
Resource Management in Virtualized
Data Center

by

Md Rabbani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Md Rabbani 2014

Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Md Rabbani

ii

Abstract

As businesses are increasingly relying on the cloud to host their services, cloud providers
are striving to offer guaranteed and highly-available resources. To achieve this goal, recent
proposals have advocated to offer both computing and networking resources in the form of
Virtual Data Centers (VDCs). However, to offer VDCs, cloud providers have to overcome
several technical challenges. In this thesis, we focus on two key challenges: (1) the VDC
embedding problem: how to efficiently allocate resources to VDCs such that energy costs
and bandwidth consumption are minimized, and (2) the availability-aware VDC embedding
and backup provisioning problem which aims at allocating resources to VDCs with hard
guarantees on their availability.

The first part of this thesis is primarily concerned with the first challenge. The goal
of the VDC embedding problem is to allocate resources to VDCs while minimizing the
bandwidth usage in the data center and maximizing the cloud provider’s revenue. Exist-
ing proposals have focused only on the placement of VMs and ignored mapping of other
types of resources like switches. Hence, we propose a new VDC embedding solution that
explicitly considers the embedding of virtual switches in addition to virtual machines and
communication links. Simulations show that our solution results in high acceptance rate
of VDC requests, less bandwidth consumption in the data center network, and increased
revenue for the cloud provider.

In the second part of this thesis, we study the availability-aware VDC embedding and
backup provisioning problem. The goal is to provision virtual backup nodes and links
in order to achieve the desired availability for each VDC. Existing solutions addressing
this challenge have overlooked the heterogeneity of the data center equipment in terms of
failure rates and availability. To address this limitation, we propose a High-availability
Virtual Infrastructure (Hi-VI) management framework that jointly allocates resources for
VDCs and their backups while minimizing total energy costs. Hi-VI uses a novel tech-
nique to compute the availability of a VDC that considers both (1) the heterogeneity of
the data center networking and computing equipment, and (2) the number of redundant
virtual nodes and links provisioned as backups. Simulations demonstrate the effectiveness
of our framework compared to heterogeneity-oblivious solutions in terms of revenue and
the number of physical servers used to embed VDCs.

iii

Acknowledgements

First of all, praise be to almighty Allah, the most beneficent, the most merciful, for
blessing me with the intellect and ability to undertake this research.

I would like to express my deepest gratitude and appreciation to my supervisor, Pro-
fessor Raouf Boutaba, for his constant guidance, valuable advice, supportive criticism, and
endless patience towards the completion of this thesis. I would also like to thank Dr.
Khuzaima Daudjee and Dr. Bernard Wong for their insightful comments and constructive
criticisms of this work.

My profound gratitude goes to my parents Md. Jaynal Abedin and Fatema Begum for
their unconditional love and utmost sacrifice for my successful endeavour. My true love is
for my wonderful wife Sk. Sakila Arobi for her support and care during the completion of
this thesis. Special thanks are owed to my elder brother Md. Golam Rasul, only sister Dr.
Jobaida Khatun, youngest brother Md. Golam Mowla, parents-in-law Sk. Abdus Salam
and Mrs. Nazma Sarker, siblings-in-law Dr. Mohd. Masudur Rahman, Sk. Bony Yamin
Khaleque and Sk. Sabbir Hossain for extending a helping hand in times of need.

I would like to express my appreciation to the members of the Smart Applications on
Virtual Infrastructure (SAVI) project. Specially, I thank Dr. Mohamed Faten Zhani for
his support during the completion of the projects and for his valuable suggestions during
the preparation of this thesis. I also thank Rafael Esteves, Professor Gwendal Simon, and
Dr. Maxim Podlesny for their support during the SAVI projects. I would also like to
thank all the members of the Networking Lab, and in particular Professor Reaz Ahmed,
Dr. Qi Zhang, Md. Faizul Bari, Shihabur Rahman Chowdhury, and Arup Roy for their
invaluable support. I am also thankful to my colleagues and friends Istiaque Ahmed, and
Md. Rakibul Haque.

Finally, I sincerely thank the University of Waterloo for supporting me with generous
scholarships as well as an excellent academic and research environment. This work was
supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)
under the SAVI Research Network.

iv

Dedication

This is dedicated to my family.

v

Table of Contents

List of Tables ix

List of Figures x

Publications xi

1 Introduction 1

1.1 Motivation and Challenges . 3

1.2 Contributions . 4

1.3 Thesis Organization . 4

2 Background 6

2.1 Data Center . 6

2.2 Data Center Virtualization . 8

2.3 Business Model . 11

2.4 Summary . 11

3 Virtual Data Center Embedding 12

3.1 Introduction . 12

3.2 Literature Survey . 13

3.3 Problem Formulation . 16

3.3.1 Physical Data Center . 17

vi

3.3.2 VDC Request . 18

3.3.3 Objective . 18

3.4 Proposed Solution . 20

3.4.1 Description of the three phase embedding 20

3.4.2 Rationale for the Objectives . 21

3.4.3 VDC Mapping . 25

3.5 Performance Evaluation . 27

3.5.1 Simulation Environment . 27

3.5.2 Performance Metrics . 28

3.5.3 Simulation Results . 29

3.6 Summary . 31

4 Survivable Virtual Data Center Embedding 34

4.1 Introduction . 34

4.2 Literature Survey . 35

4.2.1 Failure Characterization in Data Centers 35

4.2.2 Survivable embedding in Virtualized Data Center 36

4.3 VDC Availability in Heterogeneous Cloud Environments 39

4.3.1 Physical Data Center . 39

4.3.2 VDC Requests . 40

4.3.3 Computing VDC Availability . 41

4.4 Availability-aware Embedding . 43

4.4.1 Problem Formulation . 43

4.4.2 Proposed Heuristic . 45

4.5 Performance Evaluation . 48

4.6 Summary . 52

vii

5 Conclusion 53

5.1 Summary of Contribution . 54

5.2 Future Research . 55

References 57

viii

List of Tables

2.1 List of abbreviations . 10

3.1 Notations for physical network infrastructure. 17

3.2 Notations for VDC request. 18

4.1 Comparison of survivable embedding schemes 38

ix

List of Figures

2.1 Conventional data center network topology. 7

2.2 Clos topology . 7

2.3 Fat-tree topology (k = 4) . 8

2.4 Virtualization of a data center. 9

3.1 SecondNet architecture [29]. 13

3.2 VDC request abstractions in Oktopus [15]. 14

3.3 Using variance for resource defragmentation. 22

3.4 Minimizing communication cost . 23

3.5 Min-cost flow graph used for switch mapping. 26

3.6 Acceptance ratio and CPU utilization (VL2 topology). 30

3.7 Network utilization and revenue (VL2 topology). 31

3.8 Acceptance ratio and CPU utilization (mix of VL2 and star topology). . . 32

3.9 Network utilization and revenue (mix of VL2 and star topology). 33

4.1 A sample VDC request and its embedding in physical data center. 40

4.2 Instantaneous Income . 49

4.3 Number of accepted VDCs. 50

4.4 Number of active physical machines over time 50

4.5 Utilization of CPU, memory and bandwidth. 51

4.6 Backup cost. 52

x

Publications

Journal Publications:

• Md. Rabbani, M. F. Zhani, and R. Boutaba. On Achieving High Survivability
in Virtualized Data Centers. IEICE Transactions on Communications. Vol.
E97-B (1), January 2014.

• MF. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani, Q.
Zhang and M. F. Zhani. Data Center Network Virtualization: A Survey. IEEE
Communications Surveys and Tutorials. IEEE Press, Vol. 15(2), pp. 909-928,
April 2013.

Conference Publications:

• Md. Rabbani, R. Esteves, M. Podlesny, G. Simon, L. Granville and R.
Boutaba. On Tackling Virtual Data Center Embedding Problem. In Pro-
ceedings of the IFIP/IEEE Integrated Network Management Symposium (IM).
Ghent (Belgium), 27-31 May 2013.

xi

Chapter 1

Introduction

With the increasing popularity of cloud computing, data centers have been widely deployed
by companies such as Amazon, Google, Facebook, and Yahoo! to support large-scale
applications and to store large volumes of data [1, 2, 20, 24]. Hence, hosting services in
data centers has become a multi-billion dollar business that plays a crucial role in the
future IT industry.

Traditionally, data centers use dedicated servers to run applications, resulting in poor
server utilization and high operational cost. The situation improved with the emergence
of server virtualization technologies (e.g., VMware [10], Xen [11]), which allow multiple
Virtual Machines (VMs) to be collocated on a single physical server. These technologies
are adopted by data center architectures proposed over the recent years [14, 28, 27]. These
technologies can provide performance isolation between collocated VMs to improve ap-
plication performance and security. However, server virtualization alone is insufficient to
address all of the limitations of today’s data center architectures. In particular, data center
networks still suffer from a number of limitations:

• No performance isolation: Many of today’s cloud applications, like search engines and
web services have strict requirements on network performance in terms of latency
and throughput. However, traditional networking technologies only provide best-
effort delivery service with no performance isolation. Thus, it is difficult to provide
predictable Quality of Service (QoS) for these applications. For example, MapReduce
applications have strict constraints in terms of latency and throughput,that cannot
be guaranteed through server virtualization alone [44].

1

• Increased security risks : Traditional data center networks do not restrict the commu-
nication pattern and bandwidth usage of each application. As a result, the network
is vulnerable to insider attacks such as Denial of Service (DoS) attacks [41].

• Poor application deployability : Many enterprise applications use application-specific
protocols and address spaces [17]. Migrating these applications to data center envi-
ronments is a major hurdle because it often requires cumbersome modifications to
these protocols and eventually to the applications’ source codes.

• Limited management flexibility : In a data center environment where both servers
and networks are shared among multiple applications, application owners often wish
to control and manage the network fabric for a variety of purposes such as load
balancing, fault diagnosis, and security protection. However, traditional data center
network architectures do not provide the flexibility for different users to manage their
communication fabric in a data center.

• No support for network innovation: Inflexibility of the traditional data center archi-
tecture prohibits network innovation. As a result, it is difficult to introduce changes
to traditional data center networks such as upgrading network protocols or intro-
ducing new network services. In the long run, it will reduce the effectiveness of the
initial capital investment in data center networks.

Motivated by these limitations, there is an emerging trend towards fully virtualized data
center architectures [16]. As a result, recent research proposals have advocated offering
both computing and networking resources in the form of Virtual Data Centers (VDCs).
Basically, a VDC consists of virtual machines, routers and switches connected through
virtual links with guaranteed bandwidth. This allows cloud providers to achieve better
performance isolation between VDCs and to implement more fine-grained resource alloca-
tion schemes. At the same time, VDCs allow service providers to guarantee predictable
network performance for their applications.

In typical cloud environments, the Infrastructure Provider (InP) owns the physical
infrastructure and leases resources to multiple Service Providers (SPs). Each SP then
leverages its dedicated resources to deploy applications and services and offer them to end
users over the Internet. So far, InPs mainly roll out computing resources (i.e., virtual
machines) with no network performance guarantees [1, 7]. This results in a variable and
unpredictable network performance in addition to potential security risks [15, 52, 36, 29].
Introducing VDCs will facilitate the possibility to implement customized network protocol
and management policies, to minimize the impact of security threats, and to deploy new
applications and services.

2

1.1 Motivation and Challenges

Allocating resources to VDCs is known as the VDC embedding or mapping problem. One
of the main objectives of InPs is to accommodate as many VDC requests as possible and
increase their revenue. Existing embedding solutions [29, 15] have proposed heuristics
to cope with the NP-hardness of the problem. However, most of these proposals are
heavily topology-dependent and hence cannot be generally applied to arbitrary data center
topologies. More importantly, most of them usually focus on VM placement [29] and
do not explicitly consider other types of resources (e.g., switches), which can limit their
applicability in realistic scenarios. For example, researchers or some companies may want
to test their own switching protocol that requires switches in VDC topology. Also, if InPs
know in advance that their data centers are going to be affected by natural calamities, they
can move their entire data center topology including servers and switches to other data
centers. The requested VDC of the affected InP will include virtual switches in addition to
VM. Hence, finding an efficient VDC embedding algorithm considering all of these aspects
is a challenging task for InPs.

Another primary challenge that has not been adequately addressed so far is how to
guarantee high VDC availability. On the one hand, for an SP, a service disruption, even for
seconds, may incur high losses in revenue and also significantly impair the SP’s reputation.
A recent study by an IT analyst firm estimated SP losses due to service downtime from
US$25, 000 up to US$150, 000 per hour [3]. On the other hand, InPs could also incur
significant penalties from not delivering the promised availability specified in the service
level agreements. For instance, Amazon EC2 pledges to offer a service credit equal to 10%
of the bill to any customer whose resources’ annual availability falls below 99.95% [1]. As
a result, providing high resource availability has been pointed out as one of the primary
challenges of InPs to exhort SPs to rely on the cloud.

Although, few proposals have addressed the issue of improving availability of VDCs,
they assume physical components in data centers to be homogeneous in terms of failure
rate and availability. However, in real environments, these characteristics are highly het-
erogeneous and vary significantly depending on various parameters such as the types of the
equipments and their age [25, 47]. This observation suggests that, in order to achieve the
desired VDC availability, the equipment heterogeneity must be considered to (1) determine
the placement of VDC nodes and links and to (2) decide more accurately the number and
the placement of the backup resources.

3

1.2 Contributions

The contributions of this thesis are threefold.

• We present a comprehensive background about data centers, the basic concepts of
data center virtualization. We also discuss the business model associated in cloud
environments. We also provide an extensive literature survey on VDC embedding
and survivability schemes in virtualized data centers.

• We propose a new VDC embedding solution that, in addition to virtual machine
placement, explicitly considers the embedding of virtual switches and links. Our
proposed algorithm significantly increases the acceptance rate of VDCs and reduces
the bandwidth usage in the data center network. In addition, unlike previous propos-
als, our solution does not restrict the type of VDC topology that can be embedded.

• Finally, we address the availability-aware resource allocation problem in virtualized
data centers. Hence, we propose Hi-VI, a VDC management framework that allocates
resources for VDCs while achieving the desired availability for each of them by pro-
visioning backup resources and taking into account the availability of the underlying
physical devices.

1.3 Thesis Organization

The remainder of the thesis is organized as follows.

Chapter 2 provides an overview of conventional data centers, the basic concepts of data
center virtualization, and the business model commonly used in cloud environments.

Chapter 3 surveys the existing proposals addressing VDC embedding, presents the for-
mulation of the VDC embedding problem, and proposes a heuristic to solve this
problem. Simulations are then conducted to evaluate the performance of the pro-
posed heuristic compared to a baseline algorithm.

Chapter 4 presents previous works on failure characterization in data centers, summarizes
the existing availability-aware VDC allocation schemes and their limitations, and
proposes a resource allocation framework that takes into account the heterogeneity of
data center computing and networking equipment to dynamically provision backup

4

resources and satisfy the desired availability for each VDC. Simulation results are
then presented to show the effectiveness of our solution compared to a heterogeneity-
oblivious solution.

Chapter 5 concludes the thesis with a summary of our contributions, and outlines po-
tential directions for future research.

5

Chapter 2

Background

The aim of this chapter is to present the terminology relevant to data center virtualization.
Table 2.1 provides a list of abbreviations used throughout the paper. We first provide some
definitions related to data centers and we present an overview of conventional data centers
in Section 2.1. Then we discuss data center virtualization technologies in Section 2.2.
Finally, Section 2.3 describes the main stakeholders in cloud environments.

2.1 Data Center

• A Data Center (DC) is a facility consisting of servers (physical machines), storage
and network devices (e.g., switches, routers, and cables), power distribution systems,
cooling systems. Table 2.1 provides a list of abbreviations used throughout the thesis.

• A data center network is the communication infrastructure used in a data center,
and is described by the network topology, routing/switching equipment, and the used
protocols (e.g., Ethernet and IP). In the following, we present the main topologies
used in data centers or recently proposed in the literature:

– Conventional data center network topology [12] (Figure 2.1): In this topology,
each Top-of-Rack (ToR) switch in the access layer provides connectivity to the
servers mounted in one rack. Each Aggregation Switch (AS) in the aggregation
layer (sometimes referred to as distribution layer) forwards traffic from multiple
ToR switches to the core layer. Every ToR switch is connected to multiple
aggregation switches for redundancy. The core layer provides secure connectivity

6

Figure 2.1: Conventional data center network topology.

Figure 2.2: Clos topology

between aggregation switches and core routers (CR) connected to the Internet.
A particular case of the conventional topology is the flat layer 2 topology, which
uses only layer 2 switches.

– Clos topology is a topology built up from multiple stages of switches [23]. Each
switch in a stage is connected to all switches in the next stage, which provides
extensive path diversity. Figure 2.2 shows an example of a three-stage Clos
topology.

– Fat-tree topology [31] is a special type of Clos topology that is organized in a tree-
like structure, as shown in Figure 2.3. The topology built of k-port switches
contains k pods; each of them has two layers (aggregation and edge) of k/2

7

Figure 2.3: Fat-tree topology (k = 4)

switches. Each of (k/2)2 core switches has one port connected to each of k
pods. The i-th port of any core switch is connected to pod i so that consecutive
ports in the aggregation layer of each pod switch are connected to core switches
on k/2 strides. Each edge switch is directly connected to k/2 end-hosts; each
of the remaining k/2 ports of an edge switch is connected to k/2 ports of an
aggregation switch [14].

It is worth noting that data center network topologies are not limited to the
topologies presented in this section. The interested reader can find a comparison
of recently proposed data center network topologies in [34].

2.2 Data Center Virtualization

• A Virtualized Data Center is a data center where some or all of the hardware (e.g.,
servers, routers, switches, and links) are virtualized. Typically, physical hardware is
virtualized using software or firmware called hypervisor that divides the equipment
into multiple isolated and independent virtual instances. For example, a physical
machine (server) is virtualized via a hypervisor that creates virtual machines (VMs)
having different capacities (CPU, memory, disk space) and running different operat-
ing systems and applications.

• A Virtual Data Center (VDC) is a collection of virtual resources (VMs, virtual
switches, and virtual routers) connected via virtual links. While a Virtualized Data

8

Center is a physical data center with deployed resource virtualization techniques,
a Virtual Data Center is an abstraction of resource allocation. A user can request
resources in the form of VDC to the owner of virtualized data center. A Virtual
Network (VN) is a set of virtual networking resources: virtual nodes (end-hosts,
switches, routers) and virtual links; thus, a VN is a part of a VDC. A network vir-
tualization level is one of the layers of the network stack (application to physical) in
which the virtualization is introduced. In Figure 2.4, we show how several VDCs can
be deployed over a virtualized data center.

Figure 2.4: Virtualization of a data center.

Both network virtualization and data center virtualization rely on virtualization tech-
niques to partition available resources and share them among different users, however
they differ in various aspects. While virtualized ISP networks mostly consist of packet
forwarding elements (e.g., routers), virtualized data center networks involve differ-
ent types of nodes including servers, routers, switches, and storage nodes. Hence,
unlike a VN, a VDC is composed of different types of virtual nodes (e.g., VMs, vir-
tual switches and virtual routers) with diverse resources (e.g., CPU, memory and
disk). In addition, in the context of network virtualization, virtual links are charac-
terized by their bandwidth. Propagation delay is an important metric when nodes
are geographically distributed. However, since a data center network covers a small

9

geographic area, the propagation delay between nodes is negligible; hence, it is al-
ways ignored when defining VDC virtual links [29, 15]. Low latency requirements
are becoming increasingly important.

Another key difference between data center networks and ISP networks is the number
of nodes. While the number of nodes in ISP backbones is in order of hundreds
(e.g., 471, 487, and 862 nodes in Sprintlink, AT&T, and Verio ISPs, respectively [42]),
it can go up to thousands in today’s data centers (e.g., around 12000 servers in one
Google Compute cluster [51]). Hence, the solutions to embedding problem in the VN
domain can potentially raise scalability issues, and increase management complexity.

Furthermore, different from ISP networks, data center networks are built using
topologies like the conventional tree, fat-tree, or Clos topologies with well defined
properties, that allows to develop embedding algorithms optimized for such particu-
lar topologies (e.g., Ballani et al. [15] proposed an embedding scheme applicable only
to tree topology).

In summary, data center network virtualization is different from ISP network vir-
tualization, because one has to consider different constraints and resources, specific
topologies, and degrees of scalability. [21] presents a survey of ISP network virtual-
ization techniques.

Table 2.1: List of abbreviations
Acronym Description

DC Data Center
VM Virtual Machine
V N Virtual Network
V DC Virtual Data Center
V LAN Virtual Local Area Network
ToR Top-of-Rack
AS Aggregation Switch
CR Core Router
InP Infrastructure Provider
SP Service Provider
IaaS Infrastructure-as-a-Service

10

2.3 Business Model

In this section, we describe main stakeholders in cloud environments. One of the differences
between the traditional networking model and network virtualization model is participating
players. In particular, whereas the former assumes that there are two players: ISPs and
end-users, the latter proposes to separate the role of the traditional ISP into two: an
Infrastructure Provider (InP) and a Service Provider (SP). Decoupling SPs from InPs adds
opportunities for network innovation since it separates the role of deploying networking
mechanisms, i.e., protocols, services (i.e., SP) from the role of owning and maintaining the
physical infrastructure (i.e., InP).

In the context of data center virtualization, an InP is a company that owns and manages
the physical infrastructure of a data center. An InP leases virtualized resources to multiple
service providers/tenants. Each tenant creates a VDC over the physical infrastructure
owned by the InP for further deployment of services and applications offered to end-users.
Thus, several SPs can deploy their coexisting heterogeneous network architectures required
for delivering services and applications over the same physical data center infrastructure.
The end-users use services and applications offered by SPs.

2.4 Summary

In this chapter, we provided the terminologies related to data center virtualization. We
described the components of a data center, and different network topologies used in data
centers. We also provided the definition of virtualized/virtual data centers, and the main
stakeholders in a typical cloud environment. In the next chapter, we present a resource
allocation scheme that allows InPs to efficiently allocate resources to VDCs with the goal
of maximizing the revenue while minimizing bandwidth usage in the data center network.

11

Chapter 3

Virtual Data Center Embedding

3.1 Introduction

The mapping of virtual resources to physical ones is commonly known as the VDC em-
bedding problem. Devising efficient VDC embedding algorithms is crucial to accept a high
number of VDC requests, which in turn impacts the revenue of the InP. In this section,
we deal with the problem of VDC embedding. We define a VDC in a generic way, where
we distinguish multiple resource types. We typically observe that the providers of inter-
active multimedia applications require GPU in their VMs while other SPs are interested
in very fast memory hardware (SRAM) [36]. An InP should be able to differentiate these
different hardware in order to serve a vast range of SPs. We also go further by defining
virtual switches and virtual links. We believe that an SP running applications with strict
network requirements is interested in renting a very precise network infrastructure for the
connection between its VMs. Protocols related to Software-Defined Networking (SDN) can
provide some guarantees but a full isolation of applications can only be offered by the vir-
tualization of switches. In addition, switch virtualization provides SPs with the possibility
of defining their own forwarding protocols.

As the VDC embedding problem is NP-hard, we design a heuristic solution based on
three embedding phases: VM mapping, link mapping, and switch mapping. We explicitly
include in our heuristic different data center resources such as switches and storage. More-
over, we clearly distinguish physical servers and network nodes (i.e., switches). To increase
the chances of successful VDC embedding, our solution includes two features. First, it
allows multiple VMs of a single VDC request to be embedded in the same physical server,

12

which is not considered in some previous proposals. Second, we leverage the coordination
between switch mapping and link mapping phases.

The rest of this chapter is organized as follows. Existing literature on VDC embedding is
described in Section 3.2. Then, in Section 3.3, we formalize the data center network model
and the VDC embedding problem. In Section 3.4, we propose our algorithm for VDC
embedding based on coordinated switch and link mapping. In Section 3.5, we present the
performance evaluation of the proposed algorithm. Finally, we conclude in Section 3.6.

3.2 Literature Survey

The mapping of virtual resources to physical has been the subject of extensive research in
the context of network virtualization [50, 22, 38, 19]. Several proposals have been made to
cope with the NP-hardness of the embedding problem.

SecondNet [29] proposes Virtual Data Centers (VDCs) as the abstraction for resource
allocation in multi-tenant cloud environments. The goal of SecondNet is to provide band-
width guarantees by designing a scalable and deployable VDC embedding algorithm. Sec-
ondNet aims at increasing the utilization of the network.

Figure 3.1: SecondNet architecture [29].

The main component of the SecondNet architecture (Figure 3.1) is the VDC manager
that creates VDCs based on a requirement matrix that defines the requested bandwidth

13

between VM pairs. SecondNet defines three basic service types: a high priority end-to-end
guaranteed service (type 0), a better than best-effort service (type 1) that offers bandwidth
guarantees for the first/last hops of a path, and a best-effort service (type 2).

Performance of the proposed allocation algorithm in SecondNet depends on the physical
network topology. For instance, the data center network utilization is reported to be high
for a BCube topology but low for fat-tree and VL2 topologies. SecondNet does not consider
different types of resources (e.g., storage servers, switches, routers, links) found in real data
centers. We explained in Section 1.1 about the importance of considering virtual switches
in addition to VMs.

Oktopus [15] is a data center network architecture that implements two virtual data
center abstractions (i.e., virtual cluster and virtual oversubscribed cluster).

(a) Virtual cluster (b) Virtual oversubscribed cluster

Figure 3.2: VDC request abstractions in Oktopus [15].

A virtual cluster (Figure 3.2(a)) provides the illusion of having all VMs connected
to a single non-oversubscribed virtual switch. However, a virtual oversubscribed cluster
(Figure 3.2(b)) emulates an oversubscribed two-tier cluster consisting of a virtual root
switch that interconnects a set of virtual clusters. A tenant can choose the abstraction
and the degree of the oversubscription of the virtual network based on the communication
pattern of the applications to be deployed in the VDC (e.g., user-facing web-applications,
data intensive applications). Oktopus uses a greedy algorithm for the resource allocation
to the VDCs that aims at finding the best trade-off between the performance guarantees
offered to tenants, their costs, and the provider revenue. They try to map the VDC
requests to the smallest sub-tree of the data center topology with the least amount of
residual bandwidth on the links connecting the sub-tree to the rest of the topology.

14

Oktopus has some limitations. It supports only two types of VDC requests. Besides,
it can be applied only in tree-like physical topologies.

The Traffic-Aware Virtual Machine Placement Problem (TVMPP) [32] focuses on im-
proving the scalability of data center networks by optimizing the VM placement. The main
idea is to minimize the overall communication cost of the data center by placing VMs that
have heavy traffic among them close to each other, thus avoiding network bottlenecks in
the data center. A two-tier algorithm , called Cluster and Cut, is proposed to solve the
problem.

One limitation of this proposal consists in the fact that traffic and cost matrices must
be known in advance. In a realistic scenario, VMs can belong to different tenants, which
in turn run applications with different traffic patterns that may not be known prior to the
application deployment. Besides, other types of virtual resources (networking, storage)
that exist in a data center are not considered in this work.

NetShare [30] tackles the problem of bandwidth allocation in virtualized data center
networks proposing a statistical multiplexing mechanism that does not require any changes
in switches or routers. NetShare allocates bandwidth for tenants in a proportional way
and achieves high link utilization for infrastructure providers. In NetShare, data center
network links are shared among services, applications, or corporate groups, rather than
among individual connections. In this way, one service/application/group cannot hog the
available bandwidth by opening more connections.

Scalability of NetShare can be an issue because queues have to be configured at each
switch port for each service/application. In addition, NetShare aims to achieve fairness in
bandwidth allocation, and, thus, does not provide any absolute bandwidth guarantees to
services.

Seawall [41] is a bandwidth allocation scheme that allows InPs to define how the band-
width will be shared in a data center network with multiple tenants. The idea of Seawall
is to assign weights to network entities generating traffic (e.g., VMs, process), and to allo-
cate bandwidth according to these weights in a proportional way. Seawall overcomes the
scalability problem associated with NetShare, by mapping many VMs onto a small, fixed
number of queues.

Both NetShare and Seawall aim to achieve fairness in bandwidth allocation, and, thus,
does not provide any absolute bandwidth guarantees to services.

Gatekeeper [39] focuses on providing guaranteed bandwidth among VMs in a multi-
tenant data center, and achieving a high bandwidth utilization. Bandwidth allocation is
done by defining both the minimum guaranteed rate and maximum allowed rate for each

15

VM pair. These parameters can be configured to achieve minimum bandwidth guarantee,
while ensuring that link capacities are effectively utilized by tenants.

Gatekeeper only works for full bisection-bandwidth networks and focuses on preventing
congestion on access links. However, it assumes no congestion at the core links which might
be optimistic.

FairCloud [33] tackles the tradeoffs among minimum bandwidth guarantees, network
utilization and fairness for sharing networks in multitenant data centers. To address this
issue, it proposes three bandwidth allocation policies. However, these weight-based com-
peting mechanisms can not provide bandwidth guarantees for VMs.

VINEYard [22] is a set of online embedding algorithms for virtual networks that coordi-
nates the node and link mapping phases. The motivation behind this coordinated mapping
relies on the fact that ignoring the relation between node and link mapping can lead to
poor performance. In VINEYard, the virtual network embedding problem is formulated as
a mixed integer program that includes both node and link-related constraints. In order to
be solved in polynomial time, the MIP formulation is transformed into a linear program
through constraint relaxation. The main objective of VINEYard is to minimize the cost
of embedding a VN request to a physical substrate and, consequently, increase the InP
revenue.

The limitation of VINEYard in the context of data center is that is does not consider
explicitly other types of virtual resources that can exist in a data center and that have
specific requirements, like ingress and egress bandwidth and storage capacity. Besides, it
assumes that the substrate supports path splitting, which is not true for all data center
environments.

These are the most prominent proposals of VDC embedding problem and bandwidth
sharing mechanism in multitenant data centers. We find that most of these proposals
are only applicable to tree-like proposals. Most of them also do not explicitly consider
other types of resources (e.g., storage servers, switches, routers, links) and their associated
constraints, which can limit their applicability in real environments. Other bandwidth
sharing proposals cannot provide guaranteed bandwidth for VDCs. In the following, we
propose our VDC embedding algorithm that overcomes the aforementioned limitations.

3.3 Problem Formulation

We provide now our network model and we mathematically formulate the VDC embedding
problem. Used notations are provided in Table 3.1 and Table 3.2.

16

Table 3.1: Notations for physical network infrastructure.

Gp(Sp, Xp, Ep) The physical network infrastructure

Sp set of physical servers

Xp set of physical switches

Ep set of physical links

ci(s
p) capacity of hardware i of server sp ∈ Sp

c̄i(s
p) residual capacity of hardware i of server sp ∈ Sp

b(ep) bandwidth capacity of link ep ∈ Ep

b̄(ep) residual bandwidth capacity of link ep ∈ Ep

ci(x
p), c̄i(x

p) capacity of hardware i (and residual capacity) of switch xp

3.3.1 Physical Data Center

The InP owns a physical data center network, which is modeled as a weighted undirected
graph, Gp(Sp, Xp, Ep), where Sp is the set of physical servers, Xp is the set of physical
switches and Ep is the set of physical links.

We associate with each physical server in Sp a set of featured hardware, which typically
includes CPU, data storage memory, Graphical Processing Unit (GPU), and fast SRAM
memory. A part of each of these hardware can be reserved by a tenant. To preserve the
generality of our model, we associate with each physical server sp ∈ Sp a set of featured
capacities ci(s

p), i ∈ {1, . . . , k} where k is the number of different reservable specific hard-
ware capacities. For example, c1(s

p) and c2(s
p) can refer to CPU and memory capacities

respectively. We also keep track of the residual capacity for each hardware after some parts
of these hardware have been rented by a tenant. We note c̄i(s

p) the residual capacity for
hardware i ∈ {1, . . . , k}.

We also associate with each physical link ep in Ep a bandwidth capacity, noted b(ep),
and the residual bandwidth capacity, noted b̄(ep). Please note that this capacity can be
extended with a subscript in the same manner as for the capacity of physical servers.

One of the novelties of our model is that we also introduce resources for switches. We
consider each buffer of each switch port and we allow a SP to partially rent each of these
buffers. Thus, a SP is able to very precisely adjust packet losses and processing in every
port. To simplify, we use the same notations as for the virtual servers, so ci(x

p) is the
capacity of the hardware i in the virtual switch xp.

17

3.3.2 VDC Request

The clients of the InP are entities that would like to reserve a subset of InP’s physical
infrastructure. We call a VDC request what a tenant wants to reserve. The VDC request
is also modelled as a weighted undirected graph, which we note Gv(Sv, Xv, Ev), where Sv

is the set of VMs, Xv is the set of virtual switches and Ev is the set of virtual links.

Table 3.2: Notations for VDC request.

Gv(Sv, Xv, Ev) VDC request

Sv set of virtual machines

Xv set of virtual switches

Ev set of virtual links

ci(s
v) capacity of hardware i in VM sv ∈ Sv

b(ev) bandwidth of virtual link ev(i, j) ∈ Ev

ci(x
v) capacity of hardware i in virtual switch xv ∈ Xv

We keep the same notations as for the physical infrastructure for the specific required
capacities of VMs and virtual links. Thus, ci(e

p) and b(ep) refer respectively to the re-
quested capacity of hardware i on VM sv and the requested bandwidth capacity of virtual
link ev respectively.

3.3.3 Objective

The goal of an InP is to maximize its profits through an optimal exploitation of its infras-
tructure. This objective is related to maximizing the number of VDC requests that are
successfully embedded in the physical infrastructure subject to embedding constraints.

Another challenge for InP is that tenants do not coordinate to request VDC. Thus,
VDC requests do not arrive at the same time. Hence the problem faced by InPs is an
online problem where the inputs (here the VDC requests) have to be processed iteratively,
without knowledge of the future VDCs. Let consider a VDC request Gv, which is received
by the InP while a part of its infrastructure has already been reserved. We express in
the following the constraints for the embedding of Gv. We first have to define the output
variables.

18

Let xuv be a set of binary variables for the mapping of equipment u ∈ Sv (respectively
u ∈ Xv) into a physical server v ∈ Sp (respectively v ∈ Xp).

xuv =

{

1 if u is embedded into v
0 otherwise

Let y(uu′)(vv′) be a set of binary variables for the mapping of virtual link (uu′) ∈ Ev into
physical link (vv′) ∈ Ep.

y(uu′)(vv′) =

{

1 if (uu′) is embedded into (vv′)
0 otherwise

An embedding can be done if the following constraints are fulfilled for the mapping of
equipments.

∑

v∈Sp∪Xp

xuv = 1, ∀u ∈ Sv ∪Xv (3.1)

∑

u∈Sv∪Xv

xuv × ci(u) ≤ c̄i(v), ∀v ∈ Sp ∪Xp, ∀i (3.2)

Constraint (3.1) ensures that a VM is embedded into one and only one physical server.
It also makes sure that all VMs are embedded. Constraint (3.2) guarantees that the
capacities of physical servers are not overused by the embedded VMs.

For the link mapping, here are the constraints:

∑

(vv′)∈Ep

y(uu′)(vv′) ≥ 1, ∀(uu′) ∈ Ev (3.3)

∑

(uu′)∈Ev

y(uu′)(vv′) × b((uu′)) ≤ b̄((vv′)),

∀(vv′) ∈ Ep (3.4)

xuv = 1, xu′v′ = 1, ∀u, u′ ∈ Sv ∪Xv (3.5)

Constraint (3.3) ensures that a virtual link can be mapped to several physical links or
a physical path. All the links vv′ ∈ Ep, that any uu′ ∈ Ev is mapped to, form a path
between physical servers where u and u′ are mapped. Constraint (3.4) guarantees that
physical links have enough bandwidth to host embedded virtual links. Constraint (3.5)

19

indicates that selected links belong to the physical devices xv and xv′ hosting the virtual
devices xu and xu′ , respectively.

For one given VDC and one infrastructure configuration, several embeddings can fulfill
all above constraints. But some of them succeed in preserving “nearby” resources for future
VDCs although others barely allow the next VDCs to be embedded. The quality of the
online embedding algorithm for VDCs directly relates to the capacity of the embedding
algorithm to be friendly for the next VDCs.

3.4 Proposed Solution

Optimization problems for embeddings that include both nodes and links are known to
be NP-hard. For practical implementations, heuristics are needed. We discuss in the next
sub-section the main principles of an iterative three-steps algorithm for the embedding.
We go into the details of our main proposal in sub-section 3.4.3.

3.4.1 Description of the three phase embedding

For the processing of a new VDC Gv, an iterative heuristic consists of the three following
rounds.

Phase I: VMs mapping – in this first step, the objective is to map each VM in Sv into
one physical server. The mapping should respect the constraints in Equation (3.2),
that is, the physical server that host a VM should have enough capacity. Various
strategies can be implemented. With regard to the following steps, the proximity of
the selected physical servers is critical.

Phase II: Virtual switches mapping – the second step is about mapping each virtual
switch in Xv to a physical switch. Besides constraints (3.2), the main idea here is to
associate virtual switches to physical ones while taking into account the previous VM
mapping. It makes more sense to map a virtual switch between two already embedded
VM so that the distance between the chosen physical switch and the physical servers
that host the VM is small.

Phase III: Virtual links mapping – the final step is to map the virtual links into physi-
cal links, with respect to constraints (3.4). Many paths can exist between two physical
servers in the real topology. The goal here is to find the paths between the physical

20

servers that host the virtual equipments that are given in Ev so that all virtual links
can be embedded.

In this heuristic, each step critically impacts the following steps because the input of
each phase depends on the output of the previous phase. Therefore, we have to implement
a mechanism that allows to get back to a previous phase if ever one phase cannot be
fulfilled. For example, the impossibility to find a mapping for virtual switches does not
mean that the whole VDC cannot be embedded. Another VM mapping may enable a
successful switch mapping. On the other hands, a heuristic does not explore all possible
solutions. A trade-off should be found between the number of tested solutions allowed by
such a retro-mechanism and the efficiency of the whole algorithm, which should be fast.

We present now our heuristic. First, we present the rationale of our solutions. Then,
we describe our implementations of the three steps.

3.4.2 Rationale for the Objectives

The main idea of our heuristic is to reduce server fragmentation, minimize communication
costs between VMs and virtual switches, increase the residual bandwidth of the network,
and offer load balancing capabilities to the network. For the sake of simplicity, we consider
only one resource for the server (e.g., CPU).

Reduce server fragmentation. We use the variance of the residual CPU capacity of
the physical servers. The rationale behind using variance in server defragmentation is
explained in Figure 3.3 with basic physical topology. Initially, two physical servers have
residual capacity of 3 CPU units each. After receiving a VM request (1) of 1 CPU unit, the
residual CPU of the servers become 2 CPU units and 3 CPU units. A future VM request
of 2 CPU units has two possible mappings. In the first one (2), the residual CPU of one
server is 3 CPU units, which allows a future VM request requiring 3 CPU units. In the
second mapping (3), the residual CPU of the servers are 2 CPU units and 1 CPU unit.
In this latter case, a future VM request with 3 CPU cannot be accepted. The variance of
the residual CPU capacity in the first allocation is 4.5 and 0.5 in the second allocation.
We observe that the higher the variance is, the higher the resource defragmentation is and
higher the possibility of accepting higher number of VDC requests.

Let (c̄i) be the average residual capacity of hardware i (here we have only CPU, rep-
resented by c1) over all nodes s

p. Formally, the solution that we select among all possible
solutions satisfying the previously defined constraints should take into account Vcpu, which

21

!

• !"#$"%&'!()!#'*$+,"-!./0!&"1"&$23!

445 6 789:4; 6 7898<49 68=445"6>789:4;"6>7898<49"68

=!?>7

• !"!#$%!$##&'"!()!$!*+!,&-.&/"!()!0!123

@'*$+,"-!

."1"&$23!

=!4!123

@'*$+,"-!

."1"&$23!

=!;!./0

!A!#'B,'*2!()!6 ./0

@'*$+,"-!

."1"&$23!

=!;!./0

@'*$+,"-!

."1"&$23!

=!;!./0

@'*$+,"-!

."1"&$23!

=!5 123

@'*$+,"-!

."1"&$23!

=!;!./0

@'*$+,"-!

."1"&$23!

=!9!./0

@'*$+,"-!

."1"&$23!

=!6!123

• !"#$"%&'!()!#'*$+,"-!./0!&"1"&$23!

=449"6>789:46"6>7898<49"68

=!5>75

?• !"!#$%!%("!$##&'"!()!$!*+!,&-.&/"!()!0!123

(1)
(2)

(3)

Figure 3.3: Using variance for resource defragmentation.

is defined as:

Vcpu =
|Sp|

∑

u∈Sp

(

c̄1(u)− c̄1

)2 (3.6)

Minimize communication cost and increase residual bandwidth. We consider
the hop-count between the virtual nodes (i.e., VM or virtual switch) multiplied by the
corresponding requested bandwidth of the virtual link connecting the two virtual nodes.
For example, in Figure 3.4 the cost of mapping virtual switch xv

1 (Fig. 3.4(a)) to physical
switch xp

2 (Fig. 3.4(b)) is 2 (hop count from physical switch xp
2 to the red physical server)

×3 (bandwidth required between the virtual switch xv
1 and the red virtual server) +2

(hop count from physical switch xp
2 to the yellow physical server) ×2 (bandwidth required

between the virtual switch xv
1 and the yellow virtual server) = 10, if we consider only the

red and yellow virtual machines, which are the closest ones to the virtual switch xv
1.

A solution that matches our needs takes into account Vsw, which is defined as:

Vsw =
∑

(vv′)∈Ep

∑

(uu′)∈Ev

y(uu′)(vv′) × b((uu′))× hop count(vv′) (3.7)

22

!"
#$

!"
%
$

!"
&
$

3

5

2 4 6

5

(a) Virtual request

!"#$!"%$

!"%$

(b) Physical network

Figure 3.4: Minimizing communication cost

Load balancing link. Mapping virtual switches to some location can possibly require a
high number of virtual links than mapping them to other locations, and result in network
bottlenecks. In order to avoid bottleneck of physical links, we also use load balancing
for virtual links having the same communication cost by minimizing the variance of the
residual network bandwidth.

In the same manner as for Vcpu, we define Vlink as:

Vlink =

∑

(vv′)∈Ep

(

b̄(vv′)− (b̄)
)2

|Ep|
(3.8)

Overall Optimization. In order to consider all aforementioned objectives, we define one
unique objective, which is to minimize:

α× Vsw + β × Vcpu + γ × Vlink (3.9)

Since such optimization problem of VDC embedding is NP hard [29], we present a
heuristic (shown in Algorithm 1) to solve the problem that has three phases: VM mapping,
virtual switch mapping, and virtual link mapping. In order to achieve locality of the VMs,
we try to start the mapping process from one physical server. If any of the three phases
fails, we increase the number of physical servers adding one adjacent server and try the
mapping process again, until we consider all the physical servers in the data center.

23

Algorithm 1 VDC Embedding Algorithm

1: for (|Sp| = 1; |Sp| ≤ TotalNumberofServers;Sp = Sp ∪ {AdjacentServer}) do
2: VM Mapping:
3: Sort the VMs, sv ∈ Sv according the requested
4: resource capacity
5: for each sv ∈ Sv do
6: for each sp ∈ Sp do
7: Add an edge from sv to sp if sp satisfies the
8: capacities of sv

9: end for
10: Add a source node and add an edge from source
11: node to sv.
12: Add a destination node and add an edge from
13: each of sp to destination node.
14: Solve min-cost flow problem and goto line 1 if fails
15: update residual capacities of sp.
16: end for
17: Switch Mapping:
18: for each xv ∈ Xv do
19: for each xp ∈ Xp do
20: Add an edge from xv to xp if xp satisfies the
21: capacities of xv

22: end for
23: end for
24: Add a source node and add an edge from source
25: node to each of sv.
26: Add a destination node and add an edge from each
27: of sp to destination node.
28: Solve min-cost flow problem and go to line 1 if fails
29: update residual capacities of xp.
30: Link Mapping:
31: for each ev ∈ Ev do
32: Remove each ep ∈ Ep where b(ep) < b(ev)
33: Run BFS to compute the shortest path and go
34: to line 1, if no path found
35: Update capacity of each link ep in that path
36: end for
37: If all mapping phases are successful, break
38: end for

24

3.4.3 VDC Mapping

In the following, we describe the three phases of the embedding involved in our proposed
solution.

VM Mapping In the VM mapping, we map VMs to the physical servers; we do it se-
quentially so that more than one VM can be mapped to one physical server. In the
beginning, requested VMs are sorted according to a requested resource capacity in
a descending order. Thus, we can reject a request quickly if there is not enough
capacity to satisfy the request. Then we map VMs sequentially so that more than
one VM can be mapped to a physical server. First, we take the first VM in the sorted
list and find all the physical servers that can satisfy the resource requirements of the
VM. Then, we map the VM to the physical server that minimizes the fragmentation
cost. The cost function a(sp) for each server sp is defined by,

a(sp) = b(sp)×
1

|c̄1(sp)− c̄1|

(3.10)

where b(sp) is the used bandwidth of the server sp and (c̄1) is the mean of the residual
CPU of the physical servers. We rely on the used bandwidth of physical servers for
load balancing, and on the difference between the residual resource capacity and the
average resource capacity of physical servers for server defragmentation, that will
satisfy our objectives mentioned in Section 3.4.2.

Switch Mapping After mapping VMs, we proceed to switch mapping. Similar to VM
mapping, we build a bipartite graph keeping virtual switches in the left and the
physical switches in the right. Then, we add an edge from a virtual switch i to a
physical switch j if the residual capacity of the physical switch j can satisfy the
requested capacity of the virtual switch i. We add a source node s at the left of
the virtual switches and a destination node d at the right of the physical switches.
Following that, we add an edge from the source node s to each of the virtual switches
and an edge from each of the physical switches to the destination node d, as shown in
Figure 3.5. This reduced the switch mapping problem to finding min-cost flow from
source s to destination d.

Minimize
∑

(i,j)∈E

a(i, j).x(i, j) (3.11)

25

Figure 3.5: Min-cost flow graph used for switch mapping.

where, x(i, j) ∈ {0, 1}
∑

j∈V

x(i, j) = 0, for all i 6= s, t

∑

j∈V

x(s, j) = number of virtual switches

∑

i∈P

x(i, t) = number of physical switches

E = Set of edges in the graph

V = Set of virtual switches in the graph

P = Set of physical switches in the graph

s = source node of the graph

t = destination node of the graph

(3.12)

The cost function a(i, j) for each edge between a virtual switch i and a physical
switch j is defined by a(i, j) =

∑

[hop count(j,m)× bandwidth(i, n)], wherem ∈ Sp,
n ∈ Sv, and n is mapped into m. The intuition behind the cost function is to map
the virtual switch to the physical switch that offers the lowest communication cost
(hop count× bandwidth) for VMs of the same VDC connecting to the virtual switch
i. The cost function described above is used as the weight for each edge in the graph
of min-cost flow problem. The variable x(i, j) gives the mapping of virtual switches

26

to physical switches. If the value of x(i, j) is 1, it indicates that the virtual switch i
is mapped to the physical switch j. By considering the bandwidth of the links when
mapping switches, the algorithm increases the residual bandwidth of the network,
which ultimately results in higher acceptance ratio of VDC requests.

Link Mapping Finally, we start link mapping after finishing the node mapping and
switch mapping. We map each of the virtual links to physical links one by one.
Before allocating any link, we first remove all the physical links having residual
bandwidth capacity less than the requested bandwidth capacity of the virtual link.
Then, we calculate the shortest path between the physical nodes, where the source
and destination nodes of the virtual link are mapped, to reduce the communication
cost. We use Breadth First Search (BFS) algorithm to find the unweighted shortest
path.

3.5 Performance Evaluation

We studied the performance of our VDC allocation algorithm through simulation. In this
section, we describe the simulation environments followed by performance metrics and
result analysis. We have shown that our VDC algorithm can embed VDC requests that
include virtual switches.

As no other existing work consider switch mapping in VDC embedding algorithm, we
have shown the advantages of our algorithm for VDC allocation by comparing acceptance
ratio, network and CPU utilization with a baseline algorithm of randomized heuristic. We
illustrate the presentation of the iterative heuristic by an example: a simple algorithm
based on randomized processes. For each VM, a physical server is randomly picked and
if it has the capacity to host the VM, the algorithm processes the next VM, otherwise
another physical server is picked. This algorithm iterates on the whole set of VMs until all
VMs are successfully mapped. The switch mapping is done in the same manner. Finally,
the link mapping is done by computing the shortest path for every virtual links.

3.5.1 Simulation Environment

We implemented a discrete event simulator for the evaluation of our proposed algorithm
using C++ and used the open source C++ template library LEMON (Library for Efficient
Modelling and Optimization in Networks) [8] to solve minimum-cost flow problem.

27

We used VL2 [27] topology for our physical data center network topology. Our physical
data center has 24 servers, 22 switches and 144 links. The links between servers and ToR
(top-of-rack) switches have bandwidth 1000 unit whereas the links between ToR switches
and aggregate switches have 10 000 units and the links between aggregate switches and
intermediate switches have the capacities of 10 000 units. The normalized values of CPU
and storage were real numbers, uniformly distributed between 0.5 and 1.

For the VDC requests, we used the VL2 topology, star topology and mixed of them.
For all the topologies, the CPU and storage of the VMs were real numbers uniformly
distributed between 0 and 0.08. For the VL2 topology, the bandwidth of the links between
servers and ToR switches, ToR switches and aggregate switches, and aggregate switches
and intermediate switches, were uniformly distributed from 1 to 100, 1 to 1000, and 1 to
1000 respectively. For the start topology, the number of VMs are uniformly distributed
from 3 to 10 and the links between the switch and the servers have bandwidth, uniformly
distributed from 1 to 100. The VDC requests arrived in a Poisson process. The durations
of the VDC requests were following a Poisson distribution having average of 500 time units.
Our embedding algorithm serves the VDC requests online and with the passage of time,
VDC requests, whose duration have passed, leave the physical data center and new VDC
requests arrive. We also consider the case where only switches are mapped randomly while
VMs are mapped according to our heuristic.

3.5.2 Performance Metrics

Acceptance Ratio

The acceptance ratio of a certain point of time is the ratio of the number of accepted VDC
requests and the total number of VDC requests until that time. This gives a sense of how
well an algorithm is performing, but can not completely capture the whole picture of the
performance. An algorithm may accept more number of smaller VDC requests which can
end up less revenue.

CPU Utilization

The CPU utilization is the total CPU used for embedding VDC requests divided by the
total CPU capacity of the physical data center at a certain point of time, which is expressed
as percentage.

28

Network Utilization

The network utilization is the total bandwidth of the links used for embedding VDC request
divided by the total bandwidth capacity of the physical data center at a certain point of
time, which is also expressed as percentage.

Revenue

We also computed the revenue generated for an embedding algorithm over time. Revenues
are expressed in terms of allocated resources. We have used a revenue model [50] where
revenue is considered as sum of bandwidth and CPU. α is used to strike a balance between
the two resources.

Revenue(Gv) =
∑

ev∈Ep

b(ev) + α
∑

sp∈Sp

c1(s
p)

3.5.3 Simulation Results

After running the simulation, we observed that our algorithm was able to embed the
VMs as well as the virtual switches to the physical resources. It also embeds both types of
topologies which shows the ability of our algorithm to embed VDC of any topology. To show
the effectiveness of our algorithm, we compared our algorithm with random switch mapping
and random VM mapping. Figure 3.6 and 3.7 show the comparison of performance metrics
of our algorithm with random switch mapping and random VM and switch mapping when
VL2 topologies were used for input VDC requests. Our algorithm outperforms the random
algorithms in terms of each of the metrics. For example, at 20 000 time unit, our algorithm
has 0.83 acceptance ratio whereas the random switch mapping and random VM and switch
mapping algorithms have acceptance ratio of 0.68 and 0.66 respectively. Our algorithm
also has higher CPU and network utilization and revenue. As our algorithm considers the
used CPU and bandwidth of the servers while doing VM mapping and bandwidth of the
links while doing switch mapping, it can accept higher number of VDC requests as well as
higher revenue.

Figure 3.8 and 3.9 show the comparison of performance metrics of the algorithms when
both VL2 topologies and star topologies were used for input VDC requests. Here, again
we see that our algorithm outperforms the random algorithms in terms of each of the
metrics. But here the random algorithms comparatively perform better than for the VL2
only topologies. Because, VDC requests of star topology were added to the input. Star
topology has only one virtual switch and all the VMs are connected to the switch. So,

29

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 5000 10000 15000 20000 25000

A
cc

ep
ta

nc
e

R
at

io

Time

Our algorithm
Random switch mapping

Random VM and switch mapping

(a) Comparison of acceptance ratio over time.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000

C
PU

 U
til

iz
at

io
n

(%
)

Time

Our algorithm
Random switch mapping

Random VM and switch mapping

(b) Comparison of CPU Utilization over time.

Figure 3.6: Acceptance ratio and CPU utilization (VL2 topology).

there is less diversity for the embedding algorithm, specially for the switch mapping. Our
algorithm has higher acceptance ratio, CPU and network utilization and revenue than
the other two algorithms. We also observe that random switch mapping performs better
than random VM and switch mapping because random switch mapping utilizes our VM
mapping phase for its VM mapping. In both of the above cases, our algorithm has higher
acceptance ratio, as well as, higher revenue, which demonstrates the advantages of our
VDC embedding algorithm.

30

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 5000 10000 15000 20000 25000

N
et

w
or

k
U

til
iz

at
io

n
(%

)

Time

Our algorithm
Random switch mapping

Random VM and switch mapping

(a) Comparison of network utilization over time.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 0 5000 10000 15000 20000 25000

R
ev

en
ue

 (
K

)

Time

Our algorithm
Random switch mapping

Random VM and switch mapping

(b) Comparison of revenue over time.

Figure 3.7: Network utilization and revenue (VL2 topology).

3.6 Summary

In this chapter, we first described the existing literature on the VDC embedding problem.
Then we provided a new formulation of VDC embedding problem where virtual switches
are considered in addition to VMs and virtual links in the VDC requests. After that we
discussed a general approach to tackle the embedding problem and then we proposed a
three-phase minimum-cost based heuristic to solve the embedding problem. We evaluated

31

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2000 4000 6000 8000 10000 12000 14000

A
cc

ep
ta

nc
e

R
at

io

Time

Our algorithm
Random switch mapping

Random VM and switch mapping

(a) Comparison of acceptance ratio over time.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2000 4000 6000 8000 10000 12000 14000

C
PU

 U
til

iz
at

io
n

(%
)

Time

Our algorithm
Random switch mapping

Random VM and switch mapping

(b) Comparison of CPU utilization over time.

Figure 3.8: Acceptance ratio and CPU utilization (mix of VL2 and star topology).

the performance of our embedding algorithm using a discrete event simulator. We showed
that our algorithm has higher acceptance ratio, CPU and network utilization, as well as
higher revenue. We did not consider the availability of the VDC in this chapter. However,
as service providers are increasingly hosting different business services, providing guaran-
teed availability of VDCs becomes extremely important. In the next chapter, we propose
an allocation scheme devised for providing guaranteed VDC availability.

32

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 2000 4000 6000 8000 10000 12000 14000

N
et

w
or

k
U

til
iz

at
io

n
(%

)

Time

Our algorithm
Random switch mapping

Random VM and switch mapping

(a) Comparison of network utilization over time.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 2000 4000 6000 8000 10000 12000 14000

R
ev

en
ue

 (
K

)

Time

Our algorithm
Random switch mapping

Random VM and switch mapping

(b) Comparison of revenue over time.

Figure 3.9: Network utilization and revenue (mix of VL2 and star topology).

33

Chapter 4

Survivable Virtual Data Center
Embedding

4.1 Introduction

In the previous chapter, we have proposed a resource allocation scheme for VDCs aiming to
achieve maximizing revenue. However, we did not consider the availability of VDC in our
embedding algorithm. Service disruption even for seconds, may cause high losses in revenue
and reputation for an SP. On the other hand, InP may end up paying huge penalties for
the violation of service level agreement. Hence, providing guaranteed availability of VDCs
is of great importance both to SP and InP.

Recently, few proposals have been made to improve the availability of VDCs either
through availability-aware resource allocation schemes or redundancy provisioning tech-
niques [45, 25, 46, 18, 47]. However, these works did not consider the heterogeneity of the
underlying physical components. In this chapter, we address this compelling challenge and
propose High-availability Virtual Infrastructure Management (Hi-VI) framework [35] that
takes into account the heterogeneity of data center computing and networking equipments
to dynamically provision backup resources in order to ensure the required VDC availability.

The remainder of the chapter is organized as follows: Section 4.2 surveys previous
work on failure characterization in data centers highlighting the heterogeneity in terms of
failure rate and availability. We also summarize representative work on availability-aware
VDC allocation schemes and discuss their limitations. We present in Section 4.3 and 4.4
our technique to compute the availability of a VDC and we provide the mathematical

34

formulation of the availability-aware VDC allocation problem. The proposed solution is
then described in Section 4.4.2. Simulation results are discussed in Section 4.5. Finally,
we draw our conclusions in Section 4.6.

4.2 Literature Survey

In this section, we present related work on data center failure characterization and repre-
sentative proposals addressing survivable resource allocation in virtualized data centers.

4.2.1 Failure Characterization in Data Centers

Gill et al. [25] presented a large-scale study of failures in several Microsoft data centers over
one year. The authors characterized failures of networking devices and assessed the impact
of their failures and the effectiveness of network redundancy in data centers. Furthermore,
they observed that the failure rates of different equipments can vary significantly depending
on their type (servers, top-of-rack switches, aggregation switches, routers, load balancers)
and model. For instance, Load Balancers (LBs) exhibit high probability of failure during
one-year period (over 20%), whereas switches have lower failure probability (less than 5%).
Furthermore, failure rates of different devices are unevenly distributed. For example, the
number of failures across load balancers are highly variable with a few outlier LB devices
experiencing more than 400 failures over the one year period. Finally, the analysis of failure
traces revealed that correlated device and link failures are extremely rare.

Wu et al. [45] presented an automated failure mitigation system called NetPilot, which
alleviates failures in large scale data center network before operators diagnose and repair
the root cause. The authors built their system based on an analysis of failures in several
production data center networks over a six-month period. They identified three main causes
of failures: software failures which constitute 21% of the total number of failures, hardware
failures accounting for 18% and finally misconfigurations, the most dominant source of the
failures (38%). The authors found that usually simple steps of mitigation are very effective
in reducing repair times. However, certain failures incur much more repair time and hence
cause significant network downtime. This concurs with the finding of [27] that reported
that more than 95% of network failures can be fixed within 10 minutes whereas at least
0.09% of them can take more than 10 days to resolve. This again shows the heterogeneity
of the failures in terms of repair times and potential impact.

35

Vishwanath et al. [43] analyzed failures of more than 100, 000 servers deployed in
multiple Microsoft data centers over a duration of 14 months. They found that hard disk,
memory and raid controller failures were the main reason for server failures. For instance,
they reported that failures of hard disks represent 78% of the total failures causing service
disruption. They also noticed a high correlation between the number of disk drives in the
server and the number of server failures. In addition, they found that servers that have
experienced failures are likely to fail again in the near future. This results in a skewed
distribution of server failure rate.

Based on these observations, we can summarize the main characteristics of failures in
data centers as follows: (1) failure rates and availability are heterogenous across the physi-
cal components, (2) correlated failures are extremely rare. This suggests that heterogeneity
should be considered when mapping virtual components onto the physical infrastructure.
Furthermore, since correlated failures are rare, it is reasonable to assume failures to be
independent.

4.2.2 Survivable embedding in Virtualized Data Center

Bodik et al. [18] proposed an allocation scheme that aims at minimizing the impact of
failures (i.e., maximizing fault-tolerance) on the virtual data center (termed “service” in
the paper) while reducing bandwidth usage in the core of the data center network. The
VDC fault-tolerance is measured by the worst-case survival metric defined as the fraction of
VMs belonging to the same VDC that remain operational during a single worst-case failure.
However, this work does not consider the availability of the underlying physical compo-
nents. Besides, considering only worst-case failure (which happens in aggregation/core
switches) results in ignoring other failures (e.g., in top-of-rack switches). Furthermore, the
authors assume a physical server can only host one VM from the same VDC. As a result,
the approach tends to extensively spread VMs, leading to higher bandwidth usage.

Xu et al. [46] proposed a VDC allocation scheme that considers embedding backup
VMs and virtual links with the goal of minimizing consumed resources. However, they
do not consider the availability of the physical machines and they also assume that the
number of backups is known beforehand. Yeow et al. [48] addressed these limitations and
they proposed a reliable VDC embedding scheme that achieves the desired availability for
VDCs by estimating the required number of backups for the virtual nodes based on the
availability of physical machines. They also introduced a technique to allow VDCs to share
backup nodes and links. However, this work considers only homogeneous clusters, which
means all servers have same probability of failure and availability, which is an unrealistic

36

assumption. They also assumed that a physical node cannot host more than one virtual
node from the same VDC.Yu et al. [49] proposed a backup provisioning scheme for improv-
ing virtual infrastructure survivability while minizing resources used to provision backups.
Assuming that only a single failure could occur at a time, they formulate a Mixed Integer
Linear Program (MILP) that estimates the required number of redundant nodes and their
placement in order to minimize networking resources provisioned for the backup nodes.

Rahman et al. [37] presented two policies for solving survivable virtual network em-
bedding problem. The first policy addresses failures proactively by provisioning backup
paths for potential failures in the future, however, this approach may lead to the wastage
of up to 50% of physical resources. The second policy heuristic is a reactive approach that
precomputes a set of possible backup detours for each substrate link.When a substrate link
fails, the affected virtual links are rerouted along one of the backup detours. However, this
approach does not consider multiple link failures.

Table 4.1 compares the features of survivable embedding proposals. The limitations of
the state of the art research can be summarized as follows:

• Previous proposals have either ignored the availability of the underlying physical
components (e.g., [18, 46]) or considered that the cluster is homogenous, i.e., nodes
have similar failure rates and availability (e.g., [48]). Hence, it is more realistic and
challenging to consider the heterogeneity existing in production data center envi-
ronments in order to take more informed resource allocation decisions and improve
availability of the embedded VDCs.

• Existing proposals (e.g., [48, 49]) assume a single physical server can host at most one
virtual node from the same VDC. This assumption is not realistic in production en-
vironments. For instance, if a VDC comprises hundreds of VMs, these schemes map
them onto hundreds of physical servers. This results in higher bandwidth consump-
tion and requires more physical nodes to be active. Ideally, it should be possible to
allow multiple VMs from the same VDC to be hosted on a single physical node if the
required availability is satisfied. This will result in reduced bandwidth usage and less
active physical nodes, and lead to reduced enegy costs, increased VDC acceptance
and InP revenue.

• Previous work (e.g., [48]) does not consider the failure rate of networking components
(e.g., physical switches) when computing the VDC availability. However, virtual
links are mapped onto physical paths that may cross multiple physical switches.
It is therefore mandatory to factor in switches’ availability when computing the
availability of VDCs.

37

Table 4.1: Comparison of survivable embedding schemes
Backup provisioning

Proposals Virtual
Nodes

Virtual
Links

Estimation
of the

number of
backups

Heterogeneity Computing
Availability

VM
Colocation

Xu et al. [46] Yes No No No No Yes
Yu et al. [49] Yes No No No No No

Yeow et al. [48] Yes No Yes No Yes No
Rahman et al. [37] No Yes N/A N/A No N/A
Bodik et al. [18] No No No No No No

Hi-VI Yes Yes Yes Yes Yes Yes

38

In this paper, we aim to address these limitations by developping a technique to estimate
VDC availability in a heterogeneous environment and then leverage it to devise a more
efficient resource allocation scheme that achieves availability requirements and at the same
time minimizes energy costs.

4.3 VDC Availability in Heterogeneous Cloud Envi-

ronments

In this section, we provide a technique to compute the VDC availability in heterogeneous
cloud environments.

Once the SP provides the requirements of his VDC in terms of resources and availability,
the InP is responsible for mapping the VDC onto the physical data center such that
the required availability is satisfied. Hence, the InP should be able to (1) evaluate the
availability of the embedded virtual components based on the availability of the underlying
physical infrastrucure, and to (2) estimate the number of backups needed to meet the
required availability.

In the following, we first describe how we model the physical data center and the
VDC requests. We then present a technique to compute the availability of a VDC taking
into consideration the heterogenous characteristics of the physical equipments. Finally,
we formulate the survivable VDC embedding problem as an optimization problem that
minimizes the number of active physical machines, the bandwidth usage in the data center
network as well as the number of backups while satisfying the required VDC availability.

4.3.1 Physical Data Center

We model the data center network as a graph Ḡ = (N̄ , L̄) where N̄ is the set of physical
nodes and L̄ is the set of physical links. N̄ includes the set of physical machines M̄ and the
set of physical switches and routers S̄ (i.e., N̄ = M̄ ∪ S̄). Each physical node n̄ ∈ N̄ has a
residual capacity crn̄ for each resource type r ∈ R where R = {1..|R|} is the set of resource
types. Each link l̄ ∈ L̄ has a residual bandwidth capacity bl̄. The availability An̄ ∈ [0, 1]
of a physical component n̄ is given by:

An̄ =
MTBFn̄

MTBFn̄ +MTTRn̄

(4.1)

39

where MTBFn̄ and MTTRn̄ represent respectively the Mean Time Between Failures and
the Mean Time To Repair for the node n̄. Both MTBFn̄ and MTTRn̄ can be obtained
from historical records of failure events. Furthermore, we define ūn̄l̄ and v̄n̄l̄ as boolean
variables that indicate whether a physical node n̄ ∈ N̄ is the source and the destination of
physical link l̄ ∈ L̄, respectively.

4.3.2 VDC Requests

(a) Format of the VDC request.

(b) VDC Mapping (with 1 backup node).

Figure 4.1: A sample VDC request and its embedding in physical data center.

In this work, we limit our study to VDC requests having a star topology as shown in
Figure 4.1(b). Such a virtual topology is suitable for hosting many types of applications
like web applications, MapReduce and BLAST [15]. Hence, a SP has to specify the number
of virtual nodes constituting the VDC, the amount of resources for each of the VMs (i.e.,
CPU, memory and disk) and links (i.e., bandwidth) as well as the required VDC availability

40

(see Figure 4.1(a)). Similar to a physical data center, a VDC request can be modelled as
a graph G = (N,L), where N is the set of virtual nodes (including the virtual switch) and
L is the set of virtual links. The required availability of the VDC is denoted by A . Each
virtual node n ∈ N has a capacity crn for each resource type r ∈ R, and each virtual link
l ∈ L has a bandwidth capacity bl. Since we have only a single virtual switch, we reserve
for it the index 0. We also define two boolean variables unl and vnl to indicate whether a
virtual node n ∈ N is the source or the destination of virtual link l ∈ L, respectively.

Variable Definitions

We hereafter define variables that capture the mapping of virtual nodes and links onto
the physical infrastructure. Let xnn̄ ∈ {0, 1} be a boolean variable that indicates whether
virtual node n is mapped onto the substrate machine n̄. Let fll̄ ∈ {0, 1} be a boolean
variable that indicates whether physical link l̄ is used to embed virtual link l.

We also define wns̄ ∈ {0, 1} that indicates whether physical switch s̄ is used to embed
the virtual link connecting the virtual switch to the virtual node n. In other words, if
wns̄ = 1 the failure of physical switch s̄ causes the virtual node n to be unavailable. Hence,
wns̄ can be expressed as:

wns̄ =











1 if
∑

l∈L

∑

l̄∈L̄(unlfll̄usl̄ + unlfll̄vsl̄
+vnlfll̄usl̄ + vnlfll̄vsl̄) > 0

0 otherwise

(4.2)

where unlfll̄us̄l̄ indicates whether physical link l̄ is used to embed virtual link l, and
virtual node n is source of l, and physical node s̄ is source of l̄. We also define yn̄ as a
boolean variable that indicates whether a physical node n̄ ∈ N̄ is used either to embed a
VM or switch or to embed a virtual link (as an intermediate node in the physical path).

4.3.3 Computing VDC Availability

In the following, we provide a technique to compute the availability of a VDC request
G = (N,L). Let NB and LB denote the set of backup nodes and links that are provisioned
by the InP in order to improve the availability of the VDC. The resulting graph including
the backup links and nodes is denoted by G′ = (N ′, L′) where N ′ = N∪NB and L′ = L∪LB

41

where NB and LB are the set of backup nodes and links, respectively. Note that for the
considered star topology we have |NB| = |LB|. A VDC is available if the number of failed
virtual nodes is at most the number of provisioned backups. Let Pr(k) be the probability
that k virtual nodes fail. Hence, the availability of the whole VDC Avdc can be written as:

Avdc =

K
∑

k=0

Pr(k) = Pr(0) +

K
∑

k=1

Pr(k) (4.3)

Let us first compute the probability that no virtual node fails Pr(0). It can be written as
the product of the availability of all physical nodes hosting the VDC components:

Pr(0) =
∏

n̄:yn̄=1

yn̄An̄ (4.4)

Next, let us compute the probability Pr(k) where k ≥ 1. The failure of k virtual nodes
occurs only when physical failures result in k VM failures. Let gm̄ be the number of VMs
mapped to physical machine m̄. It can be written as:

gm̄ =
∑

n∈N ′

xnm̄ ∀m̄ ∈ M̄ (4.5)

Let gs̄ be the number of VMs that are disconnected if the physical swtich s̄ fails. In
other words, this switch is used either to embed the virtual switch or as an intermediate
node between the physical server hosting the VM and the physical node hosting the virtual
switch. We have:

gs̄ =
∑

n∈N ′

wns̄ ∀s̄ ∈ S̄ (4.6)

To evaluate the probability of k virtual nodes failure, we need to consider every possible
physical node failure that will lead to k virtual nodes failure. The probability of having a
single physical node failure that causes k virtual nodes failure can be written as:

∑

n̄:gn̄=k

(

(1−An̄)
∏

t̄∈N̄r{n̄}:yt̄=1

yt̄At̄

)

where (1 − An̄) is the probability of failure of physical node n̄ and
∏

t̄∈N̄r{n̄}:yt̄=1 yt̄At̄ is
the probability that all other nodes used to embed the VDC are available. Note that we
consider the failure of physical nodes that can impact k virtual machines (i.e., gn̄ = k).

42

However, in practice, multiple physical nodes can fail simultaneously and lead to k virtual
node failure. Therefore, we have:

Pr(k) ≥
∑

n̄:gn̄=k

(

(1−An̄)
∏

t̄∈N̄r{n̄}:yt̄=1

yt̄At̄

)

(4.7)

Using Equations 4.3, 4.4, and 4.7, we have:

Avdc ≥

(

∏

n̄:yn̄=1

yn̄An̄

)

+

K
∑

k=1

(

∑

n̄:gn̄=k

(

(1−An̄)
∏

t̄∈N̄r{n̄}:yt̄=1

yt̄At̄

)

)

This provides a lower bound on the availability of the VDC. Let A
lb
vdc denote this lower

bound, it can be written as:

A
lb
vdc =

(

∏

n̄:yn̄=1

yn̄An̄

)

(4.8)

+
K
∑

k=1

(

∑

n̄:gn̄=k

(

(1−An̄)
∏

t̄∈N̄r{n̄}:yt̄=1

yt̄At̄

)

)

That is, the availability of the VDC Avdc is at least A lb
vdc.

4.4 Availability-aware Embedding

4.4.1 Problem Formulation

In the following we formulate the availability-aware embedding problem. We start by
describing the embedding constraints then provide the optimization objective function.

• Embedding constraints:

43

When embedding the VDC, there are many constraints that should be satisfied. For
instance, in order to ensure that the capacities of physical resources are not violated, the
following constraints must be satisfied:

∑

n∈N ′

xnn̄c
r
n ≤ crn̄ ∀n̄ ∈ N̄ , r ∈ R (4.9)

∑

l∈L′

fll̄bl ≤ bl̄ ∀l̄ ∈ L̄ (4.10)

We also require the link embedding to satisfy the flow constraint between every source and
destination node pairs in each VDC topology, namely:

−
∑

l̄∈L̄

v̄n̄l̄fll̄ +
∑

l̄∈L̄

ūn̄l̄fll̄ =
∑

n∈N

xnn̄unl −
∑

n∈N

xnn̄vnl

∀l ∈ L′, n̄ ∈ N̄ (4.11)

Here
∑

n∈N xnn̄unl is equal to 1 if n is the source of the link l of VDC and n is embedded
in the physical node n̄. Equation 4.11 essentially states that the total outgoing flows of
a physical node n̄ for a virtual link l is equal to the total incoming flows unless n̄ hosts
either a source or a destination virtual node.

Furthermore, we need to consider the node placement constraints. For instance, VMs
should only be placed in physical servers whereas virtual switches may be placed either in
switches (e.g., flowvisor instance [40]) or servers (e.g., open vSwitch instance [9]). Hence,
we define x̃nn̄ to indicate whether physical node n̄ is able to host virtual node n of the
VDC. Thus, if a virtual node n is a virtual machine (not a switch), we have x̃nn̄ = 0 ∀n̄ ∈ S̄
and x̃nn̄ = 1 ∀n̄ ∈ M̄ . Hence, the the placement constraint can be written as:

xnn̄ ≤ x̃nn̄ ∀n ∈ N ′, n̄ ∈ N̄ (4.12)

Additionally, we need to ensure that the minimum number of provisioned virtual nodes is
at least the number of nodes required by the SP. Hence, we have:

∑

n∈N ′

∑

n̄∈N̄

xnn̄ ≥ |N | (4.13)

Furthermore, to ensure that the virtual switch is mapped, the following equation must
hold:

∑

n̄∈N̄

x0n̄ = 1 (4.14)

44

Furthermore, yn̄ must be equal to 1 if the physical node n̄ is used to host any virtual
node or used as an intermediate node to embed a virtual link. This implies the following
constraints must hold:

yn̄ ≥ xnn̄ ∀n ∈ N ′, n̄ ∈ N̄ (4.15)

yn̄ ≥ wnn̄ ∀n ∈ N ′, n̄ ∈ S̄ (4.16)

yn̄ ≥ fll̄ūn̄l̄ ∀n̄ ∈ N̄ , l ∈ L′, l̄ ∈ L̄ (4.17)

yn̄ ≥ fll̄v̄n̄l̄ ∀n̄ ∈ N̄ , l ∈ L′ (4.18)

We have also to ensure that the VDC availability A lb
vdc is higher than the required

availability. That is:

A
lb
vdc ≥ A (4.19)

• Objective function:

The goal of the embedding is to minimize the number of the physical nodes used for
embedding the VDC as well as the amount of consumed bandwidth while maintaining the
constraints of Equations 4.9-4.19. Hence our objective function can be written as follows:

min(α
∑

n̄∈N̄

yn̄pn̄ + β
∑

l̄∈L̄

∑

l∈L′

fll̄bl + γ
∑

n̄∈N̄

∑

n∈N ′

(xnn̄

∑

r∈R

wrcrn)) (4.20)

where pn̄ is the energy cost defined as:

pn̄ =

{

0 if the machine n̄ is already active

tcn̄ if the machine is off
(4.21)

tcn̄ is cost of turning on the machine n̄ and wr is the weight factor for resource type r ∈ R,
which depends on the scarcity of the resource. The weight factor α, β and γ are used
to strike the balance between energy cost, communication cost, and computation cost.
This optimization problem is NP-hard as it generalizes the multi-dimensional bin packing
problem[52]. Therefore, we provide a heuristic to solve the problem in the subsequent
section.

4.4.2 Proposed Heuristic

This sub-section describes a heuristic for solving the availability-aware VDC embedding
problem that ensures that each embedded VDC satisfies its requirements in terms of avail-
ability and resources. The goal is to minimize the number of active machines and the

45

consumed bandwidth in the data center network with the goal of increasing InP’s income.

Algorithm 2 Availability-aware VDC embedding
1: VM Mapping Phase:

2: Sort servers M̄ by status (active or not) and availability
3: Sort N by their sizein defined in Eq. 4.22
4: for each virtual machine n ∈ N do

5: if EmbedNode(n, 1) = −1 then

6: Reject request
7: end if

8: end for

9: B ← 0
10: while A

lb
vdc < A and B ≤ Bmax do

11: if B = 0 then

12: B = (minn̄∈N̄
∑

n∈N xnn̄)
13: EmbedNode(nmax, B) {nmax: the node with the largest size.}
14: else

15: B ← B + 1
16: EmbedNode(nmax, 1)
17: end if

18: end while

19: Switch and Link Mapping Phase:

20: Cc,min ←∞ {Cc,min is the minimum communication cost}
21: for each n̄ ∈ N̄ do

22: cost(n̄)← 0
23: Compute total communication cost Cc

24: if Cc < Cc,min then

25: Cc,min ← Cc ; p← n̄ {p: candidate physical node for hosting the switch}
26: end if

27: end for

28: if B ≤ Bmax then

29: Accept the VDC request
30: else

31: Reject the VDC request
32: end if

Our algorithm is described in Algorithm 2. The VDC embedding is carried out in two
phases: (1) VM mapping, (2) virtual switch and link mapping. All physical servers are
sorted based on their status (active or inactive) and availability. Since our aim is to reduce

46

Algorithm 3 EmbedNode(n,b)
1: Input : virtual node n, number of replicas b
2: Output: Physical node n̄ or -1
3: Sort servers M̄ by status (active or not) and availability
4: for i← 1, b do

5: Find n̄ ∈ M̄ able to host n
6: if Not found then

7: Return -1
8: end if

9: Embed n in n̄

10: end for

11: Return n̄

the number of active servers, the algorithm tries first to embed VMs in the active servers.
When a VDC is received, the VMs are sorted in descending order according to size of their
requested resources. The size of VM n is captured by sizen defined as:

sizen =
∑

r∈R

wrcrn ∀n ∈ N (4.22)

where wr is the weight factor for resource type r ∈ R, which depends on the scarcity of the
resource. The intuition is that it is usally harder to map large VMs. The algorithm parses
the sorted list of servers and finds the one that can satisfy the resource requirements of
the VM n. This aims also at embedding VMs in servers with the highest availability in
order to avoid the need for backups. After embedding all VMs n ∈ N , we start mapping
the virtual switch and the links. If Avdc < A , we provision B backups where B is the
minimum number of VMs that are embedded in a single physical server. That is:

B = min
(

∑

n∈N

xnn̄

)

∀n̄ ∈ N̄ (4.23)

The idea is to provision enough backups to take over the failure of the physical machines
hosting the lowest number of VMs. After embedding B backup VMs, we check again Avdc.
If it is still lower than the requested availability, another VM backup is provisioned in a
new physical node that is not hosting any of the previously embedded VMs. This process
is repeated until the required availability is reached. In this case, the VDC is accepted. In
order to avoid overly backup provisioning, the InP can set a maximum number of backups
Bmax. If the number of backups exceeds Bmax, the request is rejected.

Once the VM mapping is done, the virtual switch and link mapping are carried out
jointly. To embed a virtual link, we consider the shortest path between the physical node

47

hosting the switch and the one hosting a VM. We define the virtual link communication
cost as the total number of hops in the corresponding physical path multiplied by the
link bandwidth (i.e., hop count× bandwidth). The total VDC communication cost (Cc) is
then defined as the sum of communication costs of all virtual links. In order to find the
optimal embedding for the virtual switch and the links, the algorithms computes the VDC
communication cost for all possible placements of the virtual switch. The final embedding
is the one that minimizes this cost.

In our heuristic, we first try to embed VMs into physical servers that are already
active. This leads to less energy consumption, and hence to reduced costs. Furthermore,
we try to embed VMs of the same VDC as close as possible to each other. This reduces
communication costs between VMs and the consumed bandwidth in the network. Finally,
the algorithm adds backup incrementally until the required availability is met to avoid the
over-estimation of backup requirement. Therefore, our heuristic takes into consideration
the goals stated in the objective function (Eq. 4.20).

4.5 Performance Evaluation

In this section, we evaluate the effectiveness of our availability-aware VDC embedding
algorithm (Hi-VI) through simulations. To this end, we simulate a physical data center of
120 physical machines organized into four racks. The data center network consists of 4 top-
of-rack switches, 4 aggregation switches, and 4 core switches connected according to the
VL2 topology. We assume each physical machine contains 4 CPU cores, 8 GB of memory,
1 TB hard disk space, and 1 Gbps NIC cards. In order to consider the heterogeneity of the
data center equipments, availabilities of servers and switches are selected randomly from
{0.99, 0.999, 0.9999, 0.99999}. VDC requests arrive following a Poisson distribution with
an average rate of 0.02 requests per second during day time and 0.01 requests per second
during night time. This reflects demand fluctuations in data centers. We assume all VDCs
have a star topology consisting of a single virtual switch connected to multiple VMs. The
number of VMs per VDC is taken randomly between 1−20. The size of each VM in terms
of CPU, memory and disk is chosen randomly between 1 − 4 cores, 1 − 2 GB of RAM
and 1− 10 GB of disk space, respectively. The capacity of virtual links are also generated
randomly between 1 − 100 Mbps. Furthermore, the required availability for each VDC
is generated randomly from {0.99, 0.999, 0.9999} chosen purposely to be higher than the
availability guaranteed by Google Apps SLA [6]. The lifetimes of VDCs are exponentially
distributed with an average of 3 hours. Finally, if a VDC is not accepted immediately
because it is not possible to meet the requirements in terms of availability or resources,

48

it is kept in a waiting queue for a maximum of one hour after which it is automatically
withdrawn.

Since, previous proposals in the literature ignore equipment heterogeneity in production
data centers, it is not possible to directly compare them to Hi-VI. Therefore, we developed
a baseline resource allocation algorithm that combines [18] and [48]. Specifically, the
baseline operates in two steps: similar to [18], it starts by spreading VMs across active
physical nodes in order to maximize the availability. Then, the algorithm provisions a
backup VM in a randomly selected physical node and evaluates the VDC availability. This
backup provisioning process is repeated until the required availability is satisfied. It is
worth noting that, similar to [48], the baseline is oblivious to the existent heterogeneity
in terms of failure rates and availability of the underlying physical components (since the
placement of backups does not consider the availability of physical nodes).

 0

 400

 800

 1200

 1600

 2000

 0 12 24 36 48 60 72

In
ta

nt
an

eo
us

 I
nc

om
e

Time (hour)

Baseline
Hi-VI

Figure 4.2: Instantaneous Income

We first evaluate the instantaneous income of Hi-VI and the number of accepted VDC
requests compared to the baseline algorithm. The instantaneous income is provided by the
following equation1:

Rinst =
∑

v∈V

(

µb
∑

l∈L

bvl +
∑

n∈N

∑

r∈R

µrcvrn

)

−µe
∑

n̄∈N̄

yn̄En̄ (4.24)

1In order to compute the instantaneous income, resource demands (in terms of CPU, memory and
bandwidth) are normalized between 0 and 1.

49

where µband µr are the unit selling prices for bandwidth and resource type r for a single
timeslot, respectively. V is the set of embedded VDCs at the current timeslot and the
superscript v refers to VDC number v. The energy cost paid by the InP and the energy
consumed by machine n̄ during a timeslot are denoted by µe and En̄, respectively.

 0

 5

 10

 15

 20

 25

 0 12 24 36 48 60 72

N
um

be
r

of
 A

cc
ep

te
d

V
D

C
s

Time (hour)

Baseline
Hi-VI

Figure 4.3: Number of accepted VDCs.

 0

 10

 20

 30

 40

 50

 60

 0 12 24 36 48 60 72

N
um

be
r

of
 M

ac
hi

ne
s

Time (hour)

Baseline
Hi-VI

Figure 4.4: Number of active physical machines over time

50

Figure 4.2 shows that Hi-VI leads to much higher instantaneous income than the base-
line. Figure 4.3 confirms that our algorithm accepts more VDC requests than the baseline.
One reason for this higher income is the higher acceptance of VDC requests. Another
reason is that the number of used physical machines is higher with the baseline algorithm
than with Hi-VI (Figure 4.4). This is because the baseline algorithm spreads the VMs
across the physical machines, and hence turns on more servers. Thus, it leads to a higher
energy costs than Hi-VI.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 12 24 36 48 60 72

U
til

iz
at

io
n

Time (hour)

CPU
Memory

Bandwidth (Level 1)

(a) Hi-VI

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 12 24 36 48 60 72

U
til

iz
at

io
n

Time (hour)

CPU
Memory

Bandwidth (Level 1)

(b) Baseline

Figure 4.5: Utilization of CPU, memory and bandwidth.

The utilization of the different resources (CPU, memory, and bandwidth) for Hi-VI
and the baseline is depicted in Figure 4.5. We can notice that the utilization of CPU and
memory are comparable for both algorithms. However, the baseline has accepted much less
VDCs, which means that the baseline has allocated a lot of resources for provisioning the
backups. We also notice a significant difference in the bandwidth utilization. The baseline
requires more bandwidth than Hi-VI, although it accepts less VDC requests. The baseline
spreads the VMs across the physical servers and thus uses more bandwidth to embed the
virtual links.

Finally, Figure 4.6 shows the cumulative backup costs of CPU, memory and bandwidth
for both algorithms. The backup cost of a VDC is computed as the amount of resources
used by the provisioned backup multiplied by its lifetime. We can see that the baseline
has allocated much more backup resources than Hi-VI in terms of CPU, memory and

51

 0

 50

 100

 150

 200

 250

 0 12 24 36 48 60 72

C
um

ul
at

iv
e

B
ac

ku
p

C
os

t

Time (hour)

CPU
Memory

Bandwidth (Level 1)

(a) Hi-VI

 0

 50

 100

 150

 200

 250

 0 12 24 36 48 60 72

C
um

ul
at

iv
e

B
ac

ku
p

C
os

t

Time (hour)

CPU
Memory

Bandwidth (Level 1)

(b) Baseline

Figure 4.6: Backup cost.

bandwidth. These results clearly show that Hi-VI outperforms the baseline in terms of
income, accepted VDC requests and significantly reduces backup costs.

4.6 Summary

In this chapter, we proposed a resource allocation framework for VDCs (Hi-VI) that guar-
antees VDC availability considering the heterogeneity of the production data center com-
ponents in terms of failure rates and availability. Simulation results show the effectiveness
of Hi-VI. Compared to heterogeneity-oblivious solutions, Hi-VI increases by up to 20% the
InP net income while minimizing by up to 40% the operational costs.

52

Chapter 5

Conclusion

Cloud computing has evolved as the key computing model now-a-days for hosting different
kinds of applications and services. In this model, Infrastructure Providers (InPs) own data
centers and lease resources to Service Providers (SPs) in an on-demand basis.

The first challenge addressed in this thesis is the Virtual Data Center (VDC) embedding
problem. The goal of the VDC embedding problem is to allocate resources to VDCs while
minimizing the bandwidth usage in the data center and maximizing the cloud provider’s
revenue. We proposed a new VDC embedding solution that explicitly considers the em-
bedding of virtual switches and virtual links in addition to virtual machines. Simulations
show that our solution results in high acceptance rate of VDC requests, less bandwidth
consumption in the data center network, and increased revenue for the cloud provider

The second challenge that we addressed in this thesis is about providing VDCs with
defined availability. As service availability is a prime concern for service providers, InPs
are prompted to roll out computing and networking resources with hard availability guar-
antees. Despite recent research on the problem, none has considered the heterogeneity
of the data center components in terms of failure rates and availability to estimate the
required amount of backup resources to reserve in order to ensure the targeted availability.
We proposed a High-availability Virtual Infrastructure (Hi-VI) management framework
that jointly allocates resources for VDCs and their backups while minimizing total energy
costs. Hi-VI uses a novel technique to compute the availability of a VDC that consid-
ers both (1) the heterogeneity of the data center networking and computing equipment,
and (2) the number of redundant virtual nodes and links provisioned as backups. Simula-
tions demonstrate the effectiveness of our framework compared to heterogeneity-oblivious
solutions in terms of revenue and the number of physical servers used to embed the VDCs.

53

We summarize the contributions of this thesis in the next section. Future research
directions are then provided at the end of this chapter.

5.1 Summary of Contribution

The contributions of this thesis are summarized below:

Background of Virtualized Data Center offers the following:

• Introduction to the concepts of virtualized/virtual data centers.

• Identification of the different stakeholders in data center virtualization environ-
ments.

Embedding of VDC provides the following:

• A critical analysis of the existing proposals addressing the VDC embedding
problem.

• A mathematical formulation of VDC embedding problem where along with VMs
and virtual links, we also considered virtual switches in the VDC requests.

• A novel embedding algorithm: a three-phase minimum-cost-flow-based heuristic
to solve the VDC embedding problem, considering residual bandwidth, server
defragmentation, communication costs and load balancing.

• Through simulations, we have shown that our embedding algorithm was able
to embed VMs and virtual links, as well as virtual switches and achieves high
acceptance ratio, CPU and network utilization, as well as higher revenue.

High-availability Virtual Infrastructure Management (Hi-VI) framework delivers
the following:

• A survey of existing work on data center failure characterization and represen-
tative proposals addressing survivable resource allocation in virtualized data
centers.

• A VDC management framework that takes into account the heterogeneity of
cloud data center equipments to dynamically provision backup resources in order
to ensure the required VDC availability.

54

• Through simulations, we demonstrated that Hi-VI is able to satisfy VDC’s avail-
ability and resource requirements while minimizing operational costs (notably
energy costs). Compared to heterogeneity-oblivious solutions, Hi-VI increases
by up to 20% the cloud provider’s net income while minimizing by up to 40%
the operational costs.

5.2 Future Research

Our work on resource allocation in virtualized data centers can be potentially extended in
a number of directions. In the following, we will discuss some of the most important ones:

VM Migration VM migration allows the InP to improve resource utilization and com-
munication locality, mitigate performance hotspots, achieve fault tolerance, reduce
energy consumption, and facilitate system maintenance activities. However, these
benefits come with migration cost that includes communication cost, service disrup-
tion, and management overhead. Hence, it would be interesting to explore how to
improve our embedding scheme with VM migration capability.

Embedding across multiple data centers In this thesis, we have considered the VDC
embedding problem in a single data center. However, the InP may have a distributed
cloud infrastructure including multiple data centers at different physical locations.
The InP may want to embed VDCs across multiple data centers for several reasons,
for instance, to provide geographical redundancy through multiple data centers to
mitigate natural disasters. Also, the InP can achieve reduction in energy costs by
considering the fluctuation of electricity prices over time and data center locations.
Therefore, embedding VDCs across a distributed infrastructure is another potential
research challenge.

Reducing Carbon Foot Print According to the Environmental Protection Agency (EPA)
data centers consumed about 3% of the US total electricity use in 2001 [4]. Further-
more, estimated energy consumption of data center servers was about 2% of the
world’s electricity. It has been reported recently that, in 2012, the data centers
around the world are responsible for 0.25 percent of the worldwide carbon emission,
which constitutes 10% of information and communication technologies (ICT) emis-
sions [13]. Other reports [5, 26] also confirm the high power consumption of data
centers. As a consequence, InPs are facing tremendous pressure to operate on re-
newable sources of energy (e.g., solar and wind power) to make their infrastructures
more green and environment-friendly.

55

Hence, to address this, the InPs need to design efficient VDC embedding algorithms
that minimize the carbon footprint of their data centers by considering usage of
renewables and carbon emissions in different locations.

VDC Topology in Hi-VI The proposed Hi-VI framework considers only VDC requests
having a star topology in order to simplify the computation of the VDC availability.
In the future, Hi-VI can be extended to consider more general VDC requests having
other topologies.

56

References

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/. Ac-
cessed: 2014-01-15.

[2] Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/s3/. Ac-
cessed: 2014-01-15.

[3] Downtime Outages and failures - understanding their true costs. http://www.

evolven.com/blog/downtime-outages-and-failures-understanding-their-

true-costs.html. Accessed: 2014-01-15.

[4] Energy Efficiency and Sustainability of Data Centers. http://www.sigmetrics.org/
sigmetrics2011/greenmetrics/Carey_GreenMetricsKeynote060711.pdf.

[5] Energy Logic: Reducing Data Center Energy Consumption by Creating Savings that
Cascade Across Systems. http://www.cisco.com/web/partners/downloads/765/

other/Energy_Logic_Reducing_Data_Center_Energy_Consumption.pdf.

[6] Google Apps Service Level Agreement. http://www.google.com/apps/intl/en/

terms/sla.html. Accessed: 2014-01-15.

[7] Google Compute Engine. https://cloud.google.com/. Accessed: 2014-01-15.

[8] LEMON Graph Library. http://lemon.cs.elte.hu/trac/lemon. Accessed: 2014-
01-10.

[9] Open vSwitch. http://openvswitch.org/. Accessed: 2014-01-10.

[10] VMware. http://www.vmware.com. Accessed: 2014-01-15.

[11] Xen. http://xen.org. Accessed: 2014-01-15.

57

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.sigmetrics.org/sigmetrics2011/greenmetrics/Carey_GreenMetricsKeynote060711.pdf
http://www.sigmetrics.org/sigmetrics2011/greenmetrics/Carey_GreenMetricsKeynote060711.pdf
http://www.cisco.com/web/partners/downloads/765/other/Energy_Logic_Reducing_Data_Center_Energy_Consumption.pdf
http://www.cisco.com/web/partners/downloads/765/other/Energy_Logic_Reducing_Data_Center_Energy_Consumption.pdf
http://www.google.com/apps/intl/en/terms/sla.html
http://www.google.com/apps/intl/en/terms/sla.html
https://cloud.google.com/
http://lemon.cs.elte.hu/trac/lemon.
http://openvswitch.org/
http://www.vmware.com
http://xen.org

[12] Data Center: Load Balancing Data Center Services SRND, 2004.

[13] ITU, Toolkit on Environmental Sustainability for the ICT Sector (ESS). http://www.
itu.int/ITU-T/climatechange/ess/index.html, 2012.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center
Network Architecture. In Proceedings ACM SIGCOMM, August 2008.

[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards Predictable Data-
center Networks. In Proceedings ACM SIGCOMM, August 2011.

[16] MF. Bari, R. Boutaba, R. Esteves, L. Granvilley, M. Podlesny, M. Rabbani, Q. Zhang,
and F. Zhani. Data Center Network Virtualization: A Survey. to appear in IEEE
Communications Surveys and Tutorials, 15(2):909–928, 2012.

[17] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: A Cloud Networking
Platform for Enterprise Applications. In Proceedings ACM SOCC, June 2011.

[18] Peter Bod́ık, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A.
Maltz, and Ion Stoica. Surviving failures in bandwidth-constrained datacenters. In
Proceedings of ACM SIGCOMM, 2012.

[19] N. F. Butt, N. M. M. K. Chowdhury, and R. Boutaba. Topology-Awareness and
Reoptimization Mechanism for Virtual Network Embedding. In Proceedings IFIP
Networking, May 2010.

[20] D. Carr. How Google Works. July 2006.

[21] M. Chowdhury and R. Boutaba. A Survey of Network Virtualization. Computer
Networks, 54(5):862–876, 2010.

[22] M. Chowdhury, M.R. Rahman, and R. Boutaba. Vineyard: Virtual network embed-
ding algorithms with coordinated node and link mapping. Networking, IEEE/ACM
Transactions on, 20(1):206 –219, feb. 2012.

[23] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., 2004.

[24] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
In Proceedings USENIX OSDI, December 2004.

58

http://www.itu.int/ITU-T/climatechange/ess/index.html
http://www.itu.int/ITU-T/climatechange/ess/index.html

[25] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network fail-
ures in data centers: measurement, analysis, and implications. In Proceedings of ACM
SIGCOMM, 2011.

[26] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The Cost of a Cloud: Re-
search Problems in Data Center Networks. ACM Computer Communication Review,
39(1):68–73, 2009.

[27] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon
Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2:
a scalable and flexible data center network. In Proceedings of ACM SIGCOMM, 2009.

[28] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. BCube:
A High Performance, Server-centric Network Architecture for Modular Data Centers.
In Proceedings ACM SIGCOMM, August 2009.

[29] C. Guo, G. Lu, H.J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. Second-
Net: A Data Center Network Virtualization Architecture with Bandwidth Guarantees.
In Proceedings ACM CoNEXT, December 2010.

[30] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese. NetShare: Virtualizing Data
Center Networks across Services, May 2010.

[31] C. Leiserson. Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing.
IEEE Transactions on Computers, 34(10):892–901, 1985.

[32] Xiaoqiao Meng, V. Pappas, and Li Zhang. Improving the scalability of data center net-
works with traffic-aware virtual machine placement. In INFOCOM, 2010 Proceedings
IEEE, pages 1 –9, march 2010.

[33] L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica. FairCloud: Sharing The
Network In Cloud Computing. In Proceedings ACM Hotnets, November 2011.

[34] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, and I. Stoica. A Cost Com-
parison of Datacenter Network Architectures. In Proceedings ACM CoNext, November
2010.

[35] M. G. Rabbani, Mohamed Faten Zhani, and Raouf Boutaba. On achieving high
survivability in virtualized data centers. To Appear in IEICE Transactions on Com-
munications, E97-B(1), January 2014.

59

[36] Md Rabbani, Rafael Esteves, Maxim Podlesny, Gwendal Simon, Lisandro Zam-
benedetti Granville, and Raouf Boutaba. On tackling virtual data center embedding
problem. In IM, 2013.

[37] M. Rahman and R. Boutaba. SVNE: Survivable virtual network embedding algorithms
for network virtualization. volume 10, pages 105–118, 2013.

[38] M. R. Rahman, I. Aib, and R. Boutaba. Survivable Virtual Network Embedding. In
Proceedings IFIP Networking, May 2010.

[39] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes. Gatekeeper: Sup-
porting Bandwidth Guarantees for Multi-tenant Datacenter Networks. In Proceedings
WIOV, June 2011.

[40] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick
McKeown, and Guru Parulkar. Can the production network be the testbed? In
Proceedings of USENIX conference on Operating systems design and implementation,
OSDI, 2010.

[41] A. Shieh, S. Kandulaz, A. Greenberg, C. Kim, and B. Saha. Sharing the Data Center
Network. In Proceedings USENIX NSDI, March 2011.

[42] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. ISP Topologies with Rock-
etfuel. IEEE/ACM Transactions on Networking, 12(1):2–16, 2004.

[43] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud com-
puting hardware reliability. In Proceedings of ACM Symposium On Cloud Computing,
SOCC, 2010.

[44] G. Wang and E. Ng. The Impact of Virtualization on Network Performance of Amazon
EC2 Data Center. In Proceedings IEEE INFOCOM, March 2010.

[45] Xin Wu, Daniel Turner, Chao-Chih Chen, David A. Maltz, Xiaowei Yang, Lihua
Yuan, and Ming Zhang. Netpilot: automating datacenter network failure mitigation.
SIGCOMM Comput. Commun. Rev., 42(4), August 2012.

[46] Jielong Xu, Jian Tang, K. Kwiat, Weiyi Zhang, and Guoliang Xue. Survivable virtual
infrastructure mapping in virtualized data centers. In IEEE International Conference
on Cloud Computing (CLOUD), 2012.

[47] Wai-Leong Yeow, Cedric Westphal, and Ulas C. Kozat. Designing and embedding
reliable virtual infrastructures, March 2010.

60

[48] Wai-Leong Yeow, Cedric Westphal, and Ulas C. Kozat. Designing and embedding
reliable virtual infrastructures. SIGCOMM Comput. Commun. Rev., 41(2), April
2011.

[49] Hongfang Yu, Vishal Anand, Chunming Qiao, and Gang Sun. Cost efficient design of
survivable virtual infrastructure to recover from facility node failures. In IEEE ICC,
pages 1–6, 2011.

[50] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking Virtual Network Embedding:
Substrate Support for Path Splitting and Migration. ACM Computer Communication
Review, 38(2):17–29, April 2008.

[51] Q. Zhang, M. F. Zhani, Q. Zhu, S. Zhang, R. Boutaba, and J. Hellerstein. Dy-
namic Energy-Aware Capacity Provisioning for Cloud Computing Environments. In
Proceedings IEEE/ACM International Conference on Autonomic Computing (ICAC),
September 2012.

[52] Mohamed Faten Zhani, Qi Zhang, Gwendal Simon, and Raouf Boutaba. VDC Plan-
ner:dynamic migration-aware virtual data center embedding for clouds. In IM, 2013.

61

	List of Tables
	List of Figures
	Publications
	Introduction
	Motivation and Challenges
	Contributions
	Thesis Organization

	Background
	Data Center
	Data Center Virtualization
	Business Model
	Summary

	Virtual Data Center Embedding
	Introduction
	Literature Survey
	Problem Formulation
	Physical Data Center
	VDC Request
	Objective

	Proposed Solution
	Description of the three phase embedding
	Rationale for the Objectives
	VDC Mapping

	Performance Evaluation
	Simulation Environment
	Performance Metrics
	Simulation Results

	Summary

	Survivable Virtual Data Center Embedding
	Introduction
	Literature Survey
	Failure Characterization in Data Centers
	Survivable embedding in Virtualized Data Center

	VDC Availability in Heterogeneous Cloud Environments
	Physical Data Center
	VDC Requests
	Computing VDC Availability

	Availability-aware Embedding
	Problem Formulation
	Proposed Heuristic

	Performance Evaluation
	Summary

	Conclusion
	Summary of Contribution
	Future Research

	References

