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ABSTRACT 

In 1975, Elongation Factor P (EF-P) protein was first discovered in the bacterium Escherichia 

coli. EF-P is believed to facilitate the translation of proteins by stimulating peptide bond 

synthesis for a number of different aminoacyl-tRNA molecules in conjunction with the 70S 

ribosome peptidyl transferase. Known eukaryotic homologs, eukaryotic translation initiation 

factor 5A (eIF-5A) of EF-P exist but with very low sequence conservation. Nevertheless, 

because of the high sequence similarities seen between bacterial EF-Ps and its low sequence 

similarity with eIF-5A, there is interest in the pharmaceutical industry of developing a novel 

antibacterial drug that inhibits EF-P. Of 322 completely sequenced bacterial genomes stored in 

GenBank, only one organism lacked an EF-P protein. Interestingly, sixty-six genomes were 

discovered to carry a duplicate copy of efp. The EF-P sequences were then used to construct a 

protein phylogenetic tree, which provided evidence of horizontal and vertical gene transfer as 

well as gene duplication. To lend support to these findings, EF-P GC content, codon usage, and 

nucleotide and amino acid sequences were analyzed with positive and negative controls. The 

adjacent 10 kb upstream and downstream regions of efp were also retrieved to determine if gene 

order is conserved in distantly related species. While gene order was not preserved in all species, 

two interesting trends were seen in some of the distantly related species. The EF-P gene was 

conserved beside Acetyl-CoA carboxylase genes, accB and accC in certain organisms. In 

addition, some efp sequences were flanked by two insertion sequence elements. Evidence of 

gene duplication and horizontal transfers of regions were also observed in the upstream and 

downstream regions of efp. In combination, phylogenetic, sequence analyses, and gene order 

conservation confirmed evidence of the complex history of the efp genes, which showed 
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incongruencies relative to the universal phylogenetic tree. To determine how efp is regulated, the 

upstream regions of efp were used to try to predict motifs in silico. While statistically significant 

motifs were discovered in the upstream regions of the orthologous efp genes, no conclusive 

similarities to known binding sites such as the sigma factor binding sites or regulatory protein 

binding sites were observed. This work may facilitate and enhance the understanding of the 

regulation, conservation, and role of EF-P in protein translation.  
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Chapter 1.0: GENERAL INTRODUCTION 

1.1 The Bacterial Elongation Factor P (EF-P) Protein 

One of the many auxiliary protein factors used in the elongation stage of bacterial 

translation is elongation factor P (EF-P, efp), which was first discovered in the bacterium 

Escherichia coli (Glick and Ganoza 1975a). Elongation Factor P is a soluble, acidic (pI = 4.6, 

20.2 kDa) bacterial protein approximately 180 amino acid residues in length (Hanawa-Suetsugu 

et al. 2004).  Interestingly, EF-P is structurally similar to tRNA and shares the same three-

dimensional ‘L’ structure (Figure 1) and size as tRNAPhe from Saccharomyces cerevisiae 

(1EVV) (Aoki et al. 1997b; Jovine, Djordjevic, and Rhodes 2000; Ganoza, Kiel, and Aoki 2002; 

Hanawa-Suetsugu et al. 2004).  

By mimicking the tRNA structure, EF-P may be able to attach to the tRNA-binding 

site(s) more readily in order for EF-P to function properly (Hanawa-Suetsugu et al. 2004). In 

fact, EF-P facilitates the translation of proteins by stimulating peptide bond synthesis for a 

number of different aminoacyl-tRNAs in conjunction with the 70S ribosome peptidyl transferase 

(Ganoza, Kiel, and Aoki 2002). Moreover, based on in vitro studies in E. coli without EF-P, 

incoming aminoacyl-tRNAs carrying small amino acid side chains have little or no ability to 

form a peptide bond.  Hence, these small amino acid side chains may bind poorly to the 

ribosomal A site and are therefore weak substrates for the ribosomal peptidyl transferase 

(Ganoza, Kiel, and Aoki 2002). Due to the nearly ubiquitous nature of amino acids with small 

side chains and the suggested involvement of EF-P in the formation of the first peptide bond, it 

has been hypothesized that E. coli cells lacking EF-P are unable to survive (Glick, Chladek, and 

Ganoza 1979; Aoki et al. 1997a). 
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Figure 1. Structure of efp from Thermus Thermophilus HB8 determined by Hanawa-

Suetsugu et al., (2004) x-ray crystallography from the RCSB protein data bank 

(Berman et al. 2000; Hanawa-Suetsugu et al. 2004).  
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In fact, Glass et al. (2006) constructed a minimal bacterium from the essential genes of 

Mycoplasma genitalium and had listed efp as an essential gene. This data is supported in two 

other studies by Mushegian and Koonin, (1996) and Gil et al. (2004), which list the efp gene as 

part of the minimal essential gene set. However, a recent study showed that using experimental 

and computational assessment to determine the essential genes of E. coli that efp is not needed 

for E. coli to grown on glycerol minimal medium.  This is also contradictory to an earlier gene 

interruption study in E. coli in which it was demonstrated that the efp gene was essential for cell 

viability and protein synthesis (Aoki et al. 1997b; Joyce et al. 2006).  Moreover, in the bacterium 

Agrobacterium tumerfaciens EF-P deletion mutants were able to survive but with a diminished 

growth rate (Peng et al. 2001). Hence, whether or not EF-P is essential for the cell to survive is 

still under debate.  

The evolutionary history of the bacterial EF-P gene is not well understood and has not 

been examined extensively. However, Kyprides and Woese (1998) suggested that there are very 

distant eukaryote and archaeal homologs to EF-P, eukaryotic translation initiation factor 5A 

(eIF-5A) and archaeal translation initiation factor 5A (aIF-5A), respectively.  

1.2 Archaeal and Eukaryotic EF-P Homologs 

 Translation is ubiquitous to all three domains of life and is integral in the central dogma 

of biology. The mechanism used in the initiation of translation is different between Eukaryote 

and Bacteria, while archaeal translation mechanisms are similar to those in Bacteria. 

Consequently, some of the orthologous bacterial and eukaryotic translation initiation factors have 

very low sequence identity and thus low functional similarity. Bacterial translation consists of 

only three initiation factors (IF-1, IF-2, and IF-3) while eukaryotes need numerous proteins such 

as eIF1, eIF1A, eIF2A, eIF2, eIF2B (or GEF), eIF3, eIF4A, eIF4B, eIF4E, eIF4G, eIF5, and eIF6 
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etc., which must work together in a complex process, to initiate the translation process (Kyrpides 

and Woese 1998; Weaver 2002). However, while initiation of translation between these domains 

are quite different, the translation elongation process is very similar (Weaver 2002).  Sequence 

identity between EF-P and its homolog eIF-5A is approximately 20% (Kyrpides and Woese 

1998).  The archaeal homolog of EF-P, aIF-5A protein is known to have 26% - 32% overall 

amino acid sequence identity to eIF-5A (Kyrpides and Woese 1998). However, even with such 

low sequence identity, eukaryotic and archaeal translation initiation factor eIF-5A, formerly 

known as eIF-4D, is hypothesized to be a homolog of bacterial EF-P (Kyrpides and Woese 

1998). Because of the high sequence similarity seen within bacterial EF-P and the low 

conservation between EF-P and eIF-5A, the pharmaceutical industry is using EF-P as a target to 

inhibit in Bacteria to develop a novel antibacterial drug for humans (Swaney et al. 2006). 

Archaeal and eukaryotic translation IF-5A stimulate the synthesis of the initial peptide 

bond which is similar to the EF-P function of facilitating the synthesis of the peptide bond for 

most of the aminoacyl-tRNAs (Ganoza, Kiel, and Aoki 2002). In addition to initiating 

translation, the different isoforms of eIF-5A observed in Arabidopsis may be responsible for 

apoptosis by regulating p53 as well as cell division (Thompson et al. 2004). Eukaryotic IF-5A is 

also a cellular cofactor for human immunodeficiency virus type 1 (HIV) Rev and may play a role 

in mRNA degradation (Valentini et al. 2002; Li et al. 2004). Unfortunately, most of the research 

focuses on the eukaryotic initiation factor 5A rather than the archaeal homolog and hence little is 

known about the latter.   

Eukaryotic IF-5A is also postulated to be an important, but not essential protein, for the 

viability of the cell (Kang and Hershey 1994). For instance, when there is no expression of eIF-

5A in the cell due to a deletion, there is an approximately 25% decrease in protein synthesis (Li 
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et al. 2004). This result contradicts the suggested function of eIF-5A, in which it is hypothesized 

that eIF-5A stimulates the first peptide bond for all proteins as the absence of eIF-5A expression 

would seriously impede initialization of translation of all proteins causing a considerable 

decrease in protein synthesis [greater than the ~25% seen in Li et al. (2004) experiment] 

(Ganoza, Kiel, and Aoki 2002). Therefore, to account for such a low decrease in protein 

synthesis, some authors suggest that eIF-5A may only be responsible for stimulating the 

initiation of the first peptide bond for a subclass of mRNA that is required for cell growth (Kang 

and Hershey 1994).  

1.3  Horizontal Gene Transfer 

Horizontal gene transfer (HGT) is the transfer of genes from one organism to another and 

it has been hypothesized that this process is a major force in bacterial evolution, playing an 

important role in the diversification and speciation of this domain (Jain et al. 2003). Cohan 

(2002) estimated that 5 to 15% of genes located in the E. coli genome are derived from a foreign 

organism. The high frequency of HGT events in Bacteria is possibly caused by three (or a 

combination of three) different mechanisms in which Bacteria are able to acquire genomic or 

plasmid DNA from distantly or closely related organisms. These three mechanisms include i) 

transformation in which Bacteria are able to acquire genes by uptake of extracellular DNA, ii) 

phage-mediated transduction or iii) conjugation which can be mediated by mobile genetic 

elements such as insertion sequences, transposons, integrons, genomic islands (i.e. pathogenicity 

islands), and plasmids (Sorensen et al. 2005). Horizontal gene transfer may be advantageous for 

the bacterium if the transferred gene is maintained in the genome, does not disrupt any 

functioning genes, and confers selective advantages to the organism such as antibiotic resistance, 

increased virulence, or metabolism of other organic substances as an energy source (Barkay and 
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Smets 2005). In a recent study by Sorek et al. (2007) the genes which are transferred are only 

restricted by one factor which is whether or not the gene causes toxicity to the host by the 

increased expression of the gene.  

Certain bacterial genomes are able to acquire and discard certain genes to their advantage 

(Goldenfeld and Woese 2007). For example, the rhodopsin gene, which is present in some 

marine microbes, is a ‘cosmopolitan’ gene able to wander in, and out of bacterial, and even 

archaeal genomes to the benefit of the organism (Frigaard et al. 2006). In addition, HGT causes 

the phylogeny to be inconsistent with the species tree because the horizontally transferred gene 

will reflect the evolutionary history of the organism from which the gene was transferred from 

and not the history of the recipient organism (Ciccarelli et al. 2006).  

1.4 Gene Duplication 

Gene duplication, which occurs in all three domains of life, provides ‘new genetic 

material’ for mutation and selection (Zhang 2003). These paralogs may be lost, become 

pseudogenes, subfunctionalized, persist in the genome which may result in a change of gene 

expression level, or acquire a novel function (Sankoff 2001; Hooper and Berg 2003). Although, 

many studies have hypothesized a paralog gaining a novel function, there has not been any 

documented case in Bacteria (Hughes 1994). However, in Eukaryotes there are many 

documented cases of functional divergence after gene duplication such as the Arabidopsis 

MADS-box gene family and the classic myoglobin/haemoglobin (Hughes 1994; Martinez-

Castilla and Alvarez-Buylla 2003). The MADS-box genes regulate transcription under a variety 

of different developmental stages and have also been extensively duplicated to form a fairly large 

gene family (Martinez-Castilla and Alvarez-Buylla 2003). It is believed that positive Darwinian 

selection caused the acquisition of novel functions diversifying the MADS-box genes (Martinez-
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Castilla and Alvarez-Buylla 2003). Another popular notion is that after the gene duplicates, the 

paralogs will divide up the function of the original gene (Sankoff 2001). For example, Tocchini-

Valentini et al. (2005) discovered two cases of subfunctionalization in archaeal tRNA 

endonucleases. Nonetheless, the most common outcome of a gene duplication event in Bacteria 

is the silencing of one of the paralogs (Lynch 2002). In addition, duplicated DNA can be used as 

sites for homologous recombination causing chromosomal rearrangements and encouraging 

secondary rearrangements (Bailey et al. 2002; Samonte and Eichler 2002).  

Gene duplications occur from unequal crossover events during homologous 

recombination, retroposition, horizontal transfer, chromosomal duplication, or genomic 

duplication through diploidization (Zhang 2003). Slippage during unequal homologous 

recombination tends to cause tandem gene repeats (Zhang 2003). However, the repeated region 

is composed of either gene fractions, the entire gene, or a segment encoding a number of 

different genes depending on where the sequences crossed over (Zhang 2003). After tandem 

duplication, chromosomal rearrangements and/or silencing of the duplicate genes in one of the 

duplicated segments may occur (Sankoff 2001). Duplicated gene which lack promoters are 

believed to develop into pseudogenes since they are silenced and no functional constraint is 

maintaining them (Lynch 2002). Most duplicated genes are believed to have been initially part of 

a larger duplicated region (Sankoff 2001). 

Lynch and Conery (2000), suggested that the average duplication rate is approximately 

1% per gene per million years based on calculations from analyses of duplicated genes within the 

genomes of multiple species. However, the average duplication rate for functioning duplicated 

genes is less than this due to the amount of gene loss (Lynch 2002). For example, DNA 

breakpoints which are quite common, randomly occur during the duplication method, and cause 
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some duplicated genes to lack regulatory regions such as promoter and even protein coding 

regions of the gene (Lynch 2002). Bacteria are more susceptible to duplication events and 

accordingly have a higher rate of duplication (Sankoff 2001). On the other hand, bacterial 

mechanisms are able to remove the duplicated genes at a faster pace (Sankoff 2001). Recent 

research shows that for certain groups of Bacteria from the Proteobacteria group and the 

Bacillus/Clostridium clade, horizontally transferred genes are more likely duplicated than 

indigenous genes (Hooper and Berg 2003). Possible explanations for this phenomenon include: 

genes that undergo HGT may be more mobile, HGT genes that are important for the organism to 

survive in a new environment may be needed at higher levels of expression, or genes may be 

horizontally transferred numerous times - indistinguishable from a HGT event with further 

duplications of the gene (Hooper and Berg 2003). 

1.5 Evolutionary Biology and Bacterial Phylogenetics  

In 1977, Carl Woese proposed using a single gene, the gene encoding the small subunit 

of the ribosomal RNA (SSU rRNA), to construct a phylogenetic tree that reclassified the five 

kingdoms of life into three domains: Bacteria, Archaea, and Eukaryotes (Woese and Fox 1977). 

Ribosomal RNA genes are ubiquitous in function and have highly conserved sequences due to 

their constrained roles in protein synthesis. This conservation allows for the classification of 

Bacteria by measuring the phylogenetic relationships between the organisms (Woese 1987; 

Gevers et al. 2005). The highly conserved nature of the SSU rRNA sequence renders it unable to 

resolve closely related organisms and unable to classify all Bacteria at a species level (Rossello-

Mora and Amann 2001; Gevers et al. 2005). The tree of life has two basic assumptions to 

guarantee the validity of its hypothesis on the evolution of species, HGT has not occurred in the 

gene, and the rate of evolution or amount of dissimilarity between the gene is representative of 
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the genome (Goodfellow, Manfio, and Chun 1997). Unfortunately, using one gene as a 

phylogenetic marker is subject to simple stochastic variations in bacterial genomes (Gevers et al. 

2005). An alarming study discovered that highly conserved genes that are involved in complex 

interactions and thus believed to be resistant to HGT are actually susceptible to HGT (Gogarten 

and Townsend 2005).  

SSU rRNA sequence analysis is universally accepted amongst microbiologists to 

delineate and classify species (Rossello-Mora and Amann 2001). In addition, SSU rRNA trees 

have been instrumental in the clarification of many taxonomic issues, such as resolving the 

Pseudomonas clade (Rossello-Mora and Amann 2001; Garrity et al. 2005). Before the advent of 

molecular biology the Pseudomonas clade and all the other bacterial species were classified 

based on morphology and metabolic characteristics which for the most part worked well and 

agreed with the now current taxonomic classification using subunit rRNA trees with surprisingly 

small errors (Rossello-Mora and Amann 2001). 

Well conserved elongation factors such as EF-Tu and EF-G have also been used to 

construct universal phylogenetic trees (Creti et al. 1994) and are hypothesized to have arisen 

from an ancient gene duplication event.  This event may have occurred during the lifetime of the 

last common ancestor which makes these sequences excellent candidates to root and construct 

the universal phylogenetic tree (Baldauf, Palmer, and Doolittle 1996). Even though EF-Tu is 

ubiquitous in all three domains of life and therefore believed to be a good indicator of 

evolutionary relationships; there is evidence of HGT in EF-Tu in the Enterococci bacterial 

species and multi-copies of the EF-Tu genes can be located in other bacterial genomes those 

histories have not yet been researched (Ke et al. 2000). Hence, the universal phylogenetic trees 
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produced from elongation factor sequences are believe to be incorrect because of the complex 

history, which may include HGT and gene duplication (Woese 2000).   

1.6 Conservation of Gene Order in Bacteria  

Wolf et al. (2001) observed only a slight correlation between the conservation of gene 

order and evolutionary relationship, based on genomic analysis. Determining the genomic 

context of a gene facilitates the resolution of gene history and the possible selection pressures 

working upon the gene (Wolf et al. 2001). In addition, for recent duplicated or HGT genes, 

analysis of genomic context may help to determine how the recent duplication or HGT event 

occurred. For example, whether the gene was duplicated or transferred within a large region of 

genomic sequence or just the gene itself and the mechanisms involved. However, tracking 

evolutionary relationships and predicting gene function using gene order is deceiving due to the 

number of genomic rearrangment that occurs in Bacteria (Rogozin et al. 2004). In most part, 

gene order in Bacteria is not well conserved if it is not part of an operon (Koonin, Mushegian, 

and Rudd 1996). However, there are some cases of well conserved cluster of genes discovered in 

distantly related species such as the genes for ribosome proteins (Nikolaichik and Donachie 

2000). Lathe, Snel, and Bork, (2000) discovered that in genomic regions where gene order is 

conserved, that even if some type of rearrangement occurs in this region, the genes are still kept 

closer together than other non conserved regions. Also certain regions in bacterial genome are 

more susceptible to genomic rearrangement of gene order such as at the terminus of replication 

(Sanderson and Liu 1998).   

Only several operons such as the ribosomal protein operon and operons encoding proteins 

that interact with one another, are universally conserved amongst the bacterial and archaeal 

genome (Mushegian and Koonin 1996). Operons are believed to be favored by selection to be 
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horizontal transferred, over the transfer of a single gene, because operons are self sufficient, their 

regulation is maintained (Lawrence and Roth 1996; Lawrence 1999a). In addition, only 5 to 25% 

of genes in Bacteria and Archaea genomes belong to probable operons or gene strings which are 

similar in at least two genomes that are not closely related (Wolf et al. 2001). Because of the 

limited gene order conservation in Bacteria, the conservation of three genes in a row between 

distinctly related organisms, is statistically significant unless the genes are part of an operon 

(Wolf et al. 2001). The conservation of gene order may be maintained under selection pressures 

for the following reasons: 

1. Species which have diverged relatively recently may not have had enough time for 

rearrangement of gene order (Tamames 2001). 

2. Gene order maybe be maintained following a horizontal transfer event of a genomic 

region in distantly related species (Wolf et al. 2001). 

3. If the integrity of the cluster of genes is essential or important for the viability of the cell 

(Tamames 2001) 

4. The presence of key regulatory elements may maintain gene order (Koonin, Aravind, and 

Kondrashov 2000)  

Both elongation factor Tu genes, tufA and tufB have been discovered in operon 

configurations. The streptomycin operon, which is one of the most well conserved operons in 

Bacteria, consists of ribosomal protein S12, ribosomal protein S7, elongation factor G (fus), and 

elongation factor Tu (tufA) in the E. coli organism (Koonin and Galperin 1997; Itoh et al. 1999). 

Interestingly, the streptomycin operon contains three different operons, the main promoter is 

upstream of ribosomal protein S12 gene, while the additional two promoters are located within 

the fus gene and is the promoter for tufA; these three promoters allows for the different levels of 
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expression of the genes in the operon (Post et al. 1978).  Elongation Factor Tu (tufB) is located 

within the tRNA-tufB operon in Thermus thermophilus, and Chlamydia trachomatis (Satoh et al. 

1991; Cousineau et al. 1992). Rogozin et al. (2002) has hypothesized that efp is within a gene 

neighbourhood, which is a group of genes that are not all present in any single genome but are 

linked to one another by gene arrays. Gene neighbourhoods are discovered by using orthologous 

genes which were transcribed in the same direction and only separated by zero or two genes (in 

the gene order of the orthologous genes) in at least three distantly related organisms  (Rogozin et 

al. 2002). The conserved gene pairs were then merged with other gene pairs discovered in other 

species which contained similar or overlapping genes from the original gene pair (Rogozin et al. 

2002). Then the gene arrays were clustered together if they contained at least two similar genes 

to form a gene neighbourhood (Rogozin et al. 2002). EF-P is hypothesized to be in an extended 

gene neighbourhood those primarily function was lipid metabolism and amino acid metabolism 

with the additional minor function of translation (including EF-P and proteins such as ribosomal 

proteins L32), transcription (transcriptional regulators), replication (DNA polymerase III 

sigma’), and coenzyme metabolism (O-succinylbenzoate synthetase) (Rogozin et al. 2002). 

1.7 DNA Sequence Motifs 

DNA motifs are short, repeating sequences of nucleic acid residues that are evolutionarily 

conserved and have a biological function (Wolf and Arkin 2003). Examples of DNA sequence 

motifs include restriction enzyme binding sites, and transcription factor binding sites (TFBS) 

such as TATAAT boxes, -10 and -35 promoter elements (D'haeseleer 2006). The consensus 

sequence of the TFBS may regulate the change in level of expression of the gene under different 

conditions (MacIsaac and Fraenkel 2006). The sequence of the TFBS is very important in the 

regulation of gene expression and therefore, are believed to be under selective pressure and 
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conserved (MacIsaac and Fraenkel 2006). Furthermore, in most cases, evolutionary conserved 

non-coding genomic sequences correspond to regulatory regions (MacIsaac and Fraenkel 2006).  

Phylogenetic footprinting has been very effective in discovering putative motifs using 

many orthologous or co-regulated conserved regions (MacIsaac and Fraenkel 2006). 

Unfortunately orthologous genes may be regulated differently or use different transcription 

factors in some species (McCue et al. 2001). For example, genomic rearrangements may cause 

gene to be split up within an operon causing promoters to be upstream of different genes in 

different species (McCue et al. 2002). However, McCue et al., (2001) documented that using 

many orthologous sequences from many different species increases the chances that there will be 

enough sequences in the data that uses similar gene regulation and thus a similar motif to readily 

identify. Clustering orthologous sequences based on a number of different characteristics such as 

genomic size and the natural habitat of the organism increase the chances that the species are 

more likely to have the same regulatory mechanisms and thus enhance the motif discovery 

process in silico (McCue et al. 2001).  

There have been at least 20 documented cases where a gene has been horizontally 

transferred with adjacent transcription factors (Price, Dehal, and Arkin 2007). Finding the 

putative TFBS may allow us to identify the sigma factor that is responsible for initiating 

transcription. Different species have different sigma factors; for example, E. coli is known to 

have eight different sigma factors. RegulonDB 5.0 (http://regulondb.ccg.unam.mx/) which 

documents all the predicted and known promoter sites for the organism E. coli, predicts that efp 

uses sigma 70 (Salgado et al. 2006). The predicted promoter of efp1 in E. coli is depicted in 

Figure 2. However, there is no record for the YeiP or efp2 promoter.  The computational derived 

motifs or TFBS can then be experimentally tested for their ability in vivo. 
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1.8 Thesis Objectives 

1. Confirm evidence of HGT, gene duplication, and the direction of the HGT for EF-P. 

Not much is known about the conservation and role of the bacterial EF-P protein 

compared with its eukaryotic and archaeal homologs. Previous work on the bacterial EF-P noted 

numerous possible HGT and gene duplication events by unusual phylogenetic topologies. These 

results will be refined and compared with phylogenies constructed using SSU rRNA genes. 

Determination of possible HGT and gene duplication events are assessed using GC content, 

codon bias, and sequence identities as determined by BLAST in tandem with a positive and 

negative control for HGT and gene duplication in order to determine a threshold. 

2. Determine if there is any conservation of the genomic context of EF-P. 

 Determine whether or not EF-P is within an operon configuration in any of the 

completely sequenced bacterial species in NCBI. In addition, determining the genomic context of 

EF-P may help lend support to the evidence of recent HGT or gene duplication of certain EF-P 

proteins and the history of the genes i.e. transferred or duplicated within a large genomic region 

or singularly. 

  3. Extract any DNA sequence motifs from the upstream regions of the orthologous EF-P.  

DNA sequence motifs are discovered by analyzing overrepresented and/or conserved 

patterns upstream of orthologous efp genes. Ninety percent of known promoters occur in the 250 

bp upstream region of the gene in  E. coli (Huerta and Collado-Vides 2003). Since, EF-P is 

believed to have been present in the last common ancestor (an ancient gene) there maybe some 

regulatory regions conserved between the species.  
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Figure 2. EF-P promoter and transcription start site from E. coli K12 in RegulonDB 5.0 

(Aoki et al. 1991; Salgado et al. 2006). The transcription start site is represented by 

the red capital letter and the -10 element is underlined. The -35 element has not yet 

been experimentally characterized.  
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Chapter 2: METHODS 

2.1 Sequences Retrieval  

Nucleotide and amino acid sequences of EF-P were retrieved from the NCBI GenBank 

September 21, 2005 release of completely sequenced bacterial genomes using NCBI BLAST 

(available at http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi) against the well characterized E. 

coli K-12 EF-P. The default BLASTP settings were used except that the filter option was turned 

off to find longer matches. The cutoff values used to find EF-P protein sequences was that the e-

value must be less than 0.00001 to ensure that only orthologous efp sequences were retrieved and 

not just similar sequences. The EF-P sequences were subsequently updated on July 7, 2006 using 

the same technique, adding 94 EF-P sequences from newly sequenced bacterial genomes. A list 

of the EF-P sequences and their respective Genbank accession numbers used in the analyses is 

included in the supplementary files. Small subunit ribosomal (SSU rRNA) gene nucleotide 

sequences were retrieved from the corresponding bacterial (16S rRNA gene) and archaeal (16S 

rRNA gene) genomes in NCBI GenBank in conjunction with the Ribosomal Database Project-II 

Release 9 (Maidak et al. 2001). All SSU rRNA sequences used in the present study are included 

in supplementary files. 

2.2 Positive and Negative Bioinformatic Controls for HGT  

A positive and negative control establishes a putative threshold to determine which EF-P 

proteins may have been horizontally transferred using these sequence analysis methods. 

Elongation factor Tu (EF-Tu, tuf) was used as a positive control for horizontal gene transfer and 

gene duplication in GC and codon usage because it is known to have a history of gene 
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duplication and HGT (Sela et al. 1989; Ke et al. 2000). EF-Tu is hypothesized to have undergone 

HGT in the Enterococci species and certain bacterial species are known to have one to three 

copies of EF-Tu present in their genome (Sela et al. 1989; Ke et al. 2000). In addition EF-Tu is 

highly expressed, in E. coli there is a 1:10 EF-G/EF-Tu ratio (Young and Furano 1981). 

Recombinase A (recA) was used as the negative control for HGT. RecA is a common protein 

that has been utilized in resolving the universal species tree and is believed to have no known 

history of HGT (Eisen 1995). EF-Tu and RecA nucleotide sequences were retrieved from NCBI 

GenBank from the completely sequenced bacterial genomes on October 7, 2006. The positive 

and negative controls underwent the same analyses as EF-P for the GC content, codon bias, and 

sequence identity in order to determine EF-P genes that may have undergone HGT. This was 

done in order to establish the cutoff values that could be used to determine if a HGT event 

occurred.  

2.3 Sequence Alignment and Phylogenetic Analyses 

Alignments for all EF-P amino acid sequences were generated using MUSCLE 3.6 

(Edgar 2004) and manually adjusted based on visual analysis using BioEdit 7.0.4 (Hall 1999). 

Mycoplasma genitalium G37 EF-P2 (ZP_00404835.1) was removed from the analyses as it was 

only 88 amino acid residues long compared to the mean length of EF-P (190 amino acid 

residues). The model of evolution for the EF-P proteins was determined using the program 

ProtTest 1.3 (Abascal, Zardoya, and Posada 2005).  Identical sequences were removed from the 

analyses. Neighbor-joining (NJ) phylogenetic trees were constructed using PAUP* 4.10b 

(Swofford 2003) using a supplied rtREV (Dimmic et al. 2002) substitution matrix with the 

associated parameters. PHYML 2.4.4 (Guindon and Gascuel 2003) was used to approximate a 

maximum likelihood phylogenetic tree with the rtREV model and parameters chosen by ProtTest 
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1.3. A Bayesian tree using Mr. Bayes 3.1 (Ronquist and Huelsenbeck 2003)was attempted using 

5 chains (2 heated and 3 cold), the rtREV model, and parameters chosen by ProtTest 1.3. 

However, the split deviations between two different runs did not converge using 1,000,000 

samples. The average standard deviation of split frequencies were constantly fluctuating and the 

analysis was abandoned.   

All SSU rRNA gene sequences were aligned based on secondary structure models 

(Cannone et al. 2002). These sequences were aligned and reduced to the universal core, regions 

I, II, and III, using BioEdit 7.0.4 (Hall 1999). Phylogenetic construction was generated similar to 

the EF-P tree except the best fit model of DNA substitution and parameters was chosen by 

Modeltest 3.7 (Posada and Crandall 1998).  

2.4 Detecting Horizontal Gene Transfers  

To confirm the putative HGT and gene duplication events the robustness of the EF-P and 

the SSU rRNA tree was tested. The SSU rRNA and EF-P NJ trees were bootstrapped using 1000 

replicates in PAUP* 4.0b (Swofford 2003). Using Tree-Puzzle 5.2 (Schmidt et al. 2002) 

alternative EF-P tree topologies were compared using the Shimodaira-Hasegawa (SH) test 

(Shimodaira and Hasegawa 1999). The Shimodaira-Hasegawa test is a statistical test which 

obtains the confidence limit of the topology and is based upon the Kishino-Hasegawa test with 

modifications to allow multiple tree topology tests (Shimodaira and Hasegawa 1999). In order to 

implement the rtREV model of evolution for EF-P, the source code for Tree-Puzzle 5.2 (Schmidt 

et al. 2002) was modified to include the rtREV model. For topology testing the following trees 

were constructed: a subset NJ tree that included all the multiple copies of EF-P and EF-P 

supported by high bootstrap values to represent the major clades; a similar subset NJ tree with 

the same organisms was used except all the multi-copy EF-Ps were made into sister taxa which is 
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consistent with a tree topology of gene duplication; an approximate maximum likelihood subset 

tree, and a maximum parsimony subset tree.  

2.5 Sequence Similarities Analyses  

Sequence identities of all the different efp nucleotide and EF-P amino acid sequences 

were determined using BLAST BL2SEQ (Tatusova and Madden 1999). Perl and BioPerl scripts 

were used in the facilitation of these sequences and to perform command line BL2SEQ. The 

filter parameter was disabled to ensure longer alignments for both nucleotides and amino acid 

sequences.  

2.6 GC Content and Codon Bias Analyses  

Genomic GC content information was gathered from the NCBI GenBank database for all 

the completely sequenced bacterial genomes (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). 

The efp gene GC content was calculated manually by adding the occurrences of G and C base 

and then dividing by the length of the gene. Genomic and efp codon frequency information was 

gathered from the Codon Usage Database (http://www.kazusa.or.jp/codon/). Some genomes 

were not included due to lack of genomic codon usage information. In the codon usage analysis 

the nonsense or termination codons (UAA, UAG, and UGA) were removed.  

The Hamming distance calculation used is defined in Garcia-Vallve, Romeu, and Palau 

(2000): 

 

where xi is the frequency of the ith codon for the efp gene and xi is the mean frequency of the ith 

codon for the organism (Garcia-Vallve, Romeu, and Palau 2000). The Hamming distance 
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calculations were used to measure the distance between efp codon usage and the mean codon 

usage of its corresponding organism (Garcia-Vallve, Romeu, and Palau 2000). For example, if 

the Hamming distance calculated was small the codon usage of the gene most likely matches the 

codon usage of its genome (Garcia-Vallve, Romeu, and Palau 2000).  

In codon usage clustering analysis, tuf which is a highly expressed gene in E. coli was 

used as a control to determine the separation based on different levels of expression compared 

with different codon usage due to HGT. The codon usage frequencies were first standardized, by 

subtracting the mean from the value and then dividing by the standard deviation. The appropriate 

distance calculation (i.e. Euclidean) that best measures the corresponding cluster tree made from 

the distance calculations, and how accurately it represents the original observations was 

determined using a cophenetic correlation coefficient (Matlab 6.5). The Jaccard distance was 

determined to be the best representative distance calculation and it was used to calculate the 

dissimilarity between the different codon frequencies. Hierarchical clustering was employed 

using the UPGMA algorithm to generate a linkage tree. A cutoff of 0.8 was used in the analysis 

to find natural divisions within the codon usage based on its calculated dissimilarity matrix.  

2.7 Conservation of Gene Location Analysis  

All the completely sequenced bacterial genome assembly and annotation projects which 

includes the complete genome/chromosome, reference nucleotide sequence, mRNA, and protein 

sequences (the .faa, .ffn, .fna, and .gbk files from each genome assembly) were downloaded from 

NCBI’s ftp site (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) on May 2, 2007.  The data were parsed 

into a tab delimited text file and imported into tables in an SQL database using appropriate 

relationship linkages that are similar to NCBI as seen in Figure 3. An SQL database allows for 
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Figure 3. The relational database including tables, and the information stored. PK represents 

primary key and FK represents foreign keys which can be used to determine 

corresponding data. 
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the faster retrieval and organization of a large amount of data. The genomic location of EF-P 

coding regions were determined from the nucleotide sequences. The locations were used to 

retrieve 10 kb from the upstream and downstream adjacent genomic regions of all the EF-P 

genes. Using BL2SEQ encoded in a Perl script, these adjacent regions were blasted against each 

other to determine the percent similarity and thus any putative homologous genes or non-coding 

regions that are conserved. The cutoff I used for the BL2SEQ was quite stringent because non-

coding and coding DNA regions were compared. The filter was turned on so repetitive elements 

would not result in spurious matches. Also, the e-values of any similar regions must be less than 

0.00001. A program was then developed in the C# language to display the BL2SEQ results in an 

informative graphical manner which included gene information from NCBI to determine the 

regions and genes which are conserved. 

2.8 Upstream Motifs of EF-P Analysis  

Using the SQL genomic sequence table, 250 bp upstream of the start codon of the 

bacterial EF-P gene was retrieved. 90% of promoters occur in the 250 bp upstream region in  E. 

coli (Huerta and Collado-Vides 2003). In addition, motif prediction algorithms have a higher 

accuracy when discovering motifs in smaller regions. The upstream regions were then reverse 

complemented depending on whether the EF-P genes are transcribed on the sense or anti-sense 

strand of the genome. The SSU rRNA distance positions, genomic size, natural habitat from 

NCBI microbial information, genomic GC content, and the number of annotated orthologs 

transcription factors discovered in GenBank using COGs databases were converted into numbers 

(if they were not already), and standardized due to their different measurements. The values were 

standardized by subtracting the mean from the value and then dividing by the standard deviation. 

I used the cophenetic correlation coefficient, as explained in the codon usage section, to calculate 
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the best distance measurement and linkage method to use in Matlab 6.5. The Euclidean distances 

are calculated for the different permutations of the above characteristics. Hierarchical clustering 

using the furthest neighbour clustering algorithm was then employed on the different 

permutation of the characteristic’s distance measurements. The maximum number of clusters 

was defined as 10, 15, and 20 because using natural divisions in the data gave too many clusters 

(> 100 clusters) and most of these clusters contained only one sequence. All the upstream 

sequences clustered by different combination of characteristics and different maximum number 

of clusters were used to find motifs. Any clusters that only contained one sequence were 

removed from the dataset.  

To discover motifs in the upstream region of EF-P a strategy similar to MacIsaac and 

Fraenkel (2006) outline was followed using the program TAMO 1.0 (Gordon et al. 2005; 

MacIsaac and Fraenkel 2006). TAMO 1.0 is able to use three independent motif discovery 

programs and score the motifs predicted. See Figure 4 on the method and the component of 

TAMO 1.0 used (Gordon et al. 2005). A python script was written in order to use all the different 

components of TAMO 1.0 such as using the different motif discovery algorithms and calculate 

the discovered motif’s p-values. The following programs were used to discover motifs: 

AlignACE is based upon a Gibbs-sampling algorithm and calculates the most statistically 

significant alignments from the input data (Roth et al. 1998). AlignAce 2004 was downloaded 

from (http://atlas.med.harvard.edu/). AlignAce 2004 was used with the default settings, except 

that the seed used was based on a random number. MDScan uses word enumeration and 

position-specific weight matrix updating, using ChIP-array information to enhance motif 

discovery and decrease search time (Liu, Brutlag, and Liu 2002). ChIP-array probe sequences 

which represent protein-DNA interaction sites are used in MDScan to help search for DNA 
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motifs (Liu, Brutlag, and Liu 2002). MDScan 2004 was downloaded from 

(http://robotics.stanford.edu/~xsliu/MDscan/). MDScan 2004 was used with the default settings, 

the width of the motifs was specified to be from 16 to 24bps based on McCue et al. (2001) 

prokaryotic TFBS discovery suggestion. MEME is one of the more popular motif discovery 

programs (MacIsaac and Fraenkel 2006). MEME uses an expectation maximization algorithm to 

find motifs (Bailey and Elkan 1994). MEME 3.5.4 was downloaded from 

(http://meme.sdsc.edu/meme/intro.html). MEME 3.5.4 was used with the default values, and the 

motif widths did not need to be specified like AlignAce 2004. These two programs theorically 

discover the motif of any width that has the best score.  

The discovered motifs were then scored by TAMO 1.0 using a hypergeometric 

distribution to calculate p-values. A hyper geometric distribution measures the probability that 

the motifs discovered from a chosen group of sequences would also be discovered if the group of 

sequences were chosen at random from the genome (Gordon et al. 2005). The p-value was 

scored using the following formula (Harbison et al. 2004):  

p =
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where B is the number of input sequences and G is the total number of sequences 

represented in the genome (Gordon et al. 2005). The variables b and g are a subset of B and G 

that contain the motif (Gordon et al. 2005). For each organism in the cluster, 250 bp upstream of 

all known annotated genes from each genome were retrieved using a Perl script in order to fulfill 

the requirements of G. The null hypothesis in this objective is to determine if the motifs 

discovered using TAMO 1.0 from our clustered upstream sequences are more significant than the 
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motifs discovered using TAMO 1.0 in randomly chosen upstream sequences from the organisms 

used. The active hypothesis in this method is the motifs discovered by TAMO 1.0 are better than 

random. Harbison et al. (2004) experimentally determined that a discovered motif with a p-value 

of less than 0.001 has the lowest probability of being a false positives and it is within this 

threshold that many motifs were correctly identified for known regulators.  

A Perl script was used to parse through the TAMO 1.0 output and the top 5 motifs 

according to p-value were retrieved from the best cluster. The fasta sequences of known bacterial 

motifs were downloaded from the prokaryotic motif databases, RegTransBase and RegulonDB 

5.0 (Salgado et al. 2006; Kazakov et al. 2007). Using a Perl script the position frequency 

matrices of these known bacterial motifs were calculated by counting the number of times a base 

occurs at a specific position and then dividing by the number of sequences used. The position 

frequency matrices of the top 5 discovered efp motifs were compared with the position frequency 

matrices of RegTransBase and RegulonDB 5.0 using a Perl script. When comparing the 

frequency matrices the score is obtained by taking the absolute value of the difference in 

frequencies for each position and base pair. The motifs were displayed using Weblogo 2.8.2 

(Crooks et al. 2004). 
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Figure 4. Methods used in the prediction of motifs and the different components in TAMO 

1.0 (Gordon et al. 2005) used to discover motifs in the upstream regions of 

orthologous efp sequences. 
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Chapter 3: RESULTS 

3.1 Phylogenetic Analyses  

The presence of two divergent copies of the efp gene was observed in 69 out of the 322 

completely sequenced bacterial genomes available at the time of this study. A single efp gene 

was observed in each of the remaining 253 bacterial genomes. In order to promote clarity, the 

EF-P duplicates are denoted as EF-P1 and EF-P2 (or efp1 and efp2), where EF-P2 denotes the 

EF-P protein with the lower amino acid sequence identity to E. coli K12 EF-P (NP_418571.1). 

Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 was not included in the study 

as its efp encoding region (NC_005824) contains what NCBI claims as an ‘authentic frameshift 

mutation and not a sequencing artifact’ and thus has no corresponding protein product. The 

mutations occurs in the first 52 amino acids of the translated efp encoding region from 

Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 and when compared with the 

efp from Leptospira interrogans serovar Lai str. 56601, 53 to 269 amino acid residues are 

identical. Interestingly, E. coli EF-P starts aligning with the Leptospira interrogans serovar 

Copenhageni str. Fiocruz L1-130 translated efp at amino acid residue 81 and thus Leptospira 

interrogans serovar Copenhageni str. Fiocruz L1-130 may contain three functional domains of 

EF-P (KOW, OB, and EF-P C-terminus). Table 1 contains a breakdown of the phylogenetic 

group of the genomes and the number of efp genes used in our analyses and the organisms that 

contain the duplicate efp genes. 

In order to determine whether efp1 and efp2 sequences encode genuine EF-P, the deduced 

amino acid sequences of both genes were aligned to determine if the domains of EF-P were 

conserved. The multiple sequence alignment demonstrated that the OB domain, KOW-like 
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domain, and an EF-P C-terminus domain of EF-P are conserved (Pfam). Since the efp1 and the 

efp2 retrieved contain these three domains; it appears that both gene products could possibly 

fulfill the function of EF-P. The different variations of the domains are more strongly conserved 

within each bacterial group and the EF-P2 of each group. The OB domain is observed around 

residues 69 to 125 for E. coli K12 EF-P (Pfam). The KOW-like domain is observed around 

residues 3 to 62 for E. coli K12 EF-P (Pfam). An EF-P C-terminus domain is observed around 

residues 133 to 188 for E. coli K12 EF-P (Pfam). Additionally, to ensure only orthologs and/or 

homologs are retrieved from NCBI, the EF-P and EF-P2 sequences used in this study have a 

greater than 30% amino acid residue identity with E. coli K12 EF-P and e-values of ≤ 0.00001.  

The EF-P tree (Figure 5) was constructed from the EF-P amino acid sequence because the 

nucleotide sequence was too divergent as seen in Table 2. The original length of the MUSCLE 

aligned amino acid EF-P and SSU rRNA was 298 amino acid residues and 2299 nucleotides 

respectively, including gaps. After refinement the length of the EF-P and SSU rRNA alignment 

was 140 amino acid residues and 1148 nucleotides, respectively. These alignments are included 

as supplementary data files. The amino acid model selected using all 6 frameworks in protTest, 

including Akaike (AIC) and Bayesian Information Criterion framework, was the amino acid 

substitution matrix for the inference of retrovirus and reverse transcriptase, rtREV+I+G+F that 

calculated the amino acid residue frequencies (A = 0.058, C = 0.005, D = 0.059, E = 0.076, F = 

0.047, G = 0.088, H = 0.010, I = 0.065, K = 0.063, L = 0.079, M = 0.033, N = 0.036, P = 0.044, 

Q = 0.025, R = 0.041, S = 0.036, T = 0.075, V = 0.109, W = 0.007, Y = 0.044), the gamma 

distribution shape parameter (a = 1.553), with a proportion of invariable sites (0.0070) (Dimmic 

et al. 2002). Modeltest 3.7 was used to examine 56 possible models of DNA substitution and 

identify the model that best fit the SSU rRNA data set (Posada and Crandall 1998).   
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Figure 5. The unrooted phylogram maximum likelihood EF-P phylogenetic trees with the 

bootstrap values from the NJ tree. Organisms are denoted as EF-P 2 if they have 

more than one copy of EF-P. Representative sequences are denoted with an asterisk 

and the groups and species they represent. The amino acid best-fit model of 

evolution used to construct this tree is rtREV+I+G+F (Dimmic et al. 2002), with a 

gamma shape of 1.553, and a proportion of invariable sites calculated at 0.0070 as 

determined all criteria implemented in ProTest v.1.3 [17]. / denotes removal of a 

large distance in order to present the tree. All possible HGT and/or gene 

duplication are highlighted excluding the ones seen in Figure 6 and 7. The 

organisms in large font are the putative HGT and/or gene duplication events. 

Organisms name followed by an asterisk denote representative sequences. / denotes 

removal of a large distance in order to present the tree. Each bacterial group is 

highlighted in a unique colour. Bootstrap values are denoted above the branch. 
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Table 1. Genomic and efp G+C content of the phylogenetic Bacterial groups. Values are 

given as mean ± standard deviation. 
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Phylogenetic Bacterial 

Group 
Genomic G+C content 

(%) 
efp G+C content 

(%) 
# of 

organism 
# of efp genes 

observed 
Acidobacteria 58.4 59 ± 0.6 1 2 
Actinobacteria 63.4 ± 7.8 60.8 ± 6.4 22 22 

Alphaproteobacteria 51.2 ± 14.8 50.7 ± 12.8 44 46 
Aquificae 43 44.2 1 1 

Bacteroidetes/Chlorobi 49.0 ± 10.4 50.6 ± 7.3 8 9 
Betaproteobacteria 62.7 ± 6.4 56.2 ± 4.2 25 25 

Chlamydia/Verrucomicrobia 39.6 ± 1.7 39.3 ± 3.2 11 22 
Chloroflexi 46 ± 1.4 43.9 ± 1.4 2 4 

Cyanobacteria 49.0 ± 10.8 49.6 ± 7.6 17 17 
Deinococcus-Thermus 68 ± 1.9 64.0 ± 3.8 4 4 

Deltaproteobacteria 55.7 ± 11.8 54.3 ± 8.6 11 14 
Epsilonproteobacteria 37.5 ± 5.1 41.2 ± 4.6 9 9 

Firmicutes 36.2 ± 6.2 37.1 ± 5.5 79 85 
Fusobacteria 27 29.8 1 1 

Gammaproteobacteria 47.5 ± 10.5 48.1 ± 8.2 80 122 
Planctomycetes 55.4 53.2 ± 0.8 1 2 

Spirochaetes 36.0 ± 8.8 39.1 ± 6.8 6 5 
Thermotogae 45 44.1 1 1 
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The model selected by AIC and hierarchical likelihood ratio tests was the general time-reversal 

model GTR+I+G that calculated the base frequencies (A = 0.2091, C = 0.2522, G = 0.3038, T = 

0.2349) and the gamma distribution shape parameter (a = 0.6482), with a proportion of 

invariable sites (0.2723) (Rodriguez et al. 1990). 

The NJ (not shown) and the approximate maximum likelihood phylogenetic (Figure 5) 

EF-P protein trees were observed to be congruent with each other. Approximate maximum 

likelihood analyses resulted in one tree (Figure 5) with a log-likelihood value of -29526.80.  

The minimum evolution score of the NJ tree is 33.47. The major difference between the NJ and 

the maximum likelihood EF-P tree was dissimilar topology branching patterns seen within the 

organisms of the same bacterial groupings. Several bacterial groups (Firmicutes, Actinobacteria, 

Bacteroidetes/Chlorobi, Gammaproteobacteria, Betaproteobacteria, Deltaproteobacteria, and 

Chamydiae/Verrucomicrobia) within the tree (Figure 5) were paraphyletic with only the 

Cyanobacteria, Deinococcus/Thermus, Epsilonproteobacteria, Alphaproteobacteria, and 

Spirochaetes bacterial groups being monophyletic (excluding groups that contained only one or 

two organism, e.g., Fusobacteria). The phylogenetic groupings (Figure 5) did show similar 

topologies to the SSU rRNA tree (Figure 8). For example, the Chlamydiae/Verrucomicrobia EF-

P group (Figure 5) has the exact same branching order in the SSU rRNA tree (Figure 7) and was 

supported in all cases by a greater than 70% bootstrap value. However, ignoring EF-P2, the 

Gammaproteobacteria group in the EF-P tree was split into two separate clusters, one consisting 

of mostly the Pseudomonas spp. and the Shewanella spp., while the other cluster consists of the 

rest of the Gammaproteobacteria used in this study. In comparison to the SSU rRNA tree, the 

Gammaproteobacteria group is also split into two separate clusters but comprised of different 

species than the EF-P tree. Also, the Firmicutes group is separated into three clusters in both the 



39 

SSU rRNA and the EF-P tree; however, again these clusters show no similarity in the organisms 

that they contain. Our protein tree suggests several possible HGT events of EF-P2. I tested this 

hypothesis using the SH test by analyzing an alternative tree topology that minimize the number 

of HGT events by constraining the topology to show all duplicate EF-P2 as sister taxa to its 

corresponding EF-P1. The topology of the unconstrained approximate maximum likelihood 

subset (SH = 0.000) EF-P tree was best supported by the Shimodaira-Hasegawa test compared to 

the constrained sister taxa subset (SH = 1.000) and the corresponding subset NJ (SH = 0.002) 

EF-P tree. From the topology testing results, the self-constructed tree with all the EF-P2 as sister 

taxa to their corresponding EF-P is less likely than the unconstrained tree. Therefore, HGT is a 

likely explanation for the complex phylogeny of EF-P. 

The duplicated EF-Ps from Porphyromonas gingivalis W83 appear as sister taxa in 

Figure 6, with a bootstrap support of 100% and similar branch lengths (approximately less than 

0.02 substitutions per site). In addition, the EF-P2 of Mesorhizobium loti MAFF303099 and 

Rhodobacter sphaeroides 2.4.1, are apart from their corresponding EF-P1 but are still located 

within the monophyletic Alphaproteobacteria clade (Figure 7). The branch lengths of EF-P1 and 

EF-P2 of M. loti MAFF303099 were very similar (approximately 0.078 substitutions per site 

difference) with EF-P2 having a shorter branch length then EF-P1 and vice versa for R. 

sphaeroides 2.4.1. with EF-P2 having a longer branch length than EF-P1 (approximately 0.156 

substitution per site).  

There were two main groups of EF-P2; one consisting of the 

Chlamydiae/Verrucomicrobia EF-P2 and the other containing a large cluster of EF-P2 from 

several different bacterial groups. The large clade of EF-P2 was comprised of EF-P2 from 

Gammaproteobacteria, Planctomycetes, Deltaproteobacteria, and Acidobacteria, and formed a 
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Figure 6. Portion of the EF-P tree (Figure 5) showing evidence of gene duplications in 

Porphyromonas gingivalis W83 of the Bacteroidetes/Chlorobi group. Bootstrap 

values are denoted above the branch. 
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Figure 7. Alphaproteobacteria group from the EF-P tree (Figure 5) showing evidence of gene 

duplication or HGT. Organisms name followed by an asterisk denote representative 

sequence. Bootstrap values are denoted above the branch. 
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monophyletic group with moderate bootstrap support of 70% (Figure 5). These EF-P2 proteins 

also formed a larger monophyletic group with the Firmicutes EF-P1 and EF-P2, Thermotogae 

EF-P1, and Chloroflexi EF-P2. However, there was no bootstrap support for the higher order 

branching. For Chlamydiae/Verrucomicrobia there is similarity in the branching order of the EF-

P1 and EF-P2 groups, which was supported by high bootstrap values in most cases. Also, the EF-

P2 of the Chlamydiae/Verrucomicrobia had a longer branch length than EF-P1 with a difference 

range of 0.93 to 1.91 substitutions per site. There were also several cases of putative EF-P HGT 

events due to incongruencies with the SSU rRNA tree (Figure 5). For example the paraphyletic 

Betaproteobacteria group consisted of two clades: one comprising of just Nitrosospira 

multiformis ATCC 25196, while the other clade contained the remaining of the 

Betaproteobacteria species. These two groups were very distant from each other with low 

bootstrap support of 60% for the monophyletic grouping of the Betaproteobacteria group 

(without N. multiformis ATCC 25196) and N. multiformis ATCC 25196 monophyletic with the 

Alphaproteobacteria, Bacteroidetes/Chlorobi, and Acidobacteria with no bootstrap support 

(Figure 5); the Betaproteobacteria group on the SSU rRNA tree appears to be monophyletic. The 

amino acid sequence divergence among the monophyletic Betaproteobacteria group and N. 

multiformis ATCC 25196 for EF-P ranged from 1.3 to 4.2 substitutions per site as shown by the 

branch lengths (Figure 5). Another example occurs with the EF-P of the Bacteroidetes/Chlorobi 

paraphyletic group (Figure 5). One clade of the Bacteroidetes/Chlorobi consisted of three species 

- Pelodictyon luteolum DSM 273, Chlorobium chlorochromatii CaD3, and Chlorobium tepidum 

TLS and the other clade contained Bacteroides thetaiotaomicron VPI 5482, Bacteroides fragilis, 

EF-P and EF-P2 of Porphyromonas gingivalis W83, and Salinibacter ruber DSM 13855. 
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Figure 8. The rooted phylogram maximum likelihood SSU rRNA phylogenetic tree with the 

consensus bootstrap from the NJ tree. The log likelihood score of this tree is -

55644.85984. The nucleotide substitution model, GTR+I+G was selected by AIC 

and hLRTs from 56 DNA models using ModelTest 3.7 (Posada and Crandall 1998) 

with the following calculated parameters: rate matrix 0.9652 3.1980 1.7968 1.0278 

5.1441, gamma shape 0.6645, proportion of invariable sites 0.1179. / denotes 

removal of a large distance in order to present the tree. Each bacterial group is 

highlighted in a unique colour. Bootstrap values are denoted above the branch. 



 46

 



 47



 48

However, these species clustered together to form a monophyletic group in the SSU rRNA tree 

(Figure 8).  

The Actinobacteria also form a monophyletic clade in the SSU rRNA tree (Figure 8), 

which was incongruent with the paraphyletic Actinobacteria group seen in the EF-P tree (Figure 

5). Two species from the Actinobacteria group, Symbiobacterium thermophilum IAM 14863 and 

Rubrobacter xylanophilus DSM 9941 can be seen clustering with the Firmicutes and 

Cyanobacteria (for S. thermophilum IAM 14863); and Deinococcus/Thermus (R. xylanophilus 

DSM 9941) away from the monophyletic Actinobacteria (bootstrap support of 97%) group with 

both isolated species having no bootstrap support.  

The SSU rRNA tree constructed is the standard for evolutionary relationships in the 

present study and is depicted in Figure 8.  The Deltaproteobacteria, Gammaproteobacteria, and 

the Firmicutes all appear to be paraphyletic. At the basal position of the SSU rRNA tree (Figure 

8) the long branch of the Archaeal group in both the NJ and approximate maximum likelihood 

tree is likely due to large evolutionary distances (ranges of ~18.5 to ~21.4 substitution per site 

from the archaeal organisms to the nearest bacterial organism, Aquifex aeolicus VF5). However, 

the SSU rRNA tree had little bootstrap support for the higher order branches similar to the EF-P 

tree. 

3.2 Nucleotide and Amino Acid Sequence Identities  

No significantly similar nucleotide or amino acid sequence identity of efp was detected 

among distantly related species (i.e., different clades) when compared to each other. The same 

general trends can be observed for both the nucleotide and amino acid sequence identities for the 

efp1 and their corresponding efp2 sequences (Table 2). Both efp1 and efp2 genes show similar 

nucleotide and amino acid identity to corresponding genes of closely related species. 
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Table 2. Nucleotide and amino acid sequence identities of a subset of the 

Gammaproteobacteria that have multiple efp genes. The data is in the form of a 

sequence identities percentage that covers more than half of the sequence. Any data 

with sequence identities percentage that does not cover more than half of the 

sequence is listed as NSS The data in the upper right triangle represent the deduced 

amino acid sequence identities of EF-P, while the data in the lower left triangle 

represent the DNA sequence identities of the corresponding efp genes. NSS 

represents no significant identity similarities covering more than half of the 

sequence. The sequence identities above 70% are highlighted. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 E. carotovora subsp. atroseptica SCRI1043 efp1 - 50 90 49 77 48 84 56 81 56 80 56 90 49 90 49 77 55 82 52 77 49 78 50 89 48 81 57
2 E. carotovora subsp. atroseptica SCRI1043 efp2 NSS - 49 87 47 78 46 68 47 68 50 67 49 88 49 87 48 67 48 70 48 59 46 56 50 86 51 65
3 E. coli K12 efp1 NSS NSS - 51 79 50 86 56 84 57 82 56 99 51 100 50 76 54 87 54 75 52 76 57 95 50 84 57
4 E. coli K12 efp2 NSS 78 NSS - 50 80 47 70 48 70 54 70 51 98 51 99 51 70 49 73 49 61 47 58 51 91 51 69
5 H. chejuensis KCTC 2396 efp1 NSS NSS NSS NSS - 50 82 51 81 53 88 54 80 50 79 49 77 53 80 52 75 49 78 49 78 48 83 53
6 H. chejuensis KCTC 2396 efp2 NSS NSS NSS NSS NSS - 46 75 47 72 53 72 50 80 50 80 50 74 47 77 46 63 47 62 50 82 51 72
7 P. profundum SS9 efp1 NSS NSS NSS NSS NSS NSS - 50 83 52 76 50 81 45 81 45 75 49 86 47 71 50 70 45 78 44 82 50
8 P. profundum SS9 efp2 NSS NSS NSS NSS NSS NSS NSS - 54 87 58 85 56 70 56 69 49 66 54 77 50 63 51 61 54 73 57 86
9 P. atlantica T6c efp1 NSS NSS NSS NSS NSS NSS NSS NSS - 60 80 56 84 48 84 47 80 51 89 53 75 48 75 55 83 47 89 56

10 P. atlantica T6c efp2 NSS NSS NSS NSS NSS NSS NSS NSS NSS - 57 82 54 71 57 69 53 66 58 78 51 64 50 64 53 71 58 84
11 S. degradans 2 40 efp1 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 58 83 54 82 54 78 51 82 54 77 52 79 57 82 51 81 54
12 S. degradans 2 40 efp2 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 56 71 56 69 55 63 54 75 49 66 48 62 56 70 58 84
13 S. typhimurium LT2 efp1 NSS NSS 88 NSS NSS NSS NSS NSS NSS NSS NSS NSS - 51 99 50 76 54 87 54 76 52 77 57 95 50 84 57
14 S. typhimurium LT2 efp2 NSS NSS NSS 87 NSS NSS NSS NSS NSS NSS NSS NSS NSS - 51 98 51 70 49 74 49 61 47 58 51 91 51 69
15 S. boydii Sb227 efp1 NSS NSS 99 NSS NSS NSS NSS NSS NSS NSS NSS NSS 88 NSS - 50 76 54 87 54 75 52 76 57 95 50 84 57
16 S. boydii Sb227 efp2 NSS 78 NSS 99 NSS NSS NSS NSS NSS NSS NSS NSS NSS 87 NSS - 50 69 49 73 48 60 47 57 51 90 50 69
17 T. crunogena XCL 2 efp1 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 52 79 52 75 51 74 49 76 48 82 53
18 T. crunogena XCL 2 efp2 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 50 67 52 60 51 58 53 69 52 64
19 V. vulnificus YJ016 efp1 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 51 75 48 75 54 86 48 86 56
20 V. vulnificus YJ016 efp2 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 49 62 49 62 55 76 54 77
21 X. axonopodis pv. citri str. 306 efp1 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 43 85 45 69 44 68 46
22 X. axonopodis pv. citri str. 306 efp2 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 45 89 51 62 47 65
23 X. fastidiosa 9a5c efp1 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 46 76 45 75 49
24 X. fastidiosa 9a5c efp2 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 50 58 52 62
25 Y. pestis KIM efp1 NSS NSS 81 NSS NSS NSS NSS NSS NSS NSS NSS NSS 82 NSS 81 NSS NSS NSS NSS NSS NSS NSS NSS NSS - 49 83 59
26 Y. pestis KIM efp2 NSS NSS NSS 80 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS 80 NSS NSS NSS NSS NSS NSS NSS NSS NSS - 51 73
27 C. psychrerythraea 34H efp1 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS - 57
28 C. psychrerythraea 34H efp2 NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS NSS -

Bacterial efp gene
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As seen in the tree, the efp1 from closely related species have a higher percent identity with each 

other then with efp2 of the same species or in certain cases there is not a significant identity 

between the efp1 and efp2. P. gingivalis W83 is an exception to the general trends as efp1 and 

efp2 in this organism have a high nucleotide and amino acid sequence identity with each other, 

which is suggestive of a relatively recent gene duplication event.  The two Alphaproteobacteria 

species that each contain two copies of efp have high amino acid sequence similarities to other 

species within the same group such as Brucella suis 1330 with Mesorhizobium loti 

MAFF303099 EF-P2 (93%), Mesorhizobium loti MAFF303099 EF-P 1 with Rhodopseudomonas 

palustris HaA2 (89%), Rhodobacter sphaeroides 2.4.1 EF-P2 with Sinorhizobium meliloti 1021 

(87%), and Rhodobacter spaeroides 2.4.1 EF-P 1 with Silicibacteria species (87%) than with 

each other. These results are consistent with the trends seen in Table 2. 

3.3  GC Content Analyses  

The mean value of the total GC content of all the efp genes was 46.9% ± 10.4% as 

summarized in Table 1. The majority of the mean values (Figure 9, Table 1) and ranges of the 

genomic and EF-P GC content are similar to each other.  The Betaproteobacteria group has the 

highest difference in mean genomic and efp GC content of 6.5% (Table 1, Figure 9). Their efp 

GC content was more similar to the Deltaproteobacteria genomic GC content. However, these 

are two closely related bacterial groups.  

The difference in percent GC content of the efp gene with its corresponding genome is 

usually observed between the positive and negative controls for HGT, therefore showing a 

difference in GC content and perhaps evidence of HGT (Figure 10). This may indicate that there 

are some efp genes that have undergone a recent HGT, especially the organisms in the high 

percent GC difference ranges such as the 10 to 12, and the 12 to 14 ranges as seen in the
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Figure 9. Comparison of the genomic and EF-P protein GC content. The red lines represent 

the range of GC content for the genome of the phylogenetic group denoted on the 

x-axis where as the green lines represent the range of the GC content for the efp 

proteins. Duplicated efp genes were included in this analysis. The blue horizontal 

line represents the mean value of the GC content for the genome of the 

phylogenetic group and the purple lines represents the mean value of the GC 

content for the EF-P protein in its corresponding GC content ranges. 
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Figure 10. Histogram of the % GC content difference of the completely sequenced bacterial 

genomes compared with the negative control (recA), positive control (EF-Tu), and 

EF-P.  
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high number of positive controls and low number of negative controls in these ranges (Figure 

10). The negative control had only 2 species which have a >10% GC content difference and the 

positive control had 24 species with >10% GC content difference (Figure 10). Interestingly, the 

Enterococcus faecalis V583 positive control which is hypothesized to have undergone HGT has 

only a 3.8% GC content difference in comparison to Pseudomonas fluorscens Pf-5 which has a 

highly suspicious >12.5% GC difference compared with a closely related species, Pseudomonas 

fluorescens PfO-1 which has a <5.2% difference. The GC content of the EF-P sequences ranged 

from 67.2 to 20.7%, while that of the EF-P2 sequences ranged from 63.5 to 33.3%. 

3.4 Codon Usage Analyses  

The majority of the Hamming distance difference calculated means are in the lower range 

of values for most organisms (minimum Hamming distance calculated were less than 0.25 of the 

mean Hamming distance calculated from the efp gene’s own genome), suggesting that the 

majority of efp genes have the same codon usage as the rest of the genome (Figure 11). The 

Gammaproteobacteria and the Firmicutes had the most difference between the minimum 

Hamming distance calculated and the Hamming distance calculated from the corresponding 

genome (Figure 11). EF-P Hamming difference calculations, compared with the positive and 

negative control differences shows evidence that some EF-P genes may have undergone HGT 

events (Figure 12). As expected, the negative control has the highest number of same genome 

and gene codon usage with EF-P, and the positive control has the least. Hierarchical clustering 

was employed to determine any atypical clusters of efp codon usage. As seen in Table 3 the 

Jaccard distance and the UPGMA or the unweighted average method created the best tree that 

represents the original data. Using the inconsistency coefficient to define our cutoff value of 0.8, 
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Figure 11. The Hamming distances calculated for each efp gene from all the bacterial genomes 

available are shown as ranges from each bacterial group. Only the efp genes that 

did not have a matching minimum Hamming distance with their corresponding 

genome are shown to determine any unusual Hamming distance. The red horizontal 

bar represents the mean Hamming distance calculated for the gene using the codon 

frequencies of its own genome for that bacterial phylogenetic group. Only 264 efp 

genes had a corresponding genomic codon usage observed in the Codon Usage 

Database (http://www.kazusa.or.jp/codon/).  
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Figure 12. The histogram of the % range of organisms with Hamming distance difference. The 

Hamming distance differences are calculated from the minimum Hamming distance 

calculated with another genome compared with the Hamming distance of the 

gene’s own genome. If there is a large difference in the two calculations (one using 

the gene’s own genome codon usage vs. using another organism genome’s codon 

usage) it is usually suggestive of a HGT event because the gene’s codon usage is 

more similar to another organism genome than its own genome. EF-Tu is the 

positive control and recA is the negative control 
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Table 3. The cophenetic correlation coefficient to discover the best representative distance 

measurement (on the top) and the linkage methods (on the side) of the original data, 

61 codon frequencies of the tuf and efp genes. The shaded box denotes the best 

representation. Average denotes an unweighted average distance or UPGMA 

method of creating the tree; centroid distance or UPGMC must use Euclidean 

distances; and complete denotes the furthest distance method of creating the tree. 
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 Euclidean Seuclidean Cityblock Mahalanobis Minkowski Cosine Correlation Hamming Jaccard 
Average 0.7315 0.7111 0.7053 0.8743 0.7315 0.6767 0.7513 0.8356 0.9757 
Centroid NM N/A N/A N/A N/A N/A N/A N/A N/A 
Complete 0.6579 0.5959 0.6079 0.5696 0.6579 0.6581 0.6918 0.6585 0.8716 
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I get a more natural division of the data set into different clusters. Using this cutoff, the 391 efp 

genes and 438 tuf genes are divided into 375 clusters. There are many clusters consisting of only 

one or two genes. These small clusters denote the outliers in our dataset and/or have unique 

codon usages. Using this small cutoff, gives us tight clusters which is more stringent and 

therefore, increases our certainty that the genes that are clustering together have similar codon 

usage. Thermobifida fusca YX efp1, Dechloromonas aromatica RCB efp1, Xanthomonas oryzae 

pv. Oryze KACC10331 efp1, Buchneria aphidicola str. APS efp1, Salmonella enterica subsp. 

enterica serovar Paratyphi A str. ATCC 9150 efp2, and Vibrio cholerae O1 biovar eltor str. 

N16961 efp2 are clustering with tuf genes; the rest of the clusters are exclusively efp or tuf genes. 

Most clusters contain species from the same bacterial groups; however, there are several clusters 

which contain a mix of bacterial groups. Most of the efp2 genes are not clustering with the efp1 

gene from the same genome. Only two organisms, Chlamydia muridarum Nigg and 

Porphyromonas gingivalis W83 are discovered with there efp1 and efp2 in the same cluster.  

The following is a list of all the organisms which did not cluster with there closely related 

Bacterial groups and thus may show evidence of atypical codon usage: Rodobacter sphaeroides 

2.4.1 efp2 is seen clustered with efp1 of Nitrobacter hambrugensis X14 and Nitrobacter 

wingradskyi Nb-255 from Alphaproteobacteria. Mesorhizobium loti MAFF303099 efp2 clustered 

with Metholococcus capsulatus str. Bath efp1, a Gammproteobacteria (cluster 72). Pelobacter 

carbinolicus DSM 2380 efp2 clustered with Actinobacteria, Mycobacteirum leprae TN efp1; 

Deltaproteobacteria, Geobacter metallireducen GS-15 efp1 and Geobacter sulfurreducens PCA 

efp1; and Alphaproteobacteria, Jannaschia sp. CCS1 efp1 and Silicibacter pomeroyi DSS-3 efp1 

(cluster 86). Colwellia psychererythraea 34H efp2 is clustered with efp1 of Alphaproteobacteria, 

Bartonella henselae str. Houston-1 and Neorickettsia sennetsu str. Miyayama (cluster 102). 
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Xylella fastidiosa Temecula1 efp2 is clustered with the efp1 of species from Alphaproteobacteria 

and Chloroflexi (cluster 105). Xylella fastidiosa 9a5c efp2 is clustered with Lactobacillus 

delbrueckii subsp. bulgaricus ATCC 11842 efp1 (cluster 113).  Lactobacillus delbrueckii subsp. 

bulgaricus ATCC 11842 efp2 clustered with Deinococcus geothermalis DSM 1130 efp1 and 

Thermotoga maritime MSB8 efp1 (cluster 115). Hahella chejuensis KCTC 2396 efp2 is seen 

clustered with efp1 from Alphaproteobacteria (cluster 120). Candidatus Protochlamydiz 

ameobophila UWE25 efp2 clustered with the efp1 of Mycoplasma capricolum and Mycoplasma 

mycoides (cluster 127). Thiomicrospria crunogena XCL-2 efp2 is clustered with Thiomicrospira 

dentirificans ATCC 33889 (cluster 229). Lactobacillus efp2 is clustered with Colwellia 

psychrerythraea 34H and Clostridum tetani E88 (cluster 246). Lactobacillus johnsonii NCC 533 

efp 2 is clustered with efp2 Pseudoalteromonas haloplanktis TAC125 (cluster 247). 

Dehalococcoides ethenogenes 195 efp2 and Dehalococcoides sp. CBDB1 efp2 are clustered with 

efp1 of Prochlorococcus marinus (cluster 251). 

3.5 Conservation of Gene Order Analyses  

Overall, the 10kb adjacent upstream and downstream regions of efp are not conserved 

amongst all the bacterial species used in this thesis. However, a small number of distantly related 

bacterial species which have a similar gene order was discovered (Figure 17). There were not 

many similar identity matches between the adjacent upstream and downstream region of efp 

which may be due to the stringency of the filters used in our BLAST BL2SEQ search. In 

addition, BL2SEQ may not be able to pick out relatively small alignments very well within large 

regions of sequence comparison. In addition, a number of the small matches (less than 75bps) are 

similar domains discovered in different non orthologous genes. However, some of the small 

matching regions (< 75bp) that have similar identities may actually represent orthologous genes 
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that have very low sequence similarities. In the following comparisons, the organisms that had 

significant similarities within the Proteobacteria group because they are known to have a close 

evolutionary relationship. There are also many organisms which have numerous small BL2SEQ 

hits all over their upstream and/or downstream region. I will define here that significant matches 

are greater than 75bps or species that are not in the same bacterial group and have more than 3 

BL2SEQ results. Because of the limited gene order conservation in Bacteria, the conservation of 

three genes in a row between distinctly related organisms is statistically significant unless the 

genes are part of an operon (Wolf et al. 2001).  

3.5.1 Gene Order of efp1 and efp2 

The general trend seen for the organisms that contain two copies of efp is that the gene 

order of closely related species for efp1 has a similar gene order. The efp2 of closely related 

species also have gene order similarities and most do not match with the gene order of their 

corresponding efp1 adjacent regions. Most of the efp1 and efp2 of the Gammaproteobacteria, 

Firmicutes, Chloroflexi and the Chlamydiae/Verrucomicrobia adhere to this trend. However, 

Table 4 contains the exceptions to the general trend, where the efp1 and efp2 of the same 

organism have similar gene order. 

 The efp1 of Escherichia coli CFT073 had similar gene order (upstream and downstream) 

with other efp1 organisms from Gammaproteobacteria. However, the efp2 of E. coli CFT073 has 

similar gene order to efp2 in most of the Gammaproteobacteria (upstream and downstream) such 

as Erwinia spp., E. coli spp., Salmonella enterica spp., Shigella spp., except for Yersinia pestis, 

and Yersinia pseudotuberculosis where the gene order only shares similarities in the upstream or 

downstream region but not both, considering that the E. coli and Yersinia spp. are closely related. 

Interestingly, Hahella chejuensis KCTC 2396 efp2 does not have similar gene order to efp2
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Table 4. Organisms that have similar gene order in efp1 with efp2. The gene region denotes 

the gene to the left of it and the regions matching to the region of the gene to the 

right. For example, the Shigella dysenteriae Sd197 efp1 upstream region has a 

significant similarity to efp2 downstream region and efp1 downstream region has a 

significant similarity to efp2 downstream region.
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Organism Group gene Region 
matching gene Region 

matching 
Strength of 
Similarity 

Beside 
EF-P? 

Acidobacteria bacterium Ellin345 Acidobacteria efp2 downstream efp1 upstream Significant Similarity No 

Porphyromonas gingivalis W83 Bacteroidetes/Chlorobi efp1 upstream, 
downstream efp2 downstream, 

upstream 
Significant Similarity, 
Significant Similarity Yes 

Shigella boydii Sb227 Gammaproteobacteria efp2 downstream efp1 upstream Significant Similarity No 

Shigella dysenteriae Sd197 Gammaproteobacteria efp1 upstream, 
downstream efp2 downstream, 

downstream 
Significant Similarity, 
Significant Similarity No 

Shigella flexneri 2a str. 2457T Gammaproteobacteria efp1 upstream, 
downstream efp2 upstream, 

downstream 
Significant Similarity, 
Significant Similarity No 

Shigella flexneri 2a str. 301 Gammaproteobacteria efp2 upstream, 
upstream efp1 upstream, 

downstream 
Significant Similarity, 
Significant Similarity No 

Shigella sonnei Ss046 Gammaproteobacteria efp1 upstream efp2 upstream Significant Similarity No 
Xanthomonas campestris pv. 

vesicatoria str. 85-10 Gammaproteobacteria efp2 downstream efp1 upstream Small Similarity No 

Xanthomonas oryzae pv. oryzae 
KACC10331 Gammaproteobacteria efp1 upstream efp2 downstream Significant Similarity No 

Xanthomonas oryzae pv. oryzae 
MAFF 311018 Gammaproteobacteria efp2 downstream efp1 upstream Significant Similarity No 
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Figure 13. Acidobacteria bacterium Ellin345 efp1 and efp2 gene order. The green represents 

PadR-like family (YP_590164.1, YP_592678.1), the red gene represents ABC 

efflux, inner membrane subunit (YP_590165.1, YP_592679.1, YP_592684.1), and 

the yellow gene represents efp. 
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from any organisms. It only has a small match with the efp1 of Silicibacter sp. TM1040 upstream 

region away from efp. The gene order that is conserved between efp1s and between efp2s in the 

Chlamydiae/Verrucomicrobia group is sometimes inverted. For example, the gene order for the 

adjacent regions of efp1 is inverted in Chlamydophila caviae GPIC and Chlamydia trachomatis 

D/UW-3/CX. 

Acidobacteria bacterium Ellin345 efp1 (YP_590159.1) downstream region is similar to 

its efp2 (YP_592681.1) adjacent upstream region as seen in Figure 13. The area that they are 

similar (74% similarity identity) is in a region of a gene that is described as a transcriptional 

regulator called a PadR-like family in both efp1 and efp2 with an ABC efflux, inner membrane 

subunit, beside it. In addition, the ABC efflux, inner membrane subunit appears to be encoded 

twice, once in the upstream and once in the downstream adjacent regions of efp2.  

Figure 14 compares the gene order in efp1 and efp2 of Porphyromonas gingivalis W83. 

They have a similar gene, DNA-binding protein, histone-like family in the upstream region of 

efp1 and the downstream region of efp2. In addition, the small gene (highlighted in green) in the 

upstream region of efp2 (NP_905456.1) is similar to the non-coding downstream region beside 

efp1 (NP_904857.1).  Figure 15 shows the different regions of similarities between distantly 

related species and how they interact with each other. 

3.5.2 Ribosomal Protein and Errors in GenBank 

One of the most significant matches that had distantly related Bacteria with regions of 

similar identity covering greater than 100bps was between the organisms, Idiomarina loihiensis 

L2TR efp1 (YP_156657.1) from Gammaprotebacteria; Ureaplasma parvum serovar 3 str. ATCC 

700970 efp1 (NP_078132.1) from Firmicutes; Porphyromonas gingivalis W83 efp2 

(NP_905456.1) from Bacteroidetes/Chlorobi; and Chlamydia trachomatis D/UW-3/CX efp1
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Figure 14. Porphyromonas gingivalis W83 efp1 and efp2 gene order. The red gene represents 

a DNA-binding protein, histone-like family (NP_905457.1, NP_904856.1), the red 

arrow denotes where the region of similarity, note that even the noncoding regions 

are similar, the green gene represents a hypothetical protein NP_905455.1, and the 

yellow gene represents efp.
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Figure 15. A network diagram overview of organisms that have significant similarities with 

distantly related bacterial organisms. These include similarities that are in any 

adjacent 10kb upstream and downstream of efp. Red lines denote more than or 

equal to 3 locations of similarity, and blue lines denote one match with length of 

similarity greater than 75bp. Organisms with one matches of less than 75bp 

similarity in length with distantly related species is not shown and organisms with 

significant similarities within the same group are also not shown.  
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 (NP_220271.1), Chlamydia trachomatis A/HAR-13 efp1 (YP-328580.1), and Chlamydia 

muridarum Nigg efp1 (NP_296512.1) from Chlamydiae/Verrucomicrobia. See Figure 16 for a 

graphical output of the regions of similarity. 

Unfortunately within the downloaded GenBank information there are no genes annotated 

in the region of similarity seen in Figure 16 as denoted by the empty line. However, in the online 

NCBI gene browser there are three genes in this region. According to the NCBI’s gene browser, 

the gene in the region of similarity is a 23S ribosomal RNA, which is flanked by 5S to the right 

and a 16S ribosomal RNA to the left. In the BL2SEQ results the other ribosomal RNA also has 

significant matches in these organisms. Gluconobacter oxydans 621H efp1 (YP_190675.1) and 

Agrobacterium tumerfaciens str. C58 efp1 (NP_533218.1) also have a 16S rRNA in common; 

however, the 23S and 5S rRNA ribosomal is out of range of the 10kb downstream region.  

3.5.3 Conservation of efp, accB, and accC Gene Order 

The acetyl-CoA carboxylase, biotin carboxyl carrier protein (accC) and acetyl-CoA 

carboxylase, biotin carboxylase (accB) genes were discovered within the 10 kb adjacent 

upstream and downstream region of efp amongst the organisms used in this thesis (Table 5). As 

seen in Figure 17, accB, accC, and efp are discovered in a similar gene order in organisms from 

distantly related Bacteria. The gene order observed in the majority of organisms is efp, accB, and 

accC.  Figure 18 show some of the organisms that have the genes accB and accC in the adjacent 

regions of efp but not adjacent to the gene itself, including some species from Figure 17 for 

comparison. When comparing Figure 17 and Figure 18 we can see that the accBC operon is in 

the adjacent upstream and downstream region of efp gene in some species. In addition, there are 

some instances of just the accB gene being adjacent to the efp gene in Table 5. 
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Figure 16. Missing ribosomal genes in GenBank downloaded files. Each line represents the 

10kb upstream and downstream region of efp for that organism. The blue squares 

denote genes, the yellow square denotes the efp gene, and the black lines represent 

non-coding regions. The black arrows underneath the genes denote the direction of 

transcription. The red arrows between each of the gene regions denotes where the 

similarity is. 
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3.5.4Presence of Insertion Sequence Elements 

Interestingly, the efp1 and efp2 of the Shigella spp. are in most cases surrounded by 

insertion sequence (IS) elements from the IS1 family as seen in Figure 19. The only Shigella sp. 

that does not encode an IS element in the upstream and downstream adjacent regions of efp is 

Shigella sonnei Ss046 efp2. Other genomes that have IS elements in the 10kb upstream and 

downstream adjacent regions of efp can be seen in Table 6, not including the Shigella spp. in 

Figure 19. 

3.6 Motif Prediction 

Some general trends that can be seen in Figure 20 are that the two highest p-values (the worst 

scoring predicted motifs) occur for the defined maximum number of clusters of 15 and 20 when 

using no SSU rRNA distance information. The defined maximum number of cluster of 10 has the 

lowest p-values for all the different groups except for the clustering based on all the 

characteristics. However, the clustering not based on the genomic size and the clustering not 

based on environmental habitats have only slightly higher p-values for there defined maximum 

number of clusters of 10 compared with the defined maximum number of clusters of 15. There 

appears to be a rough correlation of the smaller the defined maximum cluster the lower the p-

value. In addition, the following contains the lowest to highest (best to worst) p-values groups 

when averaging over the different defined maximum number of clusters and ignoring the 

different characteristic clustering: 10, 15, and 20.  On average the no orthologous transcription 

factor characteristic group had the lowest p-values; therefore, it appears using orthologous 

transcription factors decrease the chances of clustering species that have similar regulation for 

efp. The following contains the lowest to highest (best to worst) p-values groups when averaging  
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Figure 17. Organisms which have a conserved gene order for accC, accB, and efp. accC is 

represented in red and accB is represented in green, and the efp is represented in 

yellow..
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Figure 18. Organisms which contain acetyl-CoA carboxylase, biotin carboxyl carrier protein 

(accC) and acetyl-CoA carboxylase (accB) that is not adjacent to efp. This diagram 

includes some organism from Figure 15 that has the accC, accB, and efp gene 

together to give perspective. accC is represented in red and accB is represented in 

green, and the efp is represented in yellow 
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Table 5. Organisms that have an annotated accB and/or accC in the 10kb adjacent upstream 

and downstream region of efp.  



 84

Organism Organism Group EF-P acc Genes 
Discovered 

Adjacent acc 
Upstream Gene 

Adjacent acc 
Downstream Gene 

Anabaena variabilis ATCC 29413 Cyanobacteria efp1 accB Transcriptional 
Regulator, ArsR family elongation factor P 

Anaeromyxobacter dehalogenans 
2CP-C Deltaproteobacteria efp1 accC, accB elongation factor P tetratricopeptide repeat 

protein 

Bacillus anthracis str. Ames Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 
protein AH 

Bacillus anthracis str. 'Ames 
Ancestor' Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 

protein AH 

Bacillus anthracis str. Sterne Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 
protein AH 

Bacillus cereus ATCC 10987 Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 
protein AH 

Bacillus cereus ATCC 14579 Firmicutes efp1 accC, accB hypothetical Cytosolic 
Protein hypothetical protein 

Bacillus cereus E33L Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 
protein AH 

Bacillus clausii KSM-K16 Firmicutes efp1 accC, accB hypothetical protein hypothetical protein 
Bacillus halodurans C-125 Firmicutes efp1 accC, accB hypothetical protein hypothetical protein 

Bacillus licheniformis ATCC 14580 Firmicutes efp1 accC, accB conserved protein 
YqhY 

stage III sporulation 
protein AH 

Bacillus subtilis subsp. subtilis str. 
168 Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 

protein AH 
Bacillus thuringiensis serovar 

konkukian str. 97-27 Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 
protein AH 

Chlamydia muridarum Nigg Chlamydiae/Verruco
microbia efp2 accC, accB elongation factor P 50S ribosomal protein 

L13 

Chlamydia trachomatis A/HAR-13 Chlamydiae/Verruco
microbia efp2 accC, accB elongation factor P 50S ribosomal protein 

L13 
Chlamydia trachomatis D/UW-

3/CX 
Chlamydiae/Verruco

microbia efp2 accC, accB elongation factor P 50S ribosomal protein 
L13 

Chlamydophila abortus S26/3 Chlamydiae/Verruco
microbia efp2 accC, accB elongation factor P hypothetical protein 

Chlamydophila caviae GPIC Chlamydiae/Verruco
microbia efp2 accC, accB elongation factor P hypothetical protein 

Chlamydophila pneumoniae AR39 Chlamydiae/Verruco
microbia efp2 accC, accB elongation factor P hypothetical protein 
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Organism Organism Group EF-P acc Genes 
Discovered 

Adjacent acc 
Upstream Gene 

Adjacent acc 
Downstream Gene 

Chlamydophila pneumoniae 
CWL029 

Chlamydiae/Verruco
microbia efp2 accC, accB elongation factor P hypothetical protein 

Chlamydophila pneumoniae J138 Chlamydiae/Verruco
microbia efp2 accC, accB elongation factor P hypothetical protein 

Chlamydophila pneumoniae TW-
183 

Chlamydiae/Verruco
microbia efp2 accC, accB elongation factor P hypothetical protein 

Chlorobium chlorochromatii CaD3 Bacteroidetes/Chlorob
i efp1 accC, accB elongation factor P 

DNA-directed RNA 
polymerase beta' 

subunit 

Chlorobium tepidum TLS Bacteroidetes/Chlorob
i efp1 accC, accB elongation factor P 

DNA-directed RNA 
polymerase beta' 

subunit 
Deinococcus geothermalis DSM 

11300 Deinococcus-Thermus efp1 accC, accB elongation factor P hypothetical protein 

Deinococcus radiodurans R1 Deinococcus-Thermus efp1 accC, accB elongation factor P hypothetical protein 

Geobacillus kaustophilus HTA426 Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 
protein AH 

Gloeobacter violaceus PCC 7421 Cyanobacteria efp1 accB elongation factor P hypothetical protein 

Idiomarina loihiensis L2TR Gammaproteobacteria efp1 accC, accB 3-dehydroquinate 
dehydratase 

ribosomal protein L11 
methyltransferase 

Listeria innocua Clip11262 Firmicutes efp1 accC hypothetical protein hypothetical protein 
Listeria monocytogenes EGD-e Firmicutes efp1 accC hypothetical protein hypothetical protein 
Listeria monocytogenes str. 4b 

F2365 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Moorella thermoacetica ATCC 
39073 Firmicutes efp1 accC, accB PilT protein-like protein of unknown 

function 
Myxococcus xanthus DK 1622 Deltaproteobacteria efp1 accC, accB elongation factor P TPR domain protein 

Oceanobacillus iheyensis HTE831 Firmicutes efp1 accC, accB hypothetical protein stage III sporulation 
protein AH 

Pelodictyon luteolum DSM 273 Bacteroidetes/Chlorob
i efp1 accC, accB elongation factor P 

DNA-directed RNA 
polymerase beta' 

subunit 

Prochlorococcus marinus str. MIT 
9312 Cyanobacteria efp1 accB elongation factor P 

4-hydroxythreonine-4-
phosphate 

dehydrogenase 
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Organism Organism Group EF-P acc Genes 
Discovered 

Adjacent acc 
Upstream Gene 

Adjacent acc 
Downstream Gene 

Prochlorococcus marinus str. 
NATL2A Cyanobacteria efp1 accB elongation factor P 

4-hydroxythreonine-4-
phosphate 

dehydrogenase 

Salinibacter ruber DSM 13855 Bacteroidetes/Chlorob
i efp1 accC, accB elongation factor P aspartate 

aminotransferase 
Staphylococcus aureus RF122 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 
Staphylococcus aureus subsp. 

aureus MRSA252 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Staphylococcus aureus subsp. 
aureus MSSA476 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Staphylococcus aureus subsp. 
aureus Mu50 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Staphylococcus aureus subsp. 
aureus MW2 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Staphylococcus aureus subsp. 
aureus N315 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Staphylococcus aureus subsp. 
aureus NCTC 8325 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Staphylococcus epidermidis ATCC 
12228 Firmicutes efp1 accC, accB hypothetical protein acetylornithine 

aminotransferase 

Staphylococcus epidermidis RP62A Firmicutes efp1 accC, accB hypothetical protein acetylornithine 
aminotransferase 

Staphylococcus haemolyticus 
JCSC1435 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Staphylococcus saprophyticus 
subsp. saprophyticus ATCC 15305 Firmicutes efp1 accC, accB elongation factor P hypothetical protein 

Streptococcus pneumoniae R6 Firmicutes efp1 accB, accC, 
accD, accA 

(3R)-hydroxymyristoyl 
ACP dehydratase hypothetical protein 

Synechococcus elongatus PCC 
6301 Cyanobacteria efp1 accB elongation factor P hypothetical protein 

Synechococcus elongatus PCC 
7942 Cyanobacteria efp1 accB exonuclease SbcC elongation factor P 

Synechococcus sp. CC9605 Cyanobacteria efp1 accB elongation factor P 
4-hydroxythreonine-4-

phosphate 
dehydrogenase 
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Organism Organism Group EF-P acc Genes 
Discovered 

Adjacent acc 
Upstream Gene 

Adjacent acc 
Downstream Gene 

Synechococcus sp. CC9902 Cyanobacteria efp1 accB elongation factor P 
4-hydroxythreonine-4-

phosphate 
dehydrogenase 

Synechococcus sp. WH 8102 Cyanobacteria efp1 accB elongation factor P 
4-hydroxythreonine-4-

phosphate 
dehydrogenase 

Synechocystis sp. PCC 6803 Cyanobacteria efp1 accB elongation factor P 

carbon dioxide 
concentrating 

mechanism protein; 
CcmK 

Thermosynechococcus elongatus 
BP-1 Cyanobacteria efp1 accB elongation factor P acetolactate synthase III 

large subunit 
Thermus thermophilus HB27 Deinococcus-Thermus efp1 accC, accB elongation factor P hypothetical protein 
Thermus thermophilus HB8 Deinococcus-Thermus efp1 accC, accB elongation factor P hypothetical protein  

Wolinella succinogenes DSM 1740 Epsilonproteobacteria efp1 accC hypothetical protein 
putative undecaprenol 

kinase bacitracin 
resistance protein 
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Figure 19. The Shigella spp. where IS elements were discovered to be encoded in some of the 

adjacent 10kb upstream and downstream region of both efp1 and efp2. The green 

gene represents putative IS1 encoded protein (YP_408562.1), the red gene 

represents IS1 ORF2 (insB) (YP_408563.1, YP_408565.1, YP_410545.1, 

YP_405764.1, NP_708068.1, NP_710012.1, NP_710025.1), the dark blue gene 

represents IS1 ORF1 (YP_405765.1, NP_708069.1, NP_710011.1, NP_710026.1, 

YP_313053.1, YP_313065.1), the aqua gene iso-IS1 OF2 (YP_405762.1, 

YP_405766.1, YP_405778.1, YP_402577.1, YP_402580.1), the purple gene 

represents IS1 ORFA (NP_837784.1, NP_839704.1), the brown gene represents 

IS1ORFB (NP_837783.1, NP_839693.1), and the yellow gene represents efp. In 

Shigella boydii Sb227 efp1 there is another putative IS1 encoded protein within the 

IS1 ORF2 (insB). Note, the efp1 and the efp2 of these organisms have similarities 

at the IS element regions and in some cases the similarities include some of the non 

coding sequence beside the IS element.
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Table 6. Organisms with annotated IS elements excluding the Shigella spp. The EF-P, and 

IS element refseq ID is included to give limited positional location. 
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Organism Bacterial Group EF-P RefSeq ID # of IS 
elements 

Names of IS element (IS 
family and/or name) 

RefSeq ID of 
IS elements 

Bacteroides thetaiotaomicron VPI-
5482 Bacteroidetes/Chlorobi efp1 NP_812620.1 1 unknown NP_812617.1 

Burkholderia thailandensis E264 Betaproteobacteria efp1 YP_442272.1 1 Mutator YP_442276.1 
Dechloromonas aromatica RCB Betaproteobacteria efp1 YP_285250.1 1 IS116/IS110/IS902 YP_285256.1 
Deinococcus geothermalis DSM 

11300 Deinococcus-Thermus efp1 YP_603940.1 1 IS4 YP_603936.1 

Desulfovibrio desulfuricans G20 Deltaproteobacteria efp1 YP_388445.1 1 putative YP_388436.1 
Francisella tularensis subsp. 

holarctica Gammaproteobacteria efp1 YP_512977.1 1 uknown YP_512980.1 

Francisella tularensis subsp. 
tularensis SCHU S4 Gammaproteobacteria efp1 YP_169282.1 2 2 isftu1 YP_169273.1, 

YP_169279.1 

Geobacter metallireducens GS-15 Deltaproteobacteria efp2 YP_383073.1 1 IS111A/IS1328/IS1533/I
S116/IS110/IS902 YP_383068.1 

Idiomarina loihiensis L2TR Gammaproteobacteria efp1 YP_156657.1 1 Il-IS1 YP_156653.1 
Lactobacillus delbrueckii subsp. 

bulgaricus ATCC 11842 Firmicutes efp2 YP_619581.1 1 IS30 YP_619577.1 

Lactobacillus johnsonii NCC 533 Firmicutes efp2 NP_965635.1 1 IS30 NP_965633.1 

Lactobacillus sakei subsp. sakei 23K Firmicutes efp2 YP_394863.1 3 
orfB of IS1520 (IS3), 
orfA of IS1520 (IS3), 

orfB of ISLsa2 (IS150) 

YP_394869.1, 
YP_394870.1, 
YP_394875.1 

Lactococcus lactis subsp. lactis 
Il1403 Firmicutes efp1 NP_266848.1 1 IS983A NP_266837.1 

Leptospira interrogans serovar Lai 
str. 56601 Spirochaetes efp1 NP_714838.1 3 3 putative 

NP_714839.1, 
NP_714847.1, 
NP_714848.1 

Magnetospirillum magneticum 
AMB-1 Alphaproteobacteria efp1 YP_420648.1 1 putative IS402 YP_420660.1 

Methylococcus capsulatus str. Bath Gammaproteobacteria efp1 YP_113782.1 1 ISMca1 YP_113774.1 
Nitrobacter hamburgensis X14 Alphaproteobacteria efp1 YP_577554.1 1 IS116/IS110/IS902 YP_577558.1 

Pelobacter carbinolicus DSM 2380 Deltaproteobacteria efp1 YP_357898.1 1 putative YP_357902.1 
Photorhabdus luminescens subsp. 

laumondii TTO1 Gammaproteobacteria efp1 NP_931320.1 2 ISPlu3G (IS630), 
ISPlu6D (IS982) 

NP_931313.1, 
NP_931318.1 
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Organism Bacterial Group EF-P RefSeq ID # of IS 
elements 

Names of IS element (IS 
family and/or name) 

RefSeq ID of 
IS elements 

Pseudomonas putida KT2440 Gammaproteobacteria efp1 NP_744013.1 1 ISPpu8 NP_744020.1 
Pseudomonas syringae pv. 

phaseolicola 1448A Gammaproteobacteria efp1 YP_275790.1 2 truncated ISPsy19, 
ISPsy18 

YP_275781.1, 
YP_275782.1 

Psychrobacter arcticus 273-4 Gammaproteobacteria efp1 YP_264962.1 1 putative IS30 YP_264969.1 

Rickettsia felis URRWXCal2 Alphaproteobacteria efp1 YP_247065.1 2 2 Mutator YP_247069.1, 
YP_247070.1 

Salmonella enterica subsp. enterica 
serovar Choleraesuis str. SC-B67 Gammaproteobacteria efp2 YP_217214.1 1 Tn10 YP_217211.1 

Shewanella oneidensis MR-1 Gammaproteobacteria efp1 NP_717918.1 1 ISSod4 NP_717912.1 
Staphylococcus epidermidis ATCC 

12228 Firmicutes efp1 NP_764768.1 1 truncated NP_764774.1 

Synechocystis sp. PCC 6803 Cyanobacteria efp1 NP_442181.1 1 unknown NP_442190.1 

Vibrio vulnificus YJ016 Gammaproteobacteria efp1 NP_935895.1 1 transposase and 
inactivated derivative NP_935884.1 

Xanthomonas axonopodis pv. citri 
str. 306 Gammaproteobacteria efp1 NP_642696.1 2 IS1479 NP_642687.1, 

NP_642688.1 

Xanthomonas oryzae pv. oryzae 
KACC10331 Gammaproteobacteria efp1 YP_201344.1 3 2 putative ISXo8, putative 

transpoase 

YP_201333.1, 
YP_201334.1, 
YP_201532.1 

Xanthomonas oryzae pv. oryzae 
MAFF 311018 Gammaproteobacteria efp1 YP_451580.1 2 ISXo8, IS1112 YP_451571.1, 

YP_451573.1 

Xanthomonas oryzae pv. oryzae 
MAFF 311018 Gammaproteobacteria efp2 YP_451784.1 4 ISXoo11, ISXoo12, 2 

IS1112 

YP_451771.1, 
YP_451772.1, 
YP_451787.1, 
YP_451788.1 

Yersinia pestis Antiqua Gammaproteobacteria efp2 YP_650912.1 2 IS1661, IS1661 DNA-
binding protein 

YP_650918.1, 
YP_650919.1 

Yersinia pestis CO92 Gammaproteobacteria efp1 NP_404002.1 1 IS1541 NP_404004.1 
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Figure 20. The p-value averages of the motifs discovered using different clustering of natural 

habitat, 16S rRNA distance, genomic size, genomic GC content, and number of 

orthologous transcription factors and the maximum number of clusters defined. The 

statistically significant motifs have the lowest p-values. However, a lower p-value 

may not necessary correspond to the biologically functioning motif. The motif 

scores vary greatly from one group of bacterial sequences to another from the same 

cluster so standard deviation is very large and can be misleading. In addition, the p-

values within the same clusters are variable because it depends upon the sequences 

and whether or not they have more than one lowly scoring motif. The cluster names 

are representing the following: all = all characteristics used in clustering, noEnv = 

no environmental characteristic used in defining the cluster, noGC = no genomic 

GC characteristic used in clustering, norRNA = no 16S rRNA distance 

measurement used, noSize = no genomic size characteristic used, and noTF = no 

orthologous transcription factor characteristic used.  The number following the 

cluster name after the dash denotes the maximum number of clusters defined.
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over all the different clustering characteristics and ignoring the defined maximum number of 

clusters: no orthologous transcription factor characteristic, no genomic size characteristics, all 

characteristics, no genomic GC content characteristics, no environmental habitat characteristics, 

and no 16S rRNA distances information. 

3.6.1 Top 5 Predicted Motifs 

Table 7 describes the top 5 motifs discovered in the average lowest scoring cluster noTF-

10, based on a maximum of 10 clusters, the natural habitat of the organism, 16S rRNA distance, 

genomic size, and genomic GC content. The general trend in all the clusters, as seen in Table 7 is 

that the lowest scoring motif (the most statistically significant motif) discovered has a noticeable 

drop in p-value than the second lowest scoring motif. The top 5 motifs discovered using the 

noTF-10 clustering can be seen in Figure 21 to 30. Some of the discovered motifs are very 

similar; the only differences are the nucleotide frequencies. The different nucleotide frequencies 

for the similar predicted motifs are due to the different motif finding algorithms which may 

include or remove certain sequences during motif finding and the predicted motifs may be 

discovered in many instances in the sequences causing the frequencies of the motifs to be 

different if the programs are using the different motif instances. Clustering motifs can be used to 

remove these similarities. However, sometimes clustering motifs can obscure the true motif 

because it only shows the average motif that is represented in the cluster and not all the different 

possibilities of motifs in which one may be the biologically significant motif. Clustering is very 

useful when trying to find more than one unique motif. The null hypothesis is rejected because 

TAMO 1.0 discovered statistically significant motifs that had a p-value < 0.001. 
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Table 7. The lowest on average p-value for the motifs discovered was the cluster based on 

the organism’s natural habitat, 16S rRNA distance, genomic size, and genomic GC 

content and specified to have the maximum number of clusters as 10. The top 5 

scores are listed, with the average of each group and the total average p-value of the 

entire cluster.
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Bacterial Groups in Cluster Cluster 
Number 

of 
sequences 

p-values of the top 5 motifs Average 

Actinobacteria, (Alpha, Beta, 
Delta)proteobacteria, Cyanobacteria 1 27 8.66E-14 3.23E-09 7.21E-09 3.67E-08 7.13E-08 2.37E-08 

Actinobacteria, (Alpha, Beta)proteobacteria 2 14 6.73E-16 6.77E-10 7.73E-09 1.09E-08 1.13E-08 6.11E-09 
Acidobacteria, Actinobacteria, (Alpha, Beta, 

Delta)proteobacteria, Cyanobacteria 3 38 4.17E-20 6.03E-20 1.89E-19 7.98E-19 1.22E-18 4.62E-19 

Deinococcus-Thermus, Gammproteobacteria 4 5 5.72E-09 3.97E-07 5.10E-07 7.14E-07 1.08E-06 5.42E-07 
Alphaproteobacteria, 

Chlamydiae/Verrucomicrobia, Cyanobacteria 5 41 4.09E-21 5.32E-20 6.48E-20 6.48E-20 6.48E-20 5.03E-20 

Bacteroidetes/Chlorobi, (Delta, Epsilon, 
Gamma)proteobacteria, Firmicutes, 

Fusobacteria, Spirochaetes 
6 83 3.35E-24 2.40E-21 1.21E-20 1.71E-20 3.71E-20 1.37E-20 

Cyanobacteria, Firmicutes, 
Gammaproteobacteria 7 48 1.66E-19 3.75E-17 4.10E-17 5.41E-17 3.16E-16 8.97E-17 

Bacteroidetes/Chlorobi, Deinococcus-Thermus, 
Firmicutes, Gammaproteobacteria, 

Planctomycetes, Spirochaetes 
8 62 7.23E-19 2.04E-18 2.23E-18 3.30E-18 3.46E-18 2.35E-18 

Actinobacteria, (Alpha, Beta, Delta, Epsilon, 
Gamma)proteobacteria, Aquificae, 

Bacteroidetes/Chlorobi, Chloroflexi, 
Cyanobacteria, Firmicutes, Thermotogae 

9 51 1.55E-16 1.55E-14 1.49E-13 1.49E-13 1.92E-13 1.01E-13 

Actinobacteria, (Alpha, Beta, 
Delta)proteobacteria 10 13 7.28E-13 1.69E-08 2.54E-08 5.25E-08 1.64E-07 5.18E-08 

       total: 6.24E-08 
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3.6.2 Comparison with Known DNA Binding Sites 

There were no complete matches where both the -10 and -35 elements of the same sigma 

transcription factor binding sites from RegulonDB 5.0 were similar with the predicted motifs of 

the NoTF-10 group. See Figure 21 to 30 for E. coli sigma factor binding sites that have matching 

position frequency matrices with the top 5 predicted motifs for each cluster. Matching position 

frequency matrices are when the two matrices have a frequency for a nucleotide base in the same 

position and when a frequency is zero in one matrix the other is also zero for the base in the same 

position. When comparing the position frequency matrices of the known binding sites from 

RegTransBase, no known motifs matched the predicted motifs (Figure 21 to 30), perfectly. 

However, when allowing mismatches in one of the frequencies in the position matrix (mismatch 

where one position frequency matrix had no A, C, T, or G in any position and the other position 

frequency matrix had a known frequency for that nucleotide in that position) there was still no 

known motif matches. When allowing 9 mismatches, CRP motif matched with cluster 2’s 

s..ss....sG.s..S..s..cG motifs. At ten mismatches, CRP motif matched with cluster 2’s 

ss..G....s.ss..ss....SG motif. At eleven mismatches, cluster 4’s motif s..SSas...sss..s..s..Gc matched 

with CRP motif, cluster 4’s motif Ss.Gsts..s..s.ss.ksC matched with FadR motif, cluster 4’s motif 

s..s.yGs.Gs.s..ss.s..s..Gs matched with CRP motif, and cluster 6’s motif 

AAAwa..ww.wtAw.w.wAAAa matched with FNR motif (with a low score of 8.51 and thus high 

similarity) . At the cutoff value of 12 mismatches the FNR and the FadR motif similarities were 

discovered as seen in Table 8. The scores and the similar binding sites for regulatory proteins 

compared with the predicted motifs are summarized in Table 8.
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Figure 21. Top 5 motifs for Cluster 1 based on environmental, 16S rRNA, genomic size, GC 

content, and specified to have the maximum number of clusters as 10. There are no 

similar E. coli TFBS for the top 5 motif of cluster 1. 
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Figure 22. Top 5 motifs and the TFBS they are similar to for Cluster 2 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10.  
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Motif sequence logos p-value Similar TFBS & 

score 
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Figure 23. Top 5 motifs and the TFBS they are similar to for Cluster 3 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10.  
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Figure 24. Top 5 motifs and the TFBS they are similar to for Cluster 4 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10.  
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Figure 25. Top 5 motifs and the TFBS they are similar to for Cluster 5 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10.  
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Figure 26. Top 5 motifs and the TFBS they are similar to for Cluster 6 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10. 
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Figure 27. Top 5 motifs and the TFBS they are similar to for Cluster 7 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10. There are no similar E. coli TFBS for the top 5 

motif of cluster 7. 
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Figure 28. Top 5 motifs and the TFBS they are similar to for Cluster 8 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10. There are no similar E. coli TFBS for the top 5 

motif of cluster 8. 
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Figure 29. Top 5 motifs and the TFBS they are similar to for Cluster 9 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10. There are no similar E. coli TFBS for the top 5 

motif of cluster 9. 
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Figure 30. Top 5 motifs and the TFBS they are similar to for Cluster 10 based on 

environmental, 16S rRNA, genomic size, GC content, and specified to have the 

maximum number of clusters as 10.  
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Motif sequence logos p-value Similar TFBS & 

score 
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1.64E-07 Sigma24 -10 5.58 
Sigma70 -35 4.08  
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Table 8. The noTF-10 clusters predicted motifs with similarities to the binding sites from 

RegTransBase allowing a maximum of 12 mismatches. The lower the score the 

more similar the two position frequency matrices are. 
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Cluster Motif p-value Binding site Score Binding Site Score
2 ss..G....s.ss..ss....SG 7.73E-09 Crp Gammaproteobacteria 10.17 Fnr Gammaproteobacteria 14.47
2 s..ss....sG.s..S..s..cG 1.09E-08 Crp Gammaproteobacteria 10.95
3 ss..s.....sssS..s.ss 7.98E-19 Fnr Gammaproteobacteria 13.10
4 s..SSas...sss..s..s..Gc 3.97E-07 Crp Gammaproteobacteria 12.09
4 Ss.Gsts..s..s.ss.ksC 7.14E-07 FadR Gammaproteobacteria 10.67 Fnr Gammaproteobacteria 14.35
4 s..s.yGs.Gs.s..ss.s..s..Gs 1.08E-06 Crp Gammaproteobacteria 16.50
6 AAAwa..ww.wtAw.w.wAAAa 1.71E-20 Fnr Gammaproteobacteria 8.51 FadR Gammaproteobacteria 12.03

10 s..s.ss.....s.ss..Ss 1.64E-07 FadR Gammaproteobacteria 9.37 Fnr Gammaproteobacteria 13.43
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Figure 31.  Sequence logos of the binding site for the CRP group from Gammaproteobacteria. 

CRP group from Gammaproteobacteria is a DNA-binding site for CRP which is a 

cAMP sensitive transcriptional dual regulator (Kazakov et al. 2007).  
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Figure 32.  Sequence logos of the binding site for the FadR group from Gammaproteobacteria 

motif. The FadR motif from Gammaproteobacteria is a binding site for FadR which 

is a dual transcriptional regulator of fatty acids metabolism (Kazakov et al. 2007).  
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Figure 33. Sequence logos of the binding site for the FNR group from Gammaproteobacteria. 

The FNR motif from Gammaproteobacteria is a binding site for FNR which is a 

oxygen sensitive transcriptional dual regulator (Kazakov et al. 2007).  
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Chapter 4: DISCUSSION 

4.1 EF-P Sequence Retrieval Analyses  

In this study, the gene encoding EF-P was ubiquitous in all of the completely sequenced 

bacterial genomes except for Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130. 

This notwithstanding, the L. interrogans serovar Copenhageni str. Fiocruz L1-130 genome 

appears to encode an efp pseudogene that contains a frameshift mutation. Whether or not this 

sequence is a pseudogene or encodes a functional EF-P protein needs to be experimentally 

verified. However, L. interrogans serovar Copenhageni str. Fiocruz L1-130 is an obligate 

pathogen of human and may not require a functional EF-P protein. It is hypothesized that some 

parasites may not require EF-P but rather rely on a host protein(s), which can function in a 

manner similar to EF-P. In fact, many mammalian host cell functions such as signal transduction 

pathways are known to be exploited by bacterial pathogens (Finlay and Cossart 1997). For 

example, Bordetella pertussis is able to bind to the host integrin protein causing the host cell 

signaling pathway to up-regulate the binding activity of more host integrin to increase the 

Bacteria’s attachment to its host (Ishibashi, Claus, and Relman 1994). L. interrogans serovar 

Copenhageni str. Fiocruz L1-130 infects animal cells it may be able to use eIF-5A, the 

eukaryotic homolog of EF-P, to facilitate translation in the absence of EF-P. The N and C 

domains of eIF-5A correspond to efp’s KOW domain and OB domain (or C-terminus domain) 

(Hanawa-Suetsugu et al. 2004). Since eIF-5A and EF-P are very divergent from one another, L. 

interrogans serovar Copenhageni str. Fiocruz L1-130 may not be able to use eIF-5A as 

efficiently as EF-P which in turn may cause the organism to grow slowly. However, the slow 

growth of the parasite allows it to avoid inhibition by the animal’s immune system; for example, 
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the slow growth of Mycoplasm genitalium in the human urogenital tract may help the bacterium 

avoid detection by the immune system (Glass et al. 2006). In addition, if L. interrogans serovar 

Copenhageni str. Fiocruz L1-130 efp encoding region was translated and the efp may still be 

functioning because it contains the three domains of efp, as long as the first 52 amino acids 

translated did not interfere with the folding of the domains. 

4.2 EF-P Phylogenetic Tree Analyses 

EF-P appears to have a complex evolutionary history of horizontal gene transfer and gene 

duplication events as seen in the phylogenetic tree (Figure 5). The distinctive largest clustering 

of EF-P2 from Gammaproteobacteria, Planctomyctes, Deltaproteobacteria, Firmicutes (including 

some EF-P1s), Chloroflexi, and Acidobacteria in the tree is suggestive of either HGT or an 

ancient gene duplication in the common ancestor of these bacterial groupings. Subsequent gene 

loss can explain why some closely related species do not contain a second copy of EF-P. In a 

genomic comparison between closely related species of yeast, Saccharomyces pombe and 

Saccharomyces cerevisiae, Aravind et al., (2000) noted that approximately 300 genes have been 

lost since these two organisms diverged from their common ancestor. Within the bacterial 

domain, Enterococci spp. appears to have duplicate copies of elongation factor Tu (tufA and 

tufB). The EF-Tu phylogenetic tree is similar to the efp phylogenetic tree in that tufA clusters 

together and the tufB from the corresponding species clusters together (Ke et al. 2000). Ke et al. 

(2000) and I were able to rule out a recent gene duplication in the evolutionary history of the 

duplicated gene as a cause of the topology of the tree, since the tufA and tufB genes from the 

same organisms are not clustering together as sister taxa in the phylogenetic tree. To explain the 

EF-Tu phylogenetic tree topology, Ke et al. (2000), proposed that these duplicates may have 

been horizontally transferred. 
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The similarities in the branching pattern of the Chlamydiae/Verrucomicrobia are 

suggestive of an ancient gene duplication or horizontal transfer event in a common ancestor of 

the Chlamydiae/Verrucomicrobia group which explains why the duplicated EF-P copies are seen 

distantly apart in the tree but still retain a similar branching order within the subclade. Also, the 

Chlamydiae/Verrucomicrobia group appears to exhibit vertical inheritance in both the EF-P1 and 

the EF-P2 clusters as they display the same topology as in the SSU rRNA tree (Figure 8). The 

duplicated copies of EF-P from Mesorhizobium loti MAFF303099 and Rhodobacter sphaeroides 

2.4.1 are suggestive of a duplication event with subsequent divergence or possibly a HGT event 

from a closely related species in the same bacterial group. Porphyromonas gingivalis W83 EF-

P1 and EF-P2 most certainly resulted from a recent gene duplication event because these two 

genes branch off from each other as sister taxa.  

Some of the organisms with only one copy of the efp gene in their genomes also show 

evidence of HGT. For example, efp from the Actinobacteria, Symbiobacterium thermophilum 

IAM 14863 and Rubrobacter xylanophilus DSM 9941 both cluster alone, away from the rest of 

the Actinobacteria group which clusters as a monophyletic group in Figure 5. This is strong 

evidence for the HGT of efp in S. thermophilum IAM 14863 and R. xylanophilus DSM 9941. 

The efp from these two organisms depict the same atypical pattern as the bacterial intracellular 

parasites, Rickettsiae sp. and Chlamydiae sp. in phylogenetic analysis using the ubiquitous 

bacterial protein dCTP deaminase (Wolf, Aravind, and Koonin 1999). Like S. thermophilum 

IAM 14863 and R. xylanophilus DSM 9941, Rickettsiae sp. and Chlamydiae sp. are not 

clustering with their known bacterial relatives in the dCTP deaminase phylogenetic tree.  This is 

incongruent with the SSU tree and therefore suggestive of a possible horizontal transfer event 

(Wolf, Aravind, and Koonin 1999).  
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The lone member of the Betaproteobacteria, Nitrosopira multiformis ATCC 25196, 

clusters beside the Alphaproteobacteria and Acidobacteria group with the rest of the 

Betaproteobacteria shown as a monophyletic group. This suggests a possible EF-P HGT in N. 

multiformis ATCC 25196 from either an Alphaproteobacteria, or an Acidobacteria, due to the 

close proximity of these groups, or possibly from another bacterial group with subsequent 

divergence as seen for an ancient HGT event. The paraphyletic Bacteroidetes/Chlorobi group 

shows evidence of HGT in either of the two Bacteroidetes/Chlorobi groups’ common ancestors, 

with subsequent loss of the native EF-P gene, xenolog, or another possibility is that the efp genes 

within the two groups may have diverged from each other due to different selection pressures.  

The Firmicutes and some of the Proteobacteria groups may be paraphyletic due to 

different evolutionary rates as shown by the Chlamydiae/Verrucomicrobia EF-P2 group which 

exhibits long branches compared with the rest of the species in this group (Figure 5). These 

species, in the SSU rRNA tree, do not exhibit such long branches (Figure 8). The variation in 

rates or differences in branch lengths seen for the Chlamydiae/Verrucomicrobia EF-P2s in Figure 

5 maybe due to a difference in amino-acid replacement rates, which may be associated with the 

different protein structural environments (Thorne 2000) . For example, the sites on the surface of 

globular proteins have a 2-fold increase in rate heterogenity than compared with protein sites that 

are within the protein structure (Goldman, Thorne, and Jones 1998). Consequently, the 

Chlamydiae/Verrumicrobia EF-P2 may have a different protein structure than the other EF-Ps 

used in this analysis or it may be due to extreme differences of evolutionary pressures among the 

protein sequence because the evolutionary model used to construct Figure 5 incorporates 

different rate heterogeneity. In addition, the patchy distribution of the phylogenetic groups can 

also be attributed to HGT. Therefore, any HGT events within the bacterial groups used for the 
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EF-P tree and paraphyletic groups such as the Gammaproteobacteria, Deltaproteobacteria, and 

Firmicutes are difficult to hypothesize, since these groups are also paraphyletic in the SSU rRNA 

tree. 

Unfortunately, it is impossible to tell the difference between a gene duplication event 

occurring in a common ancestor with subsequent divergence of the genes and a HGT event 

occurring in a common ancestor with both having subsequent gene loss. Both of these scenarios 

would show the distant branching patterns observed in the EF-P phylogeny. The EF-P2 

clustering may also be explained by the possibility, albeit unlikely, of a number of independent 

HGT events. Gene loss in more than one ancestor and different rates of evolution or mutation 

may also explain the many incongruencies between the SSU rRNA tree and the EF-P tree 

(Kechris et al. 2006).  

4.3 SSU rRNA Phylogenetic Tree Analysis  

The SSU rRNA bacterial tree constructed by Olsen, Woese, and Overbeek (1994) has a 

similar topology to that of Figure 8. The Gammaproteobacteria group in the Olsen, Woese, and 

Overbeek (1994) and the present study display similar patterns. For example, both trees have a 

paraphyletic Gammaproteobacteria group separated by the Betaproteobacteria monophyletic 

clade (Olsen, Woese, and Overbeek 1994). Generally the higher branches or placement of the 

groups in our SSU rRNA tree (Figure 8) is congruent with the published tree of life such as the 

topology of the Aquificae, Thermotogae, and Deinococcus/Thermus bacterial group branching 

beside the archaeal outgroup species (Olsen, Woese, and Overbeek 1994). There are instances in 

Figure 8 where the bacterial groups are clustered differently such as the Spirochaetes, which are 

seen beside the Planctomyces and Chlamydia group in Olsen, Woese, and Overbeek (1994); 

however in Figure 8 the Spirochaetes appear to be grouping with the Chloroflexi. It is possible 
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that the different analyses in the present study compared to Olsen, Woese, and Overbeek (1994) 

could exhibit differences in topology due to the different species and number of taxons used in 

the construction of the two SSU rRNA trees. In addition, the published tree of life is a maximum 

likelihood tree; however, there is no mention of a use of a model of evolution (Olsen, Woese, 

and Overbeek 1994). Also, since this study by Olsen, Woese, and Overbeek (1994) there have 

been numerous changes in the taxonomy of Bacteria, mainly, some species of Bacteria’s have 

been reclassified and their names changed. 

In a study by Brochier et al. (2002), two different types of phylogenetic trees were 

constructed.  One consisted of a concatenated alignment containing the SSU and LSU rRNA 

genes whereas the other tree was constructed from a concatenation of translational apparatus 

proteins such as recA and ribosomal proteins. Again, most of the topology is congruent with the 

SSU rRNA tree generated (Figure 8) in the present study.  For example, the groups 

Cyanobacteria, Spirochaetes, Actinobacteria, Chlamydiae/Verrucomicrobia, Spirochaetes, and 

Bacteroidetes/Chlorobi group appear to be monophyletic.  In addition, the hyperthermophiles, 

Aquifex aeolicus and Thermotoga martima, appear to be branching together. In both trees the 

Firmicutes are paraphyletic, however, the Fusobacteria and Actinobacteria is separating the 

Firmicutes clades in our phylogeny while in the rRNA fusion tree it is separated by the 

Bacteroidetes/Chlorobi group. The Gammaproteobacteria in the fusion tree is monophyletic; 

though, the fusion tree is based on a smaller number of taxa then our SSU rRNA tree. 

Incongruence seen between the phylogenetic trees in the present thesis and published trees may 

be due to different data sets, different reconstruction methods, or different models of evolution 

used. 
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4.4 EF-P Nucleotide and Amino Acid Sequence Identity Analyses  

Nucleotide and amino acid sequence identity between distantly related species, as 

determined by BLAST hits, is another common method for finding putative horizontally 

transferred genes (Koonin, Makarova, and Aravind 2001). For example, using sequence analysis 

Gupta (2004) was able to detect a recent HGT between various Bacteroidetes species and 

Brucella spp. in the GyrB protein. There is an insertion in the conserved regions of GyrB that is 

shared by various Bacteroidetes species but usually not discovered in other groups of Bacteria 

(Gupta 2004). However, using sequence analysis of the conserved GyrB protein region from 

many different bacterial species, Gupta (2004) discovered this insertion in the 

Alphaproteobacteria, Brucella sp.. Since the insertion was not observed in another Proteobacteria 

and thus was more similar to Bacteroidetes species CyrB protein, it is hypothesized that this 

insertion may have occurred independently or was acquired by a HGT event (Gupta 2004). 

A disadvantage of sequence analysis is that it can only detect relatively recent HGT 

events, whereas rate variation or convergent evolution may in some instances explain the 

presence of similar sequences in distantly related species (Koski and Golding 2001). Having 

noted no similar EF-P sequences between distantly related species suggests that the HGT seen in 

the phylogenetic tree may be a result of an ancient HGT event allowing enough time to pass for 

the foreign gene sequence to evolve and acquire its recipient genomic sequence characteristics 

thus avoiding detection. Also, the HGT may have occurred between genomes that are closely 

related and thereby hard to verify. The sequence analyses were consistent with the topology of 

the EF-P tree. The amino acid sequence identity trends concerning EF-P1 and EF-P2 also 

supported the clustering of most of the EF-P2 sequences together.   
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4.5 EF-P Codon Usage and Genomic GC Content Analyses  

Genomic codon preference and GC content is known to vary from genome to genome 

and from gene to gene. Unusual codon usage and GC content of a gene in an organism may also 

be due to convergent evolution (Medigue et al. 1991a). Both codon usage and GC content may 

also be related to the level of expression of the gene. For example, a gene that is known to be 

expressed at a high level often has a higher GC content and uses more abundant tRNA codons 

(Garcia-Vallve et al. 2003). In contrast, low GC content in a gene may indicate structural 

constraints; for example, ribosomal proteins favor the AAA codon for lysine because it is 

preferred for RNA protein interactions (Medrano-Soto et al. 2004). Within an E. coli cell there is 

typically about one EF-P molecule per ten ribosomes or roughly one-tenth of that of EF-G (An et 

al. 1980). Another factor affecting codon usage in Bacteria is the selection pressure among 

synonymous codons, and thus highly expressed genes are encoded using the optimal 

synonymous codon for that species (Sharp and Matassi 1994). Evidence shows that codon usage 

typically correlates with evolutionary distance of the species; however, distantly related species 

may have similar codon usage due to convergent evolution from living in similar environments 

(McInerney 1998). Codon usage analysis have been used to recognize two types of genes; highly 

expressed genes and horizontally transferred genes (Gharbia et al. 1995). Unfortunately, codon 

usage and GC content analysis is unable to detect relatively old HGT due to amelioration and 

HGT between genomes with similar GC content and codon usage (Medigue et al. 1991b; 

Medigue et al. 1991a; Kechris et al. 2006).  

 In a previous study, Medigue et al. (1991a) observed that recently acquired foreign genes 

located in E. coli displayed a different codon usage than native E. coli genes. Using factorial 

correspondence analysis, Medigue et al. (1991a) discovered three different clusters of codon 
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usage in E. coli genes. The first two clusters are comprised of genes that are expressed 

lowly/rarely and highly. The third class contains genes which have atypical codon usage and are 

hypothesized to be horizontally transferred (Medigue et al. 1991a). Medigue et al. (1991a) was 

unable to detect atypical codon usage for efp in E. coli supporting our results that the horizontal 

transfer may have been an ancient event. In addition, when the complete genome of E. coli strain 

MG1655 was first sequenced, a codon analysis was performed to determine the presence of 

horizontally transferred genes within the genome and this study did not detect HGT of EF-P2, 

which again is consistent with our own codon analysis findings (Lawrence and Ochman 1998). 

Using clustering techniques, most of the tuf genes did not cluster with the efp genes, 

which was expected due to their different levels in gene expression. The tuf control was used to 

try to determine the difference in codon usage for a highly expressed gene and a HGT event. The 

following organism’s efp genes clustered with the highly expressed tuf control: Thermobifida 

fusca YX EF-P1, Dechloromonas aromatica RCB EF-P1, Xanthomonas oryzae pv. Oryze 

KACC10331 EF-P1, Buchneria aphidicola str. APS EF-P1, Vibrio cholerae O1 biovar eltor str. 

N16961 EF-P2, and Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150 

EF-P2. Lynn, Singer, and Hickey, (2002) analyzed the pattern of synonymous codon usage in 

more than 80 000 genes from 40 completely sequenced prokaryotic genomes. They determined 

that codon usage can be affected by two factors; genomic GC content and the growth of the 

organisms at high temperature (Lynn, Singer, and Hickey 2002). In addition, Lynn, Singer, and 

Hickey (2002) discovered cases of convergent evolution in codon usage amongst GC-rich 

species such as the GC-rich gram-positive M. tuberculosis, GC-rich gram-negative P. 

aeruginosa, and GC-rich archaeal species Halobacterium. The efp genes in these organisms may 

be expressed at a higher rate having more similar optimal codons like the tuf genes due to natural 
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high temperature habitats and higher genomic GC content. However, none of these organisms 

have been isolated from high temperature environments except for Thermobifida fusca YX 

which is a moderate thermophilic soil bacterium and has an optimal growth temperature of 55°C 

(Lykidis et al. 2007). The GC content of Thermobifida fusca YX EF-P1, Dechloromonas 

aromatica RCB EF-P1, Xanthomonas oryzae pv. Oryze KACC10331 EF-P1, Buchneria 

aphidicola str. APS EF-P1, Vibrio cholerae O1 biovar eltor str. N16961 EF-P2, and Salmonella 

enterica subsp. enterica serovar Paratyphi A str. ATCC 9150 EF-P2 are 67.5, 59.3, 63.7, 26, 47, 

and 51.4 respectively. The first three organisms and S. enterica subsp. enteric serovar Paratyphi 

A str. ATCC9150 have higher GC content, which may skew the codon usage, compared with the 

average GC content, 47.6 of all the organisms used in this study. In addition, Buchneria 

aphidicola str. APS efp1 has a very low GC content, which is surprising as it grouped with tuf 

genes which are highly expressed and thus usually have a higher GC content. The efp and the 

highly expressed tuf genes may have clustered together for B. aphidicola str. APS because the 

optimal codons may not be GC rich in this organism. In addition, Vibrio cholerae O1 biovar eltor 

str. N16961 efp2 may be expressed at a higher rate than its efp1 gene.  

Many clusters contain species from the same bacterial groups; however, there are several 

clusters which contain a mix of bacterial groups. This may be the result of convergent evolution 

or show the atypical codon usage pattern that may denote a HGT event. Again, Porphyromonas 

gingivalis W83 efp2 or efp1 shows codon usage evidence of being a recent gene duplication as 

the efp1 and the efp2 of this species have similar codon usage and are clustering together. 

Chlamydia muridarum Nigg efp1 and efp2 genes have similar codon usage but they show no 

evidence of being a gene duplication event in the EF-P phylogenetic tree. Chlamydia muridarum 

Nigg is the only Chlamydiae/Verrumicrobia organisms to have their efp1 and efp2 clustering 
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together based on codon usage. Nevertheless, C. muridarum Nigg’s efp1 and efp2 in the 

phylogenetic tree are acting in concert with the efp1 and efp2 from the 

Chlamydiae/Verrumicrobia organisms. In addition, all the efp2 from the 

Chlamydiae/Verrumicrobia group are clustering together based on codon usage except for C. 

muridarum Nigg. C. muridarum Nigg’s efp2 may have evolve faster than the other efp2 from 

Chlamydiae/Verrumicrobia causing some of the codon usage to be similar to its corresponding 

efp1 but still retain its distinct composition in order to cluster together with the efp2 from the 

Chlamydiae/Verrumicrobia group in the phylogenetic tree. 

 The GC content analysis supports the phylogenetic (Figure 5) analysis in the putative 

HGT of the Bacterioidetes/Chlorobi species Bacteroides fragilis YCH46, but not the rest of its 

clade (Table 9). The Hamming distance supports the phylogenetic case that the Chlamydophilia 

abortus S26/3 efp2 may be horizontally transferred and is not a gene duplication as hypothesized 

(Table 10). However, it is unlikely that a HGT event occurred (and not a gene duplication event) 

in the common ancestor of this group and then the same vertical inheritance pattern occurred for 

both efp and efp2. In P. gingivalis W83, a recent gene duplication event was supported by having 

similar GC content to each other (efp1, 53.8% and efp2, 54.3%).  

4.5.1 Optimal Codon Usage Analyses 

Optimal codons for E. coli, B. subtilis, S. cerevisiae, S. pombe, and D. melanogaster are 

UUC, UAC, AUC, AAC, GAC and GGU (Sharp and Devine 1989). Rare codons for E. coli are 

AGG, AGA, AUA, CUA, CGA, CGG, CCC, and UCG (Ikemura 1981; Zhang, Zubay, and 

Goldman 1991). As seen in Table 11, E. coli spp. efp2 uses more rare codons and fewer optimal 

codons when compared with efp1 and the highly expressed tuf genes. Both efp1 and efp2 use the 

rare codon UCG quite frequently when compared with the tuf gene. The usage of rare and sub-
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Table 9. A list of the putative HGT genes detected using a 10% G+C content difference 

between efp and the genome.  
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Organism/Group Genomic 
G+C % 

efp 
G+C % 

Anaeromyxobacter dehalogenans 2CP-C 
Deltaproteobacteria efp1 74.8 63.4 

Bacteroides fragilis YCH46 
Bacterioidetes/Chlorobi efp1 33.5 45.1 

Burkholderia xenovorans LB400 
Betaproteobacteria efp1 68 55.9 

Pseudomonas fluorescens Pf-5 
Gammaproteobacteria efp1 67 54.6 

Ralstonia metallidurans CH34 
Betaproteobacteria efp1 67 56.9 
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Table 10. A list of the putative HGT genes detected using a Hamming distance difference of 

0.08 between the smallest Hamming distance calculated and efp’s corresponding 

genome. 
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Organism/Group 
Minimum Genome 

Depicted by Hamming 
distance 

Hamming 
distance of its 
own genome 

Hamming distance 
of minimum 

genome 

Chlamydophila abortus S26/3 
Chlamydiae/Verrucomicrobia efp 

 

Oceanobacillus iheyensis 
HTE831 

Firmicutes 
 

0.50418 0.3675 

Porphyromonas gingivalis W83 
Bacteroidetes/Chlorobi efp2 

Chlorobium tepidum TLS 
Bacteroidetes/Chlorobi 0.58856 0.49915 

Prochlorococcus marinus subsp. 
pastoris str. CCMP1986 

Cyanobacteria efp 

Streptococcus agalactiae 
2603V/R 

Firmicutes 
0.52563 0.42385 

Synechococcus elongatus PCC 
7942 Cyanobacteria efp 

Chlorobium tepidum TLS 
Bacteroidetes/Chlorobi 0.67607 0.54562 

Synechococcus sp. WH 8102 
Cyanobacteria efp 

Bifidobacterium longum 
NCC2705 

Actinobacteria 
0.51773 0.43771 
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Table 11. The difference in codon frequency in synonymous optimal and rare codons for E. 

coli efp and tuf. Optimal codons are highlighted in yellow and rare codons are 

highlighted in blue. 



 143

Organism gene UUC UUU UAC UAU AUC AUA AUU AAC AAU GAC GAU GGUGGC GGA GGG AGG AGA CGU CGC CGA CGGCUA CUU CUC CUG UUA UUG CCC CCU CCA CCG UCG UCU UCC UCA AGU AGC
Escherichia coli CFT073 efp1 3.7 1.06 2.65 0.53 3.17 0 0.53 3.7 0.53 1.06 5.82 4.76 4.23 0 0 0 0 1.59 2.12 0 0 0 0.53 0 6.88 0.53 0 0 0.53 0 3.7 3.7 2.65 1.06 0 0.53 0.53
Escherichia coli CFT073 efp2 1.45 2.17 2.17 1.81 1.81 1.09 3.62 1.81 1.09 3.26 3.62 2.17 3.62 0.72 1.45 0.36 0.36 3.26 1.81 0.36 0.72 0 1.45 0 5.07 0.36 1.81 0.72 0.36 1.45 3.26 3.26 1.45 0.72 0 0.36 1.45
Escherichia coli K12 efp1 3.17 1.59 2.65 0.53 3.17 0 0.53 3.7 0.53 1.59 5.29 5.29 3.7 0 0 0 0 1.59 2.12 0 0 0 0.53 0 6.88 0.53 0 0 0.53 0 3.7 3.7 2.65 1.06 0 0.53 0.53
Escherichia coli K12 efp2 1.45 2.17 2.17 1.81 1.81 1.09 3.62 1.81 1.09 2.9 3.99 1.81 3.62 0.72 1.81 0.36 0.36 3.26 1.81 0.36 0.72 0 1.45 0 5.43 0.36 1.45 0.72 0 1.81 3.26 3.26 1.45 0.72 0 0.36 1.45
Escherichia coli O157:H7 EDL933 efp1 3.72 1.06 2.66 0.53 3.19 0 0.53 3.72 0.53 2.13 4.79 4.26 4.79 0 0 0 0 1.6 2.13 0 0 0 0.53 0 6.91 0.53 0 0 0.53 0 3.72 3.72 2.66 1.06 0 0.53 0.53
Escherichia coli O157:H7 EDL933 efp2 1.45 2.17 2.17 1.81 1.81 1.09 3.62 1.81 1.09 3.26 3.62 1.45 3.62 1.09 1.81 0.36 0.36 3.26 1.81 0.36 0.72 0 1.45 0 5.43 0.36 1.45 0.72 0 1.81 2.9 2.9 1.45 0.72 0 0.36 1.45
Escherichia coli O157:H7 str. Sakai efp1 3.7 1.06 2.65 0.53 3.17 0 0.53 3.7 0.53 2.12 4.76 4.23 4.76 0 0 0 0 1.59 2.12 0 0 0 0.53 0 6.88 0.53 0 0 0.53 0 3.7 3.7 2.65 1.06 0 0.53 0.53
Escherichia coli O157:H7 str. Sakai efp2 1.57 1.57 2.09 2.62 2.62 0 3.14 2.09 0.52 3.66 4.19 2.09 3.14 0.52 1.57 0 0.52 4.19 1.57 0 0 0 0.52 0 7.33 0.52 1.05 0.52 0 2.09 2.62 2.62 1.05 0.52 0 0 1.57
Escherichia coli UTI89 efp1 3.17 1.59 2.65 0.53 3.17 0 0.53 3.7 0.53 2.12 4.76 4.23 4.76 0 0 0 0 1.59 2.12 0 0 0 0.53 0 6.35 0.53 0.53 0 0.53 0 3.7 3.7 2.65 1.06 0 0.53 0.53
Escherichia coli UTI89 efp2 1.45 2.17 2.17 1.81 1.81 1.09 3.62 1.81 1.09 3.26 3.62 2.17 3.62 0.72 1.45 0.36 0.36 3.26 1.81 0.36 0.72 0 1.45 0 5.07 0.36 1.81 0.72 0.36 1.45 3.26 3.26 1.45 0.72 0 0.36 1.45
Escherichia coli W3110 efp1 3.17 1.59 2.65 0.53 3.17 0 0.53 3.7 0.53 1.59 5.29 5.29 3.7 0 0 0 0 1.59 2.12 0 0 0 0.53 0 6.88 0.53 0 0 0.53 0 3.7 3.7 2.65 1.06 0 0.53 0.53
Escherichia coli W3110 efp2 1.57 1.57 2.09 2.62 2.62 0 3.14 2.09 0.52 3.14 4.71 2.62 3.14 0 1.57 0 0.52 4.19 1.57 0 0 0 0.52 0 7.33 0.52 1.05 0.52 0 2.09 2.62 2.62 1.05 0.52 0 0 1.57
Escherichia coli CFT073 tuf 3.17 0.24 2.2 0.24 6.34 0.49 0.73 1.71 0.24 4.88 0.98 4.88 4.88 0 0.49 0.24 0 5.12 0.49 0 0 0 0.24 0.24 6.59 0 0 0 0.24 0.24 4.63 0 1.95 0.73 0 0 0.24
Escherichia coli CFT073 tuf 3.29 0.25 2.03 0.51 6.58 0 0.76 1.77 0 5.06 1.01 5.32 4.56 0 0.25 0 0 5.06 0.76 0 0 0 0.25 0 6.84 0 0 0 0 0.25 4.81 0 1.52 1.01 0 0 0.25
Escherichia coli K12 tuf 3.29 0.25 2.03 0.51 6.58 0 0.76 1.77 0 5.06 1.01 4.81 5.32 0 0.25 0 0 5.32 0.51 0 0 0 0.25 0 6.84 0 0 0 0 0.25 4.81 0 1.77 0.76 0 0 0
Escherichia coli K12 tuf 3.29 0.25 2.28 0.25 6.58 0 0.76 1.77 0 5.06 1.01 4.81 5.06 0 0.25 0 0 5.06 0.76 0 0 0 0.25 0 6.84 0 0 0 0 0.25 4.81 0 1.77 0.76 0 0 0.25
Escherichia coli O157:H7 EDL933 tuf 3.29 0.25 2.03 0.51 6.33 0 1.01 1.77 0 5.06 1.01 4.81 5.32 0 0.25 0 0 5.32 0.51 0 0 0 0.25 0 6.84 0 0 0 0 0.25 4.81 0 1.52 1.01 0 0 0
Escherichia coli O157:H7 EDL933 tuf 3.32 0.26 2.3 0.26 6.38 0 1.02 1.79 0 5.1 1.02 4.85 4.85 0 0.51 0 0 4.85 0.77 0 0 0 0.26 0 6.38 0 0.51 0.26 0 0.26 4.34 0 1.53 1.02 0 0 0.26
Escherichia coli O157:H7 str. Sakai tuf 3.29 0.25 2.28 0.25 6.58 0 0.76 1.77 0 5.06 1.01 4.81 5.06 0 0.25 0 0 5.06 0.76 0 0 0 0.25 0 6.58 0 0.25 0 0 0.25 4.81 0 1.52 1.01 0 0 0.25
Escherichia coli O157:H7 str. Sakai tuf 3.29 0.25 2.03 0.51 6.33 0 1.01 1.77 0 5.06 1.01 4.81 5.32 0 0.25 0 0 5.32 0.51 0 0 0 0.25 0 6.84 0 0 0 0 0.25 4.81 0 1.52 1.01 0 0 0
Escherichia coli UTI89 tuf 3.17 0.24 2.2 0.24 6.34 0.49 0.73 1.71 0.24 4.88 0.98 4.88 4.39 0 0.73 0.24 0 5.12 0.49 0 0 0 0.24 0.24 6.59 0 0 0 0.24 0.24 4.63 0 1.71 0.98 0 0 0.49
Escherichia coli UTI89 tuf 3.29 0.25 2.28 0.25 6.58 0 0.76 1.77 0 4.81 1.27 4.81 5.06 0 0.51 0 0 4.81 1.01 0 0 0 0.25 0 6.84 0 0 0 0 0.25 4.81 0 1.52 1.01 0 0 0
Escherichia coli W3110 tuf 3.29 0.25 2.28 0.25 6.58 0 0.76 1.77 0 5.06 1.01 4.81 5.06 0 0.25 0 0 5.06 0.76 0 0 0 0.25 0 6.84 0 0 0 0 0.25 4.81 0 1.77 0.76 0 0 0.25
Escherichia coli W3110 tuf 3.29 0.25 2.03 0.51 6.58 0 0.76 1.77 0 5.06 1.01 4.81 5.32 0 0.25 0 0 5.32 0.51 0 0 0 0.25 0 6.84 0 0 0 0 0.25 4.81 0 1.77 0.76 0 0 0

ArgPhe Tyr Ile Asn Leu Pro SerAsp Gly
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optimal codons could cause efp2 to be more lowly/rarely expressed than efp1. In addition, using 

rare codons may be one of the mechanisms of the organism to regulate the expression efp2. 

4.6 Gene Order Conservation Analyses  

The gene order for efp does not appear to be conserved amongst all the completely sequenced 

Bacteria. This differs from other elongation factors such as elongation factor Tu (tufA and tufB), 

and Elongation Factor G (fus) that have been observed to be within an operon configuration 

(Post et al. 1978; Koonin and Galperin 1997; Itoh et al. 1999).The streptomycin operon consists 

of two elongation factors; elongation factor G (fus) and elongation factor Tu (tufA) and 

ribosomal proteins in the E. coli organism (Koonin and Galperin 1997; Itoh et al. 1999). 

Elongation Factor Tu (tufB) is located within the tRNA-tufB operon in Thermus thermophilus, 

and Chlamydia trachomatis (Satoh et al. 1991; Cousineau et al. 1992). In addition, EF-Ts (tsf) 

was discovered in an operon which also codes for the ribosomal protein S2 (An et al. 1981). It 

appears that most of the bacterial translation elongation factors are expressed in an operon 

configuration. 

In general, gene order is poorly conserved amongst distantly related species if the genes 

are not in an operon configuration because bacterial genomes are prone to genomic 

rearrangements (Tamames 2001; Rogozin et al. 2002). Gene order, including operons, are easily 

lost during the course of bacterial evolution (Tamames 2001). In 2001, Wolf et al., determined 

that only 5 to 25% of genes that make up an operon are discovered in at least two genomes, when 

closely related bacterial and archaeal species are excluded. However, comparative analysis of 

gene order is problematic due to errors in annotation, falsely predicted genes, missing genes, and 

sequencing errors (Rogozin et al. 2004).  To add to this confusion many parasitic bacterial 
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genomes, such as Mycobacterium leprae and Rickettsia prowazekii, have a higher than normal 

amount of pseudogenes (Rogozin et al. 2004).  

4.6.1 General Trends seen in the Gene Order of efp1 and efp2 

Most of the efp1 upstream and downstream regions have a similar gene order to the 

upstream and downstream adjacent regions of other efp1 from closely related species of the same 

bacterial group. Usually efp1 adjacent regions do not have any similarity in gene order with their 

corresponding efp2 except for the exceptions seen in Table 4. The efp2 adjacent upstream and 

downstream regions show the same trends.  For example, Shigella sonnei Ss046 efp1 has similar 

gene order for the entire length of the upstream and downstream 10kb region with most of the E. 

coli spp. efp1 adjacent regions due to their close evolutionary relationship; the same trend is 

observed with the efp2 adjacent regions of these species. This general trend is consistant with the 

phylogenetic and sequence analysis done for efp in this thesis.  

Only two of the organisms, Acidobacteria bacterium Ellin 345 and Porphyromonas 

gingivalis W83 have significant similarities between the adjacent upstream and downstream 

regions of efp1 and efp2, that does not include IS elements and/or partial gene similarities and/or 

domain similarities. In Figure 13, Acidobacteria bacterium Ellin345 efp2’s adjacent upstream 

and downstream region shows evidence to support an ancient duplication event such as an 

internal repeat because the adjacent efp2’s region contain two copies of the ABC efflux, inner 

membrane subunit (one in the upstream region and the other in the downstream region marked in 

red) while the efp1 adjacent regions only has one copy of this gene in its downstream region. In 

addition, both regions have the same configuration of the PadR-like family beside (one of) the 

ABC efflux, inner membrane subunit(s). An ancient internal repeat may have once been located 

here with enough time passing by to allow for gene loss and rearrangement in the internal 



 146

repeats, leaving behind only one efp sequence but two ABC efflux, inner membrane subunit 

proteins in efp2’s adjacent region. Nevertheless, the two copies of the ABC efflux membrane 

protein flanking efp2 may also be caused by other genomic rearrangements such as gene 

duplication, homologous recombination, or a HGT event. 

Porphyromonas gingivalis W83 efp1 and efp2 adjacent region gene order conservation 

shows evidence of being a gene duplication event. In Figure 14, efp1 and efp2 are seen sharing a 

similar adjacent gene, DNA-binding protein, histone-like family, and the non-coding region 

upstream and downstream of both efp1 and efp2. Again, this evidence supports the theory that 

efp1 or efp2 of P. gingivalis W83 may have undergone a recent gene duplication event because 

even the non-coding regions are conserved and have high sequence similarity with each other 

even though no functional constraints are believed to be acting upon these non-coding regions. In 

Figure 14, the similar protein and non-coding regions are flipped showing evidence of this region 

including efp were duplicated or inserted back into the genome in an inverted manner.  

4.6.2 Evidence of Horizontal Gene Transfer in the Gene Order of efp 

  Figure 15 shows the different interactions (red lines) of the significant similarities in the 

adjacent regions of efp between distantly related organisms. All these matches show signs of 

possible horizontal transfers of the regions near efp or including efp. It is interesting to note 

which organisms are similar to each other and which are in their own isolated networks. For 

example, Xanthomonas campestris pv. Campestris str. 8004 efp2 is only similar to 

Corynebacterium jeikeium K411 efp1. However, Chlorobium chlorochromatii CaD3 is similar to 

Idiomarina loihiensis L2TR and Geobacillus kaustophilus HTA426, which have significant 

similarities with other organisms that are not similar to C. chlorochromatii CaD3. This large 

interacting network diagram (Figure 15) may show the remnants of the gene order from the 
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common ancestor before the species diverged or the genes that are similar may be involved in 

complex interactions making the gene order more likely conserved. In addition, the preservation 

of gene order may be due in part to ancient horizontal transfer of a large region allowing for gene 

loss and divergence to explain the differences in the regions seen today or even HGT of a single 

gene. However, one must also take into account sequence similarities due to convergent 

evolution and similar protein domains such as the common DNA-binding domains.  

4.6.3 Conservation of efp, accB, and accC gene order 

Table 5 lists the organisms which contain the Acetyl-CoA carboxylase genes, accC and 

accB beside efp or within the 10kb adjacent upstream and downstream region of efp. Acetyl-CoA 

carboxylase is an enzyme that catalyzes the ATP-dependent carboxylation of acetyl-CoA to 

malonyl-CoA in the fatty acid synthesis in plants, animals, and Bacteria (Sloane and Waldrop 

2004). Acetyl-CoA carboxylase in E. coli and most bacterial species is assembled from four 

different subunits; biotin carboxyl carrier protein (accB), biotin carboxylase (accC), and 

carboxyl transferase which is a tetramer composed of alpha and beta subunits (accA and accD) 

(Marini et al. 1995). However, it has been reported that in Mycobacterium leprae and M. 

tuberculosis, biotinylated proteins have the functions of both accB and accC (Norman et al. 

1994). The genes accB and accC, in some bacterial species such as E. coli, Pseudomonas 

aeruginosa, and Bacillus subtilis form a two gene operon, called the accBC operon (Li and 

Cronan 1992; Best and Knauf 1993; Marini et al. 1995). Conversely, in the Cyanobacteria 

species, Anabaena, the accB and accC genes do not form an operon and are not discovered 

beside each other (Gornicki, Scappino, and Haselkorn 1993). Usually, genes that encode the 

subunits of multiprotein complexes, in this case Acetyl-CoA carboxylase, are conserved as 
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operons in distantly related Bacteria (Rogozin et al. 2002). In addition, it is unknown whether or 

not the accBC operon has ever undergone horizontal transfer in its evolutionary history. 

The conservation of the gene order of efp, accB, and accC or the preservation of the order 

of these three genes in distantly related Bacteria is significant since the evolution of Bacteria is 

detrimental to gene order conservation. The efp gene may be part of the accBC operon in only 

these organisms, since the accBC operon is not discovered extensively within Bacteria (Gornicki, 

Scappino, and Haselkorn 1993). In addition, Wolf et al., (2001) believed that if a conserved gene 

string or gene order occurs in two or three evolutionarily distantly related bacterial species there 

is little doubt that the genes are part of an operon again because of the limited gene conservation 

in Bacteria.  

On the other hand, efp may be located beside the accBC operon by chance. Because of 

efp’s close proximity to an operon it may have increased the chances that efp hitchhiked along 

with the ‘selfish’ operon during a horizontal transfer event of the operon.  This would explain the 

preservation of the efp and accBC operon gene order in distantly related species. Using sequence 

similarity analysis to determine predicted operons and then phylogenetic analysis, Omelchenko 

et al., (2003) discovered evidence for the horizontal transfer of entire operons such as the 

acquisition of the Sulfate/molybdate transport from Bacillus halodurans BH3128-BH3130 from 

a gram-negative Bacteria and a DNA repair SbcDC xenologous operon in Vibrio cholerae from a 

gram-positive Bacteria (Omelchenko et al. 2003). In addition, Rogozin et al. (2002) proposed 

that genomic hitchhiking is prominent in gene neighbourhoods that consist of genes coding for 

translational machinery. Rogozin et al. (2002) believed that genomic hitchhiking was responsible 

for the minority of genes that had no obvious functional connection to the main coherent 

function of the majority of genes that comprised the gene neighbourhood. The efp gene may 
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associate with the accBC operon due to the advantage of the hitchhiker being expressed at a 

particular level and have a similar regulation pattern of the operon (Rogozin et al. 2002). 

In Table 5, the efp2 of the Chlamydiae/Verrumicrobia group are the only efp2 showing 

signs of horizontal transfer in the phylogenetic tree that has conserved gene order with the accBC 

operon. This may show evidence of an ancient horizontal transfer from one of the organisms that 

have the conserved gene order of efp beside the accBC operon in Table 5 to a common ancestor 

of the Chlamydiae/Verrumicrobia group causing the efp2 to cluster together in the EF-P tree 

(Figure 5) and preserve the efp, accBC operon gene order. However, I am unable to discern 

which organisms the efp2 region from Chlamydiae/Verrumicrobia may have originated from due 

to the wide spread pattern of the organisms that contain the conserved gene order of efp and the 

accBC operon in the phylogenetic tree and the efp2 group from Chlamydiae/Verrumicrobia are 

not clustering with any other organisms in the phylogenetic tree (Figure 5). Our results are in 

agreement with the discovery by Rogozin et al. (2002) that efp was in the same gene 

neighbourhood as accC and accB. In addition, efp is part of a gene neighbourhood whose 

principal functions include lipid metabolism, amino acid metabolism, and those secondary 

function include translational components (Rogozin et al. 2002).  

4.6.4 Insertion Sequence Elements and Composite Transposons 

 Insertion sequence (IS) elements were discovered in the adjacent upstream and/or 

downstream region of the orthologous efp gene in Table 6 and Figure 19. Bacterial transposon or 

IS elements are know for being able to move in and out of genomes or replicons in a process 

called transposition (Snyder and Champness 2003). Plasmids are often discovered with IS 

elements which may allow for the formation of high-frequency recombination strains and 

plasmids containing chromosomal DNA thereby allowing horizontal transfer by conjugation 
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(Snyder and Champness 2003). Having IS elements shows evidence of transposition events 

occurring near efp and perhaps including efp. In addition, the presence of IS elements could 

mean a number of different chromosomal reshufflings may have occurred such as genomic 

rearrangements (Saedler et al. 1980); inversions and translocations, increased homologous 

recombinations (Lieb 1980), horizontal transfers (Chandler, Clerget, and Caro 1980), gene 

activations (Glandsdorff, Charlier, and Zafarullah 1980), gene repressions (Saedler et al. 1974), 

and deletions (Chow and Broker 1981). In addition, IS elements have been horizontally 

transferred by all known mechanisms of HGT; transformation, conjugation, and transduction 

(Frost et al. 2005). One such cases involves the IS1 family, where the difference in transposition 

and sequence provided evidence that the IS1 elements discovered in E. coli K12 and E. coli 

O157:H7 originally came from Shigella boydii (Hsu and Chen 2003). 

Interestingly, the following organisms were discovered to have their efp genes flanked by 

IS elements: Shigella sonnei Ss046 efp1, Shigella dysenteriae Sd197 efp1, Shigella flexneri 2a 

str. 2457T efp2, Shigella flexneri 2a str. 301 efp1, Xanthomonas oryzae pv. Oryzae KACC10331 

efp1, and Xanthomonas oryzae pv. Oryze MAFF 311018 efp2. Two copies of the same IS 

elements that are flanking a DNA region are sometimes able to ‘act in concert’ causing the 

region between the IS elements and including the IS elements to become mobile and act as a 

large transposon (Berg and Howe 1989). These large transposons composed of two IS elements 

and the DNA region between them are called composite or compound transposons and are 

usually denoted as Tn (Mahillon and Chandler 1998). The Shigella and Xanthomonas spp. may 

have a composite transposon containing the efp gene providing evidence of the mechanism 

behind the duplication or horizontal transfer of efp in these organisms. An ancient replicative 

transposition event may have allowed the duplication of efp in these Gammaproteobacteria 
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organisms with subsequent gene loss, divergence, and genomic rearrangments to explain the 

differences in gene order. In addition, plasmids can be assembled from the segment of DNA 

bracketed by the two IS elements (Snyder and Champness 2003), thereby allowing for the 

horizontal transfers of the efp gene by conjugation. The plasmid that contains efp and the IS 

elements, if conjugation was successful, can be integrated into the recipient chromosome by 

homologous recombination between similar IS elements. Elongation factor P may be more 

mobile and prone to genomic rearrangments due to the presence of IS elements in the adjacent 

upstream and downstream regions of efp.  

 The Shigella genomes are rich in IS elements, for example the S. flexneri genome 

contains 314 IS elements alone. This is a 7 fold increase over the number of IS elements that are 

observed in its close relative, E. coli K12 (Jin et al. 2002). The species, S. dysenteriae, S. sonnei, 

and S. flexneri also have a high copy numbers of IS1, (more than 20 copies) in their genomes 

(Hsu and Chen 2003). In addition, some of the Shigella species in Figure 19 were discovered to 

have their efp genes flanked by IS1 family elements, which is the predominant IS family in these 

genomes, followed by IS600, IS2, and IS4 (Jin et al. 2002). S.  dysenteriae efp1 and efp2 also 

contain iso-IS1 elements which are iso-insertion sequences of IS1 and are homologous to IS1 

elements (Ohtsubo et al. 1981). Bacterial IS1 elements are one of the smallest self-sufficient IS 

elements (Mahillon and Chandler 1998). In a standard mating assay, Mahillon and Chandler, 

(1998) discovered that IS1 natural transposition occurs at a low frequency, approximately 10-7. 

IS1 elements may be responsible for the duplicate copies of efp in the Shigella genomes because 

IS1 can transpose using both mechanisms; replicative and conservative (insertion with 

duplication and insertion without duplication, respectively) (Galas and Chandler 1982). IS1 

elements have been known to comprise many different composite transposons such as Tn9 and 
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Tn1681 (So, Heffron, and McCarthy 1979; Mahillon and Chandler 1998). The IS1 elements in 

Tn9 and Tn1681 are either in direct or inverted orientation (So, Heffron, and McCarthy 1979). 

The composite transposon Tn1681 contains a heat-stable toxin gene and a region of DNA that is 

approximately 8.9kb in length, which is approximately the same length of the DNA segment that 

contains the efp gene flanked by the IS1 elements (So, Heffron, and McCarthy 1979). The 

analysis of IS1 orthologous from distantly related species reveals a complex evolutionary 

relationship of horizontal gene transfer and multiple recombination events (Lawrence, Ochman, 

and Hartl 1992). The IS element in Xanthomonas oryzae pv. Oryze MAFF 311018 efp2 and 

Xanthomonas oryzae pv. Oryzae KACC10331 efp1 have been only identified by sequence 

homology and some of the suspected IS elements are labeled only as suspected or putative 

transpoases. However, the IS elements in Xanthomonas oryzae pv. Oryze MAFF 311018, which 

is discovered downstream from efp2, is identified as an IS1112 element.  

An ancient replicative transposition event by IS1 elements may have been the cause of 

the duplication of efp2 or the efp1 genes in the common ancestor of the Shigella spp. or even 

help facilitate the horizontal transfer of these genes. However, none of the other 

Gammaproteobacteria efp2 organisms that are grouping with the above organisms (that contain 

IS elements) in the EF-P tree (Figure 5), have IS elements. Therefore, it may be that a composite 

transposon duplicated the efp gene or helped with the ancient horizontal transfer of the efp gene 

in a common ancestor of the Gammaproteobacteria organisms (the ones that have efp2) with 

enough time passed by to allow for gene loss, divergence, genomic rearrangments, and some of 

the IS elements to transpose away by the conservative mechanism leaving no trace.  

Leptospira interrogans serovar Lai str. 56601 contains a putative transpoase upstream of 

efp. This putative transposase contains domains from transpoases 9 which is usually discovered 
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in members of the IS111A/IS1328/IS1533 family and transposase 20 from the 

IS116/IS110/IS902 family. Interestingly, IS elements not only cause genomic rearrangements but 

are able to activate and influence the expression of neighboring genes (Mahillon and Chandler 

1998). Future work could include experimentally determining if the putative IS element 

upstream of efp in Leptospira interrogans serovar Lai str. 56601 is effecting the level of gene 

expression of efp. 

4.7 Motifs Analyses  

The motifs predicted from the 250bp upstream region of efp using TAMO 1.0 were 

statistically significant (p-value ≤ 0.001). However, experimental verification will be needed in 

order to prove that these are indeed the biologically functioning binding sites. Future work would 

include using a longer upstream region (>250bp) to predict the motif. Using orthologous 

sequences reduces the number of false-positive predictions of TFBS (Zhang and Gerstein 2003). 

Prediction of true motifs is often erroronus because the biologically significant binding site is 

usually not the best scoring motif observed. By clustering orthologous sequences based on the 

different characteristics of the organisms (natural habitat, 16S rRNA distance, genomic GC 

content, genomic size, and number of orthologous transcription factors) similar binding sites will 

be clustered together to improve the chances of identifying the biologically significant motif. 

Future work would include a full permutation of all the different combinations of characteristics 

to define the clusters of upstream regions in order to predict more biologically significant motifs 

and including physiology characteristic to cluster with. Additional work should also include 

data-mining databases which contain bacterial microarray experiments to determine if any genes 

are co-expressed with efp and thus may have the same TFBS as efp to increase the chances of 
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predicting a biologically significant motif. The top 5 motifs are listed because there maybe more 

than one binding site in the upstream region of efp.  

4.7.1 Comparing TFBS from RegulonDB 5.0 

When comparing the position frequency matrices of known TFBS from E. coli’s 

regulonDB 5.0 (Salgado et al. 2006) only 2 similar TFBS were discovered out of the 5 clusters 

that contained Gammaproteobacteria upstream sequences. Cluster 8 which are comprised of all 

the E. coli spp. efp1 and efp2 upstream sequences had no putative motifs that were similar to any 

of the known TFBS from regulonDB 5.0. EF-P maybe transcribed using a novel transcription 

factor or the TFBS may have a weak consensus making it incomparable to known E. coli TFBS. 

In addition, efp1 and efp2 may have different TFBS and so in clustering the duplicated efp genes 

together may have caused an erroneous motif prediction. As phylogenetic distances between the 

species increases, so does the probability that there are different regulation for the orthologous 

gene (McCue et al. 2002). For example, the arginine biosynthetic pathway for E. coli is repressed 

by a different protein than in Pseudomonas aeruginosa due to non-orthologous gene 

displacement (McCue et al. 2002).  

 Since all of the clusters contained Proteobacteria efp upstream sequences, the motifs from 

known E. coli TFBS that matched with the predicted motifs may still be biologically significant 

because the Proteobacteria group is closely related. For example, cluster 10 has the most similar 

motifs to Sigma70’s -35 binding site for two of its predicted motifs, which are very similar to 

one another. The absence of a match with sigma70’s -10 element binding site may be explained 

by: the -10 element is only partially predicted within the discovered motif, the TFBS has a 

different -10 binding site than what is known, or the -10 consensus sequence is very weak. In 
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addition, the organisms that were used in the prediction are from a wide variety of bacterial 

groups, while all the TFBS from RegulonDB 5.0 came from E. coli.  

4.7.2 Comparing Experimentally Discovered Binding Sites of Regulatory Proteins 

The experimentally discovered binding sites of regulatory proteins from RegTransBase 

were compared with the top 5 predicted motifs. The position frequency matrices were calculated 

from RegTransBase binding site sequence alignments from organisms within the same or 

different bacterial group depending on the species used to experimentally identify these sites. 

The fatty acid degradation regulator (FadR) protein is responsible for repressing transcription of 

genes needed in the transportation, activation, and β-oxidation of fatty acid such as fadL, fadD, 

fadE, fadBA, fadH, fadI, and fadJ (Klein et al. 1971; Clark 1981; Nunn 1986; Campbell, 

Morgan-Kiss, and Cronan 2003). In addition, FadR activates genes responsible for encoding 

essential enzymes of the unsaturated fatty acid biosynthesis (faba and fabb) and iclR which is 

responsible for repressing the glyoxylate operon (Gui, Sunnarborg, and LaPorte 1996; Campbell 

and Cronan 2001; Iram and Cronan 2005) . So far, the FadR protein is known to regulate the 

series of reactions which convert fatty acids to acetyl-CoA and the utilization of acetyl-CoA by 

the citric acid cycle (Iram and Cronan 2006). The FadR motif binding site imperfectly matched 

cluster 10’s s..s.ss.....s.ss..Ss motif and cluster 4’s Ss.Gsts..s..s.ss.ksC motif keeping in mind that 

accB and accC genes are adjacent to efp in certain organisms. As mentioned before, acetyl-CoA 

carboxylase catalyzes the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA in the 

fatty acid synthesis in Bacteria and interestingly, the binding site is for the FadR protein, which 

is a dual transcriptional regulator of fatty acids metabolism (Sloane and Waldrop 2004; Kazakov 

et al. 2007). FadR protein may also regulate the accBC operon due to there similar functions.  

However, only Myxococcus xanthus DK 1622 is known to contain the accBC operon beside efp 
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in cluster 10 and the accBC operon is in the downstream region of efp. Cluster 4, contains the 

upstream sequences of the Deinococcus-Thermus group, Thermus thermophilus HB27 efp1, 

Thermus thermophilus HB8 efp1, and Deinococcus radiodurans R1 efp1 which have the accBC 

operon again downstream of efp. Not all the sequences in both clusters 10 and 4 contained the 

accBC operon adjacent to efp and thus, it maybe by pure chance that the position frequency 

matrices of the predicted motifs were similar to the FadR binding site. Conversely, the non-

coding regions may have retained a FadR binding site because perhaps at one time the accBC 

operon may have been present in most of the Bacterial species used to define the cluster before 

being lost due to divergence or genomic rearrangements. In addition, the regulation of the accBC 

operon may have a binding site in the upstream region of efp causing the regulation of these 

genes to be linked as an operon.  

In addition to FadR protein, EF-P may also be regulated by CRP protein or the FNR 

protein because their position frequency matrices were similar to some extent to the predicted 

motifs upstream of efp. CRP and FNR may have another unknown function related to the 

regulation of efp expression. The cyclic AMP receptor (CRP) protein from Gammaproteobacteria 

is a cAMP sensitive transcriptional dual regulator (Kazakov et al. 2007). In E. coli, CRP is a well 

known global regulatory protein (Balsalobre, Johansson, and Uhlin 2006). FNR is an oxygen 

sensitive transcriptional dual global regulator (Kazakov et al. 2007). FNR activates genes 

encoding enzymes used in the anaerobic oxidation of carbon sources and the anaerobic reduction 

of alternative terminal electron acceptors; and proteins needed to transport the carbon sources or 

electron acceptors (Kang et al. 2005). In addition, FNR is known to repress the transcription of 

genes which encode enzymes that are essential for aerobic metabolism such as NADH 

dehydrogenase II and cytochrome oxidases (Kang et al. 2005). The CRP and FNR proteins are 
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also structurally related transcriptional factors; both consist of one DNA-binding domain, and a 

sensory function domain, FNR binds oxygen while CRP binds cAMP (Crack et al. 2007). The 

difference or similarities between the predicted motifs and the known motifs may correlate to the 

strength or weakness of the consensus sequence at the binding site which correlates to how 

strongly or tightly the protein will bind to the site. In a recent genome-wide expression analysis 

to determine the genes that FNR regulates in Bacteria, efp was not mentioned (Kang et al. 2005). 
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Chapter 5: GENERAL CONCLUSIONS 

Bacterial translation uses multiple protein factors to assist in the elongation stage. An 

auxiliary protein factor, elongation factor P, was first discovered in 1975 in the bacterium E. coli 

(Glick and Ganoza 1975b). EF-P may facilitate the translation of proteins by stimulating peptide 

bond synthesis for a number of different aminoacyl-tRNA molecules in conjunction with the 70S 

ribosome peptidyl transferase (Ganoza, Kiel, and Aoki 2002). Despite having an important role 

in the translation process, not much is known about the evolutionary history and conservation of 

efp. The present study was initiated to facilitate a better understanding of the conservation of EF-

P and address the following objectives: 

1. Confirm evidence of HGT and gene duplication of EF-P using comparative phylogenies, 

sequence similarities, genomic GC content, and codon usage. 

2. Determine the gene order of the orthologous EF-P genes.  

3. Discover the motif(s) present in the upstream regions of the orthologous EF-P genes.  

In this study, EF-P amino acid and nucleotide sequences were retrieved from all completely 

sequenced bacterial genomes stored in the GenBank database. Using NCBI genomic BLAST, 

322 genomes studied had an EF-P gene (efp). Sixty-nine Bacteria carried an EF-P duplicate in 

their genome. The ubiquitous efp suggests that this is an important, if not essential, protein in the 

functioning of the bacterial cell. The EF-P sequences were then used to construct a protein 

phylogenetic tree, which provided evidence of horizontal and vertical gene transfer as well as 

gene duplication. A SSU rRNA tree was also constructed to determine congruency of our protein 

tree and accuracy of our construction process. For each EF-P, GC content, codon bias, nucleotide 

sequence, and amino acid sequence were analyzed to confirm any of the suspected HGT and/or 
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gene duplication events; however, the results of these analyses suggest that most of the suspected 

HGT is undetectable using sequence analysis and thus may be due to ancient events. 

Most of the putative HGT events that can be deduced from the EF-P phylogenetic tree are 

believed to have occurred in the common ancestor of the bacterial groups and thus are probably 

ancient events. The methods employed; sequence, GC content, and codon usage analysis are 

unable to detect such ancient events because the unique signature of the foreign gene had already 

been lost or ameliorated. Some of the GC content and codon usage results are inconsistent with 

the EF-P tree (Figure 5; Table 9; Table 10). These inconsistencies can be easily explained by a 

difference in gene expression levels, convergent evolution, and/or pure chance that there is 

another genome more similar in GC and codon usage to the efp genes. 

Codon analysis can only detect recent HGT event. Lawrence and Ochman (1998) 

estimated the oldest HGT event they could detect, in their study before amelioration of the HGT 

gene, is after the E. coli species diverged from the Salmonella species 100 million years (Myr). 

However, since most of the horizontally transferred genes were subsequently deleted, the 

transferred genes that have persisted are believed to have conferred beneficial characteristics 

allowing E. coli to exist in different ecological niches (Lawrence and Ochman 1998). Therefore, 

positive selection pressures acting on E. coli may have allowed two copies of EF-P to persist in 

the genome. Since codon analysis was unable to detect that EF-P2 was horizontally transferred 

which is clearly shown in the phylogenetic tree, that it may have been an ancient HGT event 

occurring over 100Myr in a common ancestor of the Gammaproteobacteria. 

The HGT seen in the EF-P tree led to a complex phylogeny with topology at odds with 

our standard of evolutionary relationships, the SSU rRNA tree. Horizontal gene transfer is 

believed to be one of the main driving forces behind the evolution of cellular life and 
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subsequently, the existence of the three domains of life (Brown 2003). The estimates of foreign 

genes observed in all organism are in the range of 0% to 17% with a mean of 6% in bacterial 

genomes (Ochman, Lawrence, and Groisman 2000). There are examples of HGT that have been 

observed in nature such as the horizontal transfer of genes that are responsible for pathogenicity 

and antibiotic resistance (Brown 2003). The complexity hypothesis states that genes such as 

those encoding translation factors which are involved in numerous and complex interactions are 

less likely to be transferred (Jain, Rivera, and Lake 1999). Also, the newly transferred gene had 

to have overcome disadvantages such as a decrease in gene expression because the translation of 

non-optimal codons is slower, less efficient, and less accurate due to poor interactions with host 

tRNA (Lawrence 1999b). The newly transferred gene must have a large enough selective 

advantage to circumvent all the disadvantages.  

 Analysis of the 10kb upstream and downstream region of efp using BLAST BL2SEQ 

detected no similar gene order conservation for all bacterial species. However, I discovered more 

evidence to support possible HGT and gene duplication events in some bacterial organisms. In 

certain Shigella spp. (Figure 19) and Xanthomonas spp. efp is flanked by IS elements. EF-P 

maybe part of a composite transposon and thereby, one of the mechanisms driving an ancient 

duplication or horizontal transfer of efp. In addition, IS elements were discovered in other 

species listed in Table 6. While the IS elements in these species are not flanking the efp gene, 

just the presence of IS elements may have increased the chances of genomic rearrangement by 

homologous recombination. Homologous recombination may be another mechanism that caused 

an ancient duplication or horizontal transfer of efp.  

Surprisingly, efp was discovered in some species to be adjacent to accB and accC genes 

which form a 2-gene operon in certain bacterial species. The genes efp, accB, and accC are a 
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conserved formation seen in distantly related species and therefore, is statistically significant 

because of the limited gene order conservation in Bacteria (Wolf et al. 2001). It may be that efp 

is part of the accBC operon however different their functions are. In addition, efp, accB, and 

accC may be linked in some undiscovered and unknown related function. Another explanation 

for the unusual preservation of the gene order of efp with the accBC operon maybe due to the 

‘selfish’ operon theory. The close proximity of efp to the accBC operon may have allowed efp to 

hitchhike along with the operon as it was being horizontally transferred. Horizontal transfer of a 

region of genome may explain the conservation of gene order between distantly related bacterial 

species.  

There were no complete matches (matches including both the same sigma factors -10 and 

the -35 elements binding site) amongst the known TFBS from RegulonDB 5.0 with the predicted 

motifs. A large factor in this case is that not all TFBS have been discovered and only in certain 

limited species have been determined. In addition, the predicted motifs were based on many 

distantly related bacterial species and not just E. coli sequences like in RegulonDB 5.0. When 

comparing the predicted motif position frequency matrices with those of the known binding sites 

of proteins from RegTransBase, there were matches; however, these matches were not perfect 

and contained some disagreements. The binding sites of CRP, FadR, and FNR were discovered 

to be similar to some of the predicted motifs, which denote that efp may be regulated using one 

of these proteins.   

In this study, I provide the first account of a number of ancient horizontal transfers and 

recent gene duplications of EF-P. I have cases of efp genes being duplicated or horizontally 

transferred in Figure 5 highlighting the efp which shows incongruencies with our SSU rRNA 

tree; Table 9 highlighting the organisms which have GC content differences of the efp gene 
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compared with genomic GC content; Table 10 organism which show signs of atypical codon 

usage; and Figure 15 highlighting the organisms which are distantly related and have significant 

similarities in gene conservation. Only one organism, Porphyromonas gingivalis W83 has 

conclusively shown that either efp1 or efp2 occurred due to a recent gene duplication event. 

These two efp genes from P. gingivalis W83 are discovered as sister taxa on the phylogenetic 

tree, have similar amino acid and nucleotide sequences, similar GC content, similar codon usage, 

and have similar adjacent regions upstream and downstream of each other including non-coding 

sequences. The complex evolutionary history of EF-P shows that this gene is another exception 

to the complexity hypothesis joining similar genes such as tuf, the gene encoding elongation 

factor protein Tu, and some aminoacyl-tRNA synthetases (Ke et al. 2000).  

Future research should concentrate on determining the expression levels of both EF-P 

proteins in order to verify the precise nature of the duplicates and any selective pressures that 

would cause certain bacterial organisms to keep one verus two efp genes. In addition to 

experimentation to determine whether or not efp is able to hitchhike along with horizontal 

transfers of the accBC operon, discover whether efp is part of the accBC operon in species where 

the efp and accBC gene order is conserved. Additional work would include resolving whether or 

not the IS elements that are flanking the efp gene in some of the Shigella spp. and Xanthomonas 

spp. make up composite transpositions. The motifs discovered using the program TAMO 1.0 

should also be experimentally verified. However, before experimental verification of the 

predicted motifs, microarray data should be included to discover genes which are co-expressed 

with efp in order to facilitate in the discovery of the biologically significant motifs of the 

orthologous efp genes.  
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