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ABSTRACT 

The rapid growth of Cloud based services on the Internet invited many critical 

security attacks. Consumers and corporations who use the Cloud to store their data 

encounter a difficult trade-off of accepting and bearing the security, reliability, and 

privacy risks as well as costs in order to reap the benefits of Cloud storage. The 

primary goal of this thesis is to resolve this trade-off while minimizing total costs. 

This thesis presents a system framework that solves this problem by using erasure 

codes to add redundancy and security to users’ data, and by optimally choosing 

Cloud storage providers to minimize risks and total storage costs. Detailed 

comparative analysis of the security and algorithmic properties of 7 different erasure 

codes is presented, showing codes with better data security comes with a higher cost 

in computational time complexity. The codes which granted the highest configuration 

flexibility bested their peers, as the flexibility directly corresponded to the level of 

customizability for data security and storage costs. In-depth analysis of the risks, 

benefits, and costs of Cloud storage is presented, and analyzed to provide cost-based 

and security-based optimal selection criteria for choosing appropriate Cloud storage 

providers. A brief historical introduction to Cloud Computing and security principles 

is provided as well for those unfamiliar with the field. 

The analysis results show that the framework can resolve the trade-off problem by 

mitigating and eliminating the risks while preserving and enhancing the benefits of 

using Cloud storage. However, it requires higher total storage space due to the 

redundancy added by the erasure codes. The storage provider selection criteria will 
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minimize the total storage costs even with the added redundancies, and minimize 

risks.  
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CHAPTER 1: INTRODUCTION 

In recent years, the rise of Cloud Computing has given internet users a host of 

freedoms never enjoyed before. One such freedom is the ability to store files on the 

Cloud through a Cloud storage service provider, and retrieve it anywhere else in the 

world when the user authenticates to the service. It is increasingly being used as a 

repository for storing back up data. In team settings, Cloud storage lets teams 

synchronize and organize all kinds of shared data. For start-ups and small 

corporations, the use of Cloud storage in conjunction with Cloud Computing 

platforms reduces the need to invest in hardware equipment up front, allowing many 

new ideas to be developed into full scale products and large corporations. While 

Cloud storage services are numerous and on the rise, there are still many security, 

economic, and reliability issues associated with utilizing the Cloud as a storage 

medium. 

Attacks such as the one aimed at Dropbox as recent as 2011 have allowed anyone on 

the internet to download any file stored and hosted by Dropbox for a 4 hour time 

period [1]. The attackers exploited a bug in Dropbox’s authentication mechanism. 

Another attack aimed at Amazon S3 storage service in 2011 exploited vulnerabilities 

within the authentication mechanism of Amazon.com, which also allowed 

researchers access to data stored in S3 [2]. Cloud storage service providers remain a 

high value target for many attacks as the general public and users of the internet are 

unaware of the potential risks of using a Cloud storage service.  
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Cloud storage providers encounter numerous problems in their operation that 

results in service outages or even data loss for its users. These include power 

outages, natural disasters, hard disk or server failures, maintenance work, and 

administrative mistakes. Users who store data on the Cloud must depend on reliable 

storage services. As such, reliability remains a key concern for using a Cloud storage 

service. 

Cloud storage service providers employ tier-based pricing to charge users for storing 

files on their Clouds. Most providers offer an initial free storage tier with a capacity 

limit that usually suffices for individual consumers, but companies will quickly 

outgrow the capacity limit. The lowest surveyed storage cost is at $0.05 per GB per 

month, offered by Google Drive. For consumers and companies, there are also costs 

and bandwidth limitations associated with internet service providers since almost all 

Cloud services are accessed through the internet. The lowest surveyed home internet 

connection cost is $0.10 per GB transferred. Competition between storage providers 

leads to a marketplace with ever changing storage pricing. Some storage providers 

also charge a fee to download data off its Cloud. To take advantage of lower long 

term storage costs, users must pay a relatively expensive fee in order to download 

and upload their data from an expensive storage provider to a cheaper provider. 

Literature refers this as a storage vendor lock-in, where it can be cost prohibitive to 

move away from a storage provider once a user or organization commits to using the 

services of that provider. Optimizing the total storage costs alone is a challenging 

dynamic problem, but coupled with the security requirements and reliability 

requirements it becomes a very challenging problem. 
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The central contribution of this thesis is a Framework for resolving the security and 

economic problems of using the Cloud as a storage medium while preserving all of 

its benefits. The Framework is a high level design of a secure storage system for the 

Cloud, from a consumer point of view. It is meant to be a guiding template for 

software designers whom wish to design and implement a secure storage platform or 

system. The Framework adopts the approach by Abu-Libdeh, Princehouse, and 

Weatherspoon [3] of using erasure code algorithms to split and join files to add a 

layer of reliability and security to the files. The thesis presents an in-depth analysis 

of the approach, comparative analysis of applicable erasure code algorithms, and the 

design and analysis of the Framework. The Framework provides a number of 

improvements upon the work by Abu-Libdeh et al. 

1.1 THESIS ROADMAP 

The thesis is written in a manner that is hopefully accessible and interesting to a 

broad range of readers from different backgrounds, including internet users, network 

and security researchers, and software systems designers. Background knowledge of 

statistics at the level of a second year university course is helpful in understanding 

parts of the thesis, although not essential to digest the main ideas.  

Internet users will want to begin their exploration at Chapters 2 and 3 to gain an in-

depth understanding and appreciation of the technology and issues surrounding 

Cloud Computing and Cloud Storage, and the value of data. It also prepares readers 

new to the field with the knowledge of the security principles that cryptologists and 

network security specialists use every day to design secure systems. Network and 

security researchers will enjoy Chapter 5 and 6, which shows how erasure codes can 

be used to solve the problem at hand along with their performance and security 
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properties. Software system designers will enjoy Chapters 6, and 7 which present the 

Framework and compare it against traditional paradigms of remote data storage. 

1.2 CHAPTER DESCRIPTIONS 

This thesis is organized into 8 chapters as follows: 

 Chapter 2 introduces Cloud Computing, Cloud Storage, Secure and Reliable Storage 

Principles, and the Value of Data. 

 Chapter 3 presents a thorough examination of the benefits, risks, and costs of 

using the Cloud as a storage medium.  

 Chapter 4 presents a concrete problem statement for using the Cloud as a storage 

medium. 

 Chapter 5 presents the approach and research work by Abu-Libdeh, along with the 

author’s analysis of how the approach resolves the economic, security, and 

reliability problems, and how it retains the benefits of using Cloud as a storage 

medium. 

 Chapter 6 presents the Cloud storage Framework, an in-depth analysis of various 

erasure codes which can be used in the Framework, a storage provider selection 

algorithm for the Framework, and a method for handling the metadata used within 

the Framework. 

 Chapter 7 compares this Framework to traditional remote data storage paradigms. 

 Chapter 8 draws the conclusions of the thesis and presents future work. 
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CHAPTER 2: BACKGROUND 

Cloud Computing has an interesting history of sparse and sporadic development, 

which have only come together in its modern incarnation starting in year 2000. Like 

other important technologies that have defined and revolutionized computing, Cloud 

Computing is steeped in fundamental works dating as far back as the 1950s in the 

formative stages of computer science. In time, new generations of scientists and 

engineers built upon prior work to cause the right and necessary conditions for 

Cloud Computing to birth in the 21st century. Like other computational 

methodologies, Cloud Computing brings unique values to the table and has its equal 

shares of security challenges. In modern times where the internet is experiencing 

exponential grown in the amount of data it is receiving and processing every day, the 

security issues become ever more important. The value of data also grows, as more 

data are being mined, analyzed, and reduced into useful knowledge. This chapter 

introduces readers to Cloud Computing, Cloud Storage, Secure and Reliable Storage 

Principles, and the Value of Data to help readers establish a broad context and 

understanding of the technology, its value, and the security challenges in modern day 

Cloud Computing. We also introduce Finite Field mathematics in the last section of 

the chapter, to help prepare readers for the technical discussions later in the thesis. 

2.1 CLOUD COMPUTING 

Cloud Computing is the paradigm of internetworked computing whereby vast 

amounts of computing resources are pooled together and subdivided into units of 

resources to service user and workload requests, on demand. The types of resource 

units include virtual machines created inside powerful computation servers used 
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mainly for computational work, virtual storage created in storage servers for data 

storage and retrieval, and virtual networks created among the servers and network 

equipment to facilitate private and secure communications among participating 

virtual servers. The principle feature of Cloud Computing data centers which 

separates it from a classical data center is its ability to scale up and down to match 

the number of requests on demand. This is accomplished by dynamically allocating 

or de-allocating the resource units according to the arrival and completion of user 

requests. 

Two key enabling technologies for Cloud Computing is the surge of availability of 

fast internet access by every day consumers, and the continuous hardware 

innovations which reduced the price for server hardware while increasing its 

computational capacity. Without fast internet access, sending and receiving the types 

of data to the Cloud, and within a Cloud would have been too slow to be useful to 

businesses and consumers. Without price reductions and compute capacity increases, 

Clouds could not service billions of users and requests every day. 

The central idea behind Cloud Computing began in the 1950s during the era of 

mainframe computer systems [4]. These systems had all of the computation 

equipment arranged in a single server room, while employees accessed them via a 

central terminal. To efficiently utilize the system, time sheets were used to allow 

employees to reserve time on the system. Employees would coordinate their access to 

the system through the time sheets, thus sharing the resources of the system. The 

notion of sharing computation resources began in this era. Technically, the 

mainframes of this era were standalone systems which operate in isolation. True 

time-sharing capable mainframes would arise later in the 1970s. 
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Professor John McCarthy, inventor of the LISP programming language, gave a special 

lecture in 1961 at Massachusetts Institute of Technology where he remarked that “If 

computers of the kind I have advocated become the computers of the future, then 

computing may someday be organized as a public utility just as the telephone system 

is a public utility…. The computer utility could become the basis of a new and 

important industry” [5]. In essence, Professor McCarthy defined the notion of utility 

computing in that lecture, forever setting a goal and direction to bring computing to 

the public in an affordable way. 

In the 1970s, IBM released an operating system called “Virtual Machine” for their 

System/370 mainframe systems [6]. This operating system allowed distinctive 

computation environments in every virtual machine, for every employee who 

connected to the system. The specific technique that IBM engineers and scientists 

developed was Dynamic Address Translation, used to translate a relative storage 

address per VM to a physical storage address on the storage mediums of the day. 

Virtualizing the storage was sufficient for the computer architectures and systems in 

those days to create independent computation environments in a mainframe. The 

idea behind Dynamic Address Translation of using a logical addresses in software, 

and translate it into physical addresses by hardware was of such value that today we 

can see its use in many modern computer systems. This marked the beginning of the 

era whereby computers could work on multiple tasks in parallel while maintaining 

independent computation environments for its users. The notion of “Virtual” in 

Virtual Machines was born. 

Amazon Inc. is arguably the company who invented modern Cloud Computing, in the 

early 2000s. Their efforts aimed to improve the internal resource utilization of their 
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massive data centers powering Amazon’s worldwide commerce web system. The 

results proved very successful, leading Amazon to rent out their extra computational 

capacities to the public in 2006. Whilst Amazon did not invent the notions of 

resource sharing, utility computing, or virtual machines, their work in defining the 

architecture of a modern Cloud lead to a concrete definition of the economic and 

pricing models for monetizing shared computation capacity. 

Modern Cloud storage began as an evolution of classical web storage services (such 

as FTP servers), network-attached storage technology, and the virtual storage systems 

by IBM in the 1960s. FTP servers provided a method to transfer files to and from a 

remote FTP server, while network-attached storage provided a method to transfer 

files to and from a storage device located within a local or enterprise network. FTP, 

more specifically its secure variant SFTP, gave Cloud storage its first communications 

protocol for securely transmitting a file over the internet. Network-attached storage 

protocols enabled Cloud storage providers to network together thousands of hard 

drives and manage them in one central server to provide the storage service. Modern 

virtual machine technology development provided the notion and idea to dynamically 

allocate storage resources. Combined together, the idea of a dynamically allocated 

secure storage service on the internet was born. 

The earliest modern Cloud storage was built by Amazon as part of the Amazon Web 

Service in 2006, which provided Cloud storage and computation services [7]. This 

service was available for everyone in the public to use. Since then, numerous 

competing services have been built. Some are built on top of Amazon, such as 

Dropbox, while others are built from the ground up, such as Microsoft OneDrive. 
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2.2 SECURE AND RELIABLE STORAGE PRINCIPLES 

The previous section hints at specific security principles for storing data. This 

section describes these principles in concrete detail, and outlines why they are 

important to satisfy when designing a secure Cloud storage system. The overarching 

principle is to “not put all the eggs in one basket”. 

2.2.1 REPLICATION AND REDUNDANCY 

If there exists only a single true copy of some data, and this copy was somehow lost, 

then the data would be lost with it forever. Replication involves “carbon” copying the 

original data to create backup copies. In digital file systems, this is relatively easy as 

the bits constituting the data are simply duplicated. Replication safe guards the data 

from being lost or destroyed, so long as at any time there are always at least two 

copies of the data in existence. If any one of these copies were to be lost, tampered 

with, or destroyed, we can simply create another copy from the intact copy of the 

data. Redundancy is a measure of how much duplication exists for some data. 

Generally, some redundancy is needed to ensure the safety of the data in the event of 

data loss or corruption. Redundancy viewed as a necessary cost, and the objective of 

this principle is to provide the required amount of data security at the lowest 

possible cost, namely, to minimize redundancy. 

We define Resultant Size Factor as the resultant size of a file (after adding 

redundancy) divided by the original size of the file. If the original file was divided 

into K number of equal size pieces, and we add R number of redundancy pieces to 

the file whereby the size of each R piece is the same as the size of each K piece, then 

RSF is the total number of pieces of data (N) divided by the number of pieces of data 

constituting the original data (K). 
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Equation 1 – Resultant Size Factor 

                       
   

 
 

 

 
 

A file will always have at minimum a Resultant Size Factor value of 1.0, where R = 0, 

implying the file has no redundancy. As well, K is always at least 1. Logically, if the 

original data was not split, we would still have 1 piece of data. We also define 

Redundancy Factor as R divided by N: 

Equation 2 – Redundancy Factor 

                   
 

 
  

 

   
 

Redundancy Factor represents a relative level of security for some data. RF has a 

minimum value of 0.0, with R = 0, representing no redundancy. The higher the value 

of RF, the more secure the data is against data loss and corruption. 

Redundancy Factor and Resultant Size Factor are interrelated. To minimize Resultant 

Size Factor, we have to minimize the Redundancy Factor. Both RSF and RF have no 

finite upper bound in its possible value, but the larger values, the more redundant 

the resultant data is. The goal of a Cloud storage system is to minimize Resultant 

Size Factor, getting it as close to the value of 1.0 as possible, with respect to a 

desired Redundancy Factor chosen as a design goal of the system. The thesis 

presents a number of techniques and algorithms towards this goal in Chapter 6. We 

set the redundancy factor to be equal among the algorithms to represent an equal 

level of security against data loss and corruption, and then compare their resultant 

size factor to determine how efficient the algorithms are at achieving this objective. 
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If we rewrite Equation 1 and Equation 2 with respect to N we have the following 

identities: 

    
 

 
 

        

   
 

 
 

  
 

  
 

Equating N on both sides, we can write RSF and RF as a function of each other: 

      
 

  
 

    
 

    
 

   
 

     
 

Further, we can rearrange the identity such that both factors are on one side of the 

equation, forming the redundancy minimization function: 

Equation 3 – Redundancy Minimization Function 

       
 

 
 

If we hold RF at a constant value, then to minimize RSF we would require the 

algorithms to give us a lower ratio between R and K, implying essentially that a more 

efficient algorithm will be able to achieve the same RF while adding less redundant 

data pieces. 
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2.2.2 CONFUSION AND DIFFUSION 

In cryptography and cryptosystems research, the principles of confusion and 

diffusion are central in evaluating the strength of cryptographic algorithms and 

systems in safeguarding data. In this research area, plaintext refers to the data we 

want to safeguard through an encryption system that uses an encryption key (such as 

a password) to translate the plaintext into ciphertext. Ciphertext is the encrypted 

version of the plaintext. For example, if the data we wish to encrypt is an English 

essay, the ciphertext would appear to be a random collection of incoherent letters 

and symbols. In cryptosystems, attackers ultimately have the objective of obtaining 

the plaintext. The easiest of the three pieces of data to obtain by an attacker is the 

ciphertext as an attacker could listen in to a secured communication channel such as 

a free Wi-Fi hotspot. However, bad computing habits such as reusing the same 

password across multiple accounts quite often allows attackers to have easy access 

to the encryption key as well. 

Originally defined by Claude Shannon in his paper “Communication Theory of 

Secrecy Systems” in 1949, Confusion refers to “making the relationship between the 

key and the ciphertext as complex and involved as possible” [8]. This is so that if an 

attacker obtains the ciphertext, they would need to spend significant effort to find 

out the relationship between the ciphertext and the key, and thus obtain the key. If 

the Confusion principle is not applied, then an attacker could easily obtain the key 

through the ciphertext, and then use the cryptosystem to obtain the plaintext. 

Shannon also defines Diffusion in his paper as the effect of “dissipating the 

statistical nature of the plaintext over all ciphertext” such that the two statistics 

cannot be correlated. In modern digital cryptosystems, this means to spread the 
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effects of each bit of plaintext and key to as many bits of the ciphertext as possible. 

Ideally, every bit of plaintext, and every bit of key is involved in creating a single bit 

of ciphertext. That way, if any bit changes in the plaintext or key, the ciphertext 

would change completely. This aims to disperse any statistical characteristics of the 

plaintext and key over the entirety of ciphertext, so that attacks based on statistical 

methods become useless. If the Diffusion principle is not applied, an attacker can 

potentially determine the plaintext through the ciphertext without needing to know 

the key, by directly inferring the plaintext using the statistical characteristics of 

known languages such as English. 

In practice, cryptographic algorithms utilize character substitution and character 

position permutation to achieve the principles of confusion and diffusion, 

respectively. Often multiple rounds of substitution and permutation is performed, 

such as in the DES algorithm, to ensure high cryptographic strength. 

Cloud storage algorithms and systems would ideally apply both of these principles in 

tandem to safeguard users’ data. The application of these principles could be 

accomplished by the use of encryption algorithms prior to the use of replication and 

redundancy algorithms, or as shown in Chapter 6, could be accomplished as part of 

the replication and redundancy algorithms. When an algorithm applies the Confusion 

principle, it has the Confusion Property. When an algorithm applies the Diffusion 

principle, it has the Diffusion Property. 

2.2.3 OFF-SITE DATA PROTECTION 

Utilizing off-site data protection allows users to safeguard their data in the event that 

the onsite copy becomes corrupt, lost, or destroyed by unexpected events such as 
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natural disaster or complete system crash. The aim of off-site data protection is to 

allow for quick recovery from such disasters, by being able to retrieve the critical 

data from the off-site and use it to restore the onsite systems. The principle works 

upon the notion that major disaster events are unlikely to occur in both the onsite 

and off-site locations at the same time, relatively speaking, compared to the 

likeliness of only one of the two locations experiencing the same event. 

A simple way to show this is a coin toss experiment, whereby we denote that if the 

coin tosses with Head side facing up, then a disaster occurs. Similarly, if it tosses 

with Tail side facing up, then a disaster does not occur. Coin 1 denotes the onsite, 

while coin 2 denotes the off-site. We can see that a coin tosses with probability of ½ 

for Head and ½ for Tail. Therefore, the individual probability of either one of the 

sites experiencing a disaster would be 50%. The two events are always independent of 

each other. The probability that both of the sites would experience disaster at the 

same time is equivalent to the probability that both coins would toss with Head side 

facing up at the same time, which is ½ × ½ = ¼. Generally, the joint probability is 

shown as follows: 

Equation 4 – Joint Probability of Two Statistically Independent Events 

                     

Events such as natural disasters and system crashes have their own probabilities, and 

are often less than 50%. Equation 4 shows that no matter what the individual 

probabilities are, the chance of two independent events occurring at the same time 

will always be less than the chance of them occurring individually. 
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Using off-site data protection, a user can spread and reduce risks due to disasters 

and unexpected events by taking advantage of this principle. Further, a user can 

utilize multiple off-sites to protect their data, further reducing the risks. Cloud 

storage systems would ideally take advantage of this principle by utilizing multiple 

off-sites to safeguard users’ data. 

2.2.4 PRINCIPLE OF LEAST PRIVILEGE 

The principle of least privilege states to grant a user, task, process, or server only the 

information it needs to accomplish its legitimate tasks. A Cloud storage environment 

contains the data of many users at a time, often in shared hardware and computing 

environments. The principle needs to be enforced to safeguard users from being able 

to modify and access each other’s data when permissions have not been granted. 

Users should by default only be granted access to their data and no one else’s. If a 

user shares some data with another user, then that user should only be able to have 

access to the shared data and not the private data of other users. Users should be 

prevented from being able to obtain administrative access and privileges, and thus 

other users’ data. Likewise, the design of the Cloud storage system should be in such 

a way that the data is always protected from access until a user proves beyond a 

doubt they are who they claim they are. That is, the privilege of access is no data, by 

default. 

2.3 VALUE OF DATA 

A person’s data is intrinsically valuable. Human activities on the planet have 

generated enormous amounts of data which, relative to history, have only been 

recently studied en masses due to the recent surge of Big Data analytics and 

software. A single individual’s data can range from personally identifiable 
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information such as health records, private data files, publicly available birth records, 

to non-obvious data such as highway traffic information – an amalgamation of data 

of many individual’s driving habits. All of these data are valuable. Some of them are 

valuable to the individual, while others are valuable to their families and friends. 

Some of the data is highly valuable for certain businesses but not to other 

businesses, and some of them are highly valuable to the government. This section 

explores in detail how much value data has. 

2.3.1 VALUE OF PERSONALLY IDENTIFIABLE DATA 

Personal Information is considered by the vast majority of laws across the world as 

any information which can be used to uniquely identify an individual, whether living 

or deceased. 

Identity theft is one of the most worrisome problems related to the loss of personal 

information. The Royal Canadian Mounted Police (RCMP) defines identity theft as the 

“collection and possession of someone else’s personal information for criminal 

purposes” [9]. RCMP further defines identity fraud as the act of using someone else’s 

identity to commit acts of fraud. Identity thieves aim mostly to steal and obtain 

access to someone’s financial accounts and resources, such as bank accounts, credit 

card information, and passwords. Access to this information can deplete one’s 

financial resources instantly, as well as cause damages to one’s financial record such 

that the victim can no longer borrow funds from banks or obtain credit. Other main 

uses of such personal information include impersonation for the purpose of illegal 

entry, stay, and work, and tracking the person’s movements. 
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Research by L. Sweeney at Carnegie Mellon University [10] shows that for United 

States of American citizens, 87% of them are uniquely identifiable simply through 

three pieces of data of mailing ZIP code, gender, and date of birth. The three pieces 

of data can be obtained as easily as looking through publicly available medical data, 

and voter list. Sometimes, personally identifiable information can be obtained 

through just a single piece of document such as a passport. 

2.3.2 LEGAL REQUIREMENTS OF PERSONALLY IDENTIFIABLE DATA 

In Canada, the Personal Information Protection and Electronics Documents Act (S.C. 

2000) states the rules and conditions whereby personal information can be collected, 

stored, used, and disposed [11]. The act is often referred by its acronym PIPEDA. The 

act requires organizations to obtain informed consent by individuals prior to the 

collection of their personal information, and only for reasonable purposes that are 

clearly stated. It requires that the organization collect only the information in needs 

to fulfill the stated purposes, and no other personal information. It also requires 

organizations to safely store and protect the information with appropriate security 

measures against unauthorized access, disclosure, copying, use, or modification. 

Businesses must also destroy the information safely when it is no longer needed or if 

the business purpose for use of the information changes. The act also grants the 

individuals the right to see all the information collected about them and to correct 

the information if they are wrong [12] [13]. Exceptions to these rules are also stated 

in the act, such as that an organization is not obligated to disclose information of 

one individual if such disclosure would inadvertently disclose information about 

other individuals. Organizations however are obligated to disclose information when 
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the non-disclosure would obstruct justice and the enforcement of law, or 

compromise the safety of the persons in emergency situations [12]. 

An interesting violation of PIPEDA occurred in 2007, where Google’s collection of 

street images in Canada for its Street View application captured many images of 

individuals with sufficient clarity to allow the individuals to be identified. Since 

PIPDEA considers such images to be personal information, the works were subjected 

to Canadian laws. A letter from Canada’s Privacy Commissioner to Google states that 

Google collected the imagery “without the consent and knowledge of the individuals 

who appear in the images” [14], and that even though the Street View application 

allowed individuals to request images to be removed, “by the time individuals 

become aware that images relating to them are contained in Street View, their privacy 

rights may already have been affected”. Google’s solution came in the form of a 

slightly different version of Street View which adheres to Canada’s privacy laws [15].  

Australia requires personal information to be protected from “misuse, loss, and 

unauthorized access, modification, and disclosure” and has their own legislative 

requirements which Australian companies must follow [16]. In the United States of 

America, the Health Insurance Portability and Accountability Act (HIPAA) is a set of 

privacy laws regarding health records and health information of patients. Improper 

handling of a person’s health record can result in fines as steep as $1.5 million USD 

per year [17]. 

While there are many laws and regulations in place around the world, a Cloud storage 

service provider will need to collect some amount of personal information in order to 

provide their services to those individuals; this includes financial information if the 
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service charges fees. It is important that the design of a Cloud storage system 

respects these laws and provide proper security in safeguarding personal 

information. 

2.3.3 BUSINESS VALUE OF PERSONAL DATA 

Personal data can be immensely valuable to companies. Data trading companies 

alone thrive on a pure business model of buying and reselling a person’s consumer 

behavior data. Much of the earnings in this industry come from the billions of dollars 

companies are spending advertising their products. Prior to the social network 

revolution, users often gave away uniquely identifiable personal information when 

they registered for an account for a website or web service. Such websites include 

online shopping websites, email services, instant messaging services, and others. The 

general types of information in this era was more explicit; for example, “what’s your 

marital status?” might be a question asked during a user account sign up page. 

Otherwise, the type of data can be explicitly derived from a person’s trail of activities 

on a website; such as suggesting products through purchase history on Amazon.com. 

The sources of data and patterns of activities increased as a result of social 

networking. For example, if two people change their relationship status with each 

other on an online social networking site to “married”, such information is of great 

value to any company involved in making and selling baby products. Such data is 

often used by advertisement companies to present products and services to users at 

such times. Such information could be obtained today even without an explicit 

change to an account profile, for example by utilizing image classification algorithms 

to data mine photo albums for wedding dresses and suites and faces to infer that a 

marriage happened between two people. Facial recognition is already a highly 
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successful feature of many social networking sites, and it would be inevitable to see 

more of such algorithms, such as DeepFace used by Facebook [18]. 

From repositories like these, a company can mine the shopping and communications 

habits and data of all their users and derive immense knowledge of them. There is an 

entire data trading industry for personal data known as the data broker industry, 

with a worth in multibillion dollars [19]. This industry is a fast growing, but 

ultimately a subpart of an even greater marketing industry. 

Certain companies make profit off of the data they collect directly by utilizing that 

data to deliver targeted advertisements to its users. Examples include Facebook, 

Google, Netflix, Amazon, Microsoft, and others. Economists tend to analyze these 

companies in bulk by taking the total revenue divided by total number of users as a 

simplified means of calculating the worth of each user’s data. For example, in 

Facebook’s 2013 year-end earnings report [20] [21], they’ve cited 757 million daily 

active users and revenue of $2.585 billion USD for fourth quarter 2013. Dividing the 

two numbers shows an average of $3.41 revenue per daily active user for that 

quarter. For the entire year, the revenue is $7.872 billion with an average daily user 

of around 712.25 million, making the revenue per user per year at $11.05 USD. 

From a broader perspective, consumer behavioral and personal data fall under the 

global internet commerce economic model, where a plausible measure for the entire 

economy can be the total dollars spent on marketing products and services to 

consumers. After all, companies do want to influence and capture an individual as a 

customer. There are also other markets, such as health care, whereby a person’s data 

would likely be traded for money since such data would be highly useful in health 
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care research and health care products market research. It is sufficient to conclude 

that a person’s data can be worth a lot. 

2.3.4 COSTS FROM LOSS OF DATA 

Whenever a company loses personal information and data, a multitude of 

consequences usually follows. Generally it can result in legal fines, financial loss, loss 

of intellectual property, loss of customers, and most critically loss of trust. Without a 

trustworthy reputation, a company will have a hard time conducting business. 

One of the most exemplary cases of loss of customer information was by Sony 

Corporation on April 16th and 17th, 2011 [22]. Sony Online Entertainment (SOE)’s 

press release states that up to 24.6 million customer account information might have 

been stolen by criminals, including names, addresses, email, birth date, gender, 

phone number, login names and hashed passwords. Within these, 12,700 credit or 

debit card numbers and expiration dates were stolen, as well as 10,700 debit records. 

A letter from Sony’s Chairman to the US House of Representatives, states that the 

PlayStation Network (PSN)’s 77 million registered accounts were also affected [23]. 

Sony took down all of their online gaming services to fix the security issues. They 

granted every customer 30 days of free subscription time for their online gaming 

network services, as well as a free day for each day their system was offline. Given 

that the price for a month of Sony Online Entertainment subscription time was 

$14.99 USD back in 2011 [24], and the 23 day closure of the PSN and SOE networks 

[25], this is equivalent to giving away $651.47 million USD of free online gaming 

services. Author was unable to find the cost of PSN monthly subscription costs, but 

can online imagine the free service cost figure to rise even higher. News reports also 
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indicated that Sony expended $171 million USD to conduct forensics investigations, 

repair the services, and perform other duties related to this breach [25]. 

Another exemplary case occurred in June of 2012 where, allegedly, an employee 

working for the Alaska Department of Health and Social Services Department (DHSS) 

lost a portable electronic storage device containing electronic health records. This 

case was investigated by the U.S. Department of Health and Human Services, 

resulting in a fine of $1.7 million USD for Alaska’s DHSS [26]. 

2.4 FINITE FIELDS 

A light background in Finite Field mathematics is required for understanding Section 

6.3.7 of this thesis. This section presents an introduction to Finite Field mathematics. 

Finite Fields are also called Galois Fields, named after its inventor Évariste Galois 

whom published it in 1846 as “Œuvres Mathématiques” (English: “Mathematical 

Works”) in the Journal de Liouville [27], and subsequently republished by           

M     matique de France (English: Mathematical Society of France) in 1897 [28]. 

As defined by Menezes et al in their Handbook of Applied Cryptography [29], a Ring 

(R, +, ×) consists of a set R with two binary operations + (addition) and × 

(multiplication) on R, where it satisfies the four conditions: 

1) (R, +) is an abelian group with identity denoted 0, that is it is closed, 

associative and commutative for the + operation. 

2) The operation × is associative, that is a × (b × c) = (a × b) × c for all a, b, c ∈ R. 

3) There is a multiplicative identity denoted 1, with 1 ≠ 0, such that 1 × a = a × 1 

= a for all a ∈ R. 
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4) The operation × is distributive over +. That is a × (b + c) = (a × b) + (a × c) and 

(b + c) × a = (b × a) + (c × a) for all a, b, c ∈ R. 

A Ring is a commutative ring if a × b = b × a for all a, b ∈ R. Each element a of a ring 

R is called a unit, or an invertible element if there is an element b ∈ R such that a × b 

= 1. In this case, b is the multiplicative inverse of a.  

A Field is a commutative Ring in which all non-zero elements have multiplicative 

inverses. A Finite Field is a field F which contains a finite number of elements. The 

order of F is the number of elements C in F. The number of elements must be a 

prime power, that is C = PM, where P is a prime number. If M = 1, the fields are called 

Prime Fields. If M ≥ 2, the fields are called Extension Fields. A Finite Field is denoted 

by the notation GF(C), shorthand for GaloisField(C). For example, Figure 1 shows a 

Finite Field of 24 = 16 elements. 

 

Figure 1 – Galois Field of 16 Elements 
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The elements of the Finite Field are based upon a primitive element α, taking on the 

values 0, α0, α1, α2, α3, α4, … αC-1. α0 always equals 1. This set also forms a notation 

known as the Field’s Index Representation. For a given Finite Field, αN is the index of 

the element, while the element would contain some particular value depending on 

what α is. 

2.4.1 FINITE FIELD GENERATOR POLYNOMIAL AND REPRESENTATION 

A Finite Field has a particular property called the Field Generator Polynomial, 

denoted as G(X). It is a polynomial of degree M which is irreducible. A polynomial is 

irreducible if there are no factors with coefficients over the integers Z. The only 

polynomial and element that is irreducible in GF(2) is 1, thus the field generator 

polynomial for GF(2) is G(X) = 1. For GF(16), two polynomials are irreducible: X4 + X + 

1 and X4 + X3 + 1. The rest of the examples in the thesis use G(X) = X4 + X + 1 as the 

generator polynomial for GF(16). 

Besides the Index Representation shown earlier, each element of the Finite Field is 

also represented by a polynomial in the form A
M-1

XM-1 + A
M-2

XM-2 + A
M-3

XM-3 + … + A
1
X + 

A
0
. Mathematically this polynomial is related to the primitive element α by the field 

generator polynomial. The Generator Polynomial generates the values of each 

element. Further, a defined property is that G(α) = 0 as the primitive element is a root 

of the generator polynomial. 

2.4.2 BINARY FIELDS AND POLYNOMIAL REPRESENTATIONS 

In digital systems, Binary Fields are used. Binary Fields are GF(2M) fields, where M 

represents the number of bits of any element in the field. The most elementary 
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Binary Field, GF(2), has only 1 bit and two elements of 0 and 1. In binary fields, the 

primitive element α is 2. 

In GF(2), addition is the logical XOR of the two bits and multiplication is the logical 

AND of the two bits. There’s no bit carry or borrows in this field, as such subtraction 

and division are the same as addition and multiplication, respectively. A 

Computation table is provided for GF(2) below in Table 1. 

Table 1 – Finite Field Arithmetic for GF(2) Binary Field 

In Binary Fields, an element can be represented by its binary value: A
M-1

A
M-2

A
M-3

… 

A
1
A

0
. For example, the element 5 can be represented as {0101} in binary form in 

GF(16). Elements could also be represented in a polynomial expression in the form: 

A
M-1

XM-1 + A
M-2

XM-2 + A
M-3

XM-3 + … + A
1
X + A

0
, where the coefficients A

i
 are the binary 

values of the element. In GF(16), the polynomial representation is: A
3
X3 + A

2
X2 + A

1
X + 

A
0
. The element 5 would be represented as X2 + 1. 

Using G(X) from 2.4.1, we can substitute in the primitive element α to obtain the 

following equivalencies: 

              

    

       

Note: Additions and subtractions are the same in a binary field; this is shown in 

Section 2.4.3. 

+ 0 1  × 0 1  – 0 1  ÷ 0 1 

0 0 1 0 0 0 0 0 1 0 0 0 

1 1 0 1 0 1 1 1 0 1 0 1 
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To enumerate the polynomial representations for each of the elements of a Finite 

Field, one uses the generator polynomial to compute αN for N = 0 to C-1, reducing the 

polynomial via substitution. Eg:        from above, and                  

    . Using G(X) above, the representations for GF(16) is shown below in Table 2. 

Table 2 – Field Elements for GF(16) with G(X) = X4 + X + 1 

Since α is 2 in Binary Fields, we can substitute that into the polynomial to get the 

equivalent decimal value of each element. We can also extract the coefficients from 

the polynomials to obtain their binary values, which match their decimal values. 

2.4.3 BINARY FIELD ARITHMETIC 

When adding two elements in a binary field, their polynomials are added together:  

C
M-1

XM-1 + C
M-2

XM-2 + … + C
1
X + C

0
   =   A

M-1
XM-1 + A

M-2
XM-2 + … + A

1
X + A

0
 + 

B
M-1

XM-1 + B
M-2

XM-2 + … + B
1
X + B

0 

where C
i
 = A

i
 + B

i
, for 0 ≤ i ≤ M-1. 

GF Index Reduced Polynomial Form Decimal Value Binary Value 

    0 0000 

     1 0001 

     2 0010 

      4 0100 

      8 1000 

       3 0011 

        6 0110 

         12 1100 

          11 1011 

        5 0101 

        10 1010 

           7 0111 

            14 1110 

              15 1111 

            13 1101 

         9 1001 
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Since the coefficients are binary numbers, they can only take on the values of 0 or 1, 

so they are added through the XOR operation. To simplify: C
i
 = A

i
 XOR B

i
, for 0 ≤ i ≤ 

M-1. 

For example, adding decimal values 10 and 9 (index values α9 and α14) in GF(16) using 

binary operations would be calculated as follows:  

                                

An alternative way to add the two values is to directly add their index positions 

modulus G(X). G(X) in decimal value would be 16 + 2 + 1 = 19. Since α9 = 10 and α14 = 

9, their index positions are 9 and 14 respectively. 

9 + 14 mod 19 = 23 mod 19 = 4, and α4 = 3 

Subtracting 9 from 10 would be calculated as: 10 – 9 = {1010} XOR {1001} = {0011} = 

3. Thus subtraction and addition are the same in binary fields. 

Multiplication in a Binary Field involves multiplying their polynomials modulus G(X). 

For example multiplying 10 to 9 in GF(16) would be calculated as follows: 
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Similarly, Division in a Binary Field involves computing the quotient of the two 

polynomials. Often this is done by long division procedure. 

                      

Table 3 summarizes the arithmetic operations in a Binary Field. 

Table 3 – Binary Field Arithmetic 

2.5 CHAPTER SUMMARY 

This chapter introduced Cloud Computing and Cloud Storage as a highly scalable, 

utility computing paradigm with a rich history since the 1950s. Cloud Computing 

groups together vast pools of computation resources and dynamically allocates them 

to live user requests or workloads.  

We also presented the key secure and reliable storage principles which 

cryptographers and system designers use to design modern secure systems. 

Replication and Redundancy helps safeguard data by making them resilient to losses. 

Confusion and Diffusion principles define the necessary properties a system must 

have to be considered cryptographically secure. Off-site data protection helps users 

protect their data against local equipment failures. Finally the Principle of Lease 

Privilege guides us towards designing secure access rules to ensure that users of a 

system cannot effect actions which they are not authorized to do so. 

Operation Calculation in Classical Algebra Calculation in GF(2
M

) 

Addition R = A + B R = A XOR B in Polynomial Form 

Subtraction R = A – B R = A XOR B in Polynomial Form 

Multiplication R = A × B R = (A × B) Mod G(X) in Polynomial Form 

Division R = A ÷ B R = Quotient of A ÷ B 
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We explored the value of personal data from four perspectives. We showed the 

potential damage misplaced data could cause to users. We showed the legal 

requirements on personal information around the world, and the consequences when 

the law isn’t followed by companies. We showed the revenue companies can make 

when they have legal access to personal information, and the costs companies pay 

when they failed to safeguard personal information. 

Finally we introduced Finite Field mathematics. 

The next chapter examines the risks, benefits, and costs of using Cloud storage. 
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CHAPTER 3: CLOUD STORAGE RISKS, 

BENEFITS, AND COSTS 

The use of Cloud storage comes with unique risks, benefits, and costs through a new 

economic model. This chapter presents all three of these in depth to give readers a 

detailed understanding of the trade-off between the risks and benefits, and the costs 

to use Cloud storage. For the purposes of discussion, we consider data to be 

encapsulated in digital electronic documents, or simply files. Files can contain 

structured and organized information such as spreadsheets, or unstructured 

information such as books and videos. 

We begin this chapter by presenting an in depth analysis of the risks of using Cloud 

storage in Section 3.1. Then we show the analysis of the benefits users can reap in 

Section 3.2. We show the costs associated with using Cloud storage along with a 

comparison to using local storage in Section 3.3, and finish the chapter with a 

summary. 

3.1 CLOUD STORAGE RISKS 

A user’s data is highly valuable to both the user and to the organizations and 

businesses providing the storage service. This section examines the types of risks a 

user faces by storing files on the Cloud. 

3.1.1 MALICIOUS ATTACKS FROM ANYWHERE IN THE WORLD 

The ability to authenticate and access the data from anywhere around the world 

presents a unique problem and risk. Attackers no longer need to physically track 
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down the specific device or hard drive containing the data desired; instead they may 

concentrate their efforts at breaking the authentication mechanism to obtain vast 

troves of data from many users. The vast majority of Cloud storage system security 

breaches are related to authentication mechanism weaknesses or attacks, for 

example the 2011 attack on Dropbox [1] which allowed anyone on the internet to 

download any files stored and hosted by Dropbox for a 4 hour time period. Another 

example comes from a paid research by Amazon. In 2011, Amazon invited a team of 

security experts and researchers to conduct attacks on their servers. The researchers 

were able to access data stored in Amazon’s S3 service [2]. In the 2009 attack against 

Twitter, the anonymous attacker exploited weaknesses in password recovery 

mechanism of Google’s email service, and was eventually able to obtain many 

confidential corporate documents and information from email attachments of the 

corporate email accounts of Twitter employees, which was a hosted email service on 

a Cloud run by Google [30]. Breaches in the authentication mechanism of Cloud 

storage providers prove to be deadly in terms of allowing a user’s private data be 

accessible and exposed to the entire world, and allowing it to be modified or deleted 

by attackers. An ideal solution would allow data to be safe even when authentication 

mechanisms have been compromised. 

3.1.2 IMPLICIT DEPENDENCE ON STORAGE PROVIDER RELIABILITY 

Storage providers can sometimes halt their services in order to perform periodic 

maintenance work to their systems, which presents a risk to users if users need 

access to their data during times of unavailability. Although it is not a security risk, 

this is concerning when users send files onto the Cloud and remove all local copies to 

maximize their storage space. There is also a general trend of moving computation, 
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software, and data storage completely to the Cloud, where local machines serve only 

as consoles to remotely access the software and data on the Cloud [31]. Access 

outages may also be caused by internet service providers, or by natural disasters. All 

of these potential sources of outages are not in a user’s control, and in fact always 

has a probabilistic chance of occurring. No matter the source or reason, outages will 

cause inconvenience for users. An ideal solution would be able to work around 

outages. 

3.1.3 RISK OF DATA LOSS AND DATA CORRUPTION 

Major storage providers have software mechanisms in place to mitigate equipment 

failure [32], however there is always the chance that a user’s data is completely lost. 

For example, natural disasters may flood or short circuit an entire data center, 

corrupting all of the data. Mistakes made by employees may misplace sets of hard 

drives during upgrade or maintenance, losing the data. Software mistakes may cause 

user’s data to be written over. In fact, Clouds are utilizing cheap commodity hard 

disks as a means to minimize costs, which have higher risks and chances of failure 

compared to server grade hard drive equipment. Whenever complete data loss occurs 

on a Cloud, a user only has the option to re-upload the data to another more reliable 

Cloud, assuming the user has a local copy. An ideal solution would distribute a file 

among several Cloud service providers, so that the user can enjoy the benefits of 

Cloud storage and be able to tolerate complete data loss by individual Cloud service 

providers. 

3.1.4 IMPLICIT REQUIREMENT TO ALWAYS TRUST THE PROVIDER 

The use of Cloud storage services requires users to implicitly trust the service 

provider. Users must trust the service provider’s ability and capability to defend 
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against attackers and intruders, to safeguard the data against equipment failure, to 

not compromise and modify their data, and to respect the privacy and confidentiality 

of the user as well. While there are terms of use agreements, and privacy policies in 

place, the vast majority of Cloud storage providers ultimately disclaim any liability 

and responsibility for the data stored on their Clouds. It is a compromising position 

when the absolute control of a user’s Cloud data rests in the hands of the service 

provider, but the absolute responsibility for the data rests on the user. The 

requirement of such implicit trust is often disregarded by users in lieu of the gains of 

the benefits of Cloud storage. In an ideal case, this requirement should be removed 

while still retaining the benefits of Cloud storage. 

3.1.5 CONFLICTING LAWS MAY NOT RESPECT USERS’ PRIVACY 

It is known that data stored on the Cloud has become a hot target for law 

enforcement and security agencies as they issue access for information requests and 

warrants to obtain data, often in bulk. Such warrants apply equally to local 

computers and storage devices, of course. Law abiding citizens would comply with 

the warrants when requested. The complexity starts rising when consideration is 

given to the fact that, quite often, Cloud services hosted by one country can and is 

used by users from all over the world. A bulk data request may inadvertently allow 

one nation’s law enforcement obtain the data stored by a citizen of another nation, 

simply due to the physical location of the data center and Cloud. Many nations have 

laws in place regarding the placement and location of data in terms of their physical 

storage devices. For example, in British Columbia, Bill 73 – the Freedom of 

Information and Protection of Privacy Amendment Act, 2004 states “A public body 
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must ensure that personal information in its custody or under its control is stored 

only in Canada and accessed only in Canada” [33].  

Most nations also have laws regarding any data physically stored within their 

geography. By default, a user has to assume that the data they place in a specific 

Cloud will be subject to all the local laws, regulations, culture, customs, and security 

standards of the nation in which the data is physically stored. The complex layers of 

national and international laws require solutions through political dialogue and 

international treaties, which is beyond the scope of this thesis. However, of 

importance to a user is an ability to know where their data is located geographically 

around the world. Better yet, users should be able to control where their data is 

located, so that they can avoid placement of their data in nations that they feel might 

be risky or not trustworthy. 

3.2 CLOUD STORAGE BENEFITS 

There are numerous benefits to storing files on the Cloud, including economic cost 

reductions, flexibility, world wide access, and improving resource utilization. This 

section analyzes all the benefits of using Cloud storage in detail.  

3.2.1 A NEW ECONOMIC AND BUSINESS MANAGEMENT MODEL 

Cloud storage and Cloud Computing both offer an economic model for consumers to 

pay only for what they use, like a utility bill. The infrastructure and operation costs 

are paid by the service provider, for example the costs for purchasing thousands of 

hard drives, equipment set up and maintenance, management, and electricity costs. 

In turn, these costs are shared among all users of the system, being usually charged a 

fixed rate for each unit of resource usage or consumption. Storage providers typically 
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offer various storage quotas, which can be increased or decreased on demand by 

users. 

Since all installation and management work is performed by the storage provider, 

start-up companies and small to medium size businesses can take advantage of this 

to reduce upfront costs. For short term projects, they also don’t have to worry about 

reselling any hardware. The economic flexibility and savings can allow companies to 

hire more staff to accelerate their ideas and projects to meet goals and milestones 

faster. 

3.2.2 IMPROVED RESOURCE UTILIZATION 

From a resource utilization perspective, pooling together resources and users is a 

highly efficient means to consume the resources. Studies by the University of 

Pennsylvania have shown that computer machines consume on average 50% to 90% of 

electricity when they are idle compared to when they are fully loaded with 

computation tasks [34]. The idle power consumption rate depends largely on the 

computer manufacturer and whether the LCD was kept on while the computer idles. 

Naturally it makes sense to improve the utilization of servers by constantly assigning 

tasks to them to keep them active. Similarly, any unused portion of a hard drive may 

generally be seen as a waste of the resource. If a project requires 500GB of storage, 

then purchasing 1TB of storage space is unnecessary and wasteful, increasing the 

effective price per GB of storage. Prior to Cloud storage, users often purchase some 

additional space in their computers for use by temporary files, and to anticipate for 

any of their growing data storage needs. Cloud storage allows users to request for 

additional storage on demand, increasing the size of their allowance when they need 
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it. Similarly it allows users to reduce their allowance when they no longer need the 

extra space. 

3.2.3 WORLDWIDE ACCESS 

Users today carry portable computing devices with them on a daily basis, and access 

their data from many different machines. Cloud storage allows a user to authenticate 

to the service and access their data from any device which can operate the service’s 

software. Users can also access their data from anywhere in the world as long as they 

have a connection to the service. The ease of access from across the world is a 

strength of the Cloud storage service, compared to more traditional means such as 

carrying around portable storage devices like a USB drive. 

3.2.4 FILE VERSIONING AND RECOVERY 

Cloud storage services can also retain versions of a user’s files and data through 

time, allowing the user to revert unintended changes, or mistakes such as 

accidentally deleting an important file. On traditional hard drives in a local computer, 

a user would have to remember what changes occurred and try to manually revert 

them if it is possible. For any deleted files, users would have to utilize disk recovery 

software to attempt to recover the data from the file. The former is error prone and 

relies upon human memory, while the latter has no guarantee of success because 

once a file is deleted the system treats the space taken up by that file as free space 

and might write over the data with data from new files. Cloud storage systems 

automatically create and retain versions of files and data as a safe guard. Whenever a 

user wants to revert some change, they can make a request to their Cloud storage 

service provider to have the change reverted. This process is streamlined, simple, and 

efficient. 
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3.2.5 FILE SHARING AND SYNCHRONIZATION 

Sharing files and data between authorized users is also easier through a Cloud 

storage system. Cloud storage systems have sophisticated authentication 

mechanisms which can grant read-only or read-and-write access to fellow users in the 

system if the original owner of a file allows it. The owner can grant these settings 

through the user interface of the Cloud storage system. Fellow users can then log 

onto the system and download a copy of the file whenever and from wherever they 

wish. If given write access, the files shared through a Cloud storage system can 

become a working repository where every change is always synchronized between all 

users. This form of file and data sharing is much more efficient in terms of storage 

space compared to emails, where the file would have to be replicated as many times 

as there are users, and where changes and updates must also be replicated in such a 

matter to have everyone on track. 

3.2.6 A WAY TO BACKUP DATA 

Cloud storage allows users to easily apply the principle of keeping off-site backups of 

their data. By keeping a backup copy on the Cloud, any local catastrophes such as a 

complete equipment failure of the local hard drive will not affect or compromise the 

data stored on the Cloud. Users can often quickly recover their data, and get back up 

to speed with their work and tasks when such events occur with the assistance of 

Cloud storage. 

3.3 CLOUD STORAGE COSTS 

There are a series of costs associated with using Cloud storage. Generally speaking 

there are two segments of costs which are shown in on Figure 2. 
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Figure 2 – Cloud Storage Cost Model 

The two segments are the internet connection costs paid by the user to their internet 

service provider to connect to and use the internet, and Cloud storage provider costs 

paid by the user to specifically use the Cloud storage service. Internet connection 

costs include all of the data uploaded to, or downloaded from the internet. Cloud 

storage provider costs include potentially inbound traffic fees, outbound traffic fees, 

and storage fees. This section begins with a survey of internet connection and Cloud 

storage provider costs from the most popular providers in Canada and USA. Then, we 

present a survey of local disk storage prices to establish a cost reference point, to 

frame the discussions off the value and economic effects of pricing in Cloud storage. 

3.3.1 INTERNET CONNECTION COSTS 

In North America, most home internet service providers offer different plans where 

the main characteristic difference is the download and upload speeds. Generally, the 

download speeds offered are much higher than the upload speeds. In Canada during 

the year of 2014, home and business internet plans also have data usage allowance 

limits, where as in USA there isn’t. The plans and data rates offered by some of the 

most popular service providers in Canada and USA as of February 2014 are shown in 

Table 4. 
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Table 4 – Internet Service Provider Pricing [35] [36] [37] [38] [39] [40] [41] 

If a company puts a cap on usage allowance it is easy to calculate the precise cost for 

every unit of data transferred. The computed values of cost per GB are shown in 

 

Monthly 
Price 

Download 
Speed 
(Mbps) 

Upload 
Speed 
(Mbps) 

Usage 
Allowance 

(GB/month) 
Modem 

Surcharge 

Usage Based 
Billing 

beyond 
Allowance 

Price 
per GB 

Price per 
Mbps 

(Download) 

Price per 
Mbps 

(Upload) 

Rogers 
(Canada; 
Cable) 

$225.99 350 350 2000 No N/A $0.11 $0.65 $0.65 

$125.99 250 20 1000 Yes $1/GB $0.13 $0.50 $6.30 

$77.99 45 4 150 Yes $2/GB $0.52 $1.73 $19.50 

$67.99 35 3 120 Yes $2/GB $0.57 $1.94 $22.66 

$54.99 25 2 80 Yes $2/GB $0.69 $2.20 $27.50 

$44.49 6 0.25 20 Yes N/A $2.22 $7.42 $177.96 

Bell 
(Canada; 
Fibre) 
 

$152.95 175 175 300 No $2/GB $0.51 $0.87 $0.87 

$85.95 50 10 175 No $2/GB $0.49 $1.72 $8.60 

$60.95 25 10 100 No $2/GB $0.61 $2.44 $6.10 

$52.95 15 10 60 No $2/GB $0.88 $3.53 $5.30 

$42.95 5 1 20 No $4/GB $2.15 $8.59 $42.95 

TekSavvy 
(Canada; 
DSL/Cable) 

$86.95 150 10 300 Yes $0.50/GB $0.29 $0.58 $8.70 

$54.99 50 10 300 Yes $0.25/GB $0.18 $1.10 $5.50 

$56.95 45 4 300 Yes $0.50/GB $0.19 $1.27 $14.24 

$51.95 35 3 300 Yes $0.50/GB $0.17 $1.48 $17.32 

$39.99 25 10 300 Yes $0.25/GB $0.13 $1.60 $4.00 

$34.99 15 10 300 Yes $0.25/GB $0.12 $2.33 $3.50 

$29.99 7 1 300 Yes $0.25/GB $0.10 $4.28 $29.99 

Shaw 
(Canada; 
Cable) 

$120.00 250 15 1000 No N/A $0.12 $0.48 $8.00 

$90.00 100 5 500 No N/A $0.18 $0.90 $18.00 

$80.00 50 3 400 No N/A $0.20 $1.60 $26.67 

$60.00 25 2.5 250 No N/A $0.24 $2.40 $24.00 

$55.00 10 0.5 125 No N/A $0.44 $5.50 $110.00 

AT&T 
(USA 
Cable) 

$71.00 24 3 250 Yes $0.2/GB $0.28 $2.96 $23.67 

$61.00 18 1.5 250 Yes $0.2/GB $0.24 $3.39 $40.67 

$56.00 12 1.5 250 Yes $0.2/GB $0.22 $4.67 $37.33 

$51.00 6 1 250 Yes $0.2/GB $0.20 $8.50 $51.00 

$46.00 3 1 250 Yes $0.2/GB $0.18 $15.33 $46.00 

Verizon 
(USA; 
Fibre) 

$299.99 500 100 Unlimited Yes N/A N/A $0.60 $3.00 

$209.99 300 65 Unlimited Yes N/A N/A $0.70 $3.23 

$129.99 150 65 Unlimited Yes N/A N/A $0.87 $2.00 

$89.99 75 35 Unlimited Yes N/A N/A $1.20 $2.57 

$79.99 50 25 Unlimited Yes N/A N/A $1.60 $3.20 

$69.99 15 5 Unlimited Yes N/A N/A $4.67 $14.00 

Comcast 
(USA; 
Cable) 

$114.95 105 30 Unlimited Yes N/A N/A $1.09 $3.83 

$76.95 50 15 Unlimited Yes N/A N/A $1.54 $5.13 

$64.95 25 8 Unlimited Yes N/A N/A $2.60 $8.12 

$49.95 6 1.5 Unlimited Yes N/A N/A $8.33 $33.30 
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Table 4, showing price ranging from $0.10/GB to $2.22/GB. In addition, the usage 

based billing prices for data used beyond the allowance is anywhere from $0.20/GB 

to $4.00/GB. Generally a more expensive plan includes a higher usage allowance, at a 

cheaper price per GB of data transferred. Companies tabulate both download and 

upload activities to calculate how much data has been used within the allowance. A 

user would regard this as a fixed cost per GB of data sent to or retrieved from the 

Cloud. 

In USA where most companies do not place a limit on usage, it is much easier to 

compare the time cost of transferring data to and from the Cloud. The higher the 

transfer speed, the less time it takes to transfer the data. This is beneficial for users 

since they can then spend the time on other activities, or free the bandwidth for 

other internet uses. The price for each unit of transfer speed could be used to 

compare the different plans. The computed values of cost per unit of transfer speed 

($/Mbps) are shown as well in Table 4. Generally, a more expensive plan provides 

faster download and upload speeds and a cheaper unit price for every incremental 

unit of speed. 

It would seem that no matter which of the two units of measure – price per data 

transferred or price per unit of transfer speed – the expensive plans are favored for 

their increased limits and lower unit costs. In practice however, each user would 

often choose an internet service plan based upon their available house hold budget 

and usage requirements. The use of Cloud storage services certainly increases the 

need for higher usage allowance. 
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Generally, these costs and parameters are not choices which the Cloud storage 

software and system can make, but has to work with to accomplish its goals. A Cloud 

storage system would be most optimal at minimizing the amount of data transfer 

necessary to accomplish each task. By minimizing the amount of data transferred, 

the system can minimize the data costs if usage allowance limits are present, and 

also accomplish transfers faster, minimizing the total time necessary to accomplish 

each task. No matter what a user chooses as their internet service plan, the costs can 

be minimized. 

3.3.2 CLOUD STORAGE PROVIDER COSTS 

Cloud storage service providers often operate on a “freemium”-style business model, 

where an initial amount of storage is free for each user, and subsequent amounts of 

storage service is given in exchange for monetary gains. The most popular Cloud 

storage providers in North America are Dropbox [42], Amazon S3 [43], Microsoft 

SkyDrive [44], Apple iCloud [45], and Google Drive [46] in no particular order. We 

consider only the paid storage services for comparison since it is desirable to 

attribute a finite cost figure. It is worth noting that each of these five storage 

providers have free services too subject to space quotas or other limitations, shown 

in Table 5. 

Table 5 – Free Tier Data Storage Limits for Cloud Providers [42] [43] [44] [45] [46] 

Table 6 and Table 7 show the storage costs for February 2014 and February 2013, 

respectively, as listed by each of the provider’s websites for various tiers of storage. 

Between February 2013 and February 2014, Microsoft has rebranded its SkyDrive 

  Dropbox Amazon S3 Microsoft OneDrive Apple Google Drive 

Free Storage Amount (GB) 2 5 7 5 15 
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service to OneDrive. The pricing has also changed for these two services, overall 

increasing its prices in 2014. The 25GB data tier has also been eliminated. Overall 

costs range from Google Drive’s $0.050/GB/month on the low end to Apple iCloud’s 

$0.167/GB/month on the high end. 

Table 6 – Cloud Storage Costs, February 2014 [42] [43] [44] [45] [46] 

Table 7 – Cloud Storage Costs, February 2013 [42] [43] [44] [45] [46] 

Of the five Cloud service providers, only Amazon S3 charges a transmission cost for 

data. It charges a transmission fee for downloading data off of its servers. It does not 

2014 Monthly Price ($USD) Effective Price per GB per Month ($USD) 

Storage 
(GB) 

Dropbox 
Amazon 

S3 
Microsoft 
OneDrive 

Apple 
iCloud 

Google 
Drive 

Dropbox 
Amazon 

S3 
Microsoft 
OneDrive 

Apple 
iCloud 

Google 
Drive 

10   0.85   1.67   
 

0.085 
 

0.167 
 

20   1.70   3.33   
 

0.085 
 

0.167 
 

50   4.25 5.49 8.33   
 

0.085 0.110 0.167 
 

100 9.99 8.50 8.49   4.99 0.100 0.085 0.085 
 

0.050 

200 19.99 17.00 12.49   9.99 0.100 0.085 0.062 
 

0.050 

400   34.00     19.99 
 

0.085 
  

0.050 

500 49.99 42.50       0.100 0.085 
   

1000   85.00     49.99 
 

0.085 
  

0.050 

2000   160.00     99.99 
 

0.080 
   

4000   310.00     199.99 
 

0.078 
   

8000   610.00     399.99 
 

0.076 
   

16000   1210.00     799.99 
 

0.076 
   

50000   3760.00       
 

0.075 
   

500000   30760.00       
 

0.062 
   

2013 Monthly Price ($USD) Effective Price per GB per Month ($USD) 

Storage 
(GB) 

Dropbox 
Amazon 

S3 
Microsoft 
OneDrive 

Apple 
iCloud 

Google 
Drive 

Dropbox 
Amazon 

S3 
Microsoft 
OneDrive 

Apple 
iCloud 

Google 
Drive 

10   0.82   1.67     0.082 
 

0.167   

20   1.62 0.83 3.33     0.081 0.042 0.167   

25   2.02     2.49   0.081     0.100 

50   4.02 2.08 8.33     0.080 0.042 0.167   

100 9.99 7.52 4.17   4.99 0.100 0.075 0.042   0.050 

200 19.99 14.52     9.99 0.100 0.073     0.050 

400   28.52     19.99   0.071     0.050 

500 49.99 35.52       0.100 0.071       

1000   68.02     49.99   0.068     0.050 
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charge transmission fee for uploading any data to its servers. The prices for 

transmitting different amounts of data are shown in Table 8. 

Table 8 – Transmission Costs for Amazon S3, February 2014 [43] 

Overall, Amazon S3 charges on average $0.118/GB outgoing for any amount of data 

up to 10TB, reducing the rate in subsequent service tiers to as low as $0.059/GB. 

Any consumer side Cloud storage software systems should take into effect both the 

difference in prices and features of these providers, as well as the dynamic nature of 

the market place. 

3.3.3 COMPARISON WITH LOCAL DISK STORAGE COSTS 

Section 3.3.2 showed that Cloud storage providers charge between $0.050/GB/month 

to $0.167/GB/month for storing a user’s files on their Clouds. It is useful to know the 

range of unit costs for local disk storage as well, to see relatively how much more 

users would have to pay to take advantage of the benefits of Cloud storage. Table 9 

shows a sample of hard drive prices indexed in January, 2014 by a well-known 

product feature comparison and price ranking website called PCPartPicker [47]. 

2014 Price ($USD) Effective Price per GB ($USD) 

Transmission (GB) Amazon S3 Outbound S3 Outbound 

10 1.08 0.108 

20 2.28 0.114 

50 5.88 0.118 

100 11.88 0.119 

150 17.88 0.119 

200 23.88 0.119 

400 47.88 0.120 

500 59.88 0.120 

1000 119.88 0.120 

10000 1199.88 0.120 

50000 4799.88 0.096 

150000 11799.88 0.079 

500000 29299.88 0.059 
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Table 9 – Local Disk Storage Costs, January 2014 [47] 

For standard magnetic disk hard disk drives (HDD), the unit price ranges from as low 

as $0.0367/GB to as high as $0.8340/GB. On the low end of the price range, storing 

data on the Cloud seems to be much more expensive. For the first month, storing 

data on the Cloud would cost $0.050/GB, while buying a hard drive can cost 

$0.0367/GB. After the first month, the Cloud storage costs continue to add but the 

hard drive would have been paid for already. On the high end of the price ranges, 

buying a hard disk would cost $0.8340/GB while the first month Cloud storage cost 

would be $0.167/GB. Users can reap roughly 5 months of Cloud storage benefits 

before the costs would break even. However, it is naive to assume users would 

purchase hard disks at the high end of the price range. Likewise, Cloud storage 

providers aim to maximize profits so it is unlikely they would purchase hard drives 

on the high end of the price range. 

For specialty disk drives such as Solid State Drives (SSD) and Hybrid Disk Drives, 

Table 9 shows their lowest and highest unit costs. They range from $0.3495/GB to 

Model Type Form RPM Capacity (TB) Cache (MB) Price ($) Price / GB ($) 

Western Digital WD2500AAKX 

HDD 

3.5" 7200 250 16 57 0.2280 

Seagate ST9250610NS 3.5" 7200 250 64 126 0.5040 

Seagate ST500DM002 3.5" 7200 500 16 52.99 0.1060 

Seagate ST9500622NS 3.5" 7200 500 64 416.99 0.8340 

Seagate ST1000DM003 3.5" 7200 1000 64 59.99 0.0600 

Seagate ST91000640SS 3.5" 7200 1000 64 258.38 0.2584 

Seagate ST2000DM001 3.5" 7200 2000 64 89.79 0.0449 

Seagate ST32000644NS 3.5" 7200 2000 64 279.98 0.1400 

Seagate ST3000DM001 3.5" 7200 3000 64 109.99 0.0367 

Seagate ST33000651NS 3.5" 7200 3000 64 475.86 0.1586 

Seagate ST4000VN000 3.5" 7200 4000 64 189.95 0.0475 

Hitachi 0B26885 3.5" 7200 4000 64 666.68 0.1667 

Hitachi 0F18335 3.5" 7200 6000 64 969.47 0.1616 

PNY SSD9SC480GMDA-RB SSD 
 

2.5" N/A 480 N/A 167.75 0.3495 

OCZ OCT1-25SAT3-1T 2.5" N/A 1000 N/A 2071.56 2.0716 

Seagate ST4000DX001 
Hybrid 

3.5" N/A 4000 64 200.98 0.0502 

Seagate STBD1000400 3.5" N/A 1000 64 129.75 0.1298 
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$2.0716/GB for SSD drives, and $0.0502/GB to $0.1298/GB for Hybrid drives. Users 

gain significant disk throughput and performance with these specialty drives, but 

their unit costs are much higher than HDDs. Specialty disk drives would be used in 

high performance computation Clouds, however a Cloud storage service provider 

would be unlikely to invest in using specialty disk drives to store users’ files since 

they want to maximize revenue and profits. Start-up companies and small to medium 

size businesses will likely pay to store files on the Cloud because they can save 

management and operation costs as mentioned in Section 3.2.1.   

Overall, we can conclude that users can achieve lower short term and long term 

storage costs by simply purchasing hard drives from a computer store and placing 

their data into those hard drives. To enjoy the benefits of Cloud storage, users must 

pay a non-trivial fee once their use exceeds the free storage quotas. Thus, it is 

important for any Cloud storage system to minimize the short term and long term 

storage costs. 

3.3.4 ECONOMIC EFFECTS 

The data in Section 3.3.2 shows an interesting economic model for Amazon’s S3 

service, whereby it is free to upload data to Amazon; however it is not free to 

download the same data from Amazon. This business model favors a different type 

of application such as data-mining where users upload a lot of data to the Cloud, 

then perform extensive computation on the data obtain specific results that has a 

substantially smaller file size than the data, and then download only the results. 

To generalize these business models and practices, it is best to consider that a Cloud 

storage provider can charge for both incoming and outgoing data, often charges a fee 
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for data stored on their Clouds, can impose transfer and storage limits, and can 

change the prices and rules for all of these at any time. 

Consider initially two Cloud storage providers who both charge for the same 

transmission and storage costs for users. The user chooses one of the two providers 

and puts all of their data on to that Cloud. The costs paid so far is a one-time fee for 

transmission (this includes fees charged by the storage service provider and those 

charged by internet service providers), and an ongoing fee for storage. Consider 

further now that the other Cloud storage provider decides to reduce their storage 

fees as an incentive to attract business. The user is now faced with a dilemma of 

choosing to stay with their existing provider but pay higher long term costs, or pay 

an expensive transmission fee now (one time to download the data, and one time to 

upload the data) and move the data to the other provider in order to take advantage 

of the long term savings. Total transmission fees are typically higher than storage 

fees, as shown in Sections 3.3.1 and 3.3.2. This creates an economic barrier and 

condition which Abu-Libdeh et al. calls Storage Vendor Lock-in [3], where once a user 

commits to storing data in one provider they are no longer economically able to 

afford to move the data to a different provider without paying a hefty fee to move 

the data out. 

Even if the monetary price was free for all transmissions and storage, there is still a 

resource consumption problem with this method of moving between data storage 

providers. Considering that bandwidth is often a critical resource bottleneck for 

modern day Clouds and networks, it is ideal to reduce the bandwidth consumed for 

this task. A direct transfer between the providers can reduce overall resource 

consumption, however currently it is unforeseeable that there would be direct 
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connections and communications between Cloud storage providers due to business 

and competition. From an energy perspective, direct transfers would save electricity 

as well compared to downloading then re-uploading. 

A Cloud storage subsystem would have to keep in mind the market dynamics and 

work actively to prevent data lock in, while attempting to minimize a user’s costs for 

storing data on a Cloud. 

3.4 CHAPTER SUMMARY 

This chapter presented the risks, benefits, and costs of using Cloud storage. For files 

that are stored on the Cloud, they are at risk from malicious attacks from anywhere 

around the world, and at risk of being lost or corrupted due to service provider 

mistakes and equipment failures. Users must implicitly trust and depend upon the 

service provider to safeguard their files, and to provide uninterrupted access to the 

files.  Difference of interpretation of the notion of data privacy, as well as potentially 

conflicting laws around the world also play havoc to the Cloud storage ecosystem. 

Users may inadvertently have their privacy compromised if they place their files in 

the wrong geographical locations. 

Users can also benefit from placing files on the Cloud, including potential cost 

savings for start-up companies, improved global resource utilization, having world 

wide access to their files, having file versioning and recovery services, having data 

sharing services in team settings, and having an easy way to apply the principle of 

off-site data protection. 

We also presented a survey of the most popular internet service providers’ plans and 

rates in Canada and USA, as well as the costs charged by the most popular Cloud 
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storage providers for data stored beyond the free storage quota to show the financial 

costs a user encounters when using Cloud storage. We compared the costs to using 

local disk storage, and also discussed the economic effect of Storage Vendor Lock-in 

where users cannot move their data between service providers without having to pay 

a heavy fee. 

At the intersection of the risks, benefits, and costs, we can see that users must juggle 

a lot of factors to optimally take advantage of Cloud storage. The next chapter 

concretely defines this problem. 
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CHAPTER 4: CLOUD STORAGE PROBLEM 

DEFINITION 

From the analysis presented in Chapters 2 and 3, we can see that users have very 

little control over their files and data stored on the Cloud, and are at the whims of 

Cloud storage providers in terms of service availability, data security, data privacy, 

and pricing. At the same time, there are numerous advantages to storing data on the 

Cloud, such as ease of access, off site back-ups, potential cost savings, and improved 

resource utilization. Users currently must make a conscious choice of accepting and 

facing these drawbacks in order to reap the benefits of storing data on the Cloud. 

Tackling this trade-off is the central problem for Cloud storage. 

We want to design a sound solution from a user’s perspective to resolve this trade-off 

in such a way that minimizes or eliminates as much of the problems as possible, 

while maintaining or enhancing the benefits of using Cloud storage. An ideal solution 

would eliminate all of the problems and enhance the benefits, so that users would no 

longer have to make this trade-off when they want to store files on the Cloud. 

To summarize the analysis, the risks and problems with using Cloud storage are: 

1. Malicious attacks can come from anywhere around the world, often targeting 

the authentication mechanism of Cloud storage providers 

2. Weak access control mechanisms may allow users to see other users’ data 

3. Routine maintenance or outages can cause inconveniences and delays 



Chapter 4: Cloud Storage Problem Definition 

50 

4. Data loss and corruption risk is always present due to equipment failure and 

potential natural disasters 

5. Implicit trust of storage providers necessary, but problematic as the control of 

the data resides on the service provider, while the responsibility for the data 

rests on the user 

6. Physical location of the Cloud data is unknown to the user, and users have no 

control over the physical placement of their data 

7. Economic and business models of Cloud providers often create problems of 

data lock-in and an inability for users to move data from one provider to 

another without paying high fees 

8. Changing pricing between Cloud providers is hard to track for users, and hard 

to optimize for a least-cost strategy since data move is currently necessary to 

take advantage of lower prices 

9. Requirements of local and international law may inadvertently violate a 

person’s reasonable expectation of data privacy 

The benefits of utilizing Cloud storage are: 

1. Pay only for the amount of data storage used 

2. Flexible storage quotas, adjusted on-demand 

3. Lower upfront costs, highly beneficial for start-up companies 

4. Reduced management and maintenance fees 

5. For short term projects, no need to worry about reselling hardware 

6. Improved resource utilization, saving energy for the world 

7. Access data from anywhere around the world 

8. Automatic storage of data backups and revisions 



Chapter 4: Cloud Storage Problem Definition 

51 

9. Ease platform for data sharing between users 

10. Changes are synchronized between a team when data is modified by team 

members 

11. An application of off-site data protection principle, allowing users to recover 

data easily 

Of the nine problems and risks outlined, the thesis will address all of them with the 

exception of problem 9. As previously discussed in Section 3.1.5 the solution to legal 

requirements necessitates political dialogue in both domestic and international 

settings to develop new standards and interpretations of the meaning of data privacy 

as well as tools for enforcement and compliance in an every increasingly online and 

connected world. 

The next chapter presents the approach and methodology for solving the trade-off 

problem, along with critical analysis of the approach itself. 
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CHAPTER 5: APPROACH AND 

METHODOLOGY 

A promising solution has been proposed by Abu-Libdeh et al. in their paper “RACS: A 

Case for Cloud Storage Diversity” [3]. In the paper, they present an approach to the 

trade-off problem by applying erasure code algorithms to split a user’s files into 

numerous pieces, add redundancy to these pieces to tolerate losses, and then send 

the file pieces to different Cloud providers. The focus of their paper was to resolve 

the economic issues of Cloud storage.  

We adopt this approach, and propose a more comprehensive system design 

Framework to resolve not only the economic issues but also the security, reliability, 

and privacy issues of storing data on the Cloud. The Framework provides a sound 

template design for a practical storage software system, which users can run on their 

computers and mobile devices to reap the benefits of using Cloud storage without 

having to worry about the problems mentioned Chapter 4. 

This chapter focuses on analyzing the approach, while Chapter 6 presents the 

Framework and detailed analysis of its components. This chapter begins by defining 

a formal model of erasure code file transformations in Section 5.1 to explain how 

erasure codes work in general. We then analyze Abu-Libdeh et al.’s approach and 

research work in Section 5.2 where we will mention the weaknesses of the approach. 

We explain a critical security problem which their work did not consider in Section 

5.3. Section 5.4 shows how such an approach can solve the trade-off problem, and 

Section 5.5 examines how the approach can augment and enhance the benefits of 
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using Cloud storage. Lastly Section 5.6 compares the approach to the current best 

practice from a user’s point of view. 

5.1 FORMAL MODEL OF ERASURE CODE FILE TRANSFORMATIONS 

Traditionally, erasure codes are used to add redundancy to small pieces of data, and 

then capture them in some form of a digital “container”. The container could be a 

single file, a set of files, a single network packet, or multiple packets, etc. This thesis 

focuses on using a set of equal size files as the container. Erasure codes add 

redundancy to the data in the encoding transformation process, and reconstruct the 

data in the decoding transformation process. Both processes are mathematically 

related. Only a subset of the file pieces are used since redundancy was added during 

the encoding transformation. 

 

Figure 3 – Erasure Code File Transformation Model 

There are many erasure codes in literature and in practice, each of them employing 

either different mathematical principles, or different configurations of the same 

principles [48] [49] [50] [51] [52] [53]. A general notation of (N, K) is used within 
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literature to denote the number of file pieces (N) generated in each encoding 

transformation, as well as the number of pieces (K) needed to reconstruct the original 

file in the decoding transformation. Generally, K is less than N to allow for (N – K) 

redundancy pieces. This is visualized in Figure 3, where a user’s file is encoded into N 

file pieces denoted as X
1
, X

2
 … X

K
 … X

N
. Some codes must use a specific labeled subset 

of K pieces for the decoding transformation, while other codes can use any subset of 

K pieces. Generally speaking, the use of an erasure code involves more than simply 

implementing the transformation algorithm as proper management of the file pieces 

is necessary before any decoding transformations can occur. This often involves 

labeling all of the file pieces and capturing this information in a metadata file. 

Literature refers this type of mathematical transformation algorithms by various 

names in the domains of network coding, cryptographic systems, and storage 

systems. They have been called (N, K) channel codes, (N, K) error-correcting codes, (N, 

K)-threshold schemes, distributed key systems, secret sharing systems, and so on. 

The varied names are given to facilitate discussions with a focus in their respective 

domains. Erasure Code is another name for the same thing, commonly used within 

network coding and storage systems domains. The notion of an Erasure Code implies 

both the mathematical and computational algorithm used by the code, as well as the 

procedural use of the code. Erasure Codes must be configured for specific, valid, (N, 

K) pair values to be used. Whenever literature directly refers to an erasure code by 

name, they often imply a focused discussion on the algorithm aspect. When they 

refer to the code by a specific (N, K) configuration, they often imply a focused 

discussion on that configuration. This thesis focuses on both aspects of an Erasure 

Code, but they are discussed separately. 
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5.2 REDUNDANT ARRAY OF CLOUD STORAGE SYSTEM 

Abu-Libdeh et al. [3] of Cornell University approached the problem from an 

economics and data loss tolerance point of view. They developed a software system 

called Redundant Array of Cloud Storage (RACS) which uses the Reed-Solomon code 

[53] as its erasure code. Their efforts aim to give users the ability to tolerate service 

outages and data loss, adapt to ongoing price changes and provider availability in the 

marketplace, and control total storage costs. To the best of the author’s knowledge, 

this is the first system which applies the approach specifically on Cloud storage 

problems, which made it interesting as a new application domain. 

Abu-Libdeh et al. discussed two economic benefits and one security benefit which 

this approach can offer, namely that it can help users avoid vendor lock-in, reduce 

the cost of switching service providers, and tolerate provider outages and failures. As 

validation and proof, their studies included a cost estimation and trace driven 

simulation of moving all of the data contained in the Internet Archive website to a 

new storage provider. Their simulation results showed up to 80% cost savings for 

service provider migration tasks. However, for normal uploads and downloads of 

files it showed an average increase of 50% in costs, corresponding to the efficiencies 

of their chosen Reed-Solomon code configurations. They did not specifically mention 

the reasons for choosing Reed-Solomon as the erasure code. 

A feature of RACS is its ability to operate through multiple running instances of the 

program, in parallel, within a server environment using Apache ZooKeeper as a 

distributed synchronization system between each instance. In this set up, RACS can 

service multiple users at the same time and avoid performance bottlenecks caused by 
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each instance since user requests can be serviced by another available instance. The 

architecture of RACS is shown in Figure 4. 

 

Figure 4 – Redundant Array of Cloud Storage Architecture [3] 

Each RACS proxy instance contains a functional file transformation system, along 

with the management systems and communications systems to send the file pieces to 

various Cloud storage providers. Their system was implemented with a focus on 

being used on the Amazon S3 storage system. They wrote Repository Adaptors, or 

simply software APIs, which allow their system to work with other storage providers 

using a uniform interface. 

The paper mentions the use of “policy hints” to capture user preferences of which 

storage providers to use. It also mentions a key point to combine user preference 

with the need to load balance between the storage providers in order to achieve 

optimal economic freedom and data security. 
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A software performance analysis was also carried out by Abu-Libdeh et al. showing 

encoding throughput of 95MB/s and decoding throughput of 151MB/s using an open 

source erasure coding library called Zfec on a 2GHz Intel Core 2 Duo powered 

computer. Zfec includes an implementation of the Reed-Solomon Code. Relative to 

end users, these throughput rates are fast since the expected internet throughputs 

are much slower. As a software system installed on end users’ computers, the 

performance bottleneck would be on their internet connection. In corporate settings 

where high speed and high performance networks might be common, the 

throughputs might cause delays if the network supports 1 Gigabit/s or higher 

bandwidths. 

There were three main weaknesses of the approach mentioned in the paper. First, the 

total storage space used increases by a factor of N ÷ K, which results in higher 

transmission costs and storage costs. Second, the number of requests issued to the 

Cloud increases by a factor of N since every file piece is treated and considered to be 

a file by the storage provider. Operations such as creating and deleting files must 

wait for all requests to complete. Lastly, the system introduces latency as all files 

must undergo encoding and decoding transformations. 

This thesis makes a number of contributions and improvements to the work done by 

Abu-Libdeh et al. First, we examined in much more depth the security issues and 

economic problems of using Cloud storage in Chapters 2 and 3. In Sections 5.4 and 

5.5, we will show how to resolve all of these problems using the approach. Second, 

the research work from Abu-Libdeh et al. does not state how they manage their 

metadata on the files, for which this thesis proposes a solution in the form of using a 

peer-to-peer network to replicate the metadata across a user’s devices. Third, their 
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research work does not state why they specifically chose Reed-Solomon coding as the 

erasure code. This thesis examines families and classes of erasure codes in Chapter 6 

to study the security properties and performance of different erasure codes, as well 

as their applicability towards Cloud storage problems. Lastly, we contrast this 

approach to traditional remote storage paradigms in Chapter 7. 

5.3 THE DICTIONARY ATTACK PROBLEM 

Encoding files into file pieces can still present a cryptographic security problem, one 

which was not discussed by Abu-Libdeh et al. Given a sufficient number of file pieces 

less than the threshold K and external knowledge about the data, one could plausibly 

guess at the data of any missing pieces with very high accuracy. Any missing pieces 

required to meet the threshold could be deduced without having to obtain them from 

the Cloud. This is called the dictionary attack in security research. Consider the 

following example: 

Let the original file contain the word PASSWORD, and consider that it is split into 

four pieces consisting of PA, SS, WO, and RD. If an attacker obtains any 3 of these 

blocks – for example __SSWORD, PA__WORD, PASS__RD, or PASSWO__ – the 

remaining block can be guessed quite easily using an English language dictionary 

search. In this case, the attacker has external knowledge about the data, namely that 

the contents are English words and that in total there are 8 characters. If an attacker 

obtains any 2 of the blocks – for example ____WORD, __SS__RD, or __SSWO__ – 

guessing becomes more difficult. Some plausible English words fitting ____WORD 

might be BUZZWORD or FOREWORD. If the attacker did not know how many 

characters there were in total, then words such as CROSSWORD, SWORD, and 
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AFTERWORD are also plausible guesses. Having more plausible results increases the 

chances of the attacker failing to obtain the true original data. 

Some erasure codes will encode a file in such a way that none of the file pieces 

contain, directly, the text or data in the original file. For the above example, these 

types of erasure codes would encode PASSWORD to another set of characters, such 

as WR, SL, AB, and EK. These codes have the Confusion security property, while 

others such as Reed-Solomon Codes do not have the property. 

5.4 ADDRESSING SECURE CLOUD STORAGE PROBLEMS 

By splitting and spreading out the pieces of the file to multiple Cloud storage 

providers (at least two providers), the problems outlined in Chapter 4 can be 

addressed. We examine each problem one at a time: 

1. Malicious attacks can come from anywhere around the world, often 

targeting the authentication mechanism of Cloud storage providers 

An attacker must obtain at least K of the N pieces of files in order to accomplish his 

or her objective of obtaining the original file, presuming that this original file 

contains highly valuable and sensitive information to both the user and the attacker. 

If the N pieces are spread out in such a way that we ensure no single Cloud provider 

has K pieces, then the attacker must compromise at least as many Cloud providers at 

the same time as it takes to obtain the K pieces necessary. By convention, this is at 

least two providers. If the attacker were to attempt to break the authentication 

mechanisms of the providers at different times, then it becomes and ever 

increasingly difficult for every subsequent attack as companies and users will have 

the time to react to the first attack to further safeguard their systems and data. 
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Further, it can also be presumed that the attack against one provider will not work 

against another provider without significant adaptation. While there are common 

security best practices used by all companies, the specific security architecture of 

each provider is different, which necessitates a different way of attacking that 

provider. While it is theoretically impossible to prevent simultaneous attacks, nor the 

complete elimination of this risk, the Framework will further minimize the risk of 

malicious attacks as it increases the amount of work necessary for attackers before 

they can achieve their objectives, compared to the current practice of putting all of 

the data on a single Cloud storage provider. 

2. Weak access control mechanisms may allow users to see other users’ data 

When a Cloud storage provider has a weak access control mechanism, the ultimate 

solution is for that provider to modify and improve their mechanism so that users 

cannot see each other’s data. Since the Framework only allows less than K file pieces 

to be stored on each Cloud provider, other users would not be able to reconstruct the 

original file without obtaining the remaining pieces from another compromised 

Cloud storage provider. It is unlikely for any two Cloud storage providers to have the 

same access control weaknesses, as their architectures would have some differences 

to avoid legal copyright problems. Further, even if two Cloud storage providers 

would have such weaknesses, it is unlikely that they would have it at the same time. 

3. Routine maintenance or outages can cause inconveniences and delays 

System maintenances and temporary outages do occur with Cloud storage providers 

for many reasons. Sometimes their entire system must undergo an update at the 

same time, whereby they cannot schedule piecewise updates to their subsystems. 
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Sometimes it could occur due to electrical outages or other unforeseen events. The 

management plan and system architecture of the provider’s service often have the 

most direct impact towards the frequency maintenance activities. Thus the direct 

solution to reducing outages and maintenance rests with better management plans 

and architectures that allow for piece-wise upgrades to their systems. When a 

maintenance or outage occurs for a specific Cloud provider, the Framework can 

reconstruct the pieces stored in that provider by downloading the necessary file 

pieces from the other Cloud providers. Erasure codes not only allow the 

reconstruction of the entire file, but also the pieces. Some of the code algorithms will 

require a complete reconstruction of the file followed by re-splitting the file into new 

pieces, while other codes can allow piece wise reconstruction using specific pieces. By 

reconstructing the pieces stored in the Cloud provider experiencing an outage, the 

user can continue to have access to the original file and data while the Cloud 

provider fixes their systems. 

4. Data loss and corruption risk is always present due to equipment failure 

and potential natural disasters 

Piecewise file reconstruction can also be used to safeguard against complete data 

loss or corruption due to equipment failure and damaging natural disasters. 

Complete data loss can be treated the same as a maintenance outage, whereby the 

system simply reconstructs the missing pieces. The system can compute the hash 

value of each file piece, and use that to check against the stored hash values in the 

metadata for those pieces to verify that the pieces have not been modified while 

being stored on the Cloud. If any checks fail, the corrupted pieces can be 
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reconstructed using the remaining file pieces as long as K total pieces or more are 

intact. 

If less than K total pieces remain intact, then the system will not be able to 

reconstruct the file from the pieces, but if an original copy was retained by the user 

then it could reconstruct the pieces by splitting the original file again. 

5. Implicit trust of storage providers necessary, but problematic as the control 

of the data resides on the service provider, while the responsibility for the 

data rests on the user 

The Framework can treat the file and data to help it tolerate against attacks on a 

storage provider, against weaker system design where user’s files might be viewed by 

other users, against system outages, and against total data loss and corruption of a 

single provider. Depending on the way the system distributes the specific file pieces, 

the files can tolerate problems present in multiple providers at the same time. For 

example, where one provider experiences accidentally deletes a user’s file piece, 

while another provider experiences an equipment failure. However, as K file pieces 

must remain intact, some subset of the total number of providers must remain 

functioning. The implicit dependency and need to trust a single storage provider can 

effectively be eliminated; however the ecosystem of providers must still be 

trustworthy and generally reliable. Since the user can recover all data from the K file 

pieces, they now have the ultimate control over all of their data. If all providers are 

neither reliable nor trustworthy, the Framework would work better by sending the 

file pieces to multiple local storage mediums, such as USB flash drives, to safeguard 



Chapter 5: Approach and Methodology 

63 

against equipment failure. In such a case, Cloud storage itself would have a systemic 

issue within the entire ecosystem. 

6. Physical location of the Cloud data is unknown to the user, and users have 

no control over the physical placement of their data 

The specific physical location of a user’s data within a Cloud is very much 

undeterminable from a user’s perspective. On the one hand, the lack of such 

knowledge safeguards users from any potential physical attacks of data centers, 

since attackers wouldn’t know which data center to target to steal hard drives. On the 

other hand, most of the major Cloud storage providers are expanding worldwide with 

physical data centers in all major continents, and even choosing a provider does not 

necessarily imply choosing the continents, countries, or cities of where the data 

would be stored. However, numerous small Cloud storage providers exist, providing 

storage services tailored for specialized markets, for example CareCloud is a specific 

Cloud storage provider for health care data in USA, which claims to be HIPPA 

certified for US law requirements [54]. HIPPA specifically requires providers to track 

the physical movement and locations of any healthcare data within their systems 

[55], and to be able to audit and verify such movements [56]. 

The Framework takes into account the geographic locations of each Cloud storage 

provider, which can give users control of the physical placement of their data to 

some degree. Efforts to track and locate all of the physical locations of the data 

centers for each Cloud provider may be necessary in order to completely address this 

problem, however the efforts would be exhaustive if done by manual labour, and the 
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correctness of the report will deteriorate through time as companies expand or 

relocate their data centers. 

7. Economic and business models of Cloud providers often create problems of 

data lock-in and an inability for users to move data from one provider to 

another without paying high fees 

Recall the scenario discussed earlier in Section 3.3.4, where the user has their data in 

the more expensive of two Cloud storage service providers. The user is faced with a 

dilemma of either paying higher long term costs by staying with their current 

provider, or an expensive transfer fee (outbound and inbound fees from providers 

and download and upload fees from internet service provider) to move their files to 

the less expensive of the two Cloud storage providers for long term savings. The 

Framework lets the user reconstruct the file pieces stored on the expensive provider 

locally on their computer, and then upload these directly to the less expensive 

provider. The user doesn’t have to pay a download fee or an outbound data fee in 

order to take advantage of the savings. Although an upload fee and inbound data fee 

is still present, the total cost is less. The system can compute the time period for 

which the new storage cost plus move cost is equal to the storage cost of the former 

storage provider. Intuitively, storing a file on the Cloud any time after this time 

period will result in cost savings compared to staying with the current provider. A 

move can be made if the file is expected to be stored in the Cloud longer than the 

computed time period. We present this in further detail in Section 6.5.1. The 

reduction of the total cost is in one sense an economic freedom which the user can 

take advantage of through the Framework. 
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8. Changing pricing between Cloud providers is hard to track for users, and 

hard to optimize for a least-cost strategy since data move is currently 

necessary to take advantage of lower prices 

The Framework will automatically track Cloud storage and internet prices, thus 

alleviates the need for the users to track the price changes. With all the available 

pricing data, the system can intelligently formulate a dynamic least-cost strategy 

balancing pricing, storage, and security requirements. Data move in the form 

discussed here in point 7 is still necessary to take advantage of lower storage prices, 

but the system will intelligently decide when and where to move the files according 

to all of the requirements. 

5.5 PRESERVING CLOUD STORAGE BENEFITS 

The Framework preserves all existing benefits of storing data on the Cloud, and also 

enhances some of the benefits in intuitive ways. The benefits outlined in Chapter 4 

are examined point by point below to see how the system will preserve or enhance 

the benefits. 

1. Pay only for the amount of data storage used 

The Framework will still allow the user to pay only for the amount of data storage 

used on the Cloud. Although the system does compute extra file pieces for the 

advantages of redundancy and security, the location and placement of these pieces 

could be on or off the Cloud. It is a flexible option for the user as to how many file 

pieces should be placed on the Cloud, and as a result how much costs they can 

expect by placing the file pieces on the Cloud. For example, if we only put less than K 

file pieces on the Cloud where K pieces constitute the size of the original file, then 
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the system allows the user to save on costs by not having to put as much data on the 

Cloud compared to using Cloud storage in the traditional sense. 

2. Flexible storage quotas, adjusted on-demand 

Since the Framework aims to distribute the file pieces across a number of storage 

providers as a security principle, indirectly this allows the user to not need to request 

for higher storage quotas from each provider, and generally remain lower in costs. Of 

the surveyed storage providers shown in Section 3.3.2, only Amazon and Microsoft 

has lower effective price per GB stored as a user requests for a higher quota. The 

other providers charge the same unit price at any storage tier. All of these providers 

have a free storage tier, thus the system can optimize costs by distributing the file 

pieces in such a way that it wouldn’t use more than the free storage quota of space 

from each provider until there is no more free space remaining. The system can 

intelligently take advantage of the free storage spaces available in the Cloud storage 

market. 

3. Lower upfront costs, highly beneficial for start-up companies 

With sufficient market research and indexing, the Framework will contain a wealth of 

knowledge of the pricing, free storage limits, security features, and legal restrictions 

set by each storage provider for the data they host on their Clouds. Within this data 

set, the system could be used as a recommendation system where it suggests to the 

user where to place their data, how much storage it needs, and the costs to expect. 

From the perspective of a start-up company, the system could be advantageous in 

keeping start-up costs low by intelligently finding additional free or low cost storage 
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tiers and providers with suitable requirements for the business as its data storage 

needs grow. 

4. Reduced management and maintenance fees 

The aim of the Framework is to be as intelligent and automated as possible in 

managing the distribution and reassembly of the required file pieces, thus very little 

management work or interaction would be needed from the user once some initial 

configuration work is completed. Like most other existing Cloud storage tools and 

solutions, automation and machine intelligence reduces the amount of management 

and maintenance work on the overall file system which allows users to save time and 

companies to save costs. 

5. For short term projects, no need to worry about reselling hardware 

The Framework continues to allow users and companies not have to worry about 

reselling storage hardware as all of those costs are bear by the Cloud storage 

provider. The implementation of the system can be accomplished by a wide range of 

software languages for various architectures and platforms. The user does not need 

to invest in any specialized hardware in order to use this Framework.  

6. Improved resource utilization, saving energy for the world 

One of the main reasons for users to pre-emptively purchase a very large storage 

capacity hard disk is to accommodate any unexpected or unknown future storage 

needs. For portable computers it also makes sense to increase the storage capacity 

available given that there is usually space only for one or two hard disks per laptop. 

For desktops or older computers, it makes sense to consolidate many smaller 
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capacity hard disks into one large one for the purpose of saving energy and reducing 

weight. The use of Cloud storage extends the capacity limit since most files could be 

offloaded onto the Cloud. In one sense, a storage system that intelligently capitalizes 

on this flexibility can even maximize the utilization of local storage by finding the 

files that could be offloaded onto the Cloud and moving them automatically. Not 

only can the user have a virtually unlimited storage space, but the local hard disks 

can become smaller in actual storage capacity, reducing the global demand for the 

scares resources needed to produce so many high capacity but underutilized hard 

disks. Likewise, sending more files, including the redundant file pieces to the Cloud 

allows a Cloud provider to maximize their storage disk utilization and increase 

revenue. 

7. Access data from anywhere around the world 

Since the Framework uses metadata to keep track of where the file pieces are and the 

metadata is replicated across the user’s devices through a peer-to-peer file system, 

the user is guaranteed to have access to their data anywhere around the world as 

long as they have an internet connection. 

8. Automatic storage of data backups and revisions 

The Framework can work in conjunction with already available backup and revision 

capable Cloud storage systems to archive versions of a file. In such settings, the 

Framework will simply split the updated file into the same number of resultant file 

pieces as the original file, and name them accordingly such that the Cloud storage 

systems register the new file pieces as a revision of their corresponding old file 

pieces. 
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Some erasure code algorithms can work with incremental changes to an original file, 

by computing the respective changes to each of the resultant file pieces. Using only 

these algorithms, the system can upload the new file pieces to the storage providers 

and add a corresponding entry in the metadata to track the revision of the file. This 

approach restricts the list of applicable algorithms, but can be used across any 

number of Cloud storage providers as the revision capability is provided by the 

Framework instead of the Cloud providers, and this approach is likely the most 

efficient in terms of the use of storage space. 

9. Ease platform for data sharing between users 

Users who share the same file will need to exchange the metadata and use the same 

storage system. Since the metadata is shared through a peer-to-peer network, the 

authorized users’ devices and computers can be added as peers to the file’s P2P 

network in order to receive the metadata. When sharing for specific files or folders 

stops, the Framework disconnects the relevant peers from the P2P networks and 

gracefully handles the files. 

10. Changes are synchronized between a team when data is modified by team 

members 

The metadata can also be used to track changes, in such a way that the team 

members only need to download the K pieces necessary to reconstruct the new 

updated file instead of all pieces. 

11. An application of off-site data protection principle, allowing users to 

recover data easily 
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The Framework further enhances a user’s ability to recover data through the 

application of the off-site data protection principle. Not only will it allow the user to 

tolerate their own hardware or system failure, but also failures of individual Cloud 

storage providers. As long as K pieces remain intact anywhere around the world, the 

user can recover their files. 

5.6 CURRENT USER BEST PRACTICES 

From a user’s point of view, the current best practice is to simply encrypt all their 

files before putting them on the Cloud. This is often advocated by many consumer 

websites and blogs [57] along with suggestions and promotions of specific 

encryption software. These blog posts serve as a good means to raise awareness of 

the problems of Cloud storage, stimulate community discussions, and generally 

educating consumers on the ideas of encryption. However, there are a number of 

drawbacks to this methodology. The user must learn about encryption systems to 

properly apply encryption to their files, or implicitly trust the encryption software. 

Encrypting files involve selecting an appropriate encryption algorithm and system, 

determining the level of security needed and select a proper length of an encryption 

key corresponding to the level, and then apply the system in the proper procedure to 

encrypt the file. The user must also manage the encryption keys, and trust whomever 

they share the keys with if they want to share the files. If a user loses his or her 

encryption key, there is a likely chance that they will never be able to decrypt their 

files. Even if these steps were taken, it does not guarantee that an attacker won’t 

obtain their data. If an attacker obtains a complete copy of the encrypted file, they 

may expend as much computational resources and time as needed to decrypt the file 

through brute force or other techniques.  
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The erasure code approach solves this problem by spreading the pieces among many 

Cloud providers, forcing an attacker to execute coordinated and concurrent attacks 

to multiple providers. This increases significantly the difficulty and amount of work 

necessary for an attacker to gain access to the data. 

5.7 CHAPTER SUMMARY 

This chapter presented the approach to solve the Cloud storage problem which 

applies erasure code algorithms to split a user’s files into numerous pieces, add 

redundancy to these pieces to tolerate losses, and then send the file pieces to 

different Cloud providers. The approach is an adaptation of the approach used by 

Abu-Libdeh et al. in their RACS system. We presented a formal model of erasure code 

file transformations to explain how erasure codes work at a high level, then we 

analyzed Abu-Libdeh et al.’s research work. We showed how their work was missing 

critical analysis in terms of data security by presenting the Dictionary Attack 

Problem, which shows a critical vulnerability in their system as attackers can guess 

missing file pieces given that they obtain a sufficient amount of data pieces. 

We then addressed point by point how the approach itself can be used to resolve the 

risks and challenges of using Cloud storage, whilst enhancing the benefits. We also 

analyzed the current best practices for users, showing how despite the benefits of 

increasing awareness and educating the population about the risks of Cloud storage, 

the best practices still has vulnerabilities. 

In the next chapter, we apply the approach by presenting the design and in-depth 

analysis of a system Framework that resolves the Cloud storage problem.  
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CHAPTER 6: CLOUD STORAGE 

FRAMEWORK 

Designing a secure storage software Framework requires a thorough analysis of each 

of the components of the Framework. This chapter begins with a presentation and 

discussion of the components of the Framework in Section 6.1. The most critical 

component is the erasure code transformation system which carries out the encoding 

and decoding operations on files. The analysis metrics for erasure codes are 

presented in Section 6.2, followed by an in depth analysis of seven erasure codes in 

Section 6.3. The other components are described in Sections 6.4 and 6.5 respectively, 

followed by the chapter summary in Section 6.6. 

6.1 GENERAL MODEL OF FRAMEWORK 

A Cloud storage Framework is a template software system which takes some user 

files(s) as input, and transforms them into a proper set of file pieces as output to be 

stored on the Cloud, in such a way that some redundancy is added to afford data 

loss, corruption, service outage, or equipment failure. A high level representation is 

shown in Figure 5. The Framework has four high level systems. The erasure code 

transformation system encodes and decodes user files into file pieces (X
1
, X

2
, X

3 
… X

N
). 

The Cloud storage management system selects Cloud providers and manages the 

upload and download of the file pieces to a number of Cloud providers. The choice of 

Cloud storage providers depend on their price, availability, geography, security, and 

other metrics. The choice is independent of the encoding and decoding 

transformations. Thus the system is able to tailor the choices of storage providers 
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towards any number of requirements, whether it is for law compliance, cost 

reduction, data security, or a combination thereof. 

 

Figure 5 – General Model of Cloud Storage Framework 

In fact, the choice of a storage provider could also include local and offline sources 

such as the user’s hard drives, memory cards, rewritable optical disks, and USB 

drives. For the purposes of discussion we consider only Cloud providers as storage 

providers, but the Framework is not constrained to only use online providers. In fact 

the substitution can be advantageous in certain scenarios. 

Since K out of N file pieces are required for the decoding transformation, the storage 

management function will always put fewer than K file pieces in a single Cloud 

storage provider for the security of the user’s data. More strictly, the system will put 

fewer than R = (N – K) file pieces in each Cloud provider so that the complete loss of 

a provider does not affect the ability to recover or reconstruct the original file. The 

system can enforce a constraint that R < K, due to these two security and reliability 

principles. 
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The Framework will create some metadata in the form of a file which captures the 

information of which specific erasure code was used to transform the file, and which 

Clouds are storing the file pieces. Metadata files are synchronized across the user’s 

devices by the Metadata Synchronization System through a peer-to-peer network 

consisting of only the user’s devices. The metadata files are replicated across the 

peer-to-peer network so that the user always has the metadata on hand, along with 

the system software, to access their files on the Cloud. The system assumes that at 

any time, at least two peers are alive and can connect to each other to replicate the 

metadata. 

Lastly, the Encryption System applies file level encryption to the metadata files, user 

files, and file pieces. Depending on the Framework configuration, encryption could 

either be applied before transformation operations. No matter what, the Framework 

requires file pieces to be encrypted prior to being uploaded to the Cloud. 

6.2 ERASURE CODE ALGORITHM PROPERTIES AND METRICS 

The core component of the Framework is the erasure code used to encode and 

decode a file. This single component affects the security of the file, the potential 

costs to store the file, and the performance of the system. Since many erasure codes 

exist, it is worthy to analyze and compare a chosen representative sample of erasure 

codes to see their security properties, algorithmic properties, efficiencies, and 

theoretical performance limits in the domain of splitting and joining large size files. 

We focus on the algorithm aspect of each code in this section. 

A set of erasure codes has been chosen based upon their popularity of use in 

industry, as well as their underlying mathematical principles. This selection criterion, 
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although not explicitly rigorous, follows the trends within the erasure codes research 

community. The majority of literature within this field can be traced back to a few 

canonical erasure codes, where earlier research works define and improve upon the 

codes from a theoretical point of view and latter research works improve the run-

time performance of the codes and demonstrate their applications. The selection 

favors the canonical codes more than their refinements since the mathematics 

underlying the codes establish their algorithmic properties and theoretical 

performance limits. Comparing codes at these limits gives the Framework a rational 

means to pick an erasure code to use, given a user’s situation or preference. Users 

may prefer to have their overall system run fast, which implies favor towards codes 

which encode and decode in linear time. Users may also prefer codes which are 

highly flexible, which implies favor towards codes that can be customized to produce 

any K number of redundant pieces relative to some division of the original file into M 

pieces. In practice, any implementation of the Framework can incorporate the latter 

refinements for each type of erasure code to maximize the system’s performance.  

The very first erasure code was invented by Richard Hamming in 1950 [48] using 

parity check in fixed positions to allow for either the detection or automatic 

correction of bit errors. Parity check is implemented in computers via the Exclusive 

OR (XOR, ⊕) operation. In fact, many modern erasure codes are based upon the use 

of XOR in different arrangements, for example RAID-5 erasure algorithm and Low 

Density Parity Code (LDPC). Shamir’s Secret Sharing Algorithm is based on 

polynomial interpolation. Michael Rabin’s Information Dispersal Algorithm (IDA) is 

based upon a matrix multiplication and matrix inversion process. Reed-Solomon 

codes are based upon polynomial multiplication and division over a Galois Field. 
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Recall from earlier in Section 2.2.1 a few important definitions. We defined K as the 

number of file pieces split from an original file, R as the number of redundancy file 

pieces added by an erasure code algorithm, and N as the total number of file pieces 

where N = K + R. Also, recall the definitions of Resultant Size Factor, Redundancy 

Factor, and the Redundancy Minimization Functions as follows: 

                       
   

 
 

 

 
 

                   
 

 
  

 

   
 

       
 

 
 

We can view the Framework as follows: for a given erasure code algorithm, a desired 

redundancy factor RF, and an appropriately chosen number of original file pieces K, 

the algorithm will add R redundancy file pieces. 

With respect to a chosen RF, each algorithm can add a different number of redundant 

file pieces, or add them differently. The aim of Section 6.3 is to compare different 

algorithms for their algorithmic properties and theoretical performance at different 

chosen RF values, as an equalizing factor. RF directly corresponds to the security and 

reliability of the file, namely how many pieces can be lost in the set of N pieces 

before the file becomes unrecoverable through a decoding operation. 

In this section, we begin by first defining a few constant properties which all 

algorithms share, then describe all comparison metrics point by point to show why 

these metrics are important to consider for the problem. 
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6.2.1 COMMON ALGORITHM PROPERTIES AND MATHEMATICAL 

CONSTANTS 

We use |F| to denote the size of the original file. A file F will be divided into K equal 

size pieces by any erasure code algorithm. We denote the size of each file piece as |K|. 

Logically, the size of each file piece is the size of the file divided by K. As such one 

constant holds throughout all erasure code algorithms: 

Equation 5 – File Piece Size Constant 

| |  
| |

 
 

Further, while the number of redundancy file pieces can change for each algorithm, 

we hold the size of each piece constant and to be the same as each original file piece, 

that is: 

Equation 6 – Redundancy File Size Constant 

| |  | | 

This constant property will become evident in Section 6.3 as we examine each 

algorithm in detail. We can further denote the total size of the resultant set of file 

pieces as |N|, which can be calculated as follows: 

Equation 7 – Resultant File Size 

| |  | |    | |    

6.2.2 ALGORITHM ANALYSIS METRICS 

There are 14 important metrics which we use to analyze each of the seven erasure 

codes in order to determine their properties, efficiencies, and suitability for solving 

the Cloud storage problem. The number of erasure codes in literature and in practice 
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can be countless. This set of metrics can be used by interested researchers and 

readers to analyze other erasure codes for their suitability to this problem.  

Let us define the algorithm comparison metrics point by point as follows: 

1. File Reconstruction Threshold 

The file reconstruction threshold FT is the number of pieces within N needed to 

reconstruct the original file F. For most erasure code algorithms FT = K. 

2. File Piece Reconstruction Threshold 

The file piece reconstruction threshold PT is the minimum number of pieces within N 

needed to reconstruct one other piece within N. 

3. Resultant Space 

The resultant space is the total space taken up by a file after applying the encoding 

transformation to the file. It is the same as |N|, and is expressed in units of Bytes of 

computer data. Generally we will consider data of sizes in Megabytes (MB), Gigabytes 

(GB), Terabytes (TB), and Petabytes (PB) as these are the most prevalent size units 

found in 2014. 

4. Resultant Space Factor 

This is previously defined in Section 2.2.1. From a more intuitive standpoint, the 

resultant space factor is the size of the resultant file |N| divided by the size of the 

original file |F|. Since |N| is a function of |F|, we can express it as we have in Equation 1 

in Section 2.2.1 as N ÷ K. 
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5. Redundancy Factor 

This is also previously defined in Section 2.2.1. The redundancy factor is the number 

of redundancy file pieces R divided by the number of total number of file pieces N, 

expressed as a percentage. 

6. Encoding Time 

The encoding time is the amount of time necessary to encode a given file into its 

corresponding N file pieces. Encoding involves four steps of splitting the file into K 

pieces, and computing and creating R redundancy pieces. This is expressed as a 

function of |F|. Generally, a faster encoding time makes an algorithm better since it 

uses less CPU cycles, reducing resource consumption, and results in less waiting time 

for a user. 

7. Decoding Time 

The decoding time is the amount of time necessary to decode a given set of K file 

pieces back to the original file. This is also expressed as a function of |F|. A faster 

decoding time makes an algorithm better for the same reasons as Encoding Time. 

8. Temporary Space for Encoding 

Erasure code algorithms require a certain amount of memory or temporary file 

storage space to compute each encoding operation. This amount of space is defined 

as the Temporary Space for Encoding (TSE), expressed as a function of |K|. Lower TSE 

makes an algorithm more useful as it can be implemented in platforms which have 

less memory or disk space, such as a mobile phone. 
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9. Temporary Space for Decoding 

Similarly, erasure code algorithms also require temporary memory or file spaces for 

the decoding operation. We define this space as the Temporary Space for Decoding 

(TSD), expressed as a function of |K|. Lower TSD is desirable for the same reasons as 

TSE. 

10. Confusion Property 

Recalling the definitions provided in Section 2.2.2, an erasure code algorithm has the 

confusion property if the output file pieces have complex mathematical relationships 

to the input file, and if none of the output file pieces directly correspond to the input 

pieces. For example, a code which computes some redundancy pieces and adds them 

to the original file would not be considered to have the Confusion Property because 

the output file contains the input file in plain text, without transforming it at all. 

Such types of codes do not have a complex relationship between the output and 

input files as far as the contents of the file are concerned. 

11. Diffusion Property 

An erasure code algorithm has the diffusion property if each bit of the input file is 

involved in computing all bits of each output file piece by the algorithm. Specifically, 

Diffusion is achieved if each input bit is mathematically involved in all output bits. 

12. Partial Updates 

An erasure code algorithm has this property if for a given update operation 

performed on the original file it does not need to recompute every output piece from 

scratch in order to update the output file pieces. 
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13. Metadata Requirement – Computation Key 

A computation key is required by an erasure code algorithm if it must keep some 

numerical constants or data in the metadata file in order to mathematically perform 

the decoding procedure. An algorithm is more robust if it does not need a 

computation key, however this key can also offer an extra layer of security for the 

user since an attacker must also obtain the key before they can decode the file. 

14. Metadata Requirement – File Reconstruction Relation Table 

A file reconstruction relation table is required by an erasure code algorithm if it must 

use certain specific file pieces to reconstruct other file pieces in the set of N pieces, 

regardless of whether they are the original or redundancy pieces. More generally, an 

ordered reconstruction procedure is necessary for the algorithm to recompute the 

original file. An algorithm does not require this table if it does not require an ordered 

reconstruction. An algorithm is more robust if it does not require this table since it 

can begin reconstruction as soon as the first piece is downloaded, however it 

becomes easier for an attacker as well since it no longer needs to obtain specific file 

pieces to reconstruct the other specific pieces within the file set. 

6.3 ALGORITHM ANALYSIS 

This section begins with an introduction of each erasure code algorithm along with 

their detailed analysis in Sections 6.3.1 through 6.3.7, and concludes with a 

comparative analysis of the algorithms in Section 6.3.8. For the purpose of a naive 

comparison, the “Simple Replication” algorithm is presented first to provide a basic 

reference point for all erasure code algorithms. Technically, Simple Replication is not 

an erasure code algorithm. 
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6.3.1 SIMPLE REPLICATION 

To perform Simple Replication, users simply have to copy their original file as many 

times as they desire to achieve a particular redundancy factor. For example, if an RF 

of 50% is desired, the user copies their file once, such that 1 file out of the 2 is 

redundant. If an RF of 66% is desired, the user copies their file twice so that 2 files 

out of the 3 are redundant. 

Its reconstruction thresholds PT and FT are always 1 since any copy is a true copy of 

the original. The resultant space is the number of copies time the size of the original 

file, thus |N| = N × |F|; resulting in a RSF of |N| ÷ |F| = N. Its redundancy factor RF is (N 

– 1) ÷ N as all pieces except one is redundant. 

Mathematically speaking, every bit of an output file is the same as its corresponding 

bit in the input file. Thus, the encoding operation of creating N replicas involve a 

linear time operation to duplicate the data, and the encoding time is O(|F|). The 

decoding operation requires no computation, so the decoding time is O(1). The 

temporary memory space required for encoding is 0 since the operating system can 

manage the copy operation. The temporary memory space required for decoding is 

also 0. 

Simple replication does not have confusion nor diffusion properties since an attacker 

can obtain the data if it obtains any copy of the file. Partial updates are supported 

since only the bits that are changed in an original file need to be updated in the 

duplicate copies. Simple replication does not need a computation key, and it does not 

need a file reconstruction relation table.  
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Table 10 shows the redundancy performance of using Simple Replication. As RF 

increases, the set of files contain more redundancy which means it is more tolerant 

to errors and losses. This is generally favorable for users who want more data 

security in their files. RSF shows the cost of attaining each level of data security, 

directly showing the amount of redundancy there is in the set of files. The ratio of 

RSF to RF shows the relative cost to attain each level of data security. Intuitively, 

using as few redundant copies as possible gives us the best performance, resulting in 

a lower RSF/RF ratio. 

Table 10 – Simple Replication Configurations and Redundancy Performance 

Simple Replication is trivially fast and allows partial updates. However, it costs a lot 

of storage space compared to the use of erasure code algorithms. 

6.3.2 HAMMING CODE 

Published in 1950, Richard Hamming introduced the world’s very first erasure code 

while he was trying to solve the practical problem of allowing a system to 

automatically correct bit errors caused by analog data transmission, or noise [48]. His 

code is called the Hamming Code in literature, in honour of his name. In his original 

incarnation, known now as the (7, 4) Hamming Code, 3 error correction bits are 

Simple Replication (N, K) R N K RSF RF RSF/RF 

(2, 1) 1 2 1 2.0000 0.5000 4.0000 

(3, 1) 2 3 1 3.0000 0.6667 4.5000 

(4, 1) 3 4 1 4.0000 0.7500 5.3333 

(5, 1) 4 5 1 5.0000 0.8000 6.2500 

(6, 1) 5 6 1 6.0000 0.8333 7.2000 

(7, 1) 6 7 1 7.0000 0.8571 8.1667 

(8, 1) 7 8 1 8.0000 0.8750 9.1429 

(9, 1) 8 9 1 9.0000 0.8889 10.1250 

(10, 1) 9 10 1 10.0000 0.9000 11.1111 
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calculated and arranged for 4 data bits (D1, D2, D3, D4) according to the following 

table: 

Table 11 – (7, 4) Hamming Code Computation Table 

It is known as the (7, 4) Hamming Code because in total there are 7 bits for every 4 

data bits. Hamming Codes parity bits are set at any position that is a power of 2, that 

is bit position 2m for m = 0, 1, 2, … Each parity bit correspondingly computes the XOR 

of all bit positions which have the m least significant bit set to 1. 

In the example of Table 11, bit positions 3, 5, and 7 correspondingly have binary 

position values of 11, 101, and 111. The parity bit at position 1, with a corresponding 

m of 0, would calculate the XOR of all bits with the least significant bit having a value 

of 1, which is position 3, 5, 7. Hence, as shown, it computes the XOR of D1, D2, and 

D4. Similarly, the parity bit at position 2 with m = 1 computes the XOR of all bits with 

the second least significant bit having a value of 1, which is positions 3, 6, and 7. 

The (7, 4) Hamming Code can correct a single error bit. For example if bit 5 (D2) was 

has an error (its bit value was flipped), then bits 4, 6, and 7 can be used to compute 

D2. Mathematically, (D2 ⊕ D3 ⊕ D4) ⊕ D3 ⊕ D4 = D2 since the XOR of any bit with 

itself is 0, and any bit XOR 0 is the value of that bit. The Code then uses the other 

parity bit which D2 is involved in to check that D2 was computed correctly, in this 

case parity bit 1. Let’s denote the newly computed D2 value as D2’. It checks that  

P1 = D1 ⊕ D2 ⊕ D4 = D1 ⊕ D2’ ⊕ D4. In this code, 3 bits are used to compute or 

Bit Position 1 2 3 4 5 6 7 

Bit Position Binary Value 1 10 11 100 101 110 111 

Bit Type Parity Parity Data Parity Data Data Data 

Value D1 ⊕ D2 ⊕ D4 D1 ⊕ D3 ⊕ D4 D1 D2 ⊕ D3 ⊕ D4 D2 D3 D4 
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recompute another bit, and 4 bits are used to validate each bit through two 

equations. 

Table 12 shows the computation table for the (15, 11) Hamming Code, where each 

parity bit is computed as the XOR of the data bits which are marked with an X. 

Table 12 – (15, 11) Hamming Code Computation Table 

Generally, a Hamming Code with m parity bits will allow for 2m – m – 1 data bits, and 

the total number of bits is 2m – 1. Valid Hamming Code arrangements include: (3, 1), 

(7, 4), (15, 11), (31, 26), (63, 57). Although the (3, 1) Hamming Code is technically a 

triple repetition code which has the characteristics of Simple Replication. For every 

extra parity bit, the total number of bits roughly doubles, and the number of bits 

involved in every parity bit calculation also roughly doubles. In fact, every parity bit 

involves 2(m – 1) – 1 data bits in its calculation. For any two parity bits, their equations 

will have 2(m – 2) bits overlapping, which is visually evident in Table 12. 

To use Hamming Code in the Framework, a file F can be split into K data pieces and 

then Hamming Code would be computed bitwise by taking a bit from each data piece 

one at a time. For example, to use the (7, 4) Hamming Code, we would split the file 

into 4 pieces. In each iteration, a bit from each of the four pieces, K1, K2, K3, and K4, 

is taken to compute 3 parity bits R1, R2, and R3 which are written into the 3 

redundancy file pieces in order. 

Bit position 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Encoded data bits 
 

p1 p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8 d9 d10 d11 

Parity bit  
coverage 

p1 X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 
 

X 

p2 
 

X X 
  

X X 
  

X X 
  

X X 

p4 
   

X X X X 
    

X X X X 

p8 
       

X X X X X X X X 
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The encoding time is linear with respect to the file size, or simply O(|F|), since XOR is 

implemented in the CPU in hardware and the parity bits can be computed through a 

single pass read through all the data bits. To check for errors, every parity bit needs 

to be recomputed from their data bits and checked against the stored parity bit. If no 

errors are present in the set of file pieces, then decoding involves the proper 

sequential arrangement of all data bits. Hence, decoding operation for a set of file 

pieces that have no errors would be O(|F|). If errors exist, then two equations are 

necessary to recover and validate a bit, assuming all bits involved except the error bit 

is correct. The error bit must also be present in both equations, hence 2(m – 1) – 1 +  

2(m – 2) = 3 × 2(m – 2) – 1 bits are required to recover an error bit. In such scenarios, the 

computation necessary to recover 1 bit involves computing the bit through a single 

pass of reading through the bits of one equation, and then validating the bit through 

another equation. Decoding time is thus O(|F|) overall. 

Hamming Code has a file reconstruction threshold FT = K, a file piece reconstruction 

threshold PT = 2(m – 1) – 1, a resultant space of 2m – 1, a resultant space factor of (2m – 1) 

÷ (2m – m – 1), and a redundancy factor of m ÷ (2m – m – 1). 

Table 13 – Hamming Codes and Redundancy Performances 

Hamming 
Code  
(N, K) 

Parity 
Bits 
(R) 

Total 
Bits 
(N) 

Data 
Bits 
(K) 

Bits needed to 
recover 1 
other bit 

Bit overlap 
from any 2 
equations 

Bits needed to 
validate 

another bit RSF RF RSF/RF 

(3, 1) 2 3 1 1 2 1 3.0000 0.6667 4.5000 

(7, 4) 3 7 4 3 5 2 1.7500 0.4286 4.0833 

(15, 11) 4 15 11 7 11 4 1.3636 0.2667 5.1136 

(31, 26) 5 31 26 15 23 8 1.1923 0.1613 7.3923 

(63, 57) 6 63 57 31 47 16 1.1053 0.0952 11.6053 

(127, 120) 7 127 120 63 95 32 1.0583 0.0551 19.2012 

(255, 247) 8 255 247 127 191 64 1.0324 0.0314 32.9074 

(511, 502) 9 511 502 255 383 128 1.0179 0.0176 57.7957 

(1023, 1013) 10 1023 1013 511 767 256 1.0099 0.0098 103.3099 
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Table 13 shows the redundancy performance of some of the Hamming Codes. As we 

increase the number of parity bits used in the code, both RSF and RF approach 1 and 

0 respectively. 

It is not surprizing why the (7, 4) Hamming Code was the most popular among the 

set, as well as being the canonical code, as it achieves the best trade off of 

redundancy and resultant space without resorting to the simple replication of the (3, 

1) Hamming Code. Higher level Hamming Codes reduce the safety of the set of data 

as there are relatively fewer number of parity bits compared to data bits. The table 

confirms this as RF drops to nearly 0 for higher level Hamming Codes. 

The temporary memory space needed for encoding and decoding is m + k bits. 

Relative to files in MB or higher in size, we can safely claim that the memory space 

needed is negligible. If some data bit changes upon an edit, then its corresponding 

parity bits must be updated. Hamming Code supports partial updates since not every 

parity bit must change for a given data bit change. 

Hamming Code does not have either the confusion or diffusion properties, since 

attackers who gain sufficient numbers of bits necessary to construct another bit can 

then progressively work towards gaining the data of the entire system by 

reconstructing one bit at a time. As the data bits are written to the output pieces 

unchanged, an attacker can at times guess any missing bits using dictionary attacks. 

Lastly, Hamming Code does require the use of a reconstruction relation table in order 

to keep track of the file pieces and their corresponding bit position in the code table. 

It does not need a computation key however. 
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6.3.3 RAID-5 ALGORITHM 

Redundant Array of Independent Disks (RAID) is a suite of stream or block based 

redundancy algorithms in addition to hard drive configurations, invented by Peter M. 

Chen, et al. in 1994 [49]. RAID is implemented in almost all modern computer 

systems as a disk-level data redundancy system, working behind the scenes to 

protect a users’ data. The series of RAID algorithms starting with RAID-1 was 

invented to provide redundancy for storage of data in disks. We are interested in the 

algorithms only, and in particular the RAID-5 single parity algorithm. 

RAID-5 stripes all data at the block level into K number of pieces (A, B, C, D, …, K), 

while maintaining identical sizes for each piece. It then computes one parity piece (R) 

with the size equal to one of the pieces, each bit within the parity piece is the result 

of the XORs of the corresponding bit from the split pieces. The equation to compute 

P is as follows: 

Equation 8 – RAID-5 Encoding Algorithm 

R
i
 = A

i
 ⊕ B

i
 ⊕ C

i
 ⊕ … ⊕ Ki, for i = 0 to |K|, given |K| in bits 

The parity piece affords at most one piece to fail among any of the pieces. The 

recovery of a missing piece is done with the same procedure; however, we compute 

the missing piece bit by bit by taking the XOR of all remaining pieces. For example if 

piece B was completely erased, we could recompute it as follows:  

Equation 9 – RAID-5 Bit Repair Algorithm 

B
i
 = R

i
 ⊕ A

i
 ⊕ C

i
 ⊕ … ⊕ Ki, i = 0 to |K|, given |K| in bits. 
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We can show that given a file of size |F| and the desired the number of piece K, RAID-

5 will produce a total output file size |N| = |F| + |F| ÷ K. This has a resultant space 

factor of (K + 1) ÷ K, and a redundancy factor of 1 ÷ (K + 1). RAID-5 requires that all 

pieces except 1 be present in order to reconstruct the missing or erroneous piece. Its 

file reconstruction threshold and file piece reconstruction threshold are both K. 

Implementing RAID-5 algorithm in software would require the memory space of  

(K + 1) × |K| bits. For encoding a file, the program will read K bits at a time and split 

them into the K memory blocks. Then the program computes the Parity block from 

these blocks, and writes all K + 1 blocks to the corresponding output files. The 

program continues until all bits from the file have been read. RAID-5 encodes a file in 

time O(|F|), using memory space of O(K + 1) bits. Reconstruction of the original file in 

RAID-5 simply requires reassembling the original file by reading the bits from all K 

file pieces in the correct order. RAID-5 decodes a file in time O(|F|) using memory 

space of O(K) bits. Like Hamming Code, RAID-5 uses relatively negligible memory 

space. 

Table 14 – RAID-5 Schemes and Redundancy Performances 

RAID-5 can correct errors in at most 1 block, through reconstruction of the block. A 

checksum must be computed for each block in order to use it as an indicator of 

RAID-5 (N, K) R N K RSF RF RSF/RF 

(2, 1) 1 2 1 2.0000 0.5000 4.0000 

(3, 2) 1 3 2 1.5000 0.3333 4.5000 

(4, 3) 1 4 3 1.3333 0.2500 5.3333 

(5, 4) 1 5 4 1.2500 0.2000 6.2500 

(6, 5) 1 6 5 1.2000 0.1667 7.2000 

(7, 6) 1 7 6 1.1667 0.1429 8.1667 

(8, 7) 1 8 7 1.1429 0.1250 9.1429 

(9, 8) 1 9 8 1.1250 0.1111 10.1250 

(10, 9) 1 10 9 1.1111 0.1000 11.1111 
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whether the block has been modified. RAID-5 is similar to Hamming Code in that one 

single parity equation is used throughout the system.  

Table 14 shows a sample of RAID-5 schemes and their performances. The (3, 2) RAID-

5 scheme is the most popular as it gives the best ratio between RSF and RF without 

resorting to simple replication in the (2, 1) scheme. 

From a security point of view, RAID-5 does not achieve the properties of diffusion 

and confusion. Like Hamming Code, attackers can use the dictionary attack to break 

this code. RAID-5 supports partial updates as changes in any data bit require only a 

corresponding update to that parity bit. It does not require a computation key but 

does require a reconstruction table to identify the ordering of the original file pieces. 

6.3.4 LOW-DENSITY PARITY-CHECK CODES 

Low-Density Parity-Check Codes (LDPC) were invented by Robert G. Gallagher in 1960 

[50] as part of his doctoral dissertation, subsequently published in 1963. LDPC is 

similar to RAID-5 in that both use the XOR operation. In LDPC, given a file F split into 

K pieces, R additional redundancy pieces are computed, each by taking a subset of 

the K pieces and computing their XOR parity. A specific configuration of LDPC and 

example is as follows: 

Let the K pieces be K1, K2, K3 and K4, and the R redundancy pieces be R1, R2, R3, R4. 

Each of the blocks have size |F| ÷ K. Then: 

        ⊕     ⊕     

        ⊕     ⊕     

        ⊕     ⊕     
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        ⊕     ⊕     

Once computed, the equations can be rewritten in the form: 

       ⊕     ⊕     ⊕     

       ⊕     ⊕     ⊕     

       ⊕     ⊕     ⊕     

       ⊕     ⊕     ⊕     

In this set of equations, any 3 of 8 total pieces can be used to reconstruct 1 other 

piece just like the process in RAID-5. We also only need half the number of total 

pieces to reconstruct all pieces, such as by obtaining N1, N2, R1, and R2 which can 

then be used to compute N3 and N4. If no pieces were lost, we can optimally choose 

the pieces which cost less to download and reconstruct the pieces which are more 

expensive to download. These features make it better than RAID-5. 

A reconstruction relation table must be kept for LDPC in order to keep track of the 

relationship between each data piece and its corresponding redundancy pieces. 

However, assuming all pieces have no errors, the system could try all combinations 

of pieces until it finds the subsets which yield a chained XOR result of 0. One piece 

out of each chain must be a redundancy piece, as shown in the above equation sets, 

and could be logically deduced from examining the involvement of the other pieces 

in other equations. For an attacker, breaking the system this way is much more 

expensive than trying to obtain the metadata file containing the relation table. When 

K is chosen to be very large, trying all combinations becomes very costly. 
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For any LDPC configuration, the total time to encode the file into K data pieces and to 

compute the R redundancy pieces is O(|F|). The key value to choose in LDPC is the 

number of data pieces PT involved in the calculation of each redundancy piece R, 

where PT ≤ K. One might observe that LDPC follows the binomial theorem to choose 

and permute the data pieces used to compute each of the redundancy pieces. Thus, R 

can be computed as a function of PT and K as follows: 

Equation 10 – Binomial Coefficient Formula for LDPC Codes 

   (
 
  

) 

The threshold number of pieces to reconstruct the original file is FT = K.  It results in 

a space of |F| + |R| × R, with a redundancy factor of R ÷ N. The Resultant Space Factor 

is N ÷ K. Similar to RAID-5, we can formulate R by computing using PT bits of each of 

the K pieces at a time and then writing the output to the R files sequentially, so the 

temporary space required to encode is R × K × PT bits. It is relatively more than 

Hamming Code and RAID-5, but still negligible considering files in sizes of MB or 

higher. The total time to decode a file is O(|F|) with the fastest by simply reading and 

joining the K data pieces, and the slowest by reconstructing some of the K data 

pieces using the R redundancy pieces. The temporary space required for decoding is 

|F|. 

We know that (K choose PT) ≥ K, however the total number of redundancy pieces R 

does not necessarily have to match the total number of possible permutations. For 

example, let the K pieces be K1, K2, K3, and K4, and the redundancy pieces be R1, R2 

computed as follows: 



Chapter 6: Cloud Storage Framework 

93 

        ⊕    ⊕    

        ⊕    ⊕    

To recover any piece, only three pieces are needed. However the relative risk and cost 

of losing each piece is not the same for systematic total reconstruction. For example, 

if K2 and K3 were lost at the same time then the system cannot possibly reconstruct 

either of them, however if K1 and K4 were lost at the same time the system could 

reconstruct both of them. In short, rather than only requiring any half of the number 

of pieces to reconstruct the file, this now requires some chosen subset. This lets the 

system choose different redundancy factors and have a different resultant space, 

while maintaining the same time complexity and roughly the same temporary space 

requirements. 

We will utilize all possible R combinations for performance analysis, as maintaining 

the property of letting any K number of pieces be used for reconstruction gives 

substantially higher flexibility in data placement in the Cloud. For these, the resultant 

space is ((K choose PT) + K) × |F| ÷ K. The resultant size factor is ((K choose PT) + K) ÷ 

K. The redundancy factor is ((K choose PT) + K) ÷ (K choose PT). 

Table 15 shows some possible configurations for LDPC, where PT is set with respect 

to K shown in the leftmost column. When PT = K, the system behaves the same as 

RAID-5. When PT = K – 1, the system constantly produces configurations which result 

in RSF of 2 and RF of 0.5; that is there is an equal number of redundancy file pieces 

as there are original file pieces. When K ÷ 2 ≤ PT ≤ K – 2, LDPC generates more 

redundancy pieces than the number of file pieces in the system but in a more 

controlled fashion than simple replication. 
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Table 15 – LDPC Configurations and Redundancy Performances 

Examining the three configurations with an equivalent performance through the 

RSF/RF ratio of 7.2, we can see the flexibility of LDPC. To achieve this, LDPC could 

split the file into 5 pieces and compute 1 redundancy piece, shown in the (6, 5, 5) 

configuration. It could also split the file into 11 pieces and compute 55 redundancy 

pieces using 9 pieces at  a time, as shown in the (66, 11, 9) configuration. Lastly, it 

 
LDPC (N, K, PT) PT R N K RSF RF RSF/RF 

P
T 

= 
K

 

(2, 1, 1) 1 1 2 1 2.0000 0.5000 4.0000 

(3, 2, 2) 2 1 3 2 1.5000 0.3333 4.5000 

(4, 3, 3) 3 1 4 3 1.3333 0.2500 5.3333 

(5, 4, 4) 4 1 5 4 1.2500 0.2000 6.2500 

(6, 5, 5) 5 1 6 5 1.2000 0.1667 7.2000 

(7, 6, 6) 6 1 7 6 1.1667 0.1429 8.1667 

(8, 7, 7) 7 1 8 7 1.1429 0.1250 9.1429 

(9, 8, 8) 8 1 9 8 1.1250 0.1111 10.1250 

(10, 9, 9) 9 1 10 9 1.1111 0.1000 11.1111 

P
T 

= 
K

 -
 1

 

(4, 2, 1) 1 2 4 2 2.0000 0.5000 4.0000 

(6, 3, 2) 2 3 6 3 2.0000 0.5000 4.0000 

(8, 4, 3) 3 4 8 4 2.0000 0.5000 4.0000 

(10, 5, 4) 4 5 10 5 2.0000 0.5000 4.0000 

(12, 6, 5) 5 6 12 6 2.0000 0.5000 4.0000 

(14, 7, 6) 6 7 14 7 2.0000 0.5000 4.0000 

(16, 8, 7) 7 8 16 8 2.0000 0.5000 4.0000 

(18, 9, 8) 8 9 18 9 2.0000 0.5000 4.0000 

(20, 10, 9) 9 10 20 10 2.0000 0.5000 4.0000 

P
T 

= 
K

 -
 2

 

(6, 3, 1) 1 3 6 3 2.0000 0.5000 4.0000 

(10, 4, 2) 2 6 10 4 2.5000 0.6000 4.1667 

(15, 5, 3) 3 10 15 5 3.0000 0.6667 4.5000 

(21, 6, 4) 4 15 21 6 3.5000 0.7143 4.9000 

(28, 7, 5) 5 21 28 7 4.0000 0.7500 5.3333 

(36, 8, 6) 6 28 36 8 4.5000 0.7778 5.7857 

(45, 9, 7) 7 36 45 9 5.0000 0.8000 6.2500 

(55, 10, 8) 8 45 55 10 5.5000 0.8182 6.7222 

(66, 11, 9) 9 55 66 11 6.0000 0.8333 7.2000 

P
T 

= 
K

 -
 3

 

(8, 4, 1) 1 4 8 4 2.0000 0.5000 4.0000 

(15, 5, 2) 2 10 15 5 3.0000 0.6667 4.5000 

(26, 6, 3) 3 20 26 6 4.3333 0.7692 5.6333 

(42, 7, 4) 4 35 42 7 6.0000 0.8333 7.2000 

(64, 8, 5) 5 56 64 8 8.0000 0.8750 9.1429 

(93, 9, 6) 6 84 93 9 10.3333 0.9032 11.4405 

(130, 10, 7) 7 120 130 10 13.0000 0.9231 14.0833 

(176, 11, 8) 8 165 176 11 16.0000 0.9375 17.0667 

(232, 12, 9) 9 220 232 12 19.3333 0.9483 20.3879 
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could split the file into 7 pieces and compute 35 redundancy pieces using 4 pieces at 

a time, as shown in the (42, 7, 4) configuration.  

Like RAID-5, the system must download all but 1 piece to recover the file in the (6, 5, 

5) configuration, however the other two configurations offer substantially higher 

flexibility. In (66, 11, 9) configuration, the least amount of pieces it needs to 

download is 11 out of 66 total pieces. In (42, 7, 4) configuration, the least amount of 

pieces required is 7 out of 42. In the latter two configurations, the absolute cost is 

higher as the total file size is 6 times the original, but it grants this flexibility during 

any recovery operation. Shown through their RF values of 0.8333, they both are more 

secure than the (6, 5, 5) configuration which has an RF of 0.1667. 

From a security point of view, LDPC achieves diffusion but not confusion as given a 

sufficient subset of K pieces, the remaining pieces could be guessed using the 

dictionary attack. Partial updates are supported by LDPC as only the bits in the file 

pieces corresponding to the modified bits in the original file need to be recomputed. 

6.3.5 SHAMIR’S SECRET SHARING ALGORITHM 

Adi Shamir introduced a secret sharing scheme and algorithm in 1979 in his 

publication “How to share a secret” in Communications of the ACM [51]. The scheme 

is a threshold scheme, and is most widely used to split a master encryption key into 

shares whereby any subset of shares meeting the minimum threshold can be used to 

reconstruct the master key. 

The principle behind the algorithm is that for any polynomial of degree K – 1 

requires K points to define. We choose one particular point of a degree K – 1 equation 

to be the secret point where it’s Y value is the binary numeric value of the data, and 
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we randomly choose N other points (N > K) from the polynomial as shares to be 

stored. The secret can only be computed when the polynomial can be reconstructed, 

which requires obtaining at least K out of N points to be used in curve fitting for 

reconstructing the equation. The Y values of the N points share the same range as the 

Y value of the secret, and in binary means they have the same number of bits. As 

such, each share has the same file size as the original file. 

Given a file size of |F|, Shamir’s Secret Sharing algorithm will produce a total output 

file size of N × (|F| + C) where C is a very small constant amount of data related to 

each share. This has a redundancy factor of (N – K) ÷ N. Relative to the size of the file 

however, the resultant space factor is N ÷ 1 = N since every point has the same size 

as the secret point. 

Given an input file F, it is divided in to a sequence of fixed sized m-bit pieces. 

Starting with the first piece, the binary value of the piece is taken as integer number 

y and assigned as the secret point of that piece, typically (X = 0, Y = y). y has a range 

of [0, 2m). N points are chosen by picking at random their X values, as long as it does 

not equal the X value of the secret point. These X values are used for all pieces. Their 

Y values are calculated per piece. Each resultant piece would contain one single X 

coordinate, and a list of Y coordinates each corresponding to a K – 1 degree equation. 

Figure 6 shows an example of an equation of degree 3, with 13 gray points defined 

on the curve. The black point at X = 0 is the secret. 
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Figure 6 – A Polynomial Equation of Degree 3 with 13 Points Defined 

For each equation, K – 1 random integers are chosen to form a K – 1 degree equation, 

whereby the constant term in the equation is calculated by putting the secret point 

into the equation and solving for Y. For example, let’s create a degree 2 polynomial: 

     
        

Let the secret be the number 25, and we assign it to the point (X = 3, Y = 25). By 

random we select two integers 3 and 9 for the constants, so the equation looks like 

the following after we substitute in the two integers: 

           

To solve for C, we put the secret point into the equation: 
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The finalized equation is: 

            

The N points of the block are obtained by randomly choosing N distinct X 

coordinates and calculating their corresponding Y values using the equation. The N 

points are written to their corresponding output files. Continuing the example, let us 

suppose we chose 4 coordinate points of -4, -3, 0, and 2:  

                         

                         

                   

                 

Thus the redundancy data points are (–4, –17), (–3, –29), (0, –29), and (2, 1). The 

equation, secret point, and redundancy points are plotted in Figure 7. 

 

Figure 7 – Shamir’s Secret Sharing Example 
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Once all pieces are processed, the X values of the N points and the secret point, as 

well as the piece size m, are written to the metadata file. This file forms the Key 

(analogous to encryption Key) for recovering the file. Shamir’s Secret Sharing 

algorithm encodes a file in time O(|F|), although slower than RAID-5, and uses 

memory space of O(N × m) bits. 

Given any K shares, the reconstruction process begins by reading into program 

memory the X value and piece size m from the Key file. The equation is recovered by 

computing for the secret equation F(x) piece by piece from the K share files. For each 

piece read into memory, F(x) is obtained by first computing the set of LaGrange basis 

polynomials L
j
(x): 

Equation 11 – LaGrange Basis Polynomials Equation 

       ∏
    

     

 

     
    

  
      

       
 

(      )

(       )

(      )

(       )
 

      

       
 

Then the equation is computed as: 

      ∑        

 

   

 

The secret point is then calculated from the equation. Each basis polynomial has K 

numerator and denominator terms. The equation is the sum of the K basis 

polynomials times the y value of the N points. Thus, Shamir’s Secret Sharing 

algorithm reconstructs a file in time O((K × |F|)2) and uses memory space of  

O((K × m)2) bits. 
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If up to R = N – K shares are corrupted or destroyed, they can still be recomputed by 

utilizing the K shares to formulate the equation, then picking at random R other X 

values. Shamir’s Secret Sharing algorithm requires K valid shares to repair any 

corrupted shares, and like RAID-5 will need to compute checksums for each share in 

order to ascertain whether the share has been modified. 

Table 16 – Shamir’s Secret Sharing Schemes and Redundancy Performance 

To use Shamir’s Secret Sharing, a polynomial degree must be chosen for the equation, 

as well as the desired number of redundant points on the equation. Table 16 shows 

various configurations of Shamir’s Secret Sharing. Shamir’s Secret Sharing seems to 

be most efficient when the total number of points N is double of the number of 

points K needed to reconstruct each equation of degree K – 1. Examples include (4, 2, 

1), (6, 3, 2), and (8, 4, 3) configurations. Overall, using lower polynomial degree 

Shamir's  
(N, K, PD) 

Polynomial 
Degree (PD) 

Points to define 
Equation (K) 

Redundant 
Equation Points (R) 

Total 
Points (N) 

RSF RF RSF/RF 

(2, 2, 1) 

1 2 

0 2 2.0000 0.0000 Undefined 

(3, 2, 1) 1 3 3.0000 0.3333 9.0000 

(4, 2, 1) 2 4 4.0000 0.5000 8.0000 

(5, 2, 1) 3 5 5.0000 0.6000 8.3333 

(6, 2, 1) 4 6 6.0000 0.6667 9.0000 

(7, 2, 1) 5 7 7.0000 0.7143 9.8000 

(8, 2, 1) 6 8 8.0000 0.7500 10.6667 

(3, 3, 2) 

2 3 

0 3 3.0000 0.0000 Undefined 

(4, 3, 2) 1 4 4.0000 0.2500 16.0000 

(5, 3, 2) 2 5 5.0000 0.4000 12.5000 

(6, 3, 2) 3 6 6.0000 0.5000 12.0000 

(7, 3, 2) 4 7 7.0000 0.5714 12.2500 

(8, 3, 2) 5 8 8.0000 0.6250 12.8000 

(9, 3, 2) 6 9 9.0000 0.6667 13.5000 

(4, 4, 3) 

3 4 

0 4 4.0000 0.0000 Undefined 

(5, 4, 3) 1 5 5.0000 0.2000 25.0000 

(6, 4, 3) 2 6 6.0000 0.3333 18.0000 

(7, 4, 3) 3 7 7.0000 0.4286 16.3333 

(8, 4, 3) 4 8 8.0000 0.5000 16.0000 

(9, 4, 3) 5 9 9.0000 0.5556 16.2000 

(10, 4, 3) 6 10 10.0000 0.6000 16.6667 
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equations result in a more efficient system. We can see that with an RSF of 8, using a 

polynomial degree 1 equation gives us a redundancy factor of 0.75 while it gives a 

redundancy factor of 0.625 and 0.5 using polynomial degree 2 and 3 equations, 

respectively. 

From a security point of view, Shamir’s Secret Scheme algorithm achieves both the 

properties of Confusion and Diffusion. The original text is transformed into a set of 

N file pieces which is tied by a mathematical relationship that can only be reverse 

engineered if the Key file was decrypted, and if K out of N file pieces were obtained. 

An attacker which obtains a number of files less than K cannot guess the contents in 

the remaining files since they cannot reconstruct the equation. 

Overall Shamir’s Secret Scheme has a higher space cost than the previous studies 

erasure codes. Its mathematical technique must represent and bound each secret 

point’s data value to a range in order to control the resulting binary file size. Since 

every point on the equation shares this bounded range, the more points needed the 

higher the cost in terms of resultant file space. It is however much more secure, since 

it is immune to dictionary attacks. 

6.3.6 RABIN’S INFORMATION DISPERSAL ALGORITHM 

Michael Rabin’s Information Dispersal Algorithm (IDA) was brought to the world in 

his paper published in the Journal of ACM in 1989 [52]. It is also an erasure code, and 

is based on a matrix multiplication and inversion process.  

IDA considers a file to have L symbols. IDA first splits the L symbols into   ⌈   ⌉ 

input fragments, where K is the number of symbols per fragment. Each fragment has 

size |F| ÷ M in bits. If L is not a multiple of K, then IDA pads the message with zeroes 
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to generate extra symbols. Let us denote these input fragments as F
i
. Thus, the file 

will be split into fragments              ⌈   ⌉    [58]. 

IDA uses an N × K encoding matrix, denoted as A, where any K rows of the matrix are 

linearly independent. One type of matrix which satisfies this requirement is a 

Vandermonde matrix, where for row i the values of the matrix are: 

1, (i + 1), (i + 1)2, (i + 1)3 … (i + 1)K−1 

To encode, IDA takes each input fragment F
i
 one at a time and multiplies it to matrix 

A to form the output fragments. Then, the fragments are organized column wise into 

an output matrix. Each row of this matrix forms an output file piece. IDA outputs N 

file pieces, each piece having M symbols. Any K of N file pieces can be used to 

recover the original message. 

For example, let there be a message have 10 integers (1, 3, 5, 2, 4, 6, 7, 8, 9, 11) and 

we want to split it into 4 fragments. In this case, L = 10 and K = 3. Since L is not an 

integer multiple of K, we pad the message with zeroes. M = ⌈   ⌉    for this 

example. In order they are (1, 3, 5), (2, 4, 6), (7, 8, 9), and (11, 0, 0) respectively. 

We construct the encoding matrix as a Vandermonde matrix A, with N = 8: 

  

[
 
 
 
 
 
 
 
    
   
   
    
    
    
    
    ]
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The output fragments are computed by taking each input fragment and multiply it 

with matrix A: 

[   ]    

[
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Treating each fragment as a column, we join the fragments together to form the  

N × M output matrix: 

[
 
 
 
 
 
 
 

 

       
        
         
          
           
           
           
           ]

 
 
 
 
 
 
 

 

Each output file piece is a row of the output matrix, for this example it is (9, 12, 24, 

11), (27, 34, 59, 11) … (345, 418, 647, 11). To reconstruct the original message, any K 

file pieces will suffice, for example taking the 3 pieces (9, 12, 24, 11), (55, 68, 112, 

11), and (93, 114, 183, 11) which corresponds to rows 1, 3, and 4 of the output 

matrix. 
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We construct the K × K decoding matrix by copying the rows from the encoding 

matrix A that correspond to each file piece: 

  [ 
   
   
    

] 

We compute the inverse matrix of B: 

    
 

 
[ 
      
      
    

] 

Also, we arrange the output pieces row wise corresponding to the decoding matrix: 

[ 
       
         
          

] 

Taking each column in order from left to right and multiplying it to the inverse 

matrix of B, we get each original message fragment: 

[ 
 
  
  

]      [   ]    [ 
  
  
   

]      [   ] 

[ 
  
   
   

]      [   ]  [ 
  
  
  

]      [    ] 

The time it takes to encode a file is O(|F|2) due to the matrix multiplication operation, 

while the time to decode a file is O(|F|3 + |F|2) due to the matrix inversion operation on 

B, and the subsequent multiplication operation. The matrix A is the Key for IDA and 

must be stored in the metadata file. The matrix can have a size of a fraction of |F| 

since they are just numeric coefficients. The temporary memory space required for 

encoding the file is around O(|F|) since we must store the matrix in the memory but 
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can read the file and write out its encoding to the output file one piece at a time. 

Each piece has M symbols and each symbol is |F| ÷ L bits long, so the temporary 

memory space needed for encoding the file is O(|F| + |F| × M ÷ L) bits. The temporary 

memory space required to decode the file is also O(|F| + |F| × M ÷ L), where O(|F|) space 

is used to store the inverse matrix, and |F| × M ÷ L bits is used as input and output 

file buffers. The set of output files has a total space of N × M × |F| ÷ L bits. However 

an additional O(|F|) space must be used to store the metadata. The resultant size 

factor is N × M ÷ L. The redundancy factor is (N – K) ÷ N. 

Table 17 – Rabin’s IDA Configurations and Redundancy Performance 

Using Rabin’s IDA requires the number of symbols per file (L), the number of symbols 

per Fragment (K), and the number of resultant file pieces (N) to be given. Table 17 

 
Rabin's IDA  
(N, K, L, M) 

Symbols 
/ File (L) 

Fragments 
(M) 

Extra Symbols  
to Fill Fragments 

R N 
Symbols / 

Fragment (K) 
RSF RF RSF/RF 

In
cr

ea
si

n
g 

K
 

(10, 2, 10, 5) 10 5 0 8 10 2 5.0000 0.8000 6.2500 

(10, 3, 10, 4) 10 4 2 7 10 3 4.0000 0.7000 5.7143 

(10, 4, 10, 3) 10 3 2 6 10 4 3.0000 0.6000 5.0000 

(10, 5, 10, 2) 10 2 0 5 10 5 2.0000 0.5000 4.0000 

(10, 6, 10, 2) 10 2 2 4 10 6 2.0000 0.4000 5.0000 

(10, 7, 10, 2) 10 2 4 3 10 7 2.0000 0.3000 6.6667 

(10, 8, 10, 2) 10 2 6 2 10 8 2.0000 0.2000 10.0000 

(10, 9, 10, 2) 10 2 8 1 10 9 2.0000 0.1000 20.0000 

In
cr

ea
si

n
g 

N
 

(6, 5, 10, 2) 10 2 0 1 6 5 1.2000 0.1667 7.2000 

(7, 5, 10, 2) 10 2 0 2 7 5 1.4000 0.2857 4.9000 

(8, 5, 10, 2) 10 2 0 3 8 5 1.6000 0.3750 4.2667 

(9, 5, 10, 2) 10 2 0 4 9 5 1.8000 0.4444 4.0500 

(10, 5, 10, 2) 10 2 0 5 10 5 2.0000 0.5000 4.0000 

(11, 5, 10, 2) 10 2 0 6 11 5 2.2000 0.5455 4.0333 

(12, 5, 10, 2) 10 2 0 7 12 5 2.4000 0.5833 4.1143 

(13, 5, 10, 2) 10 2 0 8 13 5 2.6000 0.6154 4.2250 

(14, 5, 10, 2) 10 2 0 9 14 5 2.8000 0.6429 4.3556 

In
cr

ea
si

n
g 

L (10, 5, 100, 20) 100 20 0 5 10 5 2.0000 0.5000 4.0000 

(10, 5, 200, 40) 200 40 0 5 10 5 2.0000 0.5000 4.0000 

(10, 5, 300, 60) 300 60 0 5 10 5 2.0000 0.5000 4.0000 

(10, 5, 400, 80) 400 80 0 5 10 5 2.0000 0.5000 4.0000 

(10, 5, 500, 100) 500 100 0 5 10 5 2.0000 0.5000 4.0000 

Ex (8, 3, 10, 4) 10 4 2 5 8 3 3.2000 0.6250 5.1200 
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shows that IDA can provide a wide range of security and cost optimized 

configurations. For a high security configuration a user might use the (10, 2, 10, 5) 

configuration which has a redundancy factor of 0.8. For a space efficient 

configuration, a user might use the (6, 5, 10, 2) configuration which has a resultant 

size factor of 1.2. For a balanced configuration, a user can use any configuration 

where N = 2 × K, such as (10, 5, 10, 2) where its RSF/RF ratio is 4.0, the lowest for 

Rabin’s IDA. 

From a security point of view, Rabin’s IDA achieves both confusion and diffusion as 

the matrix multiplication operation masks the original data, and spreads the effects 

of the bits to all N pieces of resultant files. An update to the original file will require 

the all symbols and file pieces to be recomputed and updated. As such, IDA does not 

support partial updates. 

6.3.7 REED-SOLOMON CODES 

In 1960, Irving S. Reed and G. Solomon published “Polynomial Codes over Certain 

Finite Fields” describing a family of efficient, max distance separable error correction 

codes based upon polynomial construction and deconstruction [53] over a Finite 

Field. The family of codes is named Reed-Solomon (RS) codes after their inventors.  

An (N, K) RS code exists over a Finite Field of GF(2M) where N = 2M – 1. M is chosen to 

correspond with common bit-lengths such as Word (4), Byte (8), and 16, 32, and 64 

for corresponding CPU architectures. For network applications, the traditional home 

field for RS codes, M is typically 8. For GF(16), M = 4. In all codes, K is chosen 

depending on the level of redundancy the designer wants in the code. When N – K is 
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even, then 2t = N – K, if it is odd, then 2t = N – K – 1. Simplifying these equations, 

    ⌊   –      ⌋.  

An (N, K) RS code can self-repair up to t errors, or 2t erasures. RS codes can detect up 

to t error locations and correct them through its standard decoding process, however 

if the error locations are known ahead of time, then it can correct up to 2t errors 

directly. 

An (N, K) RS code is constructed by forming the generator polynomial G(X) consisting 

of N – K factors, the roots of the polynomial are consecutive elements in the Finite 

Field, as shown in Equation 12. Some codes start with b = 0, while others start with  

b = 1. 

Equation 12 – Reed-Solomon Codes Generator Polynomial 

G(X) = (X + αb)(X + αb+1)…(X + αb+2t-1) 

For example, the Generator Polynomial for the (15, 11) RS code with B = 0 is 

calculated as follows: 

2t = 15 – 11 = 4, thus four factors in G(X). 

2t – 1 = 3 

G(X) = (X + α0)(X + α1)(X + α2)(X + α3) 

Since, α = 2 

G(X) = (X + 1)(X + 2)(X + 4)(X + 8) = X4 + 15X3 + 3X2 + X + 12 

Substituting the coefficients with the field element values from Table 2, we get 

Equation 13 which is the generator polynomial for the (15, 11) RS code. 
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Equation 13 – Generator Polynomial for (15, 11) Reed-Solomon Code 

G(X) = α0X4 + α12X3 + α4X2 + α0X + α6 

The encoding procedure for RS codes starts by dividing the file into a number of 

messages M
i
(X). Each message, denoted as M(X) for simplicity, is further divided into 

K information symbols each M bits long. 

M(X) = M
K-1

xK-1 + … M
1
x + M

0
 

Each coefficient M
K-1

, … M
1
, M

0
 is an M-bit message symbol corresponding to an 

element of GF(2M). 

To form the encoded code word, multiple each message M(X) by XN-K, then divide by 

G(X): 

Equation 14 – Reed-Solomon Encoding Computation 

         

    
      

    

    
 

Division by G(X) produces quotient Q(X) and remainder R(X) polynomials, where R(X) 

is of degree up to N – K – 1. 

The encoded code word T(X) is formed as the message bits joined with the remainder 

bits, shown in Figure 8. Computation they can be computed by shifting M(X) by XN-K 

bits then adding R(X), as follows: 
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Figure 8 – Encoded Code Word for Reed-Solomon Codes 

Rewriting Equation 14, we have the following identities: 

                         

                              

As such, T(X) is always divisible by G(X) without remainder. This is the condition 

checked by a system using RS coding to ensure a code word has no errors. 

Consider the received code word as R(X) = T(X) + E(X), where E(X) represents any 

received errors. The error correction process follows a 5 step procedure [59]: 

Table 18 – Reed Solomon Error Correction Process 

To use RS codes in erasure correction mode, a checksum would have to be computed 

for every symbol, and then checked prior to the decoding process. The decoding 

process in this case first flags the symbols and locations which do not have a 

matching checksum, and then uses Forney’s Formula in step 4 to compute the error 

magnitudes in order to reconstruct T(X). 

Step Process Runtime 

1 Calculate and find all Error Syndromes. Up to t syndromes can be found. O(|F|) 

2 Use the Berlekamp-Massey Algorithm to compute the error locator polynomials. O(|F|
2
) 

3 
Use Chien Search to find all the error locations. Specifically, find the roots of the error location 
polynomials L(X) over the GF field, which gives us the error locations. 

O(|F|) 

4 Use Forney’s Formula to compute the error magnitudes at each error location, giving us E(X) O(|F|) 

5 Solve for T(X):  T(X) = R(X) – E(X) O(|F|) 
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In both error correction mode and erasure correction mode, M(X) is extracted from 

T(X) after checking that T(X) is correct. Extrapolating towards an entire file, the 

sequence of messages M
i
(X), once extracted individually from each RS encoded code 

word, would be combined in the correct sequence to reconstruct the original file. To 

store the code words on the Cloud, each symbol within a code word is grouped with 

the corresponding symbols sharing the same position in other code words, then it is 

sequenced in the same order as the set of messages M
i
(X), forming the output files 

pieces. 

Out of N total symbols of each code word, K of them are information symbols, and N 

– K of them are redundancy symbols. This gives a resultant space of N × |F| ÷ K, 

resultant space factor of N ÷ K. RS codes gives a redundancy factor of t ÷ N if used in 

error correction mode, and alternatively it gives a redundancy factor of  

2t ÷ N = (N – K) ÷ N if used in erasure correction mode. A computation key must be 

kept to store the Finite Field elements and their values. A reconstruction relation 

table must also be kept in the metadata to store the index and sequence of messages 

in relation to the original file. 

Table 19 shows the redundancy performance of various RS codes for M = 2, 4, and 8. 

Using the code in erasure correction mode would yield double the redundancy factor 

compared to using the code in error correction mode. The resultant size of each code 

word is the same, although in erasure correction mode some extra data must be kept 

in the metadata file for the checksums. Overall the performance favors using RS 

codes in erasure correction mode. RS codes are the safest when K is minimal; this is 

evident regardless of what value of M is chosen. Whenever K = 1, the highest possible 

redundancy factor is achieved. However, space wise the most efficient codes exist 
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when   ⌊   ⌋, or half the number of symbols. These are the bolded rows in Table 

19, which includes the (3, 1), (15, 7), and (255, 127) RS codes. 

Table 19 – Reed-Solomon Codes and Redundancy Performances 

Interestingly, the most popular RS codes in use – the (255, 223), (255, 239), and (255, 

251) codes, shown at the bottom in Table 19 – do not provide much redundancy nor 

is it very efficient at providing its respective level of redundancy. These codes are 

used in modern day satellite communications, optical disk storage encoding, and 

many other communications tasks. 

  
      

Error Correction 
Mode 

Erasure Correction 
Mode 

Reed-Solomon Code (N, K) M GF N K R T RSF RF RSF/RF RF RSF/RF 

(15, 2) 

4 16 15 

2 13 6 7.5000 0.4000 18.7500 0.8000 9.3750 

(15, 3) 3 12 6 5.0000 0.4000 12.5000 0.8000 6.2500 

(15, 5) 5 10 5 3.0000 0.3333 9.0000 0.6667 4.5000 

(15, 7) 7 8 4 2.1429 0.2667 8.0357 0.5333 4.0179 

(15, 9) 9 6 3 1.6667 0.2000 8.3333 0.4000 4.1667 

(15, 11) 11 4 2 1.3636 0.1333 10.2273 0.2667 5.1136 

(15, 13) 13 2 1 1.1538 0.0667 17.3077 0.1333 8.6538 

(255, 10) 

8 256 255 

10 245 122 25.5000 0.4784 53.2992 0.9569 26.6496 

(255, 20) 20 235 117 12.7500 0.4588 27.7885 0.9176 13.8942 

(255, 40) 40 215 107 6.3750 0.4196 15.1928 0.8392 7.5964 

(255, 60) 60 195 97 4.2500 0.3804 11.1727 0.7608 5.5863 

(255, 80) 80 175 87 3.1875 0.3412 9.3427 0.6824 4.6713 

(255, 100) 100 155 77 2.5500 0.3020 8.4448 0.6039 4.2224 

(255, 120) 120 135 67 2.1250 0.2627 8.0877 0.5255 4.0438 

(255, 127) 127 128 64 2.0079 0.2510 8.0001 0.5020 4.0001 

(255, 140) 140 115 57 1.8214 0.2235 8.1485 0.4471 4.0742 

(255, 160) 160 95 47 1.5938 0.1843 8.6469 0.3686 4.3235 

(255, 180) 180 75 37 1.4167 0.1451 9.7635 0.2902 4.8818 

(255, 200) 200 55 27 1.2750 0.1059 12.0417 0.2118 6.0208 

(255, 220) 220 35 17 1.1591 0.0667 17.3864 0.1333 8.6932 

(255, 240) 240 15 7 1.0625 0.0275 38.7054 0.0549 19.3527 

(255, 255) 255 0 0 1.0000 0.0000 Undefined 0.0000 Undefined 

(255, 223) 8 256 255 223 32 16 1.1435 0.0627 18.2245 0.1255 9.1122 

(255, 239) 8 256 255 239 16 8 1.0669 0.0314 34.0089 0.0627 17.0044 

(255, 251) 8 256 255 251 4 2 1.0159 0.0078 129.5319 0.0157 64.7659 
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6.3.8 OVERALL COMPARISON 

All seven erasure codes are compared in this section for their redundancy 

performance, security properties, and algorithmic efficiencies in this section. 

Table 20 – Best Redundancy Performance Erasure Code Configurations 

Table 20 shows the configurations of each erasure code at their best redundancy 

performance. A code achieves its best redundancy performance when the ratio of 

RSF/RF is at its lowest. The ratio is essentially the cost divided by the gain; namely, 

the resultant space taken by the set of files after encoding divided by the safety 

afforded by the set of files represented by the factor of files pieces that could be 

completely lost. When this ratio is minimized, we achieve the best trade-off of space 

cost vs file safety gained. For all codes, it seems that their best performance is 

achieved when N = 2 × K. This implies that configurations should produce the same 

number of redundancy file pieces as there are original file pieces. 

It is not easy to find a single configuration that works for all codes, except for the 

most trivial of (2, 1) for which in all codes except Rabin’s IDA they would carbon 

copy the original file once. To compare the codes’ performances when set to a 

Code Type Most Efficient Configuration 
Example 

Configuration 
Resultant Space 

Factor (RSF) 
Redundancy 
Factor (RF) 

Risk 
(RSF/RF) 

Simple 
Replication 

(2, 1)  2.0000 0.5000 4.0000 

Hamming Code (7, 4)  1.7500 0.4286 4.0833 

RAID-5 (3, 2)  1.5000 0.3333 4.5000 

LDPC 
Any (N, K, PT) code  

where N = 2 × K 
(6, 3, 2) 2.0000 0.5000 4.0000 

Shamir's Secret 
Sharing 

(4, 2, 1)  4.0000 0.5000 8.0000 

Rabin's IDA 
Any (N, K, L, M) code  

where N = 2 × K 
(10, 5, 10, 2) 2.0000 0.5000 4.0000 

Reed-Solomon 
Any (N, K) code where N = 2 × K - 

1, large N improves minorly 
(225, 127) 2.0079 0.5020 4.0001 
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meaningful equivalent configuration, we attempted to configure each code as close as 

possible to a (15, 11) configuration. The emphasis is on the 11 original file pieces, as 

the total number of pieces is the result of each code’s encoding process. The results 

are shown in Table 21. 

Table 21 – Redundancy Performances When Set As Close to (15, 11) Code Configuration 

For Simple Replication, K is always 1 so the configuration was set to (15, 1). For RAID-

5, K is always N – 1 so the configuration was set to (12, 11). For LDPC, since N is a 

result of the chosen PT and K values, the configuration was set to (22, 11, 10). The 

other four codes were able to configure for (15, 11) directly. 

The most restrictive codes in terms of configuration flexibility are Simple Replication, 

Hamming Code, and RAID-5. The least restrictive codes are Shamir’s Secret Sharing, 

Reed-Solomon, and Rabin’s IDA. LDPC is in the middle in terms of flexibility. 

Except for Shamir’s Secret Sharing and Rabin’s IDA, the configurations in Table 21 

are the most efficient, or otherwise the only configurations, possible for each of the 

codes for this target. For these two codes, their most efficient configurations of (22, 

11) are also shown in the table. 

 
Configuration Code Properties R N K RSF RF RSF/RF 

Simple 
Replication 

(15, 1) K is always 1 14 15 1 15.0000 0.9333 16.0714 

Hamming Code (15, 11) 
Bits to Recover 1 Other Bit = 7 
Bit Overlap From any 2 Equations = 11 
Bits Needed to Validate Another Bit = 4 

4 15 11 1.3636 0.2667 5.1136 

RAID-5 (12, 11) K is always N – 1 1 12 11 1.0909 0.0833 13.0909 

LDPC (22, 11, 10) PT = 10 11 22 11 2.0000 0.5000 4.0000 

Shamir's Secret 
Sharing 

(15, 11, 10) 
Poly Degree = 10 

4 15 11 15.0000 0.2667 56.2500 

(22, 11, 10) 11 22 11 22.0000 0.5000 44.0000 

Rabin's IDA 
(15, 11, 22, 2) Symbols Per File = 22, Fragments = 2,  

Extra Symbols = 0 

4 15 11 1.3636 0.2667 5.1136 

(22, 11, 22, 2) 11 22 11 2.0000 0.5000 4.0000 

Reed- Solomon (15, 11) M = 4, GF = 16, T = 2 4 15 11 1.3636 0.2667 5.1136 



Chapter 6: Cloud Storage Framework 

114 

Table 21 shows that the two most efficient codes are LDPC and Rabin’s IDA. Both of 

these codes achieve RSF of 2.0, RF of 0.5, and RSF/RF of 4.0 in their most efficient 

configurations of (22, 11, 10) and (22, 11, 22, 2) respectively. Rabin’s IDA can also be 

configured with lower redundancy to save some disk space in the (15, 11, 22, 2) 

configuration. It can also be configured with higher redundancy if more security is 

desired. Its flexibility makes it the best performing code among the seven studied.  

Reed-Solomon codes are slightly more restrictive in terms of the number of possible 

configurations compared to Rabin’s IDA, however its performance closely matches 

IDA and in its theoretical upper bound it can also achieve the same performance as 

Rabin’s IDA. However, Reed-Solomon does not have the Confusion Property so it is 

less secure on its own compared to Rabin’s IDA. 

The worst performing code is Shamir’s Secret Sharing which does not seem to 

perform better than Simple Replication in these configurations. If Shamir’s is 

configured in (15, 11, 10) it has the same resultant space factor as Simple 

Replication, however it yields lower redundancy factor of 0.2667 compared to Simple 

Replication’s 0.5, which implies that it can tolerate less errors and file losses. If 

Shamir’s was configured to match the redundancy factor of 0.5, it yields a resultant 

space factor of 22.0 compared to Simple Replication’s 15.0, which implies it costs 

more space to provide the same level of redundancy. 

Table 22 shows that of the codes studied only Shamir’s Secret Sharing and Rabin’s 

IDA have the Confusion Property. Both of them involve a more costly decoding 

processes requiring at minimum O(|F|2) time complexity for decoding time. Between 

these two, Rabin’s IDA can achieve a lower resultant space factor, thus is more 
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efficient as it consumes less space to provide a similar level of redundancy as 

Shamir’s Secret Sharing. The trade-off is that Rabin’s IDA requires more memory 

space than Shamir’s Secret Sharing during both encoding and decoding operations. 

Table 22 – Erasure Code Properties and Redundancy Formulas 

Code Type 
Simple 

Replication 
Hamming 

Code 
RAID-5 LDPC 

Shamir's 
Secret Sharing 

Rabin's IDA 
Reed-

Solomon 

Mathematical 
Principle 

Copy and 
Paste 

XOR of 
Related Bits 

XOR of 
All Bits 

XOR of Bits in Specific 
Arrangements 

Polynomial 
Interpolation 

Matrix Dot 
Product and 

Matrix Inversion 

Polynomial 
Remainder 
Over Finite 

Field 

File 
Reconstruction 
Threshold (FT) 

1 K K K K K K 

File Piece 
Reconstruction 
Threshold (PT) 

1     –   K 
 

 
     –  K K   ⌊

   

 
⌋ 

Resultant Space 
(Bytes) 

  | |   –   | |  
| |

 
 
                  | |

 
   | | 

    | |

 
 

  | |

 
 

Resultant Space 
Factor 

N 
    

      
 

   

 
 

               

 
 N 

   

 
 

 

 
 

Redundancy 
Factor 

   

 
 

 

      
 

 

   
 

               

             
 

   

 
 

   

 
 

 

 
 

Encoding Time O(|F|) O(|F|) O(|F|) O(|F|) O(|F|) O(|F|2) O(|F|) 

Decoding Time O(1) O(|F|) O(|F|) O(|F|) O((K×|F|)2) O(|F|2) O(|F|2) 

Temporary 
Space for 
Encoding (Bytes) 

0 ~ 0 ~ 0                 (| |  
| |   

 
) O(|K|) 

Temporary 
Space for 
Decoding (Bytes) 

0 ~ 0 ~ 0 |F| O((K × M)2)  (| |  
| |   

 
) O(2 |N|) 

Confusion 
Property 

No No No No Yes Yes No 

Diffusion 
Property 

Yes No Yes Yes Yes Yes Yes 

Partial Updates 
Supported 

Yes Yes Yes Yes No No No 

Metadata - 
Computation 
Key Required 

No No No Yes Yes Yes Yes 

Metadata - 
Reconstruction 
Relation Table 
Required 

No Yes Yes Yes Yes Yes Yes 

Notes 
 

M = number 
of parity bits 

= (N – K) 
  

M = number 
of parity bits 

L = symbols per 
file; M = number 

of fragments 
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Another interesting observation is that only the XOR based codes support partial 

updates. This is useful to users since it can be expected that they would use a Cloud 

storage system to incrementally backup daily or weekly changes to files. Not having 

to re-upload all file pieces makes the system efficient and can save costs. 

The factors of Encoding Time, Decoding Time, Temporary Space for Encoding, 

Temporary Space for Decoding, Requirements for Metadata, and ability to support 

Partial Updates are useful for systems designers who are designing a redundant 

Cloud or distributed storage system. The security properties of Diffusion and 

Confusion are useful indicators of the algorithms’ ability to combat targeted attacks 

which attempt to gain the information contained in the files. The Resultant Space 

Factor and Redundancy Factor are of utmost interest in this thesis as it directly 

affects the file security, resiliency, and economic costs of a system given particular 

choices of algorithms. From a practical perspective, a code having Confusion and 

Diffusion Properties are cryptographically stronger, as they have an equivalent 

capability of essentially performing encryption on the contents of the file in addition 

to their ability to split the file and add redundancy. For the other codes studied, one 

means for them to “gain” the Confusion and Diffusion Properties is to encrypt the 

file using well known encryption algorithms before, or after using the code to split 

the encrypted file into pieces.  

Applying encryption before splitting is arguably stronger since it can be done at an 

operating system level with many choices of tools and algorithms, and it also 

safeguards the user’s data against other conventional attacks directly on their 

devices. The storage system should still be in charge of ensuring that a file has been 

encrypted prior to any encoding operations. Since diffusion implies that every input 
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bit is involved in computing an encrypted output bit, any updates to the original file 

would result in a completely different encrypted file. The storage system would have 

to re-encode the new encrypted file and produce a new set of file pieces, regardless 

of the erasure code algorithm used. Applying encryption before splitting results in a 

system that cannot support partial updates; a crucial computation, network 

bandwidth, and cost saving system property. Despite this shortcoming, this approach 

has been applied in prior work by Hugo Krawczyk of IBM, published in his paper 

“Secret Sharing Made Short” in 1993 [60]. 

Applying encryption after splitting makes the file pieces strong and resilient towards 

attacks. In this mode, each file piece is encrypted separately after the encoding 

operation. The storage system would be in charge of encrypting and decrypting each 

file piece, which could be implemented by operating system level functions or 

external encryption software. Applying encryption after splitting preserves the 

partial update properties of the relevant erasure codes. However, each output file 

piece will have to be re-encrypted in its entirety. In both cases, it will add to the total 

encoding and decoding time. 

All stream-based and block-based encryption algorithms, such as AES, DES, Blowfish, 

RC5, and IDEA have a linear time complexity relative to the size of the input file. 

However they need to be used in a proper mode of operation, such as Cipher Block 

Chaining, or Electronic Code Book modes to ensure the cryptographic security of the 

files. Other types of encryption algorithms exist with varied time complexities. 

In conclusion, one of two types of system design is recommended from this 

Framework. In the first, the system should use a fast linear-time erasure code with 
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support for partial updates, and pair it with a suitable encryption algorithm where 

encryption is applied after the encoding step. From the codes studied, LDPC would be 

most suitable due to its configuration flexibility. This design allows for strong file 

crypto security from the encryption process, and strong resiliency against storage 

provider mistakes due to the erasure coding, and high cost efficiencies from its 

ability to support partial updates. In the second design, the system should use an 

erasure code which has both the Confusion and Diffusion properties so that it is not 

dependent upon any encryption systems or software to provide cryptographic 

security to files. From the codes studied, Rabin’s IDA erasure code is suggested due 

to its higher resultant file size efficiencies compared to Shamir’s Secret Sharing. 

6.4 HANDLING METADATA 

In Krawczyk’s paper [60], he describes a space efficient secret sharing scheme 

combining Rabin’s IDA algorithm with a secure encryption scheme and a perfect 

secret sharing scheme together to form a cryptographically strong secure storage 

system. Specifically, the three subsystems work in conjunction as follows: 

Encrypt an original file with a random encryption key P, resulting in the encrypted 

file E. Split the encrypted file E using IDA into fragments E
1
, E

2
 … E

N
. Use Shamir’s 

Secret Sharing to generate N shares for the key P denoted as P
1
, P

2
 … P

N
. For each 

storage repository i = 1, 2 … N, store E
i
 and P

i
 as a pair in that repository. Both IDA 

and Shamir’s is set to the same threshold configuration, such that only K pairs, K < N 

are necessary to recover the encrypted file E and the encryption key P. 

In Section 6.3.8 we’ve concluded that Rabin’s IDA algorithm itself exhibits both the 

Confusion and Diffusion properties, thus applying encryption prior to the use of IDA 
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on the file adds a layer of cryptographically security. Using Shamir’s to split the 

encryption key is an efficient application of the code, since the size of the encryption 

key is usually significantly smaller than the size of the file. The space inefficiency of 

Shamir’s Secret Sharing has much less impact in this set up compared to the gain of 

using its perfect cryptographic security property. 

In Krawczyk’s system, the encryption key and the encoding matrix used by IDA form 

the metadata used by the system. It is assumed that the encoding matrix is constant 

in their system (for example, always using a Vandermonde matrix), thus it does not 

need to be separately stored. However, since each fragment and key pair has a 

corresponding index, the index information must still be stored locally on the user’s 

computer. This presents one potential weakness of Krawczyk’s system. 

In our Framework, we want to cryptographically secure any and all metadata used. 

The metadata would also be stored in a file. Directly adopting Krawczyk’s approach 

of using Shamir’s Secret Sharing scheme to secure and generate shares of the 

metadata file is a plausible solution. However, considering that the Framework needs 

to track these shares and their corresponding storage locations, the shares must be 

tracked by yet another index or metadata file. The problem thus propagates forward 

and remains unsolved. 

Peer-to-Peer (P2P) storage systems present a solution to this problem of securing the 

metadata files while allowing them to tolerate against equipment failure, outages, or 

errors. Like P2P file sharing systems such as the Torrent networks, the principle 

ideas behind P2P storage systems is that a file would be stored in multiple peer 

locations in a peer-to-peer network. 
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The Framework encrypts the metadata with an encryption key which is chosen by the 

user, for example a SHA hash of a chosen password that the user can easily 

remember. Then, the encrypted metadata is distributed in a secure and private P2P 

network consisting of only the user’s devices and computers. Encrypted metadata 

files will duplicate and propagate through this network incrementally to every device 

in the network. To access a metadata file, the user simply has to enter his or her 

password and the Framework will decrypt the file accordingly. It is important that 

any implementation of the Framework never stores the user’s password or the hash 

of the user’s password in any temporary or permanent storage. To know that a file 

has been decrypted properly the system adds flag check bits when creating an 

unencrypted metadata file, so that when the file is properly decrypted, those bits and 

the file will pass corresponding tests. The only way for the system to decode 

properly is if the user enters a correct password. 

Secure P2P networks utilize encrypted communications links between every pair of 

devices, and can only be joined by authenticated and authorized user(s). If a user 

shares a file to another user, they will join that particular file’s P2P network and 

obtain a copy of the encrypted metadata file. Every message in a secure P2P network 

is checked for its authenticity, thus any unauthorized messages being sent through 

that network would simply be ignored by the peers in the network. Other forms of 

secure P2P networks and secure P2P file systems exist, an example is MIT’s Ivy P2P 

file system which is discussed in Section 7.3 [61]. 

It is assumed that the user will always have at least two devices online at any time, 

which is very common today due to the popular use of smart mobile phones. Devices 

such as smart phones which have limited processing power and storage capacities 
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only need to be involved in the metadata portion of the Framework, to save 

resources. They could also encode and decode files if the user desires; the 

Framework does not enforce any limitations in this aspect. 

6.5 CLOUD STORAGE SELECTION 

The choice of which Cloud storage service provider to use depends on four factors of 

economic pricing, service provider system security, reliability, and geographical 

location related risks. This section examines these four factors in detail and 

concludes with a prioritization of the factors. 

6.5.1 ECONOMIC PRICING FACTOR 

From an end user’s perspective, the internet service provider costs are often a fixed 

cost since service contract terms range from one year upwards to multiple years. The 

Framework, and any implemented systems, can only control the amount of data sent 

or retrieved from the internet in order to reduce the internet transmission costs 

shown earlier in Section 3.3.1. With enough pricing and usage information known, the 

Framework could suggest to users which other internet service providers would be 

more cost effective to establish contracts with. This function would have more 

impact towards business organizations than home users, since it would be exhaustive 

to tabulate all other uses of the internet by a home user. 

For any new files being uploaded to the Cloud for the first time, the Framework 

would pick a set of storage providers which has the lowest current storage costs. The 

number of providers can be customized according to user preferences and security 

requirements. Generally, the Framework would prefer taking full advantage of any 

free usage tiers from storage providers before incurring storage costs. This would 
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need to be balanced with the security requirements. Using this approach, the 

Framework would minimize all short term costs as file pieces newly uploaded to the 

Cloud would incur the lowest possible storage costs given the present pricing. In 

terms of internet transmission costs, only a forward upload cost would be incurred. 

In terms of long term storage costs, it can be expected that the storage providers 

would compete in terms of pricing and change according to the economic laws of 

demand, supply, and competition. In Section 5.4, point 7, it was mentioned that a 

user can face a dilemma of either paying higher long term costs by staying with an 

expensive provider, or pay an expensive transfer fee to move their files to the less 

expensive of the two Cloud storage providers for long term savings. The Framework 

lets the user reconstruct the file pieces stored on the expensive provider locally on 

their computer, and then upload these directly to the less expensive provider. The 

user doesn’t have to pay a download fee or an outbound data fee in order to take 

advantage of the savings. 

The Framework can model the re-upload costs as a fixed one-time fee which can be 

amortized over a period of time whereby the effective cost of storing the file in a 

cheaper provider is the same as staying with their current provider. We denote the 

upload fee X, the current provider’s monthly storage price in $/GB as A, the new 

provider’s monthly storage price as B, and the amortization period T in months. A 

simple equation can compute the value of T: 
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Equation 15 – Storage Cost Amortization Period with Single Upload 

  
 

     
 

Equation 15 assumes that the necessary file pieces for reconstructing a high cost file 

piece are already available locally on the user’s computer. If these pieces need to be 

downloaded, a slightly modified equation can be used to compute T. Let the number 

of pieces that need to be downloaded be K, and the download cost per piece be Y. T 

can be computed as follows: 

              

              

Equation 16 – Storage Cost Amortization Period with Downloads 

  
     

     
 

Anytime a pricing change occurs with any storage provider, the Framework can ask 

the user whether they expect to keep the file on the Cloud for longer than T months. 

If yes, the Framework can perform the necessary recomputation and upload tasks to 

move the relevant file piece(s) to a cheaper storage provider. Otherwise, the 

Framework will simply keep the file pieces in the existing set of providers until the 

user issues a delete command. 

Using Equation 15 and Equation 16, the Framework can minimize short term and 

long term storage costs as well as data transmission costs. 
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6.5.2 SERVICE PROVIDER SYSTEM SECURITY AND RELIABILITY FACTOR 

To deduce how secure and reliable a service provider is, the Framework can use data 

mining and web crawling techniques to find, track, and count the number of relevant 

security breaches, resolutions, and service outage events from trusted news websites 

to assign scores to each service provider. Generally, the more security breaches and 

service outages, the lower the score. The score would remain low until the issues 

have been resolved. Once scores are obtained, the Framework can select a subset of 

service providers who have the highest scores for this factor. 

The Framework cannot take a direct approach to test each provider’s systems for 

their security and reliability. Such tests can be viewed as malicious attacks, and can 

cause legal and financial liability for the user. Although data mining and web 

crawling technologies are interesting topics, they are beyond the scope of this thesis. 

An appropriate data mining implementation would be necessary in the Framework to 

be able to deduce the scores and track the service providers for this factor. However, 

the use of erasure codes does allow the Framework to tolerate some losses of file 

pieces. 

6.5.3 SERVICE PROVIDER GEOGRAPHICAL LOCATION FACTOR 

To deduce where are the geographical locations of the major data centers of each 

service provider, a data mining approach can be taken as well to look for information 

sources and data that indicate the locations. More importantly, the Framework 

should also obtain information about the world’s geography for risky geographical 

zones such as areas that are much more susceptible to earth quakes, hurricanes, 

volcano eruptions, and natural disasters. 
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From these two sets of data, the Framework can construct a topological map to select 

a set of service providers whom have data centers in geographical locations with very 

low probabilities of incurring a natural disaster. The Framework would also prioritize 

spreading out the data physically across the globe as much as possible. 

6.5.4 PRIORITIZING THE FACTORS 

The overall problem of choosing a set of Cloud storage providers could be thought of 

as an optimization problem of 1) minimizing storage and transmission costs, 2) 

finding and optimally moving data pieces to the most secure and reliable providers, 

and 3) distribute the file pieces to as sparse of geographical locations as possible, all 

at the same time.  

Erasure codes increases the total file size by the Resultant Size Factor, previously 

analyzed throughout Chapter 6. Thus, relative to simply uploading files to a Cloud, 

the Framework adds both transmission and storage costs. The Economic Pricing 

Factor guides the Framework towards minimizing total costs. 

The use of erasure codes by the Framework allows the complete loss and destruction 

of some file pieces. The Security and Reliability Factors guide the Framework towards 

more secure storage providers, thus reducing the probability of file pieces being lost 

or destroyed due to service provider mistakes, outages, and vulnerabilities. 

Lastly, the Geographical Location factor guides the Framework to reduce the 

probability of file pieces being lost due to natural disasters, or being the subject of 

unnecessary data privacy intrusion due to local laws and customs. 
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The main security benefits of the framework are provided by the use of the erasure 

codes, and the Security and Reliability Factor of this section would only reduce the 

risks by selecting record-wise more secure providers. If the selection criterion for 

providers was purely based on security alone, and costs were unimportant, then the 

framework can directly use the Security and Reliability Factor in its decision making 

to select the lowest risk providers. Otherwise, the selection problem could be 

modeled as a monetary cost minimization problem.  In this case, the prioritization 

order is as follows: 

1) The Economic Pricing Factor is the most important since minimizing costs must 

be part of the Framework to convince users and organizations to adopt this 

approach. Users and organizations can rationally accept the trade-off of an 

increased storage space requirement and related costs for the security and 

reliability benefits of this Framework. Knowing that the Framework will actively 

try to minimize costs will add to its value, and potentially increase the rate of 

adoption and use of the system.   

2) The Security and Reliability Factor is the second most important. Even though the 

Framework tolerates some losses, any loss of file pieces will involve computing 

the lost pieces and uploading them to another storage provider. Minimizing the 

probability of file pieces being lost also directly minimizes total costs. Ultimately, 

the security and reliability risks are controllable factors that a storage provider 

will constantly work to improve.  

3) The Geographical Location Factor is the least important since natural disasters are 

not controllable. We have mentioned previously in Section 3.1.5 that privacy 
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intrusion issues ultimately require political dialogue and new laws to be formed 

across geopolitical boundaries. 

6.6 CHAPTER SUMMARY 

This chapter presented the design of a system Framework which solves the Cloud 

storage problem. The Framework is a template design which software engineers and 

security system designers can take and further refine into a detailed implementation. 

The four major components of the Framework are the erasure code transformation 

system, the metadata handling system, the Cloud storage management system, and 

the encryption system. In turn, they are responsible for transforming the files into 

pieces, recording and synchronizing metadata files across the user’s devices, 

transferring the file pieces to and from the Cloud, and encrypting the files and file 

pieces throughout the Framework.  

We presented the set of metrics used to analyze erasure codes for their security 

properties and computational efficiencies, which interested researchers can apply to 

other erasure codes to determine their feasibility and relative performances. We then 

presented the detailed analysis of seven erasure codes using the metrics, along with a 

comparative analysis at the end. We concluded that for erasure codes which do not 

have the Confusion property, it would be best to pair those codes with an encryption 

system to secure the data within the files. We also showed that codes which have the 

Confusion property have encoding and decoding operations which are higher in time 

complexity than the codes which do not have the Confusion property. The best 

performing algorithms were LDPC, which does not have the Confusion property, and 

Rabin’s IDA, which does have the Confusion property.  
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We further analyzed the problem of securing the metadata files, showing how certain 

approaches in to this problem requires metadata files to protect metadata files in an 

essentially never ending chain. We proposed to encrypt the metadata file, and 

replicate it across a peer-to-peer network to the user’s devices to provide 

redundancy. 

Finally, we analyzed the problem of how to select a subset of Cloud storage providers 

from a master set. We defined three factors of economic pricing, service provider 

security and reliability, and service provider geography. We stated that if only 

security was the deciding factor, then the framework can use the security and 

reliability factor alone to select the least risky providers. Otherwise the factors are 

prioritized in the order presented, to let the Framework minimize the financial costs 

of using Cloud storage. 

The next chapter compares and relates the approach and Framework to existing 

remote storage paradigms, and analyzes the existing paradigms for their 

vulnerabilities as well as strengths. 
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CHAPTER 7: COMPARISON TO EXISTING 

STORAGE PARADIGMS 

The Framework shares a number of similarities to existing methodologies and 

architectures with respect to the overall problem of storing data remotely in a secure 

and reliable fashion. It also has a number of key differences. This chapter examines 

the similarities and differences with three methodologies, namely a traditional Cloud 

storage system, a distributed file system, and a peer-to-peer file system. 

7.1 TRADITIONAL CLOUD STORAGE ARCHITECTURE 

In current Cloud storage systems, a user authenticates to a service provider’s 

systems to establish a secure internet connection to the service. A user’s files are 

securely sent to, and retrieved from the storage provider’s servers through the 

internet connection. Depending on the storage provider, various redundancy and 

encryption algorithms are applied on the files to secure and safely store the file on 

the Cloud. A visualization of this model is shown in Figure 9 below. 

 

Figure 9 – Traditional Cloud Storage Architecture 
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This architecture is most vulnerable at the authentication mechanism. The 

architecture is blind to who is accessing a user’s data when the authentication 

mechanism is compromised. Historically, the vast majority of attacks on Cloud 

storage providers have aimed at compromising the authentication mechanism [1] [2] 

[19] [30]. 

A secondary source of vulnerability has been the connections between the storage 

servers and the request handling servers within the Cloud storage provider’s internal 

networks. In many data centers around the world these connections are not 

encrypted as the design of the data center’s internal networks desired high efficiency, 

high transmission speed, and low latency. Encrypting connections within data center 

networks adds latency due to the computational time needed for encryption and 

decryption operations, reduces the speed as such secure connections require set up 

and tear down procedures, and reduces the efficiency as switch buffers and end 

nodes must queue data for longer periods of time waiting for these operations and 

procedures to finish in sequence. These types of unencrypted connections avail the 

system to attacks whereby the attacker wiretaps the connections and listens in on 

any and all data transmitted through the wire. As the storage nodes don’t necessarily 

need to be within the same buildings or even the same city, external physical access 

to these connections becomes easy for attackers. Although as such vulnerabilities are 

discovered, companies work hard to amend them. For example, high speed 

encryption hardware systems are being designed by companies to secure 

transmission links, claiming performances at line rates of up to 10Gbps [62]. 

Some Cloud storage providers only utilize replication algorithms to backup data, 

while others employ erasure code algorithms. Using simply replication is weaker 
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from a security point of view as the data is readily available to be read by an attacker 

as long as they gain access to the physical disks storing the data, however it is more 

efficient computationally as any requests for data can be serviced without the need 

to reconstruct or recompute the data. 

Some of the Cloud storage providers only replicate what is already available on a 

local storage space. These providers include Microsoft One Drive, Dropbox, and 

Google Drive when configured to synchronize with local files. When the local version 

is changed the system updates the version stored on the Cloud correspondingly, but 

when the local version is removed the Cloud version is also removed. Other storage 

providers act more alike a remote storage server where files could be uploaded and 

downloaded independent of local copies. These include Amazon’s S3, Google Drive 

when not configured to synchronize with local files. Users can synchronize the local 

and Cloud versions through the system when desired. 

The Framework borrows two important ideas from traditional Cloud storage 

architectures, firstly the use of erasure code algorithms, and secondly to use secured 

internet connections throughout all communication links. We’ve shown in Section 5.4 

how the Framework resolves the problems faced by traditional Cloud storage 

systems. 

7.2 DISTRIBUTED FILE SYSTEMS AND ARCHITECTURE 

In distributed file systems, a user connects to a remote storage server through, 

usually, a TCP/IP network to access their remote files. Most standard operating 

systems file operations such as copy, delete, create, move, open, close, and write 
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apply to these systems as well, and the user manages their files and folders on the 

remote server using the same user interfaces as they do on their own local computer. 

A popular distributed file system is the Network File System (NFS) invented by Sun 

Microsystems in the 1980s [63]. In Linux and UNIX based systems, NFS folders could 

be accessed by first using the mount command to connect to the folder. A more 

recent and advanced distributed file system is Red Hat’s GlusterFS, where the file 

system scales across many storage servers collectively considered as a virtual storage 

pool [64]. 

 

Figure 10 – GlusterFS Distributed File System Storage Architecture [64] 

The first Cloud storage systems were built upon distributed file systems servers, 

which makes the two very similar. However, users have direct access to their folders 

and files in the remote storage server, which allows them to issue operating systems 

level commands to control their files. If a user issues a delete command by accident 
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to their remote files, it is unlikely that there would be any way to recover the file 

unless the distributed file system had versioning systems in place. In Cloud storage 

systems these types of operations are interpreted and carried through the software 

system, which allows Cloud vendors to always create backups and versions to each 

and every operation on any file. Part of the work of utilizing a distributed file system 

is in the administration and management of all of the remote folders and drive 

partitions. The administrator of the system has control over the physical location 

where each user’s folders reside, which by extension implies the physical locations of 

all users’ data. In Cloud systems, due to the nature and size of the data encountered, 

often the specific physical location is determined by load and space balancing 

algorithms. The remote storage server usually exists within a local area network of 

the user’s home or corporate organization, rather than through the internet. 

Generally this means the user has control on the physical hardware of the storage 

servers, where as in the Cloud the users don’t have control over the hardware. If 

users wanted to utilize distributed file systems, they would also have to bear the 

costs of the equipment, maintenance, and management of the remote file servers 

they use. 

The Framework borrows the idea of carrying out file operations through a software 

system to allow for graceful recoveries from user mistakes, but at the same time 

strongly incorporates the notion of having much stronger control of the data, and 

where the data physically resides. Since the Framework ultimately uses Cloud storage 

providers to store users’ data, it can save the user from having to invest in storage 

equipment. 
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7.3 PEER-TO-PEER FILE SYSTEMS AND ARCHITECTURE 

Peer-to-peer file systems (P2P FS) originated as a research and experimental file 

system platform aimed to take advantage of the decentralized control and scalability 

advantages of peer-to-peer networks. One of the most prominent systems is MIT’s Ivy 

P2PFS [61]. Ivy is built on top of another tool called Chord [65]. Chord manages the 

coordination, and search of peers within the P2P network. Specifically, it assigns all 

participating peers into a Galois Field identifier circle, where all peers clockwise from 

the current peer is its successor peers. Each peer maintains a fixed table of 

immediate successor peers, which are indexed according to an interval range on the 

Galois Field. An example of this is shown below in Figure 11 for 3 peers with IDs of 

node 0, 1, and 3 respectively. Chord requires all peers in the P2P network to conform 

to this ordering specification, and whenever a peer joins or disconnects from the 

network, all other peers will update their successor tables. Peers are assigned into a 

node position based upon learning about information of one of the nodes in the ring 

through an external mechanism, such as from a P2P tracker server. Since every node 

in the ring knows its successors, a search for a peer within the network will simply 

traverse sufficient number of successor tables until it finds the peer in need. At a 

higher abstraction level, the location for a piece of data within the network is 

associated with a key which is mapped to the peer containing that data through a 

hash table that indexes the entire circle. Searches for data can simply be performed 

by searching using the corresponding key. 
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Figure 11 – Chord P2P Ring [65] 

Ivy is a log based file system in that every file related operation is written into log 

files. To read a file, the system must consult all logs for all operations related to the 

file, and then compute the results to generate the output file. To write or change a 

file, the system writes only to the log file residing with the user making the changes. 

Within this overall operation scheme, it uses the mechanisms of Chord to distribute 

the replicas of the logs to a keyed peer node and its successor nodes. In the case of a 

user performing a modification operation on a file, its updated log is replicated to 

the user’s successor peers. Ivy implements a number of other subsystems to ensure 

consistency of the logs, to resist attacks from outside the P2P network using 

encryption, and resist attacks within the P2P network through trust based log 

retrieval. In case of data corruption, Ivy also has tools that plausibly guess at the 

missing data blocks to assist in data recovery. 



Chapter 7: Comparison to Existing Storage Paradigms 

136 

The premise of P2P file systems is that the decentralized control and access, along 

with sufficient numbers of participants in each network will be able to sustain a 

reasonable availability for any data stored in the network, and afford tolerance to 

equipment failures and outages through application of the Off-site Data Protection, 

and Replication principles. Compared to centralized storage systems like Cloud and 

its underlying distributed file systems, the probability of each node in the network to 

be offline is much higher, which makes P2P networks require much more replication 

than centralized systems. However, P2P networks such as Ivy are much more 

resistant to attacks from outside and inside the network, and the decentralized 

control makes it harder for an attacker to know where to begin attacking within a P2P 

network compared to centralized systems. The Ivy system also requires significant 

file-read overhead computation, since it has to retrieve all trusted logs through the 

network and compute the actual file from these logs. 

The Framework takes advantages of the ideas behind Ivy to distribute the metadata 

among a set of peers in a P2P network, each peer being a mobile device or computer 

that the user owns. While there is a relatively higher cost in retrieving and reading 

metadata, the metadata is expected to be small relative to the size of the actual files 

so the computation time is minimized. Changes to the metadata can propagate 

through the network to the other peers incrementally as each device connects and 

disconnects from the network. Alternatively, the system can adopt the approach of 

using Ivy’s read-all, write-local log system to store the metadata.  

However, Ivy’s file read cost overhead is too high for use for the actual data that a 

user would want to store in any off-site location. The Framework utilizes erasure 

code algorithms from the other storage systems in order to avoid this problem. 
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7.4 CHAPTER SUMMARY 

This chapter analyzed the similarities and differences between the approach and 

Framework to existing remote storage paradigms, and analyzed the existing 

paradigms for their vulnerabilities as well as strengths. The Framework borrows the 

ideas of using erasure codes and secure internet connections from traditional  Cloud 

storage architectures. We’ve shown in previous chapters how the approach is 

superior to a traditional Cloud storage architecture, however it worth keeping in 

mind that efforts by a service provider to improve their services under the traditional 

architecture will benefit a user using a system implemented from our Framework.  

The distributed file system paradigm limits the user to essentially using network 

attached storage devices to back up their data, which involves heavy upfront costs, 

management and configuration work, and ultimately isn’t as secure as a true off-site 

back up that is placed far away from the user’s computing environment. However, 

distributed file systems allow users to have strong control over their files unlike 

traditional Cloud storage. The Framework borrows the idea of using a software 

system to perform file operations instead using operating system level commands in 

distributed file system architectures, in order to facilitate graceful recoveries from 

user mistakes. The Framework also borrows the idea of enforcing stronger control 

over the physical location of where data resides from distributed file systems. 

Finally, the peer-to-peer file system paradigm offers an interesting but high 

computational overhead cost means to store data among a set of peers in a P2P 

network. While the notion of decentralized control helps to add to the work required 

of attackers, there are many security challenges and vulnerabilities of using P2P 

networks as the backbone for a file system. Many of these challenges were 
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confronted by the research team at MIT in their course of designing the Ivy P2P file 

system. The Framework adopts the use of a simple peer-to-peer network to distribute 

the metadata files generated to mobile devices and computer that the user owns, to 

secure the metadata files and to add redundancy to the metadata so that it can 

tolerate outages and failures.  

The next chapter draws the final conclusions and discusses future works of this 

research problem. 
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CHAPTER 8: CONCLUSION AND FUTURE 

WORK 

In an ever increasingly online and interconnected world where we are expecting 

exponential growths of the amount of data being generated, stored, and processed on 

the internet, it is of vital importance to ensure the safety, security, reliability, and 

privacy of any personal information stored online. 

The rise of Cloud Computing has given internet users a host of freedoms never 

enjoyed before, but comes with great risks for both users and the companies 

operating the Clouds. The analysis and Framework presented in this thesis showed, 

refined, and applied an effective approach based on the use of erasure codes. The 

Framework adds redundancy and cryptographic security to protect a user’s personal 

data. This helps users mitigate the risks of using Cloud storage whilst reaping and 

enhancing its benefits. Along the way, a set of erasure code analysis metrics was 

presented, which can be used to conduct further research of other erasure codes for 

their applicability to this problem. The economic constraints and problems of using 

Cloud storage was also analyzed, resulting in a set of prioritized factors to help users 

and storage systems select Cloud storage providers. 

The in-depth and comparative analysis of seven erasure codes showed that there’s a 

corresponding computational complexity trade-off where codes with better data 

security incur higher computational time complexities. Where codes shared the same 

mathematical principles, the allowed arrangements and configurations decided the 

efficiencies of each code. From the seven codes analyzed, two winners were chosen 
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due to their configuration flexibility and inherent security and efficiency properties. 

LDPC was chosen because it was fast and offered many configurations. Similarly, 

Rabin’s IDA was chosen because of its computational security and configuration 

flexibility. Ultimately, the choice of using a particular erasure code will depend on the 

security and efficiency preferences or needs of the user.  

The knowledge, analysis, and the Framework presented in this thesis enables 

interested researchers and software professionals to perform detailed design and 

implementation of an actual software system to help secure user data on the Cloud. 

The benefits would be tremendous to end users. 

As a research problem, the use of erasure codes is also a trade-off in that users must 

accept an increase in total storage costs in order to solve the Cloud storage 

problems. An even more ideal solution would find ways of minimizing or eliminating 

this increase. This is an open research challenge which might involve experimental 

research in erasure code designs, or the study and design of other kinds of data 

security systems. 

The author hopes that the knowledge collected and analyzed in this thesis would be 

synthesized further into effective educational materials to help inform the public 

about Cloud Computing, and to guide software professionals on the right path 

towards developing secure data driven systems for the Cloud. 
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