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Abstract

In deregulated electricity markets, generating companies submit energy bids

which are derived from a self-schedule. In this thesis, we propose an improved

semidefinite programming-based model for the self-scheduling problem. The model

provides the profit-maximizing generation quantities of a single generator over a

multi-period horizon and accounts for uncertainty in prices using robust optimiza-

tion. Within this robust framework, the price information is represented analyti-

cally as an ellipsoid. The risk-adversity of the decision maker is taken into account

by a scaling parameter. Hence, the focus of the model is directed toward the trade-

off between profit and risk. The bounds obtained by the proposed approach are

shown to be significantly better than those obtained by a mean-variance approach

from the literature. We then apply the proposed model within a branch-and-bound

algorithm to improve the quality of the solutions. The resulting solutions are also

compared with the mean-variance approach, which is formulated as a mixed-integer

quadratic programming problem. The results indicate that the proposed approach

produces solutions which are closer to integrality and have lower relative error than

the mean-variance approach.
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Chapter 1

Introduction

During the past two decades, the regulatory framework and organization of the elec-

tricity industry has undergone drastic restructuring in many countries. Historically,

the monopoly position of utilities enabled them to transfer their costs to customers

through regulated tariffs, thus lessening the incentive to improve efficiency [39].

Deregulation and restructuring involved unbundling vertically integrated utilities,

as well as introducing competition in the wholesale generation and retailing mar-

kets. The prevailing sentiment is that competition promotes efficiency and cost

savings.

In order to accommodate deregulation while maintaining the robustness of the

traditional market, it was necessary that an independent entity assume the re-

sponsibility of ensuring system reliability. The independent system operator (ISO)

emerged as a system mediator in many competitive markets where its primary

function is to ensure that operational constraints are enforced when dispatching

generation. In order to promote fair competition, the ISO also serves to separate

ownership of the electricity grid from control of it. The evolution of electricity mar-

kets has been mostly reactive, but is slowly converging to a universally accepted

configuration [30].

The dynamics of market development are interesting in the sense that two dif-

ferent perspectives need to be understood, namely engineering and economics. The

electricity that reaches each customer is the result of a tremendous amount of plan-

ning and coordination. Engineers are responsible for overseeing this process from

production through to delivery, which requires a profound understanding of the

unique properties of power systems. The physical properties of electricity make it
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impossible to store economically in large quantities. This fact heavily influences

production planning since an instantaneous match between supply and demand

is needed. Capacity is further constrained by the limitations of the transmission

network. These same properties that complicate production and transmission also

make electricity a unique commodity. As such, the economic theory on which

deregulation is based needs to account for these characteristics.

Deregulated electricity markets rely on the unit commitment (UC) problem as

a mechanism to ensure effective operation. This problem, which is used extensively

by centralized operators and individual generating firms alike, may be formulated as

a large-scale mixed-integer program (MIP). It accounts for several system-wide and

generator-specific operating constraints, usually over a large portfolio of generating

units. Over the short-term, the solution provides an optimal generating schedule

for electric utilities by identifying which generators should operate when, and what

quantity of electricity each should produce. From the perspective of the ISO, the

objective is to minimize cost subject to meeting demand and adhering to operational

constraints. In a competitive marketplace, the system operator neither owns nor

operates generation facilities. Now the generating companies are not limited to

cost recovery and the strict obligation to serve customers, but compete against

each other for the right to serve the electricity demand of the system. As a result,

each attempts to maximize their profitability by strategically committing their

generating capacity through bilateral engagements or centralized auctions.

Competition has introduced drastic changes in the scheduling of electric gen-

erators. Within the deregulated framework, a market-clearing entity allocates the

overall demand for electricity within the market among the competing firms. In-

dividual companies must assign value to their generating capacity in order to de-

termine the price at which they are willing to supply electricity. Determining the

optimal production quantities for each generator, while accounting for the stochas-

tic nature of electricity prices, plays an important part in this process and is known

as the self-scheduling problem. Slight modifications to the traditional UC formu-

lation provide a basis for solving this problem. Having solved the self-scheduling

problem, an individual supplier can derive an appropriate bidding strategy for the

daily electricity market. Decision makers must not only quantify the risk resulting

from fluctuations in electricity prices, but they are also required to find a suitable

compromise between profit maximization and risk aversion.

This thesis adopts a different approach for solving the self-scheduling problem

than those found in the literature by addressing the problem using two relatively
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recent developments in mathematical programming, namely robust optimization

(RO) and semidefinite programming (SDP). Robust optimization is well suited for

dealing with uncertain data, but to our knowledge has not been applied to the self-

scheduling problem. Using this approach, it is possible to model the uncertainty

in electricity prices in a way that can be easily solved within a SDP framework.

Although there are instances of the use of SDP in the power systems literature,

we have made improvements to solution quality by implementing a branch-and-

bound algorithm along with the introduction of additional constraints that more

accurately model the operating and cost characteristics of the generator. The main

contribution of this thesis is the design and implementation of a robust optimization

approach for solving the self-scheduling problem using SDP within a branch-and-

bound algorithm.

This thesis is organized as follows. Chapter 2 provides a general overview of

the economic framework of electricity markets. The notation used throughout the

thesis is given in Chapter 3. In Chapter 4, the unit commitment and self-scheduling

problems are defined, and several approaches found in literature for solving these

problems are discussed. A relaxation of the self-scheduling problem is formulated

as an SDP problem in Chapter 5. This formulation accounts for the uncertainty

in electricity prices through robust optimization. Chapter 5 also outlines the pro-

posed branch-and-bound algorithm for improving the solution quality of the initial

relaxation. Results from three case studies are described and analyzed in Chapter

6. Finally, Chapter 7 provides some relevant conclusions, as well as directions for

future research.
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Chapter 2

Electricity Market Basics

The key features that must be considered in order to study and model electricity

markets are the ISO, the market operator (MO), and the market participants. The

ISO coordinates supply and demand while ensuring operational feasibility, along

with system security and reliability [30]. The MO is responsible for collecting bids

from market participants in order to determine the market clearing price and pro-

duction quantities. In most markets, the functions of the ISO and the MO are

undertaken by a single entity. The electricity market in New Zealand is an exam-

ple of a market which separates these functions by contracting them to indepen-

dent service providers [8]. The market participants include the generating compa-

nies (GENCOs), the distribution companies (DISCOs), the transmission companies

(TRANSCOs), and the customers [13]. GENCOs are electricity-producing utilities

that compete to meet the power demands of the system. The DISCOs are major

load-serving entities, who sell electricity to the end customer. Certain large-scale

commercial or industrial entities are also considered to be load-serving entities. An

energy service company buys and sells electricity; in this sense, it acts as both a

generation company and a distribution company. TRANSCOs own and operate the

transmission wires that transport electricity from generators to customers [5]. The

market participants strive to meet their goals, which most likely consist of improv-

ing their market position. Over the short-term, this might consist of maximizing

profits, whereas long-term goals may include expanding current facilities.

The ISO not only establishes day-ahead and real-time markets for electricity, an-

cillary services and transmission, but it also monitors and mitigates market power.

In the day-ahead market, the participants pledge one day in advance to provide
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or consume a specific amount of electricity on an hourly basis over a 24-hour pe-

riod. Real-time markets serve to set the real-time market price of electricity, as

well as to compensate for differences in scheduled generation and actual load [30].

Ancillary services are essential for reliable system operation. Two examples of an-

cillary services are capacity reserves and voltage support. Proposed schedules for

power generation and ancillary services must also account for the nature of the

power transmission system and its limitations. Initial settlements are made in the

day-ahead market and the settlements are finalized according to real-time market

conditions [30].

Two distinct market designs that are used to clear electricity markets are the

pool and bilateral models. In an electricity pool, the operator collects bids from

supply-side and demand-side entities and combines them into aggregate curves. The

bidding process consists mainly of supply-side bids, with demand-side bidding only

permitted in certain markets [30]. Currently, many customers face a fixed retail

price for electricity instead of the actual market value at any moment. Under these

conditions, demand is largely inelastic. The intersection point of these curves sets

the market clearing price, as well as the market clearing quantity. Once the market

price and quantity are established, the market clearing entity uses the individual

bid curves to determine the amount of power awarded to each supplier. The first

trial schedule usually has adjustments for plant dynamics but does not account for

transmission or security constraints. Following this procedure, the ISO ensures the

feasibility and reliability of the resulting schedule by focusing on reserve capacity

and location. Finally, each supplier performs a traditional unit commitment to

determine the scheduling of its generating assets [15]. When electricity is traded

bilaterally, generating and distribution companies establish price contracts for the

supply and consumption of electricity in the bilateral market. Units self-dispatch in

order to meet their contractual obligations, but may be required to redispatch for

system reasons. Market participants can deviate from the quantities they agreed

to consume or produced. However, any such deviation is susceptible to financial

penalty determined by a balancing mechanism. After a period of time, participants

no longer have the opportunity to trade with each other and the system operator

takes over in order to ensure the real-time balancing of supply and demand, as well

as system security [15]. Hybrid markets exist where elements from both the pool

and bilateral designs are mixed.

In Ontario, the Independent Electricity System Operator (IESO) is responsible

for the daily operation of the market. It operates an electricity pool by accepting
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bids, which include incremental electricity costs and capacity limits, from electricity

generators and importers. The demand forecast is met by successively dispatching

the lowest priced offers until sufficient supply is available. Once the bidding window

closes, the spot price for electricity is set to be the incremental cost of the last

generator dispatched to meet the demand [31].
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Chapter 3

Nomenclature

The nomenclature used throughout this thesis is given in this chapter. Since two

distinct problems are discussed, we present the notation for the both problems

separately. Unless otherwise noted, the length of a period is 1 hour.

3.1 Unit Commitment Problem

3.1.1 Indices

i: Generator (i ∈ 1 . . . ng)

j: Period (j ∈ 1 . . . np)

l: Block of the piecewise linear production cost function

t: Interval of the staircase start-up cost function

3.1.2 Decision Variables

cdij: Shutdown cost of unit i in period j ($)

cpij: Production cost of unit i in period j ($)

cuij: Start-up cost of unit i in period j ($)

pij: Production quantity for unit i in period j (MW)

pij: Maximum available power output of unit i in period j (MW)

ton
ij : Number of periods unit i has been online prior to the shutdown in period j

toff
ij : Number of periods unit i has been offline prior to the start-up in period j

uij: Unit commitment variable for unit i in period j (1 if it is online, 0 otherwise)
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3.1.3 Parameters

Ai: Coefficient of the piecewise linear production cost function of unit i ($)

Ci: Shutdown cost of unit i ($)

Dj: Power demand in period j (MW)

Fli: Slope of block l of the piecewise linear production cost function of

unit i ($/MW)

Kt
i : Cost of the interval t of the staircase start-up cost function of unit i ($)

P i, P i: Minimum and maximum generation capacity limits of unit i (MW)

ng: Number of units

np: Number of periods

NDi: Number of intervals of the staircase start-up cost function of unit i

NLi: Number of segments of the piecewise linear production cost function

of unit i

Rj: Reserve requirement in period j (MW)

RDi: Ramp-down limit of unit i (MW/h)

RUi: Ramp-up limit of unit i (MW/h)

SDi: Shutdown ramp limit of unit i (MW/h)

SUi: Start-up ramp limit of unit i (MW/h)

ti, ti: Minimum up and down times of unit i (h)

Tli: Upper limit of block of the piecewise linear production cost function

of unit i

αi: Constant production cost coefficients of unit i ($)

βi: Linear production cost coefficients of unit i ($/MWh)

γi: Quadratic production cost coefficients of unit i ($/MW2h)

δlij: Power produced in block l of the piecewise linear production cost

function of unit i in period j (MW)

λj: Lagrangian multipliers for the demand constraints in period j

µJ : Lagrangian multipliers for the reserve constraints in period j

3.2 Self-scheduling Problem

3.2.1 Indices

j: Period (j ∈ 1 . . . np)

s: Scenario

t: Interval of the staircase start-up cost function
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3.2.2 Decision Variables

cdj : Shutdown cost in period j ($)

cpj : Production cost in period j ($)

cuj : Start-up cost in period j ($)

pj: Production quantity in period j (MW)

ton
j : Number of periods the unit has been online prior to the shutdown in

period j

toff
j : Number of periods the unit has been offline prior to the start-up in

period j

uj: Unit commitment variable in period j (1 if it is online, 0 otherwise)

3.2.3 Parameters

C: Shutdown cost ($)

Kt: Cost of the interval t of the staircase start-up cost function ($)

P , P : Minimum and maximum generation capacity limits (MW)

np: Number of periods

ND: Number of intervals of the staircase start-up cost function

RD: Ramp-down limit (MW/h)

RU : Ramp-up limit (MW/h)

SD: Shutdown ramp limit (MW/h)

SU : Start-up ramp limit (MW/h)

t, t: Minimum up and down times (h)

α, β, γ: Production cost coefficients ($),($/MWh), ($/MW2h)

β, κ: Risk aversion parameters

λj: Electricity price in period j ($/MWh)
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Chapter 4

Literature Review

The UC problem has long played a crucial role in the operation of power systems

and continues to be a key component. A huge amount of research has been devoted

to solving this problem. Much of this effort extends naturally to the self-scheduling

problem because they share much of the same problem structure. In this chap-

ter, we first describe in detail the UC problem and discuss several of the classical

approaches proposed in the literature for solving it. Having built an understand-

ing of the traditional approaches, we next define the self-scheduling problem and

present four methods for addressing the stochastic nature of electricity prices. The

chapter concludes with a brief comparison of these four approaches with the aim

of motivating the contribution of this thesis.

4.1 The Unit Commitment Problem

The traditional UC problem is often formulated as a non-linear mixed-integer pro-

gram. The non-linearity arises in the cost functions, whereas the integer variables

reflect the online and offline states of the generating units. Any such problem of

realistic size is large in scale and requires significant computational time to solve.

For example, an independent system operator faces a UC problem consisting of

approximately 200 generators to be scheduled over 24 hour-long periods. Even for

modestly sized problems, the computational burden of solving to proven optimality

is prohibitive. As a result, exact solution methodologies are seldom applied and

practitioners often settle for near-optimal solutions. Considerable effort has been

10



spent developing methods that improve the quality of solutions because even small

improvements are likely to translate into substantial cost savings.

The objective function of the basic UC problem is the minimization of the

production cost, start-up cost, and shutdown cost. Generally, the production cost

is expressed by a quadratic function of the power output. The start-up cost is

assumed to be an exponential function of the time that the unit is offline prior to

start-up. The shutdown cost is constant and often ignored because its magnitude

is insignificant relative to the other costs.

The constraints on the UC schedule that must be satisfied are the system de-

mand, reserve requirements, generation limits, ramping rate limits, and the mini-

mum up and down times. These constraints are classified by two types. The first

type is concerned with the system output or capacity requirements for each time

period. These constraints require that the demand and spinning reserves be met

and are referred to as coupling constraints. Spinning reserves are unused capacity

which is readily available to ensure a continuous balance between load and gen-

eration at all times. The second type of constraints is imposed on the individual

generating units; these are regarded as local constraints. The generation limits

restrict the amount of electricity offered by a given generator as a result of its

physical generating capacity. Ramping rates restrict the change in output levels

between subsequent periods. The minimum up and down time constraints ensure

that once the decision is made to start-up or shutdown a generator, it must remain

in that state for a pre-specified period of time. The earlier representations of the

minimum-time constraints were non-linear and mixed-integer. With the exception

of the capacity limits, all of these constraints are inter-temporal, and as such require

knowledge of the operating history of each unit.

It should be noted that the basic formulation does not account for network flow

constraints. The inclusion of such constraints would require a physical characteri-

zation of electricity. A DC power flow approximation produces fairly good results

for economic dispatch purposes but an accurate representation of system behavior

is only obtainable through a non-linear AC flow model. Unfortunately, the AC flow

model significantly increases the complexity of the problem because it takes into

account both active and reactive power components. The most notable network

characteristics that rely on this distinction are transmission line limits, transformer

capacities, and voltage limits. Since reactive power is necessary for voltage stability,

generators are often required to run solely on the basis of their reactive capacity.

Therefore, neglecting to include the reactive power component in the formulation
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of the UC model may result in an infeasible solution [29]. In practice, there is a

distinction between unit commitment and power flow. The UC model is concerned

with resource scheduling, whereas the optimal power flow (OPF) problem considers

transmission limitations. These two requirements are often not satisfied simulta-

neously and the UC and OPF problems are solved iteratively until a satisfactory

solution is obtained.

4.2 Solution Methods

The importance of the UC problem is highlighted by the vast amount of literature

that has been dedicated to it over the past 50 years. Researchers have spent consid-

erable effort developing methods that decrease computational times and improve

solution quality. Certain methods attempt to accurately model the situations that

are found in practice while others are focused more toward finding simplified ways

for obtaining viable solutions. A comprehensive literature review of solution tech-

niques for the UC problem is presented in [34] and [46]. In this section, we provide

a brief description of several common methodologies which include: priority lists,

dynamic programming, mixed-integer linear programming, Lagrangian relaxation,

and semidefinite programming. Meta-heuristics have also been widely applied to

the UC problem. A review of three meta-heuristic approaches is included in this

section.

4.2.1 Priority List

The simplest approach for UC consists of creating a priority list of the units. Such a

list prioritizes the units according to their full-load average production cost. In each

period, the units are committed in a predetermined order until sufficient capacity is

available to cover system demand and security requirements. Additional measures

are included within the algorithm to take into account the inter-temporal nature of

the minimum time constraints, as well as time-dependent start-up and shutdown

costs. Most priority list-based methods produce sub-optimal commitment schedules

because they only search a small subset of potential schedules [46].
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4.2.2 Meta-heuristics

Tabu search (TS) is based on the principles of intelligent problem-solving [33]. The

distinguishing characteristic of this approach is that it avoids entrapment at a local

optimum by preserving a list of recently visited solutions in short-term memory. TS

has been used to solve the UC problem in [26]. The two main components of this

algorithm are the tabu list consisting of restricted moves, and the aspiration level

which is a measure of solution quality. At each iteration, a set of feasible schedules

that span as much of the solution space as possible is generated. A trial solution is

selected to be the basis of a future iteration if it is not part of the tabu list or if its

aspiration level is superior to that assigned earlier for the same move. Throughout

the search, the overall best solutions are noted and the algorithm terminates once

a maximum number of iterations is reached.

Simulated annealing (SA) can be applied to large-scale UC problems. This ap-

proach is analogous to the annealing process in material sciences whereby a solid is

heated to a high temperature and subjected to stepwise cooling. An SA approach

to the UC problem is presented in [25], where a set of feasible solutions is generated

by modifying a selected feasible solution. A candidate solution is accepted if its

objective function value is superior to the previous one. Otherwise, the candidate

solution is chosen with a certain probability which is given by an expression de-

pendent on the difference in objective function values. As the number of iterations

increases, the probability of selecting a candidate with a worst objective function

value is decreased by adjusting a control parameter. The algorithm terminates once

the control parameter reaches a given threshold.

Genetic algorithms are a class of meta-heuristics that emulate the inheritance

characteristics of humans in order to generate feasible solutions to an optimization

model. In [38], the authors present a genetic algorithm approach for solving the UC

problem. This approach evaluates solutions, often termed creatures, and assigns

them a fitness which reflects their quality. The solutions with acceptable fitness are

chosen to procreate, thus forming children that explore a different portion of the

solution space and replace less fit creatures. With respect to the UC problem, the

parent schedules are arrays of binary data which represent the unit commitment

of generators over a finite time horizon. An element is assigned a value of 1 if the

generator is online for the period or a value of 0 otherwise. Each row in the array

indicates the commitment decisions for a specific generator; whereas, each column

corresponds to a period in the planning horizon. The genetic algorithm uses two
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techniques to produce children from parent schedules. A standard mutation swaps

portions of the parent schedules, whereas an intelligent mutation spots and changes

the inefficient 010 and 101 combinations. These combinations are inefficient because

they entail bringing a unit online or offline for a single period, respectively. The

advantage of using this procedure is that solution time increases only linearly with

the number of units and periods.

4.2.3 Dynamic Programming

Dynamic programming (DP) was the first optimization-based technique applied to

the UC problem [34]. The problem can be represented by a series of commitment

decisions processed at each period, thus eliminating the need to schedule the units

over the entire horizon simultaneously. The search can be conducted in a forward or

backward direction. A forward DP algorithm obtains solutions by working forward

from the initial conditions toward the final period in the planning horizon. Such

a forward approach is advantageous in the context of the UC problem because the

operating history of each unit makes it possible to incorporate the start-up cost

and the minimum time constraints. The backward DP approach is similar to the

forward approach, but works from the final period toward the beginning of the

horizon. In the forward DP process [35], each period qualifies as a stage and the

associated states correspond to combinations of units. The economic dispatch of

each unit commitment combination is solved using linear programming (LP) or

another efficient optimization technique. The objective consists of choosing the

states at each stage which result in the lowest-cost strategy. First, it is necessary

to define the search range and the possible combinations of units for each hour.

Next, the least cost strategy for transitioning from one combination to another in

a forward direction is identified using the following recursion formula :

FCOST (J,K) = min{L} {PCOST (J,K) +

SCOST (J − 1, L : J,K) + FCOST (J − 1, L) . (4.1)

When the Kth combination provides a feasible dispatch in period J , PCOST (J,K)

defines the production cost required to meet the electricity demand, while SCOST (J−
1, L : J,K) denotes the transition cost associated with any changes in unit com-

mitment between periods J − 1 and J . If the least cumulative cost necessary to

arrive to period J−1 for each combination in the set L is given by FCOST (J−1, L),

then the least total cumulative cost for arriving to K through a combination in L is
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equivalent to the sum of PCOST (J,K), SCOST (J−1, L : J,K), and FCOST (J−1, L).

The minimum total cost for arriving to the Kth combination, FCOST (J,K), may be

determined by evaluating equation (4.1) over all L. The same procedure is applied

in subsequent periods until the end of the planning horizon is reached. Given the

combination with the least total cumulative cost in the final period, the schedule

for the entire planning horizon is reconstructed in a backward fashion.

Used appropriately, the DP approach greatly reduces the number of schedules

generated. When the search range is not exhaustive, global optimality is not guar-

antied because there is no mechanism in place to ensure implicit enumeration. As

a result, the choice of an appropriate search range greatly influences the solution

quality, as well as the computational time. If the search range is large, the compu-

tational burden of arriving to the lowest total cost schedule is prohibitive. Although

a smaller search range decreases the solution time, it increases the likelihood that

high quality solutions will be overlooked. Methods that limit the search range

without significantly sacrificing solution accuracy are proposed in [36].

4.2.4 Mixed-integer Linear Programming

Mixed-integer linear programming (MILP) techniques have improved substantially

during the last decade. Reductions in solution times are partly the result of more

sophisticated formulations that better approximate the convex hull of integer points

within the LP relaxation. Another factor influencing computation time is the de-

velopment of efficient branch-and-cut algorithms. Several commercially available

software packages have the capability to effectively handle large-scale instances [6].

The MILP formulation in [6] accurately models the non-linear aspects of the

UC problem with a single set of binary variables. The quadratic production cost is

approximated as a piecewise linear function, while the exponential start-up cost is

discretized by a stepwise function. Figures 4.1 and 4.2 depict the associated cost

curves. The linear approximation of the production costs has the following analytic
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Figure 4.1: Piecewise Linear Production Cost

representation:

cpij = Aiuij +

NLi∑
l=1

Fliδlij ∀i ∀j (4.2)

pij =

NLi∑
l=1

δlij + P iuij ∀i ∀j (4.3)

δ1ij ≤ T1i − P i ∀i ∀j (4.4)

δlij ≤ Tli − Tl−1,i ∀i ∀j ∀l = 2 . . . NLi − 1 (4.5)

δNLiij ≤ P i − TNLi−1,i ∀i ∀j (4.6)

δlij ≥ 0 ∀i ∀j ∀l = 1 . . . NLi (4.7)

where Ai = αi + P iβi + P 2
i γi.

The start-up and shutdown costs have the following mixed-integer linear formu-
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Figure 4.2: Stepwise Start-up Cost Function

lations:

cuij ≥ Kt
i

[
uij −

t∑
n=1

ui,j−n

]
∀i ∀j ∀t = 1 . . . NDi (4.8)

cdij ≥ Ci [ui,j−1 − uij] ∀i ∀j ∀t = 1 . . . NDi (4.9)

cuij ≥ 0 ∀i ∀j (4.10)

cdij ≥ 0 ∀i ∀j. (4.11)

The formulation of generator specific constraints in [6] precisely models the

available spinning reserves in each period. The generation limits are defined by the

following inequalities:

P iuij ≤ pij ≤ pij ∀i ∀j (4.12)

0 ≤ pij ≤ P iuij ∀i ∀j. (4.13)

These constraints effectively bound the power output of each generating unit. How-

ever, they include an extra variable pij which reflects the upper bound on power

output enforced by the ramping constraints. The ramping constraints are formu-
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lated as follows:

pij ≤ pi,j−1 +RUiui,j−1+

SUi [uij − ui,j−1] + P i [1− uij] ∀i ∀j (4.14)

pij ≤ P iui,j+1 + SDi [uij − ui,j+1] ∀i ∀j = 1 . . . np − 1 (4.15)

pi,j−1 − pij ≤ RDiuij+

SDi [ui,j−1 − uij] + P i [1− ui,j−1] ∀i ∀j. (4.16)

They not only treat the basic ramp-up limits (4.14) and ramp-down limits (4.16)

but they also model start-up ramp rates (4.14) and shutdown ramp rates (4.15).

Through the addition of the variable pij, these constraints capture the amount of

available spinning reserves, which is given by the difference between pij and pij. A

mixed-integer linear formulation of the minimum up and down times found in [24]

is given by the following set of constraints

a(t)∑
τ=j

uiτ ≥ (uij − ui,j−1) b
(
t
)

+ δ (j − 1) ai0 ∀i ∀j (4.17)

a(t)∑
τ=j

(1− uiτ ) ≥ (ui,j−1 − uij) b (t) + δ (j − 1) bi0 ∀i ∀j (4.18)

where the terms a (·), b (·), ai0, and bi0 are defined as follows

a (z) = min {j + z − 1, np} b (z) = min {z, np − j + 1}
ai0 = ui1ui0 ×max

{
0, t− ton

i0

}
bi0 = (1− ui1) (1− ui0)×max

{
0, t− toff

i0

}
.

The commitment status of the units in early periods may be fixed due to their

operational history. When a unit changes state in a later period, it must remain in

the new state for at least ti−1 or ti−1 additional periods. If the number of remaining

periods is less than the minimum times, the unit is only required to remain in the

state until the end of the planning horizon. The constraints (4.17) and (4.18), along

with nature of the a (·) and b (·) terms, ensure that these characteristics are met.
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The complete mixed-integer linear optimization problem is expressed as follows:

[UC-MILP] min

ng∑
i=1

np∑
j=1

cpij + cuij + cdij (4.19)

s.t.

ng∑
i=1

pij = Dj ∀j (4.20)

ng∑
i=1

pij ≥ Dj +Rj ∀j (4.21)

pij ∈ πij ∀i ∀j (4.22)

uij ∈ {0, 1} ∀i ∀j. (4.23)

where the cij terms are defined by (4.2)-(4.11) and pij ∈ πij satisfies the local

constrains (4.12)-(4.18).

4.2.5 Lagrangian Relaxation

As presented in [UC-MILP], the problem is neither separable by unit nor by period.

However, decomposition may be achieved by relaxing either the coupling or inter-

temporal constraints. In practice, the coupling constraints can be relaxed by adding

penalty terms to the objective function. The resulting unit specific subproblems are

easier to evaluate than the aggregate problem. A lower bound to the [UC-MILP]

formulation is obtained by relaxing the demand constraint (4.20) and the reserve

constraint (4.21) with the Lagrangian multipliers λj and µj. The objective function

resulting from this operation is:

z = min

ng∑
i=1

np∑
j=1

{
cpij + cuij + cdij

}
+

np∑
j=1

{
λj

(
ng∑
i=1

pij −Dj

)
+ µj

(
ng∑
i=1

pij −Dj −Rj

)}
. (4.24)

The remaining constraints may be partitioned so that ng subproblems are defined,

each corresponding to an individual unit. Observing that the terms λjDj, µjDj,

and µjRj in (4.24) remain constant, we obtain the following subproblems:

[UCLR-SP]i zi = min

np∑
j=1

cpij + cuij + cdij + λjpij + µjpij (4.25)

s.t. pij, uij ∈ πij ∀j,
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The main challenge arises in determining the best values for the multipliers. Since

(4.24) provides a lower bound for the original problem, it is desirable that any

adjustments to the multipliers cause the objective function to increase. These

values can be obtained from the optimal solution to the following Lagrangian dual:

[UCLR-MP] max

np∑
j=1

λjDj + µj (Dj +Rj) +

ng∑
i=1

zi(λi, µi) (4.26)

s.t. λj free, µj ≤ 0 ∀j

which is a max-min problem with the zi terms equal to the solution of (4.25).

Unfortunately, the maximization of the Lagrangian dual is not easily achieved

due to its non-differentiable nature. Furthermore, the optimal production schedule

resulting from its solution is unlikely to be demand-feasible. One approach for

solving the Lagrangian dual is the sub-gradient method. The sub-gradient method

iteratively updates the Lagrangian multipliers by moving in the direction of the sub-

gradient. With respect to the UC problem, the sub-gradient vector corresponds to

the mismatch between the output and demand requirements. An effective sub-

gradient algorithm for solving the Lagrangian dual problem is given in [47]. The

method used to update the multipliers is[
λk+1

µk+1

]
=

[
λk

µk

]
+ δk

θk

‖θk‖
(4.27)

where θk is the sub-gradient defined by

θk =

[
D −

∑
i∈I pi

D +R−
∑

i∈I uiP i

]
(4.28)

and δk = 1/ (α + βk), with α, β as positive constants.

A second method for solving the dual problem consists of adding cutting planes

to the Lagrangian master problem until its objective function value converges to

the value obtained by solving the subproblems. In [22], the authors present an

interior-point cutting-plane algorithm which is well-equipped to solve the problem.

Their approach uses the analytic center of a localization set as an improved dual

solution. The set corresponds to the area enclosed by a cutting-plane approxima-

tion, the lower and upper bounds of the dual variables, and the lower bounds to

the dual objective function. The iterative procedure of estimating the dual solu-

tion from the analytic center continues until it satisfies a stopping criterion. The
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advantage of using interior-point cutting-plane methods over other alternatives for

evaluating non-differentiable problems is that they are quicker to converge and free

from sensitive parameter tuning.

Once the optimal solution to the relaxed problem is determined from the La-

grangian dual, additional processing is often necessary in order to find a feasible

solution to the original problem. Since the multipliers indicate the marginal price

of an additional unit of output, increasing their values will make it more attractive

for units to generate electricity in that particular period. Therefore, load deficits

may be corrected by increasing their respective multipliers. This logic is the foun-

dation of the heuristic developed in [47] to search for a demand-feasible solution.

Following the search for a feasible solution, the final step of the process consists of

fixing the binary variables and then solving the economic dispatch problem, which

is a linear program.

4.2.6 Semi-definite Programming

The general notion behind SDP dates back to the middle of the 20th century. How-

ever, the approach only gained popularity during the 1990s with the development

of interior-point methods for solving general convex optimization problems. SDP is

best described as an extension of LP with a matrix variable and positive semidefi-

niteness in lieu of vector variables and non-negativity constraints. A large portion

of the research into solving the UC problem with SDP approaches has been con-

ducted in [24] and their conclusions indicate that SDP relaxations are a promising

alternative for solving UC problems.

SDP deals with solving mathematical programs that are cast in the following

primal form:

[SDP] min C ·X (4.29)

s.t. Ai ·X = ai ∀i = 1 . . .m (4.30)

X < 0. (4.31)

The matrix variable X is symmetric and positive semidefinite, which implies that

all its eigenvalues are non-negative. The equality constraints on X are evaluated

in a fashion analogous to the inner product for vectors. Such an inner product

is mathematically defined as A · X =
∑n

i=1

∑n
j=1 AijXij. A number of software

packages based on interior-point algorithms are available to solve SDPs. Other

21



methods have also been developed to solve large-scale SDP problems. These include

low-rank factorization, augmented Lagrangian, and spectral bundle methods [28].

Following the procedure presented in [24], the UC problem is reformulated using

SDP by observing two relationships. First, it is noted that a {0, 1} variable can

be represented by equating the square of this variable to itself. Hence, the unit

commitment constraint (4.23) is reformulated as

uij ∈ {0, 1} ⇔ u2
ij = uijv,where v = 1. (4.32)

The addition of the auxiliary variable v makes both terms quadratic. Second, the

following relationship holds

pj = ujpj ⇔ p2
ij = uijp

2
ij. (4.33)

Taking these facts into consideration, a simplified UC problem with constant

startup cost and no system-wide reserve is formulated as a quadratic-objective

quadratic-constraints problem:

[UC-QQP] min

ng∑
i=1

np∑
j=1

u2
ijαi + uijpijβi + p2

ijγi (4.34)

s.t.

ng∑
i=1

uijpij = Dj ∀j (4.35)

u2
ijP i − uijpij ≤ 0 ∀i∀j (4.36)

uijpij − u2
ijP ij ≤ 0 ∀i∀j (4.37)

uijpij − ui,j−1pi,j−1 ≤ RUi ∀i∀j (4.38)

ui,j−1pi,j−1 − uijpij ≤ RDi ∀i∀j (4.39)

sij (u) ≤ bij ∀i∀j (4.40)

u2
ij − uijv = 0 ∀i∀j (4.41)

v − 1 = 0 (4.42)

where sij (u) ≤ bij represents the minimum up and down time constraints in the

form a
(1)
ij u

2
i1 + . . . + a

(np)
ij u2

inp ≤ bij, whose coefficients aij and bij are determined

from (4.17)-(4.18).

In order to solve the UC-QQP, it is necessary to express the problem in SDP

format. This is achieved by first grouping all the decision variables corresponding to

a single generator into a column vector xi =
[
pi1 ui1 . . . pinp uinp v

]T
. A symmetric
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matrix, which is positive semidefinite and has rank one, is obtained by taking the

outer-product of the vector xi with itself:

Xi = xix
T
i =



pi1pi1 pi1ui1 · · · pi1pinp pi1uinp pi1v

pi1ui1 ui1ui1 · · · ui1pinp ui1uinp ui1v
...

...
. . .

...
...

...

pinppi1 pinpui1 · · · pinppinp pinpuinp pinpv

uinppi1 uinpui1 · · · uinppinp uinpuinp uinpv

vpi1 vui1 · · · vpinp vuinp vv


.

From within each of the individual matrices Xi, it is possible to identify all the

terms needed to construct the local constraints (4.36) - (4.42) and define the con-

tribution of each generator to the overall cost (4.34). The individual blocks must

be aggregated into a single block-diagonal matrix because the coupling constraint

(4.35) combines the production quantities over all units.

Algorithms for solving SDP do not force the rank of the matrix variable to equal

one. When this property is not enforced, the binary variables may take on fractional

values between zero and one. As such, the formulation is actually a relaxation of

the original problem. In [24], the authors suggest using cutting planes or simple

rounding heuristics to improve the solution obtained by the SDP relaxation.

4.3 The Self-scheduling Problem

The deregulation of the power industry has introduced drastic changes in the

scheduling of electric generators. A centralized operator is no longer solely respon-

sible for committing assets on a cost-minimizing basis. Now, individual generating

companies compete against each other for the right to serve the electricity demand

of a given system. As a result, each company strives to maximize its own profits

by submitting optimal bidding strategies to the market-clearing entity. Decision

makers must not only quantify the risk resulting from fluctuations in electricity

prices, but they are also required to find a suitable compromise between profit

maximization and risk aversion. In order to successfully manage risk exposure,

new procedures are required to appropriately account for the forces that drive the

market.

The solution to the self-scheduling problem provides the optimal production

quantities for a generator over a specified time horizon, while accounting for the
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stochastic nature of prices. Having solved the self-scheduling problem, the generat-

ing company can derive an appropriate bidding strategy for the day-ahead market.

The problem is simplified by assuming that the producers are price-takers in a

pool-based electricity market. In this case, the coordination among units has no

influence on market-clearing prices and each generator can be modeled separately.

This section reviews four self-scheduling models used under these assumptions.

More sophisticated equilibrium models [20], [16] and mixed-integer programs [12]

exist to study firms that exert significant market power.

4.3.1 Risk Characterization

The proper forecasting of electricity prices plays an important role in developing

good bidding strategies. Since electricity prices are highly volatile, the application

of straightforward forecasting methods which are prevalent in other commodity

markets is often prone to large forecasting errors [40]. The distinct market char-

acteristics that cause such large fluctuations include fuel price volatility, load un-

certainties, forced outages, network congestion, and the strategic behavior of large

firms. Moreover, electricity differs from other commodities because it cannot be

stored in large quantities by practical means. This property necessitates an instan-

taneous match between supply and demand, which follows yearly, monthly, and

daily cycles. Classical methods used to forecast electricity prices include regression

and state-space models, while more modern techniques include expert systems,

evolutionary programming, fuzzy systems, adaptive neural networks, and various

combinations of these approaches. Neural network-based approaches are the most

popular among those listed due to their clarity, ease of implementation, and good

performance [40]. With such an approach, it is necessary to identify input vari-

ables that influence market prices. The model parameters are then conditioned

using data sets until they accurately predict market conditions. Thereafter, the

model can be used to forecast electricity prices given the current state of the input

variables. A detailed treatment of price forecasting is excluded from this thesis.

Instead, we assume that an effective forecasting technique is already in place which

provides reasonable estimations of the market-clearing prices for the entire planning

window.

Within this framework, the overall risk associated with a generation schedule can

be attributed to the mutual dependence between revenues obtained in each period.

Choosing to produce electricity in periods whose prices move in opposite directions
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reduces the volatility in revenue resulting from the generation schedule. The price

in each period is a random variable; therefore, an average squared deviation between

the actual and expected prices for period i is given by the variance σii. Furthermore,

since the prices in each period are not independent, the covariance σij between the

prices in periods i and j measures their common variance. A covariance matrix Σ

consisting of the individual σii and σij terms not only establishes the uncertainty in

the expected value of a single price, but also how strongly the prices in two periods

follow each other, or move in opposite directions.

If historical data is available on the estimated price of electricity as well as the

actual values leading up to day d, it is possible to estimate the covariance matrix

of day d as

Σ =
1

D

D∑
i=1

(
Λtrue
i − Λest

i

) (
Λtrue
i − Λest

i

)T
(4.43)

where D is an appropriate number of days for which data is available and Λ =[
λ1, . . . , λnp

]T
. Unfortunately, this relatively simplistic approach for generating

covariance matrices is inadequate for dealing with the complexities of electricity

prices. Problems arise due to characteristics such as non-constant mean and vari-

ance, multiple seasonality, high volatility, and high percentage of unusual prices

[10]. In order to deal with the seasonality effects and potential outliers, the follow-

ing exponential weighted moving-average approximation is presented in [10]:

Σ = (1− ν)
D∑
i=1

αi−1
(
Λtrue
D−i+1 − Λest

D−i+1

) (
Λtrue
D−i+1 − Λest

D−i+1

)T
(4.44)

where ν is a smoothing constant between 0 and 1. The main idea is that the

contribution of each price vector to the overall discovery of the covariance matrix

decays exponentially as they are taken from further in the past. Therefore, the

seasonality effects and outliers have less impact [10].

4.3.2 Expected Value

In [9], the authors develop a simple bidding rule which is based on the solution of

the self-scheduling problem, as well as a price-forecast. The market-clearing price

for a given hour can be represented as a random variable that follows a certain

probability distribution and is characterized by an expected value and variance.

Using the expected marginal prices for each time period, the respective production

quantities pj are determined by solving the following profit-maximizing problem:
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max

np∑
j=1

(
λ̂jpj − cpj

)
(4.45)

s.t. pj ∈ πj.

In the above equation, the total profit is determined by summing the differences

between expected revenue and the production cost cpj for each hour j. Furthermore,

the production quantities must be contained within the feasible operating region

denoted by πj. The bidding strategy is derived by using a confidence interval

to represent the range of values that most likely contains the true market-clearing

price. Pending the outcome of the self-scheduling problem, the generating company

offers to supply its available energy in one or two blocks of power as follows:

• If production is uneconomical, the bidding curve should consist of a single

block valued at the upper limit of the confidence interval.

• If production is within the operating limits, the bidding curve should be a

step function which increases in price from the lower limit to the upper limit

of the confidence interval at the optimal production quantity.

• If production is at maximum capacity, the bidding curve should consist of a

single block valued at the lower limit of the confidence interval.

This bidding rule ensures that the generator will almost always be dispatched

according to the result of the self-scheduling problem. The probability that this

happens is reflected in the confidence interval.

4.3.3 Mean-Variance

The self-scheduling formulation using expected values ignores risk altogether. A

more comprehensive treatment of self-scheduling under price uncertainty is pre-

sented in [10]. The model adopts a methodology based on the classical portfolio

optimization approach found in finance. Given a series of hourly prices, statisti-

cal techniques can be used to estimate the covariance matrix Σ, which reflects the
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mutual dependence between prices. By adding a term that accounts for the vari-

ance in total revenue to the initial problem, we obtain the following mixed-integer

quadratic program:

max

np∑
j=1

(λ̂jpj − cpj)− β
np∑
i=1

np∑
j=1

σijpipj (4.46)

s.t. pj ∈ πj ∀j.

The penalty parameter β is used to adjust the trade-off between maximizing

expected profit and minimizing risk. Solving the problem for several values of β

produces the efficient frontier, which is composed of a set of non-dominated points

corresponding to the maximum expected profit at a given level of risk.

4.3.4 Stochastic Programming

The uncertainty in market-clearing prices can be characterized by a set of discrete

price scenarios, along with the probability of occurrence for each. This observation

is the foundation of a stochastic programming approach to the self-scheduling prob-

lem. The scenarios act to approximate the continuous probability distributions of

electricity prices. As such, a larger number of scenarios results in a more accurate

representation of the distribution. Unfortunately, the numerical tractability of the

problem suffers with an increasing number of scenarios. Thus, it becomes important

to select an adequate number of scenarios in order to properly approximate future

uncertainties while ensuring that the computational requirements are realistic [1].

In [41], the authors derive a two-stage process for solving the self-scheduling

problem. They define three price scenarios (low price, normal price, and high price)

and associate probabilities of occurrences ws to each. Given these expectations, a

price scenario tree is generated for the entire planning horizon. The solution to

the optimization problem selects the path that maximizes the expected profit over

all future price scenarios while meeting the operational constraints of the problem.

This methodology gives rise to the following mathematical program:

[SS-SP] max
ns∑
s=1

ws

np∑
j=1

{
λsj

ng∑
i=1

psiju
s
ij −

ng∑
i=1

(
cpsij + cusij

)}
(4.47)

s.t. psij, u
s
ij ∈ πij ∀i ∀j.
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The problem can be efficiently solved using Lagrangian relaxation, where the sub-

problems are mixed-integer stochastic programs solved using stochastic dynamic

programming.

4.3.5 Conditional Value-at-risk

Another self-scheduling approach, provided by Jabr (2005), is based on conditional

value-at-risk (CVaR). For a given probability of occurrence, it is unlikely that the

loss from expected profit will exceed a certain value, know as value-at-risk (VaR).

Although the confidence level provides an indication of the likelihood of observing

a loss greater than VaR, the magnitude of any such deviation is unknown. A more

rigorous technique involves using CVaR. CVaR represents the average loss from the

expected profit given that the observed profit is less than a predetermined threshold

t. The average profit resulting from this loss is known as the conditional robust

profit and an approximation of this value is given by

F̃ (pj, t) = t+
1

N (1− β)

N∑
k=1

[
λkjpj − cj − t

]−
(4.48)

where β is the risk aversion parameter and [z]− = min {0, z}. This optimization

problem uses N samples in order to approximate the probability distribution of

the marginal prices. When the total profit resulting from a sample falls below a

threshold t, the difference contributes to the discovery of the conditional robust

profit in the objective function.

4.3.6 Discussion of Solution Methodologies

The solution methodologies outlined in this section vary in terms of their compu-

tational efficiency and analytic rigor. The approach based on expected values is

the least computationally demanding of the self-scheduling models described above

because the hourly electricity prices are treated as being deterministic. The disad-

vantage of this type of analysis is that it ignores the potential losses which arise

due to discrepancies between forecasted and actual prices [41]. The mean-variance

approach takes uncertainty into account through the addition of a variance term

in the objective function. As a result, it is multi-objective in nature and produces

a final solution that is dependent on the risk tolerance of the decision maker. An
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attractive feature of this formulation is that it reduces to a quadratic program-

ming problem. However, the objective function value has no practical significance

because expected profit and variance have different units and different meanings.

The stochastic programming model outputs a single solution that is affected by

the number of scenarios and how they are defined. The accuracy of this approach

improves as the number of scenarios increases, but the resulting program quickly

becomes intractable. Quantitative models are required in order to produce sound

estimates of the covariance matrix, as well as to define price scenarios. The CVaR

approach does not require such models, but instead takes samples from historical

data to build a probability density function of the electricity prices since it lacks a

closed-form expression. In this case, the results are highly sensitive to the degree

to which the random sample is representative of the actual electricity prices. The

proposed model tackles the self-scheduling problem from yet another angle, but

shares some of same properties as these methodologies. We present the proposed

model in Chapter 5.
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Chapter 5

Proposed Methodology

The self-scheduling problem can be perceived as a price-based adaptation of the

UC problem. Solving it often requires pairing traditional solution techniques with

methods for risk management. In this chapter, we discuss an approach for modeling

uncertain mathematical programs known as robust optimization (RO) and derive

the robust counterpart of the self-scheduling problem using SDP. SDP was selected

since the robustness constraint can be reduced to a second-order cone which can

easily be handled by a number of the SDP solvers. The remainder of the chap-

ter discusses measures taken to improve the quality of the initial solution. These

include a set of triangle inequalities for strengthening the relaxation, as well as a

branch-and-bound algorithm for obtaining integer-feasible solutions.

5.1 Robust Optimization

The classical approach in mathematical programming is to develop models using

point estimates to represent input data. In some circumstances, this practice is

seriously flawed since real-world data is not always precise. When parameters are

uncertain, slight deviations from the prescribed values may significantly deteriorate

solution quality and even feasibility. Therefore, it is necessary to include conces-

sions while designing solution approaches in order to lessen the influence of data

uncertainty. To this degree, a solution is said to be robust if it is immune to data

uncertainty [4].
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RO has been an area of ongoing research since the 1970s. Within the realm of

linear programming, it deals with problems of the general form

min cTx

s.t. Ax ≥ b ∀ (A,b) ∈ U
x ≥ 0

where the constraints must be satisfied for any realization of (A,b) in the uncer-

tainty set U . In a seminal paper on RO, Soyster [43] addresses the case where each

column of the constraint matrix is known to belong to a given convex set. The

resulting program is linear and its solution is feasible for all data that belong to the

set. Unfortunately, this approach is extremely conservative since every coefficient

takes on its worst-case value. A more general approach follows the work presented

in [3] and uses ellipsoid uncertainty as an approximation to more complicated un-

certainty sets. The choice of an ellipsoid stems from the computational tractability

of the resulting conic quadratic problem. In addition, such a representation reflects

the unlikelihood that all the coefficients are simultaneously at their worst values.

For this reason, it is inherently less conservative than the linear approach [3].

5.1.1 Derivation of the Robustness Constraint

In order to model the self-scheduling problem using a RO framework, it is necessary

to define an uncertainty set containing the hourly electricity prices. A simple way to

model the uncertainty is to consider bounds on the prices in each period λlowj ≤ λj ≤
λhighj . Since λ is permitted to vary, the resulting term λTp in the objective function

is non-convex which is a hard problem to solve. An alternative strategy is to take

advantage of the underlining statistical properties of the data in order to obtain

a reasonable uncertainty set. Analogous to the derivation of a robust portfolio

selection model in [2], we allow the hourly prices to vary within an ellipsoid defined

by:

λ ∈ {λ̂+ κΣ1/2δ s.t. ‖ δ ‖2≤ 1}. (5.1)

The ellipsoid is centered at λ̂ and the total variation in every direction is initially

limited by a vector δ whose length is at most one. The magnitude of the permissible

variation is further scaled by Σ1/2, which reflects the covariance between hourly

prices. An additional parameter κ is used to adjust the risk aversion properties of

the model. When κ is set to zero, the hourly prices revert back to their expected
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values. Increasing the value of κ expands the uncertainty set, thus allowing more

drastic price outcomes.

In order to deal with this definition, we first define an artificial variable q that

is bounded from above by the revenue λTp resulting from any vector of hourly

prices contained within the ellipsoid. Under this stipulation, a bound on revenue

is established by substituting the expression for the ellipsoid (5.1) into the revenue

term

λ̂Tp+ κδTΣ1/2p ≥ q, where ‖ δ ‖2≤ 1. (5.2)

The goal is to derive an expression for the upper bound on q corresponding to the

lowest revenue among all possible outcomes. It happens that we can evaluate the

value of δ for which the left-side of (5.2) is minimized. Observing that

δTΣ1/2p ≥ − ‖ Σ1/2p ‖2 whenever ‖ δ ‖2≤ 1,

we can deduce that the worst-case value of δ is δ = −Σ1/2p
‖Σ1/2p‖2

. Therefore, the optimal

bound for the worst-case revenue is obtained from

λ̂Tp− κ ‖ Σ1/2p ‖2≥ q (5.3)

which is a second-order cone constraint of the general form z ≥
√
yTy, with z =

λ̂T p−q
κ

and y = Σ1/2p. It is equivalent to the positive semidefinite constraint(
zI y

yT z

)
< 0

where I is an identity matrix with diagonal entries equal to one and zeros else-

where. This equivalence follows from a general result called the Schur Complement

Theorem [2].

Theorem 1 (Schur Complement Theorem) Suppose X =

(
A B

BT C

)
and A is

positive definite. Then X is positive semidefinite is and only if C − BTA−1B is

positive semidefinite.

5.2 Proposed Semidefinite Programming Model

The UC problem formulation in [24] forms the foundation of the proposed model.

Following this procedure, any quadratic polynomial of the decision variables p and u

can be represented using the matrix variable. This characteristic grants significant

flexibility in formulating constraints for the model.
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5.2.1 Modeling Start-up and Shutdown Constraints

One important aspect missing from the formulation in [24] is the inclusion of start-

up and shutdown costs. The linearized versions of these costs (4.14)-(4.16) can be

modified to fit within the SDP framework. The quadratic counterparts of these

constraints for the purpose of the self-scheduling problem are as follows:

cuj ≥ Kt

[
u2
j −

t∑
n=1

u2
j−n

]
∀j ∀t = 1 . . . NDi (5.4)

cdj ≥ C
[
u2
j−1 − u2

j

]
∀j (5.5)

cuj ≥ 0 ∀j (5.6)

cdj ≥ 0 ∀j (5.7)

where cu and cd are vector variables whose treatment within the context of SDP

will be discussed in Section 5.2.3.

5.2.2 Modeling Ramping Constraints

A more accurate representation of ramping rates than what is given by (4.38)-

(4.39) includes start-up and shutdown ramp rates. If we remove the variables pj

that represent the amount of available spinning reserves from constraints (4.14) -

(4.16) and make the appropriate substitutions, the ramping rate constraints become

ujpj ≤ uj−1pj−1 +RUu2
j−1+

SU
[
u2
j − u2

j−1

]
+ P

[
1− u2

j

]
∀j (5.8)

ujpj ≤ Pu2
j+1 + SD

[
u2
j − u2

j+1

]
∀j = 1 . . . np − 1 (5.9)

uj−1pj−1 − ujpj ≤ RDu2
j+

SD
[
u2
j−1 − u2

j

]
+ P

[
1− u2

j−1

]
∀j. (5.10)

Spinning reserves are not included in the model since they belong to a separate

market which has different price characteristics. However, the analysis performed

can be extended to the market for energy reserves.
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5.2.3 Proposed Model

The proposed model is obtained by bringing together elements from sections 4.2.6,

5.1.1, 5.2.1 and 5.2.2. The model in its entirety is

max q −
np∑
j=1

u2
jα + ujpjβ + p2

jγ + cuj + cdj (5.11)

s.t.

∑np
j=1 λ̂jpj

κ
− q

κ
≥

√√√√ np∑
i=1

(

np∑
j=1

Σ
1/2
ij pj)

2 (5.12)

cuj ≥ Kt

[
u2
j −

t∑
n=1

u2
j−n

]
∀j ∀t = 1 . . . NDi (5.13)

cdj ≥ C
[
u2
j−1 − u2

j

]
∀j (5.14)

u2
jP − ujpj ≤ 0 ∀j (5.15)

ujpj − u2
jP ≤ 0 ∀j (5.16)

ujpj ≤ uj−1pj−1 +RUu2
j−1+

SU
[
u2
j − u2

j−1

]
+ P

[
1− u2

j

]
∀j (5.17)

ujpj ≤ Pu2
j+1 + SD

[
u2
j − u2

j+1

]
∀j = 1 . . . np − 1 (5.18)

uj−1pj−1 − ujpj ≤ RDu2
j+

SD
[
u2
j−1 − u2

j

]
+ P

[
1− u2

j−1

]
∀j (5.19)

a(t)∑
τ=j

uτ ≥
(
u2
j − u2

j−1

)
b
(
t
)

+ δ (j − 1) a0 ∀j (5.20)

a(t)∑
τ=j

(
1− u2

τ

)
≥
(
u2
j−1 − u2

j

)
b (t) + δ (j − 1) b0 ∀j (5.21)

u2
j − ujv = 0 ∀j (5.22)

v − 1 = 0 (5.23)

where the terms a (·), b (·), a0, and b0 are defined in Section 4.2.4. The objective

function consists of maximizing profit, which is the difference between the revenue

and the total of the production cost, start-up cost, and shutdown cost. The revenue

is established by the robustness constraint (5.12), while the start-up and shutdown

costs are given by constraints (5.13) and (5.14), respectively. Each generator is

also subjected to local constraints which include: generation limits (5.15)-(5.16),

ramping rates (5.17)-(5.19), and minimum up and down times (5.20)-(5.21). Lastly,

the binary constraints (5.22) reflect the nature of the unit commitment variables

and the auxiliary constraint (5.22) defines an auxiliary variable.
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We now express the problem in the standard form (4.29) which is necessary

in order to solve it using available software. Recall from Section 4.2.6 that the

positive semidefinite matrix variable was obtained by taking the outer-product of

the vector x =
[
p1 u1 . . . pnp unp v

]T
with itself. However, the inclusion of the

robustness constraint, along with the start-up and shutdown costs, has introduced

non-negative scalar variables into the formulation. Furthermore, the strict equality

of the constraints in standard form necessitates the addition of a slack variable s

to each of the m inequalities. After adding these variables, the following positive

semidefinite matrix is obtained:

X =


xxT 0 0 0 0

0 q 0 0 0

0 0 Cu 0 0

0 0 0 Cd 0

0 0 0 0 S



where xxT =



p1p1 p1u1 · · · p1pnp p1unp p1v

p1u1 u1u1 · · · u1pnp u1unp u1v
...

...
. . .

...
...

...

pnpp1 pnpu1 · · · pnppnp pnpunp pnp
unpp1 unpu1 · · · unppnp unpunp unpv

vp1 vu1 · · · vpnp vunp vv


,

Cu =

c
u
1 · · · 0
...

. . .
...

0 cunp

 , Cd =

c
d
1 · · · 0
...

. . .
...

0 cdnp

 , and S =

s1 · · · 0
...

. . .
...

0 sm

 .

Using the above definition of X, the objective function (5.11) and the constraints

(5.12)-(5.23) are transformed into coefficient matrices.

The resulting matrix variable X is block-diagonal and consists of a np×np block

corresponding to xxT , as well as a (2np +m+ 1)× (2np +m+ 1) block of diagonal

entries. With respect to the second, the block is positive semidefinite if and only

if each diagonal element is non-negative. As such, the individual non-negativity

constraints are omitted because they are implied by the positive semidefiniteness

of the decision variable. SDP solvers are designed to exploit block structure and

type, which greatly increases their computational efficiency.
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5.3 Improving Solution Quality

Generally, the solution to the SDP relaxation includes a number of variables that

violate the binary constraints. When this happens, the objective function value pro-

vides an upper bound on the optimal solution of a maximization problem. Simple

heuristic approaches can be employed to produce feasible solutions whose objec-

tive function values provide lower bounds, and the quality of these solutions is

determined from the relative gap between the lower and upper bounds. In some

instances, the size of the gap may warrant an improvement of the bounds. The ad-

dition of triangle inequalities can strengthen the initial relaxation; whereas, branch-

and-bound offers a systematic approach for discovering feasible solutions, while at

the same time improving the bounds.

5.3.1 Triangle Inequalities

A straightforward way to improve the SDP relaxation is to add triangle inequalities.

Within the context of the self-scheduling problem, these inequalities are:

ui + uj − uiuj ≤ 1 ∀i ∀j > i. (5.24)

There exist
(
np
2

)
such inequalities. If the value of uiuj is actually the product of the

two variables, the inequalities always hold. However, the observed value of elements

within the decision matrix may not correspond to their analytical representations.

For example, the entry corresponding to u1u2 is not necessarily equivalent to the

product of u1 and u2 unless the rank of the matrix is one. As a result, the positive

semidefiniteness of the decision variable is not sufficient to ensure this equivalence

and X may violate one or more triangle inequalities despite being feasible for the

SDP relaxation.

5.3.2 Branch-and-Bound

Within the self-scheduling problem, there are 2np possible unit commitment combi-

nations, each of which results in a problem that would have to be solved in order to

determine the associated electricity generation levels. It is impossible to explore all

of these combinations in practice, but implicit enumeration can be achieved using
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branch-and-bound. Branching occurs when two or more nodes are created by split-

ting a problem into a set of subproblems, which are further constrained and whose

union covers the same set of candidate solutions as the parent node. With respect

to a maximization problem, bounding computes an upper bound for the problem

by comparing the upper bounds for each subset of solutions, whereas a lower bound

is obtained from the objective function value of the best feasible solution. Given

this information, the algorithm eliminates large subsets of candidate solutions that

are known to be non-optimal. The optimal solution is identified when no subprob-

lems remain that have the potential to improve the objective function. A general

description of the branch-and-bound algorithm is:

Step 1: Initialization Solve the SDP relaxation of the self-scheduling problem at

the root node without any variables fixed. If the solution is integer-feasible,

then the SDP relation provides the optimal solution to the original problem.

Else create two subproblems and proceed to Step 2.

Step 2: Termination If the set of active subproblems is empty or the relative

gap between the upper and lower bounds is less than a given tolerance, then

Xincumbent, which corresponds to the best feasible solution found, is optimal

or sufficiently close to optimality. Else proceed to Step 3.

Step 3: Problem Selection and Relaxation Select and delete a problem from

the list of active subproblems. Solve the SDP relaxation of the problem to

obtain a solution X∗i with an objective function value zRi . If the solution

is fractional, the objective function value zRi is an bound for that partition.

Proceed to Step 4.

Step 4: Fathoming The node is fathomed when one of the following conditions

is met:

1. The solution is feasible for the original problem. The lower bound is

updated if the objective function value zRi is greater than the previous

best solution. In this case, the new solution X∗i becomes the incumbent

Xincumbent. Go to Step 2.

2. The objective function value zRi is less than the value of the current lower

bound. Go to Step 2.

3. The problem at the node is infeasible. Go to Step 2.
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Step 5: Partitioning If none of the fathoming conditions are met, then create

two or more subproblems and add them to the set of active subproblems. The

upper bound for the original problem is updated if the maximum of all the

upper bounds for each live branch in the tree decrease. The maximum value

of each branch is given by the objective function value of the last node in that

branch. Go to Step 2.

The specifics of any branch-and-bound algorithm must address strategies for

variable and node selection. The easiest way to partition a parent node is to

generate two subproblems by branching on a fractional variable and setting that

variable equal to zero or one. The degree of infeasibility is determined by evaluating

the difference between the variable and its square:

uj − u2
j = εj ∀j.

Variables with ε less than a predetermined tolerance are considered integral. During

the partitioning process, branching variables must be selected in order to create

children nodes. Since the choice of branching variable may affect the running time

of the algorithm, we test four approaches for selecting branching variables among

the fractional unit commitment variables. These approaches are defined as follows:

Random Pick: Selects a branching variable randomly from the set of non-integral

variables.

Most Infeasible: Selects to branch on the variable with the largest value of ε.

Least Infeasible: Selects to branch on the variable with the smallest value of ε.

Most Profitable: Selects to branch on the variable corresponding to the period

with the highest expected price.

Fixing a unit commitment variable to zero or one is problematic due to the

structure of the matrix variable. Setting uj = 0 forces every element in the rows and

columns associated with pjpj and ujuj equal to zero; whereas, setting uj = 1 causes

the rows and columns associated with ujuj and v2 to be linearly dependent. These

singularities necessitate matrix reduction operations at each node. The operations

consist of removing the two empty rows and columns when uj = 0 and consist

of removing the linearly dependent row and column corresponding to ujuj when

uj = 1. If uj = 1, the coefficient matrices must be modified in order to reflect the
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fact that the unit is committed. In this case, it is necessary to adjust the constant

term bi in each constraint to account for the fact that coefficients corresponding to

ujuj, ujv, and vuj become constants. Also, since the remaining terms in the deleted

row and column are meant to depend on the product of uj and another decision

variable, it is necessary to modify the coefficients of the variables in the row and

column associated with v2 to account for these contributions. Some constraints

may become redundant following these operations and they must be removed.

The decision of which problem to solve among the set of active subproblems

dictates the total number of nodes explored before optimality is reached. More

specifically, it affects the possibility of improving the incumbent solution, along

with the chance to fathom nodes more quickly. Two of the most common strategies

are the depth-first and best-bound approaches.

Depth-first: The most recently created subproblem is selected. The goal is to find

a feasible solution as quickly as possible by fixing a large number of variables.

Best-bound: The subproblem with the lowest bound is selected. The rationale is

that it is more difficult to fathom nodes with small objective function values

because they are unlikely to exceed the upper bound. It also helps to reduce

the gap between bounds as quickly as possible.

In Chapter 6, we will compare the performance of each branch-and-bound con-

figuration in order to determine the best performing rules for node and variable

selection.
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Chapter 6

Results and Discussions

In this chapter, three test instances are used to analyze the performance of the

proposed methodology relative to that of the mean-variance approach described in

Section 4.3.3. First, we compare the strength and solution times of the two relax-

ations using a 24-period test case from the literature. Using the same instance, we

test the various branch-and-bound configurations for the SDP approach to deter-

mine which performs best. Having selected the best branch-and-bound strategy,

we continue by plotting the efficient frontiers of both solution methodologies and

compare their solution times for eight levels of risk aversion. The second and third

test cases extend the results by subjecting the model to a larger instance consisting

of 48 periods and an instance based on real-world data from the Ontario electricity

market.

6.1 Problem Instances

The numerical example found in [10] is used to evaluate the quality of the SDP

relaxation and the performance of the branch-and-bound algorithm. The problem

consists of the day-ahead scheduling of a single generator over a 24-hour planning

horizon. The technical and costs data of the generator is given in Table A.1 and

Table A.2 of Appendix A. We only consider the scheduling of a unit with these

operational characteristics. An example of the parameters used to describe the

uncertainty in electricity prices is also provided in [10]. In this paper, three months

of price information from the electricity market in mainland Spain was used to

generate price forecasts and a covariance matrix. The price forecasts are presented
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in Table A.3 while an estimate of the covariance matrix is given in Table A.4, both

of which are included in Appendix A.

A larger problem instance consisting of 48 periods was generated by replicating

each period in Table A.3 and Table A.4 of Appendix A. Using this approach, every

two consecutive periods are indistinguishable. For example, if we consider only the

first two periods, the following relationships hold:

λ̂1 = λ̂2

σ1i = σi1 = σ2j = σj2 ∀i = 1 . . . np ∀j = 1 . . . np.

The resulting 48-period planning horizon is consistent with the electricity markets

in the United Kingdom and Australia, where the markets are cleared in half-hour

intervals. In order to correctly model the shorter time periods, it is necessary

to account for the time dependency of certain operational characteristics. This

requires modifying the minimum up and down times, as well as the ramp-up and

ramp-down rates, by a factor of two to reflect the shorter time periods. In addition,

we divide the cost coefficients and expected prices by a factor of two since they are

expressed on a per megawatt hour basis but the production in each period occurs

over a half-hour.

In the province of Ontario, the IESO publishes detailed price information per-

taining to the market it oversees [32]. Two reports of particular interest are the

Hourly Ontario Energy Price (HOEP) and the Day-ahead Price Forecast. The

HOEP is the price paid to self-scheduling generators for the electricity they pro-

duce, whereas the Day-ahead Price Forecast is derived from publicly available data

which includes day-ahead forecasts of demand and the availability of generation

capacity, as well as price information from surrounding markets. It is published

at 17:00 EST the day prior, but only for Monday to Friday. Five weeks of data

spanning between September 1, 2008 and October 3, 2008 was gathered and is pro-

vided in Table A.5 and Table A.6 of Appendix A. Using this real-world data, we

construct a second problem instance consisting of 24 periods. An approximation of

the covariance matrix is obtained from equation (4.44) with ν = 0.98 and D = 24.

These values were shown to produce a good estimate of the covariance matrix in

[10] and are selected here. The price forecasts and an estimate of the covariance

matrix are found in Table A.7 and Table A.8 of Appendix A.
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6.2 Baseline Model

The mean-variance approach presented in [10] is used as a baseline for analyzing the

computational efficiency and solution quality of the proposed model. This approach

is selected for comparative purposes because it considers profit and risk simultane-

ously, which is an important property of the proposed framework. In both models,

a covariance matrix of electricity prices is used to measure the uncertainty in ex-

pected profit. The mean-variance approach quantifies risk through the addition of a

variance term in the objective function, whereas the robust optimization approach

uses a covariance matrix to define an uncertainty set.

The formulation of the mean-variance model used in this chapter is as follows:

max

np∑
j=1

[
λestj pj − cpj − cuj − cdj

]
− β

np∑
i=1

np∑
j=1

σijpipj (6.1)

s.t. cpj = αuj + ωpj + γp2
j ∀j (6.2)

cuj ≥ K [uj − uj−1] ∀j (6.3)

cdj ≥ C [uj−1 − uj] ∀j (6.4)

ujP − pj ≤ 0 ∀j (6.5)

pj − ujP ≤ 0 ∀j (6.6)

pj ≤ pj−1 +RUuj−1+

SU [uj − uj−1] + P [1− uj] ∀j (6.7)

pj ≤ Puj+1 + SD [uj − uj+1] ∀j = 1 . . . np − 1 (6.8)

pj−1 − pj ≤ RDuj+

SD [uj−1 − uj] + P [1− uj−1] ∀j (6.9)

a(t)∑
τ=j

uτ ≥ (uj − uj−1) b
(
t
)

+ δ (j − 1) a0 ∀j (6.10)

a(t)∑
τ=j

(1− uτ ) ≥ (uj−1 − uj) b (t) + δ (j − 1) b0 ∀j (6.11)

pj, c
u
j , c

d
j ≥ 0 ∀j (6.12)

uj ∈ {0, 1} ∀j, (6.13)

where the a (·), b (·), a0, and b0 terms are defined in Section 4.2.4. The objective

function consists of maximizing profit and minimizing variance. The addition of the

risk aversion parameter, β, allows for the simultaneous treatment of these multiple
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objectives. Moreover, increasing its value shifts the emphasis from profit to risk.

Similar to the robust approach, an efficient frontier is defined by solving the problem

for various levels of risk. The unit-specific constraints correspond to those given in

Section (5.2.3) for the robust formulation. They include the production cost (6.2),

the start-up and shutdown costs (6.3) - (6.4), the generation limits (6.5) - (6.6), the

ramping rates (6.7) - (6.9), the minimum time constraints (6.10) - (6.11), the non-

negativity constraints (6.12), and the binary constraints (6.13). Since the variance

term is quadratic and the unit commitment variables are binary, the problem is

formulated as a mixed-integer quadratic programming (MIQP) problem.

The proposed formulation and algorithm were modeled in MATLAB [27], and

the SDPT3 [44] solver was invoked to solve the SDP subproblems. The MIQP for-

mulation of the mean-variance model was implemented in GAMS [11] and solved

using CPLEX [17] solver. Both solution approaches were tested on a Sun worksta-

tion with 16 processors and 32 GB of RAM.

6.3 Strength of the SDP Relaxation

The problem instance in [10] was solved using the SDP relaxation of the proposed

formulation and the MIQP relaxation of the mean-variance model. The solution

quality and computation efficiency of both relaxations are given in Table 6.1 and

Table 6.2 for several levels of risk. The values for the scaling parameters κ and β

were chosen such that the solutions correspond to the same set of non-dominated

integer-feasible points. It should also be noted that the definitions of the objective

functions differ between approaches. Therefore, we cannot draw definitive conclu-

sions based on the magnitudes of these results.

The results presented above indicate that the SDP relaxation produces a tighter

upper bound on the optimal solution but takes approximately 20 times longer to

solve than the MIQP relaxation. The strength of the SDP relaxation is especially

evident in the least risk-averse schedules. In both cases, the absolute gap tends to

increase as the schedules become less risky. The relative gap is significantly large

in some instances. However, none of the triangle inequalities are violated in any

of the instances. The objective function value only represents the expected profit

of the schedule when the risk aversion parameter is 0. As such, the relative error

does not reflect the quality of the schedules in terms of their expected profit. The
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Table 6.1: Quality of the SDP Relaxation

Kappa
Solution Function Value Absolute Relative Error (%) Violated

Times (s) Upper Bound Optimal Gap (From Optimal) Inequalities

0.001 5.76 29238 29203 35 0.1% 0

6 5.22 21927 21858 69 0.3% 0

12 5.67 15453 15320 133 0.9% 0

18 5.66 9746 9499 247 2.6% 0

24 5.66 5151.2 4446 706 15.9% 0

30 7.14 1390.6 450 941 209.3% 0

36 6.19 -1077.6 -2973 1896 63.8% 0

42 5.40 -2185 -5315 3130 58.9% 0

Table 6.2: Quality of the MIQP Relaxation

Beta
Solution Function Value Absolute Relative Error (%)

Times (s) Upper Bound Optimal Gap (From Optimal)

0 0.31 31273 29204 2069 7.08%

0.0025 0.30 28582 25458 3124 12.27%

0.006 0.29 25572 21317 4255 19.96%

0.0098 0.29 22983 17765 5218 29.37%

0.0166 0.30 19440 13120 6320 48.17%

0.022 0.27 17282 10650 6632 62.28%

0.034 0.27 13704 6556 7147 109.02%

0.082 0.26 6153 63 6091 9727.17%
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Table 6.3: Comparison of Fractional Unit Commitment Variables

Hour

Unit Commitment

SDP MIQP SDP MIQP SDP MIQP SDP MIQP

κ = 0.001 β = 0 κ = 12 β = 0.006 κ = 24 β = 0.0166 κ = 36 β = 0.034

1 1.000 0.973 0.688 0.971 0.286 0.971 0.217 0.972

2 0.000 0.206 0.042 0.133 0.192 0.274 0.217 0.343

3 0.000 0.114 0.000 0.071 0.000 0.000 0.000 0.000

4 0.000 0.114 0.000 0.071 0.000 0.000 0.000 0.000

5 0.000 0.114 0.000 0.071 0.000 0.000 0.000 0.000

6 0.000 0.114 0.000 0.071 0.000 0.036 0.003 0.085

7 0.000 0.133 0.000 0.211 0.000 0.231 0.012 0.273

8 0.000 0.138 0.000 0.211 0.000 0.231 0.012 0.273

9 0.000 0.174 0.000 0.211 0.000 0.159 0.012 0.103

10 0.000 0.275 0.000 0.211 0.000 0.159 0.001 0.103

11 0.934 0.471 0.000 0.282 0.000 0.159 0.001 0.103

12 1.000 0.665 0.889 0.536 0.461 0.401 0.001 0.294

13 1.000 0.896 1.000 0.728 1.000 0.521 0.001 0.330

14 1.000 0.896 1.000 0.728 1.000 0.521 0.262 0.330

15 1.000 0.896 1.000 0.728 1.000 0.596 0.262 0.478

16 1.000 0.896 1.000 0.775 1.000 0.650 0.439 0.478

17 1.000 0.911 1.000 0.775 1.000 0.650 0.439 0.478

18 1.000 0.911 1.000 0.775 1.000 0.656 0.913 0.555

19 1.000 0.911 1.000 0.775 1.000 0.656 0.913 0.555

20 1.000 0.911 1.000 0.758 1.000 0.612 0.758 0.487

21 1.000 0.911 1.000 0.758 1.000 0.612 0.758 0.487

22 1.000 0.922 1.000 0.758 0.953 0.612 0.318 0.487

23 1.000 0.922 1.000 0.758 0.147 0.501 0.000 0.375

24 1.000 0.678 1.000 0.589 0.147 0.501 0.000 0.375

unusually high percent differences are mainly the consequence of optimal values

that approach zero.

The difference in quality is further highlighted by the fractional values of the

unit commitment variables shown in Table 6.3. Despite having relaxed the binary

condition on the unit commitment variables, the solution to the SDP relaxation

consists almost exclusively of integer feasible variables at small values of κ. At

these low values, the robustness constraint has little influence on the solution space

and there is a large incentive to produce in the peak evening hours. The fractional

values at the transitions between on-line and off-line states are a consequence of the

ramping rates. With increasing values of κ, the robustness constraint plays a larger

role and the worst-case electricity prices tend to decrease, making it more attractive

to commit generating capacity in fewer periods. Under these circumstances, the

minimum time constraints add to the degradation of the integrality of the unit

commitment variables. Once the number of periods in which electricity generation

is profitable falls below a threshold, the integrality of the unit commitment variables

may be compromised in order to satisfy the minimum time constraints. As the profit

margins decrease, the pressure becomes more pronounced and the fractional values

tend to approach 0. The impact of the minimum time constraints is evidence of the

complexity of the self-scheduling problem. However, compared with the solution to

the MIQP relaxation, the SDP relaxation has a higher degree of integer-feasibility.
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This distinction is more evident at low values of κ. From a practitioner’s point of

view, it would be straightforward to apply a simple heuristic in order to obtain a

good quality self-schedule starting with the solution to the SDP relaxation.

6.4 Performance of the Branch-and-bound Algo-

rithm

The self-scheduling problem formulations contain 48 independent decision variables,

half of which are binary variables. Solving this problem to a global optimal involves

searching a large number of nodes during the solution process. The difference be-

tween the solution times of the mixed-integer problem and its relaxation in Section

6.3 highlights the complexity introduced by the binary requirements. A comparison

of the solution times and the number of nodes evaluated for each of the branch-

and-bound configurations outlined in Section 5.3.2 is given in Table 6.4 and Table

6.5 for eight different values of κ. Selecting the most infeasible unit commitment

variable leads to the lowest average solution time among all branching strategies

irregardless of the node selection techniques. The difference between the solution

time of this strategy and the best performing strategy is significant in only three

of the sixteen instances. Furthermore, the best-bound strategy for node selection

terminates in less time on average than the depth-first approach under each of

the four branching rules. Therefore, unless otherwise noted, we select the most

infeasible variable and apply the best-bound node selection strategy within our

branch-and-bound algorithm.

The computational results for the MIQP formulation solved using CPLEX are

presented in Table 6.6. At low values of κ, the SDP formulation requires approx-

imately two to three times more computational time than the alternative. This

disparity becomes even more significant as the risk aversion parameters increase.

For large values of κ, the difference in solution times exceeds a factor of 10. De-

spite having higher solution times, the proposed method requires solving fewer

subproblems before terminating. Therefore, any reductions in the solution times of

individual subproblems will improve the performance of the algorithm.

A noteworthy factor driving the computational efficiency of many solution method-

ologies is warm-starting. This technique reduces the number of iterations needed

to arrive at the optimal solution of a subproblem by using the solution to a pre-

viously solved subproblem as a starting point. The potential for improvement is
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Table 6.4: Performance of the Branch-and-Bound Algorithm with Depth-first Node

Selection

kappa
Random Most-infeasible Least-infeasible Most Profitable

Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes

0.001 18.18 3 18.28 3 18.32 3 18.13 3

6 28.8 5 28.92 5 28.86 5 28.68 5

12 42.87 7 43.08 7 56.13 9 43.04 7

18 55.63 9 41.35 7 53.92 9 41.94 7

24 271.1 43 80.81 13 156.82 25 261.7 39

30 294.34 41 101.65 15 367.42 55 269.17 37

36 360.13 53 392.84 57 477.52 73 813.84 117

42 1270 195 1022.2 149 864.64 129 1719.6 243

AVERAGE 292.63 44.50 216.14 32.00 252.95 38.50 399.51 57.25

Table 6.5: Performance of the Branch-and-Bound Algorithm with Best-Bound Node

Selection

kappa
Random Most-infeasible Least-infeasible Most Profitable

Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes

0.001 18.70 3 18.17 3 18.22 3 18.25 3

6 28.89 5 29.08 5 28.68 5 28.74 5

12 48.71 8 43.28 7 55.74 9 35.87 6

18 48.66 8 41.15 7 54.01 9 44.21 7

24 186.23 30 67.26 11 142.14 23 145.03 22

30 268.28 39 100.73 15 359.00 54 269.86 37

36 399.59 61 262.42 38 449.91 69 575.69 83

42 550.48 84 254.46 38 856.78 127 880.92 130

AVERAGE 193.69 29.75 102.07 15.50 245.56 37.38 249.82 36.63
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Table 6.6: Computational Results for Solving the MIQP using CPLEX

Beta Exp. Profit ($) Std. Deviation Time (s) Nodes

0 29205 1252 9.68 16

0.0025 29056 1200 9.46 28

0.006 27543 1019 13.63 42

0.0098 26046 919 17.22 58

0.0166 21829 724 19.86 90

0.022 19963 651 18.38 94

0.034 16093 530 21.69 109

0.082 5390 255 18.00 96

most considerable for the depth-first approach since the subsequent problems in

the branch-and-bound tree differ by a single variable. Unfortunately, incorporating

this technique into an SDP-based algorithm is a topic of ongoing research. As a

result, each subproblem must be solved from scratch, thus greatly increasing the

computational burden of the algorithm as a whole.

6.5 Solution Characteristics

Solving the self-scheduling problem for varying levels of risk aversion produces the

efficient frontier illustrated in Figure 6.1. The plot depicts the trade-off between

expected profit and risk, where risk is quantified by the standard deviation of the

generation schedules. The results indicates that the exact solutions to the SDP and

MIQP formulations trace out the same efficient frontier. This fact is interesting

since robust optimization is notorious for being overly conservative. From the

efficient frontier, it is observed that the expected profit increases as the standard

deviation also increases. The most risky schedule (κ = 0.001) has an expected

profit of $29,205, whereas the expected profit from a more conservative schedule

(κ = 42) is equal to $5,382.

Figure 6.1 also depicts the efficient frontiers of the relaxed solutions. The result-

ing curves further support the observations regarding the strength of relaxations

given in Section 6.3. As previously noted, the SDP relaxation provides an excel-

lent approximation to the exact solution at low values of κ and diverges as the

risk aversion increases. With regards to the MIQP formulation, the relaxation is
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worst at moderate levels of risk and improves as the risk aversion increases, where

it eventually outperform the SDP relaxation when κ and β are large.

Table 6.7 shows the scheduling differences between low and high levels of risk

aversion. With increasing risk aversion, producers are more reluctant to offer gen-

eration capacity. In general, the risk averse producer remains on-line for fewer

periods, and for those periods in which units remain committed, the production

levels are lower.

Table 6.7: Scheduling Differences Between Low and High Levels of Risk Aversion

Hour
Power (MW)

Hour
Power (MW)

κ = 0.001 κ = 42 κ = 0.001 κ = 42

1 160 150 13 290 0

2 0 141 14 294 0

3 0 0 15 294 0

4 0 0 16 294 0

5 0 0 17 294 0

6 0 0 18 294 170

7 0 0 19 294 196

8 0 0 20 294 185

9 0 0 21 294 160

10 0 0 22 294 0

11 170 0 23 287 0

12 230 0 24 237 0

49



k
 =

 0
.0

0
1

k
 =

 1
2

k
 =

 2
4

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

Expected Profit ($)

k
 =

 3
6

k
 =

 4
2

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0

Expected Profit ($)

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
S

ta
n

d
a

rd
 D

e
v

ia
ti

o
n

M
IQ

P
M

IQ
P

 R
e

la
x
a

ti
o

n
R

o
b

u
st

 S
D

P
 w

it
h

 B
ra

n
c
h

-a
n

d
-B

o
u

n
d

R
o

b
u

st
 S

D
P

 R
e

la
x
a

ti
o

n

F
ig

u
re

6.
1:

C
om

p
ar

is
on

s
of

E
ffi

ci
en

t
F

ro
n
ti

er
s

50



Table 6.8: Quality of the SDP Relaxation with np = 48

Kappa
Solution Function Value ($) Absolute Relative Error (%)

Times (s) Upper Bound Optimal Gap ($) (From Optimal)

0.001 20.2 29264 29253 11 0.0%

6 16.1 15517 15348 169 1.1%

12 17.4 5323 4385 938 21.4%

18 16.5 -731 -3059 2328 76.1%

24 17.8 -2271 -7195 4924 68.4%

6.6 Effect of Problem Size on Performance

In order to evaluate the effect of the problem size on performance, a larger instance

was created by replicating the number of periods. Table 6.8 summarizes the per-

formance of the SDP relaxation for the instance with np = 48. The results indicate

that increasing the number of periods also increases the time needed to solve the

subproblems. For this particular test instance, doubling the number periods in-

creases the solution times by a factor of about three. Furthermore, the quality of

the SDP relaxation is worse both in terms of absolute and relative gaps than what

is presented in Table 6.1, where np = 24.

Table 6.9 and Table 6.10 show the computational results stemming from both

exact solution methodologies. There is a large difference between the solution times

presented in these tables and their 24-period counterparts, with several entries

more than an order of magnitude larger. However, this fact is not surprising since

the number of unit commitment combinations increases exponentially with the

number of periods. Another consequence of the larger instance is the increase in

computational effort required to construct the input matrices, as well as to perform

the matrix reduction operations. These costly procedures greatly deteriorate the

performance of the SDP formulation and force its solution times well above those

of the commercially available software.

6.7 Example Based on IESO Data

In this section, we apply the robust formulation to a numerical example derived

from the IESO data. The example was subjected to many of the same analyses as
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Table 6.9: Computational Results using SDP with np = 48

kappa
Optimal Expected Standard Solution Time (s)

Nodes
Value Profit ($) Deviation Build Solve Total

0.001 29253 29255 2513 52 72 124 4

6 15348 27802 2076 100 113 212 7

12 4385 21862 1456 832 690 1522 44

18 -3059 14326 966 2709 1862 4571 108

24 -7195 5894 545 2169 1606 3775 90

Table 6.10: Computational Results using MIQP with np = 48

beta
Optimal Expected Standard Solution

Nodes
Value Profit ($) Deviation Time (s)

0 29255 29255 2527 34 39

0.00144 21597 27809 2077 60 104

0.0041 13166 21878 1458 126 304

0.00932 5632 14322 966 161 379

0.0219 -590 5898 546 93 170
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Table 6.11: Quality of the SDP Relaxation for the IESO instance

Kappa
Solution Function Value Absolute Relative Error (%) Violated

Times (s) Upper Bound Optimal Gap (From Optimal) Inequalities

0.001 7.72 68793 67021 1772 2.6% 0

1 5.68 43942 42424 1518 3.6% 0

2 5.86 21659 20149 1510 7.5% 0

3 5.60 6047 3411 2636 77.3% 0

4 5.64 -809 -4827 4018 83.2% 0

5 6.13 -2451 -8293 5842 70.4% 0

6 5.44 -3134 -11114 7980 71.8% 0

Table 6.12: Quality of the MIQP Relaxation for the IESO instance

Beta
Solution Function Value Absolute Relative Error (%)

Times (s) Upper Bound Optimal Gap (From Optimal)

0 0.44 69735 67045.451 2690 4.0%

2.085 · 105 0.34 57169 54415 2754 5.1%

5.135 · 105 0.41 45008 39624 5384 13.6%

1.563 · 104 0.34 26790 17806 8984 50.5%

2.715 · 104 0.33 18780 9906 8874 89.6%

8.8 · 104 0.32 6543 -1191 7734 649.3%

0.001 0.47 5616 -2148 7764 361.4%

were conducted in Sections 6.3 - 6.5. The quality of the bounds and the solution

times for both formulations are reported in Table 6.11 and Table 6.12 for seven

levels of risk aversion. From these tables, the SDP relaxation is shown to provide a

tighter upper bound on the optimal solution than the MIQP relaxation; however,

the difference between the relative errors is less significant than in Section 6.3.

At κ = 3 and β = 1.563 · 10−4, the relative error given by the SDP relaxation

actually exceeds the value of its counterpart. Table 6.13 lists the values of the unit

commitment variables. At low levels of risk aversion, the results obtained by both

methodologies are either 0 or 1 in most periods. The number of unit commitment

variables that take non-integer values increases when κ and β are large.

The computational results of the exact solution methodologies are given in Table
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Table 6.13: Comparison of Fractional Unit Commitment Variables for the IESO

Instance

Hour

SDP MIQP SDP MIQP SDP MIQP SDP MIQP

β = β =

κ = 0.001 β = 0 κ = 2 5.135 · 105 κ = 4 2.715 · 104 κ = 6 β = 0.001

1 0.342 0.968 0.296 0.968 0.264 0.968 0.217 0.968

2 0.171 0.000 0.188 0.000 0.200 0.000 0.217 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.195 0.000 0.016 0.000 0.000 0.000 0.000

6 0.727 0.773 0.727 0.617 0.198 0.226 0.016 0.167

7 1.000 1.000 1.000 0.975 0.744 0.803 0.063 0.487

8 1.000 1.000 1.000 0.975 0.620 0.803 0.063 0.487

9 1.000 1.000 1.000 0.975 0.620 0.379 0.063 0.228

10 1.000 1.000 1.000 0.903 0.202 0.324 0.000 0.080

11 1.000 1.000 1.000 0.903 0.202 0.319 0.000 0.080

12 1.000 1.000 1.000 0.903 0.202 0.319 0.050 0.113

13 1.000 1.000 1.000 0.824 0.202 0.319 0.050 0.121

14 1.000 1.000 1.000 0.661 0.202 0.319 0.050 0.121

15 1.000 1.000 0.942 0.661 0.202 0.319 0.050 0.121

16 1.000 1.000 0.858 0.709 0.365 0.319 0.082 0.178

17 1.000 1.000 0.809 0.709 0.064 0.233 0.015 0.056

18 1.000 1.000 0.998 0.633 0.064 0.233 0.015 0.056

19 1.000 1.000 0.998 0.633 0.157 0.233 0.015 0.056

20 1.000 1.000 0.998 0.633 0.157 0.233 0.008 0.056

21 1.000 1.000 0.998 0.633 0.169 0.296 0.033 0.178

22 0.963 0.853 0.940 0.633 0.169 0.296 0.033 0.178

23 0.931 0.853 0.211 0.489 0.000 0.264 0.033 0.178

24 0.175 0.213 0.000 0.069 0.000 0.000 0.000 0.000

6.14 and Table 6.15. These results again show the discrepancy in computation

time between the two approaches. Figure 6.2 plots the efficient frontier for the

example. Any point along this curve corresponds to an optimal solution, which is

the consequence of a specified level of risk aversion. Four κ-values are identified

along the frontier, and the production schedules which provide these solutions are

presented in Table 6.16. They exhibit the same properties that were previously

noted in Section 6.5. The main conclusion being that expected profit and standard

deviation are positively correlated, whereas output is negatively correlated. A

decision maker will select, according to their preferences, the schedule that best

balances profit and risk.
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Table 6.14: Computational Results using SDP for the IESO Instance

Kappa Exp. Profit ($) Std. Deviation Solution Time (s) Nodes

0.001 67045 25011 34.76 12

1 66411 23987 22.98 8

2 59095 19473 31.36 10

3 32202 9597 130.82 44

4 24635 7366 224.69 70

5 5891 2837 165.05 62

6 5673 2798 152.52 58

Table 6.15: Computational Results using MIQP for the IESO Instance

Beta Exp. Profit ($) Std. Deviation Solution Time (s) Nodes

0 67045 25501 0.97 2

2.085 · 105 66411 23987 0.74 1

5.135 · 105 59095 19473 0.75 25

1.563 · 104 32202 9597 0.92 150

2.715 · 104 24636 7366 0.98 136

8.8 · 104 5891 2837 0.93 99

0.001 5793 2818 5.78 44
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Table 6.16: Scheduling Differences for the IESO Instance

Hour
Power [MW]

Hour
Power [MW]

κ = 0.001 κ = 2 κ = 4 κ = 6 κ = 0.001 κ = 2 κ = 4 κ = 6

1 150 150 150 150 13 294 269 154 0
2 0 0 0 0 14 294 219 113 0
3 0 0 0 0 15 260 193 112 0
4 0 0 0 0 16 294 213 160 0
5 0 0 0 0 17 294 163 0 0
6 170 170 170 112 18 294 213 0 0
7 230 230 230 157 19 294 239 0 0
8 290 290 180 112 20 294 189 0 0
9 294 294 161 112 21 260 210 0 0
10 294 294 112 0 22 210 160 0 0
11 294 294 112 0 23 160 0 0 0
12 294 265 123 0 24 0 0 0 0

6.8 Summary of Results

In this chapter, the robust self-scheduling approach was compared to the mean-

variance approach presented in [10]. The focus of the analysis was directed at the

strength and solution times of the SDP relaxation, along with the characteristics

of the optimal solutions and the computational efficiency of the branch-and-bound

algorithm. The results show that despite producing identical self-schedules, the

methods differ significantly in terms of the strength of the relaxations and their

computational requirements.

At low levels of risk aversion, the SDP relaxation was found to produce sig-

nificantly better bounds than the MIQP relaxation at the expense of an increase

in solution times. Moreover, the relative errors in the objective function values of

the SDP relaxation were generally more stable for all levels of risk aversion than

the MIQP formulation. The strength of the SDP relaxation was highlighted by

the fact that the unit commitment variables obtained were closer to being binary

than those provided by the MIQP relaxation. The distinction was less evident at

low uncertainty. In most cases, simply rounding the non-binary variables would

produce high quality solutions for the SDP relaxation, while it was not necessarily

the case for the MIQP relaxation.
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An analysis of eight branch-and-bound configurations indicated that the low-

est solution times resulted from the combination of selecting nodes based on the

breadth-first strategy and branching on the most integer-infeasible variable. This

configuration consistently outperformed the others. It was also found that the so-

lution at the root node of the branch-and-bound tree could not be improved by

adding cuts since none of the triangle inequalities were violated. The results in-

dicated that the solution times for the SDP formulation were significantly higher

than for the MIQP formulation despite having to solve fewer branch-and-bound

nodes before terminating. It was also noted that increasing the number of periods

had a drastic impact on solutions times and significantly deteriorated the quality

of the relaxations.

In conclusion, the results indicate that both approaches produce the same pro-

duction schedules at each profit level and consequently the same efficient frontiers.

Furthermore, a comparison of the relaxations show that the robust approach pro-

duces solutions which are closer to integrality and have lower relative error than

the mean-variance approach. However, the significantly higher solution times for

the SDP formulation limit its potential within a branch-and-bound algorithm.
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Chapter 7

Conclusions and Future Work

In this thesis, we present a robust optimization approach for solving the self-

scheduling problem using semidefinite programming (SDP). The addition of a ro-

bust constraint introduces a profit term within the objective function which ac-

counts for the risk associated with the uncertainty in electricity prices. As such, it

provides decision makers with the ability to quantify the trade-off between profit

and risk. In order to obtain integer-feasible solutions, we develop and implement

a branch-and-bound algorithm. The proposed approach was tested using three

problem instances and different values of κ. When compared to the mean-variance

approach from the literature, it provides significantly tighter upper bounds for small

values of κ. The quality of the relaxation is further highlighted by the degree to

which the unit commitment variables adhere to the integer constraints. The main

drawback of the proposed model is the high computation time requirements, which

increases substantially as the number of periods increase.

Future work should incorporate bilateral contracts and emission caps into the

model. The addition of these constraints would require aggregating the entire

generation portfolio, as well as extending the market horizon. Furthermore, the

framework could be extended to simultaneously consider markets for ancillary ser-

vices, such as spinning reserves. Also, a more accurate representation of the time

dependency of the start-up and shutdown costs is required. Finally, strategies

for improving the efficiency of the branch-and-bound algorithm should be investi-

gated. The computational time required to construct the constraint matrices could

be reduced by programming the model using C code. Improvements would also be

realized by incorporating warm starts instead of solving the problem from scratch

at each node.
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Appendix A

Table A.1: Technical Characteristics of the Generating Unit

Minimum Maximum Start-up ramping Shut-down ramping
power[MW] power[MW] limit[MW/h] limit[MW/h]

112 294 170 160

Ramping-up Ramping-down Minimum Minimum
limit[MW/h] limit[MW/h] up-time[hours] down-time[hours]

60 50 4 4

Table A.2: Cost Characteristics of the Generating Unit

Fixed Linear Quadratic Start-up Shutdown
[$/h] [$/MWh] [$/MWh] [$/start-up] [$/shutdown]

1150 18 0.035 1038 56
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Table A.3: Expected Values of the Market Clearing Prices

Hour Price [$/MWh] Hour Price [$/MWh]

1 33.31 13 41.05
2 26.53 14 41.61
3 22.16 15 38.98
4 23.10 16 39.74
5 22.60 17 42.02
6 23.15 18 42.09
7 24.65 19 40.74
8 24.75 20 38.80
9 25.50 21 39.63
10 27.58 22 46.14
11 31.60 23 39.04
12 35.60 24 33.68
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Table A.4: Estimate of Covariance Matrix

Hour 1 2 3 4 5 6 7 8 9 10 11 12

1 1.60 -0.40 0.40 0.14 0.10 0.09 0.10 0.58 0.27 0.40 0.09 0.10

2 -0.40 0.37 0.08 0.00 0.05 0.05 0.06 -0.10 -0.05 -0.05 -0.12 0.01

3 0.40 0.08 0.61 0.08 0.20 0.16 0.08 0.37 0.07 0.18 -0.29 0.08

4 0.14 0.00 0.08 0.32 0.09 0.15 0.11 0.10 0.06 -0.01 -0.07 -0.05

5 0.10 0.05 0.20 0.09 0.25 0.15 0.23 0.43 0.13 0.07 -0.11 -0.10

6 0.09 0.05 0.16 0.15 0.15 0.19 0.31 0.32 0.18 0.10 -0.11 -0.05

7 0.10 0.06 0.08 0.11 0.23 0.31 1.49 1.18 0.85 0.16 -0.18 -0.19

8 0.58 -0.10 0.37 0.10 0.43 0.32 1.18 1.76 0.83 0.55 0.01 -0.11

9 0.27 -0.05 0.07 0.06 0.13 0.18 0.85 0.83 1.21 0.35 0.18 0.07

10 0.40 -0.05 0.18 -0.01 0.07 0.10 0.16 0.55 0.35 0.72 0.27 0.24

11 0.09 -0.12 -0.29 -0.07 -0.11 -0.11 -0.18 0.01 0.18 0.27 0.90 0.14

12 0.10 0.01 0.08 -0.05 -0.10 -0.05 -0.19 -0.11 0.07 0.24 0.14 0.42

13 0.27 -0.05 0.10 0.09 0.12 0.08 -0.20 0.09 0.11 0.24 0.27 -0.03

14 0.19 -0.08 0.12 -0.06 -0.07 -0.06 -0.17 0.09 -0.06 0.17 0.34 0.25

15 -0.14 0.04 0.15 0.09 0.00 -0.01 -0.40 -0.38 -0.29 -0.20 -0.11 -0.06

16 0.08 0.05 0.16 0.08 0.17 0.14 0.32 0.43 0.27 0.12 -0.20 0.01

17 0.23 0.02 0.29 0.08 0.19 0.13 0.09 0.39 0.10 0.15 0.00 -0.05

18 0.06 0.17 0.18 0.02 0.15 0.12 0.24 0.27 0.11 0.11 -0.08 0.00

19 0.19 -0.05 0.06 0.01 0.04 0.04 0.00 0.07 0.02 0.08 0.00 0.05

20 -0.16 0.07 0.03 0.00 0.01 -0.04 -0.29 -0.14 -0.15 -0.01 0.12 0.09

21 0.02 -0.20 -0.11 -0.04 -0.15 -0.17 -0.65 -0.56 -0.39 -0.20 0.03 -0.07

22 -0.15 0.02 -0.32 -0.02 -0.32 -0.28 -1.03 -1.03 -0.66 -0.05 0.44 0.33

23 -0.19 -0.15 -0.13 0.06 -0.10 -0.12 -0.71 -0.59 -0.33 -0.23 0.18 -0.09

24 -0.01 0.10 -0.10 -0.05 -0.15 -0.12 -0.26 -0.44 -0.25 -0.15 0.01 0.20

Hour 13 14 15 16 17 18 19 20 21 22 23 24

1 0.27 0.19 -0.14 0.08 0.23 0.06 0.19 -0.16 0.02 -0.15 -0.19 -0.01

2 -0.05 -0.08 0.04 0.05 0.02 0.17 -0.05 0.07 -0.20 0.02 -0.15 0.10

3 0.10 0.12 0.15 0.16 0.29 0.18 0.06 0.03 -0.11 -0.32 -0.13 -0.10

4 0.09 -0.06 0.09 0.08 0.08 0.02 0.01 0.00 -0.04 -0.02 0.06 -0.05

5 0.12 -0.07 0.00 0.17 0.19 0.15 0.04 0.01 -0.15 -0.32 -0.10 -0.15

6 0.08 -0.06 -0.01 0.14 0.13 0.12 0.04 -0.04 -0.17 -0.28 -0.12 -0.12

7 -0.20 -0.17 -0.40 0.32 0.09 0.24 0.00 -0.29 -0.65 -1.03 -0.71 -0.26

8 0.09 0.09 -0.38 0.43 0.39 0.27 0.07 -0.14 -0.56 -1.03 -0.59 -0.44

9 0.11 -0.06 -0.29 0.27 0.10 0.11 0.02 -0.15 -0.39 -0.66 -0.33 -0.25

10 0.24 0.17 -0.20 0.12 0.15 0.11 0.08 -0.01 -0.20 -0.05 -0.23 -0.15

11 0.27 0.34 -0.11 -0.20 0.00 -0.08 0.00 0.12 0.03 0.44 0.18 0.01

12 -0.03 0.25 -0.06 0.01 -0.05 0.00 0.05 0.09 -0.07 0.33 -0.09 0.20

13 0.48 -0.01 0.08 0.01 0.21 0.02 0.11 0.06 0.08 0.01 0.21 -0.15

14 -0.01 0.60 0.06 -0.04 0.03 -0.01 0.02 0.15 0.06 0.20 0.12 0.17

15 0.08 0.06 0.43 -0.07 0.11 -0.13 0.04 0.13 0.29 0.20 0.40 -0.05

16 0.01 -0.04 -0.07 0.39 0.15 0.19 0.09 0.08 -0.24 -0.22 -0.08 -0.04

17 0.21 0.03 0.11 0.15 0.31 0.07 0.11 0.08 -0.05 -0.12 0.05 -0.22

18 0.02 -0.01 -0.13 0.19 0.07 0.41 -0.07 0.05 -0.27 -0.19 -0.25 0.07

19 0.11 0.02 0.04 0.09 0.11 -0.07 0.21 0.02 0.00 0.01 0.04 -0.01

20 0.06 0.15 0.13 0.08 0.08 0.05 0.02 0.24 0.03 0.32 0.23 0.09

21 0.08 0.06 0.29 -0.24 -0.05 -0.27 0.00 0.03 0.66 0.35 0.56 -0.02

22 0.01 0.20 0.20 -0.22 -0.12 -0.19 0.01 0.32 0.35 1.71 0.45 0.26

23 0.21 0.12 0.40 -0.08 0.05 -0.25 0.04 0.23 0.56 0.45 0.84 -0.03

24 -0.15 0.17 -0.05 -0.04 -0.22 0.07 -0.01 0.09 -0.02 0.26 -0.03 0.60
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Table A.5: IESO Hourly Ontario Energy Price

Date
Hour

1 2 3 4 5 6 7 8 9 10 11 12

01-Sep-08 28.47 4.45 2.37 4.10 6.53 16.59 15.03 27.73 40.77 43.00 64.87 76.41

02-Sep-08 23.59 4.38 4.14 31.94 39.42 41.32 43.62 46.73 61.98 68.78 67.58 110.35

03-Sep-08 39.53 21.17 12.99 28.07 36.86 42.47 44.50 60.63 77.29 83.62 89.55 95.08

04-Sep-08 35.17 33.82 30.15 26.72 24.37 41.64 37.83 43.49 52.72 59.35 71.21 79.92

05-Sep-08 36.09 37.87 35.84 37.70 39.57 41.17 58.65 69.47 60.32 79.33 76.06 71.50

08-Sep-08 36.18 25.84 28.09 31.09 39.36 41.02 39.10 51.42 68.48 82.40 107.40 85.69

09-Sep-08 34.88 40.95 34.08 39.07 40.91 56.73 77.53 64.36 48.38 51.03 68.31 68.61

10-Sep-08 35.08 4.47 3.59 4.63 32.49 28.24 50.57 46.97 43.05 41.09 57.13 46.48

11-Sep-08 23.03 6.54 3.60 4.48 37.12 35.61 34.72 39.29 59.49 75.61 66.63 67.46

12-Sep-08 7.40 4.63 22.24 4.48 13.78 47.50 48.08 44.73 61.51 68.25 67.07 65.62

15-Sep-08 31.37 9.71 28.31 15.58 11.38 36.92 38.71 63.17 69.82 86.17 80.66 50.21

16-Sep-08 4.84 4.59 5.48 4.58 8.84 31.63 21.84 35.25 38.17 30.13 35.55 35.80

17-Sep-08 6.87 4.75 5.13 4.73 12.99 38.86 35.36 41.11 42.06 46.98 57.62 85.04

18-Sep-08 28.29 32.89 35.34 35.07 31.46 39.17 36.36 42.04 44.06 74.08 59.14 43.63

19-Sep-08 9.91 4.94 4.95 4.66 16.70 40.84 44.69 47.09 56.13 64.80 65.34 133.63

22-Sep-08 5.47 6.33 7.87 6.05 36.56 41.11 41.17 43.25 47.02 42.16 42.13 53.32

23-Sep-08 31.80 4.88 4.90 2.77 14.79 40.08 38.10 40.93 42.91 44.17 43.48 61.71

24-Sep-08 8.66 3.61 3.79 24.35 26.58 40.96 39.47 41.73 41.19 41.70 42.72 52.10

25-Sep-08 5.12 4.81 6.44 5.33 9.84 42.55 39.24 56.63 67.87 56.45 49.14 56.03

26-Sep-08 39.81 34.40 34.06 32.93 31.57 41.51 38.26 51.82 56.30 45.77 53.17 50.91

29-Sep-08 4.94 17.68 4.38 1.81 27.22 48.77 49.98 62.16 53.82 57.27 55.27 68.31

30-Sep-08 11.26 33.04 15.84 11.27 20.27 45.59 54.79 117.28 90.94 71.95 80.44 62.72

01-Oct-08 18.50 16.33 3.74 5.88 23.58 42.89 46.84 44.89 46.35 45.26 44.92 70.58

02-Oct-08 35.33 5.20 5.07 32.68 30.55 58.73 40.08 42.25 43.53 47.49 45.32 53.29

03-Oct-08 34.56 15.17 3.65 20.62 38.23 40.12 46.25 46.65 46.72 49.96 48.00 45.01

Hour

13 14 15 16 17 18 19 20 21 22 23 24

01-Sep-08 79.36 73.58 52.85 65.45 83.05 75.58 75.93 118.23 82.17 47.90 42.56 39.64

02-Sep-08 100.12 111.09 103.58 118.97 214.00 133.65 104.57 99.84 78.59 67.79 56.42 42.40

03-Sep-08 98.51 100.69 103.61 105.87 104.57 102.70 105.10 101.86 90.28 79.55 53.11 43.02

04-Sep-08 91.19 80.92 70.67 83.25 78.76 75.27 63.60 72.04 45.42 51.33 44.59 36.36

05-Sep-08 63.42 71.00 60.03 49.47 61.68 52.35 43.06 43.08 44.55 39.71 53.50 40.39

08-Sep-08 68.72 66.77 55.89 54.96 65.96 42.69 63.21 68.40 40.87 37.26 38.76 28.22

09-Sep-08 62.59 42.94 47.00 43.55 76.86 42.71 41.86 43.02 40.22 11.47 7.03 20.26

10-Sep-08 45.66 44.97 43.20 43.21 42.17 42.18 42.01 43.80 40.13 7.22 3.32 2.33

11-Sep-08 79.48 68.22 63.36 65.78 108.73 43.33 45.67 44.66 53.47 44.44 34.10 27.65

12-Sep-08 59.84 42.26 40.50 49.08 78.53 61.66 76.90 52.46 40.57 47.44 58.62 38.51

15-Sep-08 81.05 69.18 40.98 40.38 38.12 38.07 37.54 42.12 43.43 32.27 36.90 31.89

16-Sep-08 37.01 38.67 39.20 40.20 41.82 41.33 43.60 47.71 39.34 23.80 20.43 6.15

17-Sep-08 102.05 55.69 41.81 40.97 40.90 39.88 43.89 40.97 45.82 45.69 47.97 35.79

18-Sep-08 85.59 42.30 42.63 45.29 52.45 42.89 65.24 58.46 50.93 43.76 38.90 24.81

19-Sep-08 80.86 84.08 79.01 73.62 71.39 43.00 59.16 80.91 42.33 38.39 40.26 26.06

22-Sep-08 67.25 61.71 81.62 103.76 62.03 44.25 65.10 48.92 43.34 37.72 45.55 36.49

23-Sep-08 64.58 61.77 71.17 74.73 56.02 60.43 61.98 52.84 47.25 39.71 33.20 9.00

24-Sep-08 53.86 67.38 65.77 74.27 70.15 58.42 65.49 68.11 55.58 40.16 37.56 15.78

25-Sep-08 65.17 70.07 69.84 62.57 54.40 51.46 59.36 63.66 55.08 42.31 43.11 22.12

26-Sep-08 62.00 68.22 54.33 50.89 44.46 46.63 44.73 47.36 41.40 37.53 43.96 34.54

29-Sep-08 87.29 72.64 52.98 76.58 86.48 61.82 84.10 130.70 45.13 40.43 25.53 28.97

30-Sep-08 42.66 38.66 36.91 39.54 40.44 40.10 44.56 39.95 30.95 51.18 37.30 16.43

01-Oct-08 43.20 36.16 33.15 30.50 20.56 5.86 42.19 45.95 47.74 41.51 41.78 12.71

02-Oct-08 44.21 43.39 40.13 42.03 44.18 55.23 130.46 93.68 51.33 54.10 33.98 32.24

03-Oct-08 42.73 40.74 39.88 40.60 40.05 35.51 41.51 43.47 46.27 46.77 42.19 21.64
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Table A.6: IESO Day-ahead Price Forecasts

Date

Hour

1 2 3 4 5 6 7 8 9 10 11 12

01-Sep-08 22.21 13.13 13.02 12.59 17.61 13.26 21.33 30.35 42.48 43.40 49.03 56.48

02-Sep-08 30.18 28.38 25.37 26.42 29.39 37.07 51.08 51.74 65.58 75.12 74.14 80.38

03-Sep-08 40.87 37.20 34.36 29.48 35.77 38.13 50.26 62.24 71.30 84.07 90.29 76.77

04-Sep-08 36.83 32.53 28.30 26.59 28.77 37.45 47.00 52.90 59.89 61.51 64.65 65.70

05-Sep-08 31.04 28.75 27.26 27.21 28.87 37.26 46.48 46.34 50.68 51.63 53.62 58.78

08-Sep-08 30.65 28.08 22.89 23.20 29.03 34.50 46.55 50.83 56.15 60.22 60.75 59.70

09-Sep-08 27.61 28.12 25.70 24.75 31.20 37.32 52.17 50.20 52.61 50.60 49.12 51.16

10-Sep-08 25.79 23.41 21.11 20.74 30.03 37.04 43.61 43.23 42.66 40.46 44.79 42.30

11-Sep-08 21.68 20.91 14.40 19.18 23.03 35.68 44.13 42.63 45.79 47.49 48.65 52.25

12-Sep-08 23.29 19.70 16.72 19.97 25.67 36.68 45.59 43.33 47.94 48.42 49.53 56.84

15-Sep-08 25.68 27.53 14.72 18.51 24.74 36.12 47.79 47.71 52.80 56.37 57.03 56.43

16-Sep-08 20.99 17.79 13.33 16.29 24.21 34.09 47.07 43.24 48.46 54.72 50.26 50.57

17-Sep-08 25.63 21.83 13.17 21.56 25.50 36.39 43.05 50.01 53.09 52.75 55.81 55.24

18-Sep-08 19.85 15.52 10.61 12.23 19.06 28.57 36.85 41.40 46.91 51.00 49.98 48.39

19-Sep-08 27.30 22.25 20.12 22.67 21.72 36.88 47.90 51.87 57.60 63.50 65.76 67.98

22-Sep-08 16.45 14.12 12.64 13.60 21.07 35.71 41.66 40.85 48.48 52.68 56.36 56.67

23-Sep-08 22.33 16.88 13.04 12.55 23.83 34.93 43.14 42.99 49.81 57.91 55.54 61.25

24-Sep-08 20.03 16.89 15.54 15.32 28.58 42.52 49.20 52.96 55.32 57.41 60.99 61.05

25-Sep-08 21.27 14.99 12.90 14.70 18.81 29.32 40.36 41.59 47.31 49.80 52.85 54.21

26-Sep-08 26.48 19.51 17.56 19.52 24.42 35.51 43.16 43.11 54.93 52.84 56.32 60.95

29-Sep-08 17.94 15.88 14.71 14.24 21.43 34.14 43.76 43.62 51.67 57.06 60.11 59.96

30-Sep-08 19.92 14.25 14.38 13.15 24.83 37.83 45.79 50.98 54.92 61.05 54.28 56.69

01-Oct-08 25.82 17.84 15.12 16.50 25.37 36.31 53.15 55.14 49.89 49.63 54.78 48.36

02-Oct-08 24.75 17.46 15.83 16.42 20.56 33.74 50.02 50.44 46.25 49.21 52.04 45.41

03-Oct-08 21.88 16.22 15.19 17.57 25.98 37.83 55.98 49.20 47.16 49.88 53.62 52.65

Hour

13 14 15 16 17 18 19 20 21 22 23 24

01-Sep-08 60.05 72.91 74.02 77.40 82.93 60.87 48.29 48.12 54.61 43.95 41.69 25.10

02-Sep-08 100.47 104.08 105.87 99.22 97.37 91.17 91.41 86.92 80.33 58.80 57.15 44.93

03-Sep-08 90.53 95.07 89.77 84.12 76.78 80.95 80.45 75.01 72.62 56.02 47.20 41.29

04-Sep-08 75.45 71.74 73.32 64.67 64.90 63.79 66.89 66.55 54.17 40.71 39.61 39.61

05-Sep-08 60.86 59.21 48.97 52.21 51.63 40.81 47.44 46.54 41.04 40.08 37.87 37.61

08-Sep-08 68.58 60.28 59.43 57.49 56.23 53.34 49.90 52.94 43.61 32.60 32.14 32.71

09-Sep-08 55.23 52.06 47.23 44.78 43.38 37.30 44.52 48.11 38.00 31.40 33.60 32.00

10-Sep-08 48.13 47.29 39.49 39.91 35.73 34.60 42.32 44.17 34.89 27.65 27.96 22.83

11-Sep-08 59.30 53.58 49.14 44.92 51.11 45.28 51.64 58.68 43.81 34.64 30.24 22.97

12-Sep-08 57.68 49.90 42.40 44.45 46.50 33.75 42.47 45.71 38.50 32.23 32.05 23.73

15-Sep-08 62.68 53.85 50.61 50.09 51.04 46.72 51.56 59.36 43.96 33.65 31.36 30.00

16-Sep-08 54.92 47.92 43.14 46.45 44.93 38.35 46.57 51.96 41.25 32.35 32.45 27.45

17-Sep-08 62.14 59.39 54.18 54.45 55.68 52.19 57.18 61.32 49.97 34.80 30.15 21.66

18-Sep-08 54.57 43.53 38.19 42.47 48.73 38.59 47.33 49.36 37.93 32.82 28.20 22.27

19-Sep-08 69.31 58.47 50.35 52.96 58.69 42.85 51.13 56.16 46.14 33.87 29.93 31.77

22-Sep-08 63.82 54.49 45.01 51.06 59.03 46.94 52.26 59.43 45.76 33.49 30.78 21.72

23-Sep-08 65.78 59.60 57.77 57.22 64.35 50.76 56.47 59.65 45.82 36.28 33.66 23.29

24-Sep-08 71.87 68.68 60.19 60.46 62.85 53.98 62.55 65.69 47.64 36.04 33.90 23.22

25-Sep-08 63.87 58.69 52.50 55.93 60.53 46.65 62.73 59.98 42.82 35.82 31.32 26.15

26-Sep-08 64.78 59.57 53.16 54.02 57.18 41.42 53.03 50.48 40.03 32.09 31.47 25.37

29-Sep-08 67.87 57.87 49.16 51.20 56.89 48.57 57.90 62.22 45.59 34.96 31.20 30.23

30-Sep-08 57.43 48.22 44.85 45.98 50.71 50.24 70.50 56.07 40.76 36.44 33.63 29.24

01-Oct-08 49.32 48.97 40.41 51.43 43.23 49.79 47.04 48.93 35.43 32.44 30.62 23.68

02-Oct-08 46.58 38.60 35.99 46.38 42.74 44.64 48.00 45.60 33.74 34.01 27.77 23.77

03-Oct-08 47.28 39.89 36.18 52.15 44.41 44.39 50.67 47.17 42.22 38.46 34.49 23.82
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Table A.7: Expected Values of the Market Clearing Prices (IESO)

Hour Price [$/MWh] Hour Price [$/MWh]

1 21.88 13 47.28
2 16.22 14 39.89
3 15.19 15 36.18
4 17.57 16 52.15
5 25.98 17 44.41
6 37.83 18 44.39
7 55.98 19 50.67
8 49.2 20 47.17
9 47.16 21 42.22
10 49.88 22 38.46
11 53.62 23 34.49
12 52.65 24 23.82
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Table A.8: Estimate of Covariance Matrix (IESO)

Hour 1 2 3 4 5 6 7 8 9 10 11 12

1 41.60 21.67 19.88 26.93 14.81 -3.34 10.73 0.80 -1.09 13.17 18.17 -24.27

2 21.67 74.07 49.46 37.29 14.60 -0.99 30.35 30.43 3.83 6.04 7.01 -46.82

3 19.88 49.46 60.86 31.61 4.41 0.21 16.83 19.16 8.55 28.59 24.29 -46.15

4 26.93 37.29 31.61 54.68 23.55 7.93 12.13 5.37 -5.76 7.04 5.49 -27.41

5 14.81 14.60 4.41 23.55 36.88 7.49 12.67 4.15 1.33 14.08 8.77 5.39

6 -3.34 -0.99 0.21 7.93 7.49 30.28 3.85 15.50 8.73 11.79 14.56 28.25

7 10.73 30.35 16.83 12.13 12.67 3.85 39.70 29.69 8.49 12.68 14.89 -5.10

8 0.80 30.43 19.16 5.37 4.15 15.50 29.69 93.17 50.90 37.08 46.57 -1.95

9 -1.09 3.83 8.55 -5.76 1.33 8.73 8.49 50.90 48.26 45.80 45.36 7.96

10 13.17 6.04 28.59 7.04 14.08 11.79 12.68 37.08 45.80 87.89 78.72 25.37

11 18.17 7.01 24.29 5.49 8.77 14.56 14.89 46.57 45.36 78.72 110.29 47.36

12 -24.27 -46.82 -46.15 -27.41 5.39 28.25 -5.10 -1.95 7.96 25.37 47.36 156.53

13 -2.00 -15.04 2.92 -12.04 1.47 16.51 -3.28 -5.49 0.74 37.02 33.56 54.55

14 -1.95 -18.00 -8.53 -5.71 8.40 6.91 -8.15 3.20 10.34 21.47 11.49 35.29

15 -10.94 -13.35 -14.35 -7.23 20.23 8.41 3.06 1.53 4.51 2.10 -18.35 19.06

16 -19.16 -31.50 -31.90 -14.45 24.25 12.15 -5.87 -4.82 -0.96 -7.23 -20.73 32.24

17 -20.39 -75.97 -67.63 1.16 50.57 32.56 -5.92 -8.12 8.60 30.15 31.36 123.45

18 -2.21 -32.87 -24.22 5.38 6.39 15.45 -1.67 -1.34 -1.41 -0.47 0.93 27.55

19 3.36 -39.22 -31.32 8.86 15.14 42.20 -15.91 -31.63 -8.49 3.33 -0.44 44.70

20 0.43 -28.43 -46.32 -4.98 2.41 37.26 -13.43 -12.81 -6.74 -3.76 12.31 76.69

21 7.88 -15.17 -15.20 0.12 1.62 12.11 -6.75 -8.03 1.45 8.54 5.33 14.75

22 -13.88 -16.34 -13.38 -2.71 0.33 17.91 -19.64 0.95 13.82 13.91 3.17 33.18

23 -18.36 -10.24 6.99 -5.61 -3.81 12.21 -15.34 1.22 16.21 27.07 9.08 25.89

24 -0.02 0.59 10.42 2.85 3.40 4.03 -1.24 -9.86 2.35 15.12 3.28 1.79

Hour 13 14 15 16 17 18 19 20 21 22 23 24

1 -2.00 -1.95 -10.94 -19.16 -20.39 -2.21 3.36 0.43 7.88 -13.88 -18.36 -0.02

2 -15.04 -18.00 -13.35 -31.50 -75.97 -32.87 -39.22 -28.43 -15.17 -16.34 -10.24 0.59

3 2.92 -8.53 -14.35 -31.90 -67.63 -24.22 -31.32 -46.32 -15.20 -13.38 6.99 10.42

4 -12.04 -5.71 -7.23 -14.45 1.16 5.38 8.86 -4.98 0.12 -2.71 -5.61 2.85

5 1.47 8.40 20.23 24.25 50.57 6.39 15.14 2.41 1.62 0.33 -3.81 3.40

6 16.51 6.91 8.41 12.15 32.56 15.45 42.20 37.26 12.11 17.91 12.21 4.03

7 -3.28 -8.15 3.06 -5.87 -5.92 -1.67 -15.91 -13.43 -6.75 -19.64 -15.34 -1.24

8 -5.49 3.20 1.53 -4.82 -8.12 -1.34 -31.63 -12.81 -8.03 0.95 1.22 -9.86

9 0.74 10.34 4.51 -0.96 8.60 -1.41 -8.49 -6.74 1.45 13.82 16.21 2.35

10 37.02 21.47 2.10 -7.23 30.15 -0.47 3.33 -3.76 8.54 13.91 27.07 15.12

11 33.56 11.49 -18.35 -20.73 31.36 0.93 -0.44 12.31 5.33 3.17 9.08 3.28

12 54.55 35.29 19.06 32.24 123.45 27.55 44.70 76.69 14.75 33.18 25.89 1.79

13 87.37 23.92 -0.65 15.03 35.08 11.25 20.12 38.16 15.99 21.54 22.85 27.52

14 23.92 38.20 26.26 34.67 40.65 17.53 14.06 28.72 3.13 13.61 16.16 7.48

15 -0.65 26.26 64.90 65.63 30.55 11.53 15.87 -8.49 0.62 9.15 13.83 -2.63

16 15.03 34.67 65.63 109.81 111.32 49.63 36.31 25.83 -1.11 22.87 12.54 3.04

17 35.08 40.65 30.55 111.32 416.08 151.29 82.33 79.97 14.20 36.56 -3.75 -1.36

18 11.25 17.53 11.53 49.63 151.29 106.65 68.13 71.94 14.94 18.34 1.93 8.80

19 20.12 14.06 15.87 36.31 82.33 68.13 174.45 155.08 46.91 44.43 22.61 27.29

20 38.16 28.72 -8.49 25.83 79.97 71.94 155.08 245.14 58.00 37.32 4.31 20.59

21 15.99 3.13 0.62 -1.11 14.20 14.94 46.91 58.00 38.64 14.37 6.16 8.74

22 21.54 13.61 9.15 22.87 36.56 18.34 44.43 37.32 14.37 51.07 42.90 20.11

23 22.85 16.16 13.83 12.54 -3.75 1.93 22.61 4.31 6.16 42.90 62.87 31.75

24 27.52 7.48 -2.63 3.04 -1.36 8.80 27.29 20.59 8.74 20.11 31.75 42.87
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