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Abstract 

Reducing variation in key product features is a very important goal in process 

improvement. Finding and trying to control the cause(s) of variation is one way 

to reduce variability, but is not cost effective or even possible in some situations. 

In such cases, Robust Parameter Design (RPD) is an alternative. 

The goal in RPD is to reduce variation by reducing the sensitivity of the process 

to the sources of variation, rather than controlling these sources directly. That is, 

the goal is to find levels of the control inputs that minimize the output variation 

imposed on the process via the noise variables (causes). In the literature, a 

variety of experimental plans have been proposed for RPD, including 

Robustness, Desensitization and Taguchi’s method. In this thesis, the efficiency 

of the alternative plans is compared in the situation where the most important 

source of variation, called the “Dominant Cause”, is known. It is shown that 

desensitization is the most appropriate approach for applying the RPD method 

to an existing process. 
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 Chapter 1 

Motivation and Objectives 

1.1 Motivation 

Reducing variation in critical outputs is a very important goal in process 

improvement and, nowadays, a primary objective of engineering work in many 

firms is the continuous and systematic reduction of variability in key product 

features. Finding and trying to control the cause(s) of variation is one way to 

reduce variability, but in situations where it is not cost effective or even possible 

Robust Parameter Design (RPD) is an alternative. 
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The goal of RPD is to reduce variation by reducing sensitivity to the sources of 

variation rather than controlling these sources directly. Robust parameter design 

problems may arise in all three stages of the product development cycle: product 

design, process design and manufacturing. Designing a product that is robust 

against changes in environmental factors, product deterioration, and 

manufacturing imperfections illustrates the application of RPD in the product 

design stage. Identifying the settings of process variables so as to reduce 

variation in an output characteristic is an example of using RPD in the process 

design stage, when we talk about creating a new process, or manufacturing 

stage, when we are concerned about an existing process. 

Despite Taguchi’s suggestion that countermeasures against variation caused by 

environmental variables and product deterioration are best built into the product 

at the product design stage (Taguchi, 1987 and Kackar and Phadke, 1981), 

reviewing case studies given in ASI (1985 and 1986) reveals that Taguchi’s 

method to RPD problems or a specific version of it, called “Robustness” in this 

thesis, are mostly used in the manufacturing stage. In the manufacturing stage, 

unlike product or process design stages, the main source(s) of variation can in 

many cases be identified by observing the existing process before trying to make 

the process robust. This is an important issue that can affect the efficiency of an 
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employed experiment and has not received much attention in the different 

approaches to RPD problem, including Taguchi’s approach. Indeed, the vital role 

of dominant cause in RPD motivated us to explore the efficiency and 

effectiveness of robustness or Taguchi’s approach to RPD when it is considered 

as a tool in process improvement. 

In this thesis, “Desensitization” is presented as an alternative to the 

robustness/Taguchi method and as the most appropriate approach to deal with 

RPD problems at the manufacturing stage. The efficiency of desensitization is 

examined and compared with the robustness and Taguchi’s approaches to the 

RPD in the situation where a dominant cause of output variation exists and can 

be found. 

1.2 Objectives 

The main objective of this thesis is to determine the role of dominant cause in 

variation reduction through robust parameter design. To do this, we identify 

desensitization as an appropriate approach to RPD at the manufacturing stage 

and compare its efficiency and effectiveness with the robustness and Taguchi’s 

approaches in similar situations. The following are some specific goals: 
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• To review the RPD problem literature and present a precise explanation of 

dominant cause and a brief description of different approaches to this 

problem 

• To compare the three RPD approaches qualitatively 

• To present a quantitative comparison of desensitization and robustness by 

introducing and formulating a performance index 

• To reassess and generalize the presented theoretical results by simulating 

different possible situations 

• To apply and compare the performance measure of each discussed 

approach to a real-world RPD problem using a simulation study 

• To present situations where desensitization is the recommended approach 

and the cases in which desensitization is not appropriate. 

1.3 Overview of the Thesis 

This chapter presents the motivation and the main objectives of the thesis. 

Chapter 2 presents a brief overview of RPD concepts and reviews some of the 

approaches to variation reduction and the robust parameter design problem. In 

addition, the definition of dominant cause in variation reduction literature is 
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discussed in detail. Next, Chapter 3 explains three different experimental plans 

for finding a robust solution and also describes their methods of analysis. 

Chapter 4 focuses on the comparison of the aforementioned experimental plans 

and provides a qualitative and quantitative evaluation of them in terms of 

efficiency. Chapter 4 begins with a qualitative comparison of robustness/Taguchi 

and desensitization experiments. Next, it introduces a performance measure 

used for quantifying the efficiency of each method and for a quantitative 

comparison. Subsequently, the results of the conducted simulations, that reassess 

and generalize theoretical results, are presented. 

To demonstrate the effectiveness of a desensitization experiment in comparison 

to a robustness/Taguchi experiment, a real-world RPD problem from automotive 

manufacturing industry is studied in Chapter 5. Chapter 6 then, describes the 

conditions needed for the desensitization method to be implemented successfully 

and also the conditions under which desensitization is not an appropriate 

approach. Finally, conclusions and some possible directions for future research 

are given in Chapter 7. Figure 1.1 summarizes the organization of the thesis. 
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Chapter 2 

Background and Literature Review 

of Robust Parameter Design (RPD) 

2.1 A Brief Historical Perspective of RPD 

Robust Parameter Design (RPD) problems are not new and RPD has a 

considerable history. Box (in Nair, 1992) points out that in the early part of last 

century Gossett, who studied the barley used by the Guinness brewery, 

emphasized that experiments had to be run in different areas of Ireland so as to 
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find barely varieties that were insensitive to particular local environments 

(Gossett, 1986). Later, in the 1930s, Sir R. A. Fisher introduced modern 

experimental design. Fisher’s pioneering work and the notable contributions by 

F. Yates and D. J. Finney, motivated by problems in agriculture and biology, in 

addition to agricultural studies in the early 1940s where their goal was to 

develop agricultural products whose yield was robust to the weather and soil 

conditions, formed the foundation for RPD (Wu and Hamada, 2000). 

Using statistical methods and experimental design to solve problems was not 

confined to agriculture and biology. Particularly, after World War II process 

industries, such as chemical or food industries, tried to take advantage of 

statistical techniques. The food industry, for instance, has for decades used 

design of experiments and robust parameter design to produce goods that are 

insensitive to deviations by the user from the instructions on the box. 

Seeking the ability to make many parts with few defects placed emphasis on 

variation reduction in manufacturing and inspired new methods in experimental 

design throughout the last few decades. The continuous and systematic 

reduction of variability in key product features became a chief goal of quality 

and process improvement. In the 1950s Genichi Taguchi, a Japanese quality 

consultant, developed some novel concepts and techniques for the planning and 
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analysis of robust parameter design experiments and advocated the use of 

parameter design to make a system less sensitive to variation, which is hard to 

control during normal operation of a given system. He introduced and 

popularized his approach to RPD in the USA in the mid 1980s (Taguchi, 1987; 

Taguchi and Wu, 1980). Extensive interest among engineers and statisticians was 

generated by his new philosophy and during the 1980s his methodology was 

used at many large corporations in the USA (ASI, 1985 and 1986). His approach 

also generated controversy and debate in the statistical and engineering 

communities (see Nair, 1992 for a summary of some debates) and consequently a 

period of research and development on new approaches to the RPD started and 

is still ongoing. 

2.2 RPD: Basic Concepts and Definitions 

The concepts of RPD need to be clarified in the context of variation reduction 

since RPD is one particular approach to variation reduction. The International 

Organization for Standardization defines the word “quality” as “degree to which 

a set of inherent characteristic fulfills requirements”. Considering this definition, 

variation reduction is embraced as a primary means of improving product 
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quality. Excessive variation in critical output characteristics affects product 

quality and leads to poor performance, low customer satisfaction, scrap, rework 

and eventually low production productivity. Reducing variation in critical 

outputs is a very important goal in process improvement. A primary goal of 

engineering efforts in many firms today is the continuous and systematic 

reduction of variability in key product features. 

Reviewing many variation reduction algorithms including the Shainin System 

(Shainin, 1992, 1993), DMAIC or Six Sigma (Harry and Schroeder, 2000), Scholtes 

algorithm (1988) and Statistical Engineering (Steiner and MacKay, 2005), 

indicates diagnostic and remedial journeys (see Figure 2.1), described by Juran and 

Gryna (1980) and Juran (1988), as the common element of these algorithms. 

During the diagnostic phase, the problem of process is investigated by 

examining its symptoms in order to find the causes of the problem. In the second 

phase, the remedial journey, we search for a solution. The idea is that if we know 

the cause of the problem, we are more likely to find efficient and effective 

solutions. 

Diagnostic journey Remedial journey Find and implement 
solution

Define the 
problem

Find the 
cause

 

Figure 2.1: Common elements of well-known variation reduction algorithms 
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The inputs that operate on a system can be divided into two broad types (Wu 

and Hamada, 2000; Steiner and MacKay, 2005): varying inputs and fixed inputs. 

Varying inputs are process characteristics whose values change (unit to unit or 

time to time) in a process without deliberate intervention. Examples include: 

operators, pouring temperature, raw material characteristics and so forth. Fixed 

inputs, on the other hand, are a process inputs/characteristics whose values can 

be adjusted, but remain fixed once they are chosen. These are parameters/factors 

that can be easily controlled and manipulate in a system’s normal production. 

For example, the product design and the target pouring temperature are fixed 

inputs. 

A cause of variation in process output is a varying input with the property that if 

all other inputs were held constant, then the output changes when the input 

changes. Note that although changing the level of a fixed input can be a solution 

for excessive variation in the output, a fixed input can not be a cause of variation 

in a process output (Steiner and MacKay, 2005). The design of the product, for 

example, can not be a cause of variation since it is a fixed input; however, 

changing the design of the product (i.e. changing a fixed input) can be a solution 

to reduce output variation. In the process improvement literature, varying and 
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fixed inputs are also known as noise and control factors respectively (Wu and 

Hamada, 2000). 

For any process there are a large number of causes, each with an effect. Applying 

the Pareto principle to the cause of variation, large effects can be attributable to 

only a few causes and these are called dominant causes (Steiner et al., 2007). A 

dominant cause(s) is varying input that has a large effect on the output with a 

relatively small change in its value. Juran and Gryna (1980, p. 105) define a 

dominant cause as “a major contributor to the existence of defects, and one 

which must be remedied before there can be an adequate solution”. Consider the 

following simple model which describes relationship between a dominant cause 

(X) and an output (Y) (note that X and other varying inputs are assumed to be 

independent in this model). We can say the variable X is a dominant cause of 

output variation if standard deviation in the output due to X is large relative to 

the standard deviation due to rest of the causes (Steiner and MacKay, 2005).  

 

Y f (X) noise= +  

2 2sd(Y) sd(due to X) sd(due to all other varying inputs)= +  (2.1) 
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In the Shainin System, the dominant cause is called the Red X™ and there is 

recognition that there may be a second or third large cause, called Pink X™ and 

Pale Pink X™ respectively (Steiner et al., 2007). Throughout this thesis we 

assume that a dominant cause(s) of variation in a process output exists. The 

emphasis on a dominant cause is justified because the effect of dominant cause 

on the overall output variation is magnified since the overall output variation is 

calculated as the square root of the sum of squares (Steiner et al., 2007). In other 

words, for any process output there are likely a large number of causes and if the 

effects of theses causes are independent and additive, the standard deviation of 

output that defines the variation can be decomposed as: 

2 2stdev(output) (stdev due to cause1) (stdev due to cause2)= + +L   

From this equation we can conclude that by reducing the effect of a single cause 

the standard deviation of output (which defines the problem) can be 

substantially decreased only if that cause has a large effect (i.e. that cause is 

dominant cause). To simplify the language, we refer to a (single) dominant cause 

of variation, while recognizing that there may be more than one important cause. 

Finding a dominant cause of variation in an output characteristic and trying to 

control and reduce its variation is one way to reduce variation. In some 

instances, however, the dominant cause may be difficult, expensive or even 
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impossible to control in a system’s normal production or usage condition (i.e. 

reducing variation in dominant cause is not a cost effective solution). In these 

cases, finding some fixed input and identifying new settings for them which will 

make the process output less sensitive to changes in the dominant cause is a 

possible solution (Steiner and MacKay, 2005). This idea is known as Robust 

Parameter Design (RPD) or simply Parameter Design which was popularized and 

introduced in the United States in the 1980s by the Japanese engineer, Genichi 

Taguchi, (Taguchi, 1987; Ross, 1988; Taguchi and Wu, 1980; Kackar, 1985). The 

term parameter design comes from an engineering tradition of referring to 

product characteristics as product parameters (Taguchi and Wu, 1980). 

Parameter design works by identifying appropriate settings of some fixed inputs 

to exploit interactions between the fixed inputs and the dominant cause to 

reduce the variation in the output without the necessity of reducing the variation 

in dominant cause. See Section 4.3 for a more detailed discussion of how this 

works. Parameter design can be used either to build quality into new 

products/processes (product/process design stage) or to improve the quality of 

existing ones (manufacturing stage) (Nair, 1992; Kackar, 1985). Our focus in this 

thesis is on the application of the robust parameter design in process 

improvement (manufacturing stage) and specifically in minimizing the output 
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variation around a target value in an existing process. As mentioned in last 

section, much attention has been given to the experimental design efforts and 

data analysis methods of the Taguchi approach in the 1980s and the 1990s. 

However, the effect of the knowledge of a dominant cause on the efficiency of 

the experiment for finding a robust solution has been not considered properly. A 

specific purpose of this thesis is to compare the efficiency of conducting an 

experiment to search for favorable interactions between control and noise factors 

in two situations: first when the dominant cause is known and second when the 

dominant cause is unknown. The former situation will be called Desensitization 

and the latter will be called Robustness in the thesis.  

Comparing desensitization and robustness reveals how knowledge of a 

dominant cause can play an important role in process improvement.  

2.3 Summary 

In this chapter, some RPD concepts that are related to the discussion in the 

forthcoming chapters were reviewed. After a brief review of variation reduction 

context, we focused on the differences between varying and fixed inputs and 

their role in an output variation. Explicit definition of dominant cause was 
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discussed and the effect of a dominant cause on output variation was reviewed. 

In the next chapter three different experimental plans for finding a robust 

solution and their methods of analysis are discussed in detail. 
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Chapter 3 

Experimental Plans for Finding a 

Robust Solution 

3.1 Introduction 

The goal in robust parameter design is to find new levels for fixed inputs that 

reduce the output variation. Since the value of a fixed input doesn’t normally 

change in the process, an experiment needs to be conducted in which we assign 
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different levels to the selected fixed inputs and we examine the effect of those 

new settings on the output mean and variation. The goal of such an experiment 

is to find and exploit a favorable interaction between the selected fixed inputs (or 

candidates) and the dominant cause that makes process output less sensitive to 

uncontrollable changes in the dominant cause. In practice, process analysts have 

used at least three different types of experiments to find robust process settings. 

The first approach, called a desensitization experiment is useful within the 

Statistical Engineering algorithm as by Steiner and MacKay (2005). In the 

Statistical Engineering algorithm we first look for a dominant cause using 

observational studies and then run a desensitization experiment in which we 

also deliberately control the levels of the identified dominant cause. The second 

approach is to conduct a so called robustness experiment involving selected fixed 

inputs only. For the third option, an experiment is run with selected fixed inputs 

and a range of varying inputs that the experimenter believes are likely to be 

important causes. We call the third option a Taguchi experiment, although 

option #2 is also sometimes called a Taguchi experiment. Desensitization, 

robustness and Taguchi style experiments are described in the next sections as 

the three major experimental plans for finding a robust solution. 
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3.2 Robustness Experiment 

3.2.1 Plan  

Robustness is a variation reduction approach which tries to find new settings for 

the fixed inputs that make the output less sensitive to variation in the unknown 

dominant cause (Steiner and MacKay, 2005). In a robustness experiment a group 

of fixed inputs (called candidates) are selected based on engineering judgment 

and their effects on the output variation are examined. The experiment can be a 

full factorial or fractional factorial design. Once the candidates are identified, 

they will be systematically changed in the robustness experiment and a 

performance measure (usually the standard deviation of the output) will be 

recorded for each run. Whenever it is possible, randomization and replication 

should be used in robustness to improve precision of the experiment. Since 

knowledge of the dominant cause is not available, the length of experiment, the 

number of runs, the number of repeats in each run, and candidates are 

determined only based on engineering knowledge and the past experience of 

experimenters/analysts. 
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A famous positive example of an application of a robustness experiment is a case 

study reported by Quinlan (1985) on speedometer cables. Shrinkage in the plastic 

casing material can sometimes make speedometer cables noisy. So a project was 

initiated to reduce variation in postextrusion shrinkage of the casing for the 

speedometer cable. When the team’s efforts to find the cause of the shrinkage 

variation failed, they chose 15 fixed inputs and selected one new level for each. 

They then ran a two-level (one level of each candidate was the existing level) 

experiment with 16 runs (i.e. a 15 11
III2 −  fractional design). For each run 3000 feet of 

plastic casing were produced. Four samples were haphazardly cut out from each 

run and the percentage shrinkage measured on each specimen. Then, a 

performance measure (standard deviation of percentage shrinkage) was 

calculated (for each run) using the four sample values. Finally, the best 

combination of levels to reduce the variation was found. The new levels were 

confirmed and the process was improved.  

As illustrated by the Speedometer Cable example, the robustness approach can 

be successful; however, there are some substantial drawbacks. To limit 

interference with regular production the robustness experiment is usually run 

over a short time (ASI, 1985; ASI, 1986). As a consequence there is a risk of 

running a high-cost experiment with no return, since if the dominant cause dose 
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not acts with each run of the experiment and/or if the candidates (selected fixed 

inputs) do not include the one(s) that have interaction with dominant cause the 

robustness experiment will fail.  We conclude that to have any hope of success in 

a robustness experiment the unknown dominant cause should act in the short-

term family of variation (part-to-part for example). Otherwise the run lengths 

need to be very long to allow the dominant cause time to act during the 

experiment. If the dominant cause does not act within each run, it will not be 

possible to find a favorable cause/candidate interaction even if one exists. 

Moreover, in robustness experiments fixed inputs are selected based only on the 

engineering knowledge whereas in desensitization experiments the engineering 

judgment is supplemented by the knowledge of the dominant cause. The more 

you know about the cause of variation, the greater the chance you will select 

fixed inputs to change that will reduce variation in the output. 

Considering these drawbacks and the fact that once a dominant cause is 

identified, in some instances, the remedy is obvious and no further investigations 

are needed, Steiner and Mackay (2005) recommend first finding the dominant 

cause of variation and then if the dominant cause can not be addressed directly, 

running a desensitization experiment. 
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3.2.2 Analysis 

To illustrate the method of analysis in the robustness approach, an example of 

the application of robustness in process improvement (reported in Steiner and 

MacKay, 2005) is reconsidered.  

In the painting department of an automotive manufacturing plant, excessive 

variation in film build (paint thickness) is observed from vehicle to vehicle in 

particular locations. As a consequence, to meet the minimum film build 

specification, the process center is kept well above the lower specification. 

However, running the process above target results in high paint usage and 

occasionally creates visual defects called “runs”. To solve the problem, the paint 

shop management decided to set up a project to reduce the standard deviation of 

film build from 0.67 thousandths of an inch, the baseline standard deviation, to 

0.35 thousandths of an inch. The team’s efforts to find the dominant cause failed 

and they decided to adopt the process robustness approach. Based on process 

experience, candidates and their corresponding levels were chosen as follows: 
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Table 3.1: Selected fixed inputs and their levels in the Film Build experiment 

Candidate  Low level High level

Anode dimension 3.1 3.9

Conductiv ity of paint Low  High

Temperature  30 50

Zone X voltage  450 475

Zone Z voltage  500 525  

The team selected a fractional factorial resolution V experiment with the 16 runs 

given as Table 3.2. The order of runs was randomized. 

Table 3.2: Experimental plan for the Film Build experiment 

Treatment Anode dimension Conductivity Temperature X voltage Z voltage

1 3.1 Low 30 450 500

2 3.9 Low 30 450 525

3 3.1 High 30 450 525

4 3.9 High 30 450 500

5 3.1 Low 50 450 525

6 3.9 Low 50 450 500

7 3.1 High 50 450 500

8 3.9 High 50 450 525

9 3.1 Low 30 475 525

10 3.9 Low 30 475 500

11 3.1 High 30 475 500

12 3.9 High 30 475 525

13 3.1 Low 50 475 500

14 3.9 Low 50 475 525

15 3.1 High 50 475 525

16 3.9 High 50 475 500  
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For each run, five panels were painted and film build was measured at five 

locations on each panel. The data are given in the following table (Table 3.3). 

 

Table 3.3: Treatments and results for the Film Build experiment 

Treatment Order Film build Average Log(s)

1 14 15.6, 15.3, 15.9, 15.2, 15.8 15.56 –0.51

2 5 16.0, 16.3, 17.3, 16.2, 16.6 16.47 –0.31

3 6 15.0, 14.8, 14.9, 15.3, 16.1 15.22 –0.28

4 2 16.1, 17.6, 17.2, 16.3, 16.1 16.69 –0.16

5 9 15.7, 15.6, 15.2, 15.2, 15.7 15.49 –0.57

6 12 17.3, 17.6, 16.8, 17.5, 17.3 17.28 –0.49

7 13 16.2, 14.4, 15.4, 14.5, 15.9 15.3 –0.09

8 4 17.3, 16.6, 16.6, 16.4, 17.8 16.94 –0.25

9 7 16.1, 14.7, 16.2, 14.7, 16.2 15.59 –0.09

10 16 17.2, 15.8, 16.4, 16.0, 15.8 16.23 –0.24

11 15 15.4, 15.2, 15.4, 15.3, 15.2 15.29 –1.06

12 1 16.6, 16.4, 16.4, 16.5, 16.4 16.48 –1.00

13 3 15.1, 15.4, 15.4, 15.0, 14.4 15.05 –0.41

14 10 16.8, 16.9, 17.0, 17.3, 16.3 16.89 –0.42

15 11 15.0, 15.1, 15.0, 14.9, 14.8 14.97 –0.86

16 8 16.6, 16.7, 16.3, 16.5, 16.3 16.48 –0.79  

 

As a first step in the analysis, the performance measure (log within run standard 

deviation) is calculated across repeats for each run. Then, a full model and a 
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Pareto chart are used to analyze the performance measure looking for large main 

effects and important interaction effects. 

The Pareto chart of the effects (Figure 3.1), shows there are large main effects due 

to conductivity and zone X voltage, and large interactions between conductivity 

and zone X voltage and between conductivity and temperature. 
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Figure 3.1: Pareto analysis of effects in the Film Build experiment 

 

The main effect and interaction plots (Figures 3.2 and 3.3) are used to draw 

conclusions. A regression model can also be used to model log(s) as a function of 

the important effects and then the levels of candidates (fixed inputs) that 

minimize this function are suggested as the robust solution. Wu and Hamada 

(2000), call this method of analysis the dispersion model approach. We will use 
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this model building method in next chapter to analyze the results of different 

experiments and to compare their efficiency. 
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Figure 3.2: Main effects for the Film Build experiment 
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Figure 3.3: Interaction plot for the Film Build example 
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From the interaction plots, the combination of high zone X voltage, high 

conductivity, and low temperature is best. Note that smaller log(s) is better. The 

project was a success. Running the process with these new settings reduced the 

baseline standard deviation of film thickness from 0.67 to 0.37. This allowed the 

team to reduce the target film build and save a substantial amount of paint. 

3.3 Taguchi Method Experiment 

3.3.1 Plan  

We now consider the second experimental approach, a Taguchi experiment. 

Fractional factorial designs or orthogonal arrays are often employed in 

conducting the experiment. Taguchi recommends a crossed array design for 

planning the experiment (Wu and Hamada, 2000). The Inner-outer array is a key 

concept in a crossed design or Taguchi’s approach to robust parameter design. In 

this approach a two-part experimental design is recommended. The Outer array 

(noise array) sets the levels of varying inputs while the inner array (control array) 

defines the treatments in terms of the levels of fixed inputs (Nair, 1992). Usually 

a 2k or 2k-p experiment is used for the inner array and a full factorial experiment is 
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used for the outer array (Ross, 1988; Montgomery, 2001). Randomization, 

replication and blocking should also here be considered. 

Each treatment combination in the control (inner) array is crossed with all level 

combinations in the noise (outer) array (Figure 3.4). Shoemaker et al. (1991) call 

this setup a product array since the outer array is run for every row in the control 

array. 

 

Inner Array (Control Array)   Outer Array (Noise Array) 

 

 

 

 

 

 

 

Figure 3.4: Product array in the Taguchi method for Robust Design 

To define some notation, let yij be the observed response when the inner array is 

at its ith treatment combination and the outer array is at its jth treatment 

combination. Then, assuming there are “a” treatments in the inner array and “b” 

 Response 
y1 1 
y1 2 
y1 3 
y1 4 

 ROW  A B C  
 
  1   1  1   1  
  2   1  1 -1  
  3   1 -1  1 
  4   1 -1 -1 
  5  -1  1  1 
  6  -1  1 -1 
  7  -1 -1  1 
  8  -1 -1 -1 

Row  D  E 
  1  1  1 
  2  1 -1 
  3 -1  1 
  4 -1 -1

Row  D E 
  1  1  1 
  2  1 -1 
  3 -1  1 
  4 -1 -1

 Response 
y8 1 
y8 2 
y8 3 
y8 4 
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treatments in the outer array the typical data for Taguchi experiment with a 

product array design will appear as in Table 3.4. 

Table 3.4: General arrangement for a Taguchi experiment – product array 

1 2 … b

1 y11 y12 y1b

treatment combinations of 2 y21 y22 y2b

inner array …

a ya1 ya2 yab

treatment combinations of outer array

 

 

For each inner array treatment then, i.y  and is  can be defined as: 
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So, unlike robustness we now deliberately manipulate or control some noise 

factors. Since noise factors or varying inputs are usually hard to control in the 

normal process, running a Taguchi experiment may be difficult or impossible. 

This illustrates one of the disadvantages of a Taguchi experiment compared to a 

desensitization experiment, discussed in Section 3.4, in which noise factors are 

limited to one or two dominant causes. In this type of experiment once the noise 

factors (varying inputs) are selected, they should be systematically varied to 

reflect their variation in normal condition. So, the levels of noise factors are fixed 

during the experiment. 

3.3.2 Analysis 

Identifying optimal parameter settings in a Taguchi experiment requires 

specifying a criterion that is to be optimized. Taguchi suggests combining the 

mean and the variance, for each inner array treatment, into a single performance 

measure known as the signal-to-noise ratio (Kackar, 1985). 

To derive conclusions, Taguchi recommends analyzing the mean response for 

each run in the inner array and also analyzing variation using an appropriate 

signal-to-noise ratio. Signal-to-noise ratios are derived from the quadratic loss 

function, and three of them are considered to be ʺstandardʺ and widely 
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applicable (Montgomery, 2001; Wu et al., 2000). The goal of quality improvement 

can be stated as attempting to maximize the signal-to-noise (S/N) ratio. 

Considering Table 3.4 the signal to noise ratio is calculated for each i as: follows: 

1. Nominal is best: i.e. you ideally want all output values to be equal to a target 

value 

2

T 2

yS/ N 10log
s

 
=  

 
 

Where y  and 2s  are defined by Equations (3.1) and (3.2) respectively. This 

signal-to-noise ratio is applicable whenever there is a target value and a two side 

specification. For example, the size of piston rings for an automobile engine must 

within the lower and upper limits and ideally close to a target to ensure 

product’s high quality. 

2. Larger the better: i.e. you want to maximize the output characteristics, e.g. 

breaking strength 

b

L 2
j 1 ij

1 1S/ N 10log
b y=

 
= −   

 
∑  

Where b is the number of observations at each treatment. 
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3. Smaller the better: i.e. you want to minimize the output characteristics, e.g. out 

of roundness 

b
2

S ij
j 1

1S / N 10log y
b =

 
= −  

 
∑  

Taguchi’s methods of using the S/Ns in the analysis are detailed in Taguchi 

(1987) and Wu & Hamada (2001). To illustrate, a case study, originally reported 

by Miller et al. (1993), is considered. We will use this example later to compare 

Taguchi, desensitization and robustness approaches in a simulation study. 

In automotive manufacturing, the drive pinion and gear “set” provides the 

transmission of power from the vehicle drive shaft to the rear axle. The parts are 

heat-treated to improve strength and wear characteristics. A quality problem 

arose from part distortion during heat-treatment, and a Taguchi style experiment 

was conducted in the attempt to find a way to improve the process. The five 

control factors (A-E) and three noise factors (F-H) are given in Table 3.5. 

Table 3.5: The control and noise factors for the Gear experiment 

Control Factors Noise Factors

A carbon potential F furnace track 

B operating mode G tooth size 

C last zone temperature H part position 

D quench oil temperature 

E quench oil agitation  
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The design matrix and response data are given in Table 3.6. The response is the 

dishing of the gear. Two levels were considered for each of the factors. A 25-1 

fractional factorial design was used for the inner (control) array and a 23 full 

factorial design was used for the outer (noise) array. There are 16×8=128 runs in 

total. The purpose of experiment was to find a way to run the process that has 

less gear dishing variation around a target value.  

 

Table 3.6: Design matrix and response data for the Gear experiment 

            Outer Array
F 1 1 1 1 -1 -1 -1 -1
G 1 1 -1 -1 1 1 -1 -1
H 1 -1 1 -1 1 -1 1 -1

Inner Array
Run A B C D E Y bar S/NT

1 1 1 1 1 1 7 12 6.5 14 3 14 4 16.5 9.625 5.4856
2 1 1 1 -1 -1 13.5 14.5 5.5 17 -7.5 15 -4.5 12 8.1875 -1.2167
3 1 1 -1 1 -1 3 11 5.5 18 3 19 1 21 10.188 1.9288
4 1 1 -1 -1 1 10.5 14.5 6.5 17.5 3 14.5 9 24 12.438 5.4641
5 1 -1 1 1 -1 10 23 3.5 23 4.5 25.5 10 21 15.063 4.4752
6 1 -1 1 -1 1 6.5 22 14.5 23 5.5 18.5 8 21.5 14.938 6.1476
7 1 -1 -1 1 1 5.5 28 7.5 28 4 27.5 10.5 30 17.625 3.5878
8 1 -1 -1 -1 -1 4 14 6.5 23 9 25.5 9 24.5 14.438 4.4127
9 -1 1 1 1 -1 -4 18.5 11.5 26 -0.5 13 0 16.5 10.125 -0.4057

10 -1 1 1 -1 1 9 19 17.5 21 0.5 20 6.5 18 13.938 5.2955
11 -1 1 -1 1 1 17.5 20 10 23 6.5 21.5 0 26 15.563 4.6716
12 -1 1 -1 -1 -1 7 23.5 1 20 7 22.5 4 22.5 13.438 2.9881
13 -1 -1 1 1 1 2.5 22 12 19.5 7 27.5 8.5 23.5 15.313 4.6048
14 -1 -1 1 -1 -1 24 26 14.5 27.5 7 22.5 13 22 19.563 8.6539
15 -1 -1 -1 1 -1 5.5 27 2.5 31 12.5 27 11.5 32.5 18.688 3.854
16 -1 -1 -1 -1 1 11 21.5 12 27 16.5 29.5 16 28.5 20.25 8.708  



Chapter 3. Experimental Plans for Finding a Robust Solution 

 

34

As the objective was to reduce the variation of response around a target value 

(nominal the best), S/NT is used by experimenters. The last two columns of Table 

3.6 contain y  and S/NT
 
values for each of the 16 inner-array runs.  

One approach to the analysis of this experiment is based on the “play the 

winners” rule. With this analysis we look for the treatment combination(s) that 

maximizes S/NT. As can be seen in Table 3.6 the last treatment combination 

maximizes the signal-to-noise ratio and setting factors A, B, C, D to their low 

levels and E to its high level is the recommended solution based upon this rule. 

An alternative analysis involves using analysis of variance (Montgomery, 2001) 

or the half-normal and main effect plots (Wu and Hamada, 2000) to determine 

the main factors that influence the signal-to-noise ratio. For the Gear experiment, 

Table 3.7 and Figure 3.5 show that operating mode (B) and quench oil agitation 

(E) are marginally significant control factors. 

 

Table 3.7: Estimated effects and coefficients for S/NT in the Gear experiment 

 Term      Effect    Coef  SE Coef    T      P 

 Constant           4.291   0.5230   8.20  0.000 
 A         -1.011  -0.505   0.5230  -0.97  0.357 
 B         -2.529  -1.265   0.5230  -2.42  0.036 
 C         -0.322  -0.161   0.5230  -0.31  0.765 
 D         -1.531  -0.766   0.5230  -1.46  0.174 
 E          2.409   1.205   0.5230   2.30  0.044 
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Figure 3.5: The normal probability plot of the effects for the Gear experiment 

Once the significant control factors are determined, two different ways for 

deriving conclusions can be used. First, graphs of the main effects, called 

ʺmarginal graphsʺ by Taguchi, are employed to find the robust solution. Figure 

3.6 illustrates these graphs for the Gear example. The usual approach is to 

examine the graphs and ʺpick the winnerʺ (Montgomery, 2001). In this case, 

factors B and E have larger effects than the others. As the objective is to 
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maximize S/NT, the low level of factor B and the high level of factor E are 

recommended as a robust solution.  
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Figure 3.6: The main effect plot for the S/NT in the Gear experiment 

The graphical analysis can be supplemented with a regression model of the 

signal-to-noise ratio (Wu and Hamada, 2000). A regression model is used to 

model S/NT in terms of the significant control factors and the robust solution is 

obtained by maximizing the function. Based on Table 3.7 the corresponding 

signal-to-noise ratio model for the Gear experiment is:  

S/NT = 4.29 – 1.265 XB + 1.205 XE 
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To maximize this function we would select the low level of factor B and the high 

level of factor E which is the same conclusion as in the graphical approach. This 

kind of model building analysis of Taguchi experiments is called “loss-model 

analysis” in the literature. 

Taguchi advocates claim that the use of the S/N ratio generally eliminates the 

need for examining specific interactions between the control and noise factors 

(Montgomery, 2001). However, we believe that examining control-noise 

interactions by either including noise terms in the response model or exploring 

the corresponding interaction plots can improve the efficiency of experiment and 

has the advantages of yielding additional information about the specific noise-

control interactions that may allow reduction of output variability induced by 

varying (noise) inputs. Shoemaker et al. (1991) point out this drawback of the 

loss-model approach, but the role of the dominant cause in improving the 

efficiency of the experiment and the advantages of knowing the dominant cause 

in the planning stage of the experiment have not been given much attention. 

The Taguchi method suffers from many of the same drawbacks as the robustness 

experiment as briefly discussed in Section 3.2. Since we do not assume a known 

dominant cause(s), choosing fixed inputs and also selecting noise factors and 

determining noise factor extreme levels is difficult. Taguchi recommends using 
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engineering judgment to select noise factors and assumes that the choice includes 

all important noise factors. This coupled with the difficulty of choosing 

appropriate fixed inputs usually leads to a large experiment. In the Gear 

experiment, for instance, 128 tests were run to try to find a robust solution. We 

show in the Chapter 4 that only one of the three noise factors is a large cause and 

we could have gained this knowledge using inexpensive observational 

investigations before running the Taguchi experiment. Excluding two other noise 

factors from outer array (i.e. using desensitization experiment) can reduce the 

number of runs to 16×2=32 without reducing the efficiency of experiment. 

Moreover, had the experimenters not selected the dominant cause in their outer 

array, their experiment would have failed. Some critics of Taguchi (e.g. 

Shoemaker et al., 1991 and Miller et al., 1993), recommend using a combined 

array instead of crossed array to reduce the number of runs, but we believe that a 

more critical issue is finding the dominant cause before proceeding with an 

experiment. This not only reduces the number of runs (by removing ineffective 

factors from outer and inner array) but is also, as shown later, more efficient. 

Another criticism of the Taguchi approach to parameter design, little discussed 

in the literature, is that running experiment with the outer array combinations is 
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challenging since these are normally varying inputs and it is usually hard and 

costly to keep them fixed for an experiment. 

The desensitization approach, as discussed in the next section, can overcome 

these disadvantages and can provide a good framework to solve RPD problems. 

3.4 Desensitization Experiment 

3.4.1 Plan  

In a desensitization experiment we choose a number of fixed inputs (candidates), 

based on knowledge of the dominant cause supplemented by engineering 

knowledge. We use an experimental plan to determine if these candidates and 

their new settings will make the process less sensitive to variation in the 

dominant cause. 

Desensitization can be considered a version of the Taguchi method to RPD 

problem in which only the dominant cause is involved in outer array. Steiner and 

MacKay (2005) suggest using a full factorial design for the candidates, if there are 
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three or fewer, and using a fractional design with resolution1 at least III 

otherwise. They also recommend selecting two levels for the dominant cause at 

the extremes of its normal range and using a crossed design where, for each 

treatment combination of candidates, there are runs for both levels of the 

dominant cause. Again, like any other experimental design, using the advantages 

of randomization, replication is advised to improve the precision of experiment. 

Comparing desensitization and robust experiments, having knowledge of 

dominant cause reduces the size of the outer array and can lead better choices of 

candidates for the inner array. 

Thus, desensitization experiments usually require fewer runs which reduces the 

cost and complexity of experiment. Also note that once a dominant cause is 

identified, in some instances, the remedy is obvious (dominant cause is 

controllable) and no further investigations are needed. 

Statistical Engineering methodology (Steiner and Mackay, 2005) and some other 

variation reduction approaches like Shainin System and Six Sigma (Steiner et al., 

2007) present a diagnostic journey for finding the dominant cause using 

progressive search and observational investigations. Generally observational 

studies are cheaper than experimental investigations because changing process 
                                                 

1For a brief explanation of design resolution and aliasing in a designed experiment see Appendix A. 
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settings and interrupting normal operations of the process are not needed. The 

knowledge of the dominant cause also assist us in selecting appropriate levels of 

dominant cause which makes our experiment more effective. 

 

3.4.2 Analysis 

Like the robustness and Taguchi method, analysis of a desensitization 

experiment can be carried out graphically or using a regression model. 

Drawing a plot of the output by each treatment is first step in the graphical 

analysis to look for promising treatment combinations. Then, all cause by 

candidate interaction effects plots are drawn and finally the levels of candidates 

that make the output less sensitive to variation in the dominant cause are 

determined by examining these plots.  

To analyze the results of desensitization experiment using a statistical model, a 

regression model, known as “response model”, is employed to model the 

response (output) in terms of the control factors and the two term interactions of 

the control factors and the noise factor. A robust solution can be determined by 

minimizing the standard deviation of output based on the response model. To 

illustrate, an example, reported by Steiner and MacKay (2005), is reconsidered. 
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In a manufacturing plant, excessive failures in the accelerated life testing of 

electric motors were reported. A team was charged with reducing the 

unevenness in the commutator shaft (reducing the unevenness could solve the 

excessive failures) and they found the shaft profile as a dominant cause. As the 

dominant cause was uncontrollable they decided to use the desensitization 

approach to solve the problem. They conducted a fractional factorial experiment 

with eight treatments using four candidates. The selected candidates and their 

corresponding levels are given in Table 3.8. 

 

Table 3.8: Selected fixed inputs and their levels in the Electric Motor experiment 

Candidate  Low level High level

Depth Shallow Deep

Grind time Short Long

Rotational Speed 1800 2400

Feed Rate Slow Fast  

For each of the eight treatments there were two runs, one that used a shaft with a 

smooth or premachined profile (low level of the dominant cause), and a second 

that used a rough profile (high level of the dominant cause). The order of the 

runs was randomized and the surface unevenness (the response) was measured 
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on a scale of 1 (smooth) to 10 (rough). The experimental plan and data are given 

in Table 3.9. 

Table 3.9: The experimental plan and data for the Electric Motor problem 

Treatment Depth Grind Time
Rotational  

speed Feed Rate
Profile              

(the dominant cause)
Smoothness  
(response)

1 Shallow Short 1800 Slow Smooth 2

2 Deep Short 1800 Fast Smooth 3

3 Shallow Long 1800 Fast Smooth 1

4 Deep Long 1800 Slow Smooth 2

5 Shallow Short 2400 Fast Smooth 3

6 Deep Short 2400 Slow Smooth 1

7 Shallow Long 2400 Slow Smooth 2

8 Deep Long 2400 Fast Smooth 3

1 Shallow Short 1800 Slow Rough 7

2 Deep Short 1800 Fast Rough 8

3 Shallow Long 1800 Fast Rough 9

4 Deep Long 1800 Slow Rough 8

5 Shallow Short 2400 Fast Rough 2

6 Deep Short 2400 Slow Rough 4

7 Shallow Long 2400 Slow Rough 3

8 Deep Long 2400 Fast Rough 5  

As mentioned in the beginning of this section, drawing a plot of the output by 

each treatment to look for promising treatment combinations is the first step in 

the graphical analysis of a desensitization experiment. Figure 3.7 shows the plot 

of smoothness by each treatment. As you can see in the scatter plot, treatments 5 

to 8, all with high rotational speed, look promising. 
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Figure 3.7: The plot of response versus treatments for the Electric Motor example 

Next we can examine the interaction effects plot of the dominant cause by each 

candidate to see if any levels of the candidates make the output less sensitive to 

variation in the dominant cause. Figure 3.8 demonstrates the interaction plots for 

profile versus each of the four candidates. Only Rotational Speed flattens the 

relationship between smoothness and the initial shaft profile. In conclusion, 

setting the Rotational Speed to its high level (2400) is a solution and will 

desensitize the smoothness to changes in the shaft profile. 
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Figure 3.8: The interaction plots in the Electric Motor experiment 

3.5 Summary 

This chapter discussed in detail the three variation reduction approaches to 

robust parameter design (i.e. desensitization, robustness, and Taguchi method). 

The plan and analysis of each these types of experiments were discussed and 

illustrated using examples. Some drawbacks of the robustness and Taguchi 

experiments were mentioned and some advantages of the desensitization 
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approach over two other methods were briefly described. The next chapter 

focuses on the qualitative and quantitative comparison of the robustness, 

Taguchi and desensitization approaches. 
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Chapter 4 

Desensitization versus Robustness 

and the Taguchi Method 

4.1 Introduction 

This chapter explores the advantages of desensitization over robustness and the 

Taguchi method. Following this introductory section, Section 4.2 presents a 

qualitative comparison of the three approaches. Subsequently, Section 4.3 
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presents a quantitative comparison of a desensitization experiment versus 

robustness experiment. Section 4.3 starts by considering and modeling the 

simplest case in which just one control factor and one dominant cause exist and 

we assume we have complete knowledge of the dominant cause. Desensitization 

and robustness are compared for this case using a performance measure. 

Subsequently, the results of this comparison are generalized to more than one 

control and one noise factor. We also compare desensitization and robustness in 

the more realistic case where we have uncertain knowledge of the dominant 

cause using a simulation study. As mentioned before, to simplify the language, 

we refer to a dominant cause of the variation here, recognizing that there may be 

more than one important cause. 

4.2 Qualitative Comparison 

Desensitization experiments have the following advantages over robustness and 

Taguchi style experiments: 

1. As mentioned in Section 3.2, in robustness experiments fixed inputs 

(candidates) are selected based only on engineering knowledge whereas 

in desensitization experiments engineering judgment is supplemented by 
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knowledge of the dominant cause. Considering the dominant cause, the 

analyst tries to choose only fixed inputs that she/he feels are likely to have 

a favorable interaction with the dominant cause. This smart selection can 

improve the effectiveness of experiment. Generally, the more you know 

about the dominant cause of variation, the greater the chance you will 

select fixed inputs to change that will mitigate the variation in the 

dominant cause. 

Knowing the dominant cause in desensitization can also help 

experimenters reduce the size of outer array. Including only the dominant 

cause decreases the total number of experimental runs when comparing 

desensitization to a Taguchi style experiment. Fewer runs leads to an 

easier, cheaper and shorter experiment. 

 

2. Since noise factors or varying inputs are usually hard to control in the 

normal process operation, running a Taguchi experiment may be difficult, 

costly or sometimes impossible since you have a number of noise factors 

in the outer array and you need to fix the levels of these factors in each 

run of the experiment. This problem is mitigated somewhat in the 
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desensitization approach that recommends an outer array defined only 

using the dominant cause. 

 

3. Having the dominant cause as a factor in the desensitization experiments, 

allows the analyst to model interactions between the dominant cause and 

the candidates directly whereas in the robustness experiments this 

interaction can not be assessed directly since dominant cause is not 

included as one of the experiment factors.   

 

4. As mentioned before, the desensitization approach recommends first 

finding the dominant cause of variation and then if the dominant cause is 

not controllable, running a desensitization experiment. In some situations, 

once a dominant cause is identified, the remedy is obvious and no further 

investigations are needed. In these cases the dominant cause is 

controllable and variation in the output can be reduced by reducing the 

variability of the dominant cause. 

 

5. Conducting baseline and observational investigations, as recommended 

by desensitization approach for finding the dominant cause, provides 
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useful information about how the process operates under current 

conditions. This information can be used to specify the problem goal by 

stating how the baseline should be changed. Although experimenters who 

follow the Taguchi or robustness method may also conduct these kind of 

investigations before proceeding to experimental investigations. However, 

conducting observational studies before any experimental investigations 

is not explicitly mentioned in Taguchi or robustness literature. In 

desensitization approach, however, conducting observational experiments 

for finding the dominant cause is a requirement. So, the likelihood of 

limited information about the current process is high in the Taguchi or 

robustness methods and this is another drawback of these methods. Recall 

the examples presented in Sections 3.2 and 3.3; if none of the runs 

represent the current setup of the process, how can experimenters be sure 

that the new setting, recommended by experiment, improves the process? 

The recommended robust solution may be much better than other settings 

used in the experiment, but still worse than the existing setting. 

 

6. One of the most important requirements for a robustness experiment to be 

successful is that the unknown dominant cause acts in a short-term family 
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of variation (Steiner and MacKay, 2005). This is important because the 

length of each run in a robustness experiment must be long enough to be 

sure that the dominant cause will vary over (close to) its full range within 

each run. Otherwise assessing the interaction between a dominant cause 

and the candidates is not possible (even indirectly) and we will not be able 

to see if any candidate settings make the process robust to the variation in 

the unknown dominant cause. If experimenters do not have any 

information about the time nature of the dominant cause they do not have 

any idea about the desired length of the experiment runs. If they know the 

unknown dominant cause acts in a time-to-time family, it will likely not be 

feasible to conduct a robustness experiment since the runs would need to 

be too long. In the desensitization experiment, however, the length of runs 

is not an important issue because we include the dominant cause in the 

experiment and we select two levels for the dominant cause at the 

extremes of its normal range which can reflect the full extent of output 

variation and this allows the experimenter to reasonably evaluate the 

effect of different settings of control factors and their interaction with the 

dominant cause on the output variation.  
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7. As mentioned in the Section 3.3, Taguchi recommends using engineering 

judgment for selecting noise factors and assumes that the choice includes 

all the important noise factors. However, without substantial process 

knowledge and/or extensive preliminary investigations (as recommended 

in the desensitization approach) a poor choice of noise factors is possible. 

We will consider this issue in the next chapter where it is shown that the 

effectiveness of a Taguchi method experiment depends critically on the 

choice of noise factors.  

 

8. In a desensitization experiment, the experimenter selects extreme levels of 

the dominant cause using information from preliminary investigations 

(conducted earlier when searching for the dominant cause). In Taguchi 

method, however, this information might not be available for 

experimenters since they are not required to conduct such preliminary 

investigations before conducting the experimental investigation; So, for 

Taguchi experiments we only on engineering judgment and past 

experience for selecting the levels of noise factors. 
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9. Regarding model based analysis, using the response model in the 

desensitization approach is an advantage in comparison to the robustness 

and Taguchi approaches in which constructing a loss-model is 

recommended for the analysis. In the loss-model approach focus is on 

modeling the optimization criterion, signal-to-noise ratio in Taguchi 

experiments and usually log(s) in robustness experiments, which is a 

nonlinear, many-to-one transformation of response and It is shown by 

Shoemaker et al. (1991) that modeling the optimization criterion may hide 

some of the relationship between individual control and noise factors and 

it is less likely that the optimization criterion can be a low-order linear 

model. Shoemaker et al. (1991) give an elaborated comparison between 

the loss-model approach over response model approach in data analysis. 

Considering all these qualitative reasons, we conclude desensitization 

experiments are more effective than robustness and Taguchi method 

experiments. This is shown quantitatively in the next section. 
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4.3 Quantitative Comparison 

4.3.1 Modeling 

To start, we consider the simplest situation where we have just one fixed input 

and only one dominant cause. Then, the idea of desensitization and robustness 

can be demonstrated by considering the following regression model: 

 

0 1 2 3Y X z Xz R= β +β +β +β +   (4.1) 

 

where, Y represents a random variable that describes the possible values of 

output characteristic; X represents a random variable that describes the possible 

values of the dominant cause; z represents the levels of desensitizer (the fixed 

input that can desensitize the output to variation in the dominant cause) and R is 

a random variable that describes the effect of all other varying inputs on the 

response.  

Equation (4.1) can be rewritten as: 

0 1 3 2Y ( z)X z R= β + β +β +β +     (4.2) 
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If 0z  is the value of z in the current process, 1 3 0zβ +β  is the slope of the 

relationship between the dominant cause (X) and the output (Y) with the current 

process settings (see Figure 4.1). 

X (dominant cause)

Y
 (

ou
tp

ut
)

Original process

 

Figure 4.1: Range of output values in the current process (z = 0z ) 

Assuming the effect of all other causes, R, vary independently of the dominant 

cause, we can estimate the standard deviation of output using Equation (4.3).  

 

2 2 2
1 3 x rsd(Y) ( z)= β +β σ +σ     (4.3) 

where, 2
xσ  and 2

rσ  are the variances of the dominant cause and residuals 

respectively. The purpose of desensitization and robustness experiments is to 
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find a new setting for z that flattens the relationship between output and 

dominant cause. This means we are looking for a new level of z, say *z , where 

*
1 3zβ +β   is closer to zero than 1 3 0zβ +β . With this change, while we continue to 

live with the variation of dominant cause (recall that we use these approaches 

when the dominant cause is hard to control or uncontrollable), we reduce the 

output variation (Figure 4.2) using the Xz interaction. We refer to this as a 

favorable interaction between X, a dominant cause, and z a (normally) fixed 

input. 

X (dominant cause)

Y
(o

ut
pu

t)

Improved process

 

Figure 4.2: Range of output values with new setting (z = *z ) 
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The purpose of robustness and desensitization experiments is the same; 

however, in the robustness approach we assume that the dominant cause is not 

known and the experimenter tries to find the appropriate level of z without 

having the knowledge of a specific dominant cause 

4.3.2 Performance Measure 

To compare the efficiency of desensitization and robustness experiments we 

need a performance measure. The method that provides a better prediction of 

output variation will be better at determining the best choice of the levels of the 

candidates. 

One way to define “good” prediction is to require the method have a reasonably 

consistent variance of the estimated response at points of interest (at specific 

levels of control factors used in the experiment). Consistent variance can be 

interpreted by smaller variation in estimated variance of output in either 

approach. So, we introduce the standard deviation of estimated response variance as a 

measure of efficiency or performance index, denoted by Std (P) in this thesis. 

Next, we formulate Std (P) for each method and then we compare each method 

using these formulated performance measures. The smaller the performance 

index the better. 
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In the case of desensitization, we first look for the dominant cause using 

observational investigations and a process of elimination (Shainin, 1993b; Steiner 

and MacKay, 2005), called the progressive search method. As such, to start we 

assume the standard deviation of dominant cause ( xσ ), the slope of the 

relationship between the dominant cause and the output (i.e. 1 3 0zβ +β ) , and the 

standard deviation of residuals ( rσ ), are known from our prior investigations. In 

Section 4.3.4 we relax this assumption. The elimination method is detailed in 

Steiner and MacKay (2005) and we will describe it briefly later.  

The model parameters are determined from our baseline investigation, an 

“input-output” investigation for verifying the dominant cause, and other 

preliminary enquiries for finding and verifying the dominant cause. 

Assuming xσ , rσ , and 1 3 0zβ +β  are known and the current value of z (i.e. 0z ) is 

equal to zero, the standard deviation of the output can be estimated with a 

desensitization experiment by estimating 3β  (denote the corresponding estimator 

as 3β% ). Thus, if we define desP  as  

2 2 2
des 1 1 3 1 x rP Var(Y | z z ) ( z )= = = β +β σ +σ%     (4.4) 

the performance index in the case of desensitization is the standard deviation of 

desP  (i.e. desStd(P ) ). 
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In the robustness method, on the other hand, we estimate the standard deviation 

of output directly based on the experiment results. This means that robP  is 

defined as: 

2
rob 1P Var(Y | z z ) s= = =     (4.5) 

where s2  is the sample variance of robustness experiment results when z=z1. 

Thus, the performance index in this case can be presented as the standard 

deviation of robP  (i.e. robStd(P ) ).  

Now, we derive desStd(P )  and robStd(P )  as given by the desensitization and 

robustness plans discussed in Section 3.4 and Section 3.2 respectively. For the 

case that was modeled and describe early, we have z as the fixed input or control 

factor and X as the dominant cause in the desensitization experiment; each at two 

levels (say a±  for z, where “a” is a constant value, and x x2µ ± σ  for x which are 

extreme levels of x). Using a crossed design, there are runs for both levels of the 

dominant cause for each treatment (each level of z). For the robustness 

experiment we have only a fixed input or z with the same levels in 

desensitization experiment (i.e. a± ). To be fair we compare desensitization and 

robustness experiments with the same number of runs. This means that if we 

have k replicates in the desensitization experiment, the number of replicates will 
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be equal to 2k in the robustness experiment. The desensitization and robustness 

experiment plans for a simple case (k=2) are given in Tables 4.1 and 4.2 

respectively. 

 

Table 4.1: Design matrix for desensitization experiment with k replicates (k=2 here) 

Treatment Run z x Y

1 1 +a y1

2 2 +a y2

3 3 -a y3

4 4 -a y4

1 5 +a y5

2 6 +a y6

3 7 -a y7

4 8 -a y8

x x2µ + σ

x x2µ + σ

x x2µ − σ

first replicate

second replicate

x x2µ − σ

x x2µ − σ

x x2µ + σ

x x2µ − σ

x x2µ + σ

 

 

Table 4.2: Design matrix for robustness experiment with 2k replicates (k=2 here) 

 
Treatment Run z Y

1 1 +a y1

2 2 -a y2

1 3 +a y3

2 4 -a y4

1 5 +a y5

2 6 -a y6

1 7 +a y7

2 8 -a y8

1st replicate

4th replicate

2nd replicate

3rd replicate
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Note that the only random variable in Equation (4.4) is 3β%  and before formulating 

the Std( desP ) we need to determine variance of 3β% . This variance can be 

determined using a regression model that we fit based on the desensitization 

experiment’s results. Note that with z0 =0, knowing 1 3 0zβ +β  we know 1β . 

The regression model is presented as: 

i 0 1 i 2 i 3 i i iY x z x z R= β +β +β +β +   i= 1, 2 ,…, 4k  and ),(~ 2
rri NR σµ  

 or 

i 1 i 0 2 i 3 i i iY x z x z R−β = β +β +β + ;    

This model may be written in matrix notation as: 

X= β%Z  

where  

i 1 iY x= − βZ   
0

2

3

β
β β

β

 
 =  
  

%  and 

1 1 1

2 2 2

4 4 4

1
1

1 k k k

z x z
z x z

X

z x z

 
 
 =
 
 
 

M M M
 

Using standard regression results (Montgomery, 2001) the variance of β%  is 

expressed in covariance matrix: 

2 T 1
rCOV( ) (X X)−β = σ%  

a symmetric matrix whose diagonal entries give the variance of the individual 

regression coefficient β% . Thus, 3VAR( )β%  is equal to 2 T 1
r 33(X X)−σ  where T 1

33(X X)−  is 
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the 3th main diagonal element of the matrix 1)( −XX T ). Considering the design 

matrix of desensitization experiment the 1)( −XX T  matrix can be calculated2. By 

calculating 1)( −XX T  we can see that its 3th diagonal element is 2216
1

xka σ
 where 

“k” is the number of replicates in the desensitization experiment and “a” is the 

absolute value of the levels of z. Accordingly 3VAR( )β%  is equal to
2
r
2 2

x16ka
σ

σ
  (i.e. 

3β% ~ ,( 3βN 2
r
2 2

x16ka
σ

σ
)). 

To find the Std ( desP ), we denote 1 3zβ +β%  as “A” in Equation (4.4) and rewrite the 

equation as: 

),,22 2
AA

2
des N(~AAP σµσσ xx +=     (4.6) 

In above equation, “A” is a random variable and 2
xσ  & 2

rσ  are constants, so  

4 2
des xVAR(P ) VAR(A )= σ       (4.7) 

where  

1 3 A 1 3A z ; E(A) z and= β +β = µ = β +β%  

2 2
2 2 r r

3 2 2 2
x x

VAR(A | z a) a VAR( ) a
16ka 16k

σ σ
= = β = =

σ σ
%  

                                                 

2 See detailed calculation in Appendix B.1. 
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Based on the definition of noncentral chi-square distribution (Abramowitz and 

Stegun, 1972) we know that: 

 
2










A

A
σ

~ 
2

2
1 ( ) A

A

with µχ λ λ
σ
 

=  
 

 

Thus, )(~ λχσ 2
1

2
A

2A  and 

 2 4 2 4 2 2 2
A 1 A A A AVAR(A ) VAR( ( )) 2(1 2 ) 2 ( 2 )= σ χ λ = σ + λ = σ σ + µ  (4.8) 

Substituting Equation (4.8) into Equation (4.7), we get 

4 2 2 2
r r A x

des 2

2 (16k )VAR(P )
8(4k)

σ + σ µ σ
=  

Thus, the performance index in the case of a desensitization experiment 

( desStd(P ) ) is the square root of above expression, namely: 

4 2 2 2
r r A x

des 2

2 (16k )Std(P )
8(4k)

σ + σ µ σ
=     (4.9) 

 

Next, we need to find Std ( robP ) when robP  is defined by Equation (4.5) (i.e. s2). 

The sampling distribution of the sample variance is a scaled chi-square 

(Abramowitz and Stegun, 1972): 

2s  ~ 2
1

2

1 −− n
y

n
χ

σ
 

22 4
y y2

rob

2
VAR(s ) Var(P ) 2(n 1)

n 1 n 1
 σ σ

⇒ = = − =  − − 
  

where n (# of data points used in the calculation of s2 )  is equal to 2k. So: 
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4
y

rob

2
Var(P )

2k 1
σ

=
−

 

Thus, the performance index in the case of robustness ( robStd(P ) ) can be 

formulated as square root of above expression: 

4
y

rob

2
Std(P )

2k 1
σ

=
−

    (4.10) 

The performance measures, Equation (4.9) and Equation (4.10), were also 

validated by a simulation. See related codes and result in Appendix C.1. 

4.3.3 Comparing Performance Measures 

As mentioned before, the smaller the performance index the higher the 

effectiveness. So, to quantitatively prove our claim that a desensitization 

experiment is more effective than a robustness experiment we should show that 

Equation (4.9) is always less than Equation (4.10) or  

 
4
y2

2k 1
σ

−
 > 

4 2 2 2
r r A x

2

2 (16k )
8(4k)

σ + σ µ σ   or   

 2 4
y256 k σ  > 4 2 2 2

r r A x(2k 1) ( 32k )− σ + σ µ σ  

Substituting )( 2222
rxAy σσµσ +=  into above expression and rearranging we obtain 
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 2 4 4 2 4 2 2 2 2
A x r A x r256k 256k 512kµ σ + σ + µ σ σ     

   >    (4.11) 

 4 2 2 2 2 2 2 2
r A x r r A x(2k 1) 64k 32k− σ + µ σ σ − σ µ σ   

Since 2 4 4
A x256k µ σ  is positive3, 2 4

r256k σ  is greater than 4
r(2k 1)− σ , and 2 2 2 2

A x r512k µ σ σ  

is also greater than 2 2 2 2
A x r64k µ σ σ  we can conclude that inequality (4.11) is true and 

consequently conclude that desStd(P )  is always less than robStd(P ) . This conclusion 

indicates that the desensitization approach is always more efficient than the 

robustness approach (given our assumptions). 

To generalize this conclusion we need to first consider cases in which there are 

more than one fixed input and one dominant cause and show that desStd(P )  is 

also less than robStd(P )  in these situations. Second, we should challenge the 

assumption that we took in the desensitization case (i.e. 2
Rσ , 2

Xσ , 1 3 0zβ +β  are 

known) and think about situations where one or all of these components are not 

known and we need to estimate them using either the desensitization experiment 

results and/or preliminary investigations. The next section shows how we 

generalized the comparison result. 

                                                 

3Note that k, the number of replicates in experiment is positive 
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4.3.4 Generalizing the Result 

In Appendix B.2, using a similar argument as given here, we show that the 

performance index of desensitization is less than the performance index of 

robustness even where we have “m” noise factors and “n” control factors. 

As mentioned early, the desensitization approach recommends using the method 

of elimination to find the dominant cause(s). This method concentrates on ruling 

out possibilities rather than looking directly for the dominant cause (Steiner and 

MacKay, 2005). Using elimination, the set of all causes is divided into families 

and then an observational investigation is conducted to rule out all but one 

family. This exercise is repeated on the remaining family until a single dominant 

cause or a small number of suspects cause(s) remain. At this point, when the 

family of remaining suspects is small, an “input-output” relationship 

investigation is used to isolate the dominant cause. In an “input-output” 

investigation a time frame is selected based on the full extent of output variation 

and a sample of 30 or more parts, spread across the time frame, is chosen. Then, 

for each part, the interested output characteristic and all remain suspects are 

measured. By plotting the output versus each one of the suspects any strong 

linear relationship can be found and the dominant cause can be identified. 
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Steiner and MacKay (2005) not only recommend the method of elimination and a 

series of simple observational investigations to isolate a dominant cause but also 

recommend conducting a verification experiment to be sure that the suspected 

cause is dominant. Following these steps for finding the dominant cause before 

conducting the desensitization experiment it is reasonable to assume 1 3 0zβ +β , xσ  

and rσ  are already known (or well estimated) since these components can be 

estimated using the observational studies needed to find and verify the 

dominant cause. However, we shall also consider the situations where 1 3 0zβ +β , 

xσ  and rσ  are not known and they are estimated using only the desensitization 

experiment results or using the desensitization results and a preliminary “input-

output” investigation. 

For this reason a simulation study was employed4. In the simulation study the 

model presented by Equation (4.2) is considered and without loss of generality 

we set: 

 

                

 

                                                 

4 See related codes in Appendix C.2. 

2
0 r

1 r

2 x

3 0

0 1
1 0
0 0
1 z 0

β = σ =

β = µ =
β = µ =
β = =
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With this setup, the levels of z in the desensitization and robustness experiments 

are used to quantify the size of the dominant cause and the potential to reduce 

process sensitivity to variation in the dominant cause. For fixed z the variance of 

output is : 

 2 2 2 2 2
1 3 x r xVar(Y) ( z) (1 1z) 1= β +β σ +σ = + σ +  

Then X is a dominant cause if 2 2
x(1 1z) 1+ σ > . So in the current process where 

z=z0=0, X is a dominant cause if 2
x 1σ > . Note that with z0 =0 knowing 1 3 0zβ +β  we 

know 1β .  

Then, four possible situations are considered: 

1. Assume the relationship between x and y (i.e. 1β ), xσ and rσ  are known 

and then estimate the standard deviation of y at high and low levels of z 

by estimating 3β  and using Equation (4.3)5. 

2. Assume the relationship between x and y (i.e. 1β ) and the residual 

variation (i.e. rσ ) are not known, however xσ  is known. In this situation  

1β  and rσ  are estimated using only the desensitization experiment results 

and then the standard deviation of y at high and low levels of z are 

estimated using Equation (4.3). This situation corresponds to a case where 
                                                 

5 Note that this situation is the same as situation that we assumed earlier for the theoretical comparison in 
Section 4.3.3. 
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we know X is a dominant cause and know the distribution of X values (i.e. 

xσ ). If we know X is a dominant cause we would also have some 

knowledge of  1β . So this situation is not overly realistic but is included for 

the sake of comparison. 

3. The same situation as option 2, but we use a preliminary input-output 

investigation (sample size =30) to help estimation of 1β  and rσ . 

4. Assume nothing is known, we only suspect that X is dominant cause and 

use the preliminary input-output investigation (with the same sample size 

as option 3) to estimate xσ and use both input-output investigation and 

the desensitization experiment to estimate 1β  and rσ . 

As in the theoretical comparison, the levels of z for each run of the 

desensitization experiment are the same levels of z used in the corresponding 

robustness run and the level of X in desensitization runs are chosen to be extreme 

(i.e. X X2µ ± σ ). Simulation results are given by Figures 4.3 to 4.6. 

In the figures we show contour plots of the performance ratio, which is robStd(P )  

divided by desStd(P ) . Values greater than one suggests desensitization is more 

effective than robustness. The simulation estimates the standard deviation of the 

output using 1000 trials of each of the desensitization and robustness 
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experiments. Each of earlier listed four options is considered. Figures 4.3 to 4.6 

show the performance ratio for option 1 through 4, respectively. These figures 

present the results for high levels of z, where X is a dominant cause. The number 

of replicates in all options is equal to 2 and the number of observations in the 

preliminary input-output investigations for option 3 and 4 is equal to 30. 

 

 

 

Figure 4.3: Performance ratio in situation 1 
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Figure 4.4: Performance ratio in situation 2 

 

 

 

 

 

 

 

 

Figure 4.5: Performance ratio in situation 3 
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Figure 4.6: Performance ratio in situation 4 

Figures 4.3 to 4.6 demonstrate that the performance ratio is bigger than 1 in all 

situations which validates and generalize, on some aspects, the theoretical results 

given earlier in Section 4.3.3. 

The Figures also indicate that when the values of z and xσ  increase the 

performance ratio increases as well. The reason is that the standard deviation 

due to dominant cause (the value of 2 2
1 3 x( z)β +β σ  in Equation (4.3)) grows when the 

value of z and/or xσ  increase. In other words, the effect of dominant cause in the 

output variation increases and we have a dominant cause that has higher 
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importance. Thus, the desensitization experiment is more effective when the the 

dominant cause has a greater effect. 

 4.4 Summary and Conclusions 

This chapter began by presenting a qualitative comparison of the robustness, 

Taguchi and desensitization approaches. Then, the efficiency of desensitization 

and robustness was compared by introducing a performance measure and 

comparing the formulated performance indexes of each approach. It was shown 

that assuming a dominant cause and a known cause/output relationship that the 

desensitization experiment is always more effective than the robustness 

experiment for any number of fixed inputs and dominant cause(s). Next, a 

simulation study considered different likely situations in which the primary 

assumptions of theoretical comparison were relaxed. In these cases again 

desensitization was more effective than robustness. 

In summary, both qualitative and quantitative comparisons suggest the 

desensitization method is a better approach to robust parameter design than the 

robustness or Taguchi approaches. 
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To further demonstrate the effectiveness of the desensitization approach, the 

Gear experiment, presented in Chapter 3, is reconsidered and studied in the next 

chapter.
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Chapter 5 

Case Study: Geometric Distortion of 

Drive Gears 

5.1 Introduction 

The Gear experiment, presented in Section 3.3, is reconsidered in this chapter. 

We use a simulation study to compare three different experiments (i.e. 

robustness, Taguchi style, and desensitization experiments) for solving the Gear 
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example problem. The simulation program calculates the performance measure 

of each approach and the method with the highest efficiency is determined by 

comparing these performance measures. 

5.2 The Gear Example: Comparing Approaches 

Using a Simulation Study  

In this section, all three approaches are applied to the experiment introduced 

earlier in Section 3.3. As described in the Gear example, there are five control 

factors and three noise variables. The main effect plot for dishing of the gear 

(Figure 5.1) suggests factor “H” as a dominant cause and scatter plots of the 

response versus noise factors (Figures 5.2, 5.3 and 5.4) confirm this suggestion.  
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Figure 5.1: Main effects plot for the Gear experiment 
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Figure 5.2: Scatter plot of the response versus factor G in the Gear experiment 
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Figure 5.3: Scatter plot of the response versus factor F in the Gear experiment 
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Figure 5.4: Scatter plot of the response versus factor H in the Gear experiment 
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Considering the normal probability plot (Figure 5.5) and Table 5.1, a reduced 

model is constructed as:  

 

A B C D E

F G H C F B F F H

D H C D F

Y 14.336 1.523x 2.648x 0.992x 0.312x 0.625x
0.422x 0.695x 7.195x 1.297x x 0.922x x 0.859x x
0.844x x 0.93x x x R

= − − − − +
+ − − + + +
− − +

  (5.1) 
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Figure 5.5: Normal probability plot in the Gear experiment (when response is Y) 
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Term Effect Coef SE Coef T P
Constant 14.336 0.3026 47.38 0

A -3.047 -1.523 0.3026 -5.03 0
B -5.297 -2.648 0.3026 -8.75 0
C -1.984 -0.992 0.3026 -3.28 0.002
D -0.625 -0.312 0.3026 -1.03 0.307
E 1.25 0.625 0.3026 2.07 0.045
F 0.844 0.422 0.3026 1.39 0.17
G -1.391 -0.695 0.3026 -2.3 0.026
H -14.391 -7.195 0.3026 -23.78 0

A*B -0.109 -0.055 0.3026 -0.18 0.857
A*C 0.266 0.133 0.3026 0.44 0.663
A*D 1.25 0.625 0.3026 2.07 0.045
A*E 0.437 0.219 0.3026 0.72 0.473
A*F -0.313 -0.156 0.3026 -0.52 0.608
A*G -0.297 -0.148 0.3026 -0.49 0.626
A*H 0.484 0.242 0.3026 0.8 0.428
B*C -0.453 -0.227 0.3026 -0.75 0.458
B*D 0 0 0.3026 0 1
B*E 1.156 0.578 0.3026 1.91 0.062
B*F 1.844 0.922 0.3026 3.05 0.004
B*G -0.047 -0.023 0.3026 -0.08 0.939
B*H 1.172 0.586 0.3026 1.94 0.059
C*D -1 -0.5 0.3026 -1.65 0.105
C*E -1.031 -0.516 0.3026 -1.7 0.095
C*F 2.594 1.297 0.3026 4.29 0
C*G -0.234 -0.117 0.3026 -0.39 0.7
C*H 1.391 0.695 0.3026 2.3 0.026
D*E -0.234 -0.117 0.3026 -0.39 0.7
D*F -0.766 -0.383 0.3026 -1.27 0.212
D*G -0.188 -0.094 0.3026 -0.31 0.758
D*H -1.687 -0.844 0.3026 -2.79 0.008
E*F -0.266 -0.133 0.3026 -0.44 0.663
E*G -0.563 -0.281 0.3026 -0.93 0.358
E*H 1 0.5 0.3026 1.65 0.105
F*G -0.062 -0.031 0.3026 -0.1 0.918
F*H 1.719 0.859 0.3026 2.84 0.007
G*H 0.453 0.227 0.3026 0.75 0.458

A*B*F -0.531 -0.266 0.3026 -0.88 0.385
A*B*G 0.266 0.133 0.3026 0.44 0.663
A*B*H 1.141 0.57 0.3026 1.88 0.066
A*C*F -0.094 -0.047 0.3026 -0.15 0.878
A*C*G 1.391 0.695 0.3026 2.3 0.026
A*C*H -0.141 -0.07 0.3026 -0.23 0.817
A*D*F -0.328 -0.164 0.3026 -0.54 0.59
A*D*G 0.625 0.312 0.3026 1.03 0.307
A*D*H 0.406 0.203 0.3026 0.67 0.505
A*E*F 0.359 0.18 0.3026 0.59 0.556
A*E*G -0.563 -0.281 0.3026 -0.93 0.358
A*E*H -0.469 -0.234 0.3026 -0.77 0.443
A*F*G 0.469 0.234 0.3026 0.77 0.443
A*F*H 0.531 0.266 0.3026 0.88 0.385
A*G*H 0.078 0.039 0.3026 0.13 0.898
B*C*F -0.156 -0.078 0.3026 -0.26 0.797
B*C*G -0.891 -0.445 0.3026 -1.47 0.148
B*C*H -0.609 -0.305 0.3026 -1.01 0.319
B*D*F 0.266 0.133 0.3026 0.44 0.663
B*D*G -0.563 -0.281 0.3026 -0.93 0.358
B*D*H 1.406 0.703 0.3026 2.32 0.025
B*E*F -0.016 -0.008 0.3026 -0.03 0.98
B*E*G 0.281 0.141 0.3026 0.46 0.644
B*E*H 1.063 0.531 0.3026 1.76 0.086
B*F*G 0 0 0.3026 0 1
B*F*H 1.375 0.688 0.3026 2.27 0.028
B*G*H 0.641 0.32 0.3026 1.06 0.295
C*D*F -1.859 -0.93 0.3026 -3.07 0.004
C*D*G -0.125 -0.063 0.3026 -0.21 0.837
C*D*H 0.313 0.156 0.3026 0.52 0.608
C*E*F -1.578 -0.789 0.3026 -2.61 0.012
C*E*G -0.219 -0.109 0.3026 -0.36 0.719
C*E*H -0.094 -0.047 0.3026 -0.15 0.878
C*F*G -0.25 -0.125 0.3026 -0.41 0.681
C*F*H 0.406 0.203 0.3026 0.67 0.505
C*G*H -1.516 -0.758 0.3026 -2.5 0.016
D*E*F 0.5 0.25 0.3026 0.83 0.413
D*E*G 1.266 0.633 0.3026 2.09 0.042
D*E*H 0.016 0.008 0.3026 0.03 0.98
D*F*G -0.422 -0.211 0.3026 -0.7 0.489
D*F*H -0.516 -0.258 0.3026 -0.85 0.399
D*G*H 0.031 0.016 0.3026 0.05 0.959
E*F*G 0.078 0.039 0.3026 0.13 0.898
E*F*H 0.672 0.336 0.3026 1.11 0.273
E*G*H -0.594 -0.297 0.3026 -0.98 0.332
F*G*H 0.719 0.359 0.3026 1.19 0.241

Table 5.1: Estimated effects and coefficient for Y in the Gear example 
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Analysis of Variance for Y 
 
Source               DF   Seq SS  Adj SS     MS       F      P 
Main Effects          8   8094.9  8094.9  1011.87  86.34  0.000 
2-Way Interactions   28    877.7   877.7    31.35   2.67  0.002 
3-Way Interactions   46    793.0   793.0    17.24   1.47  0.099 
Residual Error       45    527.4   527.4    11.72 
Total               127  10293.1 

For this simulation study,the model in Equation (5.1) is assumed the true model 

of the process and is used in simulation program to generate the data. Given the 

model we can generate a response surface model for the process variance: 

 

2 2 2 2 2
y D H C B C D F

2 2 2 2 2 2
G F H r

( 7.195 0.844x ) (0.422 1.297x 0.922x 0.93x x )

( 0.695) (0.859)

σ = − − σ + + + − σ

+ − σ + σ σ + σ
 (5.2) 

Here, it is assumed that F, G, H are uncorrelated random variables 

and F G H 0µ = µ = µ = . (Note that Var(XY)= Var(X)×Var(Y) where X and Y are 

independent and E(X)=E(Y)=0 - see Appendix B.3 for the proof). The standard 

deviations of noise factors are also assumed to be all equal to 0.5 

( F G H 0.5σ = σ = σ = ) and the value of 2
r 11.72σ =  is taken from the ANOVA table 

(see MS of Residual Error in Table 5.2). 

Table 5.2: ANOVA table in the Gear example 

 

Considering the Equation (5.1) as the model that describes the real process, the 

simulator runs three different experiments (robustness, desensitization, and 
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Taguchi style) and then analyzes the resulting data to determine the optimum 

treatment combination recommended by each experiment. The experimental 

plans and data analyses in each approach are based on the corresponding 

sections in Chapter 3. 

Following the desensitization approach an experiment is designed to include 

only the dominant cause (H) and five control factors (A, B, C, D, and E). The 

desensitization experiment includes a 25-1 fractional factorial design for the 

control array and for each treatment combination of the candidates there are runs 

for both levels of the dominant cause. The dominant cause, factor H, is fixed at 

extreme levels (±1 i.e. ± 2 Hσ ) and the total number of runs is determined based 

on the number of replicates. For example for just one replicate there will be 32 

runs (1×25-1×2) and for two replicates we will have 64 runs. According to the 

Section 3.4, in the analysis a regression model is constructed based on the 

experiment results. The regression function models the response (output) in 

terms of the control factors and the interactions between the control factors and 

the dominant cause. This regression model is used to generate a response surface 

model for the process variance. For each simulation run, the solution is the 

setting that minimizes the process variance as predicted by the fitted response 

model. 
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The robustness experiment is a 25-1 fractional factorial with only the five control 

factors. Each control factor is fixed at its low and high levels (±1) and the total 

numbers of runs are determined based on the number of replicates. To fairly 

compare the desensitization and the robustness experiment the same number of 

runs is considered for the two experiments. So, the number of replicates in the 

robustness experiment is two times of the number of replicates in the 

desensitization case. For two replicates in the desensitization case (2×25-1×2 = 64 

runs), for instance, there would be four replicates in the robustness experiment 

(4×25-1 = 64 runs). Noise factors are varied during the experiment as three random 

variables. 

The plan of the Taguchi experiment is the same as described for the Gear 

example in the Section 3.3. A 25-1 fractional factorial design is used for the control 

array and a 23 full factorial design is used for the noise array. Using this plan the 

number of runs is 128 (25-1 × 23 = 128). So, given the described experimental plans, 

the number of runs in the simulated Taguchi experiment can not be less than 128, 

but for robustness experiment the number of runs can be the same as in the 

desensitization experiment. 

Table 5.3 shows yσ  (i.e. square root of Equation (5.2)) for all 16 combinations of 

factors A to E in a 25-1 fractional factorial design. 
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Table 5.3: Standard deviation of output for all candidates’ combinations 

Treatment      A       B     C      D     E

1     -1    -1    -1    -1     1 4.8816
2     -1    -1    -1     1    -1 5.3133
3     -1    -1     1    -1    -1 4.7662
4     -1    -1     1     1     1 5.2960
5     -1     1    -1    -1    -1 4.7080
6     -1     1    -1     1     1 5.3181
7     -1     1     1    -1     1 5.0158
8     -1     1     1     1    -1 5.3642
9      1    -1    -1    -1    -1 4.8816

10      1    -1    -1     1     1 5.3133
11      1    -1     1    -1     1 4.7662
12      1    -1     1     1    -1 5.2960
13      1     1    -1    -1     1 4.7080
14      1     1    -1     1    -1 5.3181
15      1     1     1    -1    -1 5.0158
16      1     1     1     1     1 5.3642

yσ

 

As you can see in Table 5.3 and from Equation (5.2), the smallest output variation 

(4.7080) is obtained when we have either treatment 5 or 13 as the setting of fixed 

inputs. So optimum setting can be determined as: 

A:  high or low B:  high C:   low D:  low  E: high or low 

Note that the most important control factor is D. We will use this optimum 

setting later to compare the suggested settings from the desensitization, 

robustness and Taguchi experiments. 

The simulation program runs each test experiment 1000 times. For each 

simulation run, the proposed new process settings suggested by each experiment 

are evaluated using Equation (5.2) (i.e. using the true model). Then, the mean 
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and standard deviation of all 1000 yσ s for each type of experiments are 

recorded6. Suggested settings are summarized in Tables 5.4 and 5.5. Looking at 

these tables we can say that the robustness experiment, for example, suggests 

factor A at its high level for 510 out of 1000 runs and at its low level for 490 times 

of simulation runs and suggests treatment #1 for 74 times of simulation runs. 

Table 5.4 also compares these recommendations with the optimum setting given 

by Table 5.3.  

Table 5.4: Recommended settings by each method per 1000 runs of simulation  

Method Levels    A B C D E

Robustness H 0.5100 0.4680 0.4820 0.3260 0.5020
L 0.4900 0.5320 0.5180 0.6740 0.4980

interpretation high or low high or low high or low high or low high or low
Desensitization H 0.4920 0.4820 0.5010 0.0090 0.5280

L 0.5080 0.5180 0.4990 0.9910 0.4720
interpretation high or low high or low high or low low high or low

Taguchi H 0.2880 0.1930 0.3960 0.4450 0.5360
L 0.7120 0.8070 0.6040 0.5550 0.4640

interpretation low low high or low high or low high or low

Optimum setting high or low high low low high or low
 

 

 

 

                                                 

6 See codes in Appendix C.3. 
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Table 5.5: Number of each treatment combination recommended by each experiment for 

1000 runs of simulation  

Treatment      A       B     C      D     E Desensitization Robustness Taguchi

1     -1    -1    -1    -1     1 4.8816 134 74 152
2     -1    -1    -1     1    -1 5.3133 0 39 149
3     -1    -1     1    -1    -1 4.7662 131 74 138
4     -1    -1     1     1     1 5.2960 2 47 112
5     -1     1    -1    -1    -1 4.7080 120 77 67
6     -1     1    -1     1     1 5.3181 1 54 50
7     -1     1     1    -1     1 5.0158 141 82 15
8     -1     1     1     1    -1 5.3642 0 49 11
9      1    -1    -1    -1    -1 4.8816 132 94 0

10      1    -1    -1     1     1 5.3133 0 50 85
11      1    -1     1    -1     1 4.7662 117 89 87
12      1    -1     1     1    -1 5.2960 0 48 31
13      1     1    -1    -1     1 4.7080 110 72 29
14      1     1    -1     1    -1 5.3181 2 36 7
15      1     1     1    -1    -1 5.0158 110 79 2
16      1     1     1     1     1 5.3642 0 36 1

4.7080, 4.7662, 
4.8816, 5.0158

4.7080, 4.7662, 
4.8816, 5.0158, 
5.2960, 5.3133, 
5.3181, 5.3642

4.7080, 4.7662, 
5.0158, 5.2960, 
5.3133, 5.3181

Possible values for

yσ

yσ

 

 

The mean and standard deviation of calculated yσ s for each experiment are 

shown in Table 5.6. 

 

Table 5.6: Calculated performance measures in each method 

Mean of      
s

Standard deviation of   
s 

Mean of      
s

Standard deviation of   
s 

Mean of      
s

Standard deviation of   
s 

32 5.0590 0.2523 4.9140 0.1957

64 4.9930 0.2456 4.8745 0.1627

128 4.9603 0.2356 4.8458 0.1229 4.9047 0.1717

Robustness Desensitization Taguchi method
Number of 

Runs

yσ yσ yσ yσyσ yσ
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Table 5.4 indicates that the desensitization experiment suggests the level of the 

most important factor (i.e. factor D) correctly in 99 percent of simulation runs. 

The reason that D is the most important factor (for making the process 

insensitive to the variation in the dominant cause) is that factor D is the only 

fixed input that has interaction with the dominant cause (see Equation(5.1)) 

From Table 5.5, it we see that the desensitization experiment more likely leads to 

small values of yσ  compared with the robustness and Taguchi experiments. The 

largest possible value of yσ  using the desensitization experiment is 5.0158 while 

it is 5.3642 and 5.3181 in the robustness and Taguchi experiments respectively. 

Table 5.6 summarizes the simulation results. Note that the best method will yield 

the lowest average and the least variation in yσ s. The results in Table 5.6 shoe 

that the desensitization experiment has the lowest average of the yσ s and thus 

the highest efficiency comparing with the robustness and Taguchi experiments 

regardless of the number of runs. 

Moreover, if we compare the desensitization experiment in the case that has only 

32 runs with the Taguchi experiment (with 128 runs); it is revealed that the 

desensitization experiment with 4 times fewer runs has almost the same 

efficiency of the Taguchi experiment. In other words, using the knowledge of 



Chapter 5. Case Study: Geometric Distortion of Drive Gears 

 

90

dominant cause, a desensitization experiment which is smaller, easier and 

consequently cheaper (in desensitization experiment you need to fix fewer noise 

factors than in a Taguchi experiment) can be conducted and the same efficiency 

and results of a much larger Taguchi experiment can be expected. 

Equally important, the choice of noise factors in a Taguchi experiment is a critical 

issue. As mentioned in Chapter 4, Taguchi recommends using engineering 

judgment to select the noise factors and assumes that the choice includes all 

important noise factors. However, if the dominant cause is not known there is a 

risk of excluding the dominant cause from the outer array. This risk is one of the 

Taguchi method’s main drawbacks. To assess this the consequences of risk we 

decided to exclude the dominant cause (e.g. H) from Taguchi experiment plan 

and then rerun the simulation and analyze the obtained data. Note that as we 

now have a 22 full factorial design for the outer array, we can also use a 64-run 

Taguchi experiment. Comparing the results in Table 5.7 with those in Table 5.6 

shows that without the dominant cause in the noise array the Taguchi approach 

is the weakest approach. 
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Table 5.7: Performance measures of Taguchi method (the dominant cause H is excluded)  

Mean of     s Standard deviation of     s 

64

128 5.0356 0.2556

Number of 
Runs

Taguchi method

5.0443 0.2647

yσyσ

 

So, a potential drawback of the Taguchi method experiments is that it depends 

critically on how well the noise factors are chosen. If the dominant cause is 

absent from the experimenter choice of noise factors, the experiment will likely 

fail. In the desensitization case, however, the dominant cause is known and we 

do not need to worry about the selection of noise factors. 

5.4 Summary and Conclusions 

In this chapter, a real-world problem with the goal of variation reduction of 

output characteristic using robust parameter design was modeled and 

considered. Using MATLAB, a simulation study was run to compare the 

efficiency of the desensitization experiment with two alternative methods in the 

context of the Gear example. 
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All together, it was shown that desensitization is not only the cheapest and the 

most convenient approach but also the most effective approach to robust 

parameter design. Using the example it was also shown that the efficiency of 

Taguchi experiment depends critically on which noise factors were chosen. If the 

dominant cause is not one of the selected noise factors the Taguchi experiment 

performs poorly. The next chapter discusses the situation in which the 

desensitization approach is not recommended and briefly talks about the 

conditions that should be met for the desensitization method to be implemented 

successfully. 
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Chapter 6 

Desensitization Approach: 

Capability and Feasibility  

6.1 Introduction 

Finding the dominant cause and identifying the new process settings that make 

the process less sensitive to variation in the dominant cause, are not the only 

requirements for the successful implementation of desensitization. 
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In fact, there are situations in which the desensitization approach is not an 

appropriate approach for finding a robust solution. In this chapter, we first 

discuss the situations where the desensitization method is not recommended and 

then we talk about assessing feasibility and validating of a robust solution 

suggested by the desensitization method. 

6.2 Capability of the Desensitization Method 

As mentioned before, a product’s development cycle can be partitioned into 

three main stages: product design, process design, and manufacturing. At the 

product design stage engineers develop complete product design specifications 

including the specifications of materials, components, configuration and features. 

Next, process engineers design a manufacturing process to produce the product. 

The manufacturing department then uses the manufacturing process to produce 

many units of the product. 

Thorough this thesis we advocated the desensitization method as the best 

approach to variation reduction in the manufacturing stage since we believe the 

most important source(s) of noise, i.e. the varying input(s) that have the largest 

effect on the overall output variation, can be found by investigating the existing 
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processes using observational studies. In product and process stages, on the 

other hand, the desensitization approach is not an appropriate approach because 

in these stages you can only predict and suspect some sources of noises (usually 

external noises such as temperature, humidity, dust, vibration, and human 

variations in operating the product) as the important noise factors and you are 

likely not able to exactly determine the dominant cause of variation in an output 

characteristic. You can include the suspected noise factors in the outer array to 

conduct a parameter design experiment. Thus, a Taguchi style experiment is the 

recommended approach in the product and process stages. In the product and 

process design stages, experimenters use their engineering knowledge and 

judgment to select noise factors of a Taguchi experiment. 

We claim that the desensitization approach is the most effective approach in the 

manufacturing stage. This is true if you can find the dominant cause and you are 

able to fix the levels of dominant cause during the experiment. When the 

experimenters are not able to find the dominant cause of output variation despite 

all of their preliminary efforts, or when they find the dominant cause but it is 

impossible to fix the levels of dominant cause even for a short time during the 

experiment runs, a desensitization experiment would not be a feasible method. 

In this case, running a robustness experiment is probably the last hope. Steiner 
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and MacKay (2005) give an example where the problem was excessive variation 

in a crossbar dimension and experimenters were not able to hold the dominant 

cause fixed at its low or high level for a run of the desensitization experiment. 

Thereby, they resort to a robustness experiment as an alternative. The team 

found the barrel temperature as a dominant cause and raised the barrel 

temperature set point to solve the problem. But, with the new setting, the 

frequency of a mold defect, called burn, was increased. They suspected that the 

defect occurred when the mold cavity filed too fast. Since the dominant cause 

could not be controlled during a desensitization experiment they decided to 

conduct a robustness experiment. Then, they planned an experiment with four 

fixed inputs and they found a robust solution. An interesting point in the 

crossbar example is that although they were not able to proceed with a 

desensitization experiment they had a good choice of candidates based on the 

knowledge of dominant. The four fixed inputs (injection speed, injection 

pressure, back pressure, and screw speed) were selected based on their influence 

on fill time (i.e. dominant cause) and the robustness experiment was successful 

because of this correct choice. In other words, even if a desensitization approach 

is not potentially feasible in a specific case it is usually worth searching for a 

dominant cause of variation since the knowledge of dominant cause can be used 
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in the choice of candidates which improves the efficiency of either a 

desensitization experiment or a robustness experiment.  

6.3 Assessing Feasibility and Validating the 

Desensitization Method 

After finding the dominant cause, the feasibility of a desensitization experiment 

needs to be assessed. There are a few general rules to help us assess the 

feasibility of a variation reduction approach including the consideration of the 

costs and the likelihood of success. 

In some cases, once a dominant cause has been identified, the remedy is obvious 

and the team does not need to conduct an experimental investigation. The 

definition of obvious solution depends on the process and the level of process 

knowledge. Analysts have an obvious fix if they are confident that it is feasible 

(Steiner and MacKay, 2005). In some other cases, once a dominant cause is 

determined, we can reduce output variation by reducing the variation in the 

dominant cause (i.e. the dominant cause is controllable).  

Conducting a desensitization experiment is not recommended if the dominant 

cause is controllable or an obvious fix is available unless these ways of reducing 
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variation are not cost effective and finding a robust solution (i.e. making the 

process less sensitive to the variation of dominant cause) is preferable.  

To assess the feasibility of desensitization, we consider the costs and likelihood 

of success.  The costs of the desensitization approach include the cost of running 

an experiment to find the new levels of candidates that make the process less 

sensitive to variation in the dominant cause, the cost of a one-time change to the 

process settings (to implement the suggested new settings we need to change the 

current levels of candidates), and the cost of the ongoing operation of the process 

with the new settings. Although the desensitization approach is more effective 

than the robustness approach there is no information about whether either 

approaches will be feasible until the experimental investigation is complete. This 

is a common drawback of different approaches to robust parameter design.  

Assuming that the process is well centered, to successfully implement 

desensitization, we must (Steiner and MacKay, 2005): 

• Find the dominant cause and identify the fixed inputs (candidates) 

and their new levels that make the process less sensitive to 

variation in the dominant cause. 

• Check for potential negative side effects of new settings. 
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• Estimate the costs of changing the settings and the new ongoing 

operating costs. 

• Estimate the benefits of new settings and resultant variation 

reduction. 

Desensitization is a viable option when all of these tasks are accomplished and 

the benefits prevail over the costs. The benefits can be assessed using the 

relationship between the dominant cause and the output. The maximum gain is 

given if the effect of the dominant cause could be totally eliminated. 

Regardless of the chosen variation reduction approach it is advisable to validate 

the solution by checking the proposed solution to see whether the goal is met 

and also to check for any unexpected negative side effects due to the new 

settings of process. Moreover, we need to ensure that the implemented change is 

made permanent to have a lasting impact and to preserve the gains.  

To validate a robust solution we need to first implement the solution and next, 

conduct a validation observational investigation to compare the new baseline 

with the initial baseline  



Chapter 6. Desensitization Approach: Capability and Feasibility 

 

100

6.4 Summary  

In this chapter, we described the situations in which the desensitization approach 

is not feasible. The feasibility of desensitization was also discussed and the 

conditions that need to be met for the desensitization method to be implemented 

successfully were briefly presented. Finally, the importance of the validation 

stage of the Statistical Engineering algorithm was mentioned and the key tasks 

necessary to complete the implementation and validation of a robust solution 

were summarized. 
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Chapter 7 

Conclusions and Future Research 

7.1 Conclusions 

Reducing variation in critical output characteristics of a product in the stage of 

manufacturing was considered in this thesis and the role of dominant cause in 

the variation reduction through Robust Parameter Design (RPD) was explored. A 

qualitative and quantitative comparison of the desensitization approach versus 

robustness and Taguchi approaches was presented and both kinds of 
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comparisons suggested the desensitization method is the cheapest, most 

convenient, and most effective approach to the RPD at the manufacturing stage 

of a product development life cycle. This result was reconfirmed by considering 

a real world problem and comparing the three different approaches in the 

context of that problem. To run a desensitization experiment we need knowledge 

of dominant cause(s) of output variation. 

As a result, searching for the dominant cause of variation is highly recommended 

before proceeding to any experimental investigation to look for a robust solution. 

After finding the dominant cause, if an obvious solution is not evident and the 

dominant cause can be controlled temporarily, we suggest conducting a 

desensitization experiment to find a robust solution. 

The robustness approach can be selected as a last hope when it is hard to fix the 

levels of the dominant cause during a desensitization experiment or when we 

can’t find the dominant cause. 

Finally, after conducting the desensitization experiment and finding the solution, 

the feasibility of the solution must be assessed and the validated to ensure that 

the desensitization is implemented successfully. In the validation stage, we need 

to first implement the solution and next conduct a validation observational 
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investigation to compare the new baseline with the initial baseline and also to 

monitor for unexpected negative side effects. 

7.2 Suggestions for Future Research 

The research contained in this thesis opens up a range of new avenues for future 

productive research. The following are some suggested area of research: 

1. Expand the quantitative comparison of desensitization, robustness, and 

Taguchi experiment to processes with discrete output. The quantitative 

comparison presented in Chapter 4 only considered continues outputs. 

Since discrete outputs occur frequently in process variation reduction 

projects, it is useful to consider these situations and present a similar 

quantitative comparison. 

2. Expand the quantitative comparison under dependence of the noise 

factors. In the presented quantitative comparison we assumed that all 

noise factors are independent. This assumption can be relaxed and the 

quantitative comparison can be developed for handling the situations for 

which there exists dependency among the noise factors. 
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3. Explore the diagnostic journeys of well known variation reduction 

methodologies and suggest the most efficient approach for finding the 

dominant cause. 

4. Investigate the product and process stages of a product development cycle 

and suggest the most effective variation reduction approach to robust 

parameter design for each stage. 
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Appendix A 

Resolution in Fractional Factorial 

Experiments 

A brief description of the resolution in fractional factorial experiments is given in 

this appendix. We discuss this concept only for two-level fractional factorial 

designs. 

The most intuitive approach to study and estimate the effects of a number of 

inputs simultaneously would be to vary the factors of interest in a full factorial 
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design, that is, to try all possible combinations of settings. This would work fine, 

except when the number of experimental runs is limited. Since each run may 

require time-consuming and costly settings and resetting of machinery, 

experiments with large numbers of run are often not feasible. In these cases, 

fractional factorials are used to reduce the number of runs by sacrificing some 

interaction effects so that main effects may still be computed correctly. A 

technical description of how fractional factorial designs are constructed is 

beyond the scope of this thesis and detailed accounts of 2k-p fractional factorial 

experiments can be found, for example, in Box and Draper (1987), Box, Hunter, 

and Hunter (1978), Montgomery (2001), Deming and Morgan (1993), and in 

many other text books on this subject. In general, a fractional factorial design 

uses the high-order interactions to generate new factors. For example, consider 

the following design (Table A.1) that includes 9 factors but requires only 16 runs 

(instead of 29=512 required runs in a full factorial design). You may wonder how 

we found the column of signs for the factors in Table A.1. Note that the columns 

of signs for factor A, B, C, and D match a 24 full factorial design; but how about E, 

F, G, H, and J? 

To find the column of signs of E, for instance, the corresponding columns for A, 

B, and C is multiplied. We use the convenient notation “E = ABC” and consider it 
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as one of this particular design’s “generators”. We also call “I = EABC” the 

“defining relation” of the design (by multiplying the column signs of E, A, B, and 

C a column of +1s, noted by I, is obtained). For the fractional factorial design, 

presented in Table A.1, the defining relation and design generators are as follow. 

Design Generators: 

 E = ABC, F = BCD, G = ACD, H = ABD, J = ABCD 

Defining Relation: 

I = EABC = FBCD = GACD = HABD = JABCD = JED = JAF = JBH 

The design given in Table A.1 is described as a 29-5 fractional factorial design of 

resolution III. This means that you study overall 9 factors; however, 5 of those 

factors were generated from some interactions of a 2(9-5 = 4) full factorial design. As 

a result, the design does not give full resolution; that is, there are certain 

interaction effects that are confounded or aliased with other effects. In general, 

the resolution of a fractional factorial design is determined by the length of the 

shortest “word” (i.e. combinations of letters representing factors) in the defining 

relation of the experimental design. The shortest word in the defining relation of 

presented design has three letters, so, the resolution of design is III or three.  
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Table A.1: 29-5 fractional factorial design with resolution III  

Run A B C D E F G H J
1 -1 -1 -1 -1 -1 -1 -1 -1 1
2 -1 -1 -1 1 -1 1 1 1 -1
3 -1 -1 1 -1 1 1 1 -1 -1
4 -1 -1 1 1 1 -1 -1 1 1
5 -1 1 -1 -1 1 1 -1 1 -1
6 -1 1 -1 1 1 -1 1 -1 1
7 -1 1 1 -1 -1 -1 1 1 1
8 -1 1 1 1 -1 1 -1 -1 -1
9 1 -1 -1 -1 1 -1 1 1 -1
10 1 -1 -1 1 1 1 -1 -1 1
11 1 -1 1 -1 -1 1 -1 1 1
12 1 -1 1 1 -1 -1 1 -1 -1
13 1 1 -1 -1 -1 1 1 -1 1
14 1 1 -1 1 -1 -1 -1 1 -1
15 1 1 1 -1 1 -1 -1 -1 -1
16 1 1 1 1 1 1 1 1 1  

 

As you can see in Table A.2, in resolution III design, main effects are aliased with 

two-way interactions but not with other main effects. In a resolution IV, design, 

however, main effects are confounded with three-way or higher-order 

interactions, and two-way interaction effects are confounded with other two-way 

interaction effects. And in a resolution V design, main and two-way interaction 

effects are confounded only with three-way or higher-order interactions and 

with such a design you are able to separately estimate all main effects and two-

way interactions. 
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Table A.2: Alias structure of a 29-5 fractional factorial design with resolution III 

 

 

 

 

 

 

 

 

 

 

 

 Alias Structure (up to order 4) 
 
I + AFJ + BGJ + CHJ + DEJ + ABCE + ABDH + ABFG + ACDG + ACFH + ADEF + 
 AEGH + 
     BCDF + BCGH + BDEG + BEFH + CDEH + CEFG + DFGH 
 
A + FJ + BCE + BDH + BFG + CDG + CFH + DEF + EGH + ABGJ + ACHJ + ADEJ + 
 BCDJ + 
     BEHJ + CEGJ + DGHJ 
B + GJ + ACE + ADH + AFG + CDF + CGH + DEG + EFH + ABFJ + ACDJ + AEHJ + 
 BCHJ + 
     BDEJ + CEFJ + DFHJ 
C + HJ + ABE + ADG + AFH + BDF + BGH + DEH + EFG + ABDJ + ACFJ + AEGJ + 
 BCGJ + 
     BEFJ + CDEJ + DFGJ 
D + EJ + ABH + ACG + AEF + BCF + BEG + CEH + FGH + ABCJ + ADFJ + AGHJ + 
 BDGJ + 
     BFHJ + CDHJ + CFGJ 
E + DJ + ABC + ADF + AGH + BDG + BFH + CDH + CFG + ABHJ + ACGJ + AEFJ + 
 BCFJ + 
     BEGJ + CEHJ + FGHJ 
F + AJ + ABG + ACH + ADE + BCD + BEH + CEG + DGH + BCEJ + BDHJ + BFGJ + 
 CDGJ + 
     CFHJ + DEFJ + EGHJ 
G + BJ + ABF + ACD + AEH + BCH + BDE + CEF + DFH + ACEJ + ADHJ + AFGJ + 
 CDFJ + 
     CGHJ + DEGJ + EFHJ 
H + CJ + ABD + ACF + AEG + BCG + BEF + CDE + DFG + ABEJ + ADGJ + AFHJ + 
 BDFJ + 
     BGHJ + DEHJ + EFGJ 
J + AF + BG + CH + DE + ABCD + ABEH + ACEG + ADGH + BCEF + BDFH + CDFG 
 + EFGH 
AB + CE + DH + FG + AGJ + BFJ + CDJ + EHJ + ACDF + ACGH + ADEG + AEFH + 
 BCDG + 
     BCFH + BDEF + BEGH 
AC + BE + DG + FH + AHJ + BDJ + CFJ + EGJ + ABDF + ABGH + ADEH + AEFG + 
 BCDH + 
     BCFG + CDEF + CEGH 
AD + BH + CG + EF + AEJ + BCJ + DFJ + GHJ + ABCF + ABEG + ACEH + AFGH + 
 BCDE + 
     BDFG + CDFH + DEGH 
AE + BC + DF + GH + ADJ + BHJ + CGJ + EFJ + ABDG + ABFH + ACDH + ACFG + 
 BDEH + 
     BEFG + CDEG + CEFH 
AG + BF + CD + EH + ABJ + CEJ + DHJ + FGJ + ABCH + ABDE + ACEF + ADFH + 
 BCEG + 
     BDGH + CFGH + DEFG 
AH + BD + CF + EG + ACJ + BEJ + DGJ + FHJ + ABCG + ABEF + ACDE + ADFG + 
 BCEH + 
     BFGH + CDGH + DEFH 
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Appendix B 

Calculations and Proofs 

B.1 Performance Indexes (one noise factor and 

one control factor) 

• Performance index in desensitization case (Std( desP )) 
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• Performance index in robustness case(Std( robP )) 
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B.2 Performance Indexes (“m” noise factors 

and “n” control factors) 

• Performance index in desensitization case (Std( desP )) 
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Ai are independent, normally distributed random variables with means 
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Considering above euations and following similar procedure that we had in the 

case of one noise and one control factors, we can formulate the performance 

index in the desensitization case as 
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• Performance index in robustness case(Std( robP )) 
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To prove that performance index in the case of desensitization is less than 

performance index in the case of robustness (i.e. desensitization is more efficient 

than robustness), we need to show: 

42
2 1−

y
m k
σ

   〉   
2 4

r
n m 2

n 2(m 2 )
16 (2 2 k)
σ + λ

×
  (B.2.1) 

 or 

2
2 2 2

2 4
1

2

2 ( )
2( 2 )

2 1 16(2 2 )

i i

m

A x r
i r

m n m

n m
k k

µ σ σ
σ λ=

 
+  +  〉

− ×

∑
 

and denoting 2 2

1
(2 )

i i

m

A x
i

µ σ
=
∑ by d we need to prove that 

2 2 2 2 22 ( 4 ) (2 2 ) 2 ( 2(2 2 ) )(2 1)n m n m m
r r rd k n mn kd kσ σ σ + × 〉 + × −   

or 



Appendix B. Calculations and Proofs 

 

117

2 4 2

4 2

12(2 2 ) (2 2 ) 8(2 2 ) 4(2 2 )
2

(2 1)( 4(2 2 ) )

n m n m n m n m
r r

m n m
r r

k k d k kd

n k mn kd

σ σ

σ σ

 × × + × + × 〉  
− + ×

  

 

As 2(2 2 )×n m k is greater than (2 1)−mn k for all natural numbers (in next page it 

has been proved using Mathematical Induction), we still have a true expression if 

we do not have 24(2 2 )×n m
rkdσ  in the both sides brackets of above inequality: 
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   (B.2.2) 

In this expression as it is mentioned before 2(2 2 )×n m k  is greater than (2 1)−mn k  

and by Mathematical Induction we can also prove that 48(2 2 )×n m
rk σ 〉 2 4

rmn σ  (or 

in the other word, 28(2 2 )× 〉n m mn ) is true of all natural numbers (see next 

subsection). So, expression (B.2.2) and consequently expression (B.2.1) is true. 

 

• Mathematical Induction 
 

P(n,m): 8(2n ×  2m )  〉  mn2   or  2n+m+3 〉  mn2 

for all m and n natural numbers. 

To prove above expression we prove 2m 〉 m and also 2n+3 〉  n2; then by 

multiplying these two expression we will get p(n,m). 
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a) 2m 〉 m 

1. p(1) is true: 21 〉 1 

2. Assume that, for an arbitary n, p(m) is also true ; i.e. 2n 〉 n. We need to show 

that p(n+1) is also true; i.e. 2(n+1) 〉 n+1 

 

2n+1 〉 n+1 or 2n+2n 〉 n+1; we assumed that 2n 〉 n, by cancelling out  this from both 

side we have:  2n 〉 1 

which is a true expression. So, 2m 〉 m is true for all m natural numbers. 

b) 2n+3>n2 

1. p(1) is true: 24 〉 12 

2. Assume that, for an arbitrary n, p(n) is also true ; i.e. 2n+3 〉 n2. We need to show 

that p(n+1) is also true; i.e. 2(n+1)+3 〉 (n+1)2 

 

2n+4 〉 n2+1+2n or 2n+3+2n+3 〉  n2+1+2n; we assumed that 2n+3 〉 n2, by cancelling out  

this from both side we have: 2n+3 〉 1+2n 

Now we should prove that 2n+3 〉 1+2n 

1. p(1) is true: 24 〉 1+2 

2. Assume p(n) is also true: 2n+3 〉 1+2n 
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3. Should prove that p(n+1) is also true: 

2(n+1)+3 〉 1+2(n+1) 

or 2n+3+2n+3 〉 1+2n+2 

we assumed that 2n+3 〉 1+2n, by cancelling out  this from both side we have:  

2n+3 〉 3. which is a true statement. 

B.3 Proof of a Theorem  

Theorem: 

Let X and Y two independent normal variables and E(X)=E(Y)=0. Then the 

Variance of XY is equal to Var (X) × Var(Y) 

Proof: 

E[(XY)2] = E(X2) × E(Y2) = [E(XY)]2 + Var(XY ) 

Since  E(X2) = E(X)2 + Var(X) 

E(Y2) = E(Y)2 + Var(Y) 

We have, 

E[(XY)2] = [E(XY)]2 + Var(XY ) = E(X2) × E(Y2) = [E(X)2 + Var(X)] × [ E(Y)2 + Var(Y)] 

But E(X)=E(Y)=0. So, 

[E(XY)]2 + Var(XY ) = Var(X) × Var(Y)               (B.3.1) 
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However, [E(XY)]2 = [E(X) × E(Y)] 2 = E (X)2 × E(Y)2 = 0  (B.3.2) 

Substituting  (B.3.2) into. (B.3.1) gives, 

Var(XY) = Var(X) × Var(Y) 
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Appendix C 

Simulation Codes7 

C.1 Validating Performance Measures using 

Simulation 

function [varrobust,vardesen,varprob,varpdes]=robustnessjun1(k); 
%estimate the stdev of the output Y with desensitization and robustness 
%use levels for the fixed input of z and -z 
%model: Y = b0 + b1X + b2Z + b3X*Z + R 
%X is the varying input X~N(0,sigx^2) 
                                                 

7 Presented codes were written and run using MATLAB™ 
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beta1=1; beta0=0;  beta2=0;   beta3=1;  %assumptions 
sigR=1;  sigx=.3; 
%4*k = number of runs   
%generate the experimental results for robustness experiment using the above model 
r = normrnd(0,1,4*k,1);    %R~N(0,1) - var(R)=1 
x = normrnd(0,sigx,4*k,1);   %generate X randomly 
 
%generate levels of z 
 
zd=fracfact('a b '); 
zd2=fracfact('a b'); 
 
if k==1 
    zd=zd; 
else 
for i=2:k; 
     
zd=[zd;zd2]; 
 
end; end; 
zd1=[zd(:,1)]; 
 
z=zd1(:,1); 
   
yrobust=beta0+beta1*x+beta2*z+beta3*z.*x+r; 
 
%estimate of std of Y by robustness 
 
y1=yrobust(1:2); 
y2=yrobust(3:4); 
 
if k==1 
     
 varrobust=[var(y1);var(y2)]; 
 
else 
for i=2:k; 
     
    y1=[y1;yrobust((length(y1)*2)+1:length(y1)*2+2)]; 
    y2=[y2;yrobust((length(y2)*2)+3:length(y2)*2+4)]; 
     
end; end; 
 
 varrobust=[var(y1);var(y2)]; 
 
%generate the experimental results for desensitization experiment using the above model 
x=zd(:,2).*2*sigx; 
%levels of fixed input z (need two levels to estimate B3) 
r = normrnd(0,1,4*k,1); 
 
ydens=beta0+beta1*x+beta2*z+beta3*z.*x+r; 
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%estimate of std OF y by desensitization, i.e. estimate B3 
 
xdd=[ones(length(x),1) x z x.*z]; 
a=regress(ydens,xdd); 
beta3hat=a(4,1); 
%since stdev(Y) can be written as sqrt((b1+b3*z)^2*std(x)^2+std(R) we get 
 
vardesen=(beta1+(beta3hat.*z)).^2.*(sigx^2)+sigR^2; 
vardesen=[vardesen(1);vardesen(3)]; 
 
vary=(beta1+(beta3.*z)).^2.*(sigx^2)+sigR^2; 
vary=[vary(1);vary(3)]; 
 
%since in desensetization we have p=(beta1+(beta3hat*z))^2*(sigx^2)+sigR^2 and 
%var(p)=(sigR^2(sigR^2+2(16k)*sigx^2*mua^2))/8(4k)^2, we get 
vara=((sigR^2)/(16*k*(sigx)^2)); 
     
mua=beta1+(beta3.*z); 
landa=(((mua).^2)/vara); 
 
varpdes=((sigR^4)*2*(1+2.*landa))/(16*(4*k)^2); 
 
varpdes=[varpdes(1);varpdes(3)]; 
 
%since in robustness we have p= var(y) and var(p)=2*(sigR^4)/(2*k-1), 
%we get 
varprob=2.*(vary.^2)/((2*k)-1); 
 
------------------------------------------------- 
function [stdsrobv,stdsdesv]=comparejun1(k,t); 
srobv=[]; sdesv=[]; 
 
 for nsim=1:t; 
   [varrobust,vardesen,varprob,varpdes]=robustnessjun1(k); 
   srobv=[srobv,varrobust];   sdesv=[sdesv,vardesen]; 
    
end; 
 
stdsrobv=transpose(var(transpose(srobv))) 
varprob 
 
stdsdesv=transpose(var(transpose(sdesv))) 
varpdes 
 
 
clear all 
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----------------------------------------------- 
>> comparejun1(5,1000) 
 
Estimated performance measure in the case of robustness (for high and low level of z) 
 
    0.2342 
    0.4585 
 
Calculated prformance measure in the case of robustness robustness (for high and low level of z) 
 
    0.2222 
    0.4110 
 
 
Estimated performance measure in the case of desensitization (for high and low level of z) 
 
    0.0003 
    0.0185 
 
 
Calculated prformance measure in the case of robustness robustness (for high and low level of z) 
    0.0003 
    0.0183 
 

C.2 Simulation for Comparing Approaches 

function [rmean,rstd,perf]=comparedes_robust(k,sigx,zlevel,ndom) 
%compare desensitization and robustness approaches 
%k gives the number of repeats for each of the combinations of the desen expt. 
%ndom gives the number of observation in the prelim dominant cause investigation 
%if ndom==0 skip analysis methods that require the prelim investigation 
%robustness and desens expt. have a total number of runs = 4*k 
%assume only one control and one noise factor (x is a dominant cause if sigx>1) 
%z level should be between 0 and 1, choose 0.5 as default 
 
%[rmean,rstd,perf]=comparedes_robust(10,2,0.5,30) 
 
%Model: Y = beta0 + beta1*x + beta2*z + beta3*x*z + R 
%wlog we assume beta0=0, beta1=1, beta2=0, beta3=1 and sigmar=1; 
%So Model: Y = x+x*z+R, R~G(0,1) 
 
nsim=1000;   %number of simulation runs 
resultslow=[];   %at z=-zlevel 
resultshigh=[];   %at z=zlevel 
 
for ii=1:nsim, 
    %Robustness expt.  with 2*k runs at z and -z 
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    z=[ones(2*k,1)*zlevel;-ones(2*k,1)*zlevel];   %here order doesn't matter 
    x=normrnd(0,sigx,4*k,1);  %cause is not controlled, generate random values 
    r=normrnd(0,1,4*k,1);   %use same z and r for all expts. 
    yr=x+x.*z+r;  %output 
    %for each expt we can estimate the std of the output at z=zlevel and z=-zlevel 
    stdrob=[std(yr(1:2*k)),std(yr(2*k+1:end))];     %for robustness expt 
     
    %Desensitization expt. 
    %k runs at each of the 4 possible combinations 
    x=[ones(k,1)*2*sigx;-ones(k,1)*2*sigx;ones(k,1)*2*sigx;-ones(k,1)*2*sigx];     %cause set at 
extremes 
    %use the same values for z and r as in robustness expt. 
    yd=x+x.*z+r;  %output 
     
    if ndom~=0,  %skip if prelim investigation has 0 observations 
        %run prelim investigation to determine dom. cause output relationship 
        %these results only used for some analyses 
        x0=normrnd(0,sigx,ndom,1);  %cause is not controlled 
        meanxhat0=mean(x0); sigxhat0=std(x0);   %use these to set levels for last option only 
        r0=normrnd(0,1,ndom,1); 
        y0=x0+r0;    %note z=0 here 
        [b0,bint,res]=regress(y0,[ones(ndom,1),x0]);    %estimate b0, b1 and sigmar 
        b1hat0=b0(2);  sigmarhat0=sqrt(sum(res.^2)/(ndom-2)); 
         
    end; 
     
    %do the analysis in three ways -  
    %first, assume the relationship between x and y is known and that the residual and dom. cause 
variation are known 
    %ignore prelim investigation 
    b=regress(yd-x,[ones(4*k,1),z,x.*z]);    %estimate b0, b2 and b3 
    %use estimate for interaction term b(3) to estimate std of y at z=zlevel and -zlevel 
    stddes=[sqrt((1+b(3)*zlevel)^2*sigx^2+1), sqrt((1-b(3)*zlevel)^2*sigx^2+1)]; 
      
    %second, assume the relationship between x and y (i.e. beta1) and the residual 
    %variation are not known, however we ASSUME SIGX IS KNOWN 
    %we will estimate beta1 and sigmar only using the expt results 
    %ignore prelim investigation 
    [b,bint,res]=regress(yd,[ones(4*k,1),x,z,x.*z]);    %estimate b0, b1, b2 and b3 
    sigmarhat=sqrt(sum(res.^2)/(4*k-4)); 
    %estimate std(y) at the 2 z levels  
    stddes2=[sqrt((b(2)+b(4)*zlevel)^2*sigx^2+sigmarhat^2) 
    sqrt((b(2)-b(4)*zlevel)^2*sigx^2+sigmarhat^2)]; 
     
    if ndom~=0,   %skip options 3 and 4 if prelim investigation has 0 observations 
        %third, assume sigx known, but use prelim inv to help estimate beta1 and sigmar 
        [b,bint,res]=regress(yd,[ones(4*k,1),x,z,x.*z]);    %estimate b0, b1, b2 and b3 
        beta3hat=b(4); 
        sigmarhatdesens=sqrt(sum(res.^2)/(4*k-4)); 
        %a pooled estimate of sigmar using both prelim and desens expt results 
        sigmarhatpooled=sqrt(((ndom-2)*sigmarhat0^2+(4*k-4)*sigmarhatdesens^2)/(ndom+4*k-6));   
        %to get a pooled estimate of beta1 combine the data from the prelim (z=0) and desens expt 
together 
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        [bpooled]=regress([y0;yd],[ones(ndom+4*k,1),[x0;x],[zeros(ndom,1);z],[zeros(ndom,1);x.*z]]);    
%estimate b0, b1, b2 and b3 
        beta1hatpooled=bpooled(2); 
        %estimate std(y) at the 2 z levels  
        stddes3=[sqrt((beta1hatpooled+beta3hat*zlevel)^2*sigx^2+sigmarhatpooled^2), 
sqrt((beta1hatpooled-beta3hat*zlevel)^2*sigx^2+sigmarhatpooled^2)]; 
 
        %4th option for desens expt. assume all the information about the x,y 
        %relationship must be estimated from a prelim investigation 
        %thus a desens expt with slightly different xlevels would have been run since sigx is not 
known 
 
        %new Desensitization expt. 
        %k runs at each of the 4 possible combinations 
        %xlevels would be mux +/- 2*sigx with both mux and sigx estimated 
        xhigh=meanxhat0+2*sigxhat0;  xlow=meanxhat0-2*sigxhat0; 
        x2=[ones(k,1)*xhigh;ones(k,1)*xlow;ones(k,1)*xhigh;ones(k,1)*xlow];     %cause set at 
estimated extremes 
        %use z and r generated before - new desens expt. just has new levels for x 
        yd2=x2+x2.*z+r;  %output 
        %analyze desens expt. 
        [b,bint,res]=regress(yd2,[ones(4*k,1),x2,z,x2.*z]);    %estimate b0, b1, b2 and b3 
        beta3hat=b(4); 
        sigmarhatdesens2=sqrt(sum(res.^2)/(4*k-4)); 
 
        %for the analysis assume the relationship between x and y, the residual 
        %variation and sigmax are not known 
        %we will estimate the relationship using the prelim results    
        sigmarhatpooled=sqrt(((ndom-2)*sigmarhat0^2+(4*k-4)*sigmarhatdesens2^2)/(ndom+4*k-
6));  %a pooled estimate of sigmar using both prelim and desens expt results 
        %to get a pooled estimate of beta1 combine the data from the prelim (z=0) and desens expt 
together 
        
[bpooled]=regress([y0;yd2],[ones(ndom+4*k,1),[x0;x2],[zeros(ndom,1);z],[zeros(ndom,1);x2.*z]]);    
%estimate b0, b1, b2 and b3 
        beta1hatpooled=bpooled(2); 
        %estimate std(y) at the 2 z levels  
        stddes4=[sqrt((beta1hatpooled+beta3hat*zlevel)^2*sigxhat0^2+sigmarhatpooled^2), 
sqrt((beta1hatpooled-beta3hat*zlevel)^2*sigxhat0^2+sigmarhatpooled^2)]; 
    end; 
         
    %store all the results 
    if ndom~=0, 
        resultslow=[resultslow;stdrob(2),stddes(2),stddes2(2),stddes3(2),stddes4(2)];  
        resultshigh=[resultshigh;stdrob(1),stddes(1),stddes2(1),stddes3(1),stddes4(1)];   
    else 
        resultslow=[resultslow;stdrob(2),stddes(2),stddes2(2)];  
        resultshigh=[resultshigh;stdrob(1),stddes(1),stddes2(1)];   
    end; 
end; 
 
%summarize the performance of the two types of experiments 
rmean=mean(resultslow); 
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rstd=std(resultslow); 
 
disp(['std(y) at z=zlevel is ',num2str(sqrt((1+zlevel)^2*sigx^2+1))]) 
disp(['means ',num2str(mean(resultshigh))]) 
disp(['stdev ',num2str(std(resultshigh))]) 
disp(['std(y) at z=-zlevel is ',num2str(sqrt((1-zlevel)^2*sigx^2+1))]) 
disp(['means ',num2str(rmean)]) 
disp(['stdev ',num2str(rstd)]) 
 
 
%performance ratio - std of the std estimate for the best z level (-zlevel) 
disp(['std of performance measure for robustness over desensitization']) 
disp([num2str(rstd(1)/rstd(2)),' estimate beta3 from desens expt. everything else is assumed 
known']) 
disp([num2str(rstd(1)/rstd(3)),' assume stdx known, estimate beta1&3 and sigr from desens expt. 
only']) 
if ndom~=0, 
    disp([num2str(rstd(1)/rstd(4)),' assume stdx known, estimate beta1&3 and sigr from prelim inv. 
and desens expt.']) 
    disp([num2str(rstd(1)/rstd(5)),' assume nothing known, use prelim inv. and desens expt.']) 
end; 
 
if ndom~=0, perf=[rstd(1)/rstd(2),rstd(1)/rstd(3),rstd(1)/rstd(4),rstd(1)/rstd(5)]; 
else, perf=[rstd(1)/rstd(2),rstd(1)/rstd(3)];  end; 
 
 

C.3 Simulation for the Gear Problem 

function [brob,bdes,btaguSN,sigYrob,sigYdes,sigYtaguSN]=millerreducedvar2(k); 
%4*k=number of replicates 
%reduced model is: 
%Y = 14.336-1.523A-2.648B-0.992C-0.312D+0.625E+0.422F-0.695G-
7.195H+1.297CF++0.922BF+0.859FH-0.844DH-0.93CDF+R 
 
%F,G,H are the varying inputs; F~N(muF,sigF^2),G~N(muG,sigG^2),H~N(muH,sigH^2); 
%H is dominant cause 
%A,B,C,D,E are fixed inputs; extreme level= +1 and -1 
%ALPHA=0.01 
 
%assumptions and components of reduced model. MSE=11.72 and extreme levels of varying 
inputs 
%are -1 and +1; so:  
sigR=sqrt(11.72);  
muF=0; sigF=0.5; 
muG=0; sigG=0.5; 
muH=0; sigH=0.5; 
 



Appendix C. Simulation Codes 

 

128

 
%generate the experimental results for %%robustness experiment%% using the reduced model 
%k = number of runs  
R= normrnd(0,sigR,4*k*16,1);     %R~N(0,sigR)  
F= normrnd(muF,sigF,4*k*16,1);   %generate F randomly 
G= normrnd(muG,sigG,4*k*16,1);   %generate G randomly 
H= normrnd(muH,sigH,4*k*16,1);   %generate H randomly 
%levels of fixed inputs in experiment: defining design matrix  
%(fractional factorila design, 2^5-1, Resolution V) 
% # of replicates=4*k! 
matx1=fracfact('a b c d abcd'); 
matx=[matx1;matx1;matx1;matx1];     
matx2=[matx1;matx1;matx1;matx1];  
 
if k==0.5 
    matx=[matx1;matx1];     
end; 
 
if k==1 
    matx=matx; 
else 
for i=2:k; 
     
matx=[matx;matx2]; 
 
end; end; 
 
 
A=matx(:,1); 
B=matx(:,2); 
C=matx(:,3); 
D=matx(:,4); 
E=matx(:,5); 
 
yrobust=14.336-1.523*A-2.648*B-0.992*C-0.312*D+0.625*E+0.422*F-0.695*G-
7.195*H+1.297*C.*F+0.922*B.*F+0.859*F.*H-0.844*D.*H-0.93*C.*D.*F+R; 
 
for y=1:4*k; 
     
for x=1:16; 
     
yrobustmatx(x,y)=yrobust(x+(y-1)*16); 
 
end; 
 
end; 
 
 
for i=1:16 
p(i,1)=log(std(yrobustmatx(i,:))); 
end; 
stats=regstats(p,matx1,'linear','beta'); 
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A=matx1(:,1); 
B=matx1(:,2); 
C=matx1(:,3); 
D=matx1(:,4); 
E=matx1(:,5); 
 
logsrob=stats.beta(1)+stats.beta(2)*A+stats.beta(3)*B+stats.beta(4)*C+stats.beta(5)*D+stats.bet
a(6)*E; 
 
[C,I] = min(logsrob); 
brob=matx1(I,:);   
 
%Calculate sigY with robustness recomandation  
 
%Var(Y)= 
%(-7.195-.844D)^2var(H)+(0.422+1.297C+0.922B-0.93CD)^2var(F)+(-0.695)^2var( 
%G)+(0.859)^2var(F)+var(R); 
A=brob(1); 
B=brob(2); 
C=brob(3); 
D=brob(4); 
E=brob(5); 
 
sigYrob =sqrt(( -0.844*D-7.195).^2.*sigH^2+(0.422+1.297*C+0.922*B-0.93*C.*D).^2.*sigF^2+(-
0.695).^2*sigG^2+(0.859).^2.*sigF^2.*sigH^2+sigR^2); 
 
  
 
 
%generate the experimental results for %%desensitization experiment%% using the reduced 
model 
%assigned two levels of H(-1, 1) for each run, 4*k:number of replicates 
 
Rex = normrnd(0,sigR,4*k*16,1);  
F= normrnd(muF,sigF,4*k*16,1);  
G= normrnd(muG,sigG,4*k*16,1);  
Hex=[ones(2*k*16,1);-1*ones(2*k*16,1)]; 
A=matx(:,1); 
B=matx(:,2); 
C=matx(:,3); 
D=matx(:,4); 
E=matx(:,5); 
 
ydesen=14.336-1.523*A-2.648*B-0.992*C-0.312*D+0.625*E+0.422*F-0.695*G-
7.195*Hex+1.297*C.*F+0.922*B.*F+0.859*F.*Hex-0.844*D.*Hex-0.93*C.*D.*F+R; 
 
 
xdd=[ones(length(Hex),1) A B C D E Hex A.*Hex B.*Hex C.*Hex D.*Hex E.*Hex]; 
ades=regress(ydesen,xdd); 
 
 
A=matx1(:,1); 
B=matx1(:,2); 
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C=matx1(:,3); 
D=matx1(:,4); 
E=matx1(:,5); 
 
 
stdydesen=sqrt((ades(7)+ades(8).*A+ades(9).*B+ades(10).*C+ades(11).*D+ades(12).*E).^2.*sig
H^2+sigR^2); 
 
 
[C,I] = min(stdydesen); 
 
bdes=matx1(I,:); 
 
%Calculate sigY with desensitization recomandation  
%Var(Y) = (-7.195+0.242A+0.586B+0.695C-0.844D+0.5E)^2*Var(H)+Var(R) 
A=bdes(1); 
B=bdes(2); 
C=bdes(3); 
D=bdes(4); 
E=bdes(5); 
 
sigYdes =sqrt(( -0.844*D-7.195).^2.*sigH^2+(0.422+1.297*C+0.922*B-0.93*C.*D).^2.*sigF^2+(-
0.695).^2*sigG^2+(0.859).^2.*sigF^2.*sigH^2+sigR^2); 
 
 
%generate the experimental results for %%Taguchi experiment%% using the reduced model 
%and pulling out the recomandation using Loss-model(%Signal/Noise ratio) 
 
matx=-1.*fracfact('a b c d -abcd f g h'); 
 
A=matx(:,1); 
B=matx(:,2); 
C=matx(:,3); 
D=matx(:,4); 
E=matx(:,5); 
F=matx(:,6); 
G=matx(:,7); 
 
H=matx(:,8); 
 
H=normrnd(muH,sigH,128,1); 
 
R= normrnd(0,sigR,128,1); 
 
ytagu=14.336-1.523*A-2.648*B-0.992*C-0.312*D+0.625*E+0.422*F-0.695*G-
7.195*H+1.297*C.*F+0.922*B.*F+0.859*F.*H-0.844*D.*H-0.93*C.*D.*F+R; 
 
 
for x=1:16; 
for y=1:8; 
     
ytagumatx(x,y)=ytagu((x-1)*8+y); 
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end; 
end; 
 
for i=1:16 
p(i,1)=log(std(ytagumatx(i,:))); 
Eta(i,1)=10*log10(Mean(ytagumatx(i,:))^2/std(ytagumatx(i,:))^2);  
end; 
 
matx1=fracfact('-a -b -c -d abcd'); 
A=matx1(:,1); 
B=matx1(:,2); 
C=matx1(:,3); 
D=matx1(:,4); 
E=matx1(:,5); 
 
 
 
[C,I2] = max(Eta); 
btaguSN=matx1(I2,:);  
 
%Calculate sigY with first and second Taguchi recomandations  
%Var(Y) = (-7.195+0.703BD+0.695C-0.844D)^2*Var(H)+(1.297C+0.922B-0.789CE-
0.93CD)^2*Var(F)+(0.695AC+0.633DE)^2*Var(G)+(0.859+0.688B)^2*Var(F)*Var(H)+(-
0.758C)^2*Var(G)*Var(H)+Var(R) 
 
 
  
A=btaguSN(1); 
B=btaguSN(2); 
C=btaguSN(3); 
D=btaguSN(4); 
E=btaguSN(5); 
 
sigYtaguSN=sqrt((-0.844*D-7.195).^2.*sigH^2+(0.422+1.297*C+0.922*B-
0.93*C.*D).^2.*sigF^2+(-0.695).^2*sigG^2+(0.859).^2.*sigF^2.*sigH^2+sigR^2); 
----------------------------------------------- 
function [robt,dest,tagut]=millercompare2(k,t); 
 
%4k is the number of replicates, t equals number of simulations 
 
    brobmatx=[];  
    bdesmatx=[]; 
    btaguSNmatx=[]; 
    sigYrobmatx=[]; 
    sigYdesmatx=[]; 
    sigYtaguSNmatx=[]; 
     
 for nsim=1:t; 
        [brob,bdes,btaguSN,sigYrob,sigYdes,sigYtaguSN]=millerreducedvar2(k); 
        brobmatx=[brobmatx;brob];    
        bdesmatx=[bdesmatx;bdes]; 
        btaguSNmatx=[btaguSNmatx;btaguSN]; 
        sigYrobmatx=[sigYrobmatx,sigYrob]; 
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        sigYdesmatx=[sigYdesmatx,sigYdes]; 
        sigYtaguSNmatx=[sigYtaguSNmatx,sigYtaguSN]; 
 end; 
 
  
 for i=1:5 
 if t-sum(brobmatx(:,i))==0 
    robt(1,i)=(t/t) 
    robt(2,i)=0 
else 
    robt(1,i)=(t-(t-sum(brobmatx(:,i)))/2)*(1/t); 
    robt(2,i)=((t-sum(brobmatx(:,i)))/2)*(1/t); 
end;end; 
 
 
for i=1:5 
 if t-sum(bdesmatx(:,i))==0 
    dest(1,i)=(t/t); 
    dest(2,i)=0; 
else 
    dest(1,i)=(t-(t-sum(bdesmatx(:,i)))/2)*(1/t); 
    dest(2,i)=((t-sum(bdesmatx(:,i)))/2)*(1/t); 
end;end; 
 
 
 
for i=1:5 
 if t-sum(btaguSNmatx(:,i))==0 
    taguSNt(1,i)=(t/t) 
    taguSNt(2,i)=0 
else 
    taguSNt(1,i)=(t-(t-sum(btaguSNmatx(:,i)))/2)*(1/t); 
    taguSNt(2,i)=((t-sum(btaguSNmatx(:,i)))/2)*(1/t); 
end;end; 
disp('--------------Robustness-------------------------') 
disp('       A         B         C         D         E') 
disp('H') 
disp(robt(1,:)) 
disp('L') 
disp(robt(2,:)) 
disp('-----------------------------------------------') 
 
 
 
disp('-----------------Desensitization----------------------') 
disp('       A         B         C         D         E') 
disp('H') 
disp(dest(1,:)) 
disp('L') 
disp(dest(2,:)) 
disp('-----------------------------------------------------') 
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disp('-------------------Taguchi S/N--------------------') 
 
disp('       A         B         C         D         E') 
disp('H') 
disp(taguSNt(1,:)) 
disp('L') 
disp(taguSNt(2,:)) 
disp('-----------------------------------------------------') 
 
%calculate optimum setting 
%assumptions and components of reduced model. MSE=11.72 and extreme levels of varying 
inputs 
%are -1 and +1; so:  
sigR=sqrt(11.72);  
muF=0; sigF=0.5; 
muG=0; sigG=0.5; 
muH=0; sigH=0.5; 
 
matx=fracfact('a b c d e'); 
 
 
A=matx(:,1); 
B=matx(:,2); 
C=matx(:,3); 
D=matx(:,4); 
E=matx(:,5); 
 
%Calculate sigY and pick the winner (min) 
%Var(Y) = (-7.195+0.242A+0.586B+0.695C-0.844D+0.5E)^2*Var(H)+Var(R) 
 
sigY =sqrt(( -0.844*D-7.195).^2.*sigH^2+(0.422+1.297*C+0.922*B-0.93*C.*D).^2.*sigF^2+(-
0.695).^2*sigG^2+(0.859).^2.*sigF^2.*sigH^2+sigR^2); 
 
 
 
[C,I] = min(sigY); 
l=matx(I,:); 
 
disp('-------------------Optimum Setting--------------------') 
 
disp('     A     B     C     D     E')   
disp(l) 
minsigy=min(sigY) 
maxsigy=max(sigY) 
disp('-------------Comparison Results--------------------') 
disp('    mean   |  std    |  mean   |  std    |   mean    |   std    ') 
disp('   sigYrob | sigYrob | sigYdes | sigYdes | sigYtaguSN|sigYtaguSN') 
l=[mean(sigYrobmatx),std(sigYrobmatx),mean(sigYdesmatx),std(sigYdesmatx),�mean(sigYtagu
SNmatx),std(sigYtaguSNmatx)]; 
disp(l) 
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