

Secure Cloud Storage

by

Jeff Yucong Luo

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

© Jeff Yucong Luo 2014

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

ABSTRACT

The rapid growth of Cloud based services on the Internet invited many critical

security attacks. Consumers and corporations who use the Cloud to store their data

encounter a difficult trade-off of accepting and bearing the security, reliability, and

privacy risks as well as costs in order to reap the benefits of Cloud storage. The

primary goal of this thesis is to resolve this trade-off while minimizing total costs.

This thesis presents a system framework that solves this problem by using erasure

codes to add redundancy and security to users’ data, and by optimally choosing

Cloud storage providers to minimize risks and total storage costs. Detailed

comparative analysis of the security and algorithmic properties of 7 different erasure

codes is presented, showing codes with better data security comes with a higher cost

in computational time complexity. The codes which granted the highest configuration

flexibility bested their peers, as the flexibility directly corresponded to the level of

customizability for data security and storage costs. In-depth analysis of the risks,

benefits, and costs of Cloud storage is presented, and analyzed to provide cost-based

and security-based optimal selection criteria for choosing appropriate Cloud storage

providers. A brief historical introduction to Cloud Computing and security principles

is provided as well for those unfamiliar with the field.

The analysis results show that the framework can resolve the trade-off problem by

mitigating and eliminating the risks while preserving and enhancing the benefits of

using Cloud storage. However, it requires higher total storage space due to the

redundancy added by the erasure codes. The storage provider selection criteria will

iv

minimize the total storage costs even with the added redundancies, and minimize

risks.

v

ACKNOWLEDGEMENTS

There are a number of people without whom this thesis might not have been written,

and to whom I am greatly indebted.

I would like to express the deepest appreciation to my supervisor, Professor Gordon

B. Agnew for his time, expertise, guidance, criticisms, and support throughout my

graduate studies.

Sincere thanks go to Cisco Systems, Inc. and the Natural Sciences and Engineering

Research Council of Canada for their financial support and technical expertise.

I would like to thank Professor Lin Tan for her guidance and supervision in

developing me as a teaching assistant, as well as her constructive criticisms of this

thesis. Thanks go to Professor Ian Munro for his insights and criticisms as well.

I would also like to thank Professor Raouf Boutaba, whom introduced me to the

research problems in Cloud Computing. I want to thank all of the professors whom

have taught and guided me throughout my studies.

I would also like to express the deepest thanks to my beloved parents as well as my

best friend for their love, encouragement, patience and support.

Thanks go to many friends past and present, whom have kept me accompanied

throughout this exciting journey.

vi

DEDICATION

I would like to dedicate this to the memory of my grandparents, whom have raised

me as a child, mentored me as an adult, and taught me the most valuable lessons in

life. They were brilliant and well respected in their professional careers. As

grandparents, they were the most kind and nurturing grandparents one could wish

for.

vii

TABLE OF CONTENTS

Author’s Declaration ... ii

Abstract .. iii

Acknowledgements .. v

Dedication ... vi

Table of Contents ...vii

List of Figures .. xi

List of Tables ... xii

List of Equations .. xiii

Chapter 1: Introduction .. 1

1.1 Thesis Roadmap .. 3

1.2 Chapter Descriptions ... 4

Chapter 2: Background ...5

2.1 Cloud Computing ... 5

2.2 Secure and Reliable Storage Principles ... 9

2.2.1 Replication and Redundancy ... 9

2.2.2 Confusion and Diffusion .. 12

2.2.3 Off-site Data Protection... 13

2.2.4 Principle of Least Privilege ... 15

2.3 Value of Data ... 15

2.3.1 Value of Personally Identifiable Data .. 16

2.3.2 Legal Requirements of Personally Identifiable Data 17

2.3.3 Business Value of Personal Data ... 19

2.3.4 Costs From Loss of Data ... 21

2.4 Finite Fields ... 22

2.4.1 Finite Field Generator Polynomial and Representation 24

Table of Contents

viii

2.4.2 Binary Fields and Polynomial Representations .. 24

2.4.3 Binary Field Arithmetic ... 26

2.5 Chapter Summary ... 28

Chapter 3: Cloud Storage Risks, Benefits, and Costs .. 30

3.1 Cloud Storage Risks .. 30

3.1.1 Malicious Attacks from Anywhere in the World... 30

3.1.2 Implicit Dependence on Storage Provider Reliability 31

3.1.3 Risk of Data Loss and Data Corruption .. 32

3.1.4 Implicit Requirement to Always Trust the Provider 32

3.1.5 Conflicting Laws May Not Respect Users’ Privacy..................................... 33

3.2 Cloud Storage Benefits ... 34

3.2.1 A New Economic and Business Management Model 34

3.2.2 Improved Resource Utilization ... 35

3.2.3 Worldwide Access .. 36

3.2.4 File Versioning and Recovery .. 36

3.2.5 File Sharing and Synchronization .. 37

3.2.6 A Way to Backup Data ... 37

3.3 Cloud Storage Costs .. 37

3.3.1 Internet Connection Costs .. 38

3.3.2 Cloud Storage Provider Costs .. 41

3.3.3 Comparison with Local Disk Storage Costs .. 43

3.3.4 Economic Effects ... 45

3.4 Chapter Summary ... 47

Chapter 4: Cloud Storage Problem Definition ... 49

Chapter 5: Approach and Methodology ... 52

5.1 Formal Model of Erasure Code File Transformations .. 53

5.2 Redundant Array of Cloud Storage System ... 55

5.3 The Dictionary Attack Problem .. 58

Table of Contents

ix

5.4 Addressing Secure Cloud Storage Problems ... 59

5.5 Preserving Cloud Storage Benefits .. 65

5.6 Current User Best Practices .. 70

5.7 Chapter Summary .. 71

Chapter 6: Cloud Storage Framework ... 72

6.1 General Model of Framework ... 72

6.2 Erasure Code Algorithm Properties and Metrics .. 74

6.2.1 Common Algorithm Properties and Mathematical Constants 77

6.2.2 Algorithm Analysis Metrics ... 77

6.3 Algorithm Analysis ... 81

6.3.1 Simple Replication ... 82

6.3.2 Hamming Code ... 83

6.3.3 RAID-5 Algorithm .. 88

6.3.4 Low-Density Parity-Check Codes .. 90

6.3.5 Shamir’s Secret Sharing Algorithm... 95

6.3.6 Rabin’s Information Dispersal Algorithm .. 101

6.3.7 Reed-Solomon Codes ... 106

6.3.8 Overall Comparison .. 112

6.4 Handling Metadata ... 118

6.5 Cloud Storage Selection .. 121

6.5.1 Economic Pricing Factor .. 121

6.5.2 Service Provider System Security and Reliability Factor 124

6.5.3 Service Provider Geographical Location Factor 124

6.5.4 Prioritizing the Factors .. 125

6.6 Chapter Summary ... 127

Chapter 7: Comparison to Existing Storage Paradigms ... 129

7.1 Traditional Cloud Storage Architecture ... 129

7.2 Distributed File Systems and Architecture .. 131

Table of Contents

x

7.3 Peer-to-Peer File Systems and Architecture .. 134

7.4 Chapter Summary ... 137

Chapter 8: Conclusion and Future Work .. 139

References ... 141

xi

LIST OF FIGURES

Figure 1 – Galois Field of 16 Elements ...23

Figure 2 – Cloud Storage Cost Model ... 38

Figure 3 – Erasure Code File Transformation Model ... 53

Figure 4 – Redundant Array of Cloud Storage Architecture [3] .. 56

Figure 5 – General Model of Cloud Storage Framework ... 73

Figure 6 – A Polynomial Equation of Degree 3 with 13 Points Defined .. 97

Figure 7 – Shamir’s Secret Sharing Example ... 98

Figure 8 – Encoded Code Word for Reed-Solomon Codes ... 109

Figure 9 – Traditional Cloud Storage Architecture ... 129

Figure 10 – GlusterFS Distributed File System Storage Architecture [64] 132

Figure 11 – Chord P2P Ring [65] .. 135

xii

LIST OF TABLES

Table 1 – Finite Field Arithmetic for GF(2) Binary Field ..25

Table 2 – Field Elements for GF(16) with G(X) = X
4
 + X + 1 ... 26

Table 3 – Binary Field Arithmetic ... 28

Table 4 – Internet Service Provider Pricing [35] [36] [37] [38] [39] [40] [41]............................. 39

Table 5 – Free Tier Data Storage Limits for Cloud Providers [42] [43] [44] [45] [46] 41

Table 6 – Cloud Storage Costs, February 2014 [42] [43] [44] [45] [46] .. 42

Table 7 – Cloud Storage Costs, February 2013 [42] [43] [44] [45] [46] .. 42

Table 8 – Transmission Costs for Amazon S3, February 2014 [43] .. 43

Table 9 – Local Disk Storage Costs, January 2014 [47] .. 44

Table 10 – Simple Replication Configurations and Redundancy Performance 83

Table 11 – (7, 4) Hamming Code Computation Table .. 84

Table 12 – (15, 11) Hamming Code Computation Table ... 85

Table 13 – Hamming Codes and Redundancy Performances .. 86

Table 14 – RAID-5 Schemes and Redundancy Performances .. 89

Table 15 – LDPC Configurations and Redundancy Performances ... 94

Table 16 – Shamir’s Secret Sharing Schemes and Redundancy Performance 100

Table 17 – Rabin’s IDA Configurations and Redundancy Performance ... 105

Table 18 – Reed Solomon Error Correction Process .. 109

Table 19 – Reed-Solomon Codes and Redundancy Performances .. 111

Table 20 – Best Redundancy Performance Erasure Code Configurations 112

Table 21 – Redundancy Performances When Set As Close to (15, 11) Code Configuration 113

Table 22 – Erasure Code Properties and Redundancy Formulas ... 115

xiii

LIST OF EQUATIONS

Equation 1 – Resultant Size Factor ... 10

Equation 2 – Redundancy Factor ... 10

Equation 3 – Redundancy Minimization Function ... 11

Equation 4 – Joint Probability of Two Statistically Independent Events .. 14

Equation 5 – File Piece Size Constant .. 77

Equation 6 – Redundancy File Size Constant .. 77

Equation 7 – Resultant File Size ... 77

Equation 8 – RAID-5 Encoding Algorithm .. 88

Equation 9 – RAID-5 Bit Repair Algorithm ... 88

Equation 10 – Binomial Coefficient Formula for LDPC Codes ... 92

Equation 11 – LaGrange Basis Polynomials Equation ... 99

Equation 12 – Reed-Solomon Codes Generator Polynomial ..107

Equation 13 – Generator Polynomial for (15, 11) Reed-Solomon Code ... 108

Equation 14 – Reed-Solomon Encoding Computation .. 108

Equation 15 – Storage Cost Amortization Period with Single Upload .. 123

Equation 16 – Storage Cost Amortization Period with Downloads .. 123

1

CHAPTER 1: INTRODUCTION

In recent years, the rise of Cloud Computing has given internet users a host of

freedoms never enjoyed before. One such freedom is the ability to store files on the

Cloud through a Cloud storage service provider, and retrieve it anywhere else in the

world when the user authenticates to the service. It is increasingly being used as a

repository for storing back up data. In team settings, Cloud storage lets teams

synchronize and organize all kinds of shared data. For start-ups and small

corporations, the use of Cloud storage in conjunction with Cloud Computing

platforms reduces the need to invest in hardware equipment up front, allowing many

new ideas to be developed into full scale products and large corporations. While

Cloud storage services are numerous and on the rise, there are still many security,

economic, and reliability issues associated with utilizing the Cloud as a storage

medium.

Attacks such as the one aimed at Dropbox as recent as 2011 have allowed anyone on

the internet to download any file stored and hosted by Dropbox for a 4 hour time

period [1]. The attackers exploited a bug in Dropbox’s authentication mechanism.

Another attack aimed at Amazon S3 storage service in 2011 exploited vulnerabilities

within the authentication mechanism of Amazon.com, which also allowed

researchers access to data stored in S3 [2]. Cloud storage service providers remain a

high value target for many attacks as the general public and users of the internet are

unaware of the potential risks of using a Cloud storage service.

Chapter 1: Introduction

2

Cloud storage providers encounter numerous problems in their operation that

results in service outages or even data loss for its users. These include power

outages, natural disasters, hard disk or server failures, maintenance work, and

administrative mistakes. Users who store data on the Cloud must depend on reliable

storage services. As such, reliability remains a key concern for using a Cloud storage

service.

Cloud storage service providers employ tier-based pricing to charge users for storing

files on their Clouds. Most providers offer an initial free storage tier with a capacity

limit that usually suffices for individual consumers, but companies will quickly

outgrow the capacity limit. The lowest surveyed storage cost is at $0.05 per GB per

month, offered by Google Drive. For consumers and companies, there are also costs

and bandwidth limitations associated with internet service providers since almost all

Cloud services are accessed through the internet. The lowest surveyed home internet

connection cost is $0.10 per GB transferred. Competition between storage providers

leads to a marketplace with ever changing storage pricing. Some storage providers

also charge a fee to download data off its Cloud. To take advantage of lower long

term storage costs, users must pay a relatively expensive fee in order to download

and upload their data from an expensive storage provider to a cheaper provider.

Literature refers this as a storage vendor lock-in, where it can be cost prohibitive to

move away from a storage provider once a user or organization commits to using the

services of that provider. Optimizing the total storage costs alone is a challenging

dynamic problem, but coupled with the security requirements and reliability

requirements it becomes a very challenging problem.

Chapter 1: Introduction

3

The central contribution of this thesis is a Framework for resolving the security and

economic problems of using the Cloud as a storage medium while preserving all of

its benefits. The Framework is a high level design of a secure storage system for the

Cloud, from a consumer point of view. It is meant to be a guiding template for

software designers whom wish to design and implement a secure storage platform or

system. The Framework adopts the approach by Abu-Libdeh, Princehouse, and

Weatherspoon [3] of using erasure code algorithms to split and join files to add a

layer of reliability and security to the files. The thesis presents an in-depth analysis

of the approach, comparative analysis of applicable erasure code algorithms, and the

design and analysis of the Framework. The Framework provides a number of

improvements upon the work by Abu-Libdeh et al.

1.1 THESIS ROADMAP

The thesis is written in a manner that is hopefully accessible and interesting to a

broad range of readers from different backgrounds, including internet users, network

and security researchers, and software systems designers. Background knowledge of

statistics at the level of a second year university course is helpful in understanding

parts of the thesis, although not essential to digest the main ideas.

Internet users will want to begin their exploration at Chapters 2 and 3 to gain an in-

depth understanding and appreciation of the technology and issues surrounding

Cloud Computing and Cloud Storage, and the value of data. It also prepares readers

new to the field with the knowledge of the security principles that cryptologists and

network security specialists use every day to design secure systems. Network and

security researchers will enjoy Chapter 5 and 6, which shows how erasure codes can

be used to solve the problem at hand along with their performance and security

Chapter 1: Introduction

4

properties. Software system designers will enjoy Chapters 6, and 7 which present the

Framework and compare it against traditional paradigms of remote data storage.

1.2 CHAPTER DESCRIPTIONS

This thesis is organized into 8 chapters as follows:

 Chapter 2 introduces Cloud Computing, Cloud Storage, Secure and Reliable Storage

Principles, and the Value of Data.

 Chapter 3 presents a thorough examination of the benefits, risks, and costs of

using the Cloud as a storage medium.

 Chapter 4 presents a concrete problem statement for using the Cloud as a storage

medium.

 Chapter 5 presents the approach and research work by Abu-Libdeh, along with the

author’s analysis of how the approach resolves the economic, security, and

reliability problems, and how it retains the benefits of using Cloud as a storage

medium.

 Chapter 6 presents the Cloud storage Framework, an in-depth analysis of various

erasure codes which can be used in the Framework, a storage provider selection

algorithm for the Framework, and a method for handling the metadata used within

the Framework.

 Chapter 7 compares this Framework to traditional remote data storage paradigms.

 Chapter 8 draws the conclusions of the thesis and presents future work.

5

CHAPTER 2: BACKGROUND

Cloud Computing has an interesting history of sparse and sporadic development,

which have only come together in its modern incarnation starting in year 2000. Like

other important technologies that have defined and revolutionized computing, Cloud

Computing is steeped in fundamental works dating as far back as the 1950s in the

formative stages of computer science. In time, new generations of scientists and

engineers built upon prior work to cause the right and necessary conditions for

Cloud Computing to birth in the 21st century. Like other computational

methodologies, Cloud Computing brings unique values to the table and has its equal

shares of security challenges. In modern times where the internet is experiencing

exponential grown in the amount of data it is receiving and processing every day, the

security issues become ever more important. The value of data also grows, as more

data are being mined, analyzed, and reduced into useful knowledge. This chapter

introduces readers to Cloud Computing, Cloud Storage, Secure and Reliable Storage

Principles, and the Value of Data to help readers establish a broad context and

understanding of the technology, its value, and the security challenges in modern day

Cloud Computing. We also introduce Finite Field mathematics in the last section of

the chapter, to help prepare readers for the technical discussions later in the thesis.

2.1 CLOUD COMPUTING

Cloud Computing is the paradigm of internetworked computing whereby vast

amounts of computing resources are pooled together and subdivided into units of

resources to service user and workload requests, on demand. The types of resource

units include virtual machines created inside powerful computation servers used

Chapter 2: Background

6

mainly for computational work, virtual storage created in storage servers for data

storage and retrieval, and virtual networks created among the servers and network

equipment to facilitate private and secure communications among participating

virtual servers. The principle feature of Cloud Computing data centers which

separates it from a classical data center is its ability to scale up and down to match

the number of requests on demand. This is accomplished by dynamically allocating

or de-allocating the resource units according to the arrival and completion of user

requests.

Two key enabling technologies for Cloud Computing is the surge of availability of

fast internet access by every day consumers, and the continuous hardware

innovations which reduced the price for server hardware while increasing its

computational capacity. Without fast internet access, sending and receiving the types

of data to the Cloud, and within a Cloud would have been too slow to be useful to

businesses and consumers. Without price reductions and compute capacity increases,

Clouds could not service billions of users and requests every day.

The central idea behind Cloud Computing began in the 1950s during the era of

mainframe computer systems [4]. These systems had all of the computation

equipment arranged in a single server room, while employees accessed them via a

central terminal. To efficiently utilize the system, time sheets were used to allow

employees to reserve time on the system. Employees would coordinate their access to

the system through the time sheets, thus sharing the resources of the system. The

notion of sharing computation resources began in this era. Technically, the

mainframes of this era were standalone systems which operate in isolation. True

time-sharing capable mainframes would arise later in the 1970s.

Chapter 2: Background

7

Professor John McCarthy, inventor of the LISP programming language, gave a special

lecture in 1961 at Massachusetts Institute of Technology where he remarked that “If

computers of the kind I have advocated become the computers of the future, then

computing may someday be organized as a public utility just as the telephone system

is a public utility…. The computer utility could become the basis of a new and

important industry” [5]. In essence, Professor McCarthy defined the notion of utility

computing in that lecture, forever setting a goal and direction to bring computing to

the public in an affordable way.

In the 1970s, IBM released an operating system called “Virtual Machine” for their

System/370 mainframe systems [6]. This operating system allowed distinctive

computation environments in every virtual machine, for every employee who

connected to the system. The specific technique that IBM engineers and scientists

developed was Dynamic Address Translation, used to translate a relative storage

address per VM to a physical storage address on the storage mediums of the day.

Virtualizing the storage was sufficient for the computer architectures and systems in

those days to create independent computation environments in a mainframe. The

idea behind Dynamic Address Translation of using a logical addresses in software,

and translate it into physical addresses by hardware was of such value that today we

can see its use in many modern computer systems. This marked the beginning of the

era whereby computers could work on multiple tasks in parallel while maintaining

independent computation environments for its users. The notion of “Virtual” in

Virtual Machines was born.

Amazon Inc. is arguably the company who invented modern Cloud Computing, in the

early 2000s. Their efforts aimed to improve the internal resource utilization of their

Chapter 2: Background

8

massive data centers powering Amazon’s worldwide commerce web system. The

results proved very successful, leading Amazon to rent out their extra computational

capacities to the public in 2006. Whilst Amazon did not invent the notions of

resource sharing, utility computing, or virtual machines, their work in defining the

architecture of a modern Cloud lead to a concrete definition of the economic and

pricing models for monetizing shared computation capacity.

Modern Cloud storage began as an evolution of classical web storage services (such

as FTP servers), network-attached storage technology, and the virtual storage systems

by IBM in the 1960s. FTP servers provided a method to transfer files to and from a

remote FTP server, while network-attached storage provided a method to transfer

files to and from a storage device located within a local or enterprise network. FTP,

more specifically its secure variant SFTP, gave Cloud storage its first communications

protocol for securely transmitting a file over the internet. Network-attached storage

protocols enabled Cloud storage providers to network together thousands of hard

drives and manage them in one central server to provide the storage service. Modern

virtual machine technology development provided the notion and idea to dynamically

allocate storage resources. Combined together, the idea of a dynamically allocated

secure storage service on the internet was born.

The earliest modern Cloud storage was built by Amazon as part of the Amazon Web

Service in 2006, which provided Cloud storage and computation services [7]. This

service was available for everyone in the public to use. Since then, numerous

competing services have been built. Some are built on top of Amazon, such as

Dropbox, while others are built from the ground up, such as Microsoft OneDrive.

Chapter 2: Background

9

2.2 SECURE AND RELIABLE STORAGE PRINCIPLES

The previous section hints at specific security principles for storing data. This

section describes these principles in concrete detail, and outlines why they are

important to satisfy when designing a secure Cloud storage system. The overarching

principle is to “not put all the eggs in one basket”.

2.2.1 REPLICATION AND REDUNDANCY

If there exists only a single true copy of some data, and this copy was somehow lost,

then the data would be lost with it forever. Replication involves “carbon” copying the

original data to create backup copies. In digital file systems, this is relatively easy as

the bits constituting the data are simply duplicated. Replication safe guards the data

from being lost or destroyed, so long as at any time there are always at least two

copies of the data in existence. If any one of these copies were to be lost, tampered

with, or destroyed, we can simply create another copy from the intact copy of the

data. Redundancy is a measure of how much duplication exists for some data.

Generally, some redundancy is needed to ensure the safety of the data in the event of

data loss or corruption. Redundancy viewed as a necessary cost, and the objective of

this principle is to provide the required amount of data security at the lowest

possible cost, namely, to minimize redundancy.

We define Resultant Size Factor as the resultant size of a file (after adding

redundancy) divided by the original size of the file. If the original file was divided

into K number of equal size pieces, and we add R number of redundancy pieces to

the file whereby the size of each R piece is the same as the size of each K piece, then

RSF is the total number of pieces of data (N) divided by the number of pieces of data

constituting the original data (K).

Chapter 2: Background

10

Equation 1 – Resultant Size Factor

A file will always have at minimum a Resultant Size Factor value of 1.0, where R = 0,

implying the file has no redundancy. As well, K is always at least 1. Logically, if the

original data was not split, we would still have 1 piece of data. We also define

Redundancy Factor as R divided by N:

Equation 2 – Redundancy Factor

Redundancy Factor represents a relative level of security for some data. RF has a

minimum value of 0.0, with R = 0, representing no redundancy. The higher the value

of RF, the more secure the data is against data loss and corruption.

Redundancy Factor and Resultant Size Factor are interrelated. To minimize Resultant

Size Factor, we have to minimize the Redundancy Factor. Both RSF and RF have no

finite upper bound in its possible value, but the larger values, the more redundant

the resultant data is. The goal of a Cloud storage system is to minimize Resultant

Size Factor, getting it as close to the value of 1.0 as possible, with respect to a

desired Redundancy Factor chosen as a design goal of the system. The thesis

presents a number of techniques and algorithms towards this goal in Chapter 6. We

set the redundancy factor to be equal among the algorithms to represent an equal

level of security against data loss and corruption, and then compare their resultant

size factor to determine how efficient the algorithms are at achieving this objective.

Chapter 2: Background

11

If we rewrite Equation 1 and Equation 2 with respect to N we have the following

identities:

Equating N on both sides, we can write RSF and RF as a function of each other:

Further, we can rearrange the identity such that both factors are on one side of the

equation, forming the redundancy minimization function:

Equation 3 – Redundancy Minimization Function

If we hold RF at a constant value, then to minimize RSF we would require the

algorithms to give us a lower ratio between R and K, implying essentially that a more

efficient algorithm will be able to achieve the same RF while adding less redundant

data pieces.

Chapter 2: Background

12

2.2.2 CONFUSION AND DIFFUSION

In cryptography and cryptosystems research, the principles of confusion and

diffusion are central in evaluating the strength of cryptographic algorithms and

systems in safeguarding data. In this research area, plaintext refers to the data we

want to safeguard through an encryption system that uses an encryption key (such as

a password) to translate the plaintext into ciphertext. Ciphertext is the encrypted

version of the plaintext. For example, if the data we wish to encrypt is an English

essay, the ciphertext would appear to be a random collection of incoherent letters

and symbols. In cryptosystems, attackers ultimately have the objective of obtaining

the plaintext. The easiest of the three pieces of data to obtain by an attacker is the

ciphertext as an attacker could listen in to a secured communication channel such as

a free Wi-Fi hotspot. However, bad computing habits such as reusing the same

password across multiple accounts quite often allows attackers to have easy access

to the encryption key as well.

Originally defined by Claude Shannon in his paper “Communication Theory of

Secrecy Systems” in 1949, Confusion refers to “making the relationship between the

key and the ciphertext as complex and involved as possible” [8]. This is so that if an

attacker obtains the ciphertext, they would need to spend significant effort to find

out the relationship between the ciphertext and the key, and thus obtain the key. If

the Confusion principle is not applied, then an attacker could easily obtain the key

through the ciphertext, and then use the cryptosystem to obtain the plaintext.

Shannon also defines Diffusion in his paper as the effect of “dissipating the

statistical nature of the plaintext over all ciphertext” such that the two statistics

cannot be correlated. In modern digital cryptosystems, this means to spread the

Chapter 2: Background

13

effects of each bit of plaintext and key to as many bits of the ciphertext as possible.

Ideally, every bit of plaintext, and every bit of key is involved in creating a single bit

of ciphertext. That way, if any bit changes in the plaintext or key, the ciphertext

would change completely. This aims to disperse any statistical characteristics of the

plaintext and key over the entirety of ciphertext, so that attacks based on statistical

methods become useless. If the Diffusion principle is not applied, an attacker can

potentially determine the plaintext through the ciphertext without needing to know

the key, by directly inferring the plaintext using the statistical characteristics of

known languages such as English.

In practice, cryptographic algorithms utilize character substitution and character

position permutation to achieve the principles of confusion and diffusion,

respectively. Often multiple rounds of substitution and permutation is performed,

such as in the DES algorithm, to ensure high cryptographic strength.

Cloud storage algorithms and systems would ideally apply both of these principles in

tandem to safeguard users’ data. The application of these principles could be

accomplished by the use of encryption algorithms prior to the use of replication and

redundancy algorithms, or as shown in Chapter 6, could be accomplished as part of

the replication and redundancy algorithms. When an algorithm applies the Confusion

principle, it has the Confusion Property. When an algorithm applies the Diffusion

principle, it has the Diffusion Property.

2.2.3 OFF-SITE DATA PROTECTION

Utilizing off-site data protection allows users to safeguard their data in the event that

the onsite copy becomes corrupt, lost, or destroyed by unexpected events such as

Chapter 2: Background

14

natural disaster or complete system crash. The aim of off-site data protection is to

allow for quick recovery from such disasters, by being able to retrieve the critical

data from the off-site and use it to restore the onsite systems. The principle works

upon the notion that major disaster events are unlikely to occur in both the onsite

and off-site locations at the same time, relatively speaking, compared to the

likeliness of only one of the two locations experiencing the same event.

A simple way to show this is a coin toss experiment, whereby we denote that if the

coin tosses with Head side facing up, then a disaster occurs. Similarly, if it tosses

with Tail side facing up, then a disaster does not occur. Coin 1 denotes the onsite,

while coin 2 denotes the off-site. We can see that a coin tosses with probability of ½

for Head and ½ for Tail. Therefore, the individual probability of either one of the

sites experiencing a disaster would be 50%. The two events are always independent of

each other. The probability that both of the sites would experience disaster at the

same time is equivalent to the probability that both coins would toss with Head side

facing up at the same time, which is ½ × ½ = ¼. Generally, the joint probability is

shown as follows:

Equation 4 – Joint Probability of Two Statistically Independent Events

Events such as natural disasters and system crashes have their own probabilities, and

are often less than 50%. Equation 4 shows that no matter what the individual

probabilities are, the chance of two independent events occurring at the same time

will always be less than the chance of them occurring individually.

Chapter 2: Background

15

Using off-site data protection, a user can spread and reduce risks due to disasters

and unexpected events by taking advantage of this principle. Further, a user can

utilize multiple off-sites to protect their data, further reducing the risks. Cloud

storage systems would ideally take advantage of this principle by utilizing multiple

off-sites to safeguard users’ data.

2.2.4 PRINCIPLE OF LEAST PRIVILEGE

The principle of least privilege states to grant a user, task, process, or server only the

information it needs to accomplish its legitimate tasks. A Cloud storage environment

contains the data of many users at a time, often in shared hardware and computing

environments. The principle needs to be enforced to safeguard users from being able

to modify and access each other’s data when permissions have not been granted.

Users should by default only be granted access to their data and no one else’s. If a

user shares some data with another user, then that user should only be able to have

access to the shared data and not the private data of other users. Users should be

prevented from being able to obtain administrative access and privileges, and thus

other users’ data. Likewise, the design of the Cloud storage system should be in such

a way that the data is always protected from access until a user proves beyond a

doubt they are who they claim they are. That is, the privilege of access is no data, by

default.

2.3 VALUE OF DATA

A person’s data is intrinsically valuable. Human activities on the planet have

generated enormous amounts of data which, relative to history, have only been

recently studied en masses due to the recent surge of Big Data analytics and

software. A single individual’s data can range from personally identifiable

Chapter 2: Background

16

information such as health records, private data files, publicly available birth records,

to non-obvious data such as highway traffic information – an amalgamation of data

of many individual’s driving habits. All of these data are valuable. Some of them are

valuable to the individual, while others are valuable to their families and friends.

Some of the data is highly valuable for certain businesses but not to other

businesses, and some of them are highly valuable to the government. This section

explores in detail how much value data has.

2.3.1 VALUE OF PERSONALLY IDENTIFIABLE DATA

Personal Information is considered by the vast majority of laws across the world as

any information which can be used to uniquely identify an individual, whether living

or deceased.

Identity theft is one of the most worrisome problems related to the loss of personal

information. The Royal Canadian Mounted Police (RCMP) defines identity theft as the

“collection and possession of someone else’s personal information for criminal

purposes” [9]. RCMP further defines identity fraud as the act of using someone else’s

identity to commit acts of fraud. Identity thieves aim mostly to steal and obtain

access to someone’s financial accounts and resources, such as bank accounts, credit

card information, and passwords. Access to this information can deplete one’s

financial resources instantly, as well as cause damages to one’s financial record such

that the victim can no longer borrow funds from banks or obtain credit. Other main

uses of such personal information include impersonation for the purpose of illegal

entry, stay, and work, and tracking the person’s movements.

Chapter 2: Background

17

Research by L. Sweeney at Carnegie Mellon University [10] shows that for United

States of American citizens, 87% of them are uniquely identifiable simply through

three pieces of data of mailing ZIP code, gender, and date of birth. The three pieces

of data can be obtained as easily as looking through publicly available medical data,

and voter list. Sometimes, personally identifiable information can be obtained

through just a single piece of document such as a passport.

2.3.2 LEGAL REQUIREMENTS OF PERSONALLY IDENTIFIABLE DATA

In Canada, the Personal Information Protection and Electronics Documents Act (S.C.

2000) states the rules and conditions whereby personal information can be collected,

stored, used, and disposed [11]. The act is often referred by its acronym PIPEDA. The

act requires organizations to obtain informed consent by individuals prior to the

collection of their personal information, and only for reasonable purposes that are

clearly stated. It requires that the organization collect only the information in needs

to fulfill the stated purposes, and no other personal information. It also requires

organizations to safely store and protect the information with appropriate security

measures against unauthorized access, disclosure, copying, use, or modification.

Businesses must also destroy the information safely when it is no longer needed or if

the business purpose for use of the information changes. The act also grants the

individuals the right to see all the information collected about them and to correct

the information if they are wrong [12] [13]. Exceptions to these rules are also stated

in the act, such as that an organization is not obligated to disclose information of

one individual if such disclosure would inadvertently disclose information about

other individuals. Organizations however are obligated to disclose information when

Chapter 2: Background

18

the non-disclosure would obstruct justice and the enforcement of law, or

compromise the safety of the persons in emergency situations [12].

An interesting violation of PIPEDA occurred in 2007, where Google’s collection of

street images in Canada for its Street View application captured many images of

individuals with sufficient clarity to allow the individuals to be identified. Since

PIPDEA considers such images to be personal information, the works were subjected

to Canadian laws. A letter from Canada’s Privacy Commissioner to Google states that

Google collected the imagery “without the consent and knowledge of the individuals

who appear in the images” [14], and that even though the Street View application

allowed individuals to request images to be removed, “by the time individuals

become aware that images relating to them are contained in Street View, their privacy

rights may already have been affected”. Google’s solution came in the form of a

slightly different version of Street View which adheres to Canada’s privacy laws [15].

Australia requires personal information to be protected from “misuse, loss, and

unauthorized access, modification, and disclosure” and has their own legislative

requirements which Australian companies must follow [16]. In the United States of

America, the Health Insurance Portability and Accountability Act (HIPAA) is a set of

privacy laws regarding health records and health information of patients. Improper

handling of a person’s health record can result in fines as steep as $1.5 million USD

per year [17].

While there are many laws and regulations in place around the world, a Cloud storage

service provider will need to collect some amount of personal information in order to

provide their services to those individuals; this includes financial information if the

Chapter 2: Background

19

service charges fees. It is important that the design of a Cloud storage system

respects these laws and provide proper security in safeguarding personal

information.

2.3.3 BUSINESS VALUE OF PERSONAL DATA

Personal data can be immensely valuable to companies. Data trading companies

alone thrive on a pure business model of buying and reselling a person’s consumer

behavior data. Much of the earnings in this industry come from the billions of dollars

companies are spending advertising their products. Prior to the social network

revolution, users often gave away uniquely identifiable personal information when

they registered for an account for a website or web service. Such websites include

online shopping websites, email services, instant messaging services, and others. The

general types of information in this era was more explicit; for example, “what’s your

marital status?” might be a question asked during a user account sign up page.

Otherwise, the type of data can be explicitly derived from a person’s trail of activities

on a website; such as suggesting products through purchase history on Amazon.com.

The sources of data and patterns of activities increased as a result of social

networking. For example, if two people change their relationship status with each

other on an online social networking site to “married”, such information is of great

value to any company involved in making and selling baby products. Such data is

often used by advertisement companies to present products and services to users at

such times. Such information could be obtained today even without an explicit

change to an account profile, for example by utilizing image classification algorithms

to data mine photo albums for wedding dresses and suites and faces to infer that a

marriage happened between two people. Facial recognition is already a highly

Chapter 2: Background

20

successful feature of many social networking sites, and it would be inevitable to see

more of such algorithms, such as DeepFace used by Facebook [18].

From repositories like these, a company can mine the shopping and communications

habits and data of all their users and derive immense knowledge of them. There is an

entire data trading industry for personal data known as the data broker industry,

with a worth in multibillion dollars [19]. This industry is a fast growing, but

ultimately a subpart of an even greater marketing industry.

Certain companies make profit off of the data they collect directly by utilizing that

data to deliver targeted advertisements to its users. Examples include Facebook,

Google, Netflix, Amazon, Microsoft, and others. Economists tend to analyze these

companies in bulk by taking the total revenue divided by total number of users as a

simplified means of calculating the worth of each user’s data. For example, in

Facebook’s 2013 year-end earnings report [20] [21], they’ve cited 757 million daily

active users and revenue of $2.585 billion USD for fourth quarter 2013. Dividing the

two numbers shows an average of $3.41 revenue per daily active user for that

quarter. For the entire year, the revenue is $7.872 billion with an average daily user

of around 712.25 million, making the revenue per user per year at $11.05 USD.

From a broader perspective, consumer behavioral and personal data fall under the

global internet commerce economic model, where a plausible measure for the entire

economy can be the total dollars spent on marketing products and services to

consumers. After all, companies do want to influence and capture an individual as a

customer. There are also other markets, such as health care, whereby a person’s data

would likely be traded for money since such data would be highly useful in health

Chapter 2: Background

21

care research and health care products market research. It is sufficient to conclude

that a person’s data can be worth a lot.

2.3.4 COSTS FROM LOSS OF DATA

Whenever a company loses personal information and data, a multitude of

consequences usually follows. Generally it can result in legal fines, financial loss, loss

of intellectual property, loss of customers, and most critically loss of trust. Without a

trustworthy reputation, a company will have a hard time conducting business.

One of the most exemplary cases of loss of customer information was by Sony

Corporation on April 16th and 17th, 2011 [22]. Sony Online Entertainment (SOE)’s

press release states that up to 24.6 million customer account information might have

been stolen by criminals, including names, addresses, email, birth date, gender,

phone number, login names and hashed passwords. Within these, 12,700 credit or

debit card numbers and expiration dates were stolen, as well as 10,700 debit records.

A letter from Sony’s Chairman to the US House of Representatives, states that the

PlayStation Network (PSN)’s 77 million registered accounts were also affected [23].

Sony took down all of their online gaming services to fix the security issues. They

granted every customer 30 days of free subscription time for their online gaming

network services, as well as a free day for each day their system was offline. Given

that the price for a month of Sony Online Entertainment subscription time was

$14.99 USD back in 2011 [24], and the 23 day closure of the PSN and SOE networks

[25], this is equivalent to giving away $651.47 million USD of free online gaming

services. Author was unable to find the cost of PSN monthly subscription costs, but

can online imagine the free service cost figure to rise even higher. News reports also

Chapter 2: Background

22

indicated that Sony expended $171 million USD to conduct forensics investigations,

repair the services, and perform other duties related to this breach [25].

Another exemplary case occurred in June of 2012 where, allegedly, an employee

working for the Alaska Department of Health and Social Services Department (DHSS)

lost a portable electronic storage device containing electronic health records. This

case was investigated by the U.S. Department of Health and Human Services,

resulting in a fine of $1.7 million USD for Alaska’s DHSS [26].

2.4 FINITE FIELDS

A light background in Finite Field mathematics is required for understanding Section

6.3.7 of this thesis. This section presents an introduction to Finite Field mathematics.

Finite Fields are also called Galois Fields, named after its inventor Évariste Galois

whom published it in 1846 as “Œuvres Mathématiques” (English: “Mathematical

Works”) in the Journal de Liouville [27], and subsequently republished by

M matique de France (English: Mathematical Society of France) in 1897 [28].

As defined by Menezes et al in their Handbook of Applied Cryptography [29], a Ring

(R, +, ×) consists of a set R with two binary operations + (addition) and ×

(multiplication) on R, where it satisfies the four conditions:

1) (R, +) is an abelian group with identity denoted 0, that is it is closed,

associative and commutative for the + operation.

2) The operation × is associative, that is a × (b × c) = (a × b) × c for all a, b, c ∈ R.

3) There is a multiplicative identity denoted 1, with 1 ≠ 0, such that 1 × a = a × 1

= a for all a ∈ R.

Chapter 2: Background

23

4) The operation × is distributive over +. That is a × (b + c) = (a × b) + (a × c) and

(b + c) × a = (b × a) + (c × a) for all a, b, c ∈ R.

A Ring is a commutative ring if a × b = b × a for all a, b ∈ R. Each element a of a ring

R is called a unit, or an invertible element if there is an element b ∈ R such that a × b

= 1. In this case, b is the multiplicative inverse of a.

A Field is a commutative Ring in which all non-zero elements have multiplicative

inverses. A Finite Field is a field F which contains a finite number of elements. The

order of F is the number of elements C in F. The number of elements must be a

prime power, that is C = PM, where P is a prime number. If M = 1, the fields are called

Prime Fields. If M ≥ 2, the fields are called Extension Fields. A Finite Field is denoted

by the notation GF(C), shorthand for GaloisField(C). For example, Figure 1 shows a

Finite Field of 24 = 16 elements.

Figure 1 – Galois Field of 16 Elements

Chapter 2: Background

24

The elements of the Finite Field are based upon a primitive element α, taking on the

values 0, α0, α1, α2, α3, α4, … αC-1. α0 always equals 1. This set also forms a notation

known as the Field’s Index Representation. For a given Finite Field, αN is the index of

the element, while the element would contain some particular value depending on

what α is.

2.4.1 FINITE FIELD GENERATOR POLYNOMIAL AND REPRESENTATION

A Finite Field has a particular property called the Field Generator Polynomial,

denoted as G(X). It is a polynomial of degree M which is irreducible. A polynomial is

irreducible if there are no factors with coefficients over the integers Z. The only

polynomial and element that is irreducible in GF(2) is 1, thus the field generator

polynomial for GF(2) is G(X) = 1. For GF(16), two polynomials are irreducible: X4 + X +

1 and X4 + X3 + 1. The rest of the examples in the thesis use G(X) = X4 + X + 1 as the

generator polynomial for GF(16).

Besides the Index Representation shown earlier, each element of the Finite Field is

also represented by a polynomial in the form A
M-1

XM-1 + A
M-2

XM-2 + A
M-3

XM-3 + … + A
1
X +

A
0
. Mathematically this polynomial is related to the primitive element α by the field

generator polynomial. The Generator Polynomial generates the values of each

element. Further, a defined property is that G(α) = 0 as the primitive element is a root

of the generator polynomial.

2.4.2 BINARY FIELDS AND POLYNOMIAL REPRESENTATIONS

In digital systems, Binary Fields are used. Binary Fields are GF(2M) fields, where M

represents the number of bits of any element in the field. The most elementary

Chapter 2: Background

25

Binary Field, GF(2), has only 1 bit and two elements of 0 and 1. In binary fields, the

primitive element α is 2.

In GF(2), addition is the logical XOR of the two bits and multiplication is the logical

AND of the two bits. There’s no bit carry or borrows in this field, as such subtraction

and division are the same as addition and multiplication, respectively. A

Computation table is provided for GF(2) below in Table 1.

Table 1 – Finite Field Arithmetic for GF(2) Binary Field

In Binary Fields, an element can be represented by its binary value: A
M-1

A
M-2

A
M-3

…

A
1
A

0
. For example, the element 5 can be represented as {0101} in binary form in

GF(16). Elements could also be represented in a polynomial expression in the form:

A
M-1

XM-1 + A
M-2

XM-2 + A
M-3

XM-3 + … + A
1
X + A

0
, where the coefficients A

i
 are the binary

values of the element. In GF(16), the polynomial representation is: A
3
X3 + A

2
X2 + A

1
X +

A
0
. The element 5 would be represented as X2 + 1.

Using G(X) from 2.4.1, we can substitute in the primitive element α to obtain the

following equivalencies:

Note: Additions and subtractions are the same in a binary field; this is shown in

Section 2.4.3.

+ 0 1 × 0 1 – 0 1 ÷ 0 1

0 0 1 0 0 0 0 0 1 0 0 0

1 1 0 1 0 1 1 1 0 1 0 1

Chapter 2: Background

26

To enumerate the polynomial representations for each of the elements of a Finite

Field, one uses the generator polynomial to compute αN for N = 0 to C-1, reducing the

polynomial via substitution. Eg: from above, and

 . Using G(X) above, the representations for GF(16) is shown below in Table 2.

Table 2 – Field Elements for GF(16) with G(X) = X4 + X + 1

Since α is 2 in Binary Fields, we can substitute that into the polynomial to get the

equivalent decimal value of each element. We can also extract the coefficients from

the polynomials to obtain their binary values, which match their decimal values.

2.4.3 BINARY FIELD ARITHMETIC

When adding two elements in a binary field, their polynomials are added together:

C
M-1

XM-1 + C
M-2

XM-2 + … + C
1
X + C

0
 = A

M-1
XM-1 + A

M-2
XM-2 + … + A

1
X + A

0
 +

B
M-1

XM-1 + B
M-2

XM-2 + … + B
1
X + B

0

where C
i
 = A

i
 + B

i
, for 0 ≤ i ≤ M-1.

GF Index Reduced Polynomial Form Decimal Value Binary Value

 0 0000

 1 0001

 2 0010

 4 0100

 8 1000

 3 0011

 6 0110

 12 1100

 11 1011

 5 0101

 10 1010

 7 0111

 14 1110

 15 1111

 13 1101

 9 1001

Chapter 2: Background

27

Since the coefficients are binary numbers, they can only take on the values of 0 or 1,

so they are added through the XOR operation. To simplify: C
i
 = A

i
 XOR B

i
, for 0 ≤ i ≤

M-1.

For example, adding decimal values 10 and 9 (index values α9 and α14) in GF(16) using

binary operations would be calculated as follows:

An alternative way to add the two values is to directly add their index positions

modulus G(X). G(X) in decimal value would be 16 + 2 + 1 = 19. Since α9 = 10 and α14 =

9, their index positions are 9 and 14 respectively.

9 + 14 mod 19 = 23 mod 19 = 4, and α4 = 3

Subtracting 9 from 10 would be calculated as: 10 – 9 = {1010} XOR {1001} = {0011} =

3. Thus subtraction and addition are the same in binary fields.

Multiplication in a Binary Field involves multiplying their polynomials modulus G(X).

For example multiplying 10 to 9 in GF(16) would be calculated as follows:

Chapter 2: Background

28

Similarly, Division in a Binary Field involves computing the quotient of the two

polynomials. Often this is done by long division procedure.

Table 3 summarizes the arithmetic operations in a Binary Field.

Table 3 – Binary Field Arithmetic

2.5 CHAPTER SUMMARY

This chapter introduced Cloud Computing and Cloud Storage as a highly scalable,

utility computing paradigm with a rich history since the 1950s. Cloud Computing

groups together vast pools of computation resources and dynamically allocates them

to live user requests or workloads.

We also presented the key secure and reliable storage principles which

cryptographers and system designers use to design modern secure systems.

Replication and Redundancy helps safeguard data by making them resilient to losses.

Confusion and Diffusion principles define the necessary properties a system must

have to be considered cryptographically secure. Off-site data protection helps users

protect their data against local equipment failures. Finally the Principle of Lease

Privilege guides us towards designing secure access rules to ensure that users of a

system cannot effect actions which they are not authorized to do so.

Operation Calculation in Classical Algebra Calculation in GF(2
M

)

Addition R = A + B R = A XOR B in Polynomial Form

Subtraction R = A – B R = A XOR B in Polynomial Form

Multiplication R = A × B R = (A × B) Mod G(X) in Polynomial Form

Division R = A ÷ B R = Quotient of A ÷ B

Chapter 2: Background

29

We explored the value of personal data from four perspectives. We showed the

potential damage misplaced data could cause to users. We showed the legal

requirements on personal information around the world, and the consequences when

the law isn’t followed by companies. We showed the revenue companies can make

when they have legal access to personal information, and the costs companies pay

when they failed to safeguard personal information.

Finally we introduced Finite Field mathematics.

The next chapter examines the risks, benefits, and costs of using Cloud storage.

30

CHAPTER 3: CLOUD STORAGE RISKS,

BENEFITS, AND COSTS

The use of Cloud storage comes with unique risks, benefits, and costs through a new

economic model. This chapter presents all three of these in depth to give readers a

detailed understanding of the trade-off between the risks and benefits, and the costs

to use Cloud storage. For the purposes of discussion, we consider data to be

encapsulated in digital electronic documents, or simply files. Files can contain

structured and organized information such as spreadsheets, or unstructured

information such as books and videos.

We begin this chapter by presenting an in depth analysis of the risks of using Cloud

storage in Section 3.1. Then we show the analysis of the benefits users can reap in

Section 3.2. We show the costs associated with using Cloud storage along with a

comparison to using local storage in Section 3.3, and finish the chapter with a

summary.

3.1 CLOUD STORAGE RISKS

A user’s data is highly valuable to both the user and to the organizations and

businesses providing the storage service. This section examines the types of risks a

user faces by storing files on the Cloud.

3.1.1 MALICIOUS ATTACKS FROM ANYWHERE IN THE WORLD

The ability to authenticate and access the data from anywhere around the world

presents a unique problem and risk. Attackers no longer need to physically track

Chapter 3: Cloud Storage Risks, Benefits, and Costs

31

down the specific device or hard drive containing the data desired; instead they may

concentrate their efforts at breaking the authentication mechanism to obtain vast

troves of data from many users. The vast majority of Cloud storage system security

breaches are related to authentication mechanism weaknesses or attacks, for

example the 2011 attack on Dropbox [1] which allowed anyone on the internet to

download any files stored and hosted by Dropbox for a 4 hour time period. Another

example comes from a paid research by Amazon. In 2011, Amazon invited a team of

security experts and researchers to conduct attacks on their servers. The researchers

were able to access data stored in Amazon’s S3 service [2]. In the 2009 attack against

Twitter, the anonymous attacker exploited weaknesses in password recovery

mechanism of Google’s email service, and was eventually able to obtain many

confidential corporate documents and information from email attachments of the

corporate email accounts of Twitter employees, which was a hosted email service on

a Cloud run by Google [30]. Breaches in the authentication mechanism of Cloud

storage providers prove to be deadly in terms of allowing a user’s private data be

accessible and exposed to the entire world, and allowing it to be modified or deleted

by attackers. An ideal solution would allow data to be safe even when authentication

mechanisms have been compromised.

3.1.2 IMPLICIT DEPENDENCE ON STORAGE PROVIDER RELIABILITY

Storage providers can sometimes halt their services in order to perform periodic

maintenance work to their systems, which presents a risk to users if users need

access to their data during times of unavailability. Although it is not a security risk,

this is concerning when users send files onto the Cloud and remove all local copies to

maximize their storage space. There is also a general trend of moving computation,

Chapter 3: Cloud Storage Risks, Benefits, and Costs

32

software, and data storage completely to the Cloud, where local machines serve only

as consoles to remotely access the software and data on the Cloud [31]. Access

outages may also be caused by internet service providers, or by natural disasters. All

of these potential sources of outages are not in a user’s control, and in fact always

has a probabilistic chance of occurring. No matter the source or reason, outages will

cause inconvenience for users. An ideal solution would be able to work around

outages.

3.1.3 RISK OF DATA LOSS AND DATA CORRUPTION

Major storage providers have software mechanisms in place to mitigate equipment

failure [32], however there is always the chance that a user’s data is completely lost.

For example, natural disasters may flood or short circuit an entire data center,

corrupting all of the data. Mistakes made by employees may misplace sets of hard

drives during upgrade or maintenance, losing the data. Software mistakes may cause

user’s data to be written over. In fact, Clouds are utilizing cheap commodity hard

disks as a means to minimize costs, which have higher risks and chances of failure

compared to server grade hard drive equipment. Whenever complete data loss occurs

on a Cloud, a user only has the option to re-upload the data to another more reliable

Cloud, assuming the user has a local copy. An ideal solution would distribute a file

among several Cloud service providers, so that the user can enjoy the benefits of

Cloud storage and be able to tolerate complete data loss by individual Cloud service

providers.

3.1.4 IMPLICIT REQUIREMENT TO ALWAYS TRUST THE PROVIDER

The use of Cloud storage services requires users to implicitly trust the service

provider. Users must trust the service provider’s ability and capability to defend

Chapter 3: Cloud Storage Risks, Benefits, and Costs

33

against attackers and intruders, to safeguard the data against equipment failure, to

not compromise and modify their data, and to respect the privacy and confidentiality

of the user as well. While there are terms of use agreements, and privacy policies in

place, the vast majority of Cloud storage providers ultimately disclaim any liability

and responsibility for the data stored on their Clouds. It is a compromising position

when the absolute control of a user’s Cloud data rests in the hands of the service

provider, but the absolute responsibility for the data rests on the user. The

requirement of such implicit trust is often disregarded by users in lieu of the gains of

the benefits of Cloud storage. In an ideal case, this requirement should be removed

while still retaining the benefits of Cloud storage.

3.1.5 CONFLICTING LAWS MAY NOT RESPECT USERS’ PRIVACY

It is known that data stored on the Cloud has become a hot target for law

enforcement and security agencies as they issue access for information requests and

warrants to obtain data, often in bulk. Such warrants apply equally to local

computers and storage devices, of course. Law abiding citizens would comply with

the warrants when requested. The complexity starts rising when consideration is

given to the fact that, quite often, Cloud services hosted by one country can and is

used by users from all over the world. A bulk data request may inadvertently allow

one nation’s law enforcement obtain the data stored by a citizen of another nation,

simply due to the physical location of the data center and Cloud. Many nations have

laws in place regarding the placement and location of data in terms of their physical

storage devices. For example, in British Columbia, Bill 73 – the Freedom of

Information and Protection of Privacy Amendment Act, 2004 states “A public body

Chapter 3: Cloud Storage Risks, Benefits, and Costs

34

must ensure that personal information in its custody or under its control is stored

only in Canada and accessed only in Canada” [33].

Most nations also have laws regarding any data physically stored within their

geography. By default, a user has to assume that the data they place in a specific

Cloud will be subject to all the local laws, regulations, culture, customs, and security

standards of the nation in which the data is physically stored. The complex layers of

national and international laws require solutions through political dialogue and

international treaties, which is beyond the scope of this thesis. However, of

importance to a user is an ability to know where their data is located geographically

around the world. Better yet, users should be able to control where their data is

located, so that they can avoid placement of their data in nations that they feel might

be risky or not trustworthy.

3.2 CLOUD STORAGE BENEFITS

There are numerous benefits to storing files on the Cloud, including economic cost

reductions, flexibility, world wide access, and improving resource utilization. This

section analyzes all the benefits of using Cloud storage in detail.

3.2.1 A NEW ECONOMIC AND BUSINESS MANAGEMENT MODEL

Cloud storage and Cloud Computing both offer an economic model for consumers to

pay only for what they use, like a utility bill. The infrastructure and operation costs

are paid by the service provider, for example the costs for purchasing thousands of

hard drives, equipment set up and maintenance, management, and electricity costs.

In turn, these costs are shared among all users of the system, being usually charged a

fixed rate for each unit of resource usage or consumption. Storage providers typically

Chapter 3: Cloud Storage Risks, Benefits, and Costs

35

offer various storage quotas, which can be increased or decreased on demand by

users.

Since all installation and management work is performed by the storage provider,

start-up companies and small to medium size businesses can take advantage of this

to reduce upfront costs. For short term projects, they also don’t have to worry about

reselling any hardware. The economic flexibility and savings can allow companies to

hire more staff to accelerate their ideas and projects to meet goals and milestones

faster.

3.2.2 IMPROVED RESOURCE UTILIZATION

From a resource utilization perspective, pooling together resources and users is a

highly efficient means to consume the resources. Studies by the University of

Pennsylvania have shown that computer machines consume on average 50% to 90% of

electricity when they are idle compared to when they are fully loaded with

computation tasks [34]. The idle power consumption rate depends largely on the

computer manufacturer and whether the LCD was kept on while the computer idles.

Naturally it makes sense to improve the utilization of servers by constantly assigning

tasks to them to keep them active. Similarly, any unused portion of a hard drive may

generally be seen as a waste of the resource. If a project requires 500GB of storage,

then purchasing 1TB of storage space is unnecessary and wasteful, increasing the

effective price per GB of storage. Prior to Cloud storage, users often purchase some

additional space in their computers for use by temporary files, and to anticipate for

any of their growing data storage needs. Cloud storage allows users to request for

additional storage on demand, increasing the size of their allowance when they need

Chapter 3: Cloud Storage Risks, Benefits, and Costs

36

it. Similarly it allows users to reduce their allowance when they no longer need the

extra space.

3.2.3 WORLDWIDE ACCESS

Users today carry portable computing devices with them on a daily basis, and access

their data from many different machines. Cloud storage allows a user to authenticate

to the service and access their data from any device which can operate the service’s

software. Users can also access their data from anywhere in the world as long as they

have a connection to the service. The ease of access from across the world is a

strength of the Cloud storage service, compared to more traditional means such as

carrying around portable storage devices like a USB drive.

3.2.4 FILE VERSIONING AND RECOVERY

Cloud storage services can also retain versions of a user’s files and data through

time, allowing the user to revert unintended changes, or mistakes such as

accidentally deleting an important file. On traditional hard drives in a local computer,

a user would have to remember what changes occurred and try to manually revert

them if it is possible. For any deleted files, users would have to utilize disk recovery

software to attempt to recover the data from the file. The former is error prone and

relies upon human memory, while the latter has no guarantee of success because

once a file is deleted the system treats the space taken up by that file as free space

and might write over the data with data from new files. Cloud storage systems

automatically create and retain versions of files and data as a safe guard. Whenever a

user wants to revert some change, they can make a request to their Cloud storage

service provider to have the change reverted. This process is streamlined, simple, and

efficient.

Chapter 3: Cloud Storage Risks, Benefits, and Costs

37

3.2.5 FILE SHARING AND SYNCHRONIZATION

Sharing files and data between authorized users is also easier through a Cloud

storage system. Cloud storage systems have sophisticated authentication

mechanisms which can grant read-only or read-and-write access to fellow users in the

system if the original owner of a file allows it. The owner can grant these settings

through the user interface of the Cloud storage system. Fellow users can then log

onto the system and download a copy of the file whenever and from wherever they

wish. If given write access, the files shared through a Cloud storage system can

become a working repository where every change is always synchronized between all

users. This form of file and data sharing is much more efficient in terms of storage

space compared to emails, where the file would have to be replicated as many times

as there are users, and where changes and updates must also be replicated in such a

matter to have everyone on track.

3.2.6 A WAY TO BACKUP DATA

Cloud storage allows users to easily apply the principle of keeping off-site backups of

their data. By keeping a backup copy on the Cloud, any local catastrophes such as a

complete equipment failure of the local hard drive will not affect or compromise the

data stored on the Cloud. Users can often quickly recover their data, and get back up

to speed with their work and tasks when such events occur with the assistance of

Cloud storage.

3.3 CLOUD STORAGE COSTS

There are a series of costs associated with using Cloud storage. Generally speaking

there are two segments of costs which are shown in on Figure 2.

Chapter 3: Cloud Storage Risks, Benefits, and Costs

38

Figure 2 – Cloud Storage Cost Model

The two segments are the internet connection costs paid by the user to their internet

service provider to connect to and use the internet, and Cloud storage provider costs

paid by the user to specifically use the Cloud storage service. Internet connection

costs include all of the data uploaded to, or downloaded from the internet. Cloud

storage provider costs include potentially inbound traffic fees, outbound traffic fees,

and storage fees. This section begins with a survey of internet connection and Cloud

storage provider costs from the most popular providers in Canada and USA. Then, we

present a survey of local disk storage prices to establish a cost reference point, to

frame the discussions off the value and economic effects of pricing in Cloud storage.

3.3.1 INTERNET CONNECTION COSTS

In North America, most home internet service providers offer different plans where

the main characteristic difference is the download and upload speeds. Generally, the

download speeds offered are much higher than the upload speeds. In Canada during

the year of 2014, home and business internet plans also have data usage allowance

limits, where as in USA there isn’t. The plans and data rates offered by some of the

most popular service providers in Canada and USA as of February 2014 are shown in

Table 4.

Chapter 3: Cloud Storage Risks, Benefits, and Costs

39

Table 4 – Internet Service Provider Pricing [35] [36] [37] [38] [39] [40] [41]

If a company puts a cap on usage allowance it is easy to calculate the precise cost for

every unit of data transferred. The computed values of cost per GB are shown in

Monthly
Price

Download
Speed
(Mbps)

Upload
Speed
(Mbps)

Usage
Allowance

(GB/month)
Modem

Surcharge

Usage Based
Billing

beyond
Allowance

Price
per GB

Price per
Mbps

(Download)

Price per
Mbps

(Upload)

Rogers
(Canada;
Cable)

$225.99 350 350 2000 No N/A $0.11 $0.65 $0.65

$125.99 250 20 1000 Yes $1/GB $0.13 $0.50 $6.30

$77.99 45 4 150 Yes $2/GB $0.52 $1.73 $19.50

$67.99 35 3 120 Yes $2/GB $0.57 $1.94 $22.66

$54.99 25 2 80 Yes $2/GB $0.69 $2.20 $27.50

$44.49 6 0.25 20 Yes N/A $2.22 $7.42 $177.96

Bell
(Canada;
Fibre)

$152.95 175 175 300 No $2/GB $0.51 $0.87 $0.87

$85.95 50 10 175 No $2/GB $0.49 $1.72 $8.60

$60.95 25 10 100 No $2/GB $0.61 $2.44 $6.10

$52.95 15 10 60 No $2/GB $0.88 $3.53 $5.30

$42.95 5 1 20 No $4/GB $2.15 $8.59 $42.95

TekSavvy
(Canada;
DSL/Cable)

$86.95 150 10 300 Yes $0.50/GB $0.29 $0.58 $8.70

$54.99 50 10 300 Yes $0.25/GB $0.18 $1.10 $5.50

$56.95 45 4 300 Yes $0.50/GB $0.19 $1.27 $14.24

$51.95 35 3 300 Yes $0.50/GB $0.17 $1.48 $17.32

$39.99 25 10 300 Yes $0.25/GB $0.13 $1.60 $4.00

$34.99 15 10 300 Yes $0.25/GB $0.12 $2.33 $3.50

$29.99 7 1 300 Yes $0.25/GB $0.10 $4.28 $29.99

Shaw
(Canada;
Cable)

$120.00 250 15 1000 No N/A $0.12 $0.48 $8.00

$90.00 100 5 500 No N/A $0.18 $0.90 $18.00

$80.00 50 3 400 No N/A $0.20 $1.60 $26.67

$60.00 25 2.5 250 No N/A $0.24 $2.40 $24.00

$55.00 10 0.5 125 No N/A $0.44 $5.50 $110.00

AT&T
(USA
Cable)

$71.00 24 3 250 Yes $0.2/GB $0.28 $2.96 $23.67

$61.00 18 1.5 250 Yes $0.2/GB $0.24 $3.39 $40.67

$56.00 12 1.5 250 Yes $0.2/GB $0.22 $4.67 $37.33

$51.00 6 1 250 Yes $0.2/GB $0.20 $8.50 $51.00

$46.00 3 1 250 Yes $0.2/GB $0.18 $15.33 $46.00

Verizon
(USA;
Fibre)

$299.99 500 100 Unlimited Yes N/A N/A $0.60 $3.00

$209.99 300 65 Unlimited Yes N/A N/A $0.70 $3.23

$129.99 150 65 Unlimited Yes N/A N/A $0.87 $2.00

$89.99 75 35 Unlimited Yes N/A N/A $1.20 $2.57

$79.99 50 25 Unlimited Yes N/A N/A $1.60 $3.20

$69.99 15 5 Unlimited Yes N/A N/A $4.67 $14.00

Comcast
(USA;
Cable)

$114.95 105 30 Unlimited Yes N/A N/A $1.09 $3.83

$76.95 50 15 Unlimited Yes N/A N/A $1.54 $5.13

$64.95 25 8 Unlimited Yes N/A N/A $2.60 $8.12

$49.95 6 1.5 Unlimited Yes N/A N/A $8.33 $33.30

Chapter 3: Cloud Storage Risks, Benefits, and Costs

40

Table 4, showing price ranging from $0.10/GB to $2.22/GB. In addition, the usage

based billing prices for data used beyond the allowance is anywhere from $0.20/GB

to $4.00/GB. Generally a more expensive plan includes a higher usage allowance, at a

cheaper price per GB of data transferred. Companies tabulate both download and

upload activities to calculate how much data has been used within the allowance. A

user would regard this as a fixed cost per GB of data sent to or retrieved from the

Cloud.

In USA where most companies do not place a limit on usage, it is much easier to

compare the time cost of transferring data to and from the Cloud. The higher the

transfer speed, the less time it takes to transfer the data. This is beneficial for users

since they can then spend the time on other activities, or free the bandwidth for

other internet uses. The price for each unit of transfer speed could be used to

compare the different plans. The computed values of cost per unit of transfer speed

($/Mbps) are shown as well in Table 4. Generally, a more expensive plan provides

faster download and upload speeds and a cheaper unit price for every incremental

unit of speed.

It would seem that no matter which of the two units of measure – price per data

transferred or price per unit of transfer speed – the expensive plans are favored for

their increased limits and lower unit costs. In practice however, each user would

often choose an internet service plan based upon their available house hold budget

and usage requirements. The use of Cloud storage services certainly increases the

need for higher usage allowance.

Chapter 3: Cloud Storage Risks, Benefits, and Costs

41

Generally, these costs and parameters are not choices which the Cloud storage

software and system can make, but has to work with to accomplish its goals. A Cloud

storage system would be most optimal at minimizing the amount of data transfer

necessary to accomplish each task. By minimizing the amount of data transferred,

the system can minimize the data costs if usage allowance limits are present, and

also accomplish transfers faster, minimizing the total time necessary to accomplish

each task. No matter what a user chooses as their internet service plan, the costs can

be minimized.

3.3.2 CLOUD STORAGE PROVIDER COSTS

Cloud storage service providers often operate on a “freemium”-style business model,

where an initial amount of storage is free for each user, and subsequent amounts of

storage service is given in exchange for monetary gains. The most popular Cloud

storage providers in North America are Dropbox [42], Amazon S3 [43], Microsoft

SkyDrive [44], Apple iCloud [45], and Google Drive [46] in no particular order. We

consider only the paid storage services for comparison since it is desirable to

attribute a finite cost figure. It is worth noting that each of these five storage

providers have free services too subject to space quotas or other limitations, shown

in Table 5.

Table 5 – Free Tier Data Storage Limits for Cloud Providers [42] [43] [44] [45] [46]

Table 6 and Table 7 show the storage costs for February 2014 and February 2013,

respectively, as listed by each of the provider’s websites for various tiers of storage.

Between February 2013 and February 2014, Microsoft has rebranded its SkyDrive

 Dropbox Amazon S3 Microsoft OneDrive Apple Google Drive

Free Storage Amount (GB) 2 5 7 5 15

Chapter 3: Cloud Storage Risks, Benefits, and Costs

42

service to OneDrive. The pricing has also changed for these two services, overall

increasing its prices in 2014. The 25GB data tier has also been eliminated. Overall

costs range from Google Drive’s $0.050/GB/month on the low end to Apple iCloud’s

$0.167/GB/month on the high end.

Table 6 – Cloud Storage Costs, February 2014 [42] [43] [44] [45] [46]

Table 7 – Cloud Storage Costs, February 2013 [42] [43] [44] [45] [46]

Of the five Cloud service providers, only Amazon S3 charges a transmission cost for

data. It charges a transmission fee for downloading data off of its servers. It does not

2014 Monthly Price ($USD) Effective Price per GB per Month ($USD)

Storage
(GB)

Dropbox
Amazon

S3
Microsoft
OneDrive

Apple
iCloud

Google
Drive

Dropbox
Amazon

S3
Microsoft
OneDrive

Apple
iCloud

Google
Drive

10 0.85 1.67

0.085

0.167

20 1.70 3.33

0.085

0.167

50 4.25 5.49 8.33

0.085 0.110 0.167

100 9.99 8.50 8.49 4.99 0.100 0.085 0.085

0.050

200 19.99 17.00 12.49 9.99 0.100 0.085 0.062

0.050

400 34.00 19.99

0.085

0.050

500 49.99 42.50 0.100 0.085

1000 85.00 49.99

0.085

0.050

2000 160.00 99.99

0.080

4000 310.00 199.99

0.078

8000 610.00 399.99

0.076

16000 1210.00 799.99

0.076

50000 3760.00

0.075

500000 30760.00

0.062

2013 Monthly Price ($USD) Effective Price per GB per Month ($USD)

Storage
(GB)

Dropbox
Amazon

S3
Microsoft
OneDrive

Apple
iCloud

Google
Drive

Dropbox
Amazon

S3
Microsoft
OneDrive

Apple
iCloud

Google
Drive

10 0.82 1.67 0.082

0.167

20 1.62 0.83 3.33 0.081 0.042 0.167

25 2.02 2.49 0.081 0.100

50 4.02 2.08 8.33 0.080 0.042 0.167

100 9.99 7.52 4.17 4.99 0.100 0.075 0.042 0.050

200 19.99 14.52 9.99 0.100 0.073 0.050

400 28.52 19.99 0.071 0.050

500 49.99 35.52 0.100 0.071

1000 68.02 49.99 0.068 0.050

Chapter 3: Cloud Storage Risks, Benefits, and Costs

43

charge transmission fee for uploading any data to its servers. The prices for

transmitting different amounts of data are shown in Table 8.

Table 8 – Transmission Costs for Amazon S3, February 2014 [43]

Overall, Amazon S3 charges on average $0.118/GB outgoing for any amount of data

up to 10TB, reducing the rate in subsequent service tiers to as low as $0.059/GB.

Any consumer side Cloud storage software systems should take into effect both the

difference in prices and features of these providers, as well as the dynamic nature of

the market place.

3.3.3 COMPARISON WITH LOCAL DISK STORAGE COSTS

Section 3.3.2 showed that Cloud storage providers charge between $0.050/GB/month

to $0.167/GB/month for storing a user’s files on their Clouds. It is useful to know the

range of unit costs for local disk storage as well, to see relatively how much more

users would have to pay to take advantage of the benefits of Cloud storage. Table 9

shows a sample of hard drive prices indexed in January, 2014 by a well-known

product feature comparison and price ranking website called PCPartPicker [47].

2014 Price ($USD) Effective Price per GB ($USD)

Transmission (GB) Amazon S3 Outbound S3 Outbound

10 1.08 0.108

20 2.28 0.114

50 5.88 0.118

100 11.88 0.119

150 17.88 0.119

200 23.88 0.119

400 47.88 0.120

500 59.88 0.120

1000 119.88 0.120

10000 1199.88 0.120

50000 4799.88 0.096

150000 11799.88 0.079

500000 29299.88 0.059

Chapter 3: Cloud Storage Risks, Benefits, and Costs

44

Table 9 – Local Disk Storage Costs, January 2014 [47]

For standard magnetic disk hard disk drives (HDD), the unit price ranges from as low

as $0.0367/GB to as high as $0.8340/GB. On the low end of the price range, storing

data on the Cloud seems to be much more expensive. For the first month, storing

data on the Cloud would cost $0.050/GB, while buying a hard drive can cost

$0.0367/GB. After the first month, the Cloud storage costs continue to add but the

hard drive would have been paid for already. On the high end of the price ranges,

buying a hard disk would cost $0.8340/GB while the first month Cloud storage cost

would be $0.167/GB. Users can reap roughly 5 months of Cloud storage benefits

before the costs would break even. However, it is naive to assume users would

purchase hard disks at the high end of the price range. Likewise, Cloud storage

providers aim to maximize profits so it is unlikely they would purchase hard drives

on the high end of the price range.

For specialty disk drives such as Solid State Drives (SSD) and Hybrid Disk Drives,

Table 9 shows their lowest and highest unit costs. They range from $0.3495/GB to

Model Type Form RPM Capacity (TB) Cache (MB) Price ($) Price / GB ($)

Western Digital WD2500AAKX

HDD

3.5" 7200 250 16 57 0.2280

Seagate ST9250610NS 3.5" 7200 250 64 126 0.5040

Seagate ST500DM002 3.5" 7200 500 16 52.99 0.1060

Seagate ST9500622NS 3.5" 7200 500 64 416.99 0.8340

Seagate ST1000DM003 3.5" 7200 1000 64 59.99 0.0600

Seagate ST91000640SS 3.5" 7200 1000 64 258.38 0.2584

Seagate ST2000DM001 3.5" 7200 2000 64 89.79 0.0449

Seagate ST32000644NS 3.5" 7200 2000 64 279.98 0.1400

Seagate ST3000DM001 3.5" 7200 3000 64 109.99 0.0367

Seagate ST33000651NS 3.5" 7200 3000 64 475.86 0.1586

Seagate ST4000VN000 3.5" 7200 4000 64 189.95 0.0475

Hitachi 0B26885 3.5" 7200 4000 64 666.68 0.1667

Hitachi 0F18335 3.5" 7200 6000 64 969.47 0.1616

PNY SSD9SC480GMDA-RB SSD

2.5" N/A 480 N/A 167.75 0.3495

OCZ OCT1-25SAT3-1T 2.5" N/A 1000 N/A 2071.56 2.0716

Seagate ST4000DX001
Hybrid

3.5" N/A 4000 64 200.98 0.0502

Seagate STBD1000400 3.5" N/A 1000 64 129.75 0.1298

Chapter 3: Cloud Storage Risks, Benefits, and Costs

45

$2.0716/GB for SSD drives, and $0.0502/GB to $0.1298/GB for Hybrid drives. Users

gain significant disk throughput and performance with these specialty drives, but

their unit costs are much higher than HDDs. Specialty disk drives would be used in

high performance computation Clouds, however a Cloud storage service provider

would be unlikely to invest in using specialty disk drives to store users’ files since

they want to maximize revenue and profits. Start-up companies and small to medium

size businesses will likely pay to store files on the Cloud because they can save

management and operation costs as mentioned in Section 3.2.1.

Overall, we can conclude that users can achieve lower short term and long term

storage costs by simply purchasing hard drives from a computer store and placing

their data into those hard drives. To enjoy the benefits of Cloud storage, users must

pay a non-trivial fee once their use exceeds the free storage quotas. Thus, it is

important for any Cloud storage system to minimize the short term and long term

storage costs.

3.3.4 ECONOMIC EFFECTS

The data in Section 3.3.2 shows an interesting economic model for Amazon’s S3

service, whereby it is free to upload data to Amazon; however it is not free to

download the same data from Amazon. This business model favors a different type

of application such as data-mining where users upload a lot of data to the Cloud,

then perform extensive computation on the data obtain specific results that has a

substantially smaller file size than the data, and then download only the results.

To generalize these business models and practices, it is best to consider that a Cloud

storage provider can charge for both incoming and outgoing data, often charges a fee

Chapter 3: Cloud Storage Risks, Benefits, and Costs

46

for data stored on their Clouds, can impose transfer and storage limits, and can

change the prices and rules for all of these at any time.

Consider initially two Cloud storage providers who both charge for the same

transmission and storage costs for users. The user chooses one of the two providers

and puts all of their data on to that Cloud. The costs paid so far is a one-time fee for

transmission (this includes fees charged by the storage service provider and those

charged by internet service providers), and an ongoing fee for storage. Consider

further now that the other Cloud storage provider decides to reduce their storage

fees as an incentive to attract business. The user is now faced with a dilemma of

choosing to stay with their existing provider but pay higher long term costs, or pay

an expensive transmission fee now (one time to download the data, and one time to

upload the data) and move the data to the other provider in order to take advantage

of the long term savings. Total transmission fees are typically higher than storage

fees, as shown in Sections 3.3.1 and 3.3.2. This creates an economic barrier and

condition which Abu-Libdeh et al. calls Storage Vendor Lock-in [3], where once a user

commits to storing data in one provider they are no longer economically able to

afford to move the data to a different provider without paying a hefty fee to move

the data out.

Even if the monetary price was free for all transmissions and storage, there is still a

resource consumption problem with this method of moving between data storage

providers. Considering that bandwidth is often a critical resource bottleneck for

modern day Clouds and networks, it is ideal to reduce the bandwidth consumed for

this task. A direct transfer between the providers can reduce overall resource

consumption, however currently it is unforeseeable that there would be direct

Chapter 3: Cloud Storage Risks, Benefits, and Costs

47

connections and communications between Cloud storage providers due to business

and competition. From an energy perspective, direct transfers would save electricity

as well compared to downloading then re-uploading.

A Cloud storage subsystem would have to keep in mind the market dynamics and

work actively to prevent data lock in, while attempting to minimize a user’s costs for

storing data on a Cloud.

3.4 CHAPTER SUMMARY

This chapter presented the risks, benefits, and costs of using Cloud storage. For files

that are stored on the Cloud, they are at risk from malicious attacks from anywhere

around the world, and at risk of being lost or corrupted due to service provider

mistakes and equipment failures. Users must implicitly trust and depend upon the

service provider to safeguard their files, and to provide uninterrupted access to the

files. Difference of interpretation of the notion of data privacy, as well as potentially

conflicting laws around the world also play havoc to the Cloud storage ecosystem.

Users may inadvertently have their privacy compromised if they place their files in

the wrong geographical locations.

Users can also benefit from placing files on the Cloud, including potential cost

savings for start-up companies, improved global resource utilization, having world

wide access to their files, having file versioning and recovery services, having data

sharing services in team settings, and having an easy way to apply the principle of

off-site data protection.

We also presented a survey of the most popular internet service providers’ plans and

rates in Canada and USA, as well as the costs charged by the most popular Cloud

Chapter 3: Cloud Storage Risks, Benefits, and Costs

48

storage providers for data stored beyond the free storage quota to show the financial

costs a user encounters when using Cloud storage. We compared the costs to using

local disk storage, and also discussed the economic effect of Storage Vendor Lock-in

where users cannot move their data between service providers without having to pay

a heavy fee.

At the intersection of the risks, benefits, and costs, we can see that users must juggle

a lot of factors to optimally take advantage of Cloud storage. The next chapter

concretely defines this problem.

49

CHAPTER 4: CLOUD STORAGE PROBLEM

DEFINITION

From the analysis presented in Chapters 2 and 3, we can see that users have very

little control over their files and data stored on the Cloud, and are at the whims of

Cloud storage providers in terms of service availability, data security, data privacy,

and pricing. At the same time, there are numerous advantages to storing data on the

Cloud, such as ease of access, off site back-ups, potential cost savings, and improved

resource utilization. Users currently must make a conscious choice of accepting and

facing these drawbacks in order to reap the benefits of storing data on the Cloud.

Tackling this trade-off is the central problem for Cloud storage.

We want to design a sound solution from a user’s perspective to resolve this trade-off

in such a way that minimizes or eliminates as much of the problems as possible,

while maintaining or enhancing the benefits of using Cloud storage. An ideal solution

would eliminate all of the problems and enhance the benefits, so that users would no

longer have to make this trade-off when they want to store files on the Cloud.

To summarize the analysis, the risks and problems with using Cloud storage are:

1. Malicious attacks can come from anywhere around the world, often targeting

the authentication mechanism of Cloud storage providers

2. Weak access control mechanisms may allow users to see other users’ data

3. Routine maintenance or outages can cause inconveniences and delays

Chapter 4: Cloud Storage Problem Definition

50

4. Data loss and corruption risk is always present due to equipment failure and

potential natural disasters

5. Implicit trust of storage providers necessary, but problematic as the control of

the data resides on the service provider, while the responsibility for the data

rests on the user

6. Physical location of the Cloud data is unknown to the user, and users have no

control over the physical placement of their data

7. Economic and business models of Cloud providers often create problems of

data lock-in and an inability for users to move data from one provider to

another without paying high fees

8. Changing pricing between Cloud providers is hard to track for users, and hard

to optimize for a least-cost strategy since data move is currently necessary to

take advantage of lower prices

9. Requirements of local and international law may inadvertently violate a

person’s reasonable expectation of data privacy

The benefits of utilizing Cloud storage are:

1. Pay only for the amount of data storage used

2. Flexible storage quotas, adjusted on-demand

3. Lower upfront costs, highly beneficial for start-up companies

4. Reduced management and maintenance fees

5. For short term projects, no need to worry about reselling hardware

6. Improved resource utilization, saving energy for the world

7. Access data from anywhere around the world

8. Automatic storage of data backups and revisions

Chapter 4: Cloud Storage Problem Definition

51

9. Ease platform for data sharing between users

10. Changes are synchronized between a team when data is modified by team

members

11. An application of off-site data protection principle, allowing users to recover

data easily

Of the nine problems and risks outlined, the thesis will address all of them with the

exception of problem 9. As previously discussed in Section 3.1.5 the solution to legal

requirements necessitates political dialogue in both domestic and international

settings to develop new standards and interpretations of the meaning of data privacy

as well as tools for enforcement and compliance in an every increasingly online and

connected world.

The next chapter presents the approach and methodology for solving the trade-off

problem, along with critical analysis of the approach itself.

52

CHAPTER 5: APPROACH AND

METHODOLOGY

A promising solution has been proposed by Abu-Libdeh et al. in their paper “RACS: A

Case for Cloud Storage Diversity” [3]. In the paper, they present an approach to the

trade-off problem by applying erasure code algorithms to split a user’s files into

numerous pieces, add redundancy to these pieces to tolerate losses, and then send

the file pieces to different Cloud providers. The focus of their paper was to resolve

the economic issues of Cloud storage.

We adopt this approach, and propose a more comprehensive system design

Framework to resolve not only the economic issues but also the security, reliability,

and privacy issues of storing data on the Cloud. The Framework provides a sound

template design for a practical storage software system, which users can run on their

computers and mobile devices to reap the benefits of using Cloud storage without

having to worry about the problems mentioned Chapter 4.

This chapter focuses on analyzing the approach, while Chapter 6 presents the

Framework and detailed analysis of its components. This chapter begins by defining

a formal model of erasure code file transformations in Section 5.1 to explain how

erasure codes work in general. We then analyze Abu-Libdeh et al.’s approach and

research work in Section 5.2 where we will mention the weaknesses of the approach.

We explain a critical security problem which their work did not consider in Section

5.3. Section 5.4 shows how such an approach can solve the trade-off problem, and

Section 5.5 examines how the approach can augment and enhance the benefits of

Chapter 5: Approach and Methodology

53

using Cloud storage. Lastly Section 5.6 compares the approach to the current best

practice from a user’s point of view.

5.1 FORMAL MODEL OF ERASURE CODE FILE TRANSFORMATIONS

Traditionally, erasure codes are used to add redundancy to small pieces of data, and

then capture them in some form of a digital “container”. The container could be a

single file, a set of files, a single network packet, or multiple packets, etc. This thesis

focuses on using a set of equal size files as the container. Erasure codes add

redundancy to the data in the encoding transformation process, and reconstruct the

data in the decoding transformation process. Both processes are mathematically

related. Only a subset of the file pieces are used since redundancy was added during

the encoding transformation.

Figure 3 – Erasure Code File Transformation Model

There are many erasure codes in literature and in practice, each of them employing

either different mathematical principles, or different configurations of the same

principles [48] [49] [50] [51] [52] [53]. A general notation of (N, K) is used within

Chapter 5: Approach and Methodology

54

literature to denote the number of file pieces (N) generated in each encoding

transformation, as well as the number of pieces (K) needed to reconstruct the original

file in the decoding transformation. Generally, K is less than N to allow for (N – K)

redundancy pieces. This is visualized in Figure 3, where a user’s file is encoded into N

file pieces denoted as X
1
, X

2
 … X

K
 … X

N
. Some codes must use a specific labeled subset

of K pieces for the decoding transformation, while other codes can use any subset of

K pieces. Generally speaking, the use of an erasure code involves more than simply

implementing the transformation algorithm as proper management of the file pieces

is necessary before any decoding transformations can occur. This often involves

labeling all of the file pieces and capturing this information in a metadata file.

Literature refers this type of mathematical transformation algorithms by various

names in the domains of network coding, cryptographic systems, and storage

systems. They have been called (N, K) channel codes, (N, K) error-correcting codes, (N,

K)-threshold schemes, distributed key systems, secret sharing systems, and so on.

The varied names are given to facilitate discussions with a focus in their respective

domains. Erasure Code is another name for the same thing, commonly used within

network coding and storage systems domains. The notion of an Erasure Code implies

both the mathematical and computational algorithm used by the code, as well as the

procedural use of the code. Erasure Codes must be configured for specific, valid, (N,

K) pair values to be used. Whenever literature directly refers to an erasure code by

name, they often imply a focused discussion on the algorithm aspect. When they

refer to the code by a specific (N, K) configuration, they often imply a focused

discussion on that configuration. This thesis focuses on both aspects of an Erasure

Code, but they are discussed separately.

Chapter 5: Approach and Methodology

55

5.2 REDUNDANT ARRAY OF CLOUD STORAGE SYSTEM

Abu-Libdeh et al. [3] of Cornell University approached the problem from an

economics and data loss tolerance point of view. They developed a software system

called Redundant Array of Cloud Storage (RACS) which uses the Reed-Solomon code

[53] as its erasure code. Their efforts aim to give users the ability to tolerate service

outages and data loss, adapt to ongoing price changes and provider availability in the

marketplace, and control total storage costs. To the best of the author’s knowledge,

this is the first system which applies the approach specifically on Cloud storage

problems, which made it interesting as a new application domain.

Abu-Libdeh et al. discussed two economic benefits and one security benefit which

this approach can offer, namely that it can help users avoid vendor lock-in, reduce

the cost of switching service providers, and tolerate provider outages and failures. As

validation and proof, their studies included a cost estimation and trace driven

simulation of moving all of the data contained in the Internet Archive website to a

new storage provider. Their simulation results showed up to 80% cost savings for

service provider migration tasks. However, for normal uploads and downloads of

files it showed an average increase of 50% in costs, corresponding to the efficiencies

of their chosen Reed-Solomon code configurations. They did not specifically mention

the reasons for choosing Reed-Solomon as the erasure code.

A feature of RACS is its ability to operate through multiple running instances of the

program, in parallel, within a server environment using Apache ZooKeeper as a

distributed synchronization system between each instance. In this set up, RACS can

service multiple users at the same time and avoid performance bottlenecks caused by

Chapter 5: Approach and Methodology

56

each instance since user requests can be serviced by another available instance. The

architecture of RACS is shown in Figure 4.

Figure 4 – Redundant Array of Cloud Storage Architecture [3]

Each RACS proxy instance contains a functional file transformation system, along

with the management systems and communications systems to send the file pieces to

various Cloud storage providers. Their system was implemented with a focus on

being used on the Amazon S3 storage system. They wrote Repository Adaptors, or

simply software APIs, which allow their system to work with other storage providers

using a uniform interface.

The paper mentions the use of “policy hints” to capture user preferences of which

storage providers to use. It also mentions a key point to combine user preference

with the need to load balance between the storage providers in order to achieve

optimal economic freedom and data security.

Chapter 5: Approach and Methodology

57

A software performance analysis was also carried out by Abu-Libdeh et al. showing

encoding throughput of 95MB/s and decoding throughput of 151MB/s using an open

source erasure coding library called Zfec on a 2GHz Intel Core 2 Duo powered

computer. Zfec includes an implementation of the Reed-Solomon Code. Relative to

end users, these throughput rates are fast since the expected internet throughputs

are much slower. As a software system installed on end users’ computers, the

performance bottleneck would be on their internet connection. In corporate settings

where high speed and high performance networks might be common, the

throughputs might cause delays if the network supports 1 Gigabit/s or higher

bandwidths.

There were three main weaknesses of the approach mentioned in the paper. First, the

total storage space used increases by a factor of N ÷ K, which results in higher

transmission costs and storage costs. Second, the number of requests issued to the

Cloud increases by a factor of N since every file piece is treated and considered to be

a file by the storage provider. Operations such as creating and deleting files must

wait for all requests to complete. Lastly, the system introduces latency as all files

must undergo encoding and decoding transformations.

This thesis makes a number of contributions and improvements to the work done by

Abu-Libdeh et al. First, we examined in much more depth the security issues and

economic problems of using Cloud storage in Chapters 2 and 3. In Sections 5.4 and

5.5, we will show how to resolve all of these problems using the approach. Second,

the research work from Abu-Libdeh et al. does not state how they manage their

metadata on the files, for which this thesis proposes a solution in the form of using a

peer-to-peer network to replicate the metadata across a user’s devices. Third, their

Chapter 5: Approach and Methodology

58

research work does not state why they specifically chose Reed-Solomon coding as the

erasure code. This thesis examines families and classes of erasure codes in Chapter 6

to study the security properties and performance of different erasure codes, as well

as their applicability towards Cloud storage problems. Lastly, we contrast this

approach to traditional remote storage paradigms in Chapter 7.

5.3 THE DICTIONARY ATTACK PROBLEM

Encoding files into file pieces can still present a cryptographic security problem, one

which was not discussed by Abu-Libdeh et al. Given a sufficient number of file pieces

less than the threshold K and external knowledge about the data, one could plausibly

guess at the data of any missing pieces with very high accuracy. Any missing pieces

required to meet the threshold could be deduced without having to obtain them from

the Cloud. This is called the dictionary attack in security research. Consider the

following example:

Let the original file contain the word PASSWORD, and consider that it is split into

four pieces consisting of PA, SS, WO, and RD. If an attacker obtains any 3 of these

blocks – for example __SSWORD, PA__WORD, PASS__RD, or PASSWO__ – the

remaining block can be guessed quite easily using an English language dictionary

search. In this case, the attacker has external knowledge about the data, namely that

the contents are English words and that in total there are 8 characters. If an attacker

obtains any 2 of the blocks – for example ____WORD, __SS__RD, or __SSWO__ –

guessing becomes more difficult. Some plausible English words fitting ____WORD

might be BUZZWORD or FOREWORD. If the attacker did not know how many

characters there were in total, then words such as CROSSWORD, SWORD, and

Chapter 5: Approach and Methodology

59

AFTERWORD are also plausible guesses. Having more plausible results increases the

chances of the attacker failing to obtain the true original data.

Some erasure codes will encode a file in such a way that none of the file pieces

contain, directly, the text or data in the original file. For the above example, these

types of erasure codes would encode PASSWORD to another set of characters, such

as WR, SL, AB, and EK. These codes have the Confusion security property, while

others such as Reed-Solomon Codes do not have the property.

5.4 ADDRESSING SECURE CLOUD STORAGE PROBLEMS

By splitting and spreading out the pieces of the file to multiple Cloud storage

providers (at least two providers), the problems outlined in Chapter 4 can be

addressed. We examine each problem one at a time:

1. Malicious attacks can come from anywhere around the world, often

targeting the authentication mechanism of Cloud storage providers

An attacker must obtain at least K of the N pieces of files in order to accomplish his

or her objective of obtaining the original file, presuming that this original file

contains highly valuable and sensitive information to both the user and the attacker.

If the N pieces are spread out in such a way that we ensure no single Cloud provider

has K pieces, then the attacker must compromise at least as many Cloud providers at

the same time as it takes to obtain the K pieces necessary. By convention, this is at

least two providers. If the attacker were to attempt to break the authentication

mechanisms of the providers at different times, then it becomes and ever

increasingly difficult for every subsequent attack as companies and users will have

the time to react to the first attack to further safeguard their systems and data.

Chapter 5: Approach and Methodology

60

Further, it can also be presumed that the attack against one provider will not work

against another provider without significant adaptation. While there are common

security best practices used by all companies, the specific security architecture of

each provider is different, which necessitates a different way of attacking that

provider. While it is theoretically impossible to prevent simultaneous attacks, nor the

complete elimination of this risk, the Framework will further minimize the risk of

malicious attacks as it increases the amount of work necessary for attackers before

they can achieve their objectives, compared to the current practice of putting all of

the data on a single Cloud storage provider.

2. Weak access control mechanisms may allow users to see other users’ data

When a Cloud storage provider has a weak access control mechanism, the ultimate

solution is for that provider to modify and improve their mechanism so that users

cannot see each other’s data. Since the Framework only allows less than K file pieces

to be stored on each Cloud provider, other users would not be able to reconstruct the

original file without obtaining the remaining pieces from another compromised

Cloud storage provider. It is unlikely for any two Cloud storage providers to have the

same access control weaknesses, as their architectures would have some differences

to avoid legal copyright problems. Further, even if two Cloud storage providers

would have such weaknesses, it is unlikely that they would have it at the same time.

3. Routine maintenance or outages can cause inconveniences and delays

System maintenances and temporary outages do occur with Cloud storage providers

for many reasons. Sometimes their entire system must undergo an update at the

same time, whereby they cannot schedule piecewise updates to their subsystems.

Chapter 5: Approach and Methodology

61

Sometimes it could occur due to electrical outages or other unforeseen events. The

management plan and system architecture of the provider’s service often have the

most direct impact towards the frequency maintenance activities. Thus the direct

solution to reducing outages and maintenance rests with better management plans

and architectures that allow for piece-wise upgrades to their systems. When a

maintenance or outage occurs for a specific Cloud provider, the Framework can

reconstruct the pieces stored in that provider by downloading the necessary file

pieces from the other Cloud providers. Erasure codes not only allow the

reconstruction of the entire file, but also the pieces. Some of the code algorithms will

require a complete reconstruction of the file followed by re-splitting the file into new

pieces, while other codes can allow piece wise reconstruction using specific pieces. By

reconstructing the pieces stored in the Cloud provider experiencing an outage, the

user can continue to have access to the original file and data while the Cloud

provider fixes their systems.

4. Data loss and corruption risk is always present due to equipment failure

and potential natural disasters

Piecewise file reconstruction can also be used to safeguard against complete data

loss or corruption due to equipment failure and damaging natural disasters.

Complete data loss can be treated the same as a maintenance outage, whereby the

system simply reconstructs the missing pieces. The system can compute the hash

value of each file piece, and use that to check against the stored hash values in the

metadata for those pieces to verify that the pieces have not been modified while

being stored on the Cloud. If any checks fail, the corrupted pieces can be

Chapter 5: Approach and Methodology

62

reconstructed using the remaining file pieces as long as K total pieces or more are

intact.

If less than K total pieces remain intact, then the system will not be able to

reconstruct the file from the pieces, but if an original copy was retained by the user

then it could reconstruct the pieces by splitting the original file again.

5. Implicit trust of storage providers necessary, but problematic as the control

of the data resides on the service provider, while the responsibility for the

data rests on the user

The Framework can treat the file and data to help it tolerate against attacks on a

storage provider, against weaker system design where user’s files might be viewed by

other users, against system outages, and against total data loss and corruption of a

single provider. Depending on the way the system distributes the specific file pieces,

the files can tolerate problems present in multiple providers at the same time. For

example, where one provider experiences accidentally deletes a user’s file piece,

while another provider experiences an equipment failure. However, as K file pieces

must remain intact, some subset of the total number of providers must remain

functioning. The implicit dependency and need to trust a single storage provider can

effectively be eliminated; however the ecosystem of providers must still be

trustworthy and generally reliable. Since the user can recover all data from the K file

pieces, they now have the ultimate control over all of their data. If all providers are

neither reliable nor trustworthy, the Framework would work better by sending the

file pieces to multiple local storage mediums, such as USB flash drives, to safeguard

Chapter 5: Approach and Methodology

63

against equipment failure. In such a case, Cloud storage itself would have a systemic

issue within the entire ecosystem.

6. Physical location of the Cloud data is unknown to the user, and users have

no control over the physical placement of their data

The specific physical location of a user’s data within a Cloud is very much

undeterminable from a user’s perspective. On the one hand, the lack of such

knowledge safeguards users from any potential physical attacks of data centers,

since attackers wouldn’t know which data center to target to steal hard drives. On the

other hand, most of the major Cloud storage providers are expanding worldwide with

physical data centers in all major continents, and even choosing a provider does not

necessarily imply choosing the continents, countries, or cities of where the data

would be stored. However, numerous small Cloud storage providers exist, providing

storage services tailored for specialized markets, for example CareCloud is a specific

Cloud storage provider for health care data in USA, which claims to be HIPPA

certified for US law requirements [54]. HIPPA specifically requires providers to track

the physical movement and locations of any healthcare data within their systems

[55], and to be able to audit and verify such movements [56].

The Framework takes into account the geographic locations of each Cloud storage

provider, which can give users control of the physical placement of their data to

some degree. Efforts to track and locate all of the physical locations of the data

centers for each Cloud provider may be necessary in order to completely address this

problem, however the efforts would be exhaustive if done by manual labour, and the

Chapter 5: Approach and Methodology

64

correctness of the report will deteriorate through time as companies expand or

relocate their data centers.

7. Economic and business models of Cloud providers often create problems of

data lock-in and an inability for users to move data from one provider to

another without paying high fees

Recall the scenario discussed earlier in Section 3.3.4, where the user has their data in

the more expensive of two Cloud storage service providers. The user is faced with a

dilemma of either paying higher long term costs by staying with their current

provider, or an expensive transfer fee (outbound and inbound fees from providers

and download and upload fees from internet service provider) to move their files to

the less expensive of the two Cloud storage providers for long term savings. The

Framework lets the user reconstruct the file pieces stored on the expensive provider

locally on their computer, and then upload these directly to the less expensive

provider. The user doesn’t have to pay a download fee or an outbound data fee in

order to take advantage of the savings. Although an upload fee and inbound data fee

is still present, the total cost is less. The system can compute the time period for

which the new storage cost plus move cost is equal to the storage cost of the former

storage provider. Intuitively, storing a file on the Cloud any time after this time

period will result in cost savings compared to staying with the current provider. A

move can be made if the file is expected to be stored in the Cloud longer than the

computed time period. We present this in further detail in Section 6.5.1. The

reduction of the total cost is in one sense an economic freedom which the user can

take advantage of through the Framework.

Chapter 5: Approach and Methodology

65

8. Changing pricing between Cloud providers is hard to track for users, and

hard to optimize for a least-cost strategy since data move is currently

necessary to take advantage of lower prices

The Framework will automatically track Cloud storage and internet prices, thus

alleviates the need for the users to track the price changes. With all the available

pricing data, the system can intelligently formulate a dynamic least-cost strategy

balancing pricing, storage, and security requirements. Data move in the form

discussed here in point 7 is still necessary to take advantage of lower storage prices,

but the system will intelligently decide when and where to move the files according

to all of the requirements.

5.5 PRESERVING CLOUD STORAGE BENEFITS

The Framework preserves all existing benefits of storing data on the Cloud, and also

enhances some of the benefits in intuitive ways. The benefits outlined in Chapter 4

are examined point by point below to see how the system will preserve or enhance

the benefits.

1. Pay only for the amount of data storage used

The Framework will still allow the user to pay only for the amount of data storage

used on the Cloud. Although the system does compute extra file pieces for the

advantages of redundancy and security, the location and placement of these pieces

could be on or off the Cloud. It is a flexible option for the user as to how many file

pieces should be placed on the Cloud, and as a result how much costs they can

expect by placing the file pieces on the Cloud. For example, if we only put less than K

file pieces on the Cloud where K pieces constitute the size of the original file, then

Chapter 5: Approach and Methodology

66

the system allows the user to save on costs by not having to put as much data on the

Cloud compared to using Cloud storage in the traditional sense.

2. Flexible storage quotas, adjusted on-demand

Since the Framework aims to distribute the file pieces across a number of storage

providers as a security principle, indirectly this allows the user to not need to request

for higher storage quotas from each provider, and generally remain lower in costs. Of

the surveyed storage providers shown in Section 3.3.2, only Amazon and Microsoft

has lower effective price per GB stored as a user requests for a higher quota. The

other providers charge the same unit price at any storage tier. All of these providers

have a free storage tier, thus the system can optimize costs by distributing the file

pieces in such a way that it wouldn’t use more than the free storage quota of space

from each provider until there is no more free space remaining. The system can

intelligently take advantage of the free storage spaces available in the Cloud storage

market.

3. Lower upfront costs, highly beneficial for start-up companies

With sufficient market research and indexing, the Framework will contain a wealth of

knowledge of the pricing, free storage limits, security features, and legal restrictions

set by each storage provider for the data they host on their Clouds. Within this data

set, the system could be used as a recommendation system where it suggests to the

user where to place their data, how much storage it needs, and the costs to expect.

From the perspective of a start-up company, the system could be advantageous in

keeping start-up costs low by intelligently finding additional free or low cost storage

Chapter 5: Approach and Methodology

67

tiers and providers with suitable requirements for the business as its data storage

needs grow.

4. Reduced management and maintenance fees

The aim of the Framework is to be as intelligent and automated as possible in

managing the distribution and reassembly of the required file pieces, thus very little

management work or interaction would be needed from the user once some initial

configuration work is completed. Like most other existing Cloud storage tools and

solutions, automation and machine intelligence reduces the amount of management

and maintenance work on the overall file system which allows users to save time and

companies to save costs.

5. For short term projects, no need to worry about reselling hardware

The Framework continues to allow users and companies not have to worry about

reselling storage hardware as all of those costs are bear by the Cloud storage

provider. The implementation of the system can be accomplished by a wide range of

software languages for various architectures and platforms. The user does not need

to invest in any specialized hardware in order to use this Framework.

6. Improved resource utilization, saving energy for the world

One of the main reasons for users to pre-emptively purchase a very large storage

capacity hard disk is to accommodate any unexpected or unknown future storage

needs. For portable computers it also makes sense to increase the storage capacity

available given that there is usually space only for one or two hard disks per laptop.

For desktops or older computers, it makes sense to consolidate many smaller

Chapter 5: Approach and Methodology

68

capacity hard disks into one large one for the purpose of saving energy and reducing

weight. The use of Cloud storage extends the capacity limit since most files could be

offloaded onto the Cloud. In one sense, a storage system that intelligently capitalizes

on this flexibility can even maximize the utilization of local storage by finding the

files that could be offloaded onto the Cloud and moving them automatically. Not

only can the user have a virtually unlimited storage space, but the local hard disks

can become smaller in actual storage capacity, reducing the global demand for the

scares resources needed to produce so many high capacity but underutilized hard

disks. Likewise, sending more files, including the redundant file pieces to the Cloud

allows a Cloud provider to maximize their storage disk utilization and increase

revenue.

7. Access data from anywhere around the world

Since the Framework uses metadata to keep track of where the file pieces are and the

metadata is replicated across the user’s devices through a peer-to-peer file system,

the user is guaranteed to have access to their data anywhere around the world as

long as they have an internet connection.

8. Automatic storage of data backups and revisions

The Framework can work in conjunction with already available backup and revision

capable Cloud storage systems to archive versions of a file. In such settings, the

Framework will simply split the updated file into the same number of resultant file

pieces as the original file, and name them accordingly such that the Cloud storage

systems register the new file pieces as a revision of their corresponding old file

pieces.

Chapter 5: Approach and Methodology

69

Some erasure code algorithms can work with incremental changes to an original file,

by computing the respective changes to each of the resultant file pieces. Using only

these algorithms, the system can upload the new file pieces to the storage providers

and add a corresponding entry in the metadata to track the revision of the file. This

approach restricts the list of applicable algorithms, but can be used across any

number of Cloud storage providers as the revision capability is provided by the

Framework instead of the Cloud providers, and this approach is likely the most

efficient in terms of the use of storage space.

9. Ease platform for data sharing between users

Users who share the same file will need to exchange the metadata and use the same

storage system. Since the metadata is shared through a peer-to-peer network, the

authorized users’ devices and computers can be added as peers to the file’s P2P

network in order to receive the metadata. When sharing for specific files or folders

stops, the Framework disconnects the relevant peers from the P2P networks and

gracefully handles the files.

10. Changes are synchronized between a team when data is modified by team

members

The metadata can also be used to track changes, in such a way that the team

members only need to download the K pieces necessary to reconstruct the new

updated file instead of all pieces.

11. An application of off-site data protection principle, allowing users to

recover data easily

Chapter 5: Approach and Methodology

70

The Framework further enhances a user’s ability to recover data through the

application of the off-site data protection principle. Not only will it allow the user to

tolerate their own hardware or system failure, but also failures of individual Cloud

storage providers. As long as K pieces remain intact anywhere around the world, the

user can recover their files.

5.6 CURRENT USER BEST PRACTICES

From a user’s point of view, the current best practice is to simply encrypt all their

files before putting them on the Cloud. This is often advocated by many consumer

websites and blogs [57] along with suggestions and promotions of specific

encryption software. These blog posts serve as a good means to raise awareness of

the problems of Cloud storage, stimulate community discussions, and generally

educating consumers on the ideas of encryption. However, there are a number of

drawbacks to this methodology. The user must learn about encryption systems to

properly apply encryption to their files, or implicitly trust the encryption software.

Encrypting files involve selecting an appropriate encryption algorithm and system,

determining the level of security needed and select a proper length of an encryption

key corresponding to the level, and then apply the system in the proper procedure to

encrypt the file. The user must also manage the encryption keys, and trust whomever

they share the keys with if they want to share the files. If a user loses his or her

encryption key, there is a likely chance that they will never be able to decrypt their

files. Even if these steps were taken, it does not guarantee that an attacker won’t

obtain their data. If an attacker obtains a complete copy of the encrypted file, they

may expend as much computational resources and time as needed to decrypt the file

through brute force or other techniques.

Chapter 5: Approach and Methodology

71

The erasure code approach solves this problem by spreading the pieces among many

Cloud providers, forcing an attacker to execute coordinated and concurrent attacks

to multiple providers. This increases significantly the difficulty and amount of work

necessary for an attacker to gain access to the data.

5.7 CHAPTER SUMMARY

This chapter presented the approach to solve the Cloud storage problem which

applies erasure code algorithms to split a user’s files into numerous pieces, add

redundancy to these pieces to tolerate losses, and then send the file pieces to

different Cloud providers. The approach is an adaptation of the approach used by

Abu-Libdeh et al. in their RACS system. We presented a formal model of erasure code

file transformations to explain how erasure codes work at a high level, then we

analyzed Abu-Libdeh et al.’s research work. We showed how their work was missing

critical analysis in terms of data security by presenting the Dictionary Attack

Problem, which shows a critical vulnerability in their system as attackers can guess

missing file pieces given that they obtain a sufficient amount of data pieces.

We then addressed point by point how the approach itself can be used to resolve the

risks and challenges of using Cloud storage, whilst enhancing the benefits. We also

analyzed the current best practices for users, showing how despite the benefits of

increasing awareness and educating the population about the risks of Cloud storage,

the best practices still has vulnerabilities.

In the next chapter, we apply the approach by presenting the design and in-depth

analysis of a system Framework that resolves the Cloud storage problem.

72

CHAPTER 6: CLOUD STORAGE

FRAMEWORK

Designing a secure storage software Framework requires a thorough analysis of each

of the components of the Framework. This chapter begins with a presentation and

discussion of the components of the Framework in Section 6.1. The most critical

component is the erasure code transformation system which carries out the encoding

and decoding operations on files. The analysis metrics for erasure codes are

presented in Section 6.2, followed by an in depth analysis of seven erasure codes in

Section 6.3. The other components are described in Sections 6.4 and 6.5 respectively,

followed by the chapter summary in Section 6.6.

6.1 GENERAL MODEL OF FRAMEWORK

A Cloud storage Framework is a template software system which takes some user

files(s) as input, and transforms them into a proper set of file pieces as output to be

stored on the Cloud, in such a way that some redundancy is added to afford data

loss, corruption, service outage, or equipment failure. A high level representation is

shown in Figure 5. The Framework has four high level systems. The erasure code

transformation system encodes and decodes user files into file pieces (X
1
, X

2
, X

3
… X

N
).

The Cloud storage management system selects Cloud providers and manages the

upload and download of the file pieces to a number of Cloud providers. The choice of

Cloud storage providers depend on their price, availability, geography, security, and

other metrics. The choice is independent of the encoding and decoding

transformations. Thus the system is able to tailor the choices of storage providers

Chapter 6: Cloud Storage Framework

73

towards any number of requirements, whether it is for law compliance, cost

reduction, data security, or a combination thereof.

Figure 5 – General Model of Cloud Storage Framework

In fact, the choice of a storage provider could also include local and offline sources

such as the user’s hard drives, memory cards, rewritable optical disks, and USB

drives. For the purposes of discussion we consider only Cloud providers as storage

providers, but the Framework is not constrained to only use online providers. In fact

the substitution can be advantageous in certain scenarios.

Since K out of N file pieces are required for the decoding transformation, the storage

management function will always put fewer than K file pieces in a single Cloud

storage provider for the security of the user’s data. More strictly, the system will put

fewer than R = (N – K) file pieces in each Cloud provider so that the complete loss of

a provider does not affect the ability to recover or reconstruct the original file. The

system can enforce a constraint that R < K, due to these two security and reliability

principles.

Chapter 6: Cloud Storage Framework

74

The Framework will create some metadata in the form of a file which captures the

information of which specific erasure code was used to transform the file, and which

Clouds are storing the file pieces. Metadata files are synchronized across the user’s

devices by the Metadata Synchronization System through a peer-to-peer network

consisting of only the user’s devices. The metadata files are replicated across the

peer-to-peer network so that the user always has the metadata on hand, along with

the system software, to access their files on the Cloud. The system assumes that at

any time, at least two peers are alive and can connect to each other to replicate the

metadata.

Lastly, the Encryption System applies file level encryption to the metadata files, user

files, and file pieces. Depending on the Framework configuration, encryption could

either be applied before transformation operations. No matter what, the Framework

requires file pieces to be encrypted prior to being uploaded to the Cloud.

6.2 ERASURE CODE ALGORITHM PROPERTIES AND METRICS

The core component of the Framework is the erasure code used to encode and

decode a file. This single component affects the security of the file, the potential

costs to store the file, and the performance of the system. Since many erasure codes

exist, it is worthy to analyze and compare a chosen representative sample of erasure

codes to see their security properties, algorithmic properties, efficiencies, and

theoretical performance limits in the domain of splitting and joining large size files.

We focus on the algorithm aspect of each code in this section.

A set of erasure codes has been chosen based upon their popularity of use in

industry, as well as their underlying mathematical principles. This selection criterion,

Chapter 6: Cloud Storage Framework

75

although not explicitly rigorous, follows the trends within the erasure codes research

community. The majority of literature within this field can be traced back to a few

canonical erasure codes, where earlier research works define and improve upon the

codes from a theoretical point of view and latter research works improve the run-

time performance of the codes and demonstrate their applications. The selection

favors the canonical codes more than their refinements since the mathematics

underlying the codes establish their algorithmic properties and theoretical

performance limits. Comparing codes at these limits gives the Framework a rational

means to pick an erasure code to use, given a user’s situation or preference. Users

may prefer to have their overall system run fast, which implies favor towards codes

which encode and decode in linear time. Users may also prefer codes which are

highly flexible, which implies favor towards codes that can be customized to produce

any K number of redundant pieces relative to some division of the original file into M

pieces. In practice, any implementation of the Framework can incorporate the latter

refinements for each type of erasure code to maximize the system’s performance.

The very first erasure code was invented by Richard Hamming in 1950 [48] using

parity check in fixed positions to allow for either the detection or automatic

correction of bit errors. Parity check is implemented in computers via the Exclusive

OR (XOR, ⊕) operation. In fact, many modern erasure codes are based upon the use

of XOR in different arrangements, for example RAID-5 erasure algorithm and Low

Density Parity Code (LDPC). Shamir’s Secret Sharing Algorithm is based on

polynomial interpolation. Michael Rabin’s Information Dispersal Algorithm (IDA) is

based upon a matrix multiplication and matrix inversion process. Reed-Solomon

codes are based upon polynomial multiplication and division over a Galois Field.

Chapter 6: Cloud Storage Framework

76

Recall from earlier in Section 2.2.1 a few important definitions. We defined K as the

number of file pieces split from an original file, R as the number of redundancy file

pieces added by an erasure code algorithm, and N as the total number of file pieces

where N = K + R. Also, recall the definitions of Resultant Size Factor, Redundancy

Factor, and the Redundancy Minimization Functions as follows:

We can view the Framework as follows: for a given erasure code algorithm, a desired

redundancy factor RF, and an appropriately chosen number of original file pieces K,

the algorithm will add R redundancy file pieces.

With respect to a chosen RF, each algorithm can add a different number of redundant

file pieces, or add them differently. The aim of Section 6.3 is to compare different

algorithms for their algorithmic properties and theoretical performance at different

chosen RF values, as an equalizing factor. RF directly corresponds to the security and

reliability of the file, namely how many pieces can be lost in the set of N pieces

before the file becomes unrecoverable through a decoding operation.

In this section, we begin by first defining a few constant properties which all

algorithms share, then describe all comparison metrics point by point to show why

these metrics are important to consider for the problem.

Chapter 6: Cloud Storage Framework

77

6.2.1 COMMON ALGORITHM PROPERTIES AND MATHEMATICAL

CONSTANTS

We use |F| to denote the size of the original file. A file F will be divided into K equal

size pieces by any erasure code algorithm. We denote the size of each file piece as |K|.

Logically, the size of each file piece is the size of the file divided by K. As such one

constant holds throughout all erasure code algorithms:

Equation 5 – File Piece Size Constant

| |
| |

Further, while the number of redundancy file pieces can change for each algorithm,

we hold the size of each piece constant and to be the same as each original file piece,

that is:

Equation 6 – Redundancy File Size Constant

| | | |

This constant property will become evident in Section 6.3 as we examine each

algorithm in detail. We can further denote the total size of the resultant set of file

pieces as |N|, which can be calculated as follows:

Equation 7 – Resultant File Size

| | | | | |

6.2.2 ALGORITHM ANALYSIS METRICS

There are 14 important metrics which we use to analyze each of the seven erasure

codes in order to determine their properties, efficiencies, and suitability for solving

the Cloud storage problem. The number of erasure codes in literature and in practice

Chapter 6: Cloud Storage Framework

78

can be countless. This set of metrics can be used by interested researchers and

readers to analyze other erasure codes for their suitability to this problem.

Let us define the algorithm comparison metrics point by point as follows:

1. File Reconstruction Threshold

The file reconstruction threshold FT is the number of pieces within N needed to

reconstruct the original file F. For most erasure code algorithms FT = K.

2. File Piece Reconstruction Threshold

The file piece reconstruction threshold PT is the minimum number of pieces within N

needed to reconstruct one other piece within N.

3. Resultant Space

The resultant space is the total space taken up by a file after applying the encoding

transformation to the file. It is the same as |N|, and is expressed in units of Bytes of

computer data. Generally we will consider data of sizes in Megabytes (MB), Gigabytes

(GB), Terabytes (TB), and Petabytes (PB) as these are the most prevalent size units

found in 2014.

4. Resultant Space Factor

This is previously defined in Section 2.2.1. From a more intuitive standpoint, the

resultant space factor is the size of the resultant file |N| divided by the size of the

original file |F|. Since |N| is a function of |F|, we can express it as we have in Equation 1

in Section 2.2.1 as N ÷ K.

Chapter 6: Cloud Storage Framework

79

5. Redundancy Factor

This is also previously defined in Section 2.2.1. The redundancy factor is the number

of redundancy file pieces R divided by the number of total number of file pieces N,

expressed as a percentage.

6. Encoding Time

The encoding time is the amount of time necessary to encode a given file into its

corresponding N file pieces. Encoding involves four steps of splitting the file into K

pieces, and computing and creating R redundancy pieces. This is expressed as a

function of |F|. Generally, a faster encoding time makes an algorithm better since it

uses less CPU cycles, reducing resource consumption, and results in less waiting time

for a user.

7. Decoding Time

The decoding time is the amount of time necessary to decode a given set of K file

pieces back to the original file. This is also expressed as a function of |F|. A faster

decoding time makes an algorithm better for the same reasons as Encoding Time.

8. Temporary Space for Encoding

Erasure code algorithms require a certain amount of memory or temporary file

storage space to compute each encoding operation. This amount of space is defined

as the Temporary Space for Encoding (TSE), expressed as a function of |K|. Lower TSE

makes an algorithm more useful as it can be implemented in platforms which have

less memory or disk space, such as a mobile phone.

Chapter 6: Cloud Storage Framework

80

9. Temporary Space for Decoding

Similarly, erasure code algorithms also require temporary memory or file spaces for

the decoding operation. We define this space as the Temporary Space for Decoding

(TSD), expressed as a function of |K|. Lower TSD is desirable for the same reasons as

TSE.

10. Confusion Property

Recalling the definitions provided in Section 2.2.2, an erasure code algorithm has the

confusion property if the output file pieces have complex mathematical relationships

to the input file, and if none of the output file pieces directly correspond to the input

pieces. For example, a code which computes some redundancy pieces and adds them

to the original file would not be considered to have the Confusion Property because

the output file contains the input file in plain text, without transforming it at all.

Such types of codes do not have a complex relationship between the output and

input files as far as the contents of the file are concerned.

11. Diffusion Property

An erasure code algorithm has the diffusion property if each bit of the input file is

involved in computing all bits of each output file piece by the algorithm. Specifically,

Diffusion is achieved if each input bit is mathematically involved in all output bits.

12. Partial Updates

An erasure code algorithm has this property if for a given update operation

performed on the original file it does not need to recompute every output piece from

scratch in order to update the output file pieces.

Chapter 6: Cloud Storage Framework

81

13. Metadata Requirement – Computation Key

A computation key is required by an erasure code algorithm if it must keep some

numerical constants or data in the metadata file in order to mathematically perform

the decoding procedure. An algorithm is more robust if it does not need a

computation key, however this key can also offer an extra layer of security for the

user since an attacker must also obtain the key before they can decode the file.

14. Metadata Requirement – File Reconstruction Relation Table

A file reconstruction relation table is required by an erasure code algorithm if it must

use certain specific file pieces to reconstruct other file pieces in the set of N pieces,

regardless of whether they are the original or redundancy pieces. More generally, an

ordered reconstruction procedure is necessary for the algorithm to recompute the

original file. An algorithm does not require this table if it does not require an ordered

reconstruction. An algorithm is more robust if it does not require this table since it

can begin reconstruction as soon as the first piece is downloaded, however it

becomes easier for an attacker as well since it no longer needs to obtain specific file

pieces to reconstruct the other specific pieces within the file set.

6.3 ALGORITHM ANALYSIS

This section begins with an introduction of each erasure code algorithm along with

their detailed analysis in Sections 6.3.1 through 6.3.7, and concludes with a

comparative analysis of the algorithms in Section 6.3.8. For the purpose of a naive

comparison, the “Simple Replication” algorithm is presented first to provide a basic

reference point for all erasure code algorithms. Technically, Simple Replication is not

an erasure code algorithm.

Chapter 6: Cloud Storage Framework

82

6.3.1 SIMPLE REPLICATION

To perform Simple Replication, users simply have to copy their original file as many

times as they desire to achieve a particular redundancy factor. For example, if an RF

of 50% is desired, the user copies their file once, such that 1 file out of the 2 is

redundant. If an RF of 66% is desired, the user copies their file twice so that 2 files

out of the 3 are redundant.

Its reconstruction thresholds PT and FT are always 1 since any copy is a true copy of

the original. The resultant space is the number of copies time the size of the original

file, thus |N| = N × |F|; resulting in a RSF of |N| ÷ |F| = N. Its redundancy factor RF is (N

– 1) ÷ N as all pieces except one is redundant.

Mathematically speaking, every bit of an output file is the same as its corresponding

bit in the input file. Thus, the encoding operation of creating N replicas involve a

linear time operation to duplicate the data, and the encoding time is O(|F|). The

decoding operation requires no computation, so the decoding time is O(1). The

temporary memory space required for encoding is 0 since the operating system can

manage the copy operation. The temporary memory space required for decoding is

also 0.

Simple replication does not have confusion nor diffusion properties since an attacker

can obtain the data if it obtains any copy of the file. Partial updates are supported

since only the bits that are changed in an original file need to be updated in the

duplicate copies. Simple replication does not need a computation key, and it does not

need a file reconstruction relation table.

Chapter 6: Cloud Storage Framework

83

Table 10 shows the redundancy performance of using Simple Replication. As RF

increases, the set of files contain more redundancy which means it is more tolerant

to errors and losses. This is generally favorable for users who want more data

security in their files. RSF shows the cost of attaining each level of data security,

directly showing the amount of redundancy there is in the set of files. The ratio of

RSF to RF shows the relative cost to attain each level of data security. Intuitively,

using as few redundant copies as possible gives us the best performance, resulting in

a lower RSF/RF ratio.

Table 10 – Simple Replication Configurations and Redundancy Performance

Simple Replication is trivially fast and allows partial updates. However, it costs a lot

of storage space compared to the use of erasure code algorithms.

6.3.2 HAMMING CODE

Published in 1950, Richard Hamming introduced the world’s very first erasure code

while he was trying to solve the practical problem of allowing a system to

automatically correct bit errors caused by analog data transmission, or noise [48]. His

code is called the Hamming Code in literature, in honour of his name. In his original

incarnation, known now as the (7, 4) Hamming Code, 3 error correction bits are

Simple Replication (N, K) R N K RSF RF RSF/RF

(2, 1) 1 2 1 2.0000 0.5000 4.0000

(3, 1) 2 3 1 3.0000 0.6667 4.5000

(4, 1) 3 4 1 4.0000 0.7500 5.3333

(5, 1) 4 5 1 5.0000 0.8000 6.2500

(6, 1) 5 6 1 6.0000 0.8333 7.2000

(7, 1) 6 7 1 7.0000 0.8571 8.1667

(8, 1) 7 8 1 8.0000 0.8750 9.1429

(9, 1) 8 9 1 9.0000 0.8889 10.1250

(10, 1) 9 10 1 10.0000 0.9000 11.1111

Chapter 6: Cloud Storage Framework

84

calculated and arranged for 4 data bits (D1, D2, D3, D4) according to the following

table:

Table 11 – (7, 4) Hamming Code Computation Table

It is known as the (7, 4) Hamming Code because in total there are 7 bits for every 4

data bits. Hamming Codes parity bits are set at any position that is a power of 2, that

is bit position 2m for m = 0, 1, 2, … Each parity bit correspondingly computes the XOR

of all bit positions which have the m least significant bit set to 1.

In the example of Table 11, bit positions 3, 5, and 7 correspondingly have binary

position values of 11, 101, and 111. The parity bit at position 1, with a corresponding

m of 0, would calculate the XOR of all bits with the least significant bit having a value

of 1, which is position 3, 5, 7. Hence, as shown, it computes the XOR of D1, D2, and

D4. Similarly, the parity bit at position 2 with m = 1 computes the XOR of all bits with

the second least significant bit having a value of 1, which is positions 3, 6, and 7.

The (7, 4) Hamming Code can correct a single error bit. For example if bit 5 (D2) was

has an error (its bit value was flipped), then bits 4, 6, and 7 can be used to compute

D2. Mathematically, (D2 ⊕ D3 ⊕ D4) ⊕ D3 ⊕ D4 = D2 since the XOR of any bit with

itself is 0, and any bit XOR 0 is the value of that bit. The Code then uses the other

parity bit which D2 is involved in to check that D2 was computed correctly, in this

case parity bit 1. Let’s denote the newly computed D2 value as D2’. It checks that

P1 = D1 ⊕ D2 ⊕ D4 = D1 ⊕ D2’ ⊕ D4. In this code, 3 bits are used to compute or

Bit Position 1 2 3 4 5 6 7

Bit Position Binary Value 1 10 11 100 101 110 111

Bit Type Parity Parity Data Parity Data Data Data

Value D1 ⊕ D2 ⊕ D4 D1 ⊕ D3 ⊕ D4 D1 D2 ⊕ D3 ⊕ D4 D2 D3 D4

Chapter 6: Cloud Storage Framework

85

recompute another bit, and 4 bits are used to validate each bit through two

equations.

Table 12 shows the computation table for the (15, 11) Hamming Code, where each

parity bit is computed as the XOR of the data bits which are marked with an X.

Table 12 – (15, 11) Hamming Code Computation Table

Generally, a Hamming Code with m parity bits will allow for 2m – m – 1 data bits, and

the total number of bits is 2m – 1. Valid Hamming Code arrangements include: (3, 1),

(7, 4), (15, 11), (31, 26), (63, 57). Although the (3, 1) Hamming Code is technically a

triple repetition code which has the characteristics of Simple Replication. For every

extra parity bit, the total number of bits roughly doubles, and the number of bits

involved in every parity bit calculation also roughly doubles. In fact, every parity bit

involves 2(m – 1) – 1 data bits in its calculation. For any two parity bits, their equations

will have 2(m – 2) bits overlapping, which is visually evident in Table 12.

To use Hamming Code in the Framework, a file F can be split into K data pieces and

then Hamming Code would be computed bitwise by taking a bit from each data piece

one at a time. For example, to use the (7, 4) Hamming Code, we would split the file

into 4 pieces. In each iteration, a bit from each of the four pieces, K1, K2, K3, and K4,

is taken to compute 3 parity bits R1, R2, and R3 which are written into the 3

redundancy file pieces in order.

Bit position

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Encoded data bits

p1 p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8 d9 d10 d11

Parity bit
coverage

p1 X

X

X

X

X

X

X

X

p2

X X

X X

X X

X X

p4

X X X X

X X X X

p8

X X X X X X X X

Chapter 6: Cloud Storage Framework

86

The encoding time is linear with respect to the file size, or simply O(|F|), since XOR is

implemented in the CPU in hardware and the parity bits can be computed through a

single pass read through all the data bits. To check for errors, every parity bit needs

to be recomputed from their data bits and checked against the stored parity bit. If no

errors are present in the set of file pieces, then decoding involves the proper

sequential arrangement of all data bits. Hence, decoding operation for a set of file

pieces that have no errors would be O(|F|). If errors exist, then two equations are

necessary to recover and validate a bit, assuming all bits involved except the error bit

is correct. The error bit must also be present in both equations, hence 2(m – 1) – 1 +

2(m – 2) = 3 × 2(m – 2) – 1 bits are required to recover an error bit. In such scenarios, the

computation necessary to recover 1 bit involves computing the bit through a single

pass of reading through the bits of one equation, and then validating the bit through

another equation. Decoding time is thus O(|F|) overall.

Hamming Code has a file reconstruction threshold FT = K, a file piece reconstruction

threshold PT = 2(m – 1) – 1, a resultant space of 2m – 1, a resultant space factor of (2m – 1)

÷ (2m – m – 1), and a redundancy factor of m ÷ (2m – m – 1).

Table 13 – Hamming Codes and Redundancy Performances

Hamming
Code
(N, K)

Parity
Bits
(R)

Total
Bits
(N)

Data
Bits
(K)

Bits needed to
recover 1
other bit

Bit overlap
from any 2
equations

Bits needed to
validate

another bit RSF RF RSF/RF

(3, 1) 2 3 1 1 2 1 3.0000 0.6667 4.5000

(7, 4) 3 7 4 3 5 2 1.7500 0.4286 4.0833

(15, 11) 4 15 11 7 11 4 1.3636 0.2667 5.1136

(31, 26) 5 31 26 15 23 8 1.1923 0.1613 7.3923

(63, 57) 6 63 57 31 47 16 1.1053 0.0952 11.6053

(127, 120) 7 127 120 63 95 32 1.0583 0.0551 19.2012

(255, 247) 8 255 247 127 191 64 1.0324 0.0314 32.9074

(511, 502) 9 511 502 255 383 128 1.0179 0.0176 57.7957

(1023, 1013) 10 1023 1013 511 767 256 1.0099 0.0098 103.3099

Chapter 6: Cloud Storage Framework

87

Table 13 shows the redundancy performance of some of the Hamming Codes. As we

increase the number of parity bits used in the code, both RSF and RF approach 1 and

0 respectively.

It is not surprizing why the (7, 4) Hamming Code was the most popular among the

set, as well as being the canonical code, as it achieves the best trade off of

redundancy and resultant space without resorting to the simple replication of the (3,

1) Hamming Code. Higher level Hamming Codes reduce the safety of the set of data

as there are relatively fewer number of parity bits compared to data bits. The table

confirms this as RF drops to nearly 0 for higher level Hamming Codes.

The temporary memory space needed for encoding and decoding is m + k bits.

Relative to files in MB or higher in size, we can safely claim that the memory space

needed is negligible. If some data bit changes upon an edit, then its corresponding

parity bits must be updated. Hamming Code supports partial updates since not every

parity bit must change for a given data bit change.

Hamming Code does not have either the confusion or diffusion properties, since

attackers who gain sufficient numbers of bits necessary to construct another bit can

then progressively work towards gaining the data of the entire system by

reconstructing one bit at a time. As the data bits are written to the output pieces

unchanged, an attacker can at times guess any missing bits using dictionary attacks.

Lastly, Hamming Code does require the use of a reconstruction relation table in order

to keep track of the file pieces and their corresponding bit position in the code table.

It does not need a computation key however.

Chapter 6: Cloud Storage Framework

88

6.3.3 RAID-5 ALGORITHM

Redundant Array of Independent Disks (RAID) is a suite of stream or block based

redundancy algorithms in addition to hard drive configurations, invented by Peter M.

Chen, et al. in 1994 [49]. RAID is implemented in almost all modern computer

systems as a disk-level data redundancy system, working behind the scenes to

protect a users’ data. The series of RAID algorithms starting with RAID-1 was

invented to provide redundancy for storage of data in disks. We are interested in the

algorithms only, and in particular the RAID-5 single parity algorithm.

RAID-5 stripes all data at the block level into K number of pieces (A, B, C, D, …, K),

while maintaining identical sizes for each piece. It then computes one parity piece (R)

with the size equal to one of the pieces, each bit within the parity piece is the result

of the XORs of the corresponding bit from the split pieces. The equation to compute

P is as follows:

Equation 8 – RAID-5 Encoding Algorithm

R
i
 = A

i
 ⊕ B

i
 ⊕ C

i
 ⊕ … ⊕ Ki, for i = 0 to |K|, given |K| in bits

The parity piece affords at most one piece to fail among any of the pieces. The

recovery of a missing piece is done with the same procedure; however, we compute

the missing piece bit by bit by taking the XOR of all remaining pieces. For example if

piece B was completely erased, we could recompute it as follows:

Equation 9 – RAID-5 Bit Repair Algorithm

B
i
 = R

i
 ⊕ A

i
 ⊕ C

i
 ⊕ … ⊕ Ki, i = 0 to |K|, given |K| in bits.

Chapter 6: Cloud Storage Framework

89

We can show that given a file of size |F| and the desired the number of piece K, RAID-

5 will produce a total output file size |N| = |F| + |F| ÷ K. This has a resultant space

factor of (K + 1) ÷ K, and a redundancy factor of 1 ÷ (K + 1). RAID-5 requires that all

pieces except 1 be present in order to reconstruct the missing or erroneous piece. Its

file reconstruction threshold and file piece reconstruction threshold are both K.

Implementing RAID-5 algorithm in software would require the memory space of

(K + 1) × |K| bits. For encoding a file, the program will read K bits at a time and split

them into the K memory blocks. Then the program computes the Parity block from

these blocks, and writes all K + 1 blocks to the corresponding output files. The

program continues until all bits from the file have been read. RAID-5 encodes a file in

time O(|F|), using memory space of O(K + 1) bits. Reconstruction of the original file in

RAID-5 simply requires reassembling the original file by reading the bits from all K

file pieces in the correct order. RAID-5 decodes a file in time O(|F|) using memory

space of O(K) bits. Like Hamming Code, RAID-5 uses relatively negligible memory

space.

Table 14 – RAID-5 Schemes and Redundancy Performances

RAID-5 can correct errors in at most 1 block, through reconstruction of the block. A

checksum must be computed for each block in order to use it as an indicator of

RAID-5 (N, K) R N K RSF RF RSF/RF

(2, 1) 1 2 1 2.0000 0.5000 4.0000

(3, 2) 1 3 2 1.5000 0.3333 4.5000

(4, 3) 1 4 3 1.3333 0.2500 5.3333

(5, 4) 1 5 4 1.2500 0.2000 6.2500

(6, 5) 1 6 5 1.2000 0.1667 7.2000

(7, 6) 1 7 6 1.1667 0.1429 8.1667

(8, 7) 1 8 7 1.1429 0.1250 9.1429

(9, 8) 1 9 8 1.1250 0.1111 10.1250

(10, 9) 1 10 9 1.1111 0.1000 11.1111

Chapter 6: Cloud Storage Framework

90

whether the block has been modified. RAID-5 is similar to Hamming Code in that one

single parity equation is used throughout the system.

Table 14 shows a sample of RAID-5 schemes and their performances. The (3, 2) RAID-

5 scheme is the most popular as it gives the best ratio between RSF and RF without

resorting to simple replication in the (2, 1) scheme.

From a security point of view, RAID-5 does not achieve the properties of diffusion

and confusion. Like Hamming Code, attackers can use the dictionary attack to break

this code. RAID-5 supports partial updates as changes in any data bit require only a

corresponding update to that parity bit. It does not require a computation key but

does require a reconstruction table to identify the ordering of the original file pieces.

6.3.4 LOW-DENSITY PARITY-CHECK CODES

Low-Density Parity-Check Codes (LDPC) were invented by Robert G. Gallagher in 1960

[50] as part of his doctoral dissertation, subsequently published in 1963. LDPC is

similar to RAID-5 in that both use the XOR operation. In LDPC, given a file F split into

K pieces, R additional redundancy pieces are computed, each by taking a subset of

the K pieces and computing their XOR parity. A specific configuration of LDPC and

example is as follows:

Let the K pieces be K1, K2, K3 and K4, and the R redundancy pieces be R1, R2, R3, R4.

Each of the blocks have size |F| ÷ K. Then:

 ⊕ ⊕

 ⊕ ⊕

 ⊕ ⊕

Chapter 6: Cloud Storage Framework

91

 ⊕ ⊕

Once computed, the equations can be rewritten in the form:

 ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

 ⊕ ⊕ ⊕

In this set of equations, any 3 of 8 total pieces can be used to reconstruct 1 other

piece just like the process in RAID-5. We also only need half the number of total

pieces to reconstruct all pieces, such as by obtaining N1, N2, R1, and R2 which can

then be used to compute N3 and N4. If no pieces were lost, we can optimally choose

the pieces which cost less to download and reconstruct the pieces which are more

expensive to download. These features make it better than RAID-5.

A reconstruction relation table must be kept for LDPC in order to keep track of the

relationship between each data piece and its corresponding redundancy pieces.

However, assuming all pieces have no errors, the system could try all combinations

of pieces until it finds the subsets which yield a chained XOR result of 0. One piece

out of each chain must be a redundancy piece, as shown in the above equation sets,

and could be logically deduced from examining the involvement of the other pieces

in other equations. For an attacker, breaking the system this way is much more

expensive than trying to obtain the metadata file containing the relation table. When

K is chosen to be very large, trying all combinations becomes very costly.

Chapter 6: Cloud Storage Framework

92

For any LDPC configuration, the total time to encode the file into K data pieces and to

compute the R redundancy pieces is O(|F|). The key value to choose in LDPC is the

number of data pieces PT involved in the calculation of each redundancy piece R,

where PT ≤ K. One might observe that LDPC follows the binomial theorem to choose

and permute the data pieces used to compute each of the redundancy pieces. Thus, R

can be computed as a function of PT and K as follows:

Equation 10 – Binomial Coefficient Formula for LDPC Codes

 (

)

The threshold number of pieces to reconstruct the original file is FT = K. It results in

a space of |F| + |R| × R, with a redundancy factor of R ÷ N. The Resultant Space Factor

is N ÷ K. Similar to RAID-5, we can formulate R by computing using PT bits of each of

the K pieces at a time and then writing the output to the R files sequentially, so the

temporary space required to encode is R × K × PT bits. It is relatively more than

Hamming Code and RAID-5, but still negligible considering files in sizes of MB or

higher. The total time to decode a file is O(|F|) with the fastest by simply reading and

joining the K data pieces, and the slowest by reconstructing some of the K data

pieces using the R redundancy pieces. The temporary space required for decoding is

|F|.

We know that (K choose PT) ≥ K, however the total number of redundancy pieces R

does not necessarily have to match the total number of possible permutations. For

example, let the K pieces be K1, K2, K3, and K4, and the redundancy pieces be R1, R2

computed as follows:

Chapter 6: Cloud Storage Framework

93

 ⊕ ⊕

 ⊕ ⊕

To recover any piece, only three pieces are needed. However the relative risk and cost

of losing each piece is not the same for systematic total reconstruction. For example,

if K2 and K3 were lost at the same time then the system cannot possibly reconstruct

either of them, however if K1 and K4 were lost at the same time the system could

reconstruct both of them. In short, rather than only requiring any half of the number

of pieces to reconstruct the file, this now requires some chosen subset. This lets the

system choose different redundancy factors and have a different resultant space,

while maintaining the same time complexity and roughly the same temporary space

requirements.

We will utilize all possible R combinations for performance analysis, as maintaining

the property of letting any K number of pieces be used for reconstruction gives

substantially higher flexibility in data placement in the Cloud. For these, the resultant

space is ((K choose PT) + K) × |F| ÷ K. The resultant size factor is ((K choose PT) + K) ÷

K. The redundancy factor is ((K choose PT) + K) ÷ (K choose PT).

Table 15 shows some possible configurations for LDPC, where PT is set with respect

to K shown in the leftmost column. When PT = K, the system behaves the same as

RAID-5. When PT = K – 1, the system constantly produces configurations which result

in RSF of 2 and RF of 0.5; that is there is an equal number of redundancy file pieces

as there are original file pieces. When K ÷ 2 ≤ PT ≤ K – 2, LDPC generates more

redundancy pieces than the number of file pieces in the system but in a more

controlled fashion than simple replication.

Chapter 6: Cloud Storage Framework

94

Table 15 – LDPC Configurations and Redundancy Performances

Examining the three configurations with an equivalent performance through the

RSF/RF ratio of 7.2, we can see the flexibility of LDPC. To achieve this, LDPC could

split the file into 5 pieces and compute 1 redundancy piece, shown in the (6, 5, 5)

configuration. It could also split the file into 11 pieces and compute 55 redundancy

pieces using 9 pieces at a time, as shown in the (66, 11, 9) configuration. Lastly, it

LDPC (N, K, PT) PT R N K RSF RF RSF/RF

P
T

=
K

(2, 1, 1) 1 1 2 1 2.0000 0.5000 4.0000

(3, 2, 2) 2 1 3 2 1.5000 0.3333 4.5000

(4, 3, 3) 3 1 4 3 1.3333 0.2500 5.3333

(5, 4, 4) 4 1 5 4 1.2500 0.2000 6.2500

(6, 5, 5) 5 1 6 5 1.2000 0.1667 7.2000

(7, 6, 6) 6 1 7 6 1.1667 0.1429 8.1667

(8, 7, 7) 7 1 8 7 1.1429 0.1250 9.1429

(9, 8, 8) 8 1 9 8 1.1250 0.1111 10.1250

(10, 9, 9) 9 1 10 9 1.1111 0.1000 11.1111

P
T

=
K

 -
 1

(4, 2, 1) 1 2 4 2 2.0000 0.5000 4.0000

(6, 3, 2) 2 3 6 3 2.0000 0.5000 4.0000

(8, 4, 3) 3 4 8 4 2.0000 0.5000 4.0000

(10, 5, 4) 4 5 10 5 2.0000 0.5000 4.0000

(12, 6, 5) 5 6 12 6 2.0000 0.5000 4.0000

(14, 7, 6) 6 7 14 7 2.0000 0.5000 4.0000

(16, 8, 7) 7 8 16 8 2.0000 0.5000 4.0000

(18, 9, 8) 8 9 18 9 2.0000 0.5000 4.0000

(20, 10, 9) 9 10 20 10 2.0000 0.5000 4.0000

P
T

=
K

 -
 2

(6, 3, 1) 1 3 6 3 2.0000 0.5000 4.0000

(10, 4, 2) 2 6 10 4 2.5000 0.6000 4.1667

(15, 5, 3) 3 10 15 5 3.0000 0.6667 4.5000

(21, 6, 4) 4 15 21 6 3.5000 0.7143 4.9000

(28, 7, 5) 5 21 28 7 4.0000 0.7500 5.3333

(36, 8, 6) 6 28 36 8 4.5000 0.7778 5.7857

(45, 9, 7) 7 36 45 9 5.0000 0.8000 6.2500

(55, 10, 8) 8 45 55 10 5.5000 0.8182 6.7222

(66, 11, 9) 9 55 66 11 6.0000 0.8333 7.2000

P
T

=
K

 -
 3

(8, 4, 1) 1 4 8 4 2.0000 0.5000 4.0000

(15, 5, 2) 2 10 15 5 3.0000 0.6667 4.5000

(26, 6, 3) 3 20 26 6 4.3333 0.7692 5.6333

(42, 7, 4) 4 35 42 7 6.0000 0.8333 7.2000

(64, 8, 5) 5 56 64 8 8.0000 0.8750 9.1429

(93, 9, 6) 6 84 93 9 10.3333 0.9032 11.4405

(130, 10, 7) 7 120 130 10 13.0000 0.9231 14.0833

(176, 11, 8) 8 165 176 11 16.0000 0.9375 17.0667

(232, 12, 9) 9 220 232 12 19.3333 0.9483 20.3879

Chapter 6: Cloud Storage Framework

95

could split the file into 7 pieces and compute 35 redundancy pieces using 4 pieces at

a time, as shown in the (42, 7, 4) configuration.

Like RAID-5, the system must download all but 1 piece to recover the file in the (6, 5,

5) configuration, however the other two configurations offer substantially higher

flexibility. In (66, 11, 9) configuration, the least amount of pieces it needs to

download is 11 out of 66 total pieces. In (42, 7, 4) configuration, the least amount of

pieces required is 7 out of 42. In the latter two configurations, the absolute cost is

higher as the total file size is 6 times the original, but it grants this flexibility during

any recovery operation. Shown through their RF values of 0.8333, they both are more

secure than the (6, 5, 5) configuration which has an RF of 0.1667.

From a security point of view, LDPC achieves diffusion but not confusion as given a

sufficient subset of K pieces, the remaining pieces could be guessed using the

dictionary attack. Partial updates are supported by LDPC as only the bits in the file

pieces corresponding to the modified bits in the original file need to be recomputed.

6.3.5 SHAMIR’S SECRET SHARING ALGORITHM

Adi Shamir introduced a secret sharing scheme and algorithm in 1979 in his

publication “How to share a secret” in Communications of the ACM [51]. The scheme

is a threshold scheme, and is most widely used to split a master encryption key into

shares whereby any subset of shares meeting the minimum threshold can be used to

reconstruct the master key.

The principle behind the algorithm is that for any polynomial of degree K – 1

requires K points to define. We choose one particular point of a degree K – 1 equation

to be the secret point where it’s Y value is the binary numeric value of the data, and

Chapter 6: Cloud Storage Framework

96

we randomly choose N other points (N > K) from the polynomial as shares to be

stored. The secret can only be computed when the polynomial can be reconstructed,

which requires obtaining at least K out of N points to be used in curve fitting for

reconstructing the equation. The Y values of the N points share the same range as the

Y value of the secret, and in binary means they have the same number of bits. As

such, each share has the same file size as the original file.

Given a file size of |F|, Shamir’s Secret Sharing algorithm will produce a total output

file size of N × (|F| + C) where C is a very small constant amount of data related to

each share. This has a redundancy factor of (N – K) ÷ N. Relative to the size of the file

however, the resultant space factor is N ÷ 1 = N since every point has the same size

as the secret point.

Given an input file F, it is divided in to a sequence of fixed sized m-bit pieces.

Starting with the first piece, the binary value of the piece is taken as integer number

y and assigned as the secret point of that piece, typically (X = 0, Y = y). y has a range

of [0, 2m). N points are chosen by picking at random their X values, as long as it does

not equal the X value of the secret point. These X values are used for all pieces. Their

Y values are calculated per piece. Each resultant piece would contain one single X

coordinate, and a list of Y coordinates each corresponding to a K – 1 degree equation.

Figure 6 shows an example of an equation of degree 3, with 13 gray points defined

on the curve. The black point at X = 0 is the secret.

Chapter 6: Cloud Storage Framework

97

Figure 6 – A Polynomial Equation of Degree 3 with 13 Points Defined

For each equation, K – 1 random integers are chosen to form a K – 1 degree equation,

whereby the constant term in the equation is calculated by putting the secret point

into the equation and solving for Y. For example, let’s create a degree 2 polynomial:

Let the secret be the number 25, and we assign it to the point (X = 3, Y = 25). By

random we select two integers 3 and 9 for the constants, so the equation looks like

the following after we substitute in the two integers:

To solve for C, we put the secret point into the equation:

-600

-400

-200

0

200

-11 -6 -1 4

Chapter 6: Cloud Storage Framework

98

The finalized equation is:

The N points of the block are obtained by randomly choosing N distinct X

coordinates and calculating their corresponding Y values using the equation. The N

points are written to their corresponding output files. Continuing the example, let us

suppose we chose 4 coordinate points of -4, -3, 0, and 2:

Thus the redundancy data points are (–4, –17), (–3, –29), (0, –29), and (2, 1). The

equation, secret point, and redundancy points are plotted in Figure 7.

Figure 7 – Shamir’s Secret Sharing Example

y = 3x2 + 9x - 29

-40

-30

-20

-10

0

10

20

30

40

-5 -4 -3 -2 -1 0 1 2 3 4

Chapter 6: Cloud Storage Framework

99

Once all pieces are processed, the X values of the N points and the secret point, as

well as the piece size m, are written to the metadata file. This file forms the Key

(analogous to encryption Key) for recovering the file. Shamir’s Secret Sharing

algorithm encodes a file in time O(|F|), although slower than RAID-5, and uses

memory space of O(N × m) bits.

Given any K shares, the reconstruction process begins by reading into program

memory the X value and piece size m from the Key file. The equation is recovered by

computing for the secret equation F(x) piece by piece from the K share files. For each

piece read into memory, F(x) is obtained by first computing the set of LaGrange basis

polynomials L
j
(x):

Equation 11 – LaGrange Basis Polynomials Equation

 ∏

()

()

()

()

Then the equation is computed as:

 ∑

The secret point is then calculated from the equation. Each basis polynomial has K

numerator and denominator terms. The equation is the sum of the K basis

polynomials times the y value of the N points. Thus, Shamir’s Secret Sharing

algorithm reconstructs a file in time O((K × |F|)2) and uses memory space of

O((K × m)2) bits.

Chapter 6: Cloud Storage Framework

100

If up to R = N – K shares are corrupted or destroyed, they can still be recomputed by

utilizing the K shares to formulate the equation, then picking at random R other X

values. Shamir’s Secret Sharing algorithm requires K valid shares to repair any

corrupted shares, and like RAID-5 will need to compute checksums for each share in

order to ascertain whether the share has been modified.

Table 16 – Shamir’s Secret Sharing Schemes and Redundancy Performance

To use Shamir’s Secret Sharing, a polynomial degree must be chosen for the equation,

as well as the desired number of redundant points on the equation. Table 16 shows

various configurations of Shamir’s Secret Sharing. Shamir’s Secret Sharing seems to

be most efficient when the total number of points N is double of the number of

points K needed to reconstruct each equation of degree K – 1. Examples include (4, 2,

1), (6, 3, 2), and (8, 4, 3) configurations. Overall, using lower polynomial degree

Shamir's
(N, K, PD)

Polynomial
Degree (PD)

Points to define
Equation (K)

Redundant
Equation Points (R)

Total
Points (N)

RSF RF RSF/RF

(2, 2, 1)

1 2

0 2 2.0000 0.0000 Undefined

(3, 2, 1) 1 3 3.0000 0.3333 9.0000

(4, 2, 1) 2 4 4.0000 0.5000 8.0000

(5, 2, 1) 3 5 5.0000 0.6000 8.3333

(6, 2, 1) 4 6 6.0000 0.6667 9.0000

(7, 2, 1) 5 7 7.0000 0.7143 9.8000

(8, 2, 1) 6 8 8.0000 0.7500 10.6667

(3, 3, 2)

2 3

0 3 3.0000 0.0000 Undefined

(4, 3, 2) 1 4 4.0000 0.2500 16.0000

(5, 3, 2) 2 5 5.0000 0.4000 12.5000

(6, 3, 2) 3 6 6.0000 0.5000 12.0000

(7, 3, 2) 4 7 7.0000 0.5714 12.2500

(8, 3, 2) 5 8 8.0000 0.6250 12.8000

(9, 3, 2) 6 9 9.0000 0.6667 13.5000

(4, 4, 3)

3 4

0 4 4.0000 0.0000 Undefined

(5, 4, 3) 1 5 5.0000 0.2000 25.0000

(6, 4, 3) 2 6 6.0000 0.3333 18.0000

(7, 4, 3) 3 7 7.0000 0.4286 16.3333

(8, 4, 3) 4 8 8.0000 0.5000 16.0000

(9, 4, 3) 5 9 9.0000 0.5556 16.2000

(10, 4, 3) 6 10 10.0000 0.6000 16.6667

Chapter 6: Cloud Storage Framework

101

equations result in a more efficient system. We can see that with an RSF of 8, using a

polynomial degree 1 equation gives us a redundancy factor of 0.75 while it gives a

redundancy factor of 0.625 and 0.5 using polynomial degree 2 and 3 equations,

respectively.

From a security point of view, Shamir’s Secret Scheme algorithm achieves both the

properties of Confusion and Diffusion. The original text is transformed into a set of

N file pieces which is tied by a mathematical relationship that can only be reverse

engineered if the Key file was decrypted, and if K out of N file pieces were obtained.

An attacker which obtains a number of files less than K cannot guess the contents in

the remaining files since they cannot reconstruct the equation.

Overall Shamir’s Secret Scheme has a higher space cost than the previous studies

erasure codes. Its mathematical technique must represent and bound each secret

point’s data value to a range in order to control the resulting binary file size. Since

every point on the equation shares this bounded range, the more points needed the

higher the cost in terms of resultant file space. It is however much more secure, since

it is immune to dictionary attacks.

6.3.6 RABIN’S INFORMATION DISPERSAL ALGORITHM

Michael Rabin’s Information Dispersal Algorithm (IDA) was brought to the world in

his paper published in the Journal of ACM in 1989 [52]. It is also an erasure code, and

is based on a matrix multiplication and inversion process.

IDA considers a file to have L symbols. IDA first splits the L symbols into ⌈ ⌉

input fragments, where K is the number of symbols per fragment. Each fragment has

size |F| ÷ M in bits. If L is not a multiple of K, then IDA pads the message with zeroes

Chapter 6: Cloud Storage Framework

102

to generate extra symbols. Let us denote these input fragments as F
i
. Thus, the file

will be split into fragments ⌈ ⌉ [58].

IDA uses an N × K encoding matrix, denoted as A, where any K rows of the matrix are

linearly independent. One type of matrix which satisfies this requirement is a

Vandermonde matrix, where for row i the values of the matrix are:

1, (i + 1), (i + 1)2, (i + 1)3 … (i + 1)K−1

To encode, IDA takes each input fragment F
i
 one at a time and multiplies it to matrix

A to form the output fragments. Then, the fragments are organized column wise into

an output matrix. Each row of this matrix forms an output file piece. IDA outputs N

file pieces, each piece having M symbols. Any K of N file pieces can be used to

recover the original message.

For example, let there be a message have 10 integers (1, 3, 5, 2, 4, 6, 7, 8, 9, 11) and

we want to split it into 4 fragments. In this case, L = 10 and K = 3. Since L is not an

integer multiple of K, we pad the message with zeroes. M = ⌈ ⌉ for this

example. In order they are (1, 3, 5), (2, 4, 6), (7, 8, 9), and (11, 0, 0) respectively.

We construct the encoding matrix as a Vandermonde matrix A, with N = 8:

[

]

Chapter 6: Cloud Storage Framework

103

The output fragments are computed by taking each input fragment and multiply it

with matrix A:

[]

[

]

 []

[

]

[]

[

]

 []

[

]

Treating each fragment as a column, we join the fragments together to form the

N × M output matrix:

[

]

Each output file piece is a row of the output matrix, for this example it is (9, 12, 24,

11), (27, 34, 59, 11) … (345, 418, 647, 11). To reconstruct the original message, any K

file pieces will suffice, for example taking the 3 pieces (9, 12, 24, 11), (55, 68, 112,

11), and (93, 114, 183, 11) which corresponds to rows 1, 3, and 4 of the output

matrix.

Chapter 6: Cloud Storage Framework

104

We construct the K × K decoding matrix by copying the rows from the encoding

matrix A that correspond to each file piece:

 [

]

We compute the inverse matrix of B:

[

]

Also, we arrange the output pieces row wise corresponding to the decoding matrix:

[

]

Taking each column in order from left to right and multiplying it to the inverse

matrix of B, we get each original message fragment:

[

] [] [

] []

[

] [] [

] []

The time it takes to encode a file is O(|F|2) due to the matrix multiplication operation,

while the time to decode a file is O(|F|3 + |F|2) due to the matrix inversion operation on

B, and the subsequent multiplication operation. The matrix A is the Key for IDA and

must be stored in the metadata file. The matrix can have a size of a fraction of |F|

since they are just numeric coefficients. The temporary memory space required for

encoding the file is around O(|F|) since we must store the matrix in the memory but

Chapter 6: Cloud Storage Framework

105

can read the file and write out its encoding to the output file one piece at a time.

Each piece has M symbols and each symbol is |F| ÷ L bits long, so the temporary

memory space needed for encoding the file is O(|F| + |F| × M ÷ L) bits. The temporary

memory space required to decode the file is also O(|F| + |F| × M ÷ L), where O(|F|) space

is used to store the inverse matrix, and |F| × M ÷ L bits is used as input and output

file buffers. The set of output files has a total space of N × M × |F| ÷ L bits. However

an additional O(|F|) space must be used to store the metadata. The resultant size

factor is N × M ÷ L. The redundancy factor is (N – K) ÷ N.

Table 17 – Rabin’s IDA Configurations and Redundancy Performance

Using Rabin’s IDA requires the number of symbols per file (L), the number of symbols

per Fragment (K), and the number of resultant file pieces (N) to be given. Table 17

Rabin's IDA
(N, K, L, M)

Symbols
/ File (L)

Fragments
(M)

Extra Symbols
to Fill Fragments

R N
Symbols /

Fragment (K)
RSF RF RSF/RF

In
cr

ea
si

n
g

K

(10, 2, 10, 5) 10 5 0 8 10 2 5.0000 0.8000 6.2500

(10, 3, 10, 4) 10 4 2 7 10 3 4.0000 0.7000 5.7143

(10, 4, 10, 3) 10 3 2 6 10 4 3.0000 0.6000 5.0000

(10, 5, 10, 2) 10 2 0 5 10 5 2.0000 0.5000 4.0000

(10, 6, 10, 2) 10 2 2 4 10 6 2.0000 0.4000 5.0000

(10, 7, 10, 2) 10 2 4 3 10 7 2.0000 0.3000 6.6667

(10, 8, 10, 2) 10 2 6 2 10 8 2.0000 0.2000 10.0000

(10, 9, 10, 2) 10 2 8 1 10 9 2.0000 0.1000 20.0000

In
cr

ea
si

n
g

N

(6, 5, 10, 2) 10 2 0 1 6 5 1.2000 0.1667 7.2000

(7, 5, 10, 2) 10 2 0 2 7 5 1.4000 0.2857 4.9000

(8, 5, 10, 2) 10 2 0 3 8 5 1.6000 0.3750 4.2667

(9, 5, 10, 2) 10 2 0 4 9 5 1.8000 0.4444 4.0500

(10, 5, 10, 2) 10 2 0 5 10 5 2.0000 0.5000 4.0000

(11, 5, 10, 2) 10 2 0 6 11 5 2.2000 0.5455 4.0333

(12, 5, 10, 2) 10 2 0 7 12 5 2.4000 0.5833 4.1143

(13, 5, 10, 2) 10 2 0 8 13 5 2.6000 0.6154 4.2250

(14, 5, 10, 2) 10 2 0 9 14 5 2.8000 0.6429 4.3556

In
cr

ea
si

n
g

L (10, 5, 100, 20) 100 20 0 5 10 5 2.0000 0.5000 4.0000

(10, 5, 200, 40) 200 40 0 5 10 5 2.0000 0.5000 4.0000

(10, 5, 300, 60) 300 60 0 5 10 5 2.0000 0.5000 4.0000

(10, 5, 400, 80) 400 80 0 5 10 5 2.0000 0.5000 4.0000

(10, 5, 500, 100) 500 100 0 5 10 5 2.0000 0.5000 4.0000

Ex (8, 3, 10, 4) 10 4 2 5 8 3 3.2000 0.6250 5.1200

Chapter 6: Cloud Storage Framework

106

shows that IDA can provide a wide range of security and cost optimized

configurations. For a high security configuration a user might use the (10, 2, 10, 5)

configuration which has a redundancy factor of 0.8. For a space efficient

configuration, a user might use the (6, 5, 10, 2) configuration which has a resultant

size factor of 1.2. For a balanced configuration, a user can use any configuration

where N = 2 × K, such as (10, 5, 10, 2) where its RSF/RF ratio is 4.0, the lowest for

Rabin’s IDA.

From a security point of view, Rabin’s IDA achieves both confusion and diffusion as

the matrix multiplication operation masks the original data, and spreads the effects

of the bits to all N pieces of resultant files. An update to the original file will require

the all symbols and file pieces to be recomputed and updated. As such, IDA does not

support partial updates.

6.3.7 REED-SOLOMON CODES

In 1960, Irving S. Reed and G. Solomon published “Polynomial Codes over Certain

Finite Fields” describing a family of efficient, max distance separable error correction

codes based upon polynomial construction and deconstruction [53] over a Finite

Field. The family of codes is named Reed-Solomon (RS) codes after their inventors.

An (N, K) RS code exists over a Finite Field of GF(2M) where N = 2M – 1. M is chosen to

correspond with common bit-lengths such as Word (4), Byte (8), and 16, 32, and 64

for corresponding CPU architectures. For network applications, the traditional home

field for RS codes, M is typically 8. For GF(16), M = 4. In all codes, K is chosen

depending on the level of redundancy the designer wants in the code. When N – K is

Chapter 6: Cloud Storage Framework

107

even, then 2t = N – K, if it is odd, then 2t = N – K – 1. Simplifying these equations,

 ⌊ – ⌋.

An (N, K) RS code can self-repair up to t errors, or 2t erasures. RS codes can detect up

to t error locations and correct them through its standard decoding process, however

if the error locations are known ahead of time, then it can correct up to 2t errors

directly.

An (N, K) RS code is constructed by forming the generator polynomial G(X) consisting

of N – K factors, the roots of the polynomial are consecutive elements in the Finite

Field, as shown in Equation 12. Some codes start with b = 0, while others start with

b = 1.

Equation 12 – Reed-Solomon Codes Generator Polynomial

G(X) = (X + αb)(X + αb+1)…(X + αb+2t-1)

For example, the Generator Polynomial for the (15, 11) RS code with B = 0 is

calculated as follows:

2t = 15 – 11 = 4, thus four factors in G(X).

2t – 1 = 3

G(X) = (X + α0)(X + α1)(X + α2)(X + α3)

Since, α = 2

G(X) = (X + 1)(X + 2)(X + 4)(X + 8) = X4 + 15X3 + 3X2 + X + 12

Substituting the coefficients with the field element values from Table 2, we get

Equation 13 which is the generator polynomial for the (15, 11) RS code.

Chapter 6: Cloud Storage Framework

108

Equation 13 – Generator Polynomial for (15, 11) Reed-Solomon Code

G(X) = α0X4 + α12X3 + α4X2 + α0X + α6

The encoding procedure for RS codes starts by dividing the file into a number of

messages M
i
(X). Each message, denoted as M(X) for simplicity, is further divided into

K information symbols each M bits long.

M(X) = M
K-1

xK-1 + … M
1
x + M

0

Each coefficient M
K-1

, … M
1
, M

0
 is an M-bit message symbol corresponding to an

element of GF(2M).

To form the encoded code word, multiple each message M(X) by XN-K, then divide by

G(X):

Equation 14 – Reed-Solomon Encoding Computation

Division by G(X) produces quotient Q(X) and remainder R(X) polynomials, where R(X)

is of degree up to N – K – 1.

The encoded code word T(X) is formed as the message bits joined with the remainder

bits, shown in Figure 8. Computation they can be computed by shifting M(X) by XN-K

bits then adding R(X), as follows:

Chapter 6: Cloud Storage Framework

109

Figure 8 – Encoded Code Word for Reed-Solomon Codes

Rewriting Equation 14, we have the following identities:

As such, T(X) is always divisible by G(X) without remainder. This is the condition

checked by a system using RS coding to ensure a code word has no errors.

Consider the received code word as R(X) = T(X) + E(X), where E(X) represents any

received errors. The error correction process follows a 5 step procedure [59]:

Table 18 – Reed Solomon Error Correction Process

To use RS codes in erasure correction mode, a checksum would have to be computed

for every symbol, and then checked prior to the decoding process. The decoding

process in this case first flags the symbols and locations which do not have a

matching checksum, and then uses Forney’s Formula in step 4 to compute the error

magnitudes in order to reconstruct T(X).

Step Process Runtime

1 Calculate and find all Error Syndromes. Up to t syndromes can be found. O(|F|)

2 Use the Berlekamp-Massey Algorithm to compute the error locator polynomials. O(|F|
2
)

3
Use Chien Search to find all the error locations. Specifically, find the roots of the error location
polynomials L(X) over the GF field, which gives us the error locations.

O(|F|)

4 Use Forney’s Formula to compute the error magnitudes at each error location, giving us E(X) O(|F|)

5 Solve for T(X): T(X) = R(X) – E(X) O(|F|)

Chapter 6: Cloud Storage Framework

110

In both error correction mode and erasure correction mode, M(X) is extracted from

T(X) after checking that T(X) is correct. Extrapolating towards an entire file, the

sequence of messages M
i
(X), once extracted individually from each RS encoded code

word, would be combined in the correct sequence to reconstruct the original file. To

store the code words on the Cloud, each symbol within a code word is grouped with

the corresponding symbols sharing the same position in other code words, then it is

sequenced in the same order as the set of messages M
i
(X), forming the output files

pieces.

Out of N total symbols of each code word, K of them are information symbols, and N

– K of them are redundancy symbols. This gives a resultant space of N × |F| ÷ K,

resultant space factor of N ÷ K. RS codes gives a redundancy factor of t ÷ N if used in

error correction mode, and alternatively it gives a redundancy factor of

2t ÷ N = (N – K) ÷ N if used in erasure correction mode. A computation key must be

kept to store the Finite Field elements and their values. A reconstruction relation

table must also be kept in the metadata to store the index and sequence of messages

in relation to the original file.

Table 19 shows the redundancy performance of various RS codes for M = 2, 4, and 8.

Using the code in erasure correction mode would yield double the redundancy factor

compared to using the code in error correction mode. The resultant size of each code

word is the same, although in erasure correction mode some extra data must be kept

in the metadata file for the checksums. Overall the performance favors using RS

codes in erasure correction mode. RS codes are the safest when K is minimal; this is

evident regardless of what value of M is chosen. Whenever K = 1, the highest possible

redundancy factor is achieved. However, space wise the most efficient codes exist

Chapter 6: Cloud Storage Framework

111

when ⌊ ⌋, or half the number of symbols. These are the bolded rows in Table

19, which includes the (3, 1), (15, 7), and (255, 127) RS codes.

Table 19 – Reed-Solomon Codes and Redundancy Performances

Interestingly, the most popular RS codes in use – the (255, 223), (255, 239), and (255,

251) codes, shown at the bottom in Table 19 – do not provide much redundancy nor

is it very efficient at providing its respective level of redundancy. These codes are

used in modern day satellite communications, optical disk storage encoding, and

many other communications tasks.

Error Correction
Mode

Erasure Correction
Mode

Reed-Solomon Code (N, K) M GF N K R T RSF RF RSF/RF RF RSF/RF

(15, 2)

4 16 15

2 13 6 7.5000 0.4000 18.7500 0.8000 9.3750

(15, 3) 3 12 6 5.0000 0.4000 12.5000 0.8000 6.2500

(15, 5) 5 10 5 3.0000 0.3333 9.0000 0.6667 4.5000

(15, 7) 7 8 4 2.1429 0.2667 8.0357 0.5333 4.0179

(15, 9) 9 6 3 1.6667 0.2000 8.3333 0.4000 4.1667

(15, 11) 11 4 2 1.3636 0.1333 10.2273 0.2667 5.1136

(15, 13) 13 2 1 1.1538 0.0667 17.3077 0.1333 8.6538

(255, 10)

8 256 255

10 245 122 25.5000 0.4784 53.2992 0.9569 26.6496

(255, 20) 20 235 117 12.7500 0.4588 27.7885 0.9176 13.8942

(255, 40) 40 215 107 6.3750 0.4196 15.1928 0.8392 7.5964

(255, 60) 60 195 97 4.2500 0.3804 11.1727 0.7608 5.5863

(255, 80) 80 175 87 3.1875 0.3412 9.3427 0.6824 4.6713

(255, 100) 100 155 77 2.5500 0.3020 8.4448 0.6039 4.2224

(255, 120) 120 135 67 2.1250 0.2627 8.0877 0.5255 4.0438

(255, 127) 127 128 64 2.0079 0.2510 8.0001 0.5020 4.0001

(255, 140) 140 115 57 1.8214 0.2235 8.1485 0.4471 4.0742

(255, 160) 160 95 47 1.5938 0.1843 8.6469 0.3686 4.3235

(255, 180) 180 75 37 1.4167 0.1451 9.7635 0.2902 4.8818

(255, 200) 200 55 27 1.2750 0.1059 12.0417 0.2118 6.0208

(255, 220) 220 35 17 1.1591 0.0667 17.3864 0.1333 8.6932

(255, 240) 240 15 7 1.0625 0.0275 38.7054 0.0549 19.3527

(255, 255) 255 0 0 1.0000 0.0000 Undefined 0.0000 Undefined

(255, 223) 8 256 255 223 32 16 1.1435 0.0627 18.2245 0.1255 9.1122

(255, 239) 8 256 255 239 16 8 1.0669 0.0314 34.0089 0.0627 17.0044

(255, 251) 8 256 255 251 4 2 1.0159 0.0078 129.5319 0.0157 64.7659

Chapter 6: Cloud Storage Framework

112

6.3.8 OVERALL COMPARISON

All seven erasure codes are compared in this section for their redundancy

performance, security properties, and algorithmic efficiencies in this section.

Table 20 – Best Redundancy Performance Erasure Code Configurations

Table 20 shows the configurations of each erasure code at their best redundancy

performance. A code achieves its best redundancy performance when the ratio of

RSF/RF is at its lowest. The ratio is essentially the cost divided by the gain; namely,

the resultant space taken by the set of files after encoding divided by the safety

afforded by the set of files represented by the factor of files pieces that could be

completely lost. When this ratio is minimized, we achieve the best trade-off of space

cost vs file safety gained. For all codes, it seems that their best performance is

achieved when N = 2 × K. This implies that configurations should produce the same

number of redundancy file pieces as there are original file pieces.

It is not easy to find a single configuration that works for all codes, except for the

most trivial of (2, 1) for which in all codes except Rabin’s IDA they would carbon

copy the original file once. To compare the codes’ performances when set to a

Code Type Most Efficient Configuration
Example

Configuration
Resultant Space

Factor (RSF)
Redundancy
Factor (RF)

Risk
(RSF/RF)

Simple
Replication

(2, 1) 2.0000 0.5000 4.0000

Hamming Code (7, 4) 1.7500 0.4286 4.0833

RAID-5 (3, 2) 1.5000 0.3333 4.5000

LDPC
Any (N, K, PT) code

where N = 2 × K
(6, 3, 2) 2.0000 0.5000 4.0000

Shamir's Secret
Sharing

(4, 2, 1) 4.0000 0.5000 8.0000

Rabin's IDA
Any (N, K, L, M) code

where N = 2 × K
(10, 5, 10, 2) 2.0000 0.5000 4.0000

Reed-Solomon
Any (N, K) code where N = 2 × K -

1, large N improves minorly
(225, 127) 2.0079 0.5020 4.0001

Chapter 6: Cloud Storage Framework

113

meaningful equivalent configuration, we attempted to configure each code as close as

possible to a (15, 11) configuration. The emphasis is on the 11 original file pieces, as

the total number of pieces is the result of each code’s encoding process. The results

are shown in Table 21.

Table 21 – Redundancy Performances When Set As Close to (15, 11) Code Configuration

For Simple Replication, K is always 1 so the configuration was set to (15, 1). For RAID-

5, K is always N – 1 so the configuration was set to (12, 11). For LDPC, since N is a

result of the chosen PT and K values, the configuration was set to (22, 11, 10). The

other four codes were able to configure for (15, 11) directly.

The most restrictive codes in terms of configuration flexibility are Simple Replication,

Hamming Code, and RAID-5. The least restrictive codes are Shamir’s Secret Sharing,

Reed-Solomon, and Rabin’s IDA. LDPC is in the middle in terms of flexibility.

Except for Shamir’s Secret Sharing and Rabin’s IDA, the configurations in Table 21

are the most efficient, or otherwise the only configurations, possible for each of the

codes for this target. For these two codes, their most efficient configurations of (22,

11) are also shown in the table.

Configuration Code Properties R N K RSF RF RSF/RF

Simple
Replication

(15, 1) K is always 1 14 15 1 15.0000 0.9333 16.0714

Hamming Code (15, 11)
Bits to Recover 1 Other Bit = 7
Bit Overlap From any 2 Equations = 11
Bits Needed to Validate Another Bit = 4

4 15 11 1.3636 0.2667 5.1136

RAID-5 (12, 11) K is always N – 1 1 12 11 1.0909 0.0833 13.0909

LDPC (22, 11, 10) PT = 10 11 22 11 2.0000 0.5000 4.0000

Shamir's Secret
Sharing

(15, 11, 10)
Poly Degree = 10

4 15 11 15.0000 0.2667 56.2500

(22, 11, 10) 11 22 11 22.0000 0.5000 44.0000

Rabin's IDA
(15, 11, 22, 2) Symbols Per File = 22, Fragments = 2,

Extra Symbols = 0

4 15 11 1.3636 0.2667 5.1136

(22, 11, 22, 2) 11 22 11 2.0000 0.5000 4.0000

Reed- Solomon (15, 11) M = 4, GF = 16, T = 2 4 15 11 1.3636 0.2667 5.1136

Chapter 6: Cloud Storage Framework

114

Table 21 shows that the two most efficient codes are LDPC and Rabin’s IDA. Both of

these codes achieve RSF of 2.0, RF of 0.5, and RSF/RF of 4.0 in their most efficient

configurations of (22, 11, 10) and (22, 11, 22, 2) respectively. Rabin’s IDA can also be

configured with lower redundancy to save some disk space in the (15, 11, 22, 2)

configuration. It can also be configured with higher redundancy if more security is

desired. Its flexibility makes it the best performing code among the seven studied.

Reed-Solomon codes are slightly more restrictive in terms of the number of possible

configurations compared to Rabin’s IDA, however its performance closely matches

IDA and in its theoretical upper bound it can also achieve the same performance as

Rabin’s IDA. However, Reed-Solomon does not have the Confusion Property so it is

less secure on its own compared to Rabin’s IDA.

The worst performing code is Shamir’s Secret Sharing which does not seem to

perform better than Simple Replication in these configurations. If Shamir’s is

configured in (15, 11, 10) it has the same resultant space factor as Simple

Replication, however it yields lower redundancy factor of 0.2667 compared to Simple

Replication’s 0.5, which implies that it can tolerate less errors and file losses. If

Shamir’s was configured to match the redundancy factor of 0.5, it yields a resultant

space factor of 22.0 compared to Simple Replication’s 15.0, which implies it costs

more space to provide the same level of redundancy.

Table 22 shows that of the codes studied only Shamir’s Secret Sharing and Rabin’s

IDA have the Confusion Property. Both of them involve a more costly decoding

processes requiring at minimum O(|F|2) time complexity for decoding time. Between

these two, Rabin’s IDA can achieve a lower resultant space factor, thus is more

Chapter 6: Cloud Storage Framework

115

efficient as it consumes less space to provide a similar level of redundancy as

Shamir’s Secret Sharing. The trade-off is that Rabin’s IDA requires more memory

space than Shamir’s Secret Sharing during both encoding and decoding operations.

Table 22 – Erasure Code Properties and Redundancy Formulas

Code Type
Simple

Replication
Hamming

Code
RAID-5 LDPC

Shamir's
Secret Sharing

Rabin's IDA
Reed-

Solomon

Mathematical
Principle

Copy and
Paste

XOR of
Related Bits

XOR of
All Bits

XOR of Bits in Specific
Arrangements

Polynomial
Interpolation

Matrix Dot
Product and

Matrix Inversion

Polynomial
Remainder
Over Finite

Field

File
Reconstruction
Threshold (FT)

1 K K K K K K

File Piece
Reconstruction
Threshold (PT)

1 – K

 – K K ⌊

⌋

Resultant Space
(Bytes)

 | | – | |
| |

 | |

 | |

 | |

 | |

Resultant Space
Factor

N

 N

Redundancy
Factor

Encoding Time O(|F|) O(|F|) O(|F|) O(|F|) O(|F|) O(|F|2) O(|F|)

Decoding Time O(1) O(|F|) O(|F|) O(|F|) O((K×|F|)2) O(|F|2) O(|F|2)

Temporary
Space for
Encoding (Bytes)

0 ~ 0 ~ 0 (| |
| |

) O(|K|)

Temporary
Space for
Decoding (Bytes)

0 ~ 0 ~ 0 |F| O((K × M)2) (| |
| |

) O(2 |N|)

Confusion
Property

No No No No Yes Yes No

Diffusion
Property

Yes No Yes Yes Yes Yes Yes

Partial Updates
Supported

Yes Yes Yes Yes No No No

Metadata -
Computation
Key Required

No No No Yes Yes Yes Yes

Metadata -
Reconstruction
Relation Table
Required

No Yes Yes Yes Yes Yes Yes

Notes

M = number
of parity bits

= (N – K)

M = number
of parity bits

L = symbols per
file; M = number

of fragments

Chapter 6: Cloud Storage Framework

116

Another interesting observation is that only the XOR based codes support partial

updates. This is useful to users since it can be expected that they would use a Cloud

storage system to incrementally backup daily or weekly changes to files. Not having

to re-upload all file pieces makes the system efficient and can save costs.

The factors of Encoding Time, Decoding Time, Temporary Space for Encoding,

Temporary Space for Decoding, Requirements for Metadata, and ability to support

Partial Updates are useful for systems designers who are designing a redundant

Cloud or distributed storage system. The security properties of Diffusion and

Confusion are useful indicators of the algorithms’ ability to combat targeted attacks

which attempt to gain the information contained in the files. The Resultant Space

Factor and Redundancy Factor are of utmost interest in this thesis as it directly

affects the file security, resiliency, and economic costs of a system given particular

choices of algorithms. From a practical perspective, a code having Confusion and

Diffusion Properties are cryptographically stronger, as they have an equivalent

capability of essentially performing encryption on the contents of the file in addition

to their ability to split the file and add redundancy. For the other codes studied, one

means for them to “gain” the Confusion and Diffusion Properties is to encrypt the

file using well known encryption algorithms before, or after using the code to split

the encrypted file into pieces.

Applying encryption before splitting is arguably stronger since it can be done at an

operating system level with many choices of tools and algorithms, and it also

safeguards the user’s data against other conventional attacks directly on their

devices. The storage system should still be in charge of ensuring that a file has been

encrypted prior to any encoding operations. Since diffusion implies that every input

Chapter 6: Cloud Storage Framework

117

bit is involved in computing an encrypted output bit, any updates to the original file

would result in a completely different encrypted file. The storage system would have

to re-encode the new encrypted file and produce a new set of file pieces, regardless

of the erasure code algorithm used. Applying encryption before splitting results in a

system that cannot support partial updates; a crucial computation, network

bandwidth, and cost saving system property. Despite this shortcoming, this approach

has been applied in prior work by Hugo Krawczyk of IBM, published in his paper

“Secret Sharing Made Short” in 1993 [60].

Applying encryption after splitting makes the file pieces strong and resilient towards

attacks. In this mode, each file piece is encrypted separately after the encoding

operation. The storage system would be in charge of encrypting and decrypting each

file piece, which could be implemented by operating system level functions or

external encryption software. Applying encryption after splitting preserves the

partial update properties of the relevant erasure codes. However, each output file

piece will have to be re-encrypted in its entirety. In both cases, it will add to the total

encoding and decoding time.

All stream-based and block-based encryption algorithms, such as AES, DES, Blowfish,

RC5, and IDEA have a linear time complexity relative to the size of the input file.

However they need to be used in a proper mode of operation, such as Cipher Block

Chaining, or Electronic Code Book modes to ensure the cryptographic security of the

files. Other types of encryption algorithms exist with varied time complexities.

In conclusion, one of two types of system design is recommended from this

Framework. In the first, the system should use a fast linear-time erasure code with

Chapter 6: Cloud Storage Framework

118

support for partial updates, and pair it with a suitable encryption algorithm where

encryption is applied after the encoding step. From the codes studied, LDPC would be

most suitable due to its configuration flexibility. This design allows for strong file

crypto security from the encryption process, and strong resiliency against storage

provider mistakes due to the erasure coding, and high cost efficiencies from its

ability to support partial updates. In the second design, the system should use an

erasure code which has both the Confusion and Diffusion properties so that it is not

dependent upon any encryption systems or software to provide cryptographic

security to files. From the codes studied, Rabin’s IDA erasure code is suggested due

to its higher resultant file size efficiencies compared to Shamir’s Secret Sharing.

6.4 HANDLING METADATA

In Krawczyk’s paper [60], he describes a space efficient secret sharing scheme

combining Rabin’s IDA algorithm with a secure encryption scheme and a perfect

secret sharing scheme together to form a cryptographically strong secure storage

system. Specifically, the three subsystems work in conjunction as follows:

Encrypt an original file with a random encryption key P, resulting in the encrypted

file E. Split the encrypted file E using IDA into fragments E
1
, E

2
 … E

N
. Use Shamir’s

Secret Sharing to generate N shares for the key P denoted as P
1
, P

2
 … P

N
. For each

storage repository i = 1, 2 … N, store E
i
 and P

i
 as a pair in that repository. Both IDA

and Shamir’s is set to the same threshold configuration, such that only K pairs, K < N

are necessary to recover the encrypted file E and the encryption key P.

In Section 6.3.8 we’ve concluded that Rabin’s IDA algorithm itself exhibits both the

Confusion and Diffusion properties, thus applying encryption prior to the use of IDA

Chapter 6: Cloud Storage Framework

119

on the file adds a layer of cryptographically security. Using Shamir’s to split the

encryption key is an efficient application of the code, since the size of the encryption

key is usually significantly smaller than the size of the file. The space inefficiency of

Shamir’s Secret Sharing has much less impact in this set up compared to the gain of

using its perfect cryptographic security property.

In Krawczyk’s system, the encryption key and the encoding matrix used by IDA form

the metadata used by the system. It is assumed that the encoding matrix is constant

in their system (for example, always using a Vandermonde matrix), thus it does not

need to be separately stored. However, since each fragment and key pair has a

corresponding index, the index information must still be stored locally on the user’s

computer. This presents one potential weakness of Krawczyk’s system.

In our Framework, we want to cryptographically secure any and all metadata used.

The metadata would also be stored in a file. Directly adopting Krawczyk’s approach

of using Shamir’s Secret Sharing scheme to secure and generate shares of the

metadata file is a plausible solution. However, considering that the Framework needs

to track these shares and their corresponding storage locations, the shares must be

tracked by yet another index or metadata file. The problem thus propagates forward

and remains unsolved.

Peer-to-Peer (P2P) storage systems present a solution to this problem of securing the

metadata files while allowing them to tolerate against equipment failure, outages, or

errors. Like P2P file sharing systems such as the Torrent networks, the principle

ideas behind P2P storage systems is that a file would be stored in multiple peer

locations in a peer-to-peer network.

Chapter 6: Cloud Storage Framework

120

The Framework encrypts the metadata with an encryption key which is chosen by the

user, for example a SHA hash of a chosen password that the user can easily

remember. Then, the encrypted metadata is distributed in a secure and private P2P

network consisting of only the user’s devices and computers. Encrypted metadata

files will duplicate and propagate through this network incrementally to every device

in the network. To access a metadata file, the user simply has to enter his or her

password and the Framework will decrypt the file accordingly. It is important that

any implementation of the Framework never stores the user’s password or the hash

of the user’s password in any temporary or permanent storage. To know that a file

has been decrypted properly the system adds flag check bits when creating an

unencrypted metadata file, so that when the file is properly decrypted, those bits and

the file will pass corresponding tests. The only way for the system to decode

properly is if the user enters a correct password.

Secure P2P networks utilize encrypted communications links between every pair of

devices, and can only be joined by authenticated and authorized user(s). If a user

shares a file to another user, they will join that particular file’s P2P network and

obtain a copy of the encrypted metadata file. Every message in a secure P2P network

is checked for its authenticity, thus any unauthorized messages being sent through

that network would simply be ignored by the peers in the network. Other forms of

secure P2P networks and secure P2P file systems exist, an example is MIT’s Ivy P2P

file system which is discussed in Section 7.3 [61].

It is assumed that the user will always have at least two devices online at any time,

which is very common today due to the popular use of smart mobile phones. Devices

such as smart phones which have limited processing power and storage capacities

Chapter 6: Cloud Storage Framework

121

only need to be involved in the metadata portion of the Framework, to save

resources. They could also encode and decode files if the user desires; the

Framework does not enforce any limitations in this aspect.

6.5 CLOUD STORAGE SELECTION

The choice of which Cloud storage service provider to use depends on four factors of

economic pricing, service provider system security, reliability, and geographical

location related risks. This section examines these four factors in detail and

concludes with a prioritization of the factors.

6.5.1 ECONOMIC PRICING FACTOR

From an end user’s perspective, the internet service provider costs are often a fixed

cost since service contract terms range from one year upwards to multiple years. The

Framework, and any implemented systems, can only control the amount of data sent

or retrieved from the internet in order to reduce the internet transmission costs

shown earlier in Section 3.3.1. With enough pricing and usage information known, the

Framework could suggest to users which other internet service providers would be

more cost effective to establish contracts with. This function would have more

impact towards business organizations than home users, since it would be exhaustive

to tabulate all other uses of the internet by a home user.

For any new files being uploaded to the Cloud for the first time, the Framework

would pick a set of storage providers which has the lowest current storage costs. The

number of providers can be customized according to user preferences and security

requirements. Generally, the Framework would prefer taking full advantage of any

free usage tiers from storage providers before incurring storage costs. This would

Chapter 6: Cloud Storage Framework

122

need to be balanced with the security requirements. Using this approach, the

Framework would minimize all short term costs as file pieces newly uploaded to the

Cloud would incur the lowest possible storage costs given the present pricing. In

terms of internet transmission costs, only a forward upload cost would be incurred.

In terms of long term storage costs, it can be expected that the storage providers

would compete in terms of pricing and change according to the economic laws of

demand, supply, and competition. In Section 5.4, point 7, it was mentioned that a

user can face a dilemma of either paying higher long term costs by staying with an

expensive provider, or pay an expensive transfer fee to move their files to the less

expensive of the two Cloud storage providers for long term savings. The Framework

lets the user reconstruct the file pieces stored on the expensive provider locally on

their computer, and then upload these directly to the less expensive provider. The

user doesn’t have to pay a download fee or an outbound data fee in order to take

advantage of the savings.

The Framework can model the re-upload costs as a fixed one-time fee which can be

amortized over a period of time whereby the effective cost of storing the file in a

cheaper provider is the same as staying with their current provider. We denote the

upload fee X, the current provider’s monthly storage price in $/GB as A, the new

provider’s monthly storage price as B, and the amortization period T in months. A

simple equation can compute the value of T:

Chapter 6: Cloud Storage Framework

123

Equation 15 – Storage Cost Amortization Period with Single Upload

Equation 15 assumes that the necessary file pieces for reconstructing a high cost file

piece are already available locally on the user’s computer. If these pieces need to be

downloaded, a slightly modified equation can be used to compute T. Let the number

of pieces that need to be downloaded be K, and the download cost per piece be Y. T

can be computed as follows:

Equation 16 – Storage Cost Amortization Period with Downloads

Anytime a pricing change occurs with any storage provider, the Framework can ask

the user whether they expect to keep the file on the Cloud for longer than T months.

If yes, the Framework can perform the necessary recomputation and upload tasks to

move the relevant file piece(s) to a cheaper storage provider. Otherwise, the

Framework will simply keep the file pieces in the existing set of providers until the

user issues a delete command.

Using Equation 15 and Equation 16, the Framework can minimize short term and

long term storage costs as well as data transmission costs.

Chapter 6: Cloud Storage Framework

124

6.5.2 SERVICE PROVIDER SYSTEM SECURITY AND RELIABILITY FACTOR

To deduce how secure and reliable a service provider is, the Framework can use data

mining and web crawling techniques to find, track, and count the number of relevant

security breaches, resolutions, and service outage events from trusted news websites

to assign scores to each service provider. Generally, the more security breaches and

service outages, the lower the score. The score would remain low until the issues

have been resolved. Once scores are obtained, the Framework can select a subset of

service providers who have the highest scores for this factor.

The Framework cannot take a direct approach to test each provider’s systems for

their security and reliability. Such tests can be viewed as malicious attacks, and can

cause legal and financial liability for the user. Although data mining and web

crawling technologies are interesting topics, they are beyond the scope of this thesis.

An appropriate data mining implementation would be necessary in the Framework to

be able to deduce the scores and track the service providers for this factor. However,

the use of erasure codes does allow the Framework to tolerate some losses of file

pieces.

6.5.3 SERVICE PROVIDER GEOGRAPHICAL LOCATION FACTOR

To deduce where are the geographical locations of the major data centers of each

service provider, a data mining approach can be taken as well to look for information

sources and data that indicate the locations. More importantly, the Framework

should also obtain information about the world’s geography for risky geographical

zones such as areas that are much more susceptible to earth quakes, hurricanes,

volcano eruptions, and natural disasters.

Chapter 6: Cloud Storage Framework

125

From these two sets of data, the Framework can construct a topological map to select

a set of service providers whom have data centers in geographical locations with very

low probabilities of incurring a natural disaster. The Framework would also prioritize

spreading out the data physically across the globe as much as possible.

6.5.4 PRIORITIZING THE FACTORS

The overall problem of choosing a set of Cloud storage providers could be thought of

as an optimization problem of 1) minimizing storage and transmission costs, 2)

finding and optimally moving data pieces to the most secure and reliable providers,

and 3) distribute the file pieces to as sparse of geographical locations as possible, all

at the same time.

Erasure codes increases the total file size by the Resultant Size Factor, previously

analyzed throughout Chapter 6. Thus, relative to simply uploading files to a Cloud,

the Framework adds both transmission and storage costs. The Economic Pricing

Factor guides the Framework towards minimizing total costs.

The use of erasure codes by the Framework allows the complete loss and destruction

of some file pieces. The Security and Reliability Factors guide the Framework towards

more secure storage providers, thus reducing the probability of file pieces being lost

or destroyed due to service provider mistakes, outages, and vulnerabilities.

Lastly, the Geographical Location factor guides the Framework to reduce the

probability of file pieces being lost due to natural disasters, or being the subject of

unnecessary data privacy intrusion due to local laws and customs.

Chapter 6: Cloud Storage Framework

126

The main security benefits of the framework are provided by the use of the erasure

codes, and the Security and Reliability Factor of this section would only reduce the

risks by selecting record-wise more secure providers. If the selection criterion for

providers was purely based on security alone, and costs were unimportant, then the

framework can directly use the Security and Reliability Factor in its decision making

to select the lowest risk providers. Otherwise, the selection problem could be

modeled as a monetary cost minimization problem. In this case, the prioritization

order is as follows:

1) The Economic Pricing Factor is the most important since minimizing costs must

be part of the Framework to convince users and organizations to adopt this

approach. Users and organizations can rationally accept the trade-off of an

increased storage space requirement and related costs for the security and

reliability benefits of this Framework. Knowing that the Framework will actively

try to minimize costs will add to its value, and potentially increase the rate of

adoption and use of the system.

2) The Security and Reliability Factor is the second most important. Even though the

Framework tolerates some losses, any loss of file pieces will involve computing

the lost pieces and uploading them to another storage provider. Minimizing the

probability of file pieces being lost also directly minimizes total costs. Ultimately,

the security and reliability risks are controllable factors that a storage provider

will constantly work to improve.

3) The Geographical Location Factor is the least important since natural disasters are

not controllable. We have mentioned previously in Section 3.1.5 that privacy

Chapter 6: Cloud Storage Framework

127

intrusion issues ultimately require political dialogue and new laws to be formed

across geopolitical boundaries.

6.6 CHAPTER SUMMARY

This chapter presented the design of a system Framework which solves the Cloud

storage problem. The Framework is a template design which software engineers and

security system designers can take and further refine into a detailed implementation.

The four major components of the Framework are the erasure code transformation

system, the metadata handling system, the Cloud storage management system, and

the encryption system. In turn, they are responsible for transforming the files into

pieces, recording and synchronizing metadata files across the user’s devices,

transferring the file pieces to and from the Cloud, and encrypting the files and file

pieces throughout the Framework.

We presented the set of metrics used to analyze erasure codes for their security

properties and computational efficiencies, which interested researchers can apply to

other erasure codes to determine their feasibility and relative performances. We then

presented the detailed analysis of seven erasure codes using the metrics, along with a

comparative analysis at the end. We concluded that for erasure codes which do not

have the Confusion property, it would be best to pair those codes with an encryption

system to secure the data within the files. We also showed that codes which have the

Confusion property have encoding and decoding operations which are higher in time

complexity than the codes which do not have the Confusion property. The best

performing algorithms were LDPC, which does not have the Confusion property, and

Rabin’s IDA, which does have the Confusion property.

Chapter 6: Cloud Storage Framework

128

We further analyzed the problem of securing the metadata files, showing how certain

approaches in to this problem requires metadata files to protect metadata files in an

essentially never ending chain. We proposed to encrypt the metadata file, and

replicate it across a peer-to-peer network to the user’s devices to provide

redundancy.

Finally, we analyzed the problem of how to select a subset of Cloud storage providers

from a master set. We defined three factors of economic pricing, service provider

security and reliability, and service provider geography. We stated that if only

security was the deciding factor, then the framework can use the security and

reliability factor alone to select the least risky providers. Otherwise the factors are

prioritized in the order presented, to let the Framework minimize the financial costs

of using Cloud storage.

The next chapter compares and relates the approach and Framework to existing

remote storage paradigms, and analyzes the existing paradigms for their

vulnerabilities as well as strengths.

129

CHAPTER 7: COMPARISON TO EXISTING

STORAGE PARADIGMS

The Framework shares a number of similarities to existing methodologies and

architectures with respect to the overall problem of storing data remotely in a secure

and reliable fashion. It also has a number of key differences. This chapter examines

the similarities and differences with three methodologies, namely a traditional Cloud

storage system, a distributed file system, and a peer-to-peer file system.

7.1 TRADITIONAL CLOUD STORAGE ARCHITECTURE

In current Cloud storage systems, a user authenticates to a service provider’s

systems to establish a secure internet connection to the service. A user’s files are

securely sent to, and retrieved from the storage provider’s servers through the

internet connection. Depending on the storage provider, various redundancy and

encryption algorithms are applied on the files to secure and safely store the file on

the Cloud. A visualization of this model is shown in Figure 9 below.

Figure 9 – Traditional Cloud Storage Architecture

Chapter 7: Comparison to Existing Storage Paradigms

130

This architecture is most vulnerable at the authentication mechanism. The

architecture is blind to who is accessing a user’s data when the authentication

mechanism is compromised. Historically, the vast majority of attacks on Cloud

storage providers have aimed at compromising the authentication mechanism [1] [2]

[19] [30].

A secondary source of vulnerability has been the connections between the storage

servers and the request handling servers within the Cloud storage provider’s internal

networks. In many data centers around the world these connections are not

encrypted as the design of the data center’s internal networks desired high efficiency,

high transmission speed, and low latency. Encrypting connections within data center

networks adds latency due to the computational time needed for encryption and

decryption operations, reduces the speed as such secure connections require set up

and tear down procedures, and reduces the efficiency as switch buffers and end

nodes must queue data for longer periods of time waiting for these operations and

procedures to finish in sequence. These types of unencrypted connections avail the

system to attacks whereby the attacker wiretaps the connections and listens in on

any and all data transmitted through the wire. As the storage nodes don’t necessarily

need to be within the same buildings or even the same city, external physical access

to these connections becomes easy for attackers. Although as such vulnerabilities are

discovered, companies work hard to amend them. For example, high speed

encryption hardware systems are being designed by companies to secure

transmission links, claiming performances at line rates of up to 10Gbps [62].

Some Cloud storage providers only utilize replication algorithms to backup data,

while others employ erasure code algorithms. Using simply replication is weaker

Chapter 7: Comparison to Existing Storage Paradigms

131

from a security point of view as the data is readily available to be read by an attacker

as long as they gain access to the physical disks storing the data, however it is more

efficient computationally as any requests for data can be serviced without the need

to reconstruct or recompute the data.

Some of the Cloud storage providers only replicate what is already available on a

local storage space. These providers include Microsoft One Drive, Dropbox, and

Google Drive when configured to synchronize with local files. When the local version

is changed the system updates the version stored on the Cloud correspondingly, but

when the local version is removed the Cloud version is also removed. Other storage

providers act more alike a remote storage server where files could be uploaded and

downloaded independent of local copies. These include Amazon’s S3, Google Drive

when not configured to synchronize with local files. Users can synchronize the local

and Cloud versions through the system when desired.

The Framework borrows two important ideas from traditional Cloud storage

architectures, firstly the use of erasure code algorithms, and secondly to use secured

internet connections throughout all communication links. We’ve shown in Section 5.4

how the Framework resolves the problems faced by traditional Cloud storage

systems.

7.2 DISTRIBUTED FILE SYSTEMS AND ARCHITECTURE

In distributed file systems, a user connects to a remote storage server through,

usually, a TCP/IP network to access their remote files. Most standard operating

systems file operations such as copy, delete, create, move, open, close, and write

Chapter 7: Comparison to Existing Storage Paradigms

132

apply to these systems as well, and the user manages their files and folders on the

remote server using the same user interfaces as they do on their own local computer.

A popular distributed file system is the Network File System (NFS) invented by Sun

Microsystems in the 1980s [63]. In Linux and UNIX based systems, NFS folders could

be accessed by first using the mount command to connect to the folder. A more

recent and advanced distributed file system is Red Hat’s GlusterFS, where the file

system scales across many storage servers collectively considered as a virtual storage

pool [64].

Figure 10 – GlusterFS Distributed File System Storage Architecture [64]

The first Cloud storage systems were built upon distributed file systems servers,

which makes the two very similar. However, users have direct access to their folders

and files in the remote storage server, which allows them to issue operating systems

level commands to control their files. If a user issues a delete command by accident

Chapter 7: Comparison to Existing Storage Paradigms

133

to their remote files, it is unlikely that there would be any way to recover the file

unless the distributed file system had versioning systems in place. In Cloud storage

systems these types of operations are interpreted and carried through the software

system, which allows Cloud vendors to always create backups and versions to each

and every operation on any file. Part of the work of utilizing a distributed file system

is in the administration and management of all of the remote folders and drive

partitions. The administrator of the system has control over the physical location

where each user’s folders reside, which by extension implies the physical locations of

all users’ data. In Cloud systems, due to the nature and size of the data encountered,

often the specific physical location is determined by load and space balancing

algorithms. The remote storage server usually exists within a local area network of

the user’s home or corporate organization, rather than through the internet.

Generally this means the user has control on the physical hardware of the storage

servers, where as in the Cloud the users don’t have control over the hardware. If

users wanted to utilize distributed file systems, they would also have to bear the

costs of the equipment, maintenance, and management of the remote file servers

they use.

The Framework borrows the idea of carrying out file operations through a software

system to allow for graceful recoveries from user mistakes, but at the same time

strongly incorporates the notion of having much stronger control of the data, and

where the data physically resides. Since the Framework ultimately uses Cloud storage

providers to store users’ data, it can save the user from having to invest in storage

equipment.

Chapter 7: Comparison to Existing Storage Paradigms

134

7.3 PEER-TO-PEER FILE SYSTEMS AND ARCHITECTURE

Peer-to-peer file systems (P2P FS) originated as a research and experimental file

system platform aimed to take advantage of the decentralized control and scalability

advantages of peer-to-peer networks. One of the most prominent systems is MIT’s Ivy

P2PFS [61]. Ivy is built on top of another tool called Chord [65]. Chord manages the

coordination, and search of peers within the P2P network. Specifically, it assigns all

participating peers into a Galois Field identifier circle, where all peers clockwise from

the current peer is its successor peers. Each peer maintains a fixed table of

immediate successor peers, which are indexed according to an interval range on the

Galois Field. An example of this is shown below in Figure 11 for 3 peers with IDs of

node 0, 1, and 3 respectively. Chord requires all peers in the P2P network to conform

to this ordering specification, and whenever a peer joins or disconnects from the

network, all other peers will update their successor tables. Peers are assigned into a

node position based upon learning about information of one of the nodes in the ring

through an external mechanism, such as from a P2P tracker server. Since every node

in the ring knows its successors, a search for a peer within the network will simply

traverse sufficient number of successor tables until it finds the peer in need. At a

higher abstraction level, the location for a piece of data within the network is

associated with a key which is mapped to the peer containing that data through a

hash table that indexes the entire circle. Searches for data can simply be performed

by searching using the corresponding key.

Chapter 7: Comparison to Existing Storage Paradigms

135

Figure 11 – Chord P2P Ring [65]

Ivy is a log based file system in that every file related operation is written into log

files. To read a file, the system must consult all logs for all operations related to the

file, and then compute the results to generate the output file. To write or change a

file, the system writes only to the log file residing with the user making the changes.

Within this overall operation scheme, it uses the mechanisms of Chord to distribute

the replicas of the logs to a keyed peer node and its successor nodes. In the case of a

user performing a modification operation on a file, its updated log is replicated to

the user’s successor peers. Ivy implements a number of other subsystems to ensure

consistency of the logs, to resist attacks from outside the P2P network using

encryption, and resist attacks within the P2P network through trust based log

retrieval. In case of data corruption, Ivy also has tools that plausibly guess at the

missing data blocks to assist in data recovery.

Chapter 7: Comparison to Existing Storage Paradigms

136

The premise of P2P file systems is that the decentralized control and access, along

with sufficient numbers of participants in each network will be able to sustain a

reasonable availability for any data stored in the network, and afford tolerance to

equipment failures and outages through application of the Off-site Data Protection,

and Replication principles. Compared to centralized storage systems like Cloud and

its underlying distributed file systems, the probability of each node in the network to

be offline is much higher, which makes P2P networks require much more replication

than centralized systems. However, P2P networks such as Ivy are much more

resistant to attacks from outside and inside the network, and the decentralized

control makes it harder for an attacker to know where to begin attacking within a P2P

network compared to centralized systems. The Ivy system also requires significant

file-read overhead computation, since it has to retrieve all trusted logs through the

network and compute the actual file from these logs.

The Framework takes advantages of the ideas behind Ivy to distribute the metadata

among a set of peers in a P2P network, each peer being a mobile device or computer

that the user owns. While there is a relatively higher cost in retrieving and reading

metadata, the metadata is expected to be small relative to the size of the actual files

so the computation time is minimized. Changes to the metadata can propagate

through the network to the other peers incrementally as each device connects and

disconnects from the network. Alternatively, the system can adopt the approach of

using Ivy’s read-all, write-local log system to store the metadata.

However, Ivy’s file read cost overhead is too high for use for the actual data that a

user would want to store in any off-site location. The Framework utilizes erasure

code algorithms from the other storage systems in order to avoid this problem.

Chapter 7: Comparison to Existing Storage Paradigms

137

7.4 CHAPTER SUMMARY

This chapter analyzed the similarities and differences between the approach and

Framework to existing remote storage paradigms, and analyzed the existing

paradigms for their vulnerabilities as well as strengths. The Framework borrows the

ideas of using erasure codes and secure internet connections from traditional Cloud

storage architectures. We’ve shown in previous chapters how the approach is

superior to a traditional Cloud storage architecture, however it worth keeping in

mind that efforts by a service provider to improve their services under the traditional

architecture will benefit a user using a system implemented from our Framework.

The distributed file system paradigm limits the user to essentially using network

attached storage devices to back up their data, which involves heavy upfront costs,

management and configuration work, and ultimately isn’t as secure as a true off-site

back up that is placed far away from the user’s computing environment. However,

distributed file systems allow users to have strong control over their files unlike

traditional Cloud storage. The Framework borrows the idea of using a software

system to perform file operations instead using operating system level commands in

distributed file system architectures, in order to facilitate graceful recoveries from

user mistakes. The Framework also borrows the idea of enforcing stronger control

over the physical location of where data resides from distributed file systems.

Finally, the peer-to-peer file system paradigm offers an interesting but high

computational overhead cost means to store data among a set of peers in a P2P

network. While the notion of decentralized control helps to add to the work required

of attackers, there are many security challenges and vulnerabilities of using P2P

networks as the backbone for a file system. Many of these challenges were

Chapter 7: Comparison to Existing Storage Paradigms

138

confronted by the research team at MIT in their course of designing the Ivy P2P file

system. The Framework adopts the use of a simple peer-to-peer network to distribute

the metadata files generated to mobile devices and computer that the user owns, to

secure the metadata files and to add redundancy to the metadata so that it can

tolerate outages and failures.

The next chapter draws the final conclusions and discusses future works of this

research problem.

139

CHAPTER 8: CONCLUSION AND FUTURE

WORK

In an ever increasingly online and interconnected world where we are expecting

exponential growths of the amount of data being generated, stored, and processed on

the internet, it is of vital importance to ensure the safety, security, reliability, and

privacy of any personal information stored online.

The rise of Cloud Computing has given internet users a host of freedoms never

enjoyed before, but comes with great risks for both users and the companies

operating the Clouds. The analysis and Framework presented in this thesis showed,

refined, and applied an effective approach based on the use of erasure codes. The

Framework adds redundancy and cryptographic security to protect a user’s personal

data. This helps users mitigate the risks of using Cloud storage whilst reaping and

enhancing its benefits. Along the way, a set of erasure code analysis metrics was

presented, which can be used to conduct further research of other erasure codes for

their applicability to this problem. The economic constraints and problems of using

Cloud storage was also analyzed, resulting in a set of prioritized factors to help users

and storage systems select Cloud storage providers.

The in-depth and comparative analysis of seven erasure codes showed that there’s a

corresponding computational complexity trade-off where codes with better data

security incur higher computational time complexities. Where codes shared the same

mathematical principles, the allowed arrangements and configurations decided the

efficiencies of each code. From the seven codes analyzed, two winners were chosen

Chapter 8: Conclusion and Future Work

140

due to their configuration flexibility and inherent security and efficiency properties.

LDPC was chosen because it was fast and offered many configurations. Similarly,

Rabin’s IDA was chosen because of its computational security and configuration

flexibility. Ultimately, the choice of using a particular erasure code will depend on the

security and efficiency preferences or needs of the user.

The knowledge, analysis, and the Framework presented in this thesis enables

interested researchers and software professionals to perform detailed design and

implementation of an actual software system to help secure user data on the Cloud.

The benefits would be tremendous to end users.

As a research problem, the use of erasure codes is also a trade-off in that users must

accept an increase in total storage costs in order to solve the Cloud storage

problems. An even more ideal solution would find ways of minimizing or eliminating

this increase. This is an open research challenge which might involve experimental

research in erasure code designs, or the study and design of other kinds of data

security systems.

The author hopes that the knowledge collected and analyzed in this thesis would be

synthesized further into effective educational materials to help inform the public

about Cloud Computing, and to guide software professionals on the right path

towards developing secure data driven systems for the Cloud.

141

REFERENCES

[1] Sean Ludwig. (2011, June) venturebeat.com. [Online].

http://venturebeat.com/2011/06/21/dropbox-files-left-unprotected-for-four-hours-

due-to-software-bug

[2] Andrew R Hickey. (2011, October) Researchers Uncover 'Massive Security Flaws' In

Amazon Cloud. [Online]. http://www.crn.com/news/cloud/231901911/researchers-

uncover-massive-security-flaws-in-amazon-cloud.htm

[3] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon, "RACS: A Case

for Cloud Storage Diversity," SOCC 2010: ACM Symposium on Cloud Computing, June

2010. [Online]. http://pubs.0xff.ps/papers/racs-socc.pdf

[4] James Steddum. (2013, July) A Brief History of Cloud Computing. [Online].

http://blog.softlayer.com/2013/virtual-magic-the-cloud

[5] Simson L. Garfinkel, Architects of the Information Society: 35 Years of the Laboratory

for Computer Science at MIT, 1st ed. Boston, MA, USA: MIT Press, 1999. [Online].

http://books.google.ca/books?id=Fc7dkLGLKrcC&lpg=PA1&ots=J8GDnSVXbN&pg=P

A1#v=onepage&q&f=false

[6] Jim Elliott. (2004, August) The Evolution of IBM Mainframes and VM. [Online].

http://www.linuxvm.org/Present/SHARE103/S9140jea.pdf

[7] Amazon.com, Inc. (2006) Amazon Simple Storage Service (Amazon S3). [Online].

https://web.archive.org/web/20061208012150/http://www.amazon.com/S3-AWS-

home-page-Money/b?ie=UTF8&node=16427261&me=A36L942TSJ2AJA

[8] Claude E. Shannon, "Communication Theory of Secrecy Systems," Bell System

Technical Journal, vol. 28, pp. 656-715, October 1949. [Online].

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

[9] Royal Canadian Mounted Police. (2013, January) Identity Theft and Identity Fraud.

[Online]. http://www.rcmp-grc.gc.ca/scams-fraudes/id-theft-vol-eng.htm

[10] Latanya Sweeney, "Simple Demographics Often Identify People Uniquely," Carnegie

Mellon University, Pittsburgh, 2000. [Online].

http://dataprivacylab.org/projects/identifiability/paper1.pdf

[11] Government of Canada, "Personal Information Protection and Electronics Documents

Act, S.C. 2000, c.5," Ottawa, Law 2014. [Online]. http://laws-lois.justice.gc.ca/PDF/P-

8.6.pdf

[12] Office of the Privacy Commissioner of Canada, "Your Guide to PIPEDA," Ottawa, 2009.

[Online]. https://www.priv.gc.ca/information/02_05_d_08_e.pdf

[13] Jennifer Stoddart. (2004, April) An overview of Canada's new private sector privacy

law - The Personal Information Protection and Electronic Documents Act. [Online].

https://www.priv.gc.ca/media/sp-d/2004/vs/vs_sp-d_040331_e.asp

http://venturebeat.com/2011/06/21/dropbox-files-left-unprotected-for-four-hours-due-to-software-bug
http://venturebeat.com/2011/06/21/dropbox-files-left-unprotected-for-four-hours-due-to-software-bug
http://www.crn.com/news/cloud/231901911/researchers-uncover-massive-security-flaws-in-amazon-cloud.htm
http://www.crn.com/news/cloud/231901911/researchers-uncover-massive-security-flaws-in-amazon-cloud.htm
http://pubs.0xff.ps/papers/racs-socc.pdf
http://blog.softlayer.com/2013/virtual-magic-the-cloud
http://books.google.ca/books?id=Fc7dkLGLKrcC&lpg=PA1&ots=J8GDnSVXbN&pg=PA1#v=onepage&q&f=false
http://books.google.ca/books?id=Fc7dkLGLKrcC&lpg=PA1&ots=J8GDnSVXbN&pg=PA1#v=onepage&q&f=false
http://www.linuxvm.org/Present/SHARE103/S9140jea.pdf
https://web.archive.org/web/20061208012150/http:/www.amazon.com/S3-AWS-home-page-Money/b?ie=UTF8&node=16427261&me=A36L942TSJ2AJA
https://web.archive.org/web/20061208012150/http:/www.amazon.com/S3-AWS-home-page-Money/b?ie=UTF8&node=16427261&me=A36L942TSJ2AJA
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://www.rcmp-grc.gc.ca/scams-fraudes/id-theft-vol-eng.htm
http://dataprivacylab.org/projects/identifiability/paper1.pdf
http://laws-lois.justice.gc.ca/PDF/P-8.6.pdf
http://laws-lois.justice.gc.ca/PDF/P-8.6.pdf
https://www.priv.gc.ca/information/02_05_d_08_e.pdf
https://www.priv.gc.ca/media/sp-d/2004/vs/vs_sp-d_040331_e.asp

References

142

[14] Jennifer Stoddart. (2007, August) Letter to Mr. David C. Drummond, Senior Vice-

President, Corporate Development and Chief Legal Officer, Google, regarding 3D

online mapping technology. [Online].

https://www.priv.gc.ca/media/let/let_070911_01_e.asp

[15] CBC News. (2007, September) Street View will comply with Canada's privacy laws:

Google. [Online]. http://www.cbc.ca/news/technology/street-view-will-comply-with-

canada-s-privacy-laws-google-1.674180

[16] Office of the Information Commissioner, Queensland. (2013, April) Drones – collection,

storage and security of personal information. [Online].

http://www.oic.qld.gov.au/__data/assets/pdf_file/0009/17793/guideline-drones-

collection-storage-and-security-of-personal-information.pdf

[17] 104th Congress of the U.S. Government , "HEALTH INSURANCE PORTABILITY AND

ACCOUNTABILITY ACT of 1996," U.S. Government, Public Law 1996. [Online].

http://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm

[18] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf, "DeepFace: Closing

the Gap to Human-Level Performance in Face Verification," in Conference on

Computer Vision and Pattern Recognition (CVPR 2014), Columbus, OH, 2014. [Online].

https://www.facebook.com/publications/546316888800776/

[19] Financial Times. (2013, June) Digital hunter-gatherers. [Online].

http://www.ft.com/intl/cms/s/0/f840dbc0-d34f-11e2-b3ff-00144feab7de.html

[20] Facebook. (2013) Quarterly Earnings Slides Q4 2013. [Online].

http://files.shareholder.com/downloads/AMDA-

NJ5DZ/3009267242x0x721748/be75c513-b84a-486d-a838-

25cdc79c6a16/FB_Q413EarningsSlidesFINAL.pdf

[21] Facebook. (2014, January) Facebook Reports Fourth Quarter and Full Year 2013

Results. [Online]. http://files.shareholder.com/downloads/AMDA-

NJ5DZ/3009264082x0x721811/f028299e-a5b9-4ed5-9a2d-

e3f0923ef261/FacebookReportsFourthQuarterAndFullYear2013Results.pdf

[22] Sony Corporation. (2011, May) Sony Online Entertainment Announces Theft of Data

from Its Systems. [Online]. https://www.soe.com/securityupdate/pressrelease.vm

[23] Kazuo Hirai, Sony Corporation. (2011, May) Sony’s Response to the U.S. House of

Representatives (on Flickr). [Online].

https://www.flickr.com/photos/playstationblog/5687532568/in/set-

72157626521862165/

[24] Sony Online Entertainment. (2011, July) SOE Game Pass Plans. [Online].

https://web.archive.org/web/20110702094956/http://www.soe.com/gamepass/

[25] (2011, May) PlayStation Network breach will cost Sony $171M. [Online].

http://www.theregister.co.uk/2011/05/24/sony_playstation_breach_costs/

[26] U.S. Department of Health & Human Services. (2012, June) Alaska settles HIPAA

security case for $1,700,000. [Online].

http://www.hhs.gov/news/press/2012pres/06/20120626a.html

[27] Évariste Galois, "Œuvres Mathématiques," Journal de Liouville, 1846. [Online].

http://perso.univ-rennes1.fr/antoine.chambert-loir/DJVU/

https://www.priv.gc.ca/media/let/let_070911_01_e.asp
http://www.cbc.ca/news/technology/street-view-will-comply-with-canada-s-privacy-laws-google-1.674180
http://www.cbc.ca/news/technology/street-view-will-comply-with-canada-s-privacy-laws-google-1.674180
http://www.oic.qld.gov.au/__data/assets/pdf_file/0009/17793/guideline-drones-collection-storage-and-security-of-personal-information.pdf
http://www.oic.qld.gov.au/__data/assets/pdf_file/0009/17793/guideline-drones-collection-storage-and-security-of-personal-information.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://www.facebook.com/publications/546316888800776/
http://www.ft.com/intl/cms/s/0/f840dbc0-d34f-11e2-b3ff-00144feab7de.html
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3009267242x0x721748/be75c513-b84a-486d-a838-25cdc79c6a16/FB_Q413EarningsSlidesFINAL.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3009267242x0x721748/be75c513-b84a-486d-a838-25cdc79c6a16/FB_Q413EarningsSlidesFINAL.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3009267242x0x721748/be75c513-b84a-486d-a838-25cdc79c6a16/FB_Q413EarningsSlidesFINAL.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3009264082x0x721811/f028299e-a5b9-4ed5-9a2d-e3f0923ef261/FacebookReportsFourthQuarterAndFullYear2013Results.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3009264082x0x721811/f028299e-a5b9-4ed5-9a2d-e3f0923ef261/FacebookReportsFourthQuarterAndFullYear2013Results.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3009264082x0x721811/f028299e-a5b9-4ed5-9a2d-e3f0923ef261/FacebookReportsFourthQuarterAndFullYear2013Results.pdf
https://www.soe.com/securityupdate/pressrelease.vm
https://www.flickr.com/photos/playstationblog/5687532568/in/set-72157626521862165/
https://www.flickr.com/photos/playstationblog/5687532568/in/set-72157626521862165/
https://web.archive.org/web/20110702094956/http:/www.soe.com/gamepass/
http://www.theregister.co.uk/2011/05/24/sony_playstation_breach_costs/
http://www.hhs.gov/news/press/2012pres/06/20120626a.html
http://perso.univ-rennes1.fr/antoine.chambert-loir/DJVU/

References

143

[28] Évariste Galois, "Œuvres Mathématiques," matique de France, 1897.

[Online].

https://ia600300.us.archive.org/3/items/uvresmathmatiqu00frangoog/uvresmathma

tiqu00frangoog.pdf

[29] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. (2001, August)

Handbook of Applied Cryptography. [Online]. http://cacr.uwaterloo.ca/hac/

[30] Nik Cubrilovic. (2009, July) The Anatomy Of The Twitter Attack. [Online].

http://techcrunch.com/2009/07/19/the-anatomy-of-the-twitter-attack

[31] Lorenzo Martignoni et al., "Cloud Terminal: Secure Access to Sensitive Applications

from Untrusted Systems," in USENIX ATC'12 Proceedings of the 2012 USENIX
conference on Annual Technical Conference, Berkeley, CA, 2012, p. 12. [Online].

http://dl.acm.org/citation.cfm?id=2342835

[32] Jeff Barr, Attila Narin, and and Jinesh Varia, "Building Fault-Tolerant Applications on

AWS ," Amazon Web Services, Whitepaper 2011. [Online].

http://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_Applications.p

df

[33] Legislative Assembly of the Province of British Columbia, "Bill 73 - Freedom of

Information and Protection of Privacy Amendment Act, 2004," Law 2004. [Online].

http://www.leg.bc.ca/37th5th/3rd_read/gov73-3.htm

[34] University of Pennsylvania - Information Systems & Computing. (2013, June) Computer

Power Usage. [Online].

https://secure.www.upenn.edu/computing/resources/category/hardware/article/co

mputer-power-usage

[35] Rogers Communications. (2014, January) Internet Package Options. [Online].

http://www.rogers.com/web/link/hispeedBrowseFlowDefaultPlans

[36] Bell Canada. (2014, January) Bell Internet packages. [Online].

http://www.bell.ca/Bell_Internet/Internet_access

[37] TekSavvy Solutions Inc. (2014, January) Cable Internet Packages. [Online].

http://teksavvy.com/en/residential/internet/cable

[38] Shaw Communications. (2014, January) Shaw Internet. [Online].

https://www.shaw.ca/internet/plans/

[39] AT&T. (2014, January) U-verse High Speed Internet. [Online].

http://www.att.com/shop/internet/u-verse-internet.html

[40] Verizon. (2014, January) FiOS Internet - Dramatic speed for lots of action. [Online].

http://www.verizon.com/home/fios-fastest-internet/

[41] Comcast. (2014, January) XFINITY Internet. [Online].

http://www.comcast.com/internet-service.html

[42] Dropbox. (2014) Upgrade to Dropbox Pro. [Online].

https://www.dropbox.com/upgrade

[43] Amazon Web Services Inc. (2014) Amazon S3 Pricing. [Online].

http://aws.amazon.com/s3/pricing

https://ia600300.us.archive.org/3/items/uvresmathmatiqu00frangoog/uvresmathmatiqu00frangoog.pdf
https://ia600300.us.archive.org/3/items/uvresmathmatiqu00frangoog/uvresmathmatiqu00frangoog.pdf
http://cacr.uwaterloo.ca/hac/
http://techcrunch.com/2009/07/19/the-anatomy-of-the-twitter-attack
http://dl.acm.org/citation.cfm?id=2342835
http://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_Applications.pdf
http://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_Applications.pdf
http://www.leg.bc.ca/37th5th/3rd_read/gov73-3.htm
https://secure.www.upenn.edu/computing/resources/category/hardware/article/computer-power-usage
https://secure.www.upenn.edu/computing/resources/category/hardware/article/computer-power-usage
http://www.rogers.com/web/link/hispeedBrowseFlowDefaultPlans
http://www.bell.ca/Bell_Internet/Internet_access
http://teksavvy.com/en/residential/internet/cable
https://www.shaw.ca/internet/plans/
http://www.att.com/shop/internet/u-verse-internet.html
http://www.verizon.com/home/fios-fastest-internet/
http://www.comcast.com/internet-service.html
https://www.dropbox.com/upgrade
http://aws.amazon.com/s3/pricing

References

144

[44] Microsoft. (2014) Compare OneDrive Pricing. [Online].

https://onedrive.live.com/about/en-us/compare

[45] Apple Inc. (2014) iCloud storage plan overview. [Online].

http://support.apple.com/kb/PH12796

[46] Google. (2014) Storage plan pricing. [Online].

https://support.google.com/drive/answer/2375123

[47] PCPartPicker. (2014, January) PCPartPicker - Storage. [Online].

http://ca.pcpartpicker.com/parts/internal-hard-drive/

[48] Richard W. Hamming, "Error Detecting and Error Correcting Codes," The Bell System

Technical Journal, vol. 29, no. 2, pp. 147-160, April 1950. [Online].

http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1950.tb00463.x/abstract

[49] Edward K. Lee Peter M. Chen, Garth A. Gibson, Randy H. Katz, and David A. Patterson,

"RAID: High-Performance, Reliable Secondary Storage," ACM Computing Surveys, vol.

26, pp. 145-185, 1994. [Online].

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.3889&rep=rep1&type=pdf

[50] Robert G. Gallager, "Low-Density Parity-Check Codes," Information Theory, IRE
Transactions on, vol. 8, no. 1, pp. 21-28, January 1963. [Online].

http://www.rle.mit.edu/rgallager/documents/ldpc.pdf

[51] Adi Shamir, "How to share a secret," Communications of the ACM, vol. 22, no. 11, pp.

612-613, 1979. [Online]. http://dl.acm.org/citation.cfm?id=359176

[52] Michael O. Rabin, "Efficient Dispersal of Information for Security, Load Balancing, and

Fault Tolerance," Journal of the ACM (JACM), vol. 36, no. 2, pp. 335-348, 1989. [Online].

http://dl.acm.org/citation.cfm?id=62050

[53] Irving S. Reed and Gustave Solomon, "Polynomial Codes Over Certain Finite Fields,"

Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300-

304, June 1960. [Online]. http://epubs.siam.org/doi/abs/10.1137/0108018

[54] CareCloud Corporation. (2014) HIPAA Compliant Cloud Storage. [Online].

http://www.carecloud.com/hipaa-compliant-cloud-storage/

[55] US Department of Health and Humane Services. (2007, March) HIPAA Security

Standards: Physical Safeguards. [Online].

http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/physsafeguards.p

df

[56] US Department of Health & Human Services. (2007, March) HIPAA Security Standards:

Technical Safeguards. [Online].

http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/techsafeguards.pd

f

[57] Sudhir K Bansal. (2014, January) How to encrypt your files before uploading to Cloud

Storage using CloudFogger. [Online]. http://thehackernews.com/2014/01/how-to-

encrypt-your-files-before.html

[58] Ned Dimitrov, "CS337 Project 1: Information Dispersal," University of Texas at Austin,

Austin, TX, USA, 2004. [Online].

http://www.cs.utexas.edu/~plaxton/c/337/05s/projects/1/desc.pdf

https://onedrive.live.com/about/en-us/compare
http://support.apple.com/kb/PH12796
https://support.google.com/drive/answer/2375123
http://ca.pcpartpicker.com/parts/internal-hard-drive/
http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1950.tb00463.x/abstract
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.3889&rep=rep1&type=pdf
http://www.rle.mit.edu/rgallager/documents/ldpc.pdf
http://dl.acm.org/citation.cfm?id=359176
http://dl.acm.org/citation.cfm?id=62050
http://epubs.siam.org/doi/abs/10.1137/0108018
http://www.carecloud.com/hipaa-compliant-cloud-storage/
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/physsafeguards.pdf
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/physsafeguards.pdf
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/techsafeguards.pdf
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securityrule/techsafeguards.pdf
http://thehackernews.com/2014/01/how-to-encrypt-your-files-before.html
http://thehackernews.com/2014/01/how-to-encrypt-your-files-before.html
http://www.cs.utexas.edu/~plaxton/c/337/05s/projects/1/desc.pdf

References

145

[59] Todd Mateer, "Efficient algorithms for decoding Reed-Solomon codes with erasures,"

Clemson University, Clemson, SC, 2014. [Online].

https://mthsc.clemson.edu/misc/MAM_2014/bmj9b.pdf

[60] Hugo Krawczyk, "Secret Sharing Made Short," in CRYPTO '93 Proceedings of the 13th

Annual International Cryptology Conference on Advances in Cryptology, London, UK,

1993, pp. 136-146. [Online].

http://www.cs.cornell.edu/courses/cs754/2001fa/secretshort.pdf

[61] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen, "Ivy: A

Read/Write Peer-to-Peer File System," ACM SIGOPS Operating Systems Review -

OSDI '02: Proceedings of the 5th symposium on Operating systems design and
implementation, vol. 36, no. SI, pp. 31-44, December 2002. [Online].

http://pdos.csail.mit.edu/ivy/osdi02.pdf

[62] Certes Networks. (2011) Transparent, High-Speed Data Center Security. [Online].

http://www.certesnetworks.com/pdf/1G-10G-DataCenter-SN.pdf

[63] Sun Microsystems Inc. (1989, March) NFS: Network File System Protocol Specification.

[Online]. http://tools.ietf.org/pdf/rfc1094.pdf

[64] Red Hat Inc. (2009, November) GlusterFS - About. [Online].

http://www.gluster.org/about

[65] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan, "Chord:

A Scalable Peer-to-peer Lookup Service for Internet," in SIGCOMM '01, 2001
conference on Applications, technologies, architectures, and protocols for computer

communications, San Diego, CA, August 2001, pp. 149-160. [Online].

http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

[66] James S. Plank. (2004, August) All About Erasure Codes: Reed-Solomon Coding,

LDPC Coding. [Online].

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/notes/Erasure/2004-ICL.pdf

https://mthsc.clemson.edu/misc/MAM_2014/bmj9b.pdf
http://www.cs.cornell.edu/courses/cs754/2001fa/secretshort.pdf
http://pdos.csail.mit.edu/ivy/osdi02.pdf
http://www.certesnetworks.com/pdf/1G-10G-DataCenter-SN.pdf
http://tools.ietf.org/pdf/rfc1094.pdf
http://www.gluster.org/about
http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
http://web.eecs.utk.edu/~mbeck/classes/cs560/560/notes/Erasure/2004-ICL.pdf

	Author’s Declaration
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	Chapter 1: Introduction
	1.1 Thesis Roadmap
	1.2 Chapter Descriptions

	Chapter 2: Background
	2.1 Cloud Computing
	2.2 Secure and Reliable Storage Principles
	2.2.1 Replication and Redundancy
	2.2.2 Confusion and Diffusion
	2.2.3 Off-site Data Protection
	2.2.4 Principle of Least Privilege

	2.3 Value of Data
	2.3.1 Value of Personally Identifiable Data
	2.3.2 Legal Requirements of Personally Identifiable Data
	2.3.3 Business Value of Personal Data
	2.3.4 Costs From Loss of Data

	2.4 Finite Fields
	2.4.1 Finite Field Generator Polynomial and Representation
	2.4.2 Binary Fields and Polynomial Representations
	2.4.3 Binary Field Arithmetic

	2.5 Chapter Summary

	Chapter 3: Cloud Storage Risks, Benefits, and Costs
	3.1 Cloud Storage Risks
	3.1.1 Malicious Attacks from Anywhere in the World
	3.1.2 Implicit Dependence on Storage Provider Reliability
	3.1.3 Risk of Data Loss and Data Corruption
	3.1.4 Implicit Requirement to Always Trust the Provider
	3.1.5 Conflicting Laws May Not Respect Users’ Privacy

	3.2 Cloud Storage Benefits
	3.2.1 A New Economic and Business Management Model
	3.2.2 Improved Resource Utilization
	3.2.3 Worldwide Access
	3.2.4 File Versioning and Recovery
	3.2.5 File Sharing and Synchronization
	3.2.6 A Way to Backup Data

	3.3 Cloud Storage Costs
	3.3.1 Internet Connection Costs
	3.3.2 Cloud Storage Provider Costs
	3.3.3 Comparison with Local Disk Storage Costs
	3.3.4 Economic Effects

	3.4 Chapter Summary

	Chapter 4: Cloud Storage Problem Definition
	Chapter 5: Approach and Methodology
	5.1 Formal Model of Erasure Code File Transformations
	5.2 Redundant Array of Cloud Storage System
	5.3 The Dictionary Attack Problem
	5.4 Addressing Secure Cloud Storage Problems
	5.5 Preserving Cloud Storage Benefits
	5.6 Current User Best Practices
	5.7 Chapter Summary

	Chapter 6: Cloud Storage Framework
	6.1 General Model of Framework
	6.2 Erasure Code Algorithm Properties and Metrics
	6.2.1 Common Algorithm Properties and Mathematical Constants
	6.2.2 Algorithm Analysis Metrics

	6.3 Algorithm Analysis
	6.3.1 Simple Replication
	6.3.2 Hamming Code
	6.3.3 RAID-5 Algorithm
	6.3.4 Low-Density Parity-Check Codes
	6.3.5 Shamir’s Secret Sharing Algorithm
	6.3.6 Rabin’s Information Dispersal Algorithm
	6.3.7 Reed-Solomon Codes
	6.3.8 Overall Comparison

	6.4 Handling Metadata
	6.5 Cloud Storage Selection
	6.5.1 Economic Pricing Factor
	6.5.2 Service Provider System Security and Reliability Factor
	6.5.3 Service Provider Geographical Location Factor
	6.5.4 Prioritizing the Factors

	6.6 Chapter Summary

	Chapter 7: Comparison to Existing Storage Paradigms
	7.1 Traditional Cloud Storage Architecture
	7.2 Distributed File Systems and Architecture
	7.3 Peer-to-Peer File Systems and Architecture
	7.4 Chapter Summary

	Chapter 8: Conclusion and Future Work
	References

