first
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order convergence for the fully implicit method. We also observe approximate quadratic
convergence for the Crank-Nicolson method in all cases. A comparison with the analytic
values from Table 6.2 shows that our PDE algorithm results are quite accurate. Figure 6.1
plots the PDE solution surface over the entire ten year horizon and across the entire grid
of interest rate values.1 As to be expected, the solution starts off at a value of 1 for all
values of r and declines throughout the entire 10-year period, with the rate of decline be-
ing steepest for higher values of r. Note that the imposition of boundary conditions using
one-sided derivatives at the extreme high and low values of r has not caused any apparent
problems.

We next consider the CKLS model. In this case, a possible concern arises because our
one-sided boundary condition when r gets large assumes that the drift term is much larger
than the volatility term. Because the drift is linear in r, whereas the volatility involves
r3/2, the assumption we have made is violated. Figure 6.2 plots the solution surface over
the 10-year horizon and shows that the imposition of the one-sided boundary condition in
this case has caused problems. For long enough maturities, the bond price increases with
the short rate, which does not make sense.

1This plot and all subsequent plots are based on the fully implicit approach. This choice was made
mainly because fully implicit is less susceptible to computational problems than Crank-Nicolson since it
is a positive coefficient scheme (in general) whereas Crank-Nicolson is not. This implies that if we see
problems with a fully implicit scheme, they will also be present (and much worse) in a Crank-Nicolson
method. However, problems observed with a Crank-Nicolson approach may not show up in a fully implicit
method. By plotting the fully implicit solution, we therefore have a good sense of whether or not we have
a scheme available which works well across our entire grid.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

1-year maturity bond, fully implicit method
43 50 .957992 .932670 .908069
85 100 .958053 .00006180 .932552 .00011824 .907755 .00031412
169 200 .958085 .00003172 1.94 .932492 .00005929 1.99 .907597 .00015862 1.98
337 400 .958101 .00001607 1.97 .932463 .00002967 1.99 .907517 .00007971 1.99

1-year maturity bond, Crank-Nicolson method
43 50 .958094 .932481 .907562
85 100 .958112 .00001800 .932445 .00003543 .907469 .00009316
169 200 .958116 .00000458 3.93 .932436 .00000887 3.99 .907445 .00002343 3.97
337 400 .958118 .00000116 3.96 .932434 .00000222 3.99 .907439 .00000588 3.98

5-year maturity bond, fully implicit method
43 50 .776640 .707733 .644967
85 100 .776508 .00013120 .707295 .00043876 .644266 .00070112
169 200 .776441 .00006723 1.95 .707074 .00022073 1.98 .643912 .00035362 1.98
337 400 .776407 .00003403 1.97 .706963 .00011000 1.99 .643735 .00017746 1.99

5-year maturity bond, Crank-Nicolson method
43 50 .776376 .706884 .643604
85 100 .776374 .00000172 .706861 .00002347 .643569 .00003482
169 200 .776373 .00000038 4.55 .706855 .00000588 3.99 .643560 .00000875 3.97
337 400 .776373 .00000009 4.15 .706853 .00000147 3.99 .643558 .00000219 3.98

10-year maturity bond, fully implicit method
43 50 .572128 .504555 .444951
85 100 .571666 .00046135 .503979 .00057620 .444305 .00064607
169 200 .571429 .00023766 1.94 .503688 .00029156 1.97 .443977 .00032713 1.97
337 400 .571308 .00012064 1.96 .503541 .00014666 1.98 .443813 .00016461 1.98

10-year maturity bond, Crank-Nicolson method
43 50 .571172 .503401 .443652
85 100 .571183 .00001060 .503396 .00000535 .443649 .00000307
169 200 .571186 .00000277 3.82 .503395 .00000132 4.05 .443648 .00000076 4.06
337 400 .571186 .00000069 3.99 .503394 .00000033 3.99 .443648 .00000019 3.98

Table 6.4: CIR bond prices for PDE methods. Parameters are given in Table 6.1.
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Figure 6.1: Bond price surface for the CIR model. Fully implicit method.
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Figure 6.2: Bond price surface for the CKLS model. Fully implicit method.
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This indicates that our method of imposing a boundary condition at a high value of
r will not work for the CKLS model. One solution would be to extend the grid to much
higher values of r and impose an approximate Dirichlet condition that the bond is worth
zero at such rates. Alternatively, we can modify the volatility specification of the model so
that it does not increase beyond a certain level. For example, we can change the volatility
from σr3/2 to σ[min(r, r̄)]3/2 for some relatively high value of r̄. Of course, r̄ must be low
enough that the drift dominates the volatility in order for this to be consistent with our
approach using one-sided derivatives. Figure 6.3 plots the solution surface for the choice
of r̄ = .15, and shows that our algorithm with capped volatility appears to perform well.
Of course, this will only be an approximation to the actual CKLS model.

Figure 6.3: Bond price surface for the CKLS model, modified volatility. Fully implicit
method.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

1-year maturity bond, fully implicit method
43 50 .958690 .931787 .905691
85 100 .958706 .00001600 .931755 .00003200 .905600 .00009100
169 200 .958707 .00000100 16.00 .931751 .00000400 8.00 .905589 .00001100 8.27
337 400 .958708 .00000100 1.00 .931753 .00000200 2.00 .905587 .00000200 5.50

1-year maturity bond, Crank-Nicolson method
43 50 .958710 .931751 .905586
85 100 .958708 .00000171 .931751 .00000001 .905587 .00000045
169 200 .958707 .00000080 2.14 .931751 .00000000 30.13 .905587 .00000012 3.90
337 400 .958707 .00000018 4.46 .931751 .00000000 1.42 .905587 .00000003 3.90

5-year maturity bond, fully implicit method
43 50 .781190 .696425 .622986
85 100 .781172 .00001800 .696272 .00015300 .622744 0.00024200
169 200 .781170 .00000200 9.00 .696254 .00001800 8.50 .622721 0.00002300 10.52
337 400 .781171 .00000100 2.00 .696252 .00000200 9.00 .622719 0.00000200 11.50

5-year maturity bond, Crank-Nicolson method
43 50 .781303 .696233 .622647
85 100 .781215 .00008750 .696247 .00001427 .622699 .00005206
169 200 .781173 .00004202 2.08 .696251 .00000387 3.68 .622715 .00001558 3.34
337 400 .781171 .00000265 15.86 .696252 .00000108 3.58 .622709 .00000557 2.79

10-year maturity bond, fully implicit method
42 50 .572992 .482203 .411415
85 100 .572883 .00010900 .481987 .00021600 .411397 .0001800
169 200 .572871 .00001200 9.08 .481974 .00001300 16.61 .411398 .00000100 18.00
337 400 .572873 .00000200 6.00 .481973 .00000100 13.00 .411393 .00000500 0.20

10-year maturity bond, Crank-Nicolson method
43 50 .573257 .481892 .411457
85 100 .573006 .00025098 .481942 .00005010 .411346 .00011064
169 200 .572873 .00013275 1.89 .481965 .00002268 2.20 .411390 .00004398 2.51
336 400 .572870 .00000266 49.92 .481971 .00000578 3.92 .411391 .00000130 33.85

Table 6.5: CKLS bond prices for PDE methods. Parameters are given in Table 6.1.

Using this modified volatility approach, we report values for the CKLS model using
the numerical PDE approach in Table 6.5. Compared with Table 6.4 for the CIR model,
we find much more erratic rates of convergence. As we do not have an analytic solution
here, we check the results with Monte Carlo simulations. The simulations also used the
modified volatility. The Monte Carlo values reported in Table 6.6 are generally in very
close agreement with the numerical PDE values, with the exception of the 10-year bond
at an interest rate of 10%.

Next we examine the QTS model. Although this has the same volatility as the CKLS
model of σr3/2, the term in the drift involving r2 makes the drift sufficiently higher than
the volatility (for our parameters) that we do not expect to find the same problems using
one-sided derivatives for high values of r as we did in the CKLS case. Table 6.7 reports
the results, showing more erratic convergence than seen for the CIR case in Table 6.4, but
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r = .04 r = .07 r = .10
Standard Standard Standard

Maturity Value error Value error Value error
1 year .958711 .00001127 .931763 .00002465 .905610 .00004047
5 years .781162 .00010684 .696192 .00018436 .622040 .00025220
10 years .572894 .00021621 .481171 .00029075 .407574 .00034127

Table 6.6: Monte Carlo simulation of bond prices for the CKLS model. The values reported
are based on 100,000 simulations with 100 time steps per year.

better behaviour than observed for the CKLS model in Table 6.5. Monte Carlo results are
provided in Table 6.8, and these are very close to the numerical PDE values. Figure 6.4
illustrates the solution surface over the 10-year horizon, and shows no apparent issues
related to the use of one-sided derivatives near the boundaries of the grid.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

1-year maturity bond, fully implicit method
43 50 .955431 .928529 .903163
85 100 .955527 .00009518 .928539 .00000914 .903094 .00006892
169 200 .955533 .00000635 14.99 .928540 .00000112 8.15 .903085 .00000859 8.02
337 400 .955534 .00000059 10.74 .928540 .00000013 8.91 .903084 .00000107 8.05

1-year maturity bond, Crank-Nicolson method
43 50 .955503 .928541 .903084
85 100 .955536 .00003234 .928540 .00000056 .903084 .00000014
169 200 .955534 .00000147 22.03 .928540 .00000012 4.60 .903084 .00000005 2.64
337 400 .955534 .00000039 3.79 .928540 .00000003 4.02 .903084 .00000001 3.79

5-year maturity bond, fully implicit method
42 50 .727464 .651988 .595897
85 100 .727643 .00017886 .651803 .00018487 .595714 .00018250
169 200 .727620 .00002301 7.77 .651783 .00002064 8.95 .595708 .00000598 30.51
336 400 .727615 .00000543 4.23 .651781 .00000201 10.27 .595711 .00000318 1.87

5-year maturity bond, Crank-Nicolson method
43 50 .727415 .651760 .595565
85 100 .727637 .00022174 .651775 .00001430 .595673 .00010794
169 200 .727619 .00001775 12.49 .651779 .00000432 3.30 .595703 .00003034 3.55
337 400 .727615 .00000477 3.72 .651780 .00000111 3.88 .595711 .00000772 3.92

10-year maturity bond, fully implicit method
43 50 .460206 .398464 .356845
85 100 .460096 .00010997 .398256 .00020836 .356760 .00008530
169 200 .460067 .00002849 3.85 .398250 .00000565 36.87 .356787 .00002759 3.09
337 400 .460065 .00000221 12.91 .398254 .00000403 1.40 .356799 .00001233 2.23

10-year maturity bond, Crank-Nicolson method
43 50 .459830 .398078 .356469
85 100 .460048 .00021899 .398208 .00012910 .356713 .00024379
169 200 .460061 .00001272 17.21 .398244 .00003653 3.53 .356781 .00006868 3.54
337 400 .460064 .00000295 4.31 .398253 .00000930 3.92 .356799 .00001746 3.93

Table 6.7: QTS bond prices for PDE methods. Parameters are given in Table 6.1.

r = .04 r = .07 r = .10
Standard Standard Standard

Maturity Value Error Value Error Value Error
1 year .955535 .00001176 .928550 .00002555 .903099 .00003910
5 years .727584 .00012739 .651757 .00017370 .595711 .00019304
10 years .460184 .00020993 .398388 .00021891 .356958 .00021494

Table 6.8: Monte Carlo simulation of bond prices for the QTS model. The values reported
are based on 100,000 simulations with 100 time steps per year.
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Figure 6.4: Bond price surface for the QTS model. Fully implicit method.
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6.2 Bond Option Prices Without Jumps

The next set of numerical tests involve calculating prices of European call options on pure
discount bonds. Two different options were used: a 6-month option on a 1-year bond, and
a 2-year option on a 10-year bond. The general solution method is as follows. Consider the
second case where the maturity of the underlying bond is 10 years. We start off solving
(with time running backwards) for the value of a pure discount bond with a payoff of $1
for all values of r. We let this solution advance for 8 years. This gives us the price, P , of
an 8-year bond. We then apply the call option payoff constraint that the contract value
is max(P −K, 0), where K is the strike price, and solve back for an additional two years.
Figure 6.5 plots the solution surface obtained for one case (the CIR model) using this
procedure. This figure clearly shows the application of the option payoff constraint after
the solution has advanced for 8 years. It also shows that the constraint makes the solution
value zero for all but relatively low values of r on the grid, suggesting that we could try
a grid with fewer nodes than in the cases considered above for the bond price itself. In
fact, we found that using the bond price grid from above frequently gave answers that
were accurate to 6 digits even on the coarsest grid, making it almost impossible to assess
the convergence of the algorithm. Accordingly, we switched to the following initial grid for
these tests:

0, .01, .02, .035, .04, .05, .054, .058, .062,

.066, .07, .074, .078, .084, .092, .10, .11, .12,

.14, .16, .18, .20, .24, .28, .35, .50, .75

As for the bond price case, for the QTS model the lowest node of r = 0 was replaced by
.0001. Finally, the strike price was set at 0.9 in all cases for the option expiring in 6-months,
but was set to different values across the models for the 2-year option. The reason for this
was that the implied eight-year bond prices at the option expiration were quite different,
so setting a fixed strike across all the models lead to some uninteresting cases because the
options were so far out-of-the-money as to be virtually worthless.

In the CIR case, there is an analytic solution available for European call options on
pure discount bonds (see [11] or [21] for details). Table 6.9 provides these values as a basis
for comparison. Note that analytic solutions are not available for either the CKLS or the
QTS case.
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Figure 6.5: Option price surface for the CIR model. Fully implicit method.

6-month call option 2-year call option
r on 2-year bond, K = .90 on 10-year bond, K = .52

4% 0.076576 0.096233
7% 0.063384 0.053236
10% 0.050703 0.023509

Table 6.9: Analytic bond option prices for the CIR model.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

6-month option, 1-year bond, K = 0.90, fully implicit method
27 50 .076565 .063409 .050765
53 100 .076573 .00000810 .063390 .00001920 .050718 .00004670
105 200 .076575 .00000210 3.85 .063385 .00000480 4.00 .050707 .00001170 3.99
209 400 .076576 .00000050 4.20 .063384 .00000120 4.00 .050704 .00000300 3.90

6-month option, 1-year bond, K = 0.90, Crank-Nicolson method
27 50 .076576 .063384 .050701
53 100 .076576 .00000010 .063384 .00000010 .050702 .00000090
105 200 .076576 .00000010 1.00 .063384 .00000004 2.27 .050703 .00000030 3.00
209 400 .076576 .00000010 1.00 .063384 .00000001 4.40 .050703 .00000007 4.28

2-year option, 10-year bond, K = 0.52, fully implicit method
27 50 .096284 .053276 .023307
53 100 .096255 .00002910 .053208 .00006820 .023406 .00009940
105 200 .096223 .00003120 0.93 .053225 .00001740 3.91 .023484 .00007760 1.28
209 400 .096231 .00000730 4.27 .053234 .00000870 2.00 .023504 .00001980 3.91

2-year option, 10-year bond, K = 0.52, Crank-Nicolson method
27 50 .096074 .053123 .023247
53 100 .096202 .00012830 .053188 .00006478 .023398 .00015077
105 200 .096210 .00000832 15.41 .053222 .00003434 1.88 .023483 .00008496 1.77
209 400 .096227 .00001722 0.48 .053233 .00001079 3.18 .023504 .00002065 4.11

Table 6.10: CIR bond option prices for PDE methods. Parameters are given in Table 6.1.

Tables 6.10, 6.11, and 6.12 provide the results respectively for our numerical PDE
approach using the CIR, CKLS (with modified volatility), and QTS models. Overall, two
features stand out from these tables. First, the answers are extremely accurate, as the
solution values change by very small amounts as the grid is refined. In the CIR case,
the 6-month option price under Crank-Nicolson is correct to 6 digits on the coarsest grid.
Second, the estimated convergence rates are quite erratic, particularly for Crank-Nicolson.
This is most likely due to the application of the option payoff constraint. In general, we
would expect that this may lead to uneven convergence in the Crank-Nicolson case because
it is not a monotone scheme. Techniques for remedying this in the equity option context
are discussed in [27], but, given the accuracy of the calculated values, it does not seem
worth investigating the use of such methods here.

As a final point in this option valuation context, it is worth noting that in practice it
can be of considerable importance when pricing bond options to ensure that the model
prices are consistent with a given initial yield curve, i.e. a given set of pure discount bond
prices of different maturities. While a variety of such methods have been discussed in the
literature, one of the most generally applicable techniques is due to Dybvig [16]. While
this is not the main focus here, for sake of completeness we provide an illustration in
Appendix B of how this can be done.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

6-month option, 1-year bond, K = 0.90, fully implicit method
27 50 .077006 .062853 .049284
53 100 .077011 .00000521 .062837 .00001734 .049238 .00004619
105 200 .077011 .00000040 13.09 .062833 .00000237 7.32 .049231 .00000648 7.12
209 400 .077010 .00000059 .67 .062833 .00000039 6.14 .049230 .00000066 9.80

6-month option, 1-year bond, K = 0.90, Crank-Nicolson method
27 50 .077015 .062834 .049232
53 100 .077012 .00000261 .062833 .00000037 .049231 .00000070
105 200 .077011 .00000139 1.87 .062833 .00000025 1.49 .049230 .00000079 0.87
209 400 .077010 .00000071 1.95 .062833 .00000012 2.05 .049230 .00000020 3.97

2-year option, 10-year bond, K = 0.45, fully implicit method
27 50 .157497 .080306 .020160
53 100 .156777 .00072027 .079981 .00032529 .019613 .00054681
105 200 .156465 .00031187 2.30 .079890 .00009077 3.58 .019407 .00020588 2.65
209 400 .156311 .00015385 2.02 .079878 .00001211 7.49 .019407 .00010134 2.03

2-year option, 10-year bond, K = 0.45, Crank-Nicolson method
27 50 .157316 .080067 .019909
53 100 .156754 .00056183 .079951 .00011633 .019581 .00032810
105 200 .156462 .00029194 1.92 .079886 .00006462 1.80 .019401 .00017940 1.82
209 400 .156311 .00015136 1.92 .079878 .00000884 7.30 .019406 .00010134 1.77

Table 6.11: CKLS bond option prices for PDE methods. Parameters are given in Table 6.1.

Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

6-month option, 1-year bond, K = 0.90, fully implicit method
27 50 .074502 .060420 .047501
53 100 .074583 .00008088 .060418 .00000148 .047457 .00004391
105 200 .074592 .00000844 9.58 .060418 .00000037 3.97 .047451 .00000569 7.72
209 400 .074594 .00000205 4.12 .060418 .00000010 3.88 .047451 .00000020 28.42

6-month option, 1-year bond, K = 0.90, Crank-Nicolson method
27 50 .074537 .060420 .047452
53 100 .074587 .00005071 .060418 .00000147 .047451 .00000144
105 200 .074592 .00000476 10.64 .060418 .00000039 3.75 .047450 .00000037 3.93
209 400 .074594 .00000159 3.00 .060418 .00000010 3.96 .047450 .00000020 1.82

2-year option, 10-year bond, K = 0.40, fully implicit method
27 50 .099082 .056645 .033368
53 100 .098563 .00051876 .056295 .00034921 .033196 .00017200
105 200 .098524 .00003967 13.07 .056255 .00004043 8.63 .033168 .00002790 6.16
209 400 .098523 .00000091 43.77 .056253 .00000210 19.27 .033173 .00010134 0.27

2-year option, 10-year bond, K = 0.40, Crank-Nicolson method
27 50 .098668 .056282 .033124
53 100 .098511 .00015709 .056250 .00003246 .033164 .00004030
105 200 .098517 .00000596 26.37 .056249 .00000043 76.31 .033164 .00000040 99.56
209 400 .098522 .00000480 1.24 .056252 .00000293 0.14 .033172 .00010134 .00

Table 6.12: QTS bond option prices for PDE methods. Parameters are given in Table 6.1.
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6.3 Bond Prices Under Jump-Diffusion

We now proceed to conduct further numerical tests, but in the context of jump-diffusion.
The diffusion parameters remain the same as in Table 6.1 for the CIR, CKLS, and QTS
specifications. As for the jump term, we use the same set of parameters across the three
specifications. In particular, we assume that jumps follow a lognormal distribution with
mean µJ = 0 and standard deviation γJ = .05. The jump intensity λJ is assumed to be
25. These parameters are roughly equivalent to those estimated in [24] from 3-month U.S.
Treasury bill data over the time period from 1965 to 1999. As with the market price of
diffusion risk λW , we will assume that jump risk premia (which could affect either the
distribution of jump sizes or the jump intensity) are zero.

The following grid was used to calculate bond prices in the presence of jumps:

0.0000, 0.0050, 0.0100, 0.0150, 0.0200, 0.0250, 0.0300, 0.0325, 0.0350,

0.0375, 0.0400, 0.0425, 0.0450, 0.0475, 0.0500, 0.0525, 0.0550, 0.0575,

0.0600, 0.0625, 0.0650, 0.0675, 0.0700, 0.0725, 0.0750, 0.0775, 0.0800,

0.0825, 0.0850, 0.0875, 0.0900, 0.0925, 0.0950, 0.0975, 0.1000, 0.1025,

0.1050, 0.1075, 0.1100, 0.1150, 0.1200, 0.1250, 0.1300, 0.1350, 0.1400,

0.1500, 0.1600, 0.1800, 0.2100, 0.2500, 0.3000, 0.3500, 0.4000, 0.5000, 0.7500.

As in the no-jump case, due to the presence of a−1/r in the drift term of the QTS model,
we have changed the first grid point to 0.0001 for that model.

Given the lack of analytic solutions to serve as a check on our numerical PIDE approach,
bond prices calculated using Monte Carlo simulation are provided for the CIR, CKLS
(modified volatility), and QTS specifications under jump-diffusion in Tables 6.13, 6.14,
and 6.15 respectively.

Results for the numerical PIDE method are provided in Tables 6.16, 6.17, and 6.18
respectively. Overall, the results are reasonably close to the Monte Carlo estimates, with
slightly higher differences for the longer term bonds. The numbers in the ratio column are
fairly noisy, but this is in large part due to the high accuracy—in many cases, there is very
little change in price as the grid is refined, particularly for the Crank-Nicolson method.
Plots of the bond price solution surfaces over the 10 year horizon are given in Figure 6.6
(CIR), Figure 6.7 (CKLS - modified volatility), and Figure 6.8 (QTS) respectively. Again,
these figures show no apparent problems resulting from the use of one-sided derivatives
near the boundaries of the computational grid.
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r = .04 r = .07 r = .10
Standard Standard Standard

Maturity Value error Value error Value error
1 year .957551 .00002792 .931520 .00003960 .906205 .00005012
5 years .767074 .00021552 .695578 .00025873 .631243 .00028909
10 years .550438 .00035169 .482370 .00037318 .423406 .00038015

Table 6.13: Monte Carlo simulation of bond prices for the CIR model with jumps. The
values reported are based on 100,000 simulations with 100 time steps per year.

r = .04 r = .07 r = .10
Standard Standard Standard

Maturity Value error Value error Value error
1 year .958146 .00002134 .930816 .00003924 .904362 .00005841
5 years .771100 .00020140 .683864 .00029425 .609151 .00036189
10 years .550074 .00037657 .459456 .00044003 .388444 .00047005

Table 6.14: Monte Carlo simulation of bond prices for the CKLS model with jumps. The
values reported are based on 100,000 simulations with 100 time steps per year.

r = .04 r = .07 r = .10
Standard Standard Standard

Maturity Value error Value error Value error
1 year .954825 .00002192 .927684 .00004011 .902194 .00005520
5 years .717934 .00020339 .647045 .00024700 .593781 .00025856
10 years .451173 .00029172 .396345 .00029353 .357719 .00028376

Table 6.15: Monte Carlo simulation of bond prices for the QTS model with jumps. The
values reported are based on 100,000 simulations with 100 time steps per year.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

1-year maturity bond, fully implicit method
55 50 .957505 .931549 .906322
109 100 .957523 .00001773 .931531 .00001769 .906265 .00005689
217 200 .957532 .00000888 2.00 .931522 .00000884 2.00 .906237 .00002851 2.00
433 400 .957536 .00000444 2.00 .931518 .00000442 2.00 .906222 .00001428 2.00

1-year maturity bond, Crank-Nicolson method
55 50 .957541 .931514 .906208
109 100 .957541 .00000005 .931514 .00000001 .906208 .00000022
217 200 .957541 .00000002 3.18 .931514 .00000000 5.71 .906208 .00000007 3.00
433 400 .957541 .00000000 3.86 .931514 .00000000 5.56 .906208 .00000002 3.64

5-year maturity bond, fully implicit method
55 50 .766869 .695413 .631158
109 100 .766846 .00002307 .695305 .00010778 .630938 .00021988
217 200 .766835 .00001100 2.10 .695260 .00004455 2.42 .630870 .00006778 .24
433 400 .766828 .00000609 1.81 .695238 .00002278 1.90 .630835 .00003533 1.92

5-year maturity bond, Crank-Nicolson method
55 50 .766813 .695223 .630853
109 100 .766818 .00000499 .695210 .00001289 .630786 .00006685
217 200 .766821 .00000296 1.69 .695213 .00000269 4.79 .630794 .00000829 8.06
433 400 .766821 .00000089 3.32 .695214 .00000085 3.17 .630797 .00000271 3.06

10-year maturity bond, fully implicit method
55 50 .550285 .482067 .423363
109 100 .550121 .00016421 .481755 .00031191 .422784 .00057908
217 200 .550076 .00004471 3.67 .481697 .00005758 5.42 .422722 .00006222 9.31
433 200 .550052 .00002410 1.86 .481668 .00002905 1.98 .422692 .00002968 2.10

10-year maturity bond, Crank-Nicolson method
55 50 .550061 .481804 .423075
109 100 .550061 .481623 .00018039 .422640 .00043566
217 200 .550020 .00001113 4.69 .481632 .00000820 22.00 .422650 .00000995 43.80
433 400 .550024 .00000383 2.91 .481635 .00000384 2.14 .422656 .00000640 1.55

Table 6.16: CIR-jump bond prices for PIDE methods. Diffusion parameters are given in
Table 6.1. Jump parameters: λJ = 25, µJ = 0, and γJ = .05.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

1-year maturity bond, fully implicit method
55 50 .958081 .930783 .904295
109 100 .958095 .00001427 .930772 .00001083 .904253 .00004262
217 200 .958102 .00000718 1.99 .930767 .00000539 2.01 .904231 .00002130 2.00
433 400 .958106 .00000360 1.99 .930764 .00000269 2.00 .904221 .00001065 2.00

1-year maturity bond, Crank-Nicolson method
55 50 .958111 .930762 .904211
109 100 .958110 .00000087 .930762 .00000031 .904210 .00000043
217 200 .958110 .00000043 2.04 .930762 .00000015 2.09 .904210 .00000021 2.03
433 400 .958110 .00000021 2.01 .930762 .00000007 2.05 .904210 .00000011 2.00

5-year maturity bond, fully implicit method
55 50 .769719 .680423 .602553
109 100 .769640 .00007905 .680290 .00013333 .602275 .00027860
217 200 .769601 .00003851 2.05 .680225 .00006413 2.08 .602149 .00012574 2.22
433 400 .769582 .00001921 2.00 .680194 .00003172 2.02 .602088 .00006125 2.05

5-year maturity bond, Crank-Nicolson method
55 50 .769699 .680240 .602221
109 100 .769630 .00006911 .680199 .00004164 .602109 .00011149
217 200 .769596 .00003373 2.05 .680180 .00001855 2.25 .602066 .00004290 2.60
433 400 .769580 .00001686 2.00 .680171 .00000896 2.07 .602046 .00001990 2.16

10-year maturity bond, fully implicit method
55 50 .543090 .446150 .369431
109 100 .542644 .00044571 .445620 .00053022 .368426 .00100566
217 200 .542438 .00020576 2.17 .445411 .00020898 2.54 .368087 .00033852 2.97
433 400 .542337 .00010114 2.03 .445313 .00009728 2.15 .367940 .00014780 2.29

10-year maturity bond, Crank-Nicolson method
55 50 .542877 .445835 .369058
109 100 .542538 .00033886 .445462 .00037247 .368239 .00081934
217 200 .542385 .00015256 2.22 .445332 .00013037 2.86 .367994 .00024496 3.34
433 400 .542311 .00007455 2.05 .445274 .00005799 2.25 .367893 .00010096 2.43

Table 6.17: CKLS-jump bond prices for PIDE methods. Diffusion parameters are given in
Table 6.1. Jump parameters: λJ = 25, µJ = 0, and γJ = .05.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

1-year maturity bond, fully implicit method
55 50 .954728 .927625 .902188
109 100 .954779 .00005115 .927635 .00001042 .902150 .00003811
217 200 .954801 .00002189 2.34 .927640 .00000499 2.09 .902130 .00001916 1.99
433 400 .954812 .00001098 1.99 .927643 .00000246 2.03 .902121 .00000966 1.98

1-year maturity bond, Crank-Nicolson method
55 50 .954814 .927644 .902110
109 100 .954822 .00000819 .927645 .00000082 .902111 .00000091
217 200 .954822 .00000051 16.03 .927645 .00000014 5.93 .902111 .00000033 2.73
433 400 .954823 .00000028 1.80 .927645 .00000002 8.21 .902111 .00000010 3.50

5-year maturity bond, fully implicit method
55 50 .717534 .646812 .593640
109 100 .717659 .00012510 .646680 .00013245 .593385 .00025497
217 200 .717656 .00000325 38.52 .646626 .00005425 2.44 .593311 .00007460 3.42
433 400 .717655 .00000054 6.05 .646598 .00002708 2.00 .593276 .00003486 2.14

5-year maturity bond, Crank-Nicolson method
55 50 .717534 .646812 .593640
109 100 .717613 .00007941 .646555 .00025767 .593215 .00042557
217 200 .717633 .00001960 4.05 .646563 .00000835 30.85 .593225 .00001069 39.81
433 400 .717644 .00001088 1.80 .646567 .00000423 1.98 .593233 .00000779 1.37

10-year maturity bond, fully implicit method
55 50 .450785 .396223 .357823
109 100 .450698 .00008719 .395900 .00032255 .357391 .00043227
217 200 .450629 .00006888 1.27 .395815 .00008498 3.80 .357307 .00008447 5.12
433 400 .450599 .00002980 2.31 .395779 .00003639 2.34 .357274 .00003230 2.61

10-year maturity bond, Crank-Nicolson method
55 50 .450398 .395842 .357456
109 100 .450504 .00010624 .395709 .00013229 .357207 .00024893
217 200 .450532 .00002787 3.81 .395720 .00001036 12.77 .357215 .00000752 33.12
433 400 .450551 .00001859 1.50 .395731 .00001129 0.92 .357228 .00001370 0.55

Table 6.18: QTS-jump bond prices for PIDE methods. Diffusion parameters are given in
Table 6.1. Jump parameters: λJ = 25, µJ = 0, and γJ = .05.
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Figure 6.6: Bond price surface for the CIR-jump model. Fully implicit method.

Figure 6.7: Bond price surface for the CKLS-jump model. Fully implicit method.
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Figure 6.8: Bond price surface for the QTS-jump model. Fully implicit method.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

6-month option, 1-year bond, K = 0.9, fully implicit method
55 50 .076119 .062711 .049842
109 100 .076127 .00000756 .062700 .00001047 .049815 .00002699
217 200 .076130 .00000378 2.00 .062695 .00000524 2.00 .049800 .00001461 1.85
433 400 .076132 .00000189 2.00 .062692 .00000262 2.00 .049793 .00000744 1.96

6-month option, 1-year bond, K = 0.9, Crank-Nicolson method
55 50 .076134 .062690 .049782
109 100 .076134 .00000007 .062690 .00000001 .049785 .00000275
217 200 .076134 .00000002 3.38 .062690 .00000000 8.63 .049785 .00000032 8.59
433 400 .076134 .00000001 3.89 .062690 .00000000 5.85 .049785 .00000004 8.78

2-year option, 10-year bond, K = 0.40, fully implicit method
55 50 .185744 .135952 .096220
109 100 .185576 .00016819 .135692 .00025987 .095796 .00042385
217 200 .185527 .00004890 3.44 .135643 .00004909 5.29 .095753 .00004255 9.96
433 400 .185501 .00002617 1.87 .135618 .00002410 2.04 .095738 .00001512 2.81

2-year option, 10-year bond, K = 0.40, Crank-Nicolson method
55 50 .185504 .135725 .096051
109 100 .185456 .00004778 .135579 .00014613 .095713 .00033813
217 200 .185467 .00001114 4.29 .135586 .00000711 20.55 .095712 .00002112 30.59
433 400 .185471 .00000386 2.88 .135590 .00000190 3.58 .095712 .00000588 3.79

Table 6.19: CIR-jump bond option prices for PIDE methods. Diffusion parameters are
given in Table 6.1. Jump parameters: λJ = 25, µJ = 0, and γJ = .05.

6.4 Bond Option Prices Under Jump-Diffusion

We now look at the convergence of our methods for pricing European call options on pure
discount bonds under jump-diffusions. As for the no-jump case, we consider a 6-month
option on a 1-year bond and a 2-year option on a 10-year bond. The strike price is set
at 0.90 for the short term option for all models, but to varying different levels for the
long term option across the models. Tables 6.19, 6.20, and 6.21 present the results. They
are quite similar to those reported already above in that the PIDE method appears to be
very accurate. Solution values on the initial coarse grid generally do not change much as
the grid is refined, especially for the short term option. Estimated convergence rates are
noisy, especially for Crank-Nicolson. As with the no-jump case, this is likely due to the
application of the payoff constraint at the option expiry time.
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Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

6-month option, 1-year bond, K = 0.9, fully implicit method
55 50 .076543 .062121 .048311
109 100 .076549 .00000634 .062114 .00000698 .048288 .00002231
217 200 .076552 .00000320 1.98 .062111 .00000347 2.01 .048277 .00001167 1.91
433 400 .076554 .00000161 1.99 .062109 .00000173 2.00 .048271 .00000589 1.98

6-month option, 1-year bond, K = 0.9, Crank-Nicolson method
55 50 .076557 .062108 .048264
109 100 .076556 .00000076 .062107 .00000026 .048265 .00000072
217 200 .076556 .00000038 2.02 .062107 .00000013 2.06 .048265 .00000007 10.33
433 400 .076556 .00000019 2.01 .062107 .00000006 2.03 .048265 .00000009 0.78

2-year option, 10-year bond, K = 0.35, fully implicit method
55 50 .223501 .144290 .087096
109 100 .223051 .00044995 .143796 .00049410 .086236 .00085993
217 200 .222843 .00020835 2.16 .143600 .00019562 2.53 .085971 .00026567 3.24
433 400 .222740 .00010252 2.03 .143508 .00009235 2.12 .085855 .00011623 2.29

2-year option, 10-year bond, K = 0.35, Crank-Nicolson method
55 50 .223273 .143995 .086843
109 100 .222937 .00033571 .143648 .00034645 .086108 .00073505
217 200 .222786 .00015140 2.22 .143527 .00012153 2.85 .085908 .00020022 3.67
433 400 .222712 .00007405 2.04 .143471 .00005563 2.18 .085823 .00008487 2.36

Table 6.20: CKLS-jump bond option prices for PIDE methods. Diffusion parameters are
given in Table 6.1. Jump parameters: λJ = 25, µJ = 0, and γJ = .05.

Time steps r = .04 r = .07 r = .10
Nodes per year Value Change Ratio Value Change Ratio Value Change Ratio

6-month option, 1-year bond, K = 0.9, fully implicit method
55 50 .073988 .059747 .046814
109 100 .074016 .00002788 .059748 .00000137 .046790 .00002403
217 200 .074027 .00001073 2.60 .059749 .00000044 3.14 .046777 .00001275 1.88
433 400 .074032 .00000540 1.99 .059749 .00000018 2.49 .046770 .00000667 1.91

6-month option, 1-year bond, K = 0.9, Crank-Nicolson method
55 50 .074030 .059748 .046759
109 100 .074037 .00000726 .059749 .00000080 .046763 .00000333
217 200 .074037 .00000047 15.31 .059749 .00000013 5.99 .046763 .00000075 4.43
433 400 .074038 .00000027 1.76 .059749 .00000002 7.83 .046763 .00000013 6.00

2-year option, 10-year bond, K = 0.35, fully implicit method
55 50 .135458 .097613 .073870
109 100 .135337 .00012185 .097298 .00031498 .073476 .00039421
217 200 .135257 .00008005 1.52 .097215 .00008266 3.81 .073406 .00006963 5.66
433 400 .135221 .00003547 2.26 .097180 .00003459 2.39 .073383 .00002300 3.03

2-year option, 10-year bond, K = 0.35, Crank-Nicolson method
55 50 .135032 .097244 .073575
109 100 .135123 .00009140 .097113 .00013084 .073328 .00024652
217 200 .135150 .00002660 3.44 .097123 .00000939 13.94 .073332 .00000399 61.81
433 400 .135168 .00001788 1.49 .097134 .00001152 0.81 .073347 .00001405 0.28

Table 6.21: QTS-jump bond option prices for PIDE methods. Diffusion parameters are
given in Table 6.1. Jump parameters: λJ = 25, µJ = 0, and γJ = .05.
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Chapter 7

Sensitivity Analysis

Having extensively explored the convergence of our numerical algorithms in Chapter 6, it
is worth briefly exploring the implications of the various models for bond and bond option
pricing. Other studies in the literature (e.g. [24]) have reported that jumps generally do
not have much effect on bond prices, but can significantly impact bond option prices. The
economic intuition for the relative lack of impact on bond prices goes back to the fact that
we can represent bond prices as expectations (under the pricing measure) of the integral of
the sample path of the short rate. Over time, this amounts to a significant averaging effect,
by which positive and negative jumps tend to offset each other. This averaging influence
matters somewhat less for bond options. Due to the asymmetry of the bond option payoff,
jumps near the expiry time of the option can have much stronger effects on bond option
values, especially for short term options.

The general idea described above that bond values are significantly dependent on the
average value of the short rate means that we should expect the drift parameters to affect
bond prices much more. As an illustration, Figure 7.1 plots the estimated yield curves
for the CIR, CKLS (with modified volatility), and QTS models in the (no-jump) diffusion
context using the parameters from Table 6.1 for initial values of the short rate of 4%, 7%,
and 10%. Figure 7.2 repeats this, using the yield curves implied by the corresponding
jump models. Generally speaking, a comparison of each panel of Figure 7.1 with the
corresponding panel of Figure 7.2 does not show too much difference, except for bonds of
relatively long maturity. On the other hand, within each individual panel of either figure
the biggest differences tend to be between the QTS model and the other two (except for
the case with jumps and an initial interest rate of 10%). Note that the volatility due to
either diffusion or jumps and diffusion is exactly the same between the CKLS and QTS
models, provided r is below its cap level of 15% for the volatility modification. On the
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other hand, the QTS model is fundamentally different from the other two models in that
its drift is nonlinear. This leads to some very different behaviour in terms of the implied
yield curves, even though the parameters used here for the diffusion model terms were all
estimated in [3] from exactly the same data.

The balance of this chapter will be spent investigating the sensitivity of the QTS-jump
model to various changes in its input parameters, both in terms of bond prices and bond
option prices. All results reported here use the fully implicit method.
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Figure 7.1: Yield curves for the CIR, CKLS, and QTS models. Fully implicit method.
Top: initial r = .04. Middle: initial r = .07. Bottom: initial r = .10.
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Figure 7.2: Yield curves for the CIR-jump, CKLS-jump, and QTS-jump models. Fully
implicit method. Top: initial r = .04. Middle: initial r = .07. Bottom: initial r = .10.
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Figure 7.3: Sensitivity of the yield curve under the QTS-jump model at r = 5% to a−1.

7.1 Sensitivity of the Yield Curve Under the QTS-

Jump Model

As noted above, the yield curves implied by term structure models are quite sensitive to the
drift parameters. We now consider how the yield curve varies when we change parameters,
using only the QTS-Jump model since it is the most general specification considered in
this work.

We begin with the drift parameters. Figure 7.3 plots the yield curve at 5% when we vary
a−1, keeping all other parameters at their base levels (given in Table 6.1 for the diffusion
parameters, and setting λJ = 25, µJ = 0, and γJ = .05 for the jump parameters). In
this figure and the following figures, “1X” in the legend means that the parameter under
consideration is left at its base value, “2X” means that it is doubled relative to its base
value, and “1/2 X” means that the base value is divided by 2. In the case of a−1, increases
in this parameter give rise to much higher drift when r is low, pushing bond prices down
and the yield curve up significantly. Figure 7.4 deals with a0, which is the drift tendency
independent of the level of r. Note that the base value of a0 < 0, so doubling it makes it
more negative, pushing interest rates down. Figure 7.5 plots the results for a1. Increases
in this parameter shift the yield curve substantially higher. The effects of the last drift
parameter, a2 are plotted in Figure 7.6. This parameter drives the interest rate down,
especially when r is high. As a result, increases in a2 lead to higher bond prices and lower
yields.
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Figure 7.4: Sensitivity of the yield curve under the QTS-jump model at r = 5% to a0.

Figure 7.5: Sensitivity of the yield curve under the QTS-jump model at r = 5% to a1.

Figure 7.6: Sensitivity of the yield curve under the QTS-jump model at r = 5% to a2.
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Figure 7.7: Sensitivity of the yield curve under the QTS-jump model at r = 5% to σ.

Figure 7.8: Sensitivity of the yield curve under the QTS-jump model at r = 5% to λJ .

As shown in Figure 7.7, the volatility parameter σ has very little effect for bonds with
maturities shorter than about 2 years, but somewhat more influence for longer term bonds.
Since the jump intensity λJ is already quite high, we look at its effect by changing it to
some different values in Figure 7.8 rather than by doubling/halving it. Given the mean
jump size of zero, this is effectively another volatility parameter, so it does not have much
effect. On the other hand, µJ does have a significant effect. This is because when it is
positive (negative), the interest rate tends to drift up (down), moving the yield curve in the
same direction. This is reflected in the plot of Figure 7.9. Conversely, γJ does not affect
the drift significantly, so it does not affect the yield curve much, as shown in Figure 7.10.
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Figure 7.9: Sensitivity of the yield curve under the QTS-jump model at r = 5% to µJ .

Figure 7.10: Sensitivity of the yield curve under the QTS-jump model at r = 5% to γJ .

7.2 Sensitivity of Bond Option Prices Under the QTS-

Jump Model

We conclude this chapter by briefly looking at the effects on bond option prices of changing
the parameters of the QTS-jump model. We consider a 2-year European call option on a
10-year bond, with a strike priceK = 0.35. The results are given in Table 7.1. The intuition
is straightforward—any change in a parameter that tends to make r lower leads to higher
bond prices and a higher option value. This would include increases in the magnitudes of
a−1, a0, and a2. The drift parameter a1 has the opposite impact. Increases in the interest
rate volatility parameter σ lead to somewhat higher option values. The mean jump size µJ
is, as above, effectively a drift parameter so increases in it reduce option values. The jump
intensity λJ and the jump size standard deviation γJ do not have much effect, but this is
conditional on µJ = 0. While the effects considered here of the jumps seem to be relatively
small compared to those reported in [24], in that study the focus is on options which are
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expiring much earlier (a maximum of 3 months). In fact, the effects of jumps on options
with a maturity of 3 months are reported to be much smaller than for options expiring
in less than 1 month. This is similar to the effects of jumps on equity option prices—one
explanation for the “volatility smile” is the strong effect of jumps on short term option
prices.
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Value of Price of
Parameter Parameter Bond Option

a−1 0.001 0.121218
0.002 0.028155
0.0005 0.283086

a0 -0.035 0.121218
-0.070 0.485750
-0.0175 0.005730

a1 0.70 0.121218
1.40 0.000000
0.35 0.339853

a2 -4.00 0.121218
-8.00 0.280134
-2.00 0.003433

σ 0.80 0.121218
1.60 0.165312
0.40 0.106484

λJ 25.00 0.121218
10.00 0.124849
1.00 0.126780

µJ 0.000 0.121218
0.001 0.101680
-0.001 0.140854

γJ 0.05 0.121218
0.06 0.118391
0.04 0.123458

Table 7.1: Sensitivity of bond option prices under the QTS-jump model.
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Chapter 8

Conclusions and Future Research

Several empirical studies have shown that models of changes in short-term interest rates
should be able to incorporate three features: (i) the volatility of those changes should
increase with the level of interest rates; (ii) the drift of the short rate may be stronger
when interest rates are either very high or very low; and (iii) changes in interest rates seem
to have relatively frequent discontinuous jumps. The main focus of this work has been to
develop numerical techniques that can be used to price interest rate derivative contracts
given a short rate model that has these features. Extensive numerical tests showed that
the proposed methods seem to work reasonably well, being quite accurate on grids with a
relatively small number of nodes.

Some possible directions for future research include:

• The existing methods could be refined in several ways. At this point, some aspects
(such as grid generation) are ad hoc. It would be good to have better methods
for placing nodes. Also, there is a tradeoff that should be looked at between time
step size and jump intensity. Using implicit type methods (either fully implicit or
Crank-Nicolson) involves using a nonlinear iterative scheme. The number of nonlinear
iterations increases with the jump intensity for a fixed time step size, so we would
want to take bigger steps. However, we also have the constraint that the number
of jumps should not be more than one in any given time step. The computational
efficiency of our methods could be improved by having a better understanding of the
best time step size to use. This is particularly important in the interest rate context
because many contracts are long term.

• The methods could be extended in two significant ways. First, many interest rate
models involve more than one factor, besides the short rate. Extending our approach
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to that type of setting would be challenging. Second, studies such as [24] and [23]
have reported that statistical models in which the jump intensity is stochastic (e.g.
depending on the level of interest rates) improve the fit to the data. This would be
another interesting extension.
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Appendix A

Proof of Risk-Neutral Expectation
Formulation for Bond Prices

This appendix provides a proof of the formula given in equation (3.15), showing that bond
prices can be represented as expectations under the risk-neutral probability measure Q.
The proof is taken from [6].

Let (t, r) be a fixed point of time and space respectively, and let

Ψ(s) = exp

{
−
∫ s

t

r(u)du

}
F T (s, r(s)).

Applying Itô’s lemma to Ψ(s) and integrating from t to T , we get:

Ψ(T )−Ψ(t) =

∫ T

t

(
∂Ψ

∂s
+ (µ− σλ)

∂Ψ

∂r
+

1

2
σ2∂

2Ψ

∂r2

)
ds+

∫ T

t

σ
∂Ψ

∂r
dW (s) (A.1)

where

∂Ψ

∂s
= −r(s) exp

{
−
∫ s

t

r(u)du

}
F T (s, r(s)) + F T

s (s, r(s)) exp

{
−
∫ s

t

r(u)du

}
∂Ψ

∂r
= exp

{
−
∫ s

t

r(u)du

}
F T
r (s, r(s))

∂2Ψ

∂r2
= exp

{
−
∫ s

t

r(u)du

}
F T
rr(s, r(s)).
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By substituting the latter relations in (A.1) we find:

Ψ(T )−Ψ(t) =

∫ T

t

exp

{
−
∫ s

t

r(u)du

}
(F T

t + {µ− λσ}F T
r +

1

2
σ2F T

rr − rF T )ds

+

∫ T

t

exp

{
−
∫ s

t

r(u)du

}(
σF T

rr

)
dW (s) (A.2)

The integral on the first line of (A.2) reduces to zero because the integrand includes the
term structure equation (3.14). If we take expectations under measure Q, the stochastic
integral in the second line of (A.2) beomes zero, leaving:

EQ
t [Ψ(T )−Ψ(t)] = 0⇒ EQ

t [Ψ(T )] = EQ
t [Ψ(t)]. (A.3)

According to the definition of Ψ(t):

Ψ(t) = exp

{
−
∫ t

t

r(u)du

}
F T (t, r(t)) = F T (t, r(t)). (A.4)

Moreover, the boundary condition of the term structure equation F T (T, r) = 1 implies
that:

Ψ(T ) = exp

{
−
∫ T

t

r(u)du

}
F T (T, r(T )) = exp

{
−
∫ T

t

r(u)du

}
. (A.5)

Substituting (A.4) and (A.5) in (A.3) gives

F T (t, r(t)) = EQ
t exp

{
−
∫ T

t

r(u)du

}
,

completing the proof.
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Appendix B

Pricing Bond Options Consistent
with the Initial Yield Curve

This appendix describes how we can price options consistent with a given initial yield
curve. The methodology was originally described by Dybvig [16].

Let rat be any interest rate process and let rbt be an interest rate process that is a
function of time alone, and let the interest rate process rct ≡ rat + rbt . Define the discount
bond prices for interest rate processes a and b by

P a
t,s = Et

[
exp

(
−
∫ s

w=t

rawdw

)]
P b
t,s = Et

[
exp

(
−
∫ s

w=t

rbwdw

)]
,

where Pt,s denotes the price at time t of a bond paying $1 at time s > t. The first useful
result is that the discount bond price for process c is just

P c
t,s = Et

[
exp

(
−
∫ s

w=t

rcwdw

)]
= Et

[
exp

(
−
∫ s

w=t

(
raw + rbw

)
dw

)]
= Et

[
exp

(
−
∫ s

w=t

rawdw

)]
exp

(
−
∫ s

w=t

rbwdw

)
= P a

t,sP
b
t,s.
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The second useful result relates to the pricing of bond options. Consider valuing at time
t a European call option with a strike price of K which expires at time T on a discount
bond which matures at time s, with s > T > t. Suppose we want to know the price of this
option under interest rate model c. The payoff at time T is

max
(
P c
T,s −K, 0

)
.

The value of the option at time t is then

Et

[
max

(
P c
T,s −K, 0

)
exp

(
−
∫ T

w=t

rcwdw

)]
= Et

[
max

(
P a
T,sP

b
T,s −K, 0

)
exp

(
−
∫ T

w=t

(
raw + rbw

)
dw

)]
= Et

[
P b
T,s max

(
P a
T,s −K/P b

T,s, 0
)

exp

(
−
∫ T

w=t

rawdw

)
exp

(
−
∫ T

w=t

rbwdw

)]
= Et

[
P b
T,s max

(
P a
T,s −K/P b

T,s, 0
)

exp

(
−
∫ T

w=t

rawdw

)
P b
t,T

]
= P b

t,sEt

[
max

(
P a
T,s −K/P b

T,s, 0
)

exp

(
−
∫ T

w=t

rawdw

)]
The implication is that the price in model c of a call option with a strike price of K is equal
to the price in model a of a call option with a modified strike price of K/P b

T,s multiplied
by P b

t,s.

These results can be used to ensure that the prices of bond options in a given term
structure model a are consistent with a given initial term structure (from model c). Here
is an illustration. Consider the CIR model with parameters as in Table 6.1. Suppose that
the initial yield curve is flat at 5% for all maturities, and that we want to price a six month
European call option on a two year pure discount bond. Given the yield curve, the price
of a six month pure discount bond is

P c
0,0.5 = $1 exp(−.05× 0.5) = .9753,

and the price of a two year pure discount bond is

P c
0,2 = $1 exp(−.05× 2) = .9048.

This implies that the forward bond price today is

P c
0.5,2 = .9048/.9753 = .9277.
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An “at-the-money” bond option is often regarded as one for which the strike price is
equal to the forward bond price, so we will set the strike price K = .9277. If we simply
calculate the bond option price using the analytic formula for the CIR model, we obtain
a value of 0.0038. However, this does not ensure consistency with the observed yield
curve. In fact, for the parameter values above, the price of a six month pure discount
bond is P a

0,0.5 = 0.9748 6= P c
0,0.5. Similarly, the price of a two year pure discount bond is

P a
0,2 = 0.8987 6= P c

0,2. As a result, the implied forward bond price is 0.9219, not 0.9277.

We can calculate the corresponding prices in model b using the first of Dybvig’s results
above, i.e. P b

t,s = P c
t,s/P

a
t,s. We obtain:

Model c Model a Model b
Price of 0.5 year pure discount bond 0.9753 0.9748 1.0005
Price of 2.0 year pure discount bond 0.9048 0.8987 1.0068
Forward price of bond 0.9277 0.9219 1.0064

Now we use the second result to obtain the price of European bond option under model
c. Recall that this involves calculating the option price under model a with a modified
strike price and then multiplying by P b

0,2. The modified strike is K/P b
0.5,2 = 0.9219.1 When

we calculate the price under model a of an option with a strike price of 0.9219, we obtain a
value of 0.006496. We then multiply by P b

0,2 = 1.0068 to get an option value under model
c of 0.006540. This value, which is consistent with today’s observed yield curve, is quite
different from the value of 0.0038 which was found without imposing this term structure
consistency condition. Of course, this procedure is not limited to the CIR model case used
for illustration here. We can do this for any term structure model, including jump-diffusion
models.

1Note that this implies that we are setting the modified strike for model a equal to the forward bond
price for model a. This is because the original strike is equal to the observed (model c) forward bond price.
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