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Abstract 

Two studies were conducted to determine if Hsp70 is able to protect human skeletal muscle from 

muscle mechanical damage and alterations in SERCA activity associated with prolonged 

concentric exercise. In the first study, one-legged isometric knee extension exercise at 40% 

MVC and a duty cycle of 50% (5 sec contraction followed by 5 sec of relaxation) was used to 

induce a heat shock response in one leg only. Participants were followed over six recovery days 

to determine the time course of Hsp70 induction and decay. Results showed fiber type specific 

increases in Hsp70 that persisted in one leg only throughout six days of recovery. These 

increases in Hsp70 occurred with only transient changes in Ca2+ uptake and muscular force. With 

the exception of minor decreases in low frequency force, there were no apparent reductions in 

muscular force or SERCA activity by the third recovery day. Therefore an exercise protocol was 

established which was able to induce a heat shock response with only minor alterations in muscle 

mechanical function and SERCA activity. In the second study, the same isometric exercise was 

employed, however, on the day corresponding to recovery day 3 in the first study, participants 

were asked to complete a one hour cycling protocol at 70% VO2 max. The goal was to cause 

similar one-legged increases in Hsp70 as the first study and to then challenge SERCA activity 

and muscular force in the presence of elevated Hsp70 by using cycling exercise. Results showed 

cycling induced reductions in maximal Ca2+ ATPase activity, muscular force, rates of muscle 

relaxation, and rates of muscle force development were attenuated by the preconditioning 

(isometric) exercise. These studies confirm the idea that preconditioning exercise is able to 

attenuate subsequent exercise induced insults to SERCA activity and muscular force, likely 

through an Hsp70 mediated mechanism.      
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Chapter 1: Introduction 

It is well known that exercise of various modes, intensities, and durations can cause muscle 

fatigue (3; 13; 27; 66; 73). The mechanisms responsible for fatigue depend largely on the 

aforementioned characteristics of the exercise. Higher intensity shorter duration exercise causes 

an acute fatigue brought about by the accumulation of metabolites such as ADP, H+, Pi, lactate 

and creatine(9; 26). Lower intensity longer duration exercise, however, results in chronic muscle 

fatigue referred to as weakness; and is generally attributed to disturbances in excitation-

contraction (E-C) coupling resulting in reduced calcium (Ca2+) release by the sarcoplasmic 

reticulum (SR), for review see (2; 8; 16; 16; 56; 70).  

The SR is a membranous Ca2+ storage organelle that is responsible for the sequestration of Ca2+ 

for muscle contraction. During one contraction cycle, Ca2+ is released from the SR into the 

cytosol by the calcium release channel, it binds to troponin C and muscle contraction can occur. 

Following muscle contraction, the sarcoplasmic reticulum Ca2+-ATPase (SERCA) re-sequesters 

Ca2+ back into the SR and muscle relaxation ensues. This cycle is controlled carefully by the 

proper handling of Ca2+ movement between the SR and the cytosol.  During an acute bout of 

sustained contractile activity Ca2+ homeostasis is compromised, excitation-contraction coupling 

becomes compromised, and fatigue occurs(1). The mechanisms underlying disturbances in Ca2+ 

handling are complex and have not been fully elucidated. However, there is evidence suggesting 

that chronically elevated intracellular Ca2+ ([Ca2+]i) from repetitive muscle contraction physically 

disrupts excitation-contraction coupling(40). More recently, this theory has been supported by 

evidence showing that calpains, Ca2+ activated cysteine proteases, can disrupt the mechanical 

link between the SR calcium release channel and the voltage gated dihydropyridine 
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receptors(75). Furthermore, there is a large body of evidence suggesting that reductions in force 

generating capacity  can be linked to  reductions in the activity of SERCA(15; 41; 73). 

SERCA is a 110 kDa transmembrane protein responsible for the energy dependant sequestration 

of Ca2+ into the SR. In one ideal catalytic cycle, SERCA pumps 2 Ca2+ into the SR for every 

ATP consumed. SERCA is highly active during continuous muscular contractions, though it’s 

most important function is maintaining and restoring resting [Ca2+]i (48). Elevated [Ca2+]i likely 

plays an important role in the reduced Ca2+ release transients observed during muscle fatigue. 

The mechanisms by which this occurs may be by activation of proteases or by other regulatory 

mechanisms. Regardless, reductions in SERCA activity could be one of the key processes in the 

development of muscle fatigue. SERCA has been shown to be susceptible to damage during 

exercise (15; 73), specifically, SERCA is susceptible to both oxidation and nitration particularly 

at the ATP binding site(58; 81). Given that reactive oxygen species (ROS) are produced at higher 

rates during exercise and that exercise is capable of causing reductions in SERCA activity (14; 

73; 77), it is commonly believed that ROS are involved in exercise induced reductions in skeletal 

muscle force generating capacity.  To further support this theory, there have been a number of 

studies showing that incubation of SR vesicles or homogenates with ROS or reactive nitrogen 

species (RNS) can also reduce SERCA activity (31; 81). 

Heat shock proteins (HSPs) are a family of stress proteins that are ubiquitous among all 

mammals. There are several isoforms of HSPs, some examples are: ubiquitin, Hsp10, Hsp27, 

Hsp32, Hsp47, Hsp72, Hsp73, Hsp90, and Hsp100 (37). HSPs have several functions in the cell 

including protein transport, folding and repair (37). HSPs were first discovered in 1962 in 

Drosophila Melanogaster larvae exposed to heat shock (59). Since then, HSPs have become 

widely researched because of their possible role in the protection of cells in a variety of disease 
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states and in response to a variety of environmental and physiological stressors. Even though 

there is an abundance of HSP literature, the majority of research has been done using in-vivo -

rodent models (38) or cell cultures (12). The number of studies looking at HSPs in humans is 

limited; furthermore, an even smaller number have looked at the role of HSPs in human skeletal 

muscle. Consequently, the functions of HSPs in human skeletal muscle are not well understood 

and many of the mechanisms of action of HSPs in skeletal muscle cells remain elusive. 

The most commonly studied HSPs in skeletal muscle are the 70 kDa isoforms; these include the 

highly inducible Hsp70 and the constitutively expressed Hsc73, also known as heat shock 

cognate(10). A large number of studies have shown that Hsp70 can be induced by a variety of 

stressor such as hyperthermia (19), ischemia reperfusion (49), hypoxia (33), energy depletion 

(62), reactive oxygen species (ROS) (79), and acidosis (80). Given that the majority of these 

stressors are common disturbances during exercise, it isn’t surprising that exercise can induce 

Hsp70 in skeletal muscle (24; 25; 32; 36; 42-44).  

The characterization of exercise induced Hsp70 induction in human skeletal muscle depends on 

various factors. Hsp70 induction is intensity dependant, with higher intensity exercise being 

more effective in inducing a heat shock response(43). Eccentric exercise has been shown to be 

more effective in eliciting a heat shock response than concentric exercise(68) and exercise of 

longer duration is also more likely to induce Hsp70 protein induction(17). In addition, it has 

recently been shown that there are fibre type differences in Hsp70 induction(69).  The 

characteristics of heat shock protein induction are further complicated by other factors. The heat 

shock response may differ between genders since estrogen has been shown to attenuate the heat 

shock response(78). Furthermore, Vitamin E administration has also been shown to attenuate the 

heat shock response(18), suggesting Hsp70 induction can be altered by antioxidant levels. While 
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there have been several groups who have investigated the acute effects of exercise on Hsp70 

induction(17; 52; 57; 68), few groups have attempted to characterize the time course of exercise 

induced Hsp70 production and degradation in humans(35; 54; 69). It is clear that more 

investigation into the exercise induced Hsp70 response is needed before a greater understanding 

of Hsp70’s role in human skeletal muscle can be understood. Consequently, there is quite a bit of 

controversy over the role of Hsp70 in human skeletal muscle during exercise. Studies in rodents 

suggest that Hsp70 has a protective role in skeletal muscle. In mice, overexpression of Hsp70 

protects muscular function by reducing damage due to oxidative stress (7). The precise 

mechanisms remain to be established, though recent evidence from our laboratory suggests that 

the mechanisms may relate to the protection of key proteins involved in excitation-contraction 

coupling; in particular proteins involved in calcium handling (71). Tupling et al., have shown 

that when Hsp70 is incubated in-vitro with the fast isoform of SERCA, SERCA1a,  not only is 

SERCA protected from thermal inactivation, but Hsp70 seems to accomplish this protection 

through a direct physical interaction with SERCA1a(71). In addition, it has been shown that 

SERCA2a has similar protection in the presences of Hsp70 (22; 70).  Also, a study by Tupling et 

al.,  has shown that 16 bouts of high intensity intermittent cycling is able to attenuate reductions 

in SERCA function resulting from moderate intensity cycling(74). Though measurements of 

Hsp70 were not taken in that particular study, the authors acknowledged the possibility that 

Hsp70 may have played a role in the protection of SERCA. Our group has recently reported 

exercise induced increases in Hsp70 concurrently with reductions in SERCA activity in human 

skeletal muscle(71). This finding lends further support to the notion that Hsp70 responds to 

SERCA damage and may be involved in protecting it.  
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The majority of the early work investigating the role of Hsp70 in protecting SERCA stem from 

preconditioning studies in heart muscle in which ischemia-reperfusion(50), hyperthermia(11), 

and exercise(30) have all been shown to reduced infarct size during a subsequent insult.  At least 

one major impetus for the effects of preconditioning are generally agreed to be from ROS and 

RNS. However, the mechanisms responsible for the protection occurring after preconditioning 

are not well understood. One effect of preconditioning though that has been well documented is 

an increase in gene expression of Hsp70, manganese SOD, and inducible nitric oxide 

synthase(70). Though there have been investigations into the role of preconditioning in skeletal 

muscle, the results are not consistent(51; 67). Regardless there have been studies that have 

shown that preconditioning is able to provide protection in skeletal muscle(66; 67; 74). 

Preconditioning is biphasic with the initial protection lasting only a few hours and a late phase of 

protection reappearing between 24 – 72 hours after the initial insult (4). Interestingly, if up-

regulation of inducible Hsp70 is inhibited by anti-sense oligonucleotides, the second phase of 

protection from preconditioning can be attenuated (5). These finding illustrate the important role 

that Hsp70 may play in the beneficial effects of preconditioning. 

To further investigate the role Hsp70 plays in protecting SERCA in human skeletal muscle, a 

stimulus, such as preconditioning exercise, would be required for induction of Hsp70.Once 

elevation of Hsp70 protein within the muscle are attained, exercise known to cause reductions in 

SERCA activity could be used to determine any role Hsp70 may play in protecting it. Previously, 

our group has been able to cause large increases in Hsp70 protein in human vastus lateralis using 

a 30 minute single-legged isometric knee exercise protocol at 60% maximal voluntary 

contraction (MVC) (69). This protocol also resulted in major reductions in SERCA activity and 

muscular force persisting for 144 hours (76). In order to effectively isolate the effects Hsp70 may 
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have on SERCA it would be vital to have a preconditioning exercise protocol with little if any 

other perturbations within the muscle. Also, it would be valuable to be able to cause an elevation 

in Hsp70 in one limb only in order to use the contralateral limb as a positive control. 

To investigate the hypothesis that Hsp70 can protect exercise induced reductions in SERCA 

activity in human skeletal muscle, Hsp70 would have to be elevated within a muscle and SERCA 

activity would have to be challenged. This thesis will address these purposes in two separate 

studies. The purpose of the first study was to develop a preconditioning exercise protocol that 

was able to selectively up-regulate Hsp70 in one leg only. In addition, we wanted to follow the 

time course of production and breakdown of Hsp70, as well as the time required for full recovery 

of both SERCA activity and muscular force. To accomplish this we repeated a single-legged 

isometric knee extension exercise previously used by our group(69). However, an intensity of 

40% MVC instead of 60% MVC was used in order to minimize the prolonged reduction in both 

SERCA activity and muscular force elicited with the 60% protocol. We hypothesized that Hsp70 

would be elevated immediately post exercise in the exercised leg only and that it would remain 

elevated for at least 48 hours, and that both SERCA activity and muscular force would recover 

within 48 hours of the exercise.  

The purpose of the second study was to determine if elevated Hsp70 could protect both muscle 

mechanical function and SERCA activity from exercise induced damage. To accomplish this, the 

exercise protocol used in the first study was repeated in order to selectively up-regulate Hsp70 in 

one leg only. For the purpose of the second study the leg that underwent isometric exercise was 

classified as the preconditioned leg. Participants then performed cycling exercise designed to 

reduce both SERCA activity and muscular force. We hypothesized that the cycling exercise 

would cause reductions in SERCA activity and in muscle mechanical properties in both legs but 
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that the preconditioned leg would show attenuations in exercise induced reductions in both 

muscular fatigue and SERCA activity. 
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Chapter 2: Methods 

Study #1 

Participant Characteristics & Experimental Design  

Eight untrained but otherwise healthy male participants were recruited. Their age, height and 

weight were 19.8 ± 0.5 years, 179 ± 2.8 cm, and 77 ± 2.4 kg; respectively. Participants were 

asked to refrain from all physical activity for one week prior to testing and for the entire testing 

week. In addition, participants were asked to refrain from caffeine and alcohol consumption for 

48 hours prior to the first test session and for the duration of the testing week. All participants 

were fully informed of all procedures and risks before giving written consent. Written ethics 

approval was given for this study by the Office of Research Ethics at the University of Waterloo. 

Participants were asked to perform a single-legged knee extension exercise protocol at 40% 

MVC; the experimental setup has been described previously(20; 69; 73). Briefly, the exercise 

consisted of 30 minutes of isometric leg extensions at a 50% duty cycle (5 seconds contraction, 5 

seconds relaxation). All participants were able to maintain 40% MVC for the duration of the 

exercise protocol without any activation of the control leg; only in the last minute of exercise 

was there a significant 2% drop in attainable force (see Figure 1).  
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Figure 1: aEMG and Force during Isometric Exercise in Study 1. Measurements were taken 
every 5 min during exercise starting after the first minute of exercise in both the exercised (E) 
and non-exercised (C) leg. Values are mean +/- standard error mean. 1 significantly different 

than 1 min, 2 significantly different than 5 min, 3 significantly different than corresponding time 
point in control. 

 

The leg chosen for exercise was determined randomly without any consideration for leg 

dominance. Muscle electrical stimulation (described below) was performed before (PRE) and 

after (POST) exercise and 24 (R1), 48 (R2), 72, (R3), and 144 (R6) hours after the exercise. 

Muscle biopsies were taken PRE exercise in the control leg, POST exercise in the exercised leg 

and in both legs on R1, R2, R3, and R6. Muscle biopsy samples were used to measure maximal 

Ca2+-ATPase activity, Ca2+-uptake, and content of Hsp70, SOD1, SOD2, and catalase by western 

blot analysis. In addition, frozen cross sections were used to determine muscle fibre-type 

distribution, fibre-type specific glycogen content, and fibre-type specific Hsp70 content using 

immunohistochemistry. 
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Study #2 

Participant Characteristics & Experimental Design.  

Eight untrained but otherwise healthy male participants were recruited. Their age, height and 

weight were 24 ± 1.0 years, 178 ± 2.7 cm, and 86 ± 5.2 kg; respectively. Participants were asked 

to refrain from all physical activity for one week prior to testing and for the entire testing week. 

In addition, participants were asked to refrain from caffeine and alcohol consumption for 48 

hours prior to the first test session and for the duration of the testing week. All participants were 

fully informed of all procedures and risks before giving written consent. Written ethics approval 

was given for this study by the Office of Research Ethics at the University of Waterloo. 

Participants were brought into the lab two weeks prior to the testing day to perform a VO2 max 

test and for a familiarization of the electrical stimulation protocol. On the first testing day, 

participants were asked to perform a single-legged knee extension exercise protocol at 40% 

MVC identical to that performed in the first study. All participants were able to finish the 

exercise protocol showing only a small drop in force by the 30th minute. Similar to the first 

study, there was no measurable activation of the control leg at any point in the exercise (See 

Figure 2).  
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Figure 2: aEMG and Force during Isometric Exercise in Study 2. Measurements were taken 
every 5 min during exercise starting after the first minute of exercise in both the preconditioned 
(E) and control (C) leg. Values are mean +/- standard error mean. 1 significantly different than 
1min, 2 significantly different than 5 min, 3 significantly different than 10 min, 4 significantly 

different than corresponding time point in control. 
 

Based on the results from Study #1, participants were given 72 hours to recover and then were 

asked to cycle at 70% VO2 max for sixty minutes. The mean time to fatigue was 55.6 ± 1.5 

minutes. Recovery of muscle fatigue was followed in both legs for 72 hours following the 

cycling protocol. Muscle electrical stimulation was performed before (PRE) and after (POST) 

exercise and 24 (R1), 48 (R2), and 72 hours (R3) after the exercise in both legs. Muscle biopsies 

were taken PRE and POST exercise and on R1, R2, and R3, in both legs. Muscle biopsy samples 

were used to evaluate maximal Ca2+-ATPase activity, Ca2+-uptake, and western blot analysis of 

Hsp70. 

Muscle Electrical Stimulation.  

Both voluntary and evoked muscle contractions were performed in order to characterize changes 

in muscle mechanical properties of the quadriceps muscles and assess fatigue. The setup and 

procedures for these measurements has been used extensively in our lab(65; 66). Measurements 

included a supramaximal twitch, an MVC, and stimulations at 10 Hz, 20 Hz, 30 Hz, 50 Hz, and 

100 Hz. In addition, the interpolated twitch technique was used to quantify any central fatigue 

present. The voltage used for the stimulations at various frequencies was determined prior to the 

testing in a familiarization session by adjusting the voltage at 100 Hz until 60% of the 

participant’s MVC was attained. This voltage was determined independently for each leg and 

was kept constant for the entire study. Also, the order in which the legs received the 

measurements of muscle mechanical properties was randomized on all days to avoid any order 

effects. 
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Muscle Tissue sampling.  

Muscle tissue samples (~50 mg) were obtained from the vastus lateralis with use of the needle 

biopsy technique (29). The biopsies were taken, five from each leg, from separate tissue-

sampling sites under local anesthesia (2% Xylocaine). One portion of the biopsy sample was 

oriented under a dissecting microscope, mounted with optimal cutting temperature medium, 

rapidly frozen in isopentane that was pre-cooled with liquid nitrogen, and stored at -80°C. These 

samples were used for histochemical determination of fibre type distribution, fibre type-specific 

Hsp70 expression, and glycogen content. The remaining portion of the biopsy sample was 

diluted in a sample buffer and homogenized as described previously(73). Small aliquots of 

homogenate were then quick frozen in liquid nitrogen and stored at -80°C for future analysis of 

protein content (45), maximal SERCA activity, and Ca2+-uptake. Aliquots were also used for the 

measurement of SOD1, SOD2, catalase and Hsp70 expression by western blot analysis. 

Immunohistochemistry and Histochemistry.  

Immunohistochemistry and histochemical analyses were performed on serial cross sections of 

tissue (8-10 mm) that were cut in a cryostat maintained at -20°C. Hsp70 immunohistochemistry 

was carried out according to the procedures described by Neufer et al. (55) with minor 

modifications. Briefly, frozen muscle sections were fixed to microscope slides in a 100% cold 

acetone solution for 10 min, washed (once for 5 min) in PBS (10 mM, pH 7.2), and 

permeabilized in 0.5% Triton X-100 in PBS for 5 min. After another wash (3 times for 5 min 

each) in PBS, sections were blocked with 5% horse serum solution for 30 min at 22°C in a 

humidified chamber. The primary monoclonal antibody specific to the inducible form of Hsp70 

(SPA-810, Stressgen Biotechnologies) was applied to the sections (1:200 dilution in PBS) for 1 

hour at room temperature. After the sections were washed (3 times for 5 min each) in PBS, 
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biotinylated horse anti-mouse immunoglobulin G (1:200 dilution in PBS; Vector Laboratories) 

was applied for 30 min at room temperature. The sections were rinsed in PBS (3 times for 5 min 

each) and then incubated for 30 min with a 1:500 dilution of an alkaline phosphatase-streptavidin 

conjugate (Vector Laboratories). Hsp70 antibody binding was visualized using an alkaline 

phosphatase secondary detection system (NovaRED substrate kit, Vector Laboratories), which 

produces a brown-red precipitate. To determine fibre type-specific Hsp70 expression and 

glycogen content, serial cross sections were stained for myosin ATPase activity using pre-

incubation pH values of 4.55 and 10.3 (6) and for relative glycogen content by the periodic acid-

Schiff reaction. Fibres were randomly chosen from the myosin ATPase stains (n=10 for fibre 

types I, IIA, and IIAX/IIX) and identified with the aid of a microscope linked to computer-based 

imaging analysis software (Image-Pro PLUS). No attempt was made to distinguish between a 

hybrid type IIAX fibre and a pure type IIX fibre; rather, intermediately stained fibres (pre-

incubation pH 4.55) were classified type IIAX/IIX. After fibre type determination, corresponding 

Hsp70 sections were analyzed for staining intensity using the above-mentioned software. 

Intensity was calculated by subtracting the negative background (no primary antibody) and the 

background of the slide that was incubated with the primary antibody from the corresponding 

Hsp70-positive serial section and expressed in arbitrary linear (red-scale) units. All cross 

sections from a single participant were always stained and analyzed on the same day. 

Western Blotting.  

Western blotting was performed to determine the relative expression levels of Hsp70, SOD1, 

SOD2, and catalase in whole muscle homogenates prepared from muscle biopsy samples. After 

linearity of band density was ensured, samples were applied to polyacrylamide gels, and proteins 

were separated using standard SDS-PAGE protocols (39) and then transferred to polyvinylidene 
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difluoride membranes (Roche Diagnostics, Mannheim, Germany). After they were blocked with 

a 10% skim milk suspension, the membranes were incubated with a monoclonal primary 

antibody. Then, after the membranes were washed in Tris-buffered saline-0.1% Tween, they 

were treated for one hour with a secondary antibody. The membranes were washed again, and 

the signals were detected with an enhanced chemiluminescence kit (Amersham Pharmacia 

Biotech) using a bioimaging system and densitometric analysis was performed using GeneSnap 

software (Syngene). All samples were run in duplicate on separate gels, and protein content was 

expressed relative to PRE levels. Antibody details for each specific protein blotted can be found 

in Table 1. 

   Table 1: Western blotting Antibody Information. 

 
 

 

 

Maximal Ca2+-ATPase Activity.  

Measurement of SERCA kinetic properties was performed using a spectrophotometric assay (63) 

adapted for use on a plate reader (SPECTRAmax Plus; Molecular Devices). This procedure has 

been describe in detail previously(14). Briefly, 40 µl of crude muscle homogenate were added to 

a 5 ml cocktail buffer containing ATP, lactate dehydrogenase, pyruvate kinase, and the Ca2+ 

ionophore A23187. Each sample was then aliquoted (300 µl) into 16 Eppendorf tubes and mixed 

with Ca2+ to generate 15 different Ca2+ concentrations, ranging between 7.6 and 4.7 pCa units. In 

addition, one Eppendorf contained CPA in order to determine background ATPase activity. The 

Protein Loaded 1⁰ Antibody 2⁰ Antibody Company
Hsp70 5 µg 1:1000 1:2000 Stressgen
SOD1 25 µg 1:1000 1:2000 Stressgen
SOD2 25 µg 1:1000 1:2000 Stressgen
Catalase 25 µg 1:1000 1:2000 Chemicon
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Ca2+ ionophore A23187 was used to prevent the formation of a large Ca2+ gradient across the SR 

membrane. Samples were then loaded on a 96 well clear plate in duplicates (100 µl) and NADH 

was added to each well. SERCA activity (nM/mg protein/min) was determined by measuring the 

difference in absorbance between NADH and NAD+. All samples for a given participant were 

run on the same day.  

Ca2+-Uptake.   

Oxalate-supported Ca2+-uptake rates were measured using the Ca2+ fluorescent dye indo-1, 

according to published methods (60) and adapted by our laboratory (72). Briefly, 60 µl of crude 

muscle homogenate were added to a cuvette containing buffer, CaCl2, lactate dehydrogenase, 

pyruvate kinase, and indo-1 reaching a final volume of 1 ml. ATP was then added to commence 

the reaction. Fluorescence measurements were made on a spectrofluorometer (Ratiomaster 

system, Photon Technology International) equipped with dual-emission monochromators. The 

measurements of free Ca2+ ([Ca2+]f) is based on the difference in maximal emission wavelengths 

between indo-1 bound and unbound to Ca2+.  The curve generated from the [Ca2+]f  vs. time was 

then smoothed over 21 points using the Savitsky-Golay algorithm. Linear regression was 

performed on values ranging at [Ca2+]f  of 500, 1,000, 1,500, and 2,000 nM. Differentiating the 

linear fit curve allowed determination of Ca2+ uptake rates (nM/mg protein/min). All samples for 

a given participant were measured in the same day.  

Statistics.  

Statistical measures were done using a repeated measures two-way ANOVA when comparing 

the control and exercised leg. When comparing difference in the 3 fibre types, repeated measures 

three-way ANOVA was used. To determine significance between individual data points a 

Newman-Keuls post-hoc analysis was used. Planned comparisons were used to determine the 
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differences between POST control and POST exercise in study 2. In addition, correlation 

coefficients were calculated to determine the relationship between the level of Hsp70 protein and 

the change in SERCA activity with exercise. 
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Chapter 3: Results 

Study #1 

Muscle Mechanical Properties. 

Isometric knee extension exercise caused an ~ 48% reduction (p<0.05) in twitch peak tension of 

the exercise leg POST when compared to PRE, that recovered (p<0.05) by R1. Similarly, there 

was an ~ 46% reduction (p<0.05) in the twitch maximal rate of force development (+dF/dtmax) 

and an ~35% reduction (p<0.05) in the maximal rate of force decline (-dF/dtmax) POST when 

compared to PRE. Like peak tension, both +dF/dtmax and -dF/dtmax recovered (p<0.05) by R1; 

there were no differences (p>0.05) at any time point in the control leg (see Figures 3, 4, and 5).  

 

 

 

Figure 3: Peak Twitch Force in Study 1. Measurements were taken before (PRE) and after 
(POST) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 

exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 
Significantly different than PRE, ‡ significantly different than corresponding time point in 

control. 
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Figure 4: Twitch +dF/dtmax in Study 1. Measurements were taken before (PRE) and after 

(POST) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 

Significantly different than PRE, ‡ significantly different than corresponding time point in 
control. 

 
Figure 5: Twitch –dF/dtmax in Study 1. Measurements were taken before (PRE) and after 

(POST) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 

Significantly different than PRE, ‡ significantly different than corresponding time point in 
control. 

 
At the lowest frequencies of stimulation (10, 20 Hz), there was a reduction (p<0.05) in force 

POST when compared to PRE in the exercise leg of ~76% at 10Hz and ~65% at 20Hz that had 

recovered to ~43% of PRE values at 10Hz and 27% of PRE values at 20Hz (p<0.05) by R1 but 



19 
 

remained depressed by ~43% at 10Hz and ~25% at 20Hz through R6. In the control leg, there 

was an ~33% reduction (p<0.05) in force at 10 Hz POST when compared to PRE that remained 

depressed by ~41% (p<0.05) through R6; no changes were seen at 20 Hz (See Figure 6). 

 

 
Figure 6: Force at 10Hz in Study 1. Measurements were taken before (PRE) and after (POST) 

exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 

Significantly different than PRE, # significantly different than POST, ‡ significantly different 
than corresponding time point in control.  

At the higher frequencies of stimulation (30, 50, 100 Hz), there was an ~54%, 44% and 

38%reduction (p<0.05), respectively, in force POST when compared to PRE that completely 

recovered (p<0.05) by R1; there were no changes in force of the control leg at the higher 

frequencies of stimulation (See Figure 7). 
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Figure 7: Force at 100Hz in Study 1. Measurements were taken before (PRE) and after (POST) 

exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 

Significantly different than PRE, ‡ significantly different than corresponding time point in 
control.  

 

At 10 Hz, there was an ~68% prolongation (p<0.05) in +dF/dtmax POST when compared to PRE 

that recovered (p<0.05)  to ~35% of PRE exercise values by R1 but remained prolonged 

(p<0.05) by ~35% through R6. Also, in the control leg at 10 Hz, there was an ~21% prolongation 

(p<0.05) in +dF/dtmax POST when compared to PRE that remained altered by ~21% (p<0.05) 

through R6. At the remaining upper four frequencies of stimulation (20, 30, 50, and 100 Hz), 

there was an ~ 68%, 60%, 50%, and 40% prolongation (p<0.05), respectively, in +dF/dtmax 

POST when compared to PRE that recovered (p<0.05) by R1; there were no changes in 

+dF/dtmax of the control leg for 20, 30, 50 or 100 Hz (See Figure 8, 9).  
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Figure 8: +dF/dtmax at 10Hz in Study 1. Measurements were taken before (PRE) and after 

(POST) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 

Significantly different than PRE, # significantly different than POST, ‡ significantly different 
than corresponding time point in control.  

 
Figure 9: +dF/dtmax at 100Hz in Study 1. Measurements were taken before (PRE) and after 

(POST) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 

Significantly different than PRE, ‡ significantly different than corresponding time point in 
control.  

 

At 10 and 20 Hz, there was an ~ 73% and 62% prolongation (p<0.05), respectively, in -dF/dtmax 

POST when compared to PRE in the exercise leg that recovered (P<0.05) to ~ 47% and 28% of 

PRE values by R1 but remained prolonged by similar amounts (p<0.05) through R6. In the 



22 
 

control leg, there was an ~ 38% prolongation in –dF/dtmax at 10 Hz POST when compared to 

PRE that remained prolonged (p<0.05) by ~38% through R6. A similar trend was seen at 20 Hz 

though an ~22% prolongation in –dF/dtmax was only found at R1, R3, and R6. At 30, 50, and 100 

Hz, there was an ~45%, 32%, and 24% prolongation (p<0.05), respectively, in -dF/dtmax POST 

when compared to PRE in the exercise leg that recovered (p<0.05) by R1; there were no changes 

in the control leg at any time point at 30, 50, or 100 Hz (See figures 10, 11).  

 
Figure 10: -dF/dtmax at 10Hz in Study 1. Measurements were taken before (PRE) and after 

(POST) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 

Significantly different than PRE, # significantly different than POST, ‡ significantly different 
than corresponding time point in control.  
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Figure 11: -dF/dtmax at 100Hz in Study 1. Measurements were taken before (PRE) and after 

(POST) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 

Significantly different than PRE, ‡ significantly different than corresponding time point in 
control.  

 

There was an ~ 44% reduction (p<0.05) in MVC force of the exercise leg POST when compared 

to PRE that recovered (p<0.05) to ~16% of PRE exercise values by R1, but remained depressed 

(p<0.05) by ~16 % through R6. Minor reductions (p<0.05) in MVC force of ~14% were also 

seen in the control leg but were only significant at R1 and R3 (See Figure 12).  

 

 
Figure 12: MVC Force in Study 1. Measurements were taken before (PRE) and after (POST) 

exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 
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exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. * 
Significantly different than PRE, # significantly different than POST, ‡ significantly different 

than corresponding time point in control.  
There were no changes in motor unit activation as measured by the interpolated twitch at any 

point in either leg. For complete tabulated force data see appendix 1. 

Maximal Ca2+-ATPase Activity and Ca2+Uptake.  

Thirty min of isometric knee extension exercise at 40% MVC had no effect on maximal Ca2+-

ATPase activity at any time point in either the control or exercised leg. In addition, there were no 

changes in the kinetic parameters (Ca50 and the hill slope) of SERCA (See figure 13 and table 2). 

 
Figure 13: Maximal Ca2+-ATPase Activity in Study 1. Measurements were taken before and 
after exercise (E1), and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both 

the exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. 
 

Table 2: Ca2+-ATPase Kinetic Measures 

 
Values are mean +/- standard error mean. 

Time Points, n
E1 R1 R2 R3 R6

Ca50
C 6.6 +/- 0.09 6.6 +/- 0.05 6.6 +/- 0.08 6.7 +/- 0.09 6.7 +/- 0.05
E 6.7 +/- 0.08 6.5 +/- 0.05 6.7 +/- 0.05 6.6 +/- 0.05 6.7 +/- 0.07
Hill Slope
C 2.8 +/- 0.3 2.7 +/- 0.2 2.4 +/- 0.3 2.7 +/- 0.2 2.7 +/- 0.3
E 2.8 +/- 0.3 2.5 +/- 0.1 2.6 +/- 0.2 3.0 +/- 0.3 2.8 +/- 0.1
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Though no changes were seen in the maximal activity of the Ca2+-ATPase, there was a main 

effect (p<0.05) between the control and exercise legs in the rate of Ca2+ uptake with the exercise 

leg being lower (p<0.05) when compared to the control leg at [Ca2+]f of 500 and 1000 nM. It is 

important to note that on closer examination of the changes in Ca2+ uptake it is obvious that the 

main effects were driven by the large differences in uptake rates in the earlier time points and 

that there are no differences in uptake rates between legs by R3 (see table 3).  

 
 

Table 3: Ca2+ Uptake Rates at Various [Ca2+]f 

 
Values are mean +/- standard error mean. 

Immunohistochemistry and Histochemistry.  

Participants were found to have on average 40.7% type I fibres, 42.2% type IIA fibres, and 17.1 

% type IIAX/X fibres. Isometric knee extension exercise caused a reduction in muscle glycogen 

of ~58% in type IIA fibres and ~ 56% in type IIAX/X fibres POST when compared to PRE that 

fully recovered (p<0.05) by R1. There was no change in muscle glycogen in the type I fibres (see 

figure 14).  

 

E1 R1 R2 R3 R6
500 nM
C 3.1 +/- 0.4 2.9 +/- 0.5 2.5 +/- 0.3 2.3 +/- 0.4 2.5 +/- 0.5
E 1.9 +/- 0.2 2.4 +/- 0.3 2.8 +/- 0.3 2.6 +/- 0.5 2.3 +/- 0.3
1000 nM
C 6.5 +/- 0.6 6.4 +/- 0.9 4.9 +/- 0.3 5.3 +/- 0.8 5.1 +/- 0.8
E 4.5 +/- 0.5 5.1 +/- 0.7 5.9 +/- 0.8 5.3 +/- 0.8 4.9 +/- 0.6
1500 nM
C 9.1 +/- 0.9 8.6 +/- 1.2 7.1 +/- 0.6 7.8 +/- 1.1 7.3 +/- 1.1
E 6.7 +/- 0.7 6.9 +/- 0.7 8.5 +/- 1.3 7.5 +/- 1.1 6.8 +/- 1.0
2000 nM
C 10.5 +/- 0.9 11.1 +/- 1.5 8.8 +/- 0.8 9.1 +/- 1.0 8.9 +/- 1.4
E 8.6 +/- 0.8 9.2 +/- 0.9 10.1 +/- 1.5 9.2 +/- 1.1 8.3 +/- 1.1
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Figure 14: Fibre Type Specific Glycogen Content in Study 1. Measurements were taken 
before (PRE) and after (POST) exercise, and 24 hours (R1). Values are mean +/- standard error 
mean. * Significantly different than PRE, ‡ significantly different than corresponding time point 

in type I fibres. 
 

When looking at fibre type-specific Hsp70 expression, there was a greater (p<0.05) basal Hsp70 

expression in type I fibres than in type IIA and IIAX/X fibres, however, there were no 

differences between type IIA and type IIAX/X fibres. In addition, isometric knee extension 

exercise caused a significant increase (p<0.05) in Hsp70 protein in the exercise leg when 

compared to the control leg in type I fibres that was reduced (p<0.05) by R6. In addition, there 

was an increase (p<0.05) in Hsp70 expression at R1, R2 and R3 in type IIA fibres in the exercise 

leg when compared to the control leg, and at R1, R2, and R3 in type IIAX/X fibres. Furthermore, 

there was a greater (p<0.05) increase in Hsp70 in type I fibres when compared to type IIA and 

IIX fibres (see Table 15 see Figure 16). 
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Figure 15: Fibre Type Specific Hsp70 Content in Study 1. Measurements were taken from the 
control leg PRE E and from the exercised leg POST E, and from both legs on R1,  R2, R, and R6. 

Values are mean +/- standard error mean. 1 Significantly different from E1E, 2 significantly 
different from R1, 3 significantly different from R2, 4 significantly different than R3, * 

significantly different than E1 C, # significantly different than corresponding time point in type I 
fibres. 

 

  
Figure 16: Representative Micrograph of Hsp70 Stains in Study 1. Representative 

photomicrographs (x 200) of sections from muscle biopsy samples that were taken from the 
control leg (top row) and exercised leg (bottom row) before and after exercise and on recovery 

day 1 and 6 from the same participant were subjected to immunohistochemical detection of 
Hsp70.  
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Western Blotting.  

There were no differences in Hsp70 protein expression at any time point in the control leg; 

however, we found a strong trend (p=0.067) toward a higher Hsp70 protein content in the 

exercise leg when compared to the control leg (See figure 17). There were also no detectable 

differences in the relative protein content of catalase, SOD1, or SOD2 at any time point or in 

either legs (see Figures 18, 19, 20). An important observation is that Hsp70 remains elevated 

through to R3 and does so in the absence of any differences in twitch peak force or calcium 

handling properties between control and exercise legs. Therefore R3 is a crucial time point for 

the second study whose specific aim was to determine the role that Hsp70, when elevated, may 

have in protecting SERCA. 

 
Figure 17: Hsp70 Western Blot in Study 1. Measurements were taken before (E1- C) and after 
(E1-E) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 

exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean.  
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Figure 18: Catalase Western Blot in Study 1. Measurements were taken before (E1- C) and 

after (E1-E) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both 
the exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. 

 

 

Figure 19: SOD1 Western Blot in Study 1. Measurements were taken before (E1- C) and after 
(E1-E) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 

exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. 
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Figure 20: SOD2 Western Blot in Study 1. Measurements were taken before (E1- C) and after 
(E1-E) exercise, and 24 (R1), 48 (R2), 72 (R3), and 144(R6) hours after the exercise in both the 

exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. 
 

Study #2 

Muscle Mechanical Properties.  

Thirty minutes of isometric knee extension exercise caused an ~50% reduction (p<0.05) in peak 

twitch force in the preconditioned leg only that recovered (p<0.05) by PRE E2. Cycling exercise 

caused an ~ 43% reduction (p<0.05) in the control leg and an ~26% reduction (p<0.05) in the 

preconditioned leg POST E2 when compared to PRE E2; both legs fully recovered (p<0.05) by 

R1. Both twitch contraction time (~12%) and rise time (~43%) were reduced (p<0.05) by the 

isometric exercise in the preconditioned leg only; however, these parameters recovered (p<0.05) 

by PRE E2 and were not affected by the cycling exercise. The isometric exercise also caused an 

~ 46% prolongation (p<0.05) in +dF/dtmax in the preconditioned leg that recovered by PRE E2, in 

addition, the cycling exercise caused an ~ 47% prolongation (p<0.50) in +dF/dtmax in the control 

leg only that had recovered (p<0.05) by R1. –dF/dtmax was ~ 37% lower (p<0.05) in the 
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preconditioned leg when compared to the control leg POST E1; this difference was no longer 

apparent by PRE E2. Also, cycling exercise caused an ~ 37% prolongation (p<0.05) in –dF/dtmax 

POST E2 when compared to PRE E2 that only occurred in the control leg. This reduction had 

recovered (p<0.05) by R1.  (See figures 21, 22, and 23).  

 

Figure 21: Peak Twitch Force in Study 2. Measurements were taken before (PRE) and after 
(POST) isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) 
hours after the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are 
mean +/- standard error mean. * Significantly different than PRE E1, † significantly different 

than PRE E2, • significantly different than corresponding time point in C. 
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Figure 22: Twitch +dF/dtmax in Study 2. Measurements were taken before (PRE) and after 
(POST) isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) 
hours after the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are 
mean +/- standard error mean. * Significantly different than PRE E1, † significantly different 

than PRE E2, • significantly different than corresponding time point in C. 

 

Figure 23: Twitch –dF/dtmax in Study 2. Measurements were taken before (PRE) and after 
(POST) isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) 
hours after the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are 
mean +/- standard error mean. † Significantly different than PRE E2, • significantly different 

than corresponding time point in C. 

There was an ~42% reduction (p<0.05) in MVC force POST E1 when compared to PRE E1 in 

the preconditioned leg that was not mirrored in the control leg. The cycling exercise caused an 

~21% reduction (p<0.05) in force in the control leg and an ~29% reduction (p<0.05) in the 
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preconditioned leg POST E2 when compared to PRE E2 that progressively recovered (p<0.05) 

by R2 (See Figure 24). There was a main effect of time (p<0.05) for aEMG measured during the 

MVC showing a reduction in aEMG POST E2 that had recovered (p<0.05) by R1. There were no 

changes in the interpolated twitch parameters at any time point in either leg (See Appendix 2). 

 

Figure 24: MVC Force in Study 2. Measurements were taken before (PRE) and after (POST) 
isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) hours after 

the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are mean +/- 
standard error mean. * Significantly different than PRE E1, † significantly different than PRE 

E2, • significantly different than corresponding time point in C. 

At the lower frequencies of stimulation (10, and 20 Hz) the isometric exercise caused an ~ 79% 

reduction (p<0.05) in force at 10 Hz and an ~ 71% reduction (p<0.05) in force in the 

preconditioned leg with an accompanying ~17% reduction (p<0.05) in force at 10 Hz and an ~ 

13% reduction (p<0.05) in force at 20 Hz in the control leg. Though neither leg recovered 

completely to PRE E1 levels, the preconditioned leg recovered (p<0.05) to ~33% of PRE E1 at 

10 Hz and ~16% of PRE E1 at 20 Hz, and the control leg recovered (p<0.05) to ~31% of PRE E1 

at 10 Hz and ~11% of PRE E1 at 20 Hz.. The cycling exercise caused an ~50% reduction 

(p<0.05) in force at 10 Hz and an ~45% reduction (p<0.05) in force at 20 Hz POST E2 when 
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compared to PRE E2 in the control leg and an ~32% reduction (p<0.05) in force at 10 Hz and an 

~24% reduction (p<0.05) in force at 20 Hz POST E2 when compared to PRE E2 in the 

preconditioned leg. Both legs recovered (p<0.05) to PRE E2 force levels by R1, however, neither 

leg recovered to PRE E1 levels through R3 at both 10 and 20 Hz (See figure 25).  

 

Figure 25: Force at 10Hz in Study 2. Measurements were taken before (PRE) and after (POST) 
isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) hours after 

the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are mean +/- 
standard error mean. * Significantly different than PRE E1, † significantly different than PRE 

E2, • significantly different than corresponding time point in C. 

At the higher frequencies of stimulation (30, 50, and 100 Hz) there was an ~ 54%, 40%, and 34% 

reduction (p<0.05), respectively, in force due to the preconditioning exercise that had completely 

recovered (p<0.05) by PRE E2. The preconditioning exercise caused no changes in force in the 

control leg at any frequency of stimulation. The cycling exercise caused an ~19% reduction 

(p<0.05) in force at 30 Hz only that had recovered to PRE E2 levels by POST E2. For 

unapparent reason, there were transient reductions (p<0.05) in force at R2 in the control leg at all 

higher frequencies of stimulation and modest reductions (p<0.05) in force throughout recovery in 

the preconditioned leg at 100 Hz (see figure 26).  
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Figure 26: Force at 100Hz in Study 2. Measurements were taken before (PRE) and after 
(POST) isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) 
hours after the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are 
mean +/- standard error mean. * Significantly different than PRE E1, † significantly different 

than PRE E2, ‡ significantly different than POST E2 • significantly different than corresponding 
time point in C. 

At the lower frequencies of stimulation, there was an ~ 75% prolongation (p<0.05) at 10 Hz and 

an ~ 62% prolongation (p<0.05) at 20 Hz in +dF/dtmax POST E1 when compared to PRE E1 in 

the preconditioned leg only. However, by PRE E2 +dF/dtmax was prolonged (p<0.05) in both legs 

by ~35% at 10 Hz and ~20% at 20 Hz when compared to PRE E1. Cycling exercise caused an 

additional ~45% prolongation (p<0.05) in +dF/dtmax at 10 Hz and an additional ~ 35% 

prolongation (p<0.05) in +dF/dtmax at 20 Hz in the control leg that recovered (p<0.05) to PRE E2 

values by R1. Both the control and the preconditioned leg remained at PRE E2 levels at both 10 

and 20 Hz throughout recovery (see figure 27).  
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Figure 27: +dF/dtmax at 10Hz in Study 2. Measurements were taken before (PRE) and after 
(POST) isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) 
hours after the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are 

mean +/- standard error mean. # Significantly different than POST E1,* Significantly different 
than PRE E1, † significantly different than PRE E2, ‡ significantly different than POST E2 • 

significantly different than corresponding time point in C. 

At the higher frequencies of stimulation (30, 50 and 100 Hz) +dF/dtmax was prolonged (p<0.05) 

by ~ 45%, 30% and 17%, respectively, POST E1 when compared to PRE E1, but only in the 

preconditioned leg. +dF/dtmax did recover (p<0.05) to PRE E1 values by PRE E2, however, still 

remained slower (p<0.05) when compared to the control leg. At 30 Hz, the cycling exercise 

caused a further ~ 19% reduction (p<0.05) in +dF/dtmax in the control leg POST E2 when 

compared to PRE E2 that persisted (p<0.05) through R3; however, this reduction was not 

mimicked at50 and 100 Hz. At 50 and 100 Hz, +dF/dtmax became prolonged (p<0.05) in both the 

preconditioned and control legs on R1 and did not recover (p<0.05) by R3 (see figure 28).  
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Figure 28: +dF/dtmax at 100Hz in Study 2. Measurements were taken before (PRE) and after 
(POST) isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) 
hours after the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are 

mean +/- standard error mean. # Significantly different than POST E1,* Significantly different 
than PRE E1, † significantly different than PRE E2, ‡ significantly different than POST E2 • 

significantly different than corresponding time point in C. 

Isometric knee extension exercise caused a prolongation (p<0.05) in -dF/dtmax at the lower 

frequencies of stimulation in the control leg by ~ 26% at 10 Hz and by ~ 15% at 20 Hz. In the 

preconditioned leg there was a much greater prolongation (p<0.05) in –dF/dtmax by ~78% at 10 

Hz and by ~ 71% at 20 Hz. At PRE E2, the preconditioned leg had recovered (p<0.05) to ~40% 

of PRE E1 values at 10 Hz and ~17% of PRE E1 values at 20 Hz. However, both legs still 

remained depressed (p<0.05) when compared to PRE E1 though there were no differences 

between the control and preconditioned leg. At POST E2, there was a further prolongation 

(p<0.05) in -dF/dtmax of ~50% at both 10 and 20 Hz in the control leg only that recovered 

(p<0.05) by R1; however, recovery in both legs remained incomplete (p<0.05) through R3 (see 

figure 29).  
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Figure 29: -dF/dtmax at 10Hz in Study 2. Measurements were taken before (PRE) and after 
(POST) isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) 
hours after the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are 

mean +/- standard error mean. # Significantly different than POST E1,* Significantly different 
than PRE E1, † significantly different than PRE E2, ‡ significantly different than POST E2 • 

significantly different than corresponding time point in C. 

At 30 Hz, there was an ~49% prolongation (p<0.05) in -dF/dtmax POST E1 when compared to 

PRE E1 in the preconditioned leg that fully recovered (p<0.05) by PRE E2. The cycling exercise 

did not cause any changes in -dF/dtmax, but there was a prolongation (p<0.05) of -dF/dtmax in both 

legs on R1 that did not recover. At 50 and 100 Hz, there was an ~ 27% and 22% prolongation 

(p<0.05), respectively, in –dF/dtmax that recovered by PRE E2. There was also a transient 

quickening (p<0.05) in -dF/dtmax POST E2 when compared to PRE E2 in both legs at 50 and 100 

Hz; however, at R1, similarly to 30 Hz, -dF/dtmax became prolonged (p<0.05) through R3 when 

compared to PRE E1(see figure 30). See appendix 2 for a complete tabulated force data. 



39 
 

 

Figure 30: -dF/dtmax at 100Hz in Study 2. Measurements were taken before (PRE) and after 
(POST) isometric exercise (E1) and cycling exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) 
hours after the exercise in both the preconditioned (E) and non-exercised (C) leg. Values are 

mean +/- standard error mean. # Significantly different than POST E1,* Significantly different 
than PRE E1, † significantly different than PRE E2, ‡ significantly different than POST E2 • 

significantly different than corresponding time point in C 

Maximal Ca2+-ATPase activity and Ca2+uptake.  

There was a strong trend (p=0.076) toward an interaction effect in maximal activity of the Ca2+-

ATPase, when the hypothesized planned comparison were performed between POST cycling 

exercise in the preconditioned and control legs, the control leg was found to have ~16% lower 

(p<0.05) maximal Ca2+-ATPase activity than the preconditioned leg. There were no changes in 

the kinetic measures of the Ca2+-ATPase (see figure 31 and 32). Similarly, there were no changes 

in the rate of SR Ca2+ uptake for any free Ca2+ concentration at any time point or in either leg 

(see table 4). 
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Figure 31: Maximal Ca2+-ATPase Activity in Study 2. Measurements were taken before 
(PRE) and after (POST) cycling exercise (E2) and 24 (R1), 48 (R2), and 72 (R3) hours after the 
exercise in both the preconditioned (E) and non-exercised (C) leg. Values are mean +/- standard 

error mean. • Significantly different than corresponding time point in C. 

 

Figure 32: Ca50 Measurement in Study 2. Measurements were taken before (PRE) and after 
(POST) cycling exercise (E2) and 24 (R1), 48 (R2), and 72 (R3) hours after the exercise in both 

the preconditioned (E) and non-exercised (C) leg. Values are mean +/- standard error mean. • 
Significantly different than corresponding time point in C. 
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Table 4: Ca2+ Uptake Measures at Various [Ca2+]f 

 

Values are mean +/- standard error mean. 

Western Blotting.  

We found no differences in Hsp70 protein expression at any time point in the preconditioned or 

control leg (see figure 32). 

 
Figure 32: Hsp70 Western Blot in Study 2. Measurements were taken before (PRE) and after 
(POST cycling exercise, and 24 (R1), 48 (R2), and 72 (R3) hours after the exercise in both the 

preconditioned (E) and non-exercised (C) leg. Values are mean +/- standard error mean. 
 

Time Points, n
PRE POST R1 R2 R3

500 nM
C 1.8 +/- 0.4 1.0 +/- 0.1 1.8 +/- 0.2 1.0 +/- 0.1 1.5 +/- 0.3
E 1.7 +/- 0.2 1.3 +/- 0.2 1.6 +/- 0.1 1.3 +/- 0.1 1.1 +/- 0.1
1000 nM
C 3.6 +/- 0.6 2.5 +/- 0.2 3.6 +/- 0.4 2.3 +/- 0.3 3.2 +/- 0.6
E 3.6 +/- 0.3 2.7 +/- 0.3 3.3 +/- 0.1 2.8 +/- 0.3 2.1 +/- 0.3
1500 nM
C 4.6 +/- 0.7 3.6 +/- 0.3 4.9 +/- 0.6 3.5 +/- 0.4 4.3 +/- 0.6
E 4.7 +/- 0.3 3.6 +/- 0.3 4.3 +/- 0.2 3.7 +/- 0.3 3.0 +/- 0.2
2000 nM
C 5.1 +/- 0.7 4.3 +/- 0.3 5.8 +/- 0.7 4.8 +/- 0.6 5.4 +/- 0.6
E 5.5 +/- 0.4 4.0 +/- 0.3 5.0 +/- 0.3 4.7 +/- 0.6 3.7 +/- 0.2
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Chapter 4: Discussion 

The purposes of these studies were two-fold: to develop a preconditioning exercise protocol in 

which Hsp70 could be selectively up-regulated in one leg only with minimal or no other signs of 

muscle fatigue, in particular damage to SERCA and reductions in muscular force, and to 

determine if up-regulation of Hsp70 could protect against exercise induced reductions in muscle 

contractile function and SERCA activity. In the first study, thirty minutes of isometric knee 

extension exercise at 40% MVC was able to induce a heat shock response that was apparent in 

all muscle fibre types, but to a much greater degree in type I muscle fibres. This increase in 

Hsp70 persisted throughout recovery. In addition, there was no increase in Hsp70 in the control 

leg at any point. There were also basal fibre type differences in Hsp70. Similar to findings in 

rodents (32), the more oxidative type I fibres had a higher basal Hsp70 protein content; 

presumably to combat a cellular environment with greater oxidative stress. One could speculate 

that the differences in basal Hsp70 protein content could be in part due to differences in basal 

protein turnover, which relates to the chaperoning function of Hsp70. Though fibre type 

differences in basal protein turnover are well documented in rodents(23), most recent evidence 

suggests that this is not the case in human skeletal muscle(53). Western blot analysis only 

revealed a trend toward an elevation in Hsp70 protein in the exercise leg. The inconsistency 

between western blotting and immunohistochemistry results from an inherent difference in 

sensitivity between western blotting and immunohistochemistry; western blotting displaying 

reduced sensitivity.  

Contrary to the hypotheses, isometric exercise was unable to cause reductions in the maximal 

rate of the Ca2+-ATPase. This was surprising since our group has previously shown that this 

exact protocol at 60% MVC causes reductions in SERCA activity in the order of 20 % persisting 
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for 6 days (76). However, isometric exercise was able to cause reductions in Ca2+ uptake in the 

exercise leg at the lower [Ca2+]f, though by R2 there were no differences in Ca2+ uptake between 

the control and exercise leg. This suggests that the reductions in Ca2+ uptake seen were the result 

of transient metabolic disturbances and not any major damage or alterations in SERCA 

characteristic of low frequency fatigue. Reductions in maximal SERCA activity were expected, 

however, their absence was quite serendipitous. The ability to induce Hsp70 without any damage 

to SERCA is far more ideal than a situation in which SERCA becomes damaged but recovers. 

Hsp70 has been shown to protect SERCA by protecting the nucleotide binding domain(71), 

therefore, if Hsp70 is elevated in the absence of changes in Ca2+-ATPase activity then changes in 

SERCA activity from further exercise can be more strongly attributed to that particular exercise 

and not any structural alterations that may have resulted from the original isometric exercise.   

As expected the isometric exercise protocol produced extensive muscle fatigue in the exercised 

leg in all parameters measured. Also, in all cases except MVC, 10 Hz, and 20 Hz, force was able 

to recover within 24 hours; much more quickly than hypothesized. Similarly, rates of relaxation 

and force development were also prolonged after the exercise but in all cases except the lower 

frequencies of stimulation were completely recovered by R1. Moreover, with the exception of 

the MVC, 10 Hz and 20 Hz there were no changes in muscular force or contraction and 

relaxation rates in the control leg.  

Changes in force at lower frequencies of stimulation are generally attributed to alterations in SR 

Ca2+ handling specifically Ca2+ release due to impaired E-C coupling. Impaired SERCA function 

could also contribute to low frequency fatigue by a reduction in Ca2+ uptake into the SR resulting 

in a higher resting [Ca2+]f and a lower SR Ca2+ load available for release(40).  In this study, 

however, there were no detectable changes in SERCA activity to account for the persistent low 
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frequency fatigue seen in this study in both the control and exercised legs. Additionally, there 

were no detectable changes in central motor unit activation by the interpolated twitch technique 

to account for the reductions in MVC force. With the exception of peak twitch force, muscle 

mechanical properties are measured using submaximal voltages, therefore there is the possibility 

that changes in the response to the elicited voltage occurred between days. The relationship 

between force and [Ca2+]f is sigmoidal; at lower frequencies of stimulation where [Ca2+]f 

transients are lower, smaller changes in voltage would elicit greater changes in force. Though at 

higher frequencies of stimulation much smaller changes in force would occur due to variations in 

voltage, some would still be expected(1). Given that there were no changes in force at the higher 

frequencies of stimulation, it seems that voltage dependant differences in force production 

between days, if present, were minor. In the absence of alterations in Ca2+ handling, low 

frequency fatigue can also be caused by reduced Ca2+ sensitivity of troponin C and by minor 

mechanical damage to the contractile apparatus from isometric contractions (34). Given the 

absence of persistent fatigue in the peak twitch force; there was likely very little mechanical 

damage due to the isometric exercise. One possible explanation for the persistent low frequency 

fatigue in both legs during recovery is that mechanical damage from multiple biopsies may have 

contributed to at least some of the low frequency fatigue and reduced MVC force. This 

possibility has previously been reported using a similar exercise protocol (21). In this thesis, 

however, the isometric exercise was performed in the first study with biopsies and in the second 

study without biopsies and it was observed that in the absence of biopsies there was less 

reduction in MVC force during recovery and the reductions in low frequency force are reduced. 

Still, there were likely both repeated biopsy and a voltage dependant changes which contributed 

to the persistent low frequency fatigue occurring in both legs in this study. Given, that the 
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reductions in force at low frequency occur in both the exercised and control leg without 

alterations in the peak twitch force, a more sensitive measure of low frequency fatigue, some 

other processes must be occurring independently of the characteristic causes of low frequency 

fatigue. 

Antioxidant enzymes including catalase, SOD1, and SOD2 were also measured as additional 

markers of how much damage may be occurring due to the exercise protocol. Exercise induces 

oxidative stress and if that oxidative stress is large enough there are antioxidant enzymes that are 

up-regulated in order to combat the stress(58; 61). No changes in antioxidant enzymes were 

detected, further suggesting that the perturbations occurring during and after the exercise were 

mild. It is important to recognize that the absence of alterations in antioxidant enzymes carries 

particular significance. If antioxidant enzymes were elevated in response to the isometric 

exercise there would be little need for an increase in Hsp70 for its proposed protective role since 

protein damage would presumably be reduced due to scavenged ROS and RNS. This 

phenomenon has been shown in rat soleus muscle(64) and can be further supported by research 

showing that genetic modifications in basal Hsp70 content reduces both the resting antioxidant 

levels as well as the oxidative damage due to muscle contractions(7). 

In the second study, isometric exercise produced similar results, reductions in force in the 

preconditioned leg that recovered by PRE E2 at the higher frequencies, in the twitch peak force, 

and in the MVC, but that only partially recovered at the lower frequencies of stimulation. As 

previously mentioned, in the absence of biopsies isometric exercise caused no reductions in force 

in the twitch, MVC, and higher frequencies of stimulation; and much smaller reductions in force 

at the lower frequencies of stimulation in the control leg. The cycling exercise produced 

reductions in force in both legs in all parameters except the higher frequencies of stimulation. 
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Also, as hypothesized the reductions in force were attenuated in the preconditioned leg in the 

twitch and at the lower frequencies of stimulation. Preconditioning had no apparent effect on the 

recovery of force after the cycling exercise. At the lower frequencies of stimulation, including 

the twitch, the preconditioning exercise attenuated the prolongation of +dF/dtmax and –dF/dtmax 

after the cycling exercise. These findings in combination with the attenuations in force reduction 

after the cycling exercise in the preconditioned leg suggest that muscle function was in fact 

protected.  

Western blot analysis showed no significant increases in Hsp70 at any time point; however, there 

were a few notable trends. There was a trend toward an increase in Hsp70 in the preconditioned 

leg prior to cycling exercise, this observation is important since there was also a trend at this time 

point in the first study (corresponds to R3 in the first study). Though this difference did not reach 

significance in either study, when measured by immunohistochemical analysis there were clear 

differences in Hsp70 between the exercise and control leg at R3 in the first study. A clear 

limitation to the second study is the lack of immunohistochemical analysis. Still, given that 

participants with similar characteristics and training status were used in both studies, it is 

possible to speculate that at PRE exercise in the second study there were similar differences in 

Hsp70 between legs. Also, though immunohistochemical confirmation was lacking, there 

appeared to be a transient increase in Hsp70 in both legs POST cycling exercise and on R1.  

As hypothesized, there was an attenuated decrease in the maximal activity of SERCA POST 

exercise in the preconditioned leg. Surprisingly, there were no differences in the rate of Ca2+ 

uptake at any time point. Though the exercise modalities are different, our group has shown 

using a model of consecutive days of exercise a similar effect in maximal SERCA activity, that 

being an apparent protection in SERCA activity with prior exercise(15). The maximal rate of 
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SERCA activity can be affected by several factors. First, with exercise there is an increase in 

metabolites such as inorganic phosphate, ADP, and hydrogen ions. Studies with mechanically 

skinned fibres have demonstrated the deleterious effects of these metabolites on SERCA 

activity(3). Reactive oxygen species have also been shown by FITC binding assays to cause very 

specific damage to SERCA’s nucleotide binding site(46). Metabolic effects, however, would 

result in shorter duration reductions in SERCA activity whereas oxidative damage results in 

irreversible damage to SERCA requiring removal of the damaged enzymes and de novo 

synthesis of SERCA proteins; this can take up to several days(47).  

Most recent studies from our group have demonstrated concurrent reductions in SERCA activity 

and Ca2+ uptake(13; 73), however, in both the aforementioned studies there was a dissociation in 

the relative changes in Ca2+-ATPase activity and in Ca2+ uptake; the ratio between these two 

parameters is termed the coupling ratio. In the first study, there were reductions in Ca2+ uptake 

and no reductions in maximal SERCA activity, whereas the opposite was true in the second 

study. To address this issue one must consider the possible causes for reductions in Ca2+ uptake. 

If the coupling ratio were one (i.e. both ATPase and uptake change by a similar magnitude) 

changes in Ca2+ uptake could be due to reductions in ATP hydrolysis ultimately resulting in 

reduced Ca2+ uptake. However, when the coupling ratio dissociates from one there is the 

possibility that ATP hydrolysis is unaltered but Ca2+ uptake is reduced because of Ca2+ leaking 

back into the cytosol either through a damaged membrane or through a leaky Ca2+ release 

channel. The hypothesis that Ca2+ release rates, due to mechanical disruption, can contribute to 

this effect is supported by previous work in both single fibre preparations and in humans 

showing that the administration of caffeine, a Ca2+ release channel agonist, can reverse low 

frequency fatigue (28; 40). Generally, maximal SERCA activity is assessed with and without the 
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Ca2+ ionophore A23187. Ionophore permeabilized the membrane and therefore when measuring 

maximal SERCA activity in its presence, activity is not affected by possible changes in Ca2+ leak 

across the membrane. Without ionophore reductions in SERCA activity due to Ca2+ leak can also 

be assessed. Had it been possible to do both in this study, an ionophore ratio could have been 

used to determine if in fact dissociations in the coupling ratio could be attributed at least in part 

by changes in the permeability of the membrane to Ca2+.  

These hypotheses for dissociated changes in maximal SERCA activity and Ca2+ uptake fit nicely 

with the observed results. In the first study, the isometric exercise protocol would be expected to 

cause mechanical damage, either to the SR membrane or to the mechanical link between the Ca2+ 

release channel and the DHPR. This damage would facilitate passive leakage of Ca2+ across the 

Ca2+ release channel or through damaged SR membranes; resulting in hindered net uptake of 

Ca2+ into the SR. Whereas in the second study, the concentric cycling exercise would be 

expected to cause less mechanical damage and greater oxidative damage to SERCA, resulting in 

reduced Ca2+-ATPase activity.  

As hypothesized, we found that SERCA activity was protected by preconditioning exercise 

designed to up-regulate Hsp70. Also, we found that force, +dF/dtmax and –dF/dtmax were also 

protected by the preconditioning exercise. The most tempting explanation for this protection is 

that Hsp70 has bound to the nucleotide binding site of SERCA thus protecting it from oxidative 

damage associated with the cycling exercise. The result of this protection would be maintenance 

of resting [Ca2+]f , maintenance of the Ca2+ pumping ability of SERCA (which can be related to 

attenuations in –dF/dtmax) maintenance of SR Ca2+ load and therefore Ca2+ releasing ability 

(which can be related to attenuation in +dF/dtmax) and an overall protection in muscular force. 
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However, when correlation coefficients were calculated between Hsp70 protein content and the 

changes in SERCA activity, only a weak negative relationship was found (r = -0.20). 

In conclusion, these studies were able to show that with preconditioning exercise designed to up-

regulate Hsp70, reduction in SERCA activity and muscle mechanical properties due to 

subsequent aerobic exercise could be attenuated. It must be pointed out, however, that the 

dissociated coupling ratio as well as the persistent low frequency fatigue during recovery in the 

absence of changes in Ca2+ handling properties were unexpected and deserves further 

investigation. 
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Chapter 5: Limitations 

There are several limitations which unfortunately have complicated the interpretations of the 

results seen in these two studies. In the first study, the persistent low frequency fatigue, though 

believed to be unimportant since its magnitude was similar in both legs, may have been a 

confounding factor in the second study. In the second study, time considerations did not allow 

for the inclusion of several important analyses including: immunohistochemistry for Hsp70, 

western blots for SERCA isoforms and antioxidant enzymes, and tissue limitations did not allow 

for a determination of the interaction of Hsp70 and SERCA by co-immunoprecipitation. These 

results would have been valuable additions for the interpretation of the results included. In 

addition, the results presented do not definitively point to Hsp70 as the most important 

contributor to the effects of preconditioning; it would be interesting to determine if any 

differences in metabolic perturbations or enzymes occurred. Finally, it would have been helpful 

in the second study to have biopsies in both legs before the isometric exercise; this would have 

allowed assurance that there were no differences in Hsp70 or SERCA activity between legs or 

subjects prior to the exercise. 
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Chapter 6: Future Direction 

The most important information to come from these studies is the confirmation that 

preconditioning attenuates reductions in muscular force and SERCA activity. Future studies 

should further investigate the physical interaction of Hsp70 and SERCA in human skeletal 

muscle. Secondary to Hsp70, it is still unclear for what reasons muscular force remains 

depressed in the absence of changes in SERCA activity with certain exercise protocols. Though 

some hypotheses for this phenomenon have been presented, a better understanding of the exact 

mechanisms would be an important contribution to the exercise physiology literature.  
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Appendix 1: Study #1 Tabulated Force Data 

 
Measurements were taken before (PRE) and after (POST) exercise, and 24 (R1), 48 (R2), 72 

(R3), and 144(R6) hours after the exercise in both the exercised (E) and non-exercised (C) leg. 
Values are mean +/- standard error mean. * significantly different than PRE, # significantly 

different than POST, ‡ significantly different than corresponding time point in control.  
 
 

Table 1. Twitch Characteristics
Time Points, n

PRE POST R1 R2 R3 R6

Pt, N
C 143 +/- 15 143 +/- 14 141 +/- 16 152 +/- 16 150 +/- 12 159 +/- 19
E 141 +/- 15 74 +/- 8 * ‡ 135 +/- 11 147 +/- 10 136 +/- 11 137 +/- 15
CT, ms
C 97 +/- 2 100 +/- 4 100 +/- 4 89 +/- 3 93 +/- 3 94 +/- 4
E 91 +/- 4 91 +/- 3 92 +/- 3 89 +/- 2 93 +/- 3 92 +/- 4
1/2RT, ms
C 62 +/- 8 54 +/- 6 55 +/- 6 60 +/- 8 58 +/- 8 53 +/- 6
E 63 +/- 9 44 +/- 2 63 +/- 9 60 +/- 9 67 +/- 11 60 +/- 9
RT, ms
C 55 +/- 1 57 +/- 2 53 +/- 1 52 +/- 1 52 +/- 1 52 +/- 2
E 54 +/- 1 53 +/- 1 54 +/- 1 53 +/- 1 54 +/- 2 53 +/- 1
+dF/dtmax, N/s
C 2566 +/- 310 2500 +/- 310 2651 +/- 364 2912 +/- 337 2823 +/- 262 3022 +/- 394
E 2606 +/- 297 1409 +/- 139 * ‡ 2475 +/- 215 2850 +/- 271 2547 +/- 282 2565 +/- 308
-dF/dtmax, N/s
C -1743 +/- 217 -1918 +/- 191 -1905 +/- 184 -2070 +/- 239 -1909 +/- 148 -2088 +/- 161
E -1871 +/- 239 -1226 +/- 136 * ‡ -1876 +/- 144 -2144 +/- 264 -1907 +/- 174 -1898 +/- 193
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Measurements were taken before (PRE) and after (POST) exercise, and 24 (R1), 48 (R2), 72 

(R3), and 144(R6) hours after the exercise in both the exercised (E) and non-exercised (C) leg. 
Values are mean +/- standard error mean. * significantly different than PRE, # significantly 

different than POST, ‡ significantly different than corresponding time point in control.  

Table 2. Force at different frequencies of stimulation
Time Points, n

PRE POST R1 R2 R3 R6

10Hz, N
C 185 +/- 23 124 +/- 13 * 108 +/- 14 * 115 +/- 12 * 124 +/- 12 * 109 +/- 13 *
E 171 +/- 20 41 +/- 8 * ‡ 97 +/- 12 * # 111 +/- 12 * # 107 +/- 14 * # 103 +/- 14 * #
20Hz, N
C 261 +/- 25 232 +/- 21 207 +/- 20 * 223 +/- 18 219 +/- 14 207 +/- 22
E 253 +/- 24 89 +/- 13 * ‡ 185 +/- 15 * # 207 +/- 19 * # 192 +/- 21 * # 191 +/- 20 * #
30Hz, N
C 281 +/- 26 265 +/- 24 244 +/- 23 258 +/- 21 243 +/- 14 234 +/- 23
E 276 +/- 26 126 +/- 13 * ‡ 225 +/- 19 # 243 +/- 23 # 218 +/- 24 # 221 +/- 22 #
50Hz, N
C 289 +/- 27 280 +/- 26 257 +/- 24 271 +/- 22 251 +/- 16 245 +/- 24
E 287 +/- 26 160 +/- 12 * ‡ 242 +/- 20 # 261 +/- 24 # 232 +/- 25 # 234 +/- 24 #
100Hz, N
C 290 +/- 27 279 +/- 25 254 +/- 24 269 +/- 22 249 +/- 15 243 +/- 23
E 282 +/- 26 175 +/- 9 * ‡ 243 +/- 20 # 257 +/- 22 # 230 +/- 24 # 233 +/- 23 #
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Measurements were taken before (PRE) and after (POST) exercise, and 24 (R1), 48 (R2), 72 

(R3), and 144(R6) hours after the exercise in both the exercised (E) and non-exercised (C) leg. 
Values are mean +/- standard error mean. * significantly different than PRE, # significantly 

different than POST, ‡ significantly different than corresponding time point in control.  
 

Table 3. +dF/dtmax at different frequencies of stimulation
Time Points, n

PRE POST R1 R2 R3 R6

10Hz, N/s
C 1395 +/- 159 1106 +/- 112 * 942 +/- 126 * 1078 +/- 139 * 1065 +/- 112 * 1025 +/- 115 *
E 1443 +/- 183 466 +/- 84 * ‡ 942 +/- 106 * # 1114 +/- 134 * # 945 +/- 138 * # 933 +/- 128 * #
20Hz, N/s
C 2290 +/- 229 2035 +/- 189 1842 +/- 192 2129 +/- 197 1896 +/- 116 1940 +/- 176
E 2347 +/- 242 751 +/- 145 * ‡ 1797 +/- 161 # 2153 +/- 243 # 1901 +/- 236 # 1760 +/- 182 #
30Hz, N/s
C 2864 +/- 271 2758 +/- 258 2586 +/- 280 2896 +/- 280 2610 +/- 170 2557 +/- 252
E 3028 +/- 295 1221 +/- 176 * ‡ 2544 +/- 248 # 2958 +/- 327 # 2437 +/- 273 # 2359 +/- 235 #
50Hz, N/s
C 3429 +/- 347 3326 +/- 324 3126 +/- 347 3421 +/- 316 3028 +/- 221 3097 +/- 292
E 3647 +/- 350 1831 +/- 211 * ‡ 3178 +/- 330 # 3586 +/- 409 # 2929 +/- 329 # 2842 +/- 256 #
100Hz, N/s
C 3615 +/- 284 3634 +/- 340 3536 +/- 391 3879 +/- 400 3425 +/- 197 3405 +/- 317
E 3943 +/- 410 2373 +/- 202 * ‡ 3689 +/- 407 # 3972 +/- 452 # 3353 +/- 384 # 3155 +/- 288 #
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Measurements were taken before (PRE) and after (POST) exercise, and 24 (R1), 48 (R2), 72 

(R3), and 144(R6) hours after the exercise in both the exercised (E) and non-exercised (C) leg. 
Values are mean +/- standard error mean. * significantly different than PRE, # significantly 

different than POST, ‡ significantly different than corresponding time point in control.  
 

Table 4.  -dF/dtmax at different frequencies of stimulation
Time Points, n

PRE POST R1 R2 R3 R6

10Hz, N/s
C -1707 +/- 240 -1058 +/- 107 * -902 +/- 119 * -913 +/- 89 * -1027 +/- 118 * -958 +/- 118 *
E -1544 +/- 226 -418 +/- 80 * ‡ -824 +/- 95 * # -968 +/- 87 * # -913 +/- 116 * # -876 +/- 117 * #
20Hz, N/s
C -2967 +/- 296 -2674 +/- 220 -2321 +/- 263 * -2484 +/- 239 -2330 +/- 176 * -2289 +/- 267 *
E -2881 +/- 303 -1093 +/- 195 * ‡ -2082 +/- 163 * # -2314 +/- 221 * # -2089 +/- 225 * # -2142 +/- 207 * #
30Hz, N/s
C -3130 +/- 280 -3027 +/- 253 -2722 +/- 292 -2908 +/- 262 -2683 +/- 185 -2588 +/- 279
E -3063 +/- 296 -1698 +/- 209 * ‡ -2513 +/- 211 # -2719 +/- 256 # -2364 +/- 249 # -2464 +/- 244 #
50Hz, N/s
C -3115 +/- 270 -3111 +/- 277 -2793 +/- 292 -2951 +/- 266 -2655 +/- 186 -2607 +/- 275
E -3116 +/- 274 -2126 +/- 194 * ‡ -2634 +/- 248 -2835 +/- 297 -2444 +/- 245 -2532 +/- 263
100Hz, N/s
C -2847 +/- 198 -2918 +/- 252 -2686 +/- 299 -2821 +/- 257 -2547 +/- 161 -2464 +/- 281
E -2661 +/- 252 -2017 +/- 189 * ‡ -2525 +/- 261 -2725 +/- 296 -2364 +/- 238 -2512 +/- 272
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Measurements were taken before (PRE) and after (POST) exercise, and 24 (R1), 48 (R2), 72 

(R3), and 144(R6) hours after the exercise in both the exercised (E) and non-exercised (C) leg. 
Values are mean +/- standard error mean. * significantly different than PRE, # significantly 

different than POST, ‡ significantly different than corresponding time point in control.  

 
Measurements were taken every 5 min during exercise starting after the first minute of exercise 
in both the exercised (E) and non-exercised (C) leg. Values are mean +/- standard error mean. 1 
significantly different than 1 min, 2 significantly different than 5 min, 3 significantly different 
than corresponding time point in control.  

 
 
 
 
 

Table 5. MVC Force, AEMG, and IT % Activation
Time Points, n

PRE POST R1 R2 R3 R6

MVC Po, N
C 557 +/- 54 500 +/- 48 477 +/- 54 * 503 +/- 53 478 +/- 39 * 508 +/- 58
E 557 +/- 58 313 +/- 16 * ‡ 467 +/- 46 * # 464 +/- 43 * # 448 +/- 40 * # 477 +/- 43 * #
AEMG, mV
C 0.49 +/- 0.09 0.38 +/- 0.09 0.48 +/- 0.11 0.58 +/- 0.16 0.59 +/- 0.20 0.54 +/- 0.11
E 0.49 +/- 0.13 0.30 +/- 0.10 0.55 +/- 0.14 0.59 +/- 0.15 0.38 +/- 0.09 0.44 +/- 0.08
IT, %
C 99 +/- 0.2 99 +/- 0.2 98 +/- 0.6 98 +/- 0.4 99 +/- 0.2 99 +/- 0.2
E 99 +/- 0.2 98 +/- 0.6 98 +/- 0.6 98 +/- 1.2 99 +/- 0.7 99 +/- 0.5

Table 6. Average EMG and Force During Exercise
Time Points, n

1min 5min 10min 20min 25min 30min

aEMG, mV
C 0.003 +/- 0.002 0.004 +/- 0.001 0.003 +/- 0.001 0.004 +/- 0.001 0.005 +/- 0.002 0.004 +/- 0.002
E 0.14 +/- 0.039 3 0.18 +/- 0.064 1 3 0.26 +/- 0.087 1 2 3  0.27 +/- 0.106 1 2 3  0.27 +/- 0.097 1 2 3  0.26 +/- 0.091 1 2 3 

Force, % MVC
E 40.3 +/- 0.9 42.4 +/- 1.4 41.7 +/- 1.2 40.0 +/- 0.9 39.5 +/- 1.8 37.6 +/- 2.6 1
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Appendix 2: Study 2 Tabulated Force Data 
 

 
Measurements were taken before (PRE) and after (POST) isometric exercise (E1) and cycling 
exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) hours after the exercise in both the exercised 

(E) and non-exercised (C) leg. Values are mean +/- standard error mean. * significantly different 
than PRE E1, # significantly different than POST E1, † significantly different than PRE E2 ‡ 

significantly different than POST E2, • significantly different than corresponding time point in C. 
 

Table 1. Twitch Characteristics
Time Points, n

Pre E1 Post E1 Pre E2 Post E2 R1 R2 R3

Pt, N
C 134 +/- 15 138 +/- 15 135 +/- 18 77 +/- 9 * # † 127 +/- 16 ‡ 127 +/- 12 ‡ 125 +/- 11 ‡
E 140 +/- 13 70 +/- 10 * • 136 +/- 12 # 101 +/- 13 * # † • 131 +/- 14 # ‡ 129 +/- 13 # ‡ 130 +/- 15 # ‡
CT, ms
C 97 +/- 4 106 +/- 7 105 +/- 8 103 +/- 5 113 +/- 12 101 +/- 5 98 +/- 5
E 93 +/- 5 82 +/- 8 • 99 +/- 5 109 +/- 10 # 103 +/- 7 # 104 +/- 6 # 108 +/- 8 #
1/2RT, ms
C 48 +/- 4 44 +/- 3 44 +/- 3 40 +/- 2 48 +/- 3 50 +/- 4 48 +/- 4
E 61 +/- 5 • 35 +/- 1 * 54 +/- 6 # 40 +/- 3 * † 54 +/- 7 # ‡ 57 +/- 4 # ‡ 51 +/- 5 #
RT, ms
C 58 +/- 3 61 +/- 3 59 +/- 3 61 +/- 3 62 +/- 4 61 +/- 3 60 +/- 3
E 56 +/- 3 52 +/- 5 * • 62 +/- 4 # 61 +/- 3 # 62 +/- 4 # 60 +/- 2 # 63 +/- 4 #
+dF/dtmax, N/s
C 2318 +/- 354 2380 +/- 367 2415 +/- 452 1285 +/- 181 * # † 2042 +/- 293 ‡ 2127 +/- 322 ‡ 2092 +/- 271 ‡
E 2360 +/- 333 1278 +/- 242 * • 2299 +/- 319 # 1767 +/- 331 * # • 2088 +/- 293 # 2096 +/- 293 # 2067 +/- 321 #
-dF/dtmax, N/s
C -1893 +/- 193 -2215 +/- 185 -2190 +/- 270 -1375 +/- 177 # † -1826 +/- 130 -1710 +/- 138 -1854 +/- 159
E -1576 +/- 152 -1424 +/- 170 • -1905 +/- 224 -1598 +/- 200 -1825 +/- 241 -1617 +/- 192 -1928 +/- 221
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Measurements were taken before (PRE) and after (POST) isometric exercise (E1) and cycling 
exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) hours after the exercise in both the exercised 

(E) and non-exercised (C) leg. Values are mean +/- standard error mean. * significantly different 
than PRE E1, # significantly different than POST E1, † significantly different than PRE E2 ‡ 

significantly different than POST E2, • significantly different than corresponding time point in C. 
 

Table 2. Force at different frequencies of stimulation
Time Points, n

Pre E1 Post E1 Pre E2 Post E2 R1 R2 R3

10Hz, N
C 176 +/- 16 146 +/- 20 * 120 +/- 12 * # 61 +/- 6 * # † 121 +/- 16 * # ‡ 111 +/- 12 * # ‡ 128 +/- 18 * # ‡
E 175 +/- 18 36 +/- 6 * • 117 +/- 7 * # 79 +/- 9 * # † • 114 +/- 14 * # ‡ 117 +/- 14 * # ‡ 121 +/- 12 * # ‡
20Hz, N
C 321 +/- 29 279 +/- 28 * 286 +/- 32 * 156 +/- 18 * # † 260 +/- 33 # ‡ 233 +/- 18 # ‡ 256 +/- 27 # ‡
E 317 +/- 26 93 +/- 11 * • 267 +/- 16 * # 204 +/- 20 * # † • 240 +/- 23 * # ‡ 251 +/- 24 * # ‡ 262 +/- 22 * # ‡
30Hz, N
C 363 +/- 33 340 +/- 33 346 +/- 33 280 +/- 33 * # † 311 +/- 38 282 +/- 21 * † 307 +/- 34
E 346 +/- 24 159 +/- 18 * • 326 +/- 24 # 308 +/- 28 # 294 +/- 33 # 305 +/- 28 # 314 +/- 25 #
50Hz, N
C 363 +/- 30 365 +/- 33 368 +/- 34 371 +/- 39 334 +/- 40 303 +/- 23 * # † ‡ 327 +/- 34
E 367 +/- 25 222 +/- 21 * • 346 +/- 23 # 370 +/- 30 # 313 +/- 35 # 328 +/- 31 # 335 +/- 27 #
100Hz, N
C 382 +/- 29 371 +/- 33 372 +/- 35 387 +/- 39 335 +/- 39 309 +/- 23 * # † ‡ 327 +/- 33 * ‡
E 387 +/- 27 256 +/- 22 * • 350 +/- 21 # 388 +/- 31 # 314 +/- 33 * # ‡ 328 +/- 29 * # ‡ 332 +/- 27 * # ‡
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Measurements were taken before (PRE) and after (POST) isometric exercise (E1) and cycling 
exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) hours after the exercise in both the exercised 

(E) and non-exercised (C) leg. Values are mean +/- standard error mean. * significantly different 
than PRE E1, # significantly different than POST E1, † significantly different than PRE E2 ‡ 

significantly different than POST E2, • significantly different than corresponding time point in C. 
 

Table 3. +dF/dtmax at different frequencies of stimulation
Time Points, n

Pre E1 Post E1 Pre E2 Post E2 R1 R2 R3

10Hz, N/s
C 1871 +/- 240 1705 +/- 274 1219 +/- 178 * # 670 +/- 90 * # † 1089 +/- 170 * # ‡ 1096 +/- 158 * # ‡ 1211 +/- 188 * # ‡
E 1771 +/- 230 448 +/- 62 * • 1118 +/- 109 * # 942 +/- 126 * # • 1003 +/- 146 * # 1017 +/- 122 * # 1126 +/- 110 * #
20Hz, N/s
C 3221 +/- 234 2911 +/- 283 2557 +/- 323 * 1616 +/- 198 * # † 2086 +/- 180 * # ‡ 2078 +/- 198 * # ‡ 2262 +/- 233 * # ‡
E 2780 +/- 281 1058 +/- 134 * • 2231 +/- 223 * # 2102 +/- 217 * # 1984 +/- 105 * # 2038 +/- 205 * # 2084 +/- 189 * #
30Hz, N/s
C 4055 +/- 358 4214 +/- 404 3866 +/- 371 3139 +/- 384 * # † 3119 +/- 276 * # † 2895 +/- 260 * # † 3256 +/- 317 * # †
E 3483 +/- 299 1902 +/- 195 * • 3050 +/- 286  • 3151 +/- 288 2918 +/- 174 # 2896 +/- 281 # 2921 +/- 255 #
50Hz, N/s
C 4726 +/- 329 5111 +/- 540 4642 +/- 431 4938 +/- 576 3935 +/- 315 * # ‡ 3516 +/- 321 * # † ‡ 4067 +/- 366 # ‡
E 4141 +/- 342 2888 +/- 273 * • 3833 +/- 331  • 4308 +/- 331  • 3543 +/- 193 ‡ 3617 +/- 361 ‡ 3477 +/- 313 # ‡
100Hz, N/s
C 5155 +/- 334 5612 +/- 570 5065 +/- 493 5337 +/- 423 4451 +/- 366 # ‡ 4056 +/- 389 * # † ‡ 4564 +/- 418 # ‡
E 4561 +/- 308 3781 +/- 313 • 4379 +/- 359 • 5176 +/- 351 4111 +/- 259 ‡ 4061 +/- 402 ‡ 4063 +/- 360 ‡
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Measurements were taken before (PRE) and after (POST) isometric exercise (E1) and cycling 
exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) hours after the exercise in both the exercised 

(E) and non-exercised (C) leg. Values are mean +/- standard error mean. * significantly different 
than PRE E1, # significantly different than POST E1, † significantly different than PRE E2 ‡ 

significantly different than POST E2, • significantly different than corresponding time point in C. 
 

Table 4.  -dF/dtmax at different frequencies of stimulation
Time Points, n

Pre E1 Post E1 Pre E2 Post E2 R1 R2 R3

10Hz, N/s
C -1710 +/- 148 -1267 +/- 202 * -1043 +/- 145 * -565 +/- 87 * # † -1095 +/- 187 * ‡ -896 +/- 132 * ‡ -1076 +/- 158 * ‡
E -1550 +/- 196 -344 +/- 70 * • -925 +/- 90 * # -928 +/- 162 * # • -973 +/- 155 * # -884 +/- 112 * # -1020 +/- 142 * #
20Hz, N/s
C -3895 +/- 316 -3325 +/- 289 * -3460 +/- 393 -1714 +/- 282 * # † -3024 +/- 413 * ‡ -2621 +/- 256 * # † ‡ -3052 +/- 404 * ‡
E -3744 +/- 254 -1099 +/- 124 * • -3118 +/- 230 * # -2708 +/- 394 * # • -2789 +/- 316 * # -2815 +/- 274 * # -2971 +/- 293 * #
30Hz, N/s
C -4346 +/- 349 -4049 +/- 336 -4114 +/- 398 -4014 +/- 531 -3595 +/- 481 * -3230 +/- 277 * # † ‡ -3529 +/- 399 *
E -4124 +/- 254 -2104 +/- 217 * • -3807 +/- 290 -4454 +/- 468 -3385 +/- 413 *  -3468 +/- 325 * -3534 +/- 293 * 
50Hz, N/s
C -4228 +/- 328 -4130 +/- 315 -4160 +/- 374 -5442 +/- 533 * # † -3737 +/- 514 ‡ -3404 +/- 287 * ‡ -3601 +/- 358 ‡
E -4128 +/- 275 -3004 +/- 241 * • -3852 +/- 265 -5254 +/- 432 * # † -3465 +/- 427 ‡ -3640 +/- 327 ‡ -3585 +/- 280 ‡
100Hz, N/s
C -3989 +/- 243 -4035 +/- 313 -4004 +/- 297 -5382 +/- 540 * # † -3511 +/- 392 ‡ -3282 +/- 247 ‡ -3473 +/- 301 ‡
E -3896 +/- 354 -3021 +/- 204 * • -3735 +/- 274 -5026 +/- 402 * # † -3438 +/- 452 ‡ -3489 +/- 321 ‡ -3484 +/- 346 ‡
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Measurements were taken before (PRE) and after (POST) isometric exercise (E1) and cycling 
exercise (E2), and 24 (R1), 48 (R2), and 72 (R3) hours after the exercise in both the exercised 

(E) and non-exercised (C) leg. Values are mean +/- standard error mean. * significantly different 
than PRE E1, # significantly different than POST E1, † significantly different than PRE E2 ‡ 

significantly different than POST E2, • significantly different than corresponding time point in C. 
Main effect of time (p<0.05) for aEMG, for aEMG Post E2 < PRE E2, R1, R2, & R3. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. MVC Force, AEMG, and IT % Activation
Time Points, n

Pre E1 Post E1 Pre E2 Post E2 R1 R2 R3

MVC Po, N
C 654 +/- 44 693 +/- 44 687 +/- 47 513 +/- 24 * # † 597 +/- 55 * ‡ 654 +/- 34 ‡ 668 +/- 36 ‡
E 665 +/- 37 383 +/- 35 * • 693 +/- 42 # 493 +/- 52 * # † 612 +/- 41 # ‡ 653 +/- 54 # ‡ 683 +/- 49 # ‡
aEMG, mV
C 0.78 +/- 0.09 0.66 +/- 0.11 0.87 +/- 0.08 0.36 +/- 0.08 0.77 +/- 0.09 0.76 +/- 0.14 0.80 +/- 0.11
E 0.72 +/- 0.09 0.55 +/- 0.06 0.86 +/- 0.15 0.38 +/- 0.07 0.62 +/- 0.12 0.74 +/- 0.14 0.75 +/- 0.10
IT, %
C 99 +/- 0.4 99 +/- 0.1 99 +/- 0.4 99 +/- 0.3 99 +/- 0.2 99 +/- 0.2 99 +/- 0.1
E 99 +/- 0.2 99 +/- 0.1 99 +/- 0.2 99 +/- 0.4 99 +/- 0.1 99 +/- 0.1 99 +/- 0.1
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