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Abstract 

A growing number of applications require dictionaries of words belonging to semantic classes present 

in specialized domains. Manually constructed knowledge bases often do not provide sufficient 

coverage of specialized vocabulary and require substantial effort to build and keep up-to-date. In this 

thesis, we propose a semi-supervised approach to the construction of domain-specific semantic 

lexicons based on the distributional similarity hypothesis. Our method starts with a small set of seed 

words representing the target class and an unannotated text corpus. It locates instances of seed words 

in the text and generates lexical patterns from their contexts; these patterns in turn extract more 

words/phrases that belong to the semantic category in an iterative manner. This bootstrapping process 

can be continued until the output lexicon reaches the desired size.  

We explore employing techniques such as learning lexicons for multiple semantic classes at the 

same time and using feedback from competing lexicons to increase the learning precision. Evaluated 

for extraction of dish names and subjective adjectives from a corpus of restaurant reviews, our 

approach demonstrates great flexibility in learning various word classes, and also performance 

improvements over state of the art bootstrapping and distributional similarity techniques for the 

extraction of semantically similar words. Its shallow lexical patterns also prove to perform superior to 

syntactic patterns in capturing the semantic class of words. 
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Chapter 1 

Introduction 

Many Natural Language Processing (NLP) tasks such as Information Extraction (IE), Question 

Answering (QA), etc. benefit from semantic resources. One of such resources is a semantic lexicon or 

simply a dictionary of words (word senses) where each entry is labeled with one or more semantic classes 

(hypernyms), e.g., pizza is a FOOD and ford is a CAR MAUFACTURER. The purpose of Information 

Extraction (IE) systems is to extract domain-specific information from natural language text. Corpus-

based approaches to IE typically rely on a domain-specific semantic lexicon. For instance, a system that 

extracts customers’ opinions about features of digital cameras from review texts can benefit from a 

lexicon of features offered in digital cameras. 

Domain-specific semantic lexicons may be constructed by hand or automatically. To manually build 

and maintain domain-specific lexicons is both time-consuming and costly, since it has to be performed by 

domain experts. This effort seems even less cost effective when one considers the fact that such a lexicon 

is useful for only one type of IE task and for only one domain. 

Alternatively, a number of broad-coverage lexical dictionaries and semantic lexicons such as WordNet 

(Miller, et al. 1990) and Cyc (Lenat, Prakash and Shepherd 1985) are available in the public domain. 

However, despite constant growth of some resources such as WordNet, they are often short of specific 

vocabulary and jargon used in specialized domains (e.g., Medicine or Technology) as well as 

abbreviations and spelling alternatives. Roark and Charniak (Roark and Charniak 1998) report 60 percent 

of the words extracted by their semantic lexicon constructor were not present in WordNet. For instance, in 

our corpus of restaurant reviews “Dog” is widely used to refer to “Hot dog” or “Sunday” is a common 

misspelling of “Sundae” but neither of these senses are covered in WordNet. This makes broad-coverage 

semantic lexicons unfit for IE in specialized domains. 
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These observations suggest developing methods for automated construction of semantic lexicons for 

specialized domains. Here, semantic lexicon construction means to create a list of words that belong to a 

specific semantic class. This task is also referred to as lexical acquisition, hyponym learning, and 

semantic class induction. These methods can be used not only to produce semantic lexicons for 

specialized domains, but also to improve existing resources such as WordNet with new words and senses. 

In this thesis, we propose a semi-supervised bootstrapping approach to automatic semantic lexicon 

construction. Our method extracts members of the target semantic category based on collective 

information from a large collection of extraction pattern contexts. The inputs to our method are a small set 

of seed words representing the target semantic category and an unannotated text corpus. It locates 

instances of the seed words in the corpus and produces extraction patterns from their contexts; these 

patterns extract more words/phrases that belong to the semantic category and the bootstrapping process 

continues with larger set of category members.  

As opposed to state of the art approaches to this task, our method does not incorporate syntactic 

information or heuristics in extraction patterns and simply uses windows of words around instances of 

category members for this purpose. This use of purely lexical extraction patterns has a number of 

advantages. For instance: 

1. They are inexpensive to obtain as the corpus does not need to be parsed. This makes our method 

scalable to large corpora. 

2. Gives us the flexibility to learn semantic lexicons of words belonging to various parts-of-speech 

(POS). 

3. Allows capturing occurrences of category members in high-confidence contexts such as lists, 

which may not be possible using syntactic relations among words. 

A by-product of our method can be a set of extraction patterns which are highly associated with the 

target semantic category. This set of domain-specific lexical patterns is another resource which (in 

addition to a semantic lexicon) comes in handy for IE systems; they can extract category members when 

applied to any unannotated corpus in the same domain or even Web documents. 

Instead of simply extracting nouns or noun phrases (NPs) as output by phrase chunkers, we propose 

methods for detecting multi-word terms of the target category nested within NPs. Our method features 

learning multiple semantic classes simultaneously as well as other techniques such as using feedback 

from competing classes to learn patterns which are more highly associated with the semantic categories. 
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And finally, we propose an efficient implementation which allows handling a large number of extraction 

patterns. 

We evaluate our method for extraction of dish names and subjective modifiers from a corpus of 

157,865 restaurant reviews. We evaluate different components of our method aiming to constrain and 

guide the bootstrapping process, and compare their performance against those of a state of the art 

bootstrapping method (Thelen and Riloff 2002). We also evaluate our bootstrapping method against a 

different approach to semantic lexicon construction (Vechtomova and Robertson 2011), where contexts 

are not used as extraction patterns but as similarity features used to rank words according to their 

similarity to a set of seeds. 

The main contributions of this work can be summarized as follows: 

1. Introducing a powerful and low-cost semi-supervised method and an efficient implementation for 

construction of domain-specific semantic lexicons. 

2. Proposing methods to control category drift
1
 in bootstrapping a semantic lexicon.  

3. Construction of a corpus of restaurant reviews and accompanying evaluation set, labeled with dish 

names, aspects of restaurants, and subjective modifiers/expressions suitable for IE tasks such as 

Semantic Lexicon Induction or Sentiment Analysis. 

4. Proposing methods to identify valid multi-word category members. This is most important in 

opinionated data where NPs, as output by NP-chunkers, often are not suitable for addition to the 

lexicon. 

5. Comparing lexical patterns (window of words), as a cheaper alternative, against syntactic patterns 

(based on syntactic roles of words) in terms of their power to capture information about semantic 

classes of words. 

6. Comparing the effectiveness of using words’ contexts as extraction patterns to locate occurrences 

of category members (bootstrapping methods) against using them as features to infer semantic 

similarity between words (context vector models). 

                                                      

 

 

1
  We also refer to it as “drift” for brevity. 
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This thesis is organized as follows.  Chapter 2 discusses previous work on automated methods for 

semantic lexicon induction.  Chapter 3 overviews our approach: we present our bootstrapping algorithm 

for corpus-based semantic lexicon induction and explain how it is different from a state of the art 

bootstrapping method. We also describe various components added to the method for increasing the 

learning precision.  Chapter 4 starts with the process of preparing our text corpus of restaurant reviews and 

construction of an evaluation set. It presents implementation details and techniques used to make the 

method more scalable and efficient. It also outlines the experiments we performed and their goals. 

 Chapter 5 presents the empirical results showing that our method outperforms other techniques employed 

in previous works to learn semantic lexicons. It also demonstrates the effectiveness of our lexical patterns 

compared to syntactic patterns as well as their flexibility in extraction of various word classes: dish names 

(noun phrases) and subjective modifiers (adjectives).  Chapter 6 concludes the work and contributions and  

discusses possibilities for future work. 
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Chapter 2 

Background and Literature Review 

An extensive amount of work has been done on automated semantic lexicon construction. These methods 

can be divided into two groups: corpus-based methods and Web-based methods. Corpus-based methods 

are generally designed to learn domain-specific semantic lexicons from a collection of domain-specific 

texts. On the contrary, despite the fact that the Web is a huge repository of knowledge containing 

specialized terminology for presumably any domain, Web-based methods are typically designed to 

construct broad-coverage semantic lexicons (similar to WordNet). 

However, there has been efforts to combine the best of the two worlds by either incorporating more 

accurate Web statistics into corpus-based semantic lexicon induction methods (Igo and Riloff 2009), or 

trying to find the right corner of the Web pertaining to a specialized domain (Vechtomova and Robertson 

2011). 

A broader classification of different approaches to automatic semantic lexicon construction may be 

based on the amount of training data they require, which groups them into three categories of 

unsupervised, semi-supervised, and supervised methods. Although automatic approaches offer 

significant efficiency compared to manual construction of semantic lexicons, the cost of annotating a 

training corpus is nontrivial. Therefore, semi-supervised and unsupervised approaches have received 

more attention in this trend of research: 

2.1 Semi-supervised and Unsupervised Approaches 

There has been some work on fully unsupervised semantic clustering of words ( (D. Lin 98), (Lin and 

Pantel 2002), and (Davidov and Rappoport 2006)). Clustering methods though, may not always produce 

desired granularities of semantic classes and do not associate a semantic label to the clusters. Related 
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works in fully automated ontology construction, however, create hierarchies of semantic categories (e.g., 

(Caraballo 1999) and (Cimiano and Volker 2005)). 

On the other hand, semi-supervised methods use a small amount of labeled data (a handful of category 

members known as “Seeds” or “Seed words”) which is inexpensively obtainable, but results in 

considerable improvements in learning accuracy. Furthermore, this enables the user to identify the desired 

granularity of the semantic class by providing the appropriate seeds. 

Both semi-supervised and unsupervised approaches try to group a set of words which belong to a 

semantic category by using some measure of semantic similarity between them. Different methods have 

been proposed to capture this notion each having their strengths and weaknesses. Here we plan to cover 

the major trends and provide the necessary background in each subsection: 

2.1.1 Statistical Co-occurrence Measures 

Several statistical tests have been proposed attempting to measure association or similarity between words 

by using statistics taken from specialized corpora or the Web. Drawing statistics from specialized corpora, 

however, usually suffers from lack of accuracy due to their relatively small sizes. Regardless of the 

source, a key assumption in co-occurrence statistics is that semantic similarity between words is a result 

of co-occurrence (closeness of the words in text). (Terra and Clarke 2003) looked into variety of ways to 

estimate word co-occurrence frequencies in text and investigated their impact on the performance of word 

similarity measures. Be it text window or document, the notion of co-occurrence of two words can be 

represented by a contingency table as shown in  

Table 1. 

 

Table 1: Contingency Table 

�� and ¬��, respectively, indicate presence or absence of word in a given text window or document. 

Each cell in the table represents the joint frequency ���,�� = ���� × ���, ��, where ���� is the maximum 

 �  ¬�   

�! ��",�# �¬�",�# ��# 

¬�! ��",¬�# �¬�",¬�# �¬�# 

 ��" �¬�"  
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number of co-occurrences. Assuming words occur independently of each other, the probability values of 

the cells are calculated as shown in Table 2. 

��� , �!� = ��� � × ���!� ��� , ¬�!� = ��� � × ��¬�!� ��¬� , �!� = ��¬� � × ���!� ��¬� , ¬�!� = ��¬� � × ��¬�!� 

Table 2: Probabilities assuming independence 

Here we briefly introduce some of the most commonly used word similarity measures and their 

application in the field of semantic lexicon construction. These methods exploit different measures of 

how distant observed frequency values of the contingency table are from expected values under an 

independence assumption (Terra and Clarke 2003). According to (Tan, Kumar and Srivastava 2002) the 

differences between the methods arise from non-uniform marginals and how they deal with this non-

uniformity. 

2.1.1.1 Pointwise Mutual Information (PMI): 

PMI, introduced by (Church, Gale and Hanks 1991), is an Information-Theoretic measure of word 

similarity based on word co-occurrence. 

��$�% = � , %! = �! � = 	'
! ��� , �!���� ����!� Eq. 1 

Simply stated, PMI is a rough measure of how much one word tells us about the other. A positive value 

indicates �� and �( occur together more than expected under independence assumption, zero indicates 

independence, and a negative value indicates each word tends to appear only when the other does not. 

(Riloff and Shepherd 1997) take a semi-supervised statistical approach for building semantic lexicons, 

based on the observation that category members tend to be surrounded by other category members in text. 

Examples are conjunctions (lions and tigers and bears), lists (lions, tigers, bears...), appositives (the 

stallion, a white Arabian), and nominal compounds (Arabian stallion; tuna fish). 

The input to their algorithm is a set of five known category members and a noun phrase chunked text 

corpus. They collect windows of one noun phrase to the left and one of noun phrase to the right of all 

noun phrases having a known category member as their head.  Every word W appearing in these context 
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windows receives a score for membership in that category based on a conditional probability that the 

word appears in the contexts of category members: 

)*'���%, �� = ���+�% �� �,- *'���.� ���/'�-����+�%�  Eq. 2 

Note that the PMI score, when used for ranking, often is replaced by the above equation for ease of 

computation by replacing the probabilities with frequencies and removing log and ���+��,-*'���.� ���/'�-� in the denominator simply because they do not affect ranking. 

Words with a corpus frequency of ≤ 5 are discarded and the remaining words are ranked and top five 

words are selected to be added to the category. This process repeats with a larger set of known category 

members as many number of times as needed. Finally, a user must review the ranked list and judge the 

words that are true category members. (Riloff and Shepherd 1997) report that it takes human judges 10-15 

minutes, on average, to judge the top 200 words for each category which results in approximately 60 valid 

category members. 

(Yarowsky 1992) uses a similar mutual-information-like score to extract salient words for a given 

semantic category in Roget’s International Thesaurus: 

-*'���� �'� �
�� = 	'
 ���|�
������  Eq. 3 

Where P�w|Cat� is the probability of a word appearing in the contexts of the category members. 

However, (Yarowsky 1992) does not aim to extract new category members, but the words which are 

likely to co-occur with the members of the category to be used for Word-sense Disambiguation (WSD). 

Finally to disambiguate word senses, wherever any of the salient words appears in the context of an 

ambiguous word, the category for which there is more evidence is detected for the word: 

6�
�
. 7�8 9 -*'���� �'� �
��� �: ;<:8=�8
 Eq. 4 

 

(Turney 2001) used PMI based on frequency counts drawn from the Web. He exploited AltaVista’s ℎ��-�+>��?� function which returns the number of documents found by the search engine for a given 

query. He also investigated using AltaVista’s �@6A operator which constrains the search to documents 

that contain the two terms within ten words of one another regardless of the order. 
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He also proposed a rather different formula for PMI when context words exist, as shown in Eq. 5 (Terra 

and Clarke 2003). Although scalable to multiple context words, (Turney 2001) argues that each additional 

context word narrows the sample size making the score more sensitive to noise; therefore, he used only 

context word in his experiments. He concluded that �@6A co-occurrence statistic along with one context 

term gives the best results. 

��$��� , �!; �� = ��� , �!, ����� , �����!, �� Eq. 5 

2.1.1.2 Hypothesis Testing: 

PMI-like estimates are subject to overestimation when the frequencies involved are small. An alternative 

is Hypothesis Testing measures, which test a null hypothesis C0 that co-occurrence of two words is 

random and there is no association beyond chance. In other words they “measure how surprising the 

given pattern of co-occurrence would be if the distributions were completely random” (Roark and 

Charniak 1998). For instance, it is odder for two words having random distributions to occur forty times 

each and co-occur twenty times in a billion word corpus than each occur only twice but always co-occur. 

Mutual Information fails to capture this fact. 

2.1.1.2.1 Pearson’s E! 

Pearson’s Chi-square statistic, described in (Manning and Schütze 1999), determines a specific way to 

calculate the difference between observed frequencies of two words and expected frequencies under 

independence assumption. If the difference between the observed and expected frequencies is large, then 

the null hypothesis of independence can be rejected. The E! is calculated using the following equation 

(Terra and Clarke 2003): 

E! = 9 9 F��,G − @�,GI!
@�,GG∈K#�∈K"

 Eq. 6 

Where ��,G is the observed frequency estimate in the contingency table and  @�,G is the expected value 

under independence assumption. E! test needs a sufficiently large sample size to yield accurate statistics. 
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2.1.1.2.2 Likelihood ratio (λ) 

(Dunning 1993) outlines this statistic and claims it works reasonably well on both large and small corpora 

and also allows comparison of the significance of both rare and common phenomena. He used a 

likelihood ratio to test word similarity under the assumption that the words in text have a binomial 

distribution. He reports improved statistical results versus Pearson's E! test in smaller size texts where the 

assumption of normal distribution is not valid anymore. Asymptotically, 2 log λ is χ! distributed and is 

referred to as “Log-likelihood”. See (Dunning 1993) for details on how to calculate this metric. 

(Roark and Charniak 1998) improve upon (Riloff and Shepherd 1997) using the same generic structure 

for semi-automatic lexicon induction. They claim the probability score used in (Riloff and Shepherd 

1997) is not suitable for generating the final ranking since it favors low-frequency words and that is why a 

frequency cutoff is used there. They propose using the Log-likelihood statistic for that purpose but keep 

using a very similar PMI-like score for extracting the candidates: 

)*'���%, �� = ���+�% �� �,- *'���.�-����+�% �� 
�? �'�/′- *'���.�-� Eq. 7 

They believe this score is conservative enough to select good candidates as opposed to the Log-

likelihood which tends to favor high-frequency candidates. High-frequency terms have a broad coverage 

in their contexts and, potentially, can cause a drastic drift from the category in subsequent iterations if 

they are not true category members. 

(Roark and Charniak 1998) also investigate the problem of selecting initial seeds which was not 

addressed in (Riloff and Shepherd 1997). They conclude that, since the PMI score will tend not to select 

higher frequency words in the category, initial seeds should be among the most frequent words in the 

corpus to provide the broadest coverage of category occurrences from which additional likely category 

members will be selected. 

2.1.2 Syntactical Co-occurrence Models 

In general, Co-occurrence models do not necessarily yield tightly associated words. Even if they do, not 

every two tightly associated words belong to the same semantic category (e.g., “Libya” and “Gadaffi”). 

Co-occurrence models use no evidence whatsoever to ensure that constraint. Given a Part Of Speech 

(POS) tagged or parsed corpus, interesting syntactical structures can be used to accurately obtain semantic 
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knowledge about words. These structures can be used independently or in combination with statistical 

methods by, let’s say, restricting makeup of text windows to focus on specific relationships between 

words.  

However, not only tools such as parsers and POS taggers are error-prone, exploiting syntactical 

information to learn semantic classes of words is not straightforward. According to (Phillips and Riloff 

2002): 

1. Lexico-syntactic expressions that explicitly indicate semantic relationships (e.g., lists in the form of 

“NP, NP, and other NPs”) are reliable but a lot of semantic information occurs outside these 

expressions. 

2. General syntactic structures (e.g., lists and conjunctions) capture a wide range of semantic 

relationships. For example, conjunctions frequently join items of the same semantic class (e.g., 

“cats and dogs”), but they can also join different semantic classes (e.g., “fire and ice”). 

A good syntactical model for the task of semantic lexicon induction is one which is both exhaustive and 

specific; meaning that it captures a wide range of semantic relationships which are specific to members of 

a semantic class. Here we aim to cover different syntactical models used in this task. 

(Roark and Charniak 1998) criticize the assumption made by (Riloff and Shepherd 1997) that members 

of the same semantic category would co-occur in discourse. They find such a window based co-

occurrence more suitable for word sense disambiguation where words provide disambiguation 

characteristics regardless of their part-of-speech or semantics. Thus, they focus exclusively on certain 

syntactic structures: conjunctions, lists, and appositives (they consider all list elements co-occurring with 

one another). 

Similarly, (Caraballo 1999) focuses only on conjunctions and appositives and (Widdows and Dorow 

2002) on symmetric “noun and/or noun” patterns (conjunctions). Such symmetric patterns can be easily 

represented by graph models to infer semantic similarity. (Widdows and Dorow 2002) exploit a graph 

model to build a semantic lexicon form a number of seeds in an iterative approach: each node represents a 

noun and each edge represents two co-occurring nouns separated by conjunctions and or or. Let 6 be a 

set of nodes, ��
� be set of 
‘s neighbors and ��6� = ⋃ ��
��∈T . They introduce an affinity score (Eq. 

8) between node > and set 6 and use it to rank and select new extractions. 
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|��>� ∩ ��6�||��>�|  Eq. 8 

For evaluation, they pick 10 WordNet categories and retrieve 20 words given one seed for each 

category. They propose, but do not evaluate, using more than one seed to start with to avoid infections 

arising from bogus co-occurrences (e.g., idioms) and ambiguity (e.g., “Apple” could be a fruit or a 

company). Out of 200 extractions, they report an accuracy of 82% and compare it to 17% and 35% 

reported by (Riloff and Shepherd 1997) and (Roark and Charniak 1998) respectively. However, one could 

question the reliability of these comparisons for a number of reasons:  

1. Each of those two algorithms extracted approximately between 200-260 terms per category. A 

category drift tends to be observed in later iterations. Evaluating on 20 extractions does not show 

the method’s performance in preventing the drift. 

2. In the other two approaches, the evaluation is done on the MUC-4 corpus which is 200 times 

smaller in size than the British National Corpus used by (Widdows and Dorow 2002). 

3. Evaluations in other two approaches are manually and therefore subjective and non-uniform. 

Such graph models can also be used with graph clustering algorithms for unsupervised semantic 

clustering of words. (Dorow, et al. 2005) build a graph representation of words appearing in conjunctions 

and use two approaches to soft clustering
2
 of words in the graph. (Davidov and Rappoport 2006) use a 

similar graph model while focusing only on symmetric lexical relations of the form <candid>H<candid> 

or <candid>HH<candid> where H is any high frequency word appearing more than VW times per million 

words. Their rationale is that two content-bearing words that appear in a symmetric pattern are likely to 

be semantically similar in some sense. They propose a method to discover these patterns by graph-

theoretic measures and identify semantic categories using a graph clique-set algorithm in a fully 

unsupervised manner. 

                                                      

 

 

2
 In soft clustering, items can belong to more than one cluster. 
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2.1.3 Contextual Similarity Models 

As stated before, the underlying assumption of the co-occurrence statistics that semantically similar words 

tend to co-occur text is a weak assumption and results in loosely related words to be falsely detected 

semantically similar. Using syntactical clues tends to improve the precision of co-occurrence models by 

helping them focus on candidates which are more likely to be of the same semantic class. However, they 

are still restricted as they need members of the semantic category co-occur in text. In these models, many 

undesirable semantic associations are captured too. In fact, “statistical models are still being used to 

separate the meaningful semantic associations from the spurious ones” (Phillips and Riloff 2002). 

An alternative to co-occurrence models is the models based on the fundamental hypothesis that “words 

that occur in the same contexts tend to have similar meanings” (Harris 1954) which is known as the 

Distributional Hypothesis. In other words, the more inter-substitutable the words are in text, the higher 

the chance they belong to the same semantic class. 

To measure similarity of the contexts words appear in, first we need to define “context”. Context can 

take different meanings and representations, but more or less falls into three broad categories:  

1. A window of words/tokens around the category member. 

2. Grammatical relations (e.g., subject-verb or object-verb) between the category member and other 

words in the sentence (D. Lin 97). 

3. Lexico-syntactic templates in which members of a semantic class are expected to appear. 

Different types of contexts vary in their relative power in capturing semantic classes of words, genre- 

or domain-independency, extraction power (coverage), and finally applicability in terms of cost of 

construction. 

There are two main paradigms in the literature for using contexts of words to capture semantic 

information. The first group of methods relies on vectors of contexts to infer semantic similarity and the 

second one uses them as extraction patterns to discover semantically similar words. We introduce both 

trends and different definitions of context they utilize.  
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2.1.4 Context Vector Models 

In these methods terms are represented as vectors of contexts with which they appear in text. Regardless 

of type of context being used, they use some sort of similarity measure between these context vectors 

which is, hypothetically, indicative of semantic similarity between the given terms. 

(Caraballo 1999) creates a vector for each noun containing all the nouns it appears in a conjunction or 

appositive with, along with the respective frequency counts. She measures the similarity of the vectors for 

two nouns by computing the cosine of the angle between the vectors. These similarity scores are used in a 

bottom-up clustering method to build clusters of semantically similar nouns. 

(D. Lin 98) proposes a similarity score between �  and �!based on the commonality of the 

dependency triples the two words appear in, where a dependency triple �� � �,� means an asymmetric 

grammatical relationship between � and �, in a sentence. For example the dependency triples in the 

sentence “I had a delicious pizza” are: 

(had nsubj I), (pizza det a), (pizza amod delicious) (had dobj pizza) 

For each word �, (D. Lin 98) forms a vector of all the dependency triples it occurs in along with their 

respective frequency counts (‖���Y	�‖). He defines the information contained within ‖�  � �!‖ = * as 

follows: 

$��  � �!� = ‖�  � �!‖ × ‖∗  � ∗‖‖�  � ∗‖ × ‖∗  � �!‖ Eq. 9 

Where * means a wildcard. (D. Lin 98) states that  $��  � �!� correspond to the mutual information 

between �  and �!. If V��� is the set of all the pairs ��, �� for which $�� � �,� > 0, he defines the 

similarity between �  and �! as follows: 

∑ F$��  � �� + $��! � ��I�^ ��∈_��"�∩_��#�∑ $��  � ���^ ��∈_��"� + ∑ $��! � ���^ ��∈_��#�  Eq. 10 

In addition to his proposed similarity measure, he also investigates using other commonly used 

similarity measures such as -��;<`�:=, -��a�;=, -��(�;�^a (Frakes and Baeza-Yates 1992). 

(Lin and Pantel 2002) introduce CBC (Clustering By Committee) for clustering of semantically similar 

words. They use the same features, weights, and similarity score as in (D. Lin 98). The centroid of a 

cluster is constructed by averaging the feature vectors of a subset of the cluster members (committees). In 
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order to form the committees, they compute pairwise similarities between words that share high mutual 

information features to reduce the quadratic complexity of computing the complete similarity matrix 

between pairs of elements. 

(Pantel and Ravichandran 2004) search centroids of the clusters for particular features such as 

Apposition (N:appo:N), Nominal subject (N:subj:N), Such as (N:such as:N), and Like (N:like:N); for 

every cluster, they sum up the mutual information scores for every term that participates in those 

relationships with a committee member and choose the highest scoring term as the name of the class. 

Vechtomova and Robertson (Vechtomova and Robertson 2011) use Minipar
3
 (D. Lin 1993) to extract 

dependency triples form text and form feature vectors for candidate entities and a set of seed words. To 

calculate the similarity between a candidate entity c and a seed s, they adapt BM25 with query weights 

(Robertson, et al. 1995) and calculate a Query Adjusted Combined Weight (QACW) (Spärck Jones, 

Walker and Robertson 2000) treating the vector of the seed as the query and the vector of the candidate as 

the document: 

b6�%;,` = 9 Vc�d + 1�
d × f�1 − �� + � × gh6igh j + Vc . bVc. $gcl

m
ln  Eq. 11 

Where F is the number of features * and - have in common; Vc, the frequency of feature � in the 

vector of *; bVc, the frequency of feature � in the vector of -; d  and �, normalization factors; gh, 

length of vector of *; 6igh, average length of vectors of all candidate entities; and $gcl is $gc of a 

feature. For each entity they calculate sum of this score for all the seeds multiplied by the seed’s Vc$gc 

score. They also incorporate entity’s Vc$gc and rank them accordingly. (Vechtomova and Robertson 

2011) demonstrate that their method performs better on Entity track’s Related Entity Finding (REF) 

dataset of TREC 2010 and Question Answering (QA) dataset of TREC 2005, while Lin’s method (D. Lin 

98) does a good job of filtering out non-relevant entities. 

Some works use shallow lexical features instead of grammatical dependencies (Fleischman and Hovy 

2002) and (Pantel, Crestan, et al. 2009). (Pantel, Crestan, et al. 2009) record term contexts in a large 

collection of unstructured text and construct a term-context matrix. Terms are Noun Phrases (NP) and 

                                                      

 

 

3
 http://webdocs.cs.ualberta.ca/~lindek/minipar.htm 
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features are defined as the rightmost and leftmost stemmed NPs. They weight each feature using PMI 

between the term and the feature and ultimately use Euclidean Distance, Cosine, and Dice measures to 

calculate similarity between two context vectors. They take as input a list of seeds and rank all the terms 

according to their similarity to the centroid of seed list. Due to large size of the corpus, they use the map-

reduce framework along with some other heuristics to make computations possible. 

(Cimiano and Volker 2005) compare windows of words against pseudo-syntactic dependencies as the 

features. The pseudo-syntactic dependencies are not extracted from dependency parse trees as in (D. Lin 

98), but through applying regular expressions to POS tagged text (see Table 3). Their rationale for using 

pseudo-syntactic dependencies is to achieve less sparse context vectors based on the observation in 

(Grefenstette 1994) that “the quality of using word windows or syntactic dependencies for distributional 

analysis depends on the frequency of the word in question”. 

Dependency type Example 

adjective modifiers “a nice city” → nice(city) 

prepositional phrase modifiers 
“a city near the river” → 

near river(city) and city near(river) 

possessive modifiers “the city’s center” →  has center(city) 

noun phrases in subject or object position 
“the city offers an exciting nightlife” → 

offer subj (city) and offer obj(nightlife) 

prepositional phrases following a verb “the river flows through the city” → flows through(city) 

copula constructs “a flamingo is a bird” → is bird(flamingo) 

verb phrases with the verb to have “every country has a capital” → has capital(country) 

Table 3: Pseudo-syntactic dependencies used by (Cimiano and Volker 2005) 

They observe window-based context perform slightly worse than pseudo-syntactic dependencies for 

classification of named entities as well as make context vectors larger, making the similarity calculation 

less efficient. 



 

 17 

2.1.5 Pattern-based Models 

2.1.5.1 Domain-independent patterns 

Hyponymy patterns, introduced by (Hearst 1992), are generic hand-crafted patterns that capture semantic 

association between words by looking for explicit hyponymy relations in text. The main idea is that if a 

term t belongs to a class c, we should expect occurrences of phrases like “such c as t”. (Hearst 1992) 

proposed six domain-independent lexico-syntactic templates that capture a hyponymy relation between a 

semantic class and a word. List of the templates she used is presented in Table 4. She applied the patterns 

to text and validated the extracted hyponyms against WordNet. She also proposed a method to augment 

WordNet using them. 

Template Example 

NP such as {NP,}* {(or|and)} NP The bow lute, such as the Bambara ndang, is plucked. 

such NP as {NP,}* {(or|and)} NP Works by such authors as Herrick, Goldsmith, and Shakespeare 

NP {, NP}*{,} or other NP Bruises, wounds, broken bones or other injuries 

NP {, NP}*{,} and other NP temples, treasuries, and other important civic buildings. 

NP{,} including  {NP ,}* {or | and} NP All common-law countries, including Canada and England 

NP {,} especially {NP,}* {or | and} NP most European countries, especially France, England, and Spain 

Table 4: Hearst's templates for hyponym acquisition 

In fact, Hearst initially came up with patterns 1 and 3 and used the following method to discover the 

rest (Hearst 1992): 

1. Provide a list of pairs that hold a certain hyponymy relation (e.g., "England-country”). 

2. Find places in the corpus where the terms occur syntactically near one another and record the 

environment. 



 

 18 

3. Manually find the commonalties among these environments and once a new pattern has been 

positively identified, use it to gather more instances of the target relation and go to Step 1. 

She claims that these patterns are frequent and accurate (they almost all the time point out the desired 

relationship) and can be applied to plain texts of any genre. (Kozareva, Riloff and Hovy 2008) show that 

despite the highly restrictive nature of these patterns, they still produced many incorrect instances. They 

propose a graph model that represents the links between hyponym occurrences in these patterns and 

increase the bootstrapping precision to a great extent. 

Although allegedly frequent, these patterns do not appear frequently enough in domain-specific corpora 

to extract rare and domain-specific terminology. For this reason, some approaches use these patterns on 

the Web instead (Vechtomova and Robertson 2011). Vechtomova et al. use Hearst’s hyponym acquisition 

method to discover entities that belong to the semantic category in question for the Related Entity Finding 

(REF) task of the Entity track of TREC 2010 (Balog, Serdyukov and de Vries 2010).  

(Vechtomova and Robertson 2011) propose a method to extract category names automatically from the 

REF task‘s topic narratives, create six queries based on each of Hearst’s templates, and submit to a 

commercial search engine to retrieve instances (e.g., “recording companies such as” where “recording 

companies” is the category name). In presence of enough number of instances, Hearst’s method seems to 

be applicable to fine-grained semantic categories (e.g., “formula one drivers” or “operating systems”). Of 

course too narrow of a category can naturally yield very few to no hyponymy relation instances. 

(Paşca 2004) applies the following hyponym pattern inspired by (Hearst 1992) to the Web to learn 

members of semantic classes: 

〈p-�
��q�)���r s p->*ℎ 
-|��*	>/��
r � p
�/|, |. r〉 
Where N is the potential instance and X is the category name. 

The KnowItAll system introduced by (Etzioni, et al. 2005) uses the set of generic extraction patterns 

introduced by (Hearst 1992) as well as “NP is a <class>” and “NP is the <class>” to capture the “is-a” 

relationships. KnowItAll extracts class instances from the Web and further validates them by computing a 

PMI score between each instance and multiple automatically generated discriminator phrases associated 

with the class (e.g., “X is a city” for the class city). The PMI is in fact the number of Search Engine hits 

for a query that combines the discriminator and instance, divided by the hits for the instance alone. These 

scores are then used to classify the instances as true or false. 
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(Phillips and Riloff 2002) also try to capture membership in a semantic class by looking for words that 

have the same hypernym which are, as they phrase, semantic siblings (e.g., “dog” and “frog” both have 

the hypernym ANIMAL). They propose a bootstrapping algorithm that uses syntactic structures in 

combination with heuristics to extract noun phrases of the same semantic class with high precision: 

1. Appositives: is a syntactic structure that consists of a noun phrase (NP), followed by a comma, 

followed by another NP, where the two NPs have the same reference. They only use appositives 

that contain one proper noun phrase and one general noun phrase (GNP, PNP) such as “President, 

Barak Obama”. 

2. Compound Nouns in the form of “GN PNP” such as “president Barak Obama”. 

3. ISA Clauses: an NP followed by a VP that is a form of “to be”, followed by another NP (PNP + “to 

be” verb + GNP). For example “Barak Obama is the president”. 

For each category (e.g., “People”), the bootstrapping framework populates a lexicon of general nouns 

(GN) such as “president” and a second lexicon of proper nouns (PNP) such as “Barak Obama” 

simultaneously using the above syntactic patterns with minimal use of statistics. They also combine the 

three classifiers using a co-training model that increases recall while maintaining almost the same 

precision. 

Since their bootstrapping approach highly depends on simultaneously populating PNP and GN lexicons 

to work, one might raise doubt about its performance on narrower categories such as “house DJ” where 

there is not much room for building lexicons of general nouns. However, (Phillips and Riloff 2002) do not 

investigate this and evaluate their approach on three broad categories of “People”, “Organization”, and 

“Product”. 

Although high precision, these types of syntactic structures (Hyponym-hypernym patterns) can extract 

only those members of the semantic category that are explicitly found along with general nouns (or the 

semantic class label). Obviously this is not always the case in discourse and as a result these patterns tend 

to sacrifice recall in favor of precision. 

2.1.5.2 Domain-specific patterns 

While generic extraction templates (e.g., hyponymy patterns) extract members of a desired semantic class 

with high precision, there are only a handful of such manually-generated patterns out there and also most 
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of the best extraction rules for a domain do not match the generic ones (e.g., “I worked at <COMPANY> 

for…”). On the contrary, we can have many domain-specific patterns that are able to capture this 

information precisely. The substantial amount of previous work in semantic lexicon induction, named-

entity recognition (NER), relation extraction (RE), and question answering (QA) tasks reflects the power 

of domain-specific patterns to obtain semantic information about words. 

Inspired by Hearst’s Pattern Learning scheme (Hearst 1992), numerous methods have been proposed to 

automatically learn extraction patterns from text. These methods are usually semi-supervised and start 

with a set of seeds, either given by the user or extracted via domain-independent patterns. They look for 

instances of the seeds in text and learn useful patterns that tend to co-occur with other category members 

as well. 

Patterns used in semantic lexicon induction and NER tasks are singly anchored since they are supposed 

to extract one category member and the ones used in QA or RE are doubly anchored since their job is to 

capture a relation between two terms (see Table 5). Although specific representation of patterns varies 

across these tasks, they are used in almost the same way and for the same purpose of capturing the 

semantic knowledge about words. For this reason, we cover the previous work in those threads of 

research as well: 

Task Pattern Example 

Semantic lexicon induction (find instances of 

PRESIDENT) 

<PRESIDENT> was elected as president in 

1986 

Question answering (when was Roosevelt born?) <PERSON> was born in <DATE> 

Relation finding (where is Microsoft’s 

headquarters?) 

<COMPANY> is headquartered in 

<CITY>  

Table 5: Examples of domain-specific patterns used in different tasks 

Lexical patterns are domain-specific patterns that are some representation of neighboring tokens of 

terms, usually in the form a window (or vector) of tokens appearing before and after the category 

members, sometimes obtained using heuristics and syntactic clues (lexico-syntactic patterns). 

(Ravichandran and Hovy 2002) learn surface lexical patterns from Web documents to answer questions 

such as “when was X born?” where the question and answer can be represented by a pair of words (e.g., 

<X, 1948>). These shallow patterns are computationally cheap to obtain since there is no need for 

expensive preprocessing of text such as parsing. 
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They submit a query made up of one example question and answer pair to a search engine. Among the 

top retrieved documents, they extract, as patterns, substrings of any length (limited to sentence 

boundaries) which contain both question and target term. They further calculate the likelihood of a pattern 

extracting the correct answer by retrieving the top documents from the Web, this time omitting the answer 

term, and observe what percentage of the matches contain the correct answer. Patterns that extract the 

correct question-answer pair half of the time and have high average precision scores are stored in a table 

for a given question type. Every time a question of the same type is encountered, these patterns will be 

applied to Web documents to extract answers which are sorted by patterns’ precision scores. 

1.0    <QUESTION>( <ANSWER> - ) 

0.85 <QUESTION> was born on <ANSWER> 

0.6 <QUESTION> was born in <ANSWER> 

…  … 

Table 6: Extraction patterns discovered by Ravichandran's approach 

(Paşca 2004) proposes re-applying pairs of <category, instance> learned via domain-independent 

patterns to the text and capture the text around them to acquire a more diverse set of domain-specific 

patterns. 

(Etzioni, et al. 2005) extend their KnowItAll system by enabling it to learn lexical patterns and observe 

a significant increase in the number of sentences from which facts are extracted. After generating a 

ranked list of seeds, a query is generated for each seed and submitted to a Web search engine and context 

strings around instances of the seeds (w words before and after) are captured. Patterns are defined as 

substrings of a context string with the seed instance replaced by a placeholder. Patterns are then ranked by 

their precision (the fraction of entities it extracts that belong to the target class) and recall (the fraction of 

target class members extracted by it). They use these patterns to extract more instances and add the top 

extractions to the target class. This process can be repeated in a bootstrapping manner. 

(Agichtein and Gravano 2000) developed the “Snowball” system, inspired by DIPRE (Brin 1998), that 

extracts <organization, location> pairs from a named entity tagged corpora. It takes a small set of seed 

pairs as input, and to generate extraction patterns it looks in the regions in the text corpus where the 

elements of the seed pairs occur close to each other. Instead of a window of words, it represents the 

patterns in a more flexible way so that they have more coverage while still being selective. A snowball 

pattern is a 5-tuple 〈left, ORG, middle, LOC, right〉 where right �, left 	, and middle � are vectors of terms 
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appearing in windows of a certain length to the left and to the right of the entity pair. Those 5-tuples of a 

given seed that are similar enough would form a centroid 5-tuple where each term is weighted according 

to its frequency in the corresponding context. Each vector is also multiplied by a scaling factor which 

implies its relative importance (e.g., middle vector has higher importance). For extracting new pairs, 

Snowball associates an equivalent 5-tuple with each document section that contains two named entities 

with correct tags and calculates a similarity score in the following way: 

�
�*ℎ�* , *!� = 	;" . 	;# + �;" . �;# + �;" . �;#  
(Agichtein and Gravano 2000) score a pattern according to its confidence which is a function of its 

selectivity. To account for its coverage they use the RlogF metric proposed by (E. Riloff, Automatically 

generating extraction patterns from Untagged Text 1996). RlogF confidence of a pattern is high if a large 

proportion of its extractions are correct or it extracts a lot of correct pairs: 

*'����<�m��� =  �. Y'-������. Y'-����� × �. ��

���� × 	'
!��. Y'-������ Eq. 12 

An extraction is positive if the <organization, location> pair is correct according to previous iterations 

and negative otherwise. The *'����<�m scores are then normalized and treated as the probability of a 

pattern extracting valid tuples. Having these probabilities and assuming they are independent, the 

probability that a tuple is valid is calculated as follows: 

�'���V� = 1 − �F1 − ��'�����. �
�*ℎ���, ���I|�|
�n�  Eq. 13 

Where � = ���� is the set of patterns that extract tuple V and �� is the context associated with an 

occurrence of V that matched ��. High confidence tuples are then added to a knowledge base as valid 

pairs and bootstrapping continues. 

(Welty, et al. 2010) use simple lexical patterns to extract four types of <actor, show>, <author, written-

work>, <director, movie>, and <parent, child> relations from texts with the help of two knowledge bases 

(IMDB and Freebase) that contain a large set of tuples having these relations. To determine the degree of 

association of a pattern to a certain relation, they propose the following method to gather statistics, 

although they do not suggest any learning algorithm to use that data:  

First, each pattern is associated with all the relations whose tuples are extracted by that pattern. For 

every relation a tuple participates in, the “positive count” of the corresponding relation in the pattern is 
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incremented and, similarly, for every relation in the pattern that does not exist in the KB for the tuple, 

their “negative count” is incremented.  

They also make some important observations: 

1. The frequency of patterns that express a particular relation has a very long tail (see Figure 1), and 

only a large number of seeds can make learning infrequent, but maybe effective, patterns possible. 

2. Many of the patterns induced depend heavily on typing and context to work (e.g., use parenthesis 

or other punctuation to signal the relation). These patterns are generally unreliable for detecting 

relations unless types of tuples are known in advance (e.g., “actor-name (movie-name)” pattern in 

“DiCaprio (Titanic)”). 

3. Pattern generalization has a significant impact on recall with negligible negative impact on 

precision. For example, “<actor> appeared in the 1994 screen epic <movie>” can be generalized to 

“<actor> appeared in the <date> screen epic <movie>” without any impact on the precision of the 

pattern. 

(Welty, et al. 2010) also try patterns based on the spanning tree between the two arguments in a 

dependency parse, but provide neither further details on how they were constructed, nor evaluation 

results. 

 

Figure 1: Frequency distribution of patterns (Welty, et al. 2010) 
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(Whitelaw, et al. 2008) use a supervised model to predict the entity type as a function of features of a 

mention. They use lexical patterns not to extract entities, but to use as a filter to retain reliable entities for 

training a classifier. The classifier uses features such as the URL of the Webpage the mention appears in, 

words composing the entity, and each of the three tokens immediately before and after the term (position-

specific). To obtain patterns of filtering, they submit a very large set of seed entities to the web pages and 

for every occurrence of each seed, extract three tokens from left and right of it. These text windows along 

with all shorter substrings of them are recorded and those which have the following characteristics are 

kept as patterns:  

1. Type Specific: at least 80% of its extractions belong to the same type  

2. Frequent: have at least 50 occurrences 

3. Source diverse: How many different sources (hosts, domains, etc.) a template was found in 

4. Name diverse: the more different names appear in a template, the more likely it is that other good 

names will appear in it. 

5. Have a proper makeup: having at least four tokens and being at least 8 characters long. 

The above criteria are chosen to be conservative to give the most reliable patterns to subsequently 

retain the most trusted entities for training the classifier. Some works go beyond selecting patterns by a 

measure of their selectivity and coverage. Instead, they use (semi-) supervised approaches to learn the 

most effective patterns. 

(Banko and Etzioni 2008) consider each pair of noun phrases appearing no more than a maximum 

number of words apart and their surrounding contexts are regarded as possible evidence for RE. The 

system detects relations by using Conditional Random Fields (CRF) to label the context of the two 

candidate noun phrases (Figure 2). CRFs (Lafferty, McCallum and Pereira 2001) are undirected graphical 

models trained to maximize the conditional probability of a finite set of labels Y, given a set of input 

observations X. 
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Figure 2: Relation Extraction as Sequence Labeling: a CRF is used to identify the relationship, born 

in, between Kafka and Prague (Banko and Etzioni 2008) 

The sets of features include part-of-speech tags, capitalizations, punctuations, and context words 

occurring within six words to the left and to the right of the current word. Although (Banko and Etzioni 

2008) propose an Open Relation extractor and do not try to capture semantic classes of words, the CRF 

model they use is applicable to the latter task as well. 

(E. Riloff 1996) introduce AutoSlog that automatically generates extraction patterns using syntactical 

heuristic rules. As input, AutoSlog takes a training corpus in which desired NPs are labeled, parses the 

text using a shallow parser and applies heuristics to obtain extraction patterns. AutoSlog uses the 

following domain-independent heuristic rules that are likely to capture the semantic class of the NPs: 

Pattern Example 

<subj> passive-verb 

<subj> active verb 

<subj> verb infin. 

<subj> aux noun 

<victim> was murdered 

<prep> bombed 

<prep> attempted to kill 

<victim> was victim 

passive-verb <dobj> 

active-verb <dobj>  

infin. <dobj> 

verb infin. <dobj> 

gerund <dobj> 

noun aux <dobj> 

killed <victim> 

bombed <target> 

to kill <victim> 

tried to attack <target> 

killing <victim> 

fatality was <victim> 

noun prep <np> 

active-verb prep <np> 

passive-verb prep <np> 

bomb against <target> 

killed with <instrument> 

was aimed at <target> 

Table 7: AutoSlog Heuristics 
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Since patterns generated in this way can be undesirable, a person should manually go through them to 

accept or reject them.  

Manual labeling of a corpus of 1000 texts takes approximately one week (E. Riloff 1996). It is also a 

non-trivial task and needs a domain expert. Riloff later developed AutoSlog-TS (E. Riloff 1996) to avoid 

these problems. AutoSlog-TS takes a classified corpus of relevant and non-relevant texts for the domain; 

after applying the heuristics to the texts and generating the patterns, AutoSlog-TS computes relevance 

statistics for each pattern by estimating the conditional probability that a text is relevant given that it 

activates a particular extraction pattern (Eq. 14). 

��	��
�*� �
�� = ����	��
�� ��.�|��.� 
*���
��- Y
������� = ��	 − ���+��'�
	 − ���+� Eq. 14 

Where ��	 − ���+� is the number of times  Y
������ was activated in relevant text, and �'�
	 − ���+� 
is the total number of times Y
������ was activated in the entire corpus. The rationale behind the 

conditional probability is that domain-specific patterns tend to appear substantially more often in relevant 

texts than in non-relevant ones. Finally, AutoSlog-TS ranks patterns according to their frequency and 

relevance score: 

��	��
�*� �
�� × 	'
!����+>��*?� Eq. 15 

AutoSlog-TS demonstrates better precision in comparison to AutoSlog, but falls behind in recall. Riloff 

(E. Riloff 1996) observe that many useful patterns are buried deep in AutoSlog-TS’s ranked list, which 

cumulatively could have a substantial impact on performance. She argues that the current ranking formula 

is biased towards high-frequency patterns and a better ranking scheme might be able to balance high-

frequency and low-frequency, but effective, patterns. She also proposes adding semantic constraints to the 

lexico-syntactic patterns for increased accuracy (e.g., in “killed <victim>” <victim> should be checked to 

be PERSON) 

Meta-Bootstrapping (Riloff and Jones 1999) and Basilisk (Thelen and Riloff 2002) are two 

bootstrapping algorithms for semantic lexicons induction which use the extraction patterns introduced in 

AutoSlog. 

2.1.5.2.1 Meta-Bootstrapping 
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It starts with a set of seed words and an unannotated domain-specific text corpus. Before bootstrapping 

begins, AutoSlog is run exhaustively over the corpus to generate extraction patterns for every noun 

phrase. This results in thousands of extraction patterns. Meta-Bootstrapping scores these patterns using 

the RlogF metric introduced in (E. Riloff 1996). RlogF is a metric designed for Information Extraction 

tasks and tries to make a balance between reliability and frequency: 

-*'���Y
������� = c��� × 	'
!�c�� Eq. 16 

Where �� is the total number of unique noun phrases Y
������ extracted and c� is the total number of 

unique lexicon entries among extractions of Y
������. The best pattern is saved and all its extractions are 

labeled as members of the semantic category. This process, called mutual bootstrapping, is repeated and 

the scores for patterns are recalculated taking into consideration the newly labeled words. It is logical to 

think that not all the extractions of a pattern might truly belong to the category, so adding all the 

extractions by a pattern to the lexicon can rapidly infect it in early stages of bootstrapping. 

(Riloff and Jones 1999) add a second level of selection criteria (meta-bootstrapping) to increase the 

robustness of the algorithm. In fact, they re-evaluate the extractions of the top pattern and select only the 

top most reliable ones to be added to the semantic lexicon. The basic intuition is that the more patterns the 

NP co-occurs with, that more it is likely to belong to the category, simply because there is more evidence 

for its membership in the category (see Eq. 17). They also introduce a small factor reflecting the strength 

of the patterns into the formula mainly for tie-breaking purposes. 

-*'������� = 9 1 + F. 01 × -*'���Y
�������I��
�n  Eq. 17 

2.1.5.2.2 Basilisk 

Introduced in (Thelen and Riloff 2002), Basilisk starts with an unannotated text corpus and a small set of 

seed words. As opposed to Meta-Bootstrapping that trusts all the extractions of a single best pattern for 

addition to the semantic lexicon, Basilisk scores an extraction based on combined evidence from all 

patterns that extract a term. 

Basilisk generates and ranks the extraction patterns in a way identical to Meta-bootstrapping. It selects 

the best ones into the Pattern Pool and then places all the head nouns of the NPs extracted by those 
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patterns in the Candidate Word Pool. Entries in the Candidate Word Pool are scored based on the 

collective reliability of all the patterns that extracted them (Eq. 18). Top five nouns are labeled and added 

to the lexicon: 

6�
h'
��'�/�� = ∑ 	'
!Fc( + 1I��(n ��  Eq. 18 

Where �� is the number of patterns that extract �'�/� and c( is the number of unique category 

members extracted by pattern �. Using this formula, “a word receives high score if it is extracted by 

patterns that tend to extract known category members” (Thelen and Riloff 2002). The 	'
 is used to 

prevent bias towards patterns that extract a large number of category members. High-frequency patterns 

may extract many existing category members, but they can be loosely associated with the category and 

extract many valid entries too. 

In comparative experiments by (Thelen and Riloff 2002), Basilisk shows better performance than 

Meta-Bootstrapping on a number of categories. It incorporates the second level of bootstrapping proposed 

in Meta-Bootstrapping into the algorithm. To score the candidate entries, it takes into account reliability 

of the patterns (their association with the lexicon), while Meta-bootstrapping uses patterns’ scores for tie 

breaking only. Basilisk also has the advantage that it considers extractions of a set of top performing 

patterns for addition to the lexicon, rather than extractions of one single best pattern.  

2.2 Supervised Approaches 

There a few works on supervised approaches to building semantic lexicons. These approaches are close in 

nature to Named-Entity Recognition (NER) systems that take a block of text and classify the elements 

into predefined categories such as PERSON, ORGANIZATION, LOCATION, etc. Powerful NER 

systems (McCallum and Li 2003) train statistical sequential labeling models such as CRF using an array 

of features (e.g., is the word capitalized?, is it followed by “Inc.”?, or does it appear in a lexicon of 

company names?) to label named-entities in text. CRFs are good at ambiguity resolution and generally 

outperform rule based systems by large margins (rules can be incorporated as features into CRFs). 

(Tsai and Chou 2011) develop a method to extract dish names from Chinese review texts. They 

efficiently identify candidate dishes by constructing a suffix array for each restaurant (from its reviews 

concatenated together) and extracting all frequent substrings that appear more than twice. They further 
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filter these candidates using heuristics based on their POS tags and makeup and employ CRF with 

features such as prefixes and suffixes of words, quotation marks, style (font/color/hyperlink) and image 

proximity to validate them. 

Supervised approaches are usually high precision but low recall due to unfeasibility of building large 

high-coverage training sets of labeled data. Therefore they use gazetteers (lexicons) of 

ORGANIZATIONS, PERSONS, etc. to be able to detect non-trivial Named-Entities. This makes 

sequential labeling models such as CRF less applicable and as a result less popular in the task of 

automatic semantic lexicon construction where the goal is to inexpensively obtain fine-grained semantic 

lexicons of a domain-specific vocabulary. Thus, some works propose methods to obtain/expand semantic 

lexicons using unsupervised approaches and feed those lexicons to Named-Entity Recognizers to achieve 

higher recall and yet benefit from high precision labeling (e.g., (McCallum and Li 2003) and (Liu, et al. 

2011)). 

(McCallum and Li 2003) use a technique they call “WebListing” to expand a set of seed words 

automatically by using lists and tables found on HTML WebPages. They also experiment using Google 

Sets
4
 for this purpose. 

Semantic tagging of queries (Figure 3), i.e. assigning a pre-defined semantic label to query terms, is a 

specialized form of Information Extraction (IE) or Named-Entity Recognition. (Liu, et al. 2011) and 

(Wang, et al. 2009) use CRF models for this purpose, exploiting automatically expanded lexicons as 

features.  Lexicons are generated from Web search query logs and Web lists using semi-supervised 

methods. 

 

Figure 3: Query Semantic Tagging (Wang, et al. 2009) 

  

                                                      

 

 

4
 The Google Labs experiment to automatically expand a set of words with semantically similar words found on 

Web was shut down on September 5, 2011. 
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Chapter 3 

Methodology 

The works reviewed in the previous chapter as well as many others in related research topics suggest 

semi-supervised methods, sometimes used along with supervised methods for increased accuracy, to be 

an effective and inexpensive approach to building semantic lexicons. They also demonstrate the 

advantages of using contextual evidence to determine semantic class/similarity of words. As stated 

before, semi-supervised contextual similarity models fall into two categories: 

1. Context Vector Models: compute pair-wise similarities between candidate terms and seeds in an 

exhaustive way and rank the terms accordingly. The top � terms are deemed to belong to the 

category. The complexity of these methods is q��d�, where k is the number of seed words and n is 

the number of candidate terms to be ranked. 

2. Pattern-based Models: gradually add the most likely category members to the lexicon (which is 

initially composed of seed words) in an iterative fashion. They use term contexts not as features to 

compute similarity, but as patterns/templates to extract semantically similar terms: Given a small 

number of seeds, they extract patterns with which they co-occur in text and use these patterns to 

identify other category members. This bootstrapping process can be repeated as many times as 

needed.  

Although nontrivial to compute, Pattern-based Models are computationally less expensive than Context 

Vector Models: they avoid dealing with a lot of spurious candidates by focusing only on useful patterns 

that tend to extract category members and practically discarding a subset of the candidate terms. 

In this work, we introduce an effective semi-supervised bootstrapping method for automatic 

construction of semantic lexicons, which has the following characteristics: 

1. Uses shallow lexical patterns to capture semantic information about words, making it applicable to 

large text corpora. 
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2. Uses no supervision or machine learning method for learning extraction patterns. 

3. Has an efficient implementation and applies heuristics to maintain computation costs at the lowest 

and increase scalability. 

4. Learns useful domain-specific extraction patterns while building the semantic lexicon. These 

patterns can potentially be applied to other corpora to learn category members. 

3.1 Research Questions 

Besides proposing an effective bootstrapping method, we investigate the following research questions: 

1. Can lexical patterns effectively capture information about semantic classes of words or do we need 

richer linguistic information, such as syntactic roles of words obtained from a deep parser? 

2. How do iterative bootstrapping models perform compared to one-pass context vector models? 

3. What should be chosen as the extraction unit? 

4. How can category drift be prevented in the output semantic lexicon? 

5. What are the effects of the number and composition of seeds on bootstrapping performance? 

3.2 The Algorithm 

Figure 4 shows a high level overview of our semi-supervised bootstrapping model. The algorithm’s steps 

are as follows: 

1. Begin with a small number of manually selected seed words. These seeds form the initial semantic 

lexicon. 

2. Look up members of the lexicon in the text corpus and generate extraction patterns from the 

contexts of their occurrences. 

3. Rank patterns based on a number of factors that reflect their quality. Good patterns are those that 

are expected to co-occur with other valid category members which are not yet discovered. 
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Words 
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Generate 
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Find 
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4. Apply the best � patterns (Top Patterns) to the text corpus and record their extractions as candidate 

lexicon members. 

5. Score candidate extractions according to collective evidence from all patterns that extract them and 

add to the lexicon the top � ones which have not already been added (Top Candidates). 

6. Stop if the lexicon has grown large enough or jump to step 2. 

 

Figure 4: Our bootstrapping process 

In the following subsections we explain each step of the bootstrapping algorithm in details: 

3.2.1 Extraction Units 

Many Question Answering (QA) and Relation Extraction (RE) systems concentrate on broad categories 

such as PEOPLE or ORGANIZATIONS and use Named-Entity Recognizers (NER) to detect candidate 

NEs (e.g., (Agichtein and Gravano 2000) and (Banko and Etzioni 2008)). NERs are not applicable to our 

task for the following two reasons: 

1. We would like to build lexicons of fine-grained semantic categories whose members are not only 

proper names (PNs) but also general names (GNs). 

2. NERs rely on capitalization to detect PNs. Capitalization guidelines are generally followed only in 

editorial texts. Unavailable or inconsistent capitalization in various domains (e.g., customer 

reviews of restaurants and businesses) can mislead NER. Furthermore, in some languages, case 

does not signal PN at all (e.g., Chinese or German). 
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Given the above reasons, we must consider a much broader space of candidate names for our task. 

Most previous works consider NPs (e.g., “Chinese noodles”) as candidate lexicon members (e.g., (Riloff 

and Jones 1999), (Phillips and Riloff 2002), and (Pantel, Crestan, et al. 2009)). Some others consider 

single nouns (e.g., “pasta”) as candidates and stop short of extracting NPs (e.g., (Riloff and Shepherd 

1997), (Widdows and Dorow 2002), and (Roark and Charniak 1998)). (Thelen and Riloff 2002) extract 

NPs in their bootstrapping method but only add the head nouns to the semantic lexicon arguing that the 

head is the main concept of the NP and is more likely to belong to the semantic category. (Roark and 

Charniak 1998) suggest a method to include compound nouns in the lexicon in which the head noun is a 

category member. 

English noun phrases (NP) are grammatical units which, in their simplest form, consist of a head noun 

optionally modified (premodified) by an arbitrary number of modifiers preceding it. Modifiers add 

information about the head noun and are either determiners (the salad), nouns (the chicken salad), or 

adjectives (the delicious salad). See Table 8: 

Example Determiner Adjective Noun Head 

a delicious pepperoni pizza a delicious pepperoni pizza 

Table 8: A sample noun phrase and its elements 

Considering NPs as extraction units is a more realistic approach since semantic classes may include not 

only single nouns, but also multi-word units (MWUs). However extracting NPs which are valid category 

members is less straightforward than single nouns: 

a. NP identification: NP-chunkers have limited performance. Also their reliance on cues such as 

capitalization and POS tags further decreases their accuracy. Other approaches such as those based 

on suffix arrays to detect MWUs (Tsai and Chou 2011) extract many spurious collocations unless 

accompanied by strong heuristics and cues, therefore are not very accurate. 

b. Nested nature of NPs: Simple English noun phrases are nested; meaning every subsequence of the 

words in a NP which contains the head noun is itself a valid NP. Here we refer to such 

subsequences as NP-suffixes (Eq. 9). Modifiers provide information about different aspects of the 

head noun from quality to size, shape, age, color, etc. Depending on the domain in hand, some 

simply provide extra information (e.g., the opinion modifier “good”) while others complement the 

head (e.g., the color modifier in “red wine”) or sometimes change its meaning. The former can be 

omitted from the NP without affecting the comprehension of the head while the latter cannot. This 
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means that not all NP-suffixes might be legitimate category members and methods should be 

applied to detect valid NP-suffixes from invalid ones. This is, however, a non-trivial domain-

specific task and that is why almost all previous works use the NPs output by NP-chunkers without 

any modifications. 

NP NP-suffixes valid category member? 

a delicious French bread 

a delicious French bread 

delicious French bread 

French bread  

bread 

 

 

 

 

Table 9: Nested structure of a noun phrase 

In this work, we choose NPs as the extraction units as well. Many open source NP-chunkers are 

available in the public domain that are accurate and efficient. Also, we experiment different methods for 

detecting valid NP-suffixes as well as using single nouns as the extraction units and constructing NPs 

from them accordingly (described in section  4.4). 

3.2.2 Seed Selection 

Similar to most semi-supervised approaches, we start with a small number of manually selected category 

members. Some previous works show the effect of seed set composition and size on performance ( (Paşca 

and Durme 2008) and (Pantel, Crestan, et al. 2009)). (Pantel, Crestan, et al. 2009) show that 5 to 20 seeds 

to start with is optimal and increasing the number of seeds beyond 20 or 30 neither helps finding any new 

entities, nor decreases the error rate. (Roark and Charniak 1998) emphasize the importance of choosing 

the most frequent words as seeds in tasks that suffer from sparse data. 

On the contrary to (Welty, et al. 2010) who claim that infrequent extraction patterns can only be 

captured by a large set of seeds, we believe the same effect can be achieved by choosing a small number 

of high frequency seeds that provide a broad coverage of the category instances. Furthermore, obtaining a 

large list of trustworthy seeds which truly represent the semantic class is a tedious work and sometimes 

impossible in domains where knowledge bases may not be existing or rich enough. Given the above, we 

list the most common nouns in the corpus and manually scan through them and pick the seeds which form 

the initial lexicon. 
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3.2.3 Extraction Patterns 

Given a NP chunked corpus and the initial lexicon, the second step of our bootstrapping algorithm is to 

look up the lexicon entries among the NPs in the entire corpus and generate extraction patterns from the 

contexts of the instances. As for our patterns representation, we choose a window of �� tokens to the left 

and �^ tokens to the right of a candidate NP. This patterns representation is computationally cheap and 

easy to obtain and needs neither parsing of the text, nor any information about syntactic roles of words 

(Figure 5). 

�
������ = ��� … �  __ � … ��� 
Figure 5: Window of words as extraction pattern 

For every occurrence of a seed, we capture a window of three tokens before and after it. The seed is 

replaced with a wildcard and all the shorter sub-windows which contain the wildcard are recorded as 

patterns (see Figure 6). We retain punctuations in the patterns as they can help capture interesting 

occurrences of the seeds such as in lists (e.g., “turkey, ham, and chicken”). We further filter patterns by 

retaining only those which are longer than a minimum length. 
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sample seed occurrence patterns length 

ordered a large pizza with dipping sauce 

ordered a large __ with dipping sauce 7 

a large __ with dipping sauce 
6 

ordered a large __ with dipping 

ordered a large __ with 

5 a large __ with dipping 

large __ with dipping sauce 

ordered a large __ 

4 
a large __ with 

large __ with dipping 

__ with dipping sauce 

a large __ 

3 large __ with 

__ with dipping 

large __ 
2 

__ with 

Figure 6: Patterns generated from a seed occurrence 

Each pattern, when applied to the corpus, extracts NPs, some of which are already known category 

members (each pattern extracts at least the category member that resulted in its generation). The next step 

is to score these patterns based on their potential to extract category members. We score each pattern 

using the well-known A	'
c metric used by (E. Riloff 1996) for extraction pattern learning. The A	'
c 

score for each pattern is computed as: 

A	'
c�Y
������� = c��� × 	'
!�c�� Eq. 19 

Where c� is the number of distinct category members extracted by Y
������ and �� is the total number 

of distinct NPs extracted by the pattern.  

We believe a good pattern must have three characteristics: be specific to the category, represent the 

category well by extracting a diverse set of category members, and have a proper makeup. We describe 

below how these three characteristics are taken into account in our approach: 
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1. Specificity: a pattern should receive a high score if a high percentage of its extractions are known 

category members (the 
m��� ratio in the A	'
c formula). 

2. Category diversity: besides having high specificity, a good pattern should extract a large number of 

category members. The 	'
!�c�� factor in the A	'
c metric boosts the score of such patterns. In 

other words, it enables a pattern which has a reasonable specificity but extracts many category 

members to score high too. The 	'
 is used to smooth the effect of frequency factor c� for very 

general patterns that extract a lot of category members as well as spurious NPs. We impose further 

restriction by keeping only those patterns that extract at least a minimum number of category 

members (���7�=�=�^). 

3. Makeup: punctuations, by themselves, provide little or no information about semantic classes of 

words. To avoid having patterns that are entirely made up of punctuations, patterns are required to 

have at least one alphanumeric character. Furthermore, patterns with a length (including the 

wildcard) less than ����=:�8� are discarded to avoid having patterns that are very general or 

incapable of capturing semantic information about the words they co-occur with. 

We presume patterns having the highest A	'
c scores are associated with the semantic category the 

most and are more likely to produce new category members. Therefore, we rank the patterns according to 

their A	'
c scores and select the top � ones (Top Patterns). Only extractions by these patterns are 

considered for addition to the lexicon (Candidate Extractions). We observe two types of patterns appear 

in the patterns ranked list:  

a. Patterns whose entire extractions already exist in the lexicon tend to score very high in the list 

simply because their 
m��� ratio has the highest value of 1. These patterns, however, are not useful for 

expanding the lexicon since they do not extract any new category members. We call them 

exhausted patterns and remove them from the ranked list. 

b. Every occurrence of a lexicon entry results in generation of a handful of patterns with some varying 

only slightly from one another. In our dataset, each NP generates approximately 8 valid patterns on 

average. It is likely that patterns which are only slightly different, have very similar or even 

identical extraction sets (e.g., “we ordered a __ with chicken wings” vs. “ordered a __ with chicken 

wings”). These patterns obtain very close or even the same scores and populate nearby positions in 

the ranked list. If they happen to score high, they substantially limit the range of extractions to be 



 

 38 

considered for addition to the lexicon. To address this issue, starting from the top pattern, we 

record the extractions and if a pattern does not provide any new extractions we discard it from the 

ranked list. We call such a pattern a redundant pattern. 

(Thelen and Riloff 2002) observe as the bootstrapping progresses, the same patterns keep reappearing 

near the top of the ranked list. This phenomenon happens because only extractions by the Top Patterns are 

considered for addition to the lexicon and those which find their way to the lexicon boost the A	'
c 

scores of patterns that extract them helping the patterns reappear in Top Patterns. In the absence of 

competition, only extractions of these patterns will end up being added to the lexicon which degrades the 

bootstrapping performance. They suggest introducing more candidates in the competition by incrementing 

the number of Top Patterns by 1 after each iteration. We will put this idea into test in our experiments. 

3.2.4 Selecting Lexicon Entries 

After selecting the Top Patterns, it is now time to score the Candidate Extractions and add the best ones to 

the semantic lexicon. Early bootstrapping algorithms such as Meta-Bootstrapping (Riloff and Jones 1999) 

considered only the extractions of one best pattern for addition to the lexicon whereas more recent 

bootstrapping methods (e.g., (Thelen and Riloff 2002)) consider a larger set of extractions produced by 

the top � performing patterns. Subsequently they score the extractions based on collective information 

gathered from all patterns that extract them: an extraction receives a high score if it is extracted by 

patterns that tend to extract valid category members.  

To score the extractions, we take the same approach; however, we adapt a different formula similar to 

the one used in Snowball for RE (Agichtein and Gravano 2000). Intuitively, the A	'
c metric is a 

weighted conditional probability and can be looked at as the probability of a pattern extracting valid 

category members. To treat A	'
c scores as probability scores, we normalize scores of all patterns in the 

patterns ranked list by dividing them by the highest score of all. Given an extraction @ and the set of 

patterns � = ���� that extract it, under assumption of independence of these probabilities, the probability 

of E being a valid category member ��'��@� can be calculated by the following formula: 

��'��@� = 1 − �F1 − ��'�����I|�|
�n�  Eq. 20 
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Where ��'����� (normalized A	'
c) is the probability of �� extracting valid category members. Every 

pattern �� is believed to extract a number of valid and invalid category members. One can think of ��'����� as the probability of an extraction of �� being among the valid ones. In this way, ��'��@� can 

be interpreted as the probability of @ being among valid extractions of at least one of the patterns that 

extract it, calculated by subtracting the probability of its complement (@ not being among valid 

extractions of any of the patterns that extract it) from 1.  

Using this metric, all Candidate Extractions are scored and the top five of them are added to the 

semantic lexicon. The next iteration of the bootstrapping starts over with an expanded lexicon. 

3.2.5 Alternative Scoring Methods 

Our bootstrapping approach borrows some ideas from Basilisk (Thelen and Riloff 2002) such as A	'
c 

metric for scoring the patterns, limiting the Candidate Extractions to those of Top Patterns, and using 

collective information from all patterns for scoring extractions. Despite its similarities, it has major 

differences with Basilisk specifically in scoring the Candidate Extractions. To score a candidate @, 

Basilisk computes the average logarithm of the number of distinct category members extracted by 

patterns that extract @: 

6�
h'
�@� = ∑ 	'
!�c��|�|�n |�|  Eq. 21 

Where � = ���� is the set of patterns that extract @ and c� is number of category members extracted by ��. Hence, a candidate receives a high score if it is extracted by patterns that tend to extract known 

category members. The logarithm is used to prevent the average from being skewed by one pattern that 

extracts a large number of category members. We believe this formula has two limitations which are not 

present in our probability formula: 

The first limitation is that the only information this metric uses from a pattern is the number of known 

category members it extracts (c�) and ignores pattern’s specificity. General patterns might extract a good 

number of category members, but they also extract many spurious ones. Using only c� causes invalid 

extractions of general patterns to achieve higher scores too. Suppose E is extracted by P  and �! and @′ by � ′ and �!′; and we have c = c! = 3, � = �! = 10, c′ = c′! = 3, and �′ = �′! = 1000 

respectively. Surprisingly, according to the above formula, 6�
h'
�@� = 6�
h'
�@′� = 2 while 
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patterns extracting E clearly have higher confidence and therefore E should be receiving a higher score 

which it is not. 

Intuitively, we are not interested in information provided by general patterns for scoring the Candidate 

Extractions, in the same way we are not interested in including their extractions to this set. By using the 

normalized A	'
c metric, we are practically incorporating patterns’ specificity and diversity into our 

score and prevent contribution of general patterns. 

The second limitation in Eq. 21 is using an Average function. While the arithmetic mean incorporates 

knowledge of all patterns that extract a candidate, it is not sensitive to the number of patterns. Using that 

formula, a candidate extracted by one pattern with c� = ., is as likely to be a category member as a 

candidate extracted by 100 patterns with c� = ..  

We believe both number of patterns and their quality are important factors in determining whether a 

candidate is a true category member or not. Our formula favors candidates extracted by more patterns or 

more reliable patterns. For example if @ is extracted by three patterns of equal probabilities of 0.6 and E′ 
is extracted by only one pattern with 0.8 probability of extracting valid category members, ��@� =0.936 > ��@′� = 0.8 because there is more evidence for @ to be a valid lexicon entry although each are 

individually weaker than the evidence for membership of @′. 
3.3 Preventing Drift in the Bootstrapping 

3.3.1 Motivation 

One problem with bootstrapping methods is that the lexicon being constructed is very vulnerable to drift 

from the target semantic category. As opposed to Context Vector models where all the candidates get 

ranked based on their similarity to a fixed set of seeds, in bootstrapping methods, it is the current 

members of the lexicon that decide what to be added next. When spurious or ambiguous entries are 

admitted to the lexicon, semantic neighbors of these entries are also likely to be admitted and so on. 

(Roark and Charniak 1998) call these out-of-category entries “infections”. Presence of infection in the 

lexicon in early iterations, when the lexicon is small and they have more significance, leads to admittance 

of many more in later iterations in a reinforcing manner and can result in a considerably drifted final 

lexicon. 
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Figure 8 visualizes the task of semantic lexicon induction in a hypothetical text corpus (the rectangle). 

The target semantic category occupies a certain subset of the search space (area with dashed line) and a 

number of seed entries (the area with solid black background) are provided. As you can see, infections 

have caused the final lexicon (shaded area) to grow way beyond the target category significantly 

degrading its quality.  

 

Figure 7: drifted final lexicon 

One solution could be to have a human reviewer reject misclassified lexicon entries as the final phase 

of lexicon construction. However, this is a tedious task and learner does not benefit from it during the 

bootstrapping process. Another solution is to stop infections from making their way to the lexicon in the 

first place by, for instance, rejecting the false entries after every iteration. This, especially if done in early 

iterations, can significantly improve bootstrapping performance. Rejected entries can also be used as 

some sort of feedback to the learner so it can distinguish ambiguous/low-quality patterns that lead to 

extraction of infections. Since one of our goals is to eliminate human intervention, in the following 

subsections, we propose automatic ways to fight infections. 

3.3.2 Learning multiple semantic lexicons 

When building fine-grained semantic lexicons in specialized domains, one encounters a number of closely 

related semantic classes with their members co-occurring and sometimes used in the very similar contexts 

in text. For example in the Medicine domain, Diseases and Symptoms can be easily interchanged in 

“suffers from __” or in the Terrorism domain, Governments and Terrorist Organizations may both appear 

in contexts such as “__ bombed”. Assuming every word has a single sense per domain (referred to as 



 

 42 

“single-sense-per-domain” assumption in (Thelen and Riloff 2002)), we almost always come across 

confusion errors where a word gets labeled as category X while it really belongs to category Y. Figure 8 

depicts the presence of non-overlapping (non-hierarchical) semantic categories of various sizes in the 

corpus. 

 

Figure 8: Presence of multiple semantic categories 

You can see that a lot of the infections added to the target lexicon actually belong to these semantically 

related categories. As a solution, one might think of making the learner aware of the existence of multiple 

categories by building several lexicons simultaneously. As depicted in Figure 9, multiple non-overlapping 

lexicons being constructed at the same time can restrain each other from occupying territories of one 

another and help stay within their own boundaries. 

 

Figure 9: Multi-category lexicon construction 
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In a multiple category learner, we start with a separate seed set for each category; learning of extraction 

patterns and selection of candidate extractions are performed individually for every category; and finally 

sets of non-overlapping entries are added to the lexicons after every iteration. At the end of an iteration, 

the same candidate might be claimed by multiple competing categories. The most straightforward way of 

resolving confusion errors is to assign it to the category for which it receives the highest score, provided 

that it has not been added to another lexicon in the previous iterations. 

3.3.2.1 Conflict resolution in Basilisk 

(Thelen and Riloff 2002) suggest a more sophisticated conflict resolution method. After ranked lists of 

candidate extractions are produced for every category, they apply a second scoring function for every 

candidate-category pair which prefers words that have strong evidence for one category and little or no 

evidence for the rest. Every candidate extraction @ receives a score for category �� based on the following 

formula (Thelen and Riloff 2002): 

/����@, ��� = 6�
h'
�@, ��� − �
.(�� �6�
h'
F@, �(I� Eq. 22 

Where 6�
h'
 is the scoring metric used in Basilisk (Eq. 21). 6�
h'
�@, ��� will be zero if @ is not 

claimed by ��. After /����@, ��� is calculated for all candidate-category pairs, the simple conflict 

resolution idea is used to assign the candidates to their respective categories. 

Suppose we have two candidates @  and @! and they are both claimed by two categories �  and �!. E  

receives 6�
h'
 scores of 0.9 and 0.8 and @! receives 0.8 and 0.1 for �  and �! respectively. Although 

there is a stronger evidence on membership of @! in �  than @ , a simple conflict resolution picks @ . The 

above formula however rescores them to /���� @!, � � = 0.7 >  /���� E , C � = 0.1 and picks @! which 

is a more certain choice. 

3.3.2.2 Our Approach to Multi-Category Lexicon Construction 

Basilisk’s multi-category scoring function proves effective in resolving conflicts and assigning the 

candidates to the correct categories (Thelen and Riloff 2002), however, it does not prevent such conflicts 

from happening in the first place. Recall that disputed candidates exist because members of some related 

semantic categories tend to occur in similar contexts. Ambiguous contexts result in the generation of 
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ambiguous patterns that may perform well in extracting members of the target category but extract 

members of competing categories too. It is beneficial to punish such patterns so that we have more 

reliable candidate extractions and fewer conflicts when it comes to assigning them to the categories. 

Detecting ambiguous patterns is also helpful since, as opposed to Basilisk, we intend to learn effective 

extraction patterns while constructing a semantic lexicon. 

In the presence of multiple competing categories, we can now simulate a human reviewer giving 

feedback to the learner, which uses this feedback to learn patterns that are more specific to the categories. 

We take an approach similar to (Agichtein and Gravano 2000) and (Lin, Yangarber and Grishman 2003), 

and modify the A	'
c score by taking into account positive and negative extractions. For each learner, 

we record the following when applying a pattern (��) to the text: 

1. Positive extractions (Y'-����): already existing in the lexicon of the same category. 

2. Negative extractions (��
����): already existing in the lexicons of competing categories. 

3. Unknown extractions (>�d����): not existing in any lexicon yet. 

Note that in A	'
c���� = m��� × log!�c��, �� = |Y'-����| + |��
����| + |>�d����|  and c� = |Y'-����|. 
We discard the patterns with less positive extractions than negative, modify the A	'
c metric by 

replacing c� with |Y'-����| − |��
����|, and rank the patterns accordingly: 

A	'
cl==a��;����� = |Y'-����| − |��
����||Y'-����| + |��
����| + |>�d����| × 	'
!�|Y'-����| − |��
����|� Eq. 23 

Keep in mind that the above functions are category specific and the argument �( is dropped for brevity. 

The A	'
cl==a��;� scores are then normalized (��'�F�� , �(I) and used in ��'�F@, �(I = 1 −
∏ �1 − ��'�F�� , �(I�|�|�n�  in the same way as before. 

By subtracting |��
����| from |Y'-����| in the numerator and the logarithm, the A	'
cl==a��;� 

promotes patterns that have more positive and less negative extractions, thereby punishing ambiguous 

ones. Although, this is believed to help reduce conflicts, we still need to be ready to appropriately resolve 

them should they arise. We resolve conflicts in the same way as Basilisk: we rescore the candidates and 

then use the simple conflict resolution on the new scores. However we use a different formula, which is in 

fact the extension of our idea to look at candidates’ A	'
cl==a��;� as probability scores: 
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Recall that, we consider A	'
cl==a��;� score of candidate @ for a specific category �(, the probability 

of @ being a valid member of �( (��'�F@, �(I). In presence of multiple competing categories, this can be 

extended in the following way: the probability of @ being a valid member of �( is ��'�F@, �(I times the 

probability of @ not being a valid member of any other category: 

��'����8�7F@, �(I = ��'�F@, �(I × �F1 − ��'��@, ���I��(  Eq. 24 

Back to our example of two candidates and two categories, if ��'��@ , � � = 0.9, ��'��@ , �!� = 0.8, ��'��@!, � � = 0.8, and ��'��@!, �!� = 0.1,  ��'����8�7�@ , � � will be 0.18 and ��'����8�7�@!, � � 

will be 0.72. Besides it being a more natural extension of candidates’ probability scores, ��'����8�7F@, �(I metric uses the collective information of all competing categories to resolve conflicts 

as opposed to Basilisk’s /����@, ��� that looks at only one of the competing categories for which the 

candidate scores the most. For example, assume we have five competing categories �� , �!, ��, ��, ���; a 

candidate claimed by only �  and �! with scores �0.9,0.7,0.0,0.0,0.0� is more likely to actually belong to �  than when it is claimed by all five categories with scores �0.9,0.7,0.7,0.7,0.7�. 

3.3.3 Giving more trust to seeds and early extractions 

No matter how well we prevent drift in the lexicon, there will still be some infections added to the lexicon 

at different iterations. If seed words are selected carefully, we are certain that none of them are spurious 

or ambiguous. However, we do not have the same level of certainty about the 5 candidates added to the 

lexicon after the first iteration and since we might already have infections in the lexicon, it is more likely 

to have them in the next 5 candidates to be added to the lexicon too. As the bootstrapping progresses, we 

slowly become less and less certain about the validity of entries added to lexicon.  

In all the bootstrapping methods proposed in the literature, all existing members of the lexicon equally 

take part in deciding the best patterns and consequently candidates. It is intuitive to trust the seeds or 

lexicon entries added in earlier iterations more than those added in the 100th iteration for learning the best 

patterns. We believe the right level of conservativeness in trusting the new lexicon entries can prevent 

drift in the learning process and also not harm extraction of new candidates. We propose a degree of trust 

for lexicon entries and a way to incorporate this into the pattern scoring metric. We represent the degree 
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of trust to the lexicon entries by a value (between 0 and 1) which is a function of the iteration in which 

they were added to the lexicon: 

��>-��@� = ������
��'�� 
Eq. 25 

In ������
��'��, seeds (assumed to be added at iteration 0) must have the maximum value of trust, 

while it steadily approaches zero for those entries added to the lexicon in later iterations. Since the 

precision in early iterations is normally still very high, to well resemble the reality, an appropriate trust 

function for our task must provide a slow discount rate in early iterations and maybe a faster rate in later 

ones. We use the following discount functions in our experiments: 

��.� = 1 − � .�
.$��� 

�.� = 	'
��� 8^¡ ��
.$�� + 1 − .� 

ℎ�.� = 0.95� 
Table 10: Different discount functions 

Where �
.$��  is the iteration at which bootstrapping is to be stopped and . is the current iteration. 

Figure 10 visualizes the functions in Table 10. ��.� is a linear function with a fixed discount rate; 
�.� is 

a logarithmic function which starts with a slow discount rate and gets stricter close to the end; and the 

third one, ℎ�.�, is exponential with a sharp drop in the beginning. 
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Figure 10: Visual comparison of various discount functions 

Now instead of having all the entries participate equally in the A	'
cl==a��;����� metric, each 

contributes proportionally to its degree of trust. Note that this idea applies to negative extractions in the 

same way it does to positive ones. An extraction being added to a competing lexicon in early iterations is 

more likely to actually belong to it than when it is added to it in late iterations. Therefore, we replace |Y'-����| and |��
����| in the numerator of the fraction and the logarithm in A	'
cl==a��;����� metric 

(Eq. 23) with the following two summations respectively: 

|Y'-����| = 9 F��>-��@�I£∈¤<`����  
Eq. 26 |��
����| = 9 F��>-��@�I£∈:=�����  
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Chapter 4 

Implementation and Experiments Setup 

4.1 Dataset 

Our dataset is a corpus of 157,865 customer reviews of restaurants from CityGrid
5
. The reviews are in 

English and for 32,782 restaurants in North America. The average number of reviews for a restaurant is 

4.8 with a maximum of 327 and minimum of 1. Each review contains information regarding the business 

such as restaurant ID, restaurant name, review ID, author, review text, rating, pros, cons, and more. For 

the task of building a semantic lexicon, we are only interested in the review texts, thus, we store them in 

separate files for each review. Afterwards, we prepare the dataset in the following steps: 

1. Convert text to Unicode. 

2. Replace URI and HTML encodings with their character equivalent. 

3. Replace some special characters of Latin or Germanic languages with their two-character 

equivalents (e.g., ß → ss or ñ → ny). In all other cases remove the accents. 

4. Standardize the spacing between words and punctuations. 

5. Replace unambiguous English contracted forms (e.g., “I'm” → “I am” or “you’ll” → “you will”). 

Steps 1-4 are performed since, first, the reviews come from an online source
5
 and sometimes contain 

HTML and URL encoded characters, and second, there are discrepancies among authors of the reviews in 

the use of spacing, capitalizations, or non-ASCII characters in non-English words. The last step however 
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is optional and merely performed for generalization purposes since our dataset is not very large and thus 

suffers sparsity. 

We continue the preprocessing by passing the corpus through a sentence splitter, a tokenizer, a POS 

tagger, and a phrase chunker. For this purpose, we use Apache OpenNLP
6
, a free NLP toolkit that 

supports most common NLP tasks including the above. The outputs of OpenNLP tools are compatible 

with each other and thus their UNIX commands can easily be piped to one another, enabling us to 

perform the above tasks as simply as issuing a single command: 

>$ ./opennlp SentenceDetector models/en-sent.bin < inputFile | ./opennlp TokenizerME models/en-

token.bin | ./opennlp POSTagger models/en-pos-maxent.bin | ./opennlp ChunkerME models/en-

chunker.bin > outputFile 

 

It can take up to a several seconds for each of these tools to load. This makes processing single review 

files inefficient. Therefore, we batch every 1000 reviews into one file and restore them to original after 

the processing is finished. After this step, we record all NPs in the corpus (over 2 Million) along with 

information such as the review ID, sentence number, sentence offset, and context in which they appear in 

(window of 3 words to the left and to the right of the NP) into a database
7
. This way, instead of scanning 

the entire corpus to find instances of a NP or pattern, we can efficiently use FULLTEXT queries in the 

database. 

4.2 Evaluation set 

We would like to evaluate our bootstrapping method for building a lexicon of dish names on our corpus 

of restaurant reviews. To create an evaluation set, we randomly selected 600 restaurant reviews 

(approximately 3500 sentences) and had two annotators (annotators A and B) manually label 300 reviews 

each. In order to have a richer test set which can be used for evaluation of other NLP tasks (e.g., 

sentiment analysis), annotators labeled a more comprehensive list of things: 
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7
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1. Dish name: nouns, NPs, or more complex structures referring to a food (e.g., “seafood”, “pepperoni 

pizza” or “white rice with black beans”) 

2. Aspect: any noun or NP referring to an aspect of a restaurant, such as “server”, “waiter”, “price”, 

“atmosphere”, “service”, and “interior”. 

3. Positive (Negative) modifier: a word, phrase, or clause that expresses a positive (negative) 

sentiment of the author towards a food or aspect (e.g., “great” in “the sub was great”, “enjoyed” in 

“we enjoyed the food”, “one of my favorites” in “Godiva chocolate cake is one of my favorites”, or 

“hate” in “I hate the waitresses there”). 

4. Association between a positive (negative) modifier and the corresponding food (aspect): for 

example, to specify “great” refers to “sub” in “the sub was great”. 

5. General Positive (Negative) statement: expressions of opinion that do not fall into the modifier 

category (e.g., “could use a bit of upgrading” or “highly recommended”) 

To perform the annotations, we modified a version of Stanford’s Annotation Tool
8
, a simple open 

source tool for annotating spans of text with desired labels. Minor modifications were done to enable the 

annotators specify the association between foods/aspects and modifiers. After labeling was done by 

annotators A and B, a third annotator (C) went through all labeled dish names and aspects and resolved 

errors and inconsistencies. The final result was a set of 1007 dish names and 433 aspects.  

4.2.1 Training 

Before starting the annotation, in order to train the annotators, they were asked to independently annotate 

the same set of 50 randomly chosen documents. Annotations (for dish names and aspects) by A and B can 

be visualized in the following contingency table (Figure 11). 
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 http://nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.gz 
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  Annotator A 

  Food Aspect None 

A
n

n
o

ta
to

r 
B

 
Food 

Both detected 

As food 

A detected as aspect and 

B detected as Food 

B detected as food, 

unannotated by A 

Aspect 
B detected as aspect and 

A detected as food 

Both detected 

As aspect 

A detected as food, 

unannotated by B 

None 
A detected as food, 

unannotated by B 

A detected as aspect, 

unannotated by B 

Don’t know how 

many but we consider 

it 0 

Figure 11: Annotators contingency table 

Since annotators were not labeling a fixed set of items (meaning one might label something the other 

misses), we could not use Kappa
9
 statistics to calculate inter-annotator agreement (IAA). Instead we 

employed the following metric used by (Wiebe, Wilson and Cardie 2005) to calculate the agreement of 

each annotator with the other: 



��6||¥� = |6 

�����
 ���ℎ ¥||6|  Eq. 27 

As (Wiebe, Wilson and Cardie 2005) point out, “The 

��6||¥� metric corresponds to the recall if A is 

the gold standard and B the system, and to precision, if B is the gold standard and A the system”. 

Therefore, we can use the F-measure (the harmonic mean of precision and recall) as the measure of 

mutual agreement between A and B. The IAA results are presented below: 

 ¦§¨�©||ª� ¦§¨�ª||©� F-score 

Dish Names 0.67 0.73 0.7 

Aspects 0.39 0.43 0.41 

Table 11: IAA results 

Table 11 shows that human annotators can identify dish names with reasonable accuracy. We attribute 

the lower agreement in detecting the aspects to obscurity of them and high subjectivity of deciding 

whether or not something is an aspect of a business. After training, the annotation guidelines were 
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modified for more clarity and the annotators were briefed about their errors and inconsistencies. Although 

not tested, we believe this must have increased the agreement in the actual annotation. 

4.2.2 Evaluation set size 

Although there is no best size for the evaluation set to have the most reliable results, the rule of thumb is 

that the evaluation set should be large enough to well represent the corpus. In our preliminary evaluations, 

we observed a considerable number of valid lexicon entries to be judged negatively because they did not 

exist in our evaluation set. This caused some runs to seem to perform more poorly than how they actually 

did. 

To make the evaluation set better reflect the corpus, one solution is to make the evaluation set larger. 

However, it was not possible for us to do this due to lack of resources to annotate more reviews. Instead 

we did the following: If an NP appears in the 600 reviews that make up our evaluation set, we know it has 

been observed by our annotators and labeled appropriately; otherwise, we cannot say if it is a valid 

lexicon member or not. To make sure all the NPs that could possibly be extracted in a run are judged, we 

retain only those NPs in the corpus that appear in our evaluation set, reducing the number of eligible NP 

instances to about 1.2 Million. This step can be easily performed with one query in our database. 

4.3 Efficient NP and Pattern lookup 

The bootstrapping methods described in the previous chapters, either do not provide any details how they 

were implemented or propose crude and inefficient implementations. The most straightforward way to 

implement our bootstrapping algorithm would consist of the following steps: 

1. Lookup instances of lexicon entries in text and generate extraction patterns. 

2. Search for these patterns in text, record their extractions and assign them a score based on the 

extractions. Good patterns give us our Candidate Extractions set. 

3. Lookup Candidate Extractions in text and record all the patterns that co-occur with them. 

4. Again, search for these patterns in text and assign them a score based on their extractions. Use 

these scores to select future lexicon entries. 
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5. Repeat all previous steps now with a larger lexicon. 

Performing all these lookups take tremendous amounts of time if the corpus is to be scanned. Each 

lexicon entry (especially seeds which we choose among the most frequent words in the corpus) co-occur 

with a great number of patterns. This means, in every iteration, hundreds of thousands of patterns are 

looked up in the corpus and this number increases as the lexicon grows. Although efficient, FULLTEXT 

search is not fast enough for this volume of queries. 

To achieve a q�1� lookup time, before the bootstrapping, we generate extraction patterns for every NP 

in our corpus in an exhaustive way. For each unique NP we record all the unique patterns with which it 

co-occurs and the frequencies of co-occurrence, and for each unique pattern we record all the unique NPs 

it extracts and in how many occasions. For example: 

a) The noun phrase “Pizza” co-occurs with “__ was great” N times, “pineapples on the __” M times, 

etc. 

b) The pattern “two slices of __” co-occurs with “pizza” X times, “cake” Y times, etc. 

Given the above data, we store two matrices (NP-Patterns and Pattern-NPs) on the disk, replacing 

patterns and NPs with unique IDs. Since these matrices are sparse, they can be loaded into memory using 

efficient data structures that allow the fastest lookup time and the least memory usage. We use hash maps 

for this purpose and load the matrixes into two separate Python Dictionaries, one having the NPs as keys 

and lists of Patterns as values and the other having Patterns as keys and lists of NPs as values. We further 

increase the speed by reducing the number of pattern lookups that need to be done in every iteration by 

caching scores of the patterns to use in the next iterations. Only scores of those patterns that co-occur with 

the newly added seeds have to be recalculated. 

4.4 Extraction Units 

As mentioned previously, semantic classes of nominals may include single nouns as well as Multi-Word 

Units (MWU). For this reason, we choose to consider noun phrases for inclusion in our semantic lexicon. 

One could propose two possible approaches to this: 

1. Use NPs as units of extraction. 

2. Extract single nouns and then rank NPs in the corpus according to these nouns. 
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Either of the two approaches has its own justification. For instance, extracting NPs is more 

straightforward because an NP could be a MWU or a single noun, so one does not need to deal with 

complications of ranking NPs based on the single nouns they contain. On the other hand, single nouns are 

more frequent than NPs and therefore more context is available to do the bootstrapping. Less sparsity 

helps the algorithm better distinguish valid category members from invalid ones resulting in better 

performance. 

4.4.1 Extracting Noun Phrase 

English NPs, in the simplest form, are made up of a head noun (the rightmost noun in the NP) and a 

number of modifiers preceding it. These modifiers can be determiners (e.g., articles or quantifiers), 

adjectives, and nouns. NP-chunkers tend to group all theses modifiers modifying the head noun into one 

single unit, which (excluding determiners) conforms to the following regular expression: 

�6/��∗��'>��∗�'>� 

We restrict our candidate NPs to only those having this form. These NPs, however, may or may not be 

suitable for addition to the lexicon as output by the NP-chunker. Here we propose and evaluate a variety 

of methods to identify NP-suffixes that represent a legitimate dish name: 

4.4.2 Removing the Subjective Modifiers 

In addition to determiners, NPs may contain modifiers that are not part of the multi-word term. In our 

domain, noun modifiers and those adjective modifiers that describe color, shape, age, or place of origin 

are highly likely to be part of the multi-word term that refers to a food. Examples are: “chicken pasta”, 

“red wine”, “square pizza”, “old-fashioned hamburger”, or “Italian pastrami”. However, quantity and 

quality/opinion (subjective) modifiers generally are not part of dish names (e.g., “two Kabobs” or 

“appetizing salad”). Removing these modifiers is a crucial step in the task of term recognition from 

opinionated data (e.g., customer reviews), where subjective modifiers are abundant.  

The most straightforward way to tackle this problem is to detect and remove these modifiers. 

Determiners and quantity modifiers are accurately detected by POS taggers and are removed from all 

candidate NPs beforehand. Provided that we are given a lexicon of subjective adjectives, we can detect 

and remove them as well in the following two steps: 
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1. In each NP, find the rightmost occurrence of a subjective adjective. 

2. Remove all words preceding (and including) this adjective in the NP.  

The rationale behind this method is that, in English, the premodifying adjectives usually occur in a 

specific order and those that precede a subjective adjective are normally not part of the multi-word term. 

The order of adjectives from left to the right is more or less: opinion, appearance (size, shape, length, or 

condition), age, color, origin (nationality or religion), and material (Hogue 2003). A modifier that 

precedes a subjective adjective can only be an adverb, another subjective adjective, a number, or a 

determiner. 

In product reviews domain, (Hu and Liu 2004) report that customers tend to use similar words when 

commenting on product features. Same conclusion could be drawn for restaurant reviews and in fact can 

be observed in the manually labeled data. Thus, the lexicon of subjective adjectives we use does not need 

to be very large and therefore is not very difficult to obtain. We use a lexicon of 1505 subjective 

adjectives collected using the semi-supervised approach introduced in (Vechtomova and Robertson 2011) 

to extract and rank all the adjectives in the corpus by similarity to a small set of seed adjectives. Top 2000 

extractions of different runs were examined and those found to be subjective formed the lexicon. 

(Riloff, Wiebe and Wilson 2003) successfully use Meta-Bootstrapping and Basilisk for the extraction 

of subjective nouns (e.g., love, hate, or trust). Our pattern representation and bootstrapping framework are 

general enough that there is no reason it cannot be used to build a semantic lexicon of subjective 

adjectives. In fact, the only thing that needs to change is the extraction units. To achieve full automation, 

one can simply take the output lexicon at a desired size and treat its members as subjective adjectives. 

However, with no human intervention, precision of a lexicon of adequate size will be obviously not so 

high. We perform experiments to evaluate the performance of our bootstrapping algorithm in learning 

subjective adjectives. 

4.4.3 Include NP Suffixes in the Candidate NPs 

As mentioned before, we assume noun modifiers are part of the multi-word terms (provided that the POS 

tagger detects them correctly), while some adjective modifiers may not. The fact is, these modifiers are 

not limited to subjective or quantity adjectives; depending on the dish name, adjectives of age, shape, etc. 

also might not be part of the multi-word term.  
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A powerful bootstrapping algorithm must be capable of detecting a small number of valid lexicon 

entries among thousands of invalid candidates; and it does so using the words’ contexts. In fact, according 

to the distributional similarity hypothesis, the context of a word can be used to determine its semantic 

class. As a result, contexts of occurrences of phrases such as “Italian pizza” and “pasta” should reflect 

their membership in the dish names category but contexts of “delicious Italian pizza” should not. For 

example, “Italian pizza” is likely to be preceded by words such as “delicious”, “thin-crust”, and “tasty” 

throughout the text. Presence of such modifiers in contexts of a word is a strong indication that the word 

in question is a food; on the other hand “delicious Italian pizza” is very unlikely to appear with any of 

those modifiers or in general any subjective modifier. 

Based on this fact, we hypothesize that if we augment the list of candidate NPs with NP-suffixes 

generated by removing adjective modifiers one at a time, the bootstrapping process will be able to select 

those that are valid category members and discard the rest based on their context. For example, every 

occurrence of “delicious Italian pizza” gives artificial occurrences of “pizza” and “Italian pizza” as well. 

As shown in Table 12, each NP-suffix has a different context (three tokens to the left and to the right of 

the NP-suffix) and extraction patterns for it are generated the same way as before. 

Original NP Sub-phrases and their context 

enjoyed the delicious Italian pizza on whole grain 

enjoyed the delicious Italian pizza on whole grain 

enjoyed the delicious Italian pizza on whole grain 

the delicious Italian pizza on whole grain 

Table 12: NP sub-phrases and their context 

The strengths of this approach are its simplicity, no use of external resources, and the fact that more 

than one valid suffix might be selected for addition to the lexicon (in Table 12, both “Italian pizza” and 

“pizza” are valid lexicon entries). A drawback of it might be the increase in the size of NPs and extraction 

patterns to consider (in our dataset the number of NPs increased by approximately 1.3 times). However, 

the increased volume can be handled by our efficient implementation. 

4.4.4 Detecting the Most Stable MWUs 

C-value is one of the well-known, but not widely used, methods for multi-word term recognition (Frantzi 

and Ananiadou, Extracting nested collocations 1996). C-value is a domain independent statistical method 
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used for extraction of nested terms by scoring them according to their stability (“termhood”) in the 

corpus. Nested terms are those that appear within other longer terms and may or may not appear by 

themselves in the corpus. The measure is based on statistical characteristics of the candidate term and is 

defined as follows: 

� − �
	>��
� = « 	'
!|
|. ��
�
	'
!|
| ¬��
� − ∑ �����∈_­|V�| ®¯ 
 �- �'� ��-��/'�ℎ����-�  Eq. 28 

Where 
 is the candidate term, |
| is the length of 
 in terms of words, ��. � is the frequency of non-

nested occurrence in the corpus, and V� is the set of candidates that contain 
. C-value discounts the score 

of a candidate by subtracting the number of times it appears within other longer terms, unless it appears in 

many of them which is a sign of its independence. It also takes into account the length of the term because 

the corpus frequency of a longer term is more significant than that of a shorter one. For more details on 

the rationale behind this score see (Frantzi, Ananiadou and Mima 2000). 

If one is to find out whether a modifier is part of the dish name before the bootstrapping starts and 

without using external resources, there seems to be only one clue, and that is corpus statistics reflecting 

the termhood of NPs. Therefore, we use the C-value metric in the following way aiming to detect the 

most stable multi-word term in a nested NP: 

1. For every candidate NP, generate all its NP-suffixes (including itself) with the shortest being all the 

nouns in the NP.  

2. Calculate the C-value for all the suffixes and replace the highest scoring one with the original NP. 

Figure 12 shows the NP-suffixes and their C-value scores for a sample NP, where �� indicates a noun 

and °° an adjective.  

	>d��
��°° *��
�?°° �'�
�'�� -
>*��� →
²³́
³µ

�'�
�'�� -
>*���*��
�?°° �'�
�'�� -
>*���	>d��
��°° *��
�?°° �'�
�'�� -
>*���
 ̄

266.99 

6 

2.32 

Figure 12: All nouns are present in NP-suffixes for which C-value is calculated 
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This method, however, has disadvantages such as the fact that there is no specific stability threshold 

that enables us to select multiple stable NP-suffixes in a NP. Also frequency and length may not be 

sufficient indications to determine termhood in general. 

4.4.5 Extracting Single Nouns 

In this approach, we bootstrap single nouns that belong to the semantic category, and then rank the 

candidate NPs according to the nouns they contain. Our bootstrapping algorithm can be easily adapted to 

extract single nouns, by omitting the NP chunking phase and considering any token tagged as Noun by 

the POS tagger as a candidate entry. The rest of the algorithm (including the definition of patterns) 

remains the same. To rank the NPs, we need to come up with a degree of category membership for single 

nouns first: 

Although, in every iteration, candidate extractions are ranked based on some scores, these scores 

cannot be used to rank the lexicon entries globally. However, we can have a global ranking in which an 

entry @  is ranked higher than @!, if it was added to the lexicon in an earlier iteration, or had a higher rank 

than @! in the iteration in which both were added to the lexicon. Having a ranked list of lexicon entries, 

we can now assign them a score based on the following formula: 

-*'���@� = 1�
�d�@� + � Eq. 29 

Where �
�d�@� is the rank of lexicon entry @ and � is a smoothing constant.  

For the NP scoring function, we propose a simple sum of the scores of the nouns contained in a NP. 

One should note that while head nouns almost all the time belong to the category themselves, non-head 

nouns may or may not be legitimate category members. Thus, we rank only those NPs whose head noun 

exists in the lexicon of single nouns. 

Intuitively, the head noun of an NP represents the main concept of the NP and further away a noun is 

from the head, the less it does so. Therefore, it makes sense to reduce contribution of the nouns to the 

overall score of the NP according to their distance from the head of the NP (Eq. 30): 

��)*'�� = 9F�1 − 	'
 ��/��� × ��I�  Eq. 30 
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Where �� is the score of the noun � and /� is its distance (in tokens) from the right end of the NP (/ of 

the head is 1). For example, if the score for “pizza” in our lexicon of dish names is 0.8 and that of 

“trucker” is 0.1, “trucker pizza” receives a higher score than “pizza trucker” since pizza’s 0.8 will be 

discounted in the latter case. 

4.5 Dependency Triples as Context 

We want to investigate whether semantic classes of words can be determined solely by the words around 

them in absence of more constraining linguistic information such as their syntactic roles in sentences. 

Although knowing syntactic roles of words can help better distinguish their semantics, parsing large 

corpora of text to obtain such information is expensive, imprecise, and unscalable. We particularly 

compare using grammatical relations of words in sentences as context against the window of words 

surrounding them. For this purpose we use grammatical dependency relations employed by several 

previous works (e.g., (D. Lin 98) or (Vechtomova and Robertson 2011)). We perform the following steps 

to obtain these dependency relations: 

1. After POS tagging the corpus, we parse it using the Stanford Dependency Parser
10

 (De Marneffe, 

MacCartney and Manning 2006). Output dependency relations are in the form of triples which 

consist of two words, their POS tags, and the dependency relation between them (e.g., “eat   

VB:dobj:NN   pasta”). 

2. For each noun in the corpus, we record the dependency triples in which it participates and 

transform them into extraction patterns by replacing the noun in question with a wildcard “__”. For 

example if the noun in question is “pasta”, the triple <eat, VB:dobj:NN, pasta> will be transformed 

to <eat, VB:dobj:NN, __>. 

3. For each unique noun, record the unique patterns that extract it along with the frequency of co-

occurrence. Do the same for patterns and construct the matrices Noun-Patterns and Pattern-Nouns 

accordingly. 

                                                      

 

 

10
 Any other dependency parser such as Minipar (D. Lin 1993) can be used as well. 
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One should note that dependency grammars are different from phrase structure grammars (constituency 

grammars) in the sense that they lack phrasal nodes; meaning that dependency relations are between 

single words and not phrases (verbal phrases, noun phrases, etc.). In fact, the structure in the dependency 

grammar is determined by the relations between heads of phrases and their dependents. The left side of 

Figure 13 shows the output generated by the parser for the sentence “I/PRP had/VBD a/DT delicious/JJ 

chicken/NN salad/NN”; on the right side, you see visualization of these relations: 

<had, VBD:nsubj:PRP, I> 

<had, VBD:dobj:NN, salad> 

<salad, NN:det:DT, a> 

<salad, NN:amod:JJ, delicious> 

<salad, NN:nn:NN, chicken> 

Figure 13: Example of dependency grammar triples 

Dependency grammar parsers are capable of detecting phrase boundaries although they are not shown 

in the dependency relations. By looking at the relations in which the head and the modifiers of “a 

delicious chicken pasta” participate, you can see that the modifiers only participate in relations with the 

head (shown in bold lines) and only the head (“salad”) participates in relations with other words in the 

sentence. In order to use dependency triples as context for NPs, we need to modify them in a way that 

they reflect relations between phrases. 

Given the candidate NPs, one can ignore the dependency relations within NP boundaries and replace 

the head of the NP with the entire NP in every dependency relation outside of the NP boundaries. We call 

this process collapsing and perform it for candidate NPs whose head participates in dependency relations. 

Although collapsing can be done for all phrase types (e.g., verbal or adjectival), we only perform it for 

NPs. We believe collapsing other phrase types makes the already sparse set of tuples even sparser. Table 

13 shows the dependency triples and their graphical representation after the only candidate NP in this 

sentence (“chicken salad”) is collapsed: 

had 

I a 

delicious 

chicken 

salad 

I had a delicious chicken salad 
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<had, VBD:nsubj:PRP, I> 

<had, VBD:dobj:NN, chicken salad> 

< chicken salad, NN:det:DT, a> 

<chicken salad, NN:amod:JJ, delicious> 

 

Table 13: Dependency triples after collapsing “chicken salad” 

Note that collapsing depends on the NP-chunker and the parser to agree in detecting NP boundaries to 

work effectively. We believe this agreement is high since both the NP-chunker and the parser take the 

same POS tagged text as input
11

. 

4.6 Experiments Setup 

In this section we outline evaluation goals and describe how the eperiments are performed. In the next 

two chapters we will present the evaluation results, discussions, conclusions, and possibilities for future 

work. 

4.6.1 Seed Selection and Parameter Tuning 

To evaluate extraction of dish names, we ctreate two sets of seed words each containing 10 seeds (Table 

14). Set 1 is used for tuning the parameters and set 2 for testing purposes. These sets are created by listing 

the most common words in the corpus and manually selecting the seeds into the sets alternating between 

the two. 

                                                      

 

 

11
 Future versions of Stanford Parser will be accepting text with annotated phrase boundaries. 

 

had 

I a 

delicious 

chicken salad 

I had a delicious chicken salad 
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Set 1 Set 2 

chicken 

sauce 

salad 

cheese 

fish 

soup 

beef 

rice 

coffee 

pasta 

pizza 

sushi 

wine 

steak 

bread 

meat 

seafood 

shrimp 

dessert 

fries 

Table 14: Sets of seed words used for extraction of dish names 

We run our bootstrapping for one hundred iterations which results in a lexicon of five hundred entries. 

In some of the experiments, along with the lexicon of dish names, we construct a lexicon of aspects of 

business
12

. In the reviews, customers tend to comment not only on foods, but also a wide range of aspects 

of the restaurants from value to atmosphere, service, wait time, menu variety, etc. Furthermore, as 

mentioned before, people have a tendency to use a very similar language to express their opinion about 

things. This similarity of context causes a lot of aspects to be falsely detected as dish names; thus, we 

believe learning lexicons of these two simultaneously can increase the learning precision. 

Since the aspects category is coarse and heterogeneous, we use a larger and more diverse set of seeds 

(Table 15), aiming to represent aspects of different types. Note that this does not prejudice our evaulation 

results since our primary goal is to evaulate the precision of learning a lexicon of dish names and not a 

direct comparison between performance of learning dish names and aspects. 

                                                      

 

 

12
 We will refer to them as “aspects” for brevity. 
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Aspect seed set 

place 

service 

restaurant 

menu 

staff 

wait 

atmosphere 

bar 

table 

prices 

area 

price 

dishes 

waiter 

waitress 

portions 

location 

owner 

manager 

selection 

Table 15: Set of seed words used for extraction of aspects 

As the baseline, we extract noun phrases whose subjective modifiers are removed using our manually 

judged lexicon of subjective modifiers. Extraction patterns are scored by Eq. 23 and the extractions by the 

top � of patterns are considered as Candidate Extractions, which are in turn scored by equation Eq. 24. 

Our algorithm has three parameters which need to be tuned:  

1. The minimum acceptable length for extraction patterns (����=:�8�). The maximum length is fixed 

to seven (three tokens on the left, three on the right, and the wildcard in the middle). Longer 

patterns tend to be very specific and score low in the ranked list of patterns. 

2. The minimum number of category members a pattern needs to extract (���7�=��=^). 

3. The number of top scoring patterns which give the Candidate Extractions (�). 

4.6.2 Our Bootstrapping Method vs. Basilisk 

To see how our method performs compared to the state of the art bootstrapping algorithms, we evaluate it 

against Basilisk (Thelen and Riloff 2002) for extraction of dish names in our corpus of restaurant reviews. 

We use the best performing setup of parameters obtained in the previous experiment to test our method 

against Basilisk when both learn two lexicons of dish names and aspects at the same time. 
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We implement Basilisk with the original settings and formulas in (Thelen and Riloff 2002), and use the 

grammatical dependency triples output by the Stanford Dependency Parser, to generate Basilisk’s 

extraction patterns according to the heuristic rules of AutoSlog (Table 7). 

Also, to compare the effectiveness of our formulas and methods for selection of patterns and lexicon 

entries against those of Basilisk’s, we perform another experiment where Basilisk uses our lexical 

patterns instead of the lexico-syntactic patterns generated by AutoSlog. This tells us how much of the 

difference in the perofrmances comes from the different types of extraction patterns used and how much 

comes from the bootstrapping algorithms themselves.  

4.6.3 Drift Prevention Methods 

To evaluate the effectiveness of techniques proposed in section  3.3 for preventing drift in the 

bootstrapping, we conduct four runs. In the first run, we construct a lexicon of dish names when it is the 

sole lexicon being learned; in the second experiment, we also learn a lexicon of aspects at the same time; 

in the third experiment, we incorporate the negative feedback in our scoring formula (Eq. 23); and finally 

we test assigning a degree of trust to the lexicon entries. We employ various discount functions (presented 

in Table 10 and depicted in Figure 10). 

Although not tested, it is posible to divide the aspect seeds into more fine-grained homogeneous 

categories and bootstrap more than two lexicons where we believe our multi-category scoring metric for 

the extractions (Eq. 23) particularly works better than that of Basilisk (Eq. 22). 

4.6.4 Multi-word Term Detection Approaches 

In section  4.4, we proposed four approaches to finding the proper NP-suffixes for addition to our lexicon 

of dish names. These four methods are 1- removing subjective modifiers from NPs, 2- adding NP-suffixes 

to the list of candidate NPs, 3- using the C-value metric (Frantzi and Ananiadou 1996) to replace the NPs 

with their most stable NP-suffix, and finally 4- extracting single nouns and rank candidate NPs based on 

the nouns they contain. 

So far, we used NPs with their subjective adjectives removed as the baseline of our algorithm. We 

would like to know whether the above techniques help detect valid dish names, and also compare their 

effectiveness. We evaluate methods 1-3 against a run where no modification is done to NPs output by the 
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NP-chunker. In the fourth method, the metric used to rank the candidate NPs does not take subjective 

modifiers into account; therefore NPs which only differ in those modifiers receive identical scores. This 

means that the top ranks in the final ranked list can potentially get populated with entries which are 

composed of high-scoring NPs being premodified by various subjective modifiers, while none of them are 

legitimate dish names. To be able to more fairly compare the effect of extracting single-nouns on the 

bootstrapping, we use the candidate NPs from the first run (with subjective modifiers removed) and 

compare the fourth run against the first. 

4.6.5 Lexical vs. Dependency Triples Patterns 

In this experiment, we investigate the effect of using grammatical dependency relations as context on the 

bootstrapping performance. In order to do so, we evaluate our multi-category bootstrapping when lexical 

patterns are used against when patterns based on dependency triples (generated as described in  4.5) are 

employed. Except for the type of the patterns, the bootstrapping details, including the extraction units, is 

identical in both cases. 

4.6.6 Boostrapping vs. Context Vector Models 

Another interesting evaluation to perform is to compare bootstrapping methods against context vector 

models. The former consider words’ contexts as patterns that are matched in text and extract members of 

a semantic category; while the latter use vectors of contexts to measure semantic similarity of words with 

one another. Context vector models are also less prone to drift due to ranking the candidate category 

members according to their similarity to a fixed set of seeds; while in the bootstrapping, all members of 

the lexicon take part in deciding the next entries. It is worthwhile to see how these two perspectives 

compare and also how much we are able to control the drift using the measures introduced in  3.3. 

For the context-vector model, we use the semi-supervised approach by (Vechtomova and Robertson 

2011) to extract dish names. It uses dependency triples to form feature vectors for candidate entries and 

seeds and ranks the candidate entries based on their similarity to the set of seeds (details are given in 

section  2.1.4). We perform two runs for each model, one using NPs and the other single nouns as 

extraction units. Furthermore, we use patterns based on dependency triples in our bootstrapping method to 

eliminate the effects of using lexical patterns on its performance. 
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4.6.7 Bootstrapping Subjective Adjectives 

To detect and remove the subjective adjectives from NPs, we have been using a manually judged lexicon 

of subjective adjectives. Another possibile way is to adapt our bootstrapping method to extract subjective 

adjectives and use the output lexicon for this purpose, provided that our lexicon of subjective adjectives is 

high precision enough. To see whether full automation is feasible, we perform experiments to evaluate the 

performance of our bootstrapping method in learning subjective adjectives.  

We do so by changing the extraction units to single words tagged as adjectives and provide the 

bootstrapping with a seed set of subjective adjectives. In fact, we create two sets (Table 16) from the most 

frequent subjective adjectives in the corpus in the same way as the seed sets of dish names (described in 

section  4.6.1). We tune the parameters on set 1 and use set 2 for evaluation. Our relevant set will be the 

lexicon of 1505 subjective adjectives used previously. 

Set 1 Set 2 

good 

nice 

better 

delicious 

bad 

wonderful 

tasty 

awesome 

authentic 

average 

great 

best 

friendly 

excellent 

fresh 

favorite 

amazing 

perfect 

rude 

fantastic 

Table 16: Sets of seed words used for extraction of subjective adjectives 

4.6.8 The Effects of the Number and Composition of the Seeds 

In this experiment, we first analyze the effect that the number of seeds has on performance of the 

bootstrapping. The values we examine for the size of the seed set are 5, 10, 15, and 20. In order to 

minimize the random effect of individual seeds on performance, we perform 5 runs for each set size value 

using a different combination of seed words in every run. The seeds in each run are randomly drawn from 
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a pool of 30 most frequent dish names (which includes those in Table 14). We calculate the Mean 

Average Precision (MAP) by averaging the Average Precision (AveP) values for each of the 5 runs and 

use this metric for evaluation. 

(Welty, et al. 2010) hypothesize that, in the task of Relation Extraction, the frequency distribution 

diagram of extraction patterns has a very long tail and a small set of seed tuples stops short of discovering 

infrequent but maybe useful lexical patterns (they use 20K seed tuples in their method). In order to 

evaluate this hypothesis, we look into the frequency distribution of extraction patterns in the corpus, 

identify those patterns that co-occur with the seed words, and see whether infrequent patterns are 

discovered too and to what degree. 

(Roark and Charniak 1998) suggest that the initial seeds should be among the most frequent words in 

the corpus to provide the broadest coverage of category occurrences from which additional likely 

category members will be selected. We are particularly interested in seeing whether selecting the most 

frequent seeds makes up for the small size of our seed set. In order to do so, we build two sets of seed 

words (Table 17), one from the most frequent dish names in the corpus and the other from less frequent 

ones (frequencies below 1000). We compare how these two seed sets perform at discovering the 

infrequent patterns through analyzing the frequency of the patterns they co-occur with (details are given 

in Section  5.8). 



 

 68 

Most frequent seeds Less frequent seeds 

Dish name Freq. Dish name Freq. 

pizza 

chicken 

sushi 

sauce 

wine 

salad 

steak 

cheese 

bread 

fish 

meat 

soup 

seafood 

beef 

shrimp 

rice 

dessert 

coffee 

fries 

pasta 

21441 

13746 

10432 

9371 

8536 

8262 

8247 

7132 

5632 

5557 

5130 

5042 

4956 

4885 

4784 

4617 

4441 

4357 

4314 

4306 

bacon 

ravioli 

burritos 

scallops 

mushrooms 

noodle 

turkey 

sashimi 

tapas 

sangria 

tofu 

cookies 

cheesecake 

cocktails 

martini 

eggplant 

tempura 

gravy 

mussels 

guacamole 

950 

944 

934 

913 

869 

766 

742 

734 

697 

682 

681 

656 

649 

645 

621 

620 

535 

491 

485 

471 

Table 17: Sets of most frequent and less frequent seed words 
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Chapter 5 

Evaluation Results 

In this chapter, we present the results of the experiments outlined in the  Chapter 4, also analyze and 

discuss them. To evaluate our semi-supervised bootstrapping method for extraction and ranking of multi-

word units that belong to a fine-grained semantic class, we use it to extract dish names from a corpus of 

157,865 restaurant reviews. We run the bootstrapping for 100
 
iterations so that 500 lexicon entries are 

extracted (5 per iteration). Our relevant set consists of dish names labeled in 600 randomly chosen 

documents. 

One of the measures we use for evaluation is Average Precision (AveP). AveP is defined as the average 

of the precision values after each relevant dish name is encountered in the ranked lexicon entries. It is in 

fact the area under the Precision-Recall curve and is calculated according to the following formula: 

6��� = ∑ F��d� × ��	�d�I:�n |��	��
�� -��|  Eq. 31 

Where � is the size of the lexicon and ��	�d� equals 1 if the item at rank d is a valid dish name and 0 

otherwise. We use AveP as a single-valued measure for comparison across different runs and not as a 

measure of the overall performance of a run individually. This is because we retrieve only 500 lexicon 

entries and the size of the relevant set is more than twice as this number (1007 entries), therefore, our 

reported 6��� is lower than that of a system that ranks all the candidate entries (e.g., context vector 

models). 

Another measure used is Precision at specified cutoff values of 50, 100, 250, 350, and 500, denoted as 

P@N. Furthermore, to visually analyze the bootstrapping performance over time, we use a graph whose X 

axis is the number of lexicon entries learned and Y axis is the number of correct ones. 
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5.1 Parameter Tuning 

Our bootstrapping method has three tuning parameters: minimum acceptable length for extraction patterns 

(����=:�8�), minimum number of category members a pattern needs to extract (���7�=��=^), and the 

number of Top Patterns (�) whose extractions are considered for addition to the lexicon (Candidate 

Extractions). To tune these parameters, we used our baseline multi-category bootstrapping which learns 

two lexicons of dish names and aspects using dish names in “Set 1” in Table 14 and aspects in Table 15 

as seeds. It uses NPs whose subjective modifiers are removed as the extraction units. 

Since ����=:�8� and ���7�=��=^ are correlated, we performed 30 runs with different combinations of 

values these two can take. ����=:�8� was evaluated with values 3, 4, and 5 and ���7�=��=^ with values 

from 1 to 10. Figure 14 shows the AveP for different combinations of the above values. 

 

Figure 14: AveP for runs with different values of ¶·¸¹º»º¼»¨ and ¶·¸½»¸§¾¿ 

Generally, longer patterns are more specific to the category and give higher precision extractions. This 

can be observed in Figure 14. Longer patterns are, however, less frequent: In a separate experiment, top 

10 best performing patterns of every iteration were collected totaling 362 unique patterns. 47% of the 

patterns had a length of 4, 41% of the patterns had a length of 3, and only 12% had lengths of 5 or more.  

Lower frequency means having fewer category member extractions. This explains the drop in the 

performance of “Min-len-5” with ���7�=��=^ values of greater than 3, as very few patterns with 

minimum length of 5 can be found to co-occur with a high number of category members. This drop, 
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however, is not as sharp as expected since this effect is somewhat alleviated as the bootstrapping 

continues and extractions of those patterns are added to the lexicon. Also, the reason for the identical 

performances of runs with ���7�=��=^ values of 3 or less is that patterns which extract fewer than 3 

category members never score high enough to take part in the bootstrapping. 

Overall, Figure 14 suggests that a minimum length of 4 provides the best trade-off between specificity 

and category diversity and increasing the ���7�=��=^ up to the mid-range values helps select more 

accurate patterns. Therefore we set the values of ����=:�8� and ���7�=��=^ to 4 and 5 respectively. 

To find the best value for �, we tried different values of 10, 15, 20, and 25 for the first iteration (� is 

incremented by one after each bootstrapping iteration). AveP values obtained for these runs, although not 

significantly different, suggest a value of � = 10 for the first iteration, which allows only those patterns 

which are strongly associated with the category to be considered in early iterations. Figure 15 depicts the 

AveP of different runs (the points labeled as “growing”): 

 

Figure 15: The effect of number of Top Patterns on bootstrapping performance 

To verify the observation made in (Thelen and Riloff 2002) about the stagnation of Top Patterns when N is not incremented after each iteration, we performed the same runs as above, this time without 

incrementing N (points labeled as “fixed” in Figure 15). The results show that having a fixed value for N 

through the bootstrapping has a slight negative effect on the overall performance. This effect is more 

considerable when N is small. 
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5.2 Our Bootstrapping Method vs. Basilisk 

To evaluate our bootstrapping method against Basilisk (Thelen and Riloff 2002), we set its tuning 

parameters to the values obtained in the previous experiment and learn two lexicons of dish names and 

aspects simutaneously (“Multi-F-Dlog”). We also perform two runs for Basilisk, one using its original 

extraction patterns (“Basilisk”) and the other using our lexical patterns (“Basilisk-lexical”). Basilisk also 

learns a lexicon of aspects as well as dish names at the same time. The seed words used in this experiment 

are dish names in “Set 2” (Table 14) and aspects in Table 15. The results are presented in Table 18: 

Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Multi-F-Dlog 0.272 0.96 0.89 0.827 0.764 0.729 0.68 

Basilisk 0.241 0.74 0.75 0.74 0.728 0.703 0.662 

Basilisk-lexical 0.247 0.72 0.71 0.72 0.744 0.757 0.666 

Table 18: Our bootstrapping method vs. Basilisk 

Although “Multi-F-Dlog” extracts only slightly more valid lexicon entries compared to “Basilisk”, 

(note the P@500), our method performs better in early iterations and thus has a higher AveP. This steeper 

slope can be visually observed in Figure 16 until extraction of nearly 100 entries. 

The results in Table 18, also suggest that the lexico-syntactic patterns used in Basilisk do not provide 

any performance gain compared to our lexical patterns. We believe the reason for the almost identical 

performance of these two types of patterns is that our lexical patterns, in most cases, implicity comply to 

the syntactical heuristic rules of AutoSlog. Furthermore, they are capable of capturing occurances of 

category memebers which do not fit those rules. This can make up for the extra precision that lexico-

syntactic patterns may provide. 

Therefore, the superior performance of our method compared to Basilisk can be attributed to our 

stricter scoring formula for selection of lexicon entries (Eq. 20) which, by using the A	'
c metric (Eq. 

19), takes into account the category specificity of the patterns (
m���) rather than a simple count of valid 

category members a pattern extracts (c�). Furthermore, using a ���7�=��=^ threshold retains only those 

patterns which are highly associated with the category. Such strictness, however, is most effective in the 

early iterations of the bootstrapping when the size of the lexicon is still small and the lexicon entries are 

highly likely to be valid category members. 
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Figure 16: Our bootstrapping method vs. Basilisk 

5.3 Drift Prevention Methods 

To see how much each component of our method contributes to its overall performance and evaluate the 

effectiveness of techniques we employ to prevent drift in the bootstrapping, we perform three runs each 

adding a feature to the previous one. In the first run we learn only a lexicon of dish names in absence of 

any other competing categories. We call this run “Single”. In the second run, a lexicon of aspects is 

constructed at the same time using the multi-category scoring formula (Eq. 24) for conflict resolution. We 

identify this run with “Multi”. The third run (named “Multi-F”) incorporates the negative feedback to the 

scoring formulas to better guide the bootstrapping. We evaluate these runs against “Multi-F-Dlog” from 

the previous experiment; it complements “Multi-F” by the use of degrees of trust to the lexicon entries 

provided by the logarithmic function 
�.� in Table 10. The results are presented in Table 19 and Figure 

17. 
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Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Single 0.046 0.32 0.35 0.347 0.304 0.3 0.274 

Multi 0.214 0.98 0.88 0.8 0.724 0.614 0.542 

Multi-F  0.263 0.96 0.89 0.827 0.764 0.726 0.66 

Multi-F-Dlog 0.272 0.96 0.89 0.827 0.764 0.729 0.68 

Table 19: Performance of different measures for controlling drift in bootstrapping 

 

Figure 17: Performance of different measures for controlling drift in bootstrapping 

As it can be seen in the results, bootstrapping a lexicon of aspects at the same time as dish names, can 

significantly improve the learning accuracy. This means many invalid entries arise from confusion errors 

and learning multiple semantic categories simultaneously can effectively keep the categories within their 

boundaries. The next idea which considerably improves the performance is to use negative feedback from 

competing categories to select patterns which are associated with the current category the most.  

Results in Table 19 and Figure 17 also show that giving more trust to high precision entries added to 

the lexicon in early iterations can help control the deviation in final iterations to some extent. The 

improvement in precision of “Multi-F-Dlog” agrees with the sharp drop in the logarithmic discount 

function 
�.� in Table 10; we expect this improvement to be more noticeable if the bootstrapping was to 

continue beyond 100 iterations. We also experimented with linear ��.� and the exponential ℎ�.� discount 
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functions (Table 10) in two runs named “Multi-F-Dlinear” and “Multi-F-Dexp” respectively. the results 

are presented in Table 20: 

Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Multi-F-Dlog 0.272 0.96 0.89 0.827 0.764 0.729 0.68 

Multi-F-Dlinear 0.259 0.98 0.88 0.82 0.756 0.714 0.654 

Multi-F-Dexp 0.240 0.84 0.78 0.76 0.72 0.683 0.648 

Table 20: Performance of different discount functions 

None of the two other discount functions improves the performance over “Multi-F”, and as expected, 

the performance deteriorates in “Multi-F-Dexp” compared to “Multi-F-Dlinear” which itself performs 

worse than “Multi-F-Dlog”. We believe a proper discount function should follow the natural decline in 

the precision of the lexicon being costructed; more aggressive discount functions tend to do more harm by 

limiting the scope of the learner. 

5.4 Multi-word Term Detection Approaches 

In this experiment, we compare the following four runs using “Set 2” (Table 14). The results are 

presented in Table 21 and Figure 18: 

1. Unmodified: NPs as output by the NP-chunker. 

2. C-Value: C-value metric is used to replace the NPs with their most stable NP-suffix. 

3. NP-Suffixes: NP-suffixes are added to the list of candidate NPs. 

4. Subjective-Mod: subjective modifiers are removed from NPs. 

Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Unmodified 0.229 0.94 0.9 0.8 0.704 0.683 0.598 

C-Value 0.222 0.92 0.84 0.78 0.696 0.64 0.604 

NP-Suffixes 0.199 0.92 0.85 0.78 0.708 0.6 0.536 

Subjective-Mod 0.272 0.96 0.89 0.827 0.764 0.729 0.68 

Table 21: Different multi-word term detection approaches 
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Figure 18: Different multi-word term detection approaches 

According to the results, the only approach that helps better identify valid multi-word dish names 

nested within NPs, is the most straighforward one, which is removing the subjective modifiers and those 

modifiers appearing before them from the NPs. 

The underperformance of C-value in detecting the most stable NP-suffix can be attributed to limitations 

of corpus statistics in deciding the termhood of a MWU, particularly in sparse data. Another reason might 

be the bias of C-Value towards shorter terms; this can be observed in the extractions of “C-Value” with 

the average number of words per extraction being less than the rest of the runs (1.34 against 1.48 in 

“Unmodified” and 1.42 in “Subjective-Mod” and “NP-Suffixes”). 

Our hypothesis for the third approach (adding the NP-suffixes to the list of candidate NPs) was that 

existence of subjective modifiers in contexts of valid NP-suffixes can result in powerful patterns that can 

extract them with high accuracy (e.g., “they have delicious __”). Looking at the Top Patterns shows that 

in fact a very small number of them have a subjective modifier appearing immediately before the 

wildcard; and the most powerful patterns are typically those capturing lists, conjunctions, or other 

grammatical forms in which dish names appear with high confidence (e.g., “the __ was undercooked”). 

In another run, we built a lexicon of 500 single nouns and used them to rank the candidate NPs from 

the run “Subjective-Mod” according to section 58 4.4.5. Single nouns are less sparse than NPs and we 
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hope that with more context, the bootstraping performs better in extracting single-word dish names. We 

tuned the parameters for this run (“Single-Nouns”) in the same way as before and found the best results 

with ����=:�8� = 4 and ���7�=��=^ = 4. We also used � = 20 in the first iteration and incremented it 

by one after every iteration. Table 22 presents the evaluation results using “Set 2” (Table 14): 

Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Single-Nouns 0.261 0.82 0.84 0.807 0.74 0.72 0.69 

Subjective-Mod 0.272 0.96 0.89 0.827 0.764 0.729 0.68 

Table 22: Extraction of NPs versus ranking them based on single nouns they contain 

The results show that bootstrapping NPs yields slightly better overall performance compared to 

bootstrapping single nouns and ranking the NPs accordingly. Higher precision of “Subjective-Mod” in 

early iterations, makes it more suitable for construction of small high-precision lexicons. The reason for 

the lower precision of “Single-Nouns” at smaller cutoff values can be the scoring metric used for ranking 

the candidate NPs (Eq. 30). NPs that have the same head nouns are likely to receive similar or identical 

scores causing invalid entries whose head noun is a valid dish name to appear throughout the final ranked 

list, regardless of the score of the head. 

Since we do not have an evaluation set for single-word dish names, we cannot evaluate the 

performance of bootstrapping single nouns by itself. Therefore, it is not clear how much of the 

performance in “Single-Nouns” comes from the bootstrapping and how much from the scoring metric 

used to rank the NPs. Although here we used only one socring metric, it is possible to try different 

formula and disocunt factors to have a comparative evaluation of their performance. 

5.5 Lexical vs. Dependency Triples Patterns 

In this experiment we use our best performing run “Multi-F-Dlog” to compare the performance of lexical 

patterns against patterns based on grammatical dependency triples. We refer to these runs as “Lexical” 

and “Dependency” respectively. The “Dependency” run has two tuning paramers: the minimum number 

of category members a pattern has to extract (���7�=��=^) and the number of Top Patterns in the first 

iteration (�). The best results using “Set 1” were obtained with ���7�=��=^ = 7 and � = 20. The 

evaulation results using “Set 2” are shown in Table 23 and also visually demonstrated in Figure 19. 
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Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Lexical 0.272 0.96 0.89 0.827 0.764 0.729 0.68 

Dependency 0.149 0.7 0.61 0.587 0.524 0.506 0.504 

Table 23: Lexical patterns vs. grammatical dependency based patterns 

 

Figure 19: Lexical patterns vs. grammatical dependency based patterns 

These results suggest that using simple windows of words as the context is a better choice than 

grammatical dependencies between words, for extraction of dish names. It seems that despite the extra 

constraints grammatical dependencies impose on words regarding their syntactic roles, lexical patterns 

more effectively capture semantic classes of words. We attribute this difference in performance mainly to 

the following reasons:  

The first reason can be the sparsity of grammatical dependencies. In this experiment, the number of 

lexical patterns with a minimum length of four exceeded 6M while there was only over 800K 

grammatical dependency patterns available for bootstrapping. Obviously, the fewer the patterns, the lower 

the chances are for a valid category member to be extracted. 

Another reason can be the difference in the amounts of information contained within the two types of 

patterns. An individual grammatical dependency pattern captures one syntactic relation between a 

candidate NP and a single word. In other wrods, dependency triples decompose the sentence into single 

units of information. For example the sentence “I had beef on rice” gives the patterns 
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“had_VBP:dobj:NN_X” and “X_NN: prep_on:NN_rice” for rice; while the lexical pattern “I had __ on 

rice” seems to contain the information of the two dependency patterns in one place. We believe this extra 

information as well as the order of appearance of the words in lexical patterns tell us more about the 

semantics of the word in question than knowing its syntactic role in the sentence and its grammatical 

relations with these words separately. 

And last but not least is the ability of lexical patterns to extract instances of category members with 

high confidence in lists or conjunctions (e.g., “sushi , __ , and maki”). Although dependency parsers 

detect conjunctions (e.g., “chips_NNS:conj_and:NN_salsa”), lexical patterns can capture high accuracy 

lists of more than two category members and those that are made up of punctuations such as commas. 

5.6 Boostrapping vs. Context Vector Models 

In this experiment, we evaluate our bootstrapping method against the conext vector model proposed in 

(Vechtomova and Robertson 2011). Vechtomova et al. (Vechtomova, Ahmadi and Suleman 2012) use 

this model on the same dataset of restaurant reviews to rank single nouns according to their similarity to a 

set of seed dish names. Afterward, they rank NPs (whose subjective modifiers are removed) employing 

various discount factors, including the one used in this work. 

Here we performed the same procedure, only with the difference that we used the top 500 nouns to rank 

up to 500 NPs. We call this run “ContextVector-Nouns” and compare it against our method where 

grammatical dependency triples are used to extract the nouns (“Bootstrapping-Nouns”). In both runs, the 

same set of 1505 subjective adjectives was used to remove the subjective modifers and NPs were ranked 

according to Eq. 30. We also performed another run (“ContextVector-NPs”) using the collapsed 

dependency triples to directly extract NPs; we compare it against our “dependency” run which we here 

refer to as “Bootstrapping-NPs”. 

Using “Set 1”, we obtained the best results for “Dependency-Nouns” with ���7�=��=^ = 3 and � = 20 for the first iteration. The context vector model used in (Vechtomova and Robertson 2011) has 

three tuning parameters: � and k  (Eq. 11), and seed-threshold, which is the number of seed words a 

feature has to co-occur with in order to be included in the feature vectors. The tuning parameter � was 

evaluated with the values from 0.1 to 0.9 in the incremenets of 0.1, k  with the values from 0.2 to 1.6 in 

the incremenets of 0.2, and seed-threshold in the range from 1 to 9. The best results for “ContextVector-
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Single-Nouns” and “ContextVector-NPs” were obtained with � = 0.9, k = 1.6, and 1 for seed-

threshold. The evaluation results using “Set 2” are presented in Table 24 and Table 25. 

Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Bootstrapping-Nouns 0.209 0.82 0.76 0.733 0.692 0.62 0.59 

ContextVector-Nouns 0.173 0.88 0.75 0.667 0.604 0.566 0.508 

Table 24: Bootstrapping vs. Context-Vector Model (single nouns) 

Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Bootstrapping-NPs 0.149 0.7 0.61 0.587 0.524 0.506 0.504 

ContextVector-NPs 0.135 0.9 0.8 0.693 0.54 0.451 0.384 

Table 25: Bootstrapping vs. Context-Vector Model (noun phrases) 

According to the results, our bootstrapping method, not only has a better AveP in both noun and NP 

extraction, but also extracts considerably more valid dish names compared to the context-vector model. It 

is also interesting to note that single noun runs (Table 24) show improvements over NP runs (Table 25) as 

opposed to when using lexical patterns (section  5.4). 

In both lexical and grammatical dependency patterns, sparsity is reduced when extraction units are 

single nouns; however, we believe grammatical dependency patterns benefit more from it, because the 

entire extra context (which was lost during the collapsing process) becomes available to head nouns and 

not nouns modifying the head. This makes extraction of head nouns (which are more likely to be dish 

names) more accurate and therefore increases the performance of the NPs ranking process. 

5.7 Bootstrapping Subjective Adjectives 

To tune and evaluate our bootstrapping method for learning a lexicon of subjective adjectives, we use the 

seeds in “Set 1” and “Set 2” in Table 16 respectively. Our relevant set is the lexicon of 1505 subjective 

adjectives previously used to remove the subjective modifiers from the candidate NPs. 

In the parameter tuning phase, the best performance was obtained with ����=:�8� = 5, ���7�=��=^ =5, and � = 10 for the first iteration. The bootstrapping, however, did not show much sensitivity to the 

threshold ���7�=��=^. Many patterns could be found that, despite the length of 5, co-occurred with a 
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large number of category members. This verifies the hypothesis that people tend to use a very similar 

language to express opinions about things. In other words, subjective modifers tend to occur in very 

similar contexts, resulting in extraction patterns which are both specific and category diverse. The 

evaluation results are given in Table 26. This table also presents the results of using the conext vector 

model of (Vechtomova and Robertson 2011) for the same task with the tuning parameters set to � = 0.9, k = 1.2, and 2 for seed-threshold. 

Run AveP P@50 P@100 P@150 P@250 P@350 P@500 

Bootstrapping-Adj 0.258 0.98 0.99 0.967 0.936 0.877 0.836 

Context-Vector-Adj 0.286 1.0 0.99 0.98 0.96 0.95 0.89 

Table 26: Extraction of subjective adjectives 

The results for “Subjective-Adjectives” show that the performance of our bootstrapping method in 

extraction of subjective adjectives is clearly superior to that of nouns or noun phrases. We believe this 

superior performance is due to the highly similar contexts subjective adjectives occur in. A subjective 

adjective (or an adjective in general) typically comes in two forms
13

: 

1. Attributive Adjective: is part of the noun phrase headed by the noun it modifies; and generally 

precedes its noun (e.g., “I love their greasy burger”). 

2. Predicative Adjective: is linked via a copula (be, seem, appear, etc.) to the noun or noun phrase it 

modifies (e.g., “their burger is greasy”). 

As it can be seen, there is not much variability in the makeup of contexts (except for the NP whose 

head is being modified), resulting in precise patterns. Furthermore, these results were obtained while the 

lexicon of subjective adjectives was the only lexicon being learned. Although not experimented, it might 

be possible to learn a lexicon of non-subjective modifiers (e.g., adjectives pertaining shape or color or 

proper adjectives) simultaneously and increase the learning precision. 

However, according to Table 26, our bootstrapping method still performs worse than the context vector 

model which uses grammatical dependency triples. We believe this difference comes from the power of 

dependency triples in detecting subjective modifiers. In section  5.6, we mentioned three reasons for 

                                                      

 

 

13
 There are other types of adjectives (e.g., nominal or absolute adjectives) which are far less common than the two 

types mentioned here. 
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inferior performance of grammatical dependency triples in extracting nouns/NPs. In the case of subjective 

modifiers, however, none of those conditions seem to exist: 

Due to the similarity of contexts in which subjective modifiers appear, dependency triples are not 

sparse anymore. In fact, subjective modifiers mostly appear in only two types of dependencies: 

<(food/aspect) NN:nsubj:JJ __> which indicates a predicative adjective, or <(food/aspect) NN:amod:JJ 

__> which stands for an attributive adjective. Furthermore, subjective modifiers normally take part in 

only one grammatical relation in a sentence and it is with the noun they modify. Therefore, the fact that 

the dependency triples represent only one syntactic relation should not affect their performance in 

detecting the subjective modifiers. Subjective modifiers are also not very likely to occur in lists and 

normally appear in conjunction relations if they are to co-occur with another modifier; this corresponds to 

the <(adjective) JJ:conj:JJ __> triple. 

Since we are able to learn subjective modifiers with a high enough precision, it is worthwhile to 

experiment using these adjectives to remove the subjective modifiers from NPs, so that our method does 

not rely on any external resource. We perform an experiment where we remove from the NPs output by 

the NP-chunker, the top 
 adjectives in the output lexicon of the “Bootstrapping-Adj” run. We evaluated 

values of 
 from 0 to 500 in the increments of 100. Zero here means no adjectives were removed. The 

tuning parameters were set to the values obtained in section  5.1. The Average Precisions of these runs are 

demonstrated in Figure 20 and are compared to that of “Multi-F-Dlog” from Table 20: 
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Figure 20: AveP of Multi-F-Dlog using different values of ¦ vs. using the manually judge lexicon 

The best results using the automatically constructed lexicon were obtained with a = 100 which shows 

some improvements over when the NPs are unmodified; while “Multi-F-Dlog” still perform the best 

simply because of using a much larger of set of manually selected subjective modifiers. Using a = 200 

only very slightly improves upon a = 0 and using greater values only decreases the Average Precision. 

Such behavior is not unexpected because inclusion of non-subjective or ambiguous modifiers (such as 

roasted, Italian, sour, chopped, etc.) in the lexicon can eliminate a great number of valid dish names from 

the list of candidate NPs. Nevertheless, these results suggest that removing even a very small but high 

precision set of subjective adjectives from the candidate NPs, can cause improvements if our method is to 

be fully automatic. 

5.8 The Effects of the Number and Composition of Seeds 

Figure 21 shows the Mean Average Precision (MAP) values for different sizes of the seed set (num-

seeds). As described in section  4.6.8, we evaluated values from 5 to 20 in increments of 5; and for each of 

these values calculated the MAP on 5 sets randomly drawn from a pool of 30 most frequent dish names. 
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Standard deviation error bars are also shown to illustrate the effect of randomness in the selection of 

seeds. 

 

Figure 21: MAP values of runs with different number of seeds 

While 5 seeds performed the best, the difference in performance is not large between different values 

that were tested. There is also a slight difference between 10 and 15. The standard deviation is also small 

for all the values, which indicates a consistent performance. This value, however, is the lowest for 20 

which is due to the larger set size and therefore greater number of common seeds across the 5 runs. 

Altogether, the results show that increasing the number of seeds, even beyond 5, does not introduce any 

performance gain. 

Now we evaluate the hypothesis by (Welty, et al. 2010) that states frequency distribution of patterns 

has a long tail and only a large set of seeds can discover infrequent but maybe useful patterns. We do so 

by analyzing the frequency distribution of extraction patterns in one of our runs, identify those patterns 

that co-occur with the seed words, and see to what extent infrequent patterns are discovered. 
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Among over 6.2M patterns, we select 495,290 patterns that co-occur with at least two distinct noun 

phrases (patterns with only one unique extraction are always discarded in our method). The most frequent 

pattern occurs 645 times in our dataset. Figure 22 illustrates the frequency distribution for these 

patterns
14

: 

 

Figure 22: Frequency Distribution of patterns 

If we define the tail as patterns that appear 3 times or less, Figure 22 well depicts its length. In fact 

around 63% of the patterns appear 3 times or less. The next step is to identify patterns that co-occur with 

the sets of most-frequent and less-frequent seeds (Table 17), to see what proportion of the patterns they 

discover and to what extent they can account for the long tail. The set of most frequent seed words can 

discover 83,647 patterns from the total of 495,290. Here by discover we mean whether a pattern co-

occurs with any of the seed words in the set. Frequency distribution of the discovered patterns (darker 

color lines) is depicted along with the frequency distribution of the rest of the patterns (lighter color lines 

in the background): 

                                                      

 

 

14
 Due to presentation limitations, this diagram demonstrates a 32,000 point sample of this data. Also frequency 

values are shown up to 30. 
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Figure 23: Frequency Distribution of patterns discovered by the most frequent seeds 

As it can be observed in Figure 23, patterns with different frequencies are discovered by the set of most 

frequent seed words. Dark colored lines in the tail of the diagram show that low frequency patterns are 

also being discovered. Low frequency patterns (≤ 3) comprise 45% of the entire discovered patterns 

(compared to the 63% of the entire set of patterns). This ratio for the set of less-frequent seeds is 35% 

while the total number of discovered patterns is 12,660. 

These results show that the high-frequency seeds, not only co-occur with a larger number of patterns, 

but also better account for the long tail in the frequency distribution of the patterns compared to lower-

frequency seeds. 
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Chapter 6 

Conclusions 

In this work, we proposed a corpus-based bootstrapping technique to automatically construct domain-

specific semantic lexicons given a small amount of domain knowledge. Our method leverages the 

collective information from contexts of words, where context is defined as windows of tokens around the 

instances. Our method requires no training and the only operation needed to be done on the text corpus is 

identifying phrase boundaries. In addition to a semantic lexicon, our method also learns a dictionary of 

domain-specific lexical patterns which can be used to extract more category members when applied to 

other text corpora in the domain or to Web documents. In this chapter, we begin with summarizing our 

contributions and findings through answering the research questions we raised in section  3.1, and then 

highlight possible areas for improvement and directions for future work. 

Q1: Can lexical patterns effectively capture information about semantic classes of words or do we 

need richer linguistic information, such as syntactic roles of words obtained from a deep parser? 

The results in section  5.5 show that lexical patterns demonstrate superior performance compared to 

patterns generated from gramamatical dependency relations, in determing the semantic class of 

nouns/NPs, while they perform somewhat worse in detecting the subjective modifiers (section  5.7). we 

also observed in section  5.2 that adding syntactic constraints to the lexical patterns does not improve their 

performance while they limit flexibility of the patterns to extract only nouns/NPs. In fact, a large number 

of the most effective lexical patterns conform to grammatical relations such as <subj> copula adjective 

(e.g., “__ are delicious”) or active-verb <dobj> (e.g., “loved the __”). This means lexical patterns 

implicitly exploit information about syntactic roles of words in addition to lexical clues syntactic patterns 

fail to capture. However, the set of rules shown in Table 7 can be augmented with more rules or be 

tailored for specific tasks. 



 

 88 

Given the above observations as well as the cost and inaccuracy of parsing a text corpus, we 

recommend lexical patterns as a better alternative to syntactic and lexico-syntactic patterns as they are 

accurate and versatile and allow scalability to larger corpora. However, due to the large number of lexical 

patterns generated in this way, the performance of a system that employs them largely depends on its 

ability to learn the most effective patterns (those that capture information about the semantic class of 

words). 

Q2: How do iterative bootstrapping models perform compared to one-pass context vector 

models? 

Both bootstrapping and context vector models are effective methods based on the distributional 

similarity hypothesis: they hypothesize the semantic class of words based on collective information from 

their contexts. The former uses the commonality of contexts of known category members and candidate 

extractions to pinpoint those that belong to the semantic category, while the latter uses the commonality 

of contexts of seed words and candidate extractions to calculate a semantic similarity score for each 

candidate. 

Bootstrapping models benefit from a broader scope for extraction of category members, since all 

previously discovered lexicon entries take part in selecting the future entries; as opposed to context vector 

models where membership in the category is determined by similarity to a fixed set of a few seed words. 

On the other hand, this makes bootstrapping models more vulnerable to infections (i.e., out-of-category 

entries which make possible the inclusion of their semantic neighbors in the lexicon). If proper techniques 

are employed to prevent the drift in the output lexicon, as the results in section  5.6 suggest, bootstrapping 

models have advantages over context vector models in terms of learning precision. 

Q3: What should be chosen as the extraction unit? 

Depending on the domain and the task at hand, different constituents
15

 might be suitable for inclusion 

in the semantic lexicon: words (e.g., “pizza” or “delicious”), phrases (e.g., “Italian sausage”), or more 

complex groups of words (e.g., “fish and chips”). Publicly available sentence analyzers can easily be used 

to detect word classes and phrase boundaries with reasonable accuracy, while, to detect more complex 

constituents, more sophisticated and probably less accurate methods should be devised. 

                                                      

 

 

15
 A constituent is a word or a group of words that functions as a single unit in the syntax of a sentence. 
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The decision to pick the best fitting constituent(s) for inclusion in the lexicon remains a tradeoff 

between the recall of the semantic category and simplicity/accuracy of obtaining them. This tradeoff 

becomes more favorable to the accuracy and simplicity factors, once one notes that the best fitting 

constituent(s), even if detected with one hundred percent accuracy, still may not be suitable for inclusion 

in the semantic lexicon. For example, in the task of IE from opinionated data, NPs are premodified with 

subjective modifiers which are not part of the valid multi-word terms. Maybe that is why previous works 

on semantic lexicon induction unanimously use single nouns or heads of NPs as extraction units. 

In section  4.4, we proposed methods to automatically identify valid multi-word terms nested within 

NPs. The least sophisticated and the most effective method was to use a dictionary of subjective 

adjectives to remove subjective modifiers from NPs. We later showed that our bootstrapping method is 

flexible enough to be used to acquire such a dictionary automatically or with minimal human validation if 

a higher accuracy is required.  

Q4: How can category drift be prevented in the output semantic lexicon? 

We proposed and evaluated three techniques for preventing category drift in the output lexicon. The 

first two were to learn multiple semantic categories and to use reciprocal feedback between the categories 

being learned to better constrain and guide the bootstrapping. Employing these techniques had a 

significant impact on the learning precision (Table 19 and Figure 17). The third technique which was to 

reduce the contribution of entries learned in later iterations (since they are more likely to be infections), 

only slightly improved the precision in final iterations. 

Learning multiple lexicons, however, may not be as effective or even applicable in every task. Multi-

category semantic lexicon construction is most effective where members of two or more different 

semantic categories in the domain appear in similar contexts (e.g., “dish names” and “aspects of business” 

in restaurant reviews). In some tasks, the target category is so distinctive that makes it difficult to define a 

second semantic category to constrain the output lexicon, for example, learning a single lexicon of 

subjective modifiers. 

In order to most effectively prevent the drift in the output lexicon, we believe it is crucial to evaluate 

the domain and the task beforehand to identify all co-existing semantic categories; and construct semantic 

lexicons for those that tend to appear in interchangeable contexts. 

Q5: What are the effects of the number and composition of seeds on bootstrapping performance? 
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Based on the results presented in section  5.8, we can conclude with high confidence that increasing the 

number of seed words even beyond 5 has a negative effect (although minor) on the bootstrapping 

performance. We select our seed words among the most frequent category members. Due to their high 

frequency, seed words have great impact on the direction of bootstrapping. We believe providing more 

seeds results in discovery of entries which are tightly associated with the set of seeds and maybe not with 

the rest of category members; and therefore stops the bootstrapping from better exploring the search space 

in the early iterations. 

We also observed that a large number of seed words is not required in order to discover infrequent 

extraction patterns (having corpus frequency of 3 or less). In fact, around 45% of the patterns discovered 

by the set of 20 most frequent dish names are low frequency patterns, while they constitute only 63% of 

all patterns in the corpus. Based on these observations, we recommend using small sets of seed words 

picked from the most frequent members of the target semantic class in the corpus. 

6.1 Directions for Future Work 

One of the factors that negatively affected the performance of our method is mismatch between the multi-

word dish names in the evaluation set and our extraction units (noun phrases). For example, there are 

many dish names made up of NPs connected with prepositions or conjunctions. NP-chunkers fail to 

recognize such structures and group the NPs into separate constituents. For example “fish with green 

curry in banana leaf” would be chunked as “[fish] with [green curry] in [banana leaf]” or “fish and chips” 

as “[fish] and [chips]”. Our algorithm can greatly benefit from a method that detects the correct 

boundaries of a compound dish name. For example suffix trees can be used to detect substrings that are 

repeated in the reviews of a restaurant and heuristics can be applied to filter invalid candidates. 

Even with NPs as extraction patterns, we can do a better job of determining the termhood of candidate 

entries. Frantzi et al. (Frantzi, Ananiadou and Mima 2000) propose the NC-Value metric which improves 

upon C-value by incorporating context information from occurrences of candidate terms. Similar ideas 

can be used for detecting subjective modifiers without relying on an external dictionary of subjective 

adjectives. For example, instances of valid dish names can be found throughout the corpus co-occurring 

with various subjective modifiers, while the same dish name when already premodified by a subjective 
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modifier (e.g., “delicious pizza”) is less likely to co-occur with any other subjective modifier. We suppose 

simple intuitions like this, if methodized properly, can help detect subjective modifiers. 

Although our criteria and methods for the selection and scoring of extraction patterns and candidate 

entries aim to promote those which are associated the most strongly with the target semantic category, 

they are far from perfect. For instance, the RlogF metric (Eq. 12) used to rank the extraction patterns is 

biased towards high frequency patterns, while a better ranking scheme should balance high frequency and 

low frequency patterns. 

The right level of generalization can help increase the patterns’ recall without affecting their precision. 

For example, different linking verbs and their conjugations can replace “tastes” in “__ tastes great”. The 

precision of extraction patterns may also improve by adding certain semantic constraints. Devising 

methods to combine multiple syntactic relations into one extraction pattern in order to increase the 

amount of information it conveys and consequently increase its extraction power can also be an 

interesting future work. 

(Igo and Riloff 2009) report significant improvements upon Basilisk by re-ranking the final lexicon 

based on Web co-occurrence statistics between lexicon entries and seed words (they use PMI as the 

measure of co-occurrence). They propose, but do not implement, incorporating this Web-based re-ranking 

procedure into the bootstrapping algorithm itself to re-rank the candidate extraction before they are 

selected for addition to the lexicon. This idea is promising because it could improve the precision of the 

lexicon in early iterations, when the bootstrapping is most vulnerable to infections. It is also interesting to 

experiment using statistics drawn from the corpus along with co-occurrence measures such as likelihood 

ratio which are more suitable for corpus-based tasks. 

And finally, another idea that can effectively augment the output lexicon with more valid category 

members, is to locate lists in the corpus or in Web pages, where category members co-occur. For 

example, we can look for co-occurrences of lexicon entries in HTML tables where they have identical 

formattings, and augment the lexicon with other terms in the table that share the same formatting. The 

retionale is that if a high percentage of elements in a list are among known category members, there is a 

high chance that the rest of the elements also belong to the same semantic category. In order to not risk 

the precision, we can assign a confidence score to every list, based on what fraction of its elements are 

known category members, and select new terms only from high confidence lists. 
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Glossary 

NLP – Natural Language Processing, a sub-field of Artificial Intelligence which studies problems of 

computationally understanding human languages. 

IR – Information Retrieval, the area of study concerned with searching for documents, information within 

documents, and metadata about documents. 

PMI – Pointwise Mutual Information, a measure of association used in information theory and statistics. 

WSD – Word-sense Disambiguation, the process of identifying which sense (meaning) of a word is used 

in a sentence, when the word has multiple meanings (polysemy). 

POS – Part of Speech, the linguistic category of words, which is generally defined by the syntactic or 

morphological behavior of the word in question. 

BM25 – a ranking function used to rank documents according to their relevance to a given search query. 

QACW – Query Adjusted Combined Weight, a weighting function used in probabilistic models of 

Information Retrieval. 

NP(s) – Noun Phrase(s), a phrase based on a noun, pronoun, or other noun-like words (nominals), 

optionally accompanied by modifiers such as adjectives. 

GN(P) – General Noun (Phrase), any noun/non phrase not representing a unique entity. 

PN(P) – Proper Noun (Phrase), a noun/non phrase representing a unique entity. 

VP – Verbal Phrase, a syntactic unit composed of at least one verb and the dependents of that verb. 

NER – Named-entity Recognition, a subtask of information extraction that seeks to locate and classify 

atomic elements in text into predefined categories such as the names of persons, organizations, locations, 

expressions of times, quantities, monetary values, percentages, etc. 
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RE – Relation Extraction, the task of extracting semantic relations between entities in text. 

TREC – Text REtrieval Conference, focuses on different IR research areas. Its purpose is to support and 

further research in the IR discipline.  

REF – Related Entity Finding, a task in the Entity Track of TREC, whose goal is to find entities that are 

of a target type and stand in the required relation to an input entity. 

QA – Question Answering, the task of automatically answering a question posed in natural language.  

CRF – Conditional Random Fields, a class of statistical modeling method often applied in pattern 

recognition and machine learning for structured prediction. 

IE – Information Extraction, type of information retrieval whose goal is to automatically extract 

structured information from unstructured or semi-structured machine-readable documents.  

NE – Named-entity, a named entity is an element in text that clearly identifies one item from a set of other 

items that have similar attributes. 

IAA – Inter-Annotator Agreement, the degree of agreement in the annotations given by judges. 

MWU – Multi-word Unit, a special type of collocate in which the component words comprise a 

meaningful phrase. 

AveP – Average Precision, Average of the precision values at the points at which each relevant document 

is retrieved. 

MAP – Mean Average Precision, is a single-valued measure of quality across recall levels, defined as the 

Mean of Average Precision values in various trials.  
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