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ABSTRACT 

Organochlorine pesticides (OCPs) were used in agriculture throughout the world for a 

long time because they are very effective for pest control, but OCPs such as DDT and 

its metabolites can threaten human health and ecological systems. Although DDT has 

been banned for use in Canada since 1972, it still persists in Canadian farmland at 

detectable levels due to its chemical stability. The soils contaminated with DDT require 

economical remediation strategies because of the low land value and rural location. 

Although soil washing has been proposed as a possible economical technique to 

remove DDT, it has very low water solubility and so it is necessary to consider using 

surfactants to improve the soil-washing process. Building on previous research, we 

hypothesize that combinations of surfactants can be used to improve the performance 

of this remediation method.   

The surfactants Tween 80, Brij 35, and sodium dodecylbenzene sulfonate (SDBS) were 

selected based on environmental and reported performance criteria. Combinations of 

surfactants were tested in both batch and leaching column experiments. Experiments 

indicated that removal efficiency and flowrate in leaching columns were optimized when 

a mixture of 2% Brij 35 and 0.1% SDBS was employed. The presence of Tween 80 was 

found to be less effective, possibly due to its higher biodegradability in the soil. 

Since the measurement of surfactant concentration in the wash solution is important, 

several methods were tested before finally selecting a simple COD analysis as a 

surrogate parameter. Using the COD analysis, partitioning experiments were performed 

to measure the adsorption of surfactant on the soil. For economic reasons, it would be 

desirable to reuse the surfactant in a washing process. For this purpose, we employed 

activated carbon to selectively remove the more hydrophobic DDT from the surfactant 

solutions. Preliminary results have shown that carbon adsorption can remove some 

DDT, but additional work is required to understand and optimize the process.
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Chapter 1: Introduction 

1.1 Preface 

Since the organochlorine pesticides (OCPs) are very effective at pest control, they were 

used in agriculture throughout the world for a long time, but they introduced two 

significant problems: a) entry into the food chain where they can adversity affect man 

and animals, b) exposure, by workers to OCPs when they are spraying pesticides.  

OCPs such as DDT [Dichloro-Diphenyl-Trichloroethane or 1,1,1-Trichloro-2,2-bis(p-

chlorophenyl)-ethane] and their persistent metabolites can cause damage to ecological 

systems and threaten human health (Wang and Mulligan, 2004). The environmental fate 

of OCPs is summarized below: 

For many years, DDT [C14H9Cl5] was the most famous pesticide worldwide for the 

control of disease vectors and over a variety of agricultural crops. During the Second 

World War, DDT protected troops and civilians from typhus, malaria and other diseases. 

The DDT structure is shown in Figure 1. 

 

Figure 1. Structure of DDT. http://chemistry.about.com/od/factsstructures/ig/Chemical-Structures--
-D/DDT.-1Ks.htm 

DDT has been banned for use in Canada since 1972, but it still persists in Canadian 

farmland at detectable levels because it is a highly stable compound in the environment 

(Turusov et. al, 2002). A global ban on DDT along with other twelve persistent organic 

pollutants was only imposed by the 2004 Stockholm Convention (UNEP, 2008). Despite 

the ban, DDT is still used in developing countries to control malaria under the 

supervision of United Nations (UN) (Thangavadivel et al., 2009).  Due to its low water 

solubility, DDT tends to remain adsorbed to soil particles. Its resistance to 

biodegradation means leads to its persistence in the soil environment for long periods of 

http://chemistry.about.com/od/factsstructures/ig/Chemical-Structures---D/DDT.-1Ks.htm�
http://chemistry.about.com/od/factsstructures/ig/Chemical-Structures---D/DDT.-1Ks.htm�
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time.  Most jurisdictions have identified maximum levels of DDT (and its intermediates) 

that are permitted in soil for various uses, which can pose problems for property owners 

who wish to sell or change the use of their contaminated land.  For example, in Ontario 

the maximum permitted levels of DDT in soil for industrial use and non-potable 

groundwater is 1.4 mg/kg (similarly 4.6 and 0.52 mg/kg for DDD and DDE, respectively) 

(MOE, 2008) Therefore, it becomes necessary to identify and use techniques to clean 

the soil to a satisfactory level. Some toxic chemical are shown in Table 1. 

Table 1. A summary of the history of some toxic chemicals (based on 
http://www.theglobaleducationproject.org/earth/toxics.php) 

TOXIC CHEMICAL 

SUBSTANCE DATE 
INTRODUCED 

QUANTITY 
PRODUCED 

TOXICITY 
 LEVEL * 

DATE BANNED 
HUMAN 

CARCINOGEN 
 (EPA) 

PRODUCTIO
N USE  

P
E

R
SI

ST
E

N
T 

O
R

G
A

N
IC

 P
O

LL
U

TA
N

TS
 (P

O
Ps

) PCBs 1929 

1.5 
MILLION 

TONS 
(TOTAL) 

0.028 PPM, 
0.005 PPM** 1979 (US) 

IN 
USE 
(US) 

PROBABLE 

DDT 1941 
2 MILLION 

TONS 
(TOTAL) 

5 PPM 1969  (SWEDEN) 
1972 (US) PROBABLE 

DIOXIN   0.00000003 
PPM  POSSIBLE 

PBDEs 1970s 

149 
MILLION 

LBS (2001 
ONLY) 

3.52 PPM PARTIAL 
2005 – 2008 NO DATA 

HCB 1933  8 PPM 1981 (UK) 
1970s PROBABLE 

LEAD 
GASOLINE 
ADDITIVE 

1923 
7 MILLION 
TONS (US 

TOTAL) 

0.0012 PPM 
0.075 MG/M3 1972 (US) 1996 

(US) PROBABLE*** 

MERCURY  
2320 TONS 

(1998 
ONLY) 

0.009 MG/M3  NOT 
CLASSIFIED 

ASBESTOS 1857 

> 30 
MILLION 

TONS 
(TOTAL) 

NO DATA IN USE (US, CAN) 
1999 (EU) DEFINITE 

Note: All substances listed as “Probable” Human Carcinogens have been conclusively demonstrated to 
cause cancer in animals. 

* Concentration in parts per million of body weight in food or milligrams per meter3 in air at which a 
substance has been determined by the US EPA to have adverse non-cancer health effects. Does not 
include carcinogenic effects.  ** PCB cogeners Aroclor 1016 and Aroclor 1254. *** Carcinogenesis 
data unavailable for tetraethyl lead. Data for “Lead and compounds” used. 

http://www.theglobaleducationproject.org/earth/toxics.php�
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1.2 Remediation Technologies 
 
Before examining the various remediation technologies, it is very important to recognize 

the different physical forms possible for organic contaminants in soil. These are 

illustrated in Table 2.  For example, DDT and petroleum pollution tend to present the 

form of type III and IV, ash and plastic (type I), petroleum’s derivatives (type II), 

phenanthrene and pesticides (type V), and benzene and naphthalene tends to take the 

form of type VI (Harrison, 2001).  

Table 2. Different physical forms of organic pollutants in soil: (I) solid particles; (II) liquid film; (III) 
adsorbed onto soil; (IV) absorbed into soil; (V) in soil macro pores; (VI) in soil micro pores [Paria, 
2007]. 

TYPE NAME PHYSICAL FORM 

I Particulate Pollutant 

 

II Liquid Film 

 

III Adsorbed 

 

IV Absorbed 

 

V In water phase in pores 

 

VI Solid or liquid in pores 
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Many technologies have been tested or applied to remediate soil contaminated with 

inorganic and organic pollutants. According to Paria, (2007), in Table 3 are showed 863 

technologies to remediate soil contaminated such as 499 Ex situ technologies (57%) 

and 364 In situ technologies (43%). For example, there are 20 physical separation in Ex 

situ technologies representing 2% (20/863) of total of technologies, and there are 213 

soil vapor extraction In situ technologies representing 25% (213/863) of total. 

Table 3: Technologies selected for source control at superfund remedial action sites (Fiscal year 
1982–2002) [US EPA]. (Paria, 2007) A = Number selected, B = % of total 

 

Ex situ technologies 499 (57%) + In situ technologies 364 (43%) = TOTAL 863 (100%) 

 REMEDIATION A B   REMEDIATION A B 

E 
X 

  S
 I 

T 
U

   
T 

E 
C

 H
 N

O
 L

 O
 G

 I 
E 

S 

Physical  Separation 20 2 

I N
   

S 
I T

 U
   

T 
E 

C
 H

 N
 O

 L
 O

 G
 I 

E 
S 

 Soil vapor extraction 213 25 

Incineration (on-site) 43 5 Bioremediation 48 6 

Bioremediation 54 6 Solidification / Stabilization 48 6 

Thermal Desorption 69 8 Flushing 16 2 

Chemical treatment 10 1 Chemical treatment 12 1 

Incineration (off-site) 104 12 Other (in situ) 27 3 

Solidification / Stabilization 157 18 In situ thermal treatment 8  

Other (ex situ) 42 5 Multi-phase extraction 8  

Soil vapor extraction 9  Neutralization 4  

Neutralization 8  Phytoremediation 4  

Soil washing 8  Vitrification 2  

Mechanical soil aeration 5  Electrical separation 1  

Solvent extraction 5  Total In situ 364 43 

Open burn / Open detonation 3  

Phytoremediation 2  

Vitrification 2  

Total Ex situ 499 57 
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Excavation, removal and transportation of soil to treatment facilities represent major 

costs associated with the ex situ remediation of contaminated soil. Sometimes, building 

and other structures make impossible the ex situ remediation process. In situ 

remediation alleviates some of these problems, but additional costs and limitations exist 

due to the engineering and design of this process (Smith et. al, 2003). 

The soils contaminated with DDT require economical remediation strategies because of 

cheap land value and rural location sites that are typically associated with such 

farmland contamination. For example, thermal destruction has showed a great 

efficiency in removing DDT, but these techniques are expensive and not economically 

possible in many applications. In contrast, bioremediation is generally considered an 

economical option, but it has serious limitations due to the low aqueous solubility and 

high hydrophobicity of DDT and slow treatment rates due to high degree of chlorination 

DDT.  Therefore, bioremediation for DDT is often commercially unsuccessful (Juhasz et. 

al, 2002). 

Soil washing has been proposed as a possibly economical technique, but in view of the 

low water solubility of DDT, it is necessary to consider using surfactants to improve this 

process. Surfactants are a class of natural and synthetic chemicals that promote the 

wetting, solubilization and emulsification of various types of organic and inorganic 

contaminants (Wang and Mulligan, 2004).  As they are amphiphilic molecules with both 

hydrophilic and hydrophobic portions, many surfactants, can reduce the surface tension 

of water to approximately 25 +- 5 mNm-1 depending on concentration and surfactant 

type, by acting as a bridge between the air and the liquid interface (Myers, 1999). 

For soil-washing applications, surfactants have the ability to increase aqueous 

contaminant concentration through partitioning the solute into the hydrophobic interior of 

the micelles and forming spheroid or laminar structures with organic pseudo-phase 

interiors.  Therefore, contaminants with low aqueous solubility can be dissolved in the 

hydrophobic interior of the micelles, thereby raising their apparent solubility. The 

minimum concentration at which this occurs is termed the critical micelle concentration 

(CMC) (Wang and Mulligan, 2004). 
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1.3 Scope of Research Project 

This research project deals with the use of aqueous surfactant solutions such as Tween 

80, Brij 35 and Sodium dodecylbenzene sulfonate (SDBS) to enhance the leaching 

process to remove DDT from contaminated soil. In order to accomplish this, it examines 

the behavior of a surfactant in the soil system, and later, combinations of two or three 

surfactants are considered.  In the following chapter, some previous work on DDT 

remediation using surfactant washing is described, but the information is limited with 

varying levels of success. In this work, it is hypothesized that combinations of 

surfactants can be employed that will improve the performance of a remediation 

strategy. 

1.4 Objectives of Current Research 

The goal of this project is to study different surfactants for the removal of DDT from 

contaminated soil by a leaching process. More specifically, this entails the following 

aspects: 

i) The use of small soil samples (10 g soil/ 25 ml aqueous solution) to determine the 

combination of surfactants that can remove the most DDT in the solution.  

ii) Testing the best combination of surfactants in larger scale column leaching 

experiments (150 g soil / 100 ml solutions). 

iii) Assessment of other important characteristics of the surfactant leaching process, 

such as surfactant losses through absorption and biodegradation.  



 7 

Chapter 2: Theorical Background 

 

2.1 Characterization of DDT 

DDT was first synthesized in 1874 by Othmar Zeidler, but its excellent insecticidal 

properties were discovered by the Swiss chemist Paul Muller in 1939, who received the 

Nobel Prize in Physiology or Medicine in 1948 for this work.  DDT was commercially 

introduced in 1942 by Geigy and produced on a large industrial scale in 1943 (Turusov 

et. al, 2002). The total cumulative global usage of DDT is estimated to have been 2.6 

million tonnes from 1950 to 1993 (Voldner and Li, 1995). 

DDT is still used to control mosquito vectors of malaria in the tropical regions of many 

countries such as Brazil, Colombia, Ecuador, Peru and Venezuela (Bate, 2001; 

Rodriguez-Morales et al., 2007). Table 4 shows the incidence of malaria, and the 

apparent inverse relationship between DDT use and malaria incidence.  DDT has had a 

positive impact on controlling malaria, but as described below its other environmental 

impacts have been negative.  

Table 4. House Spray Rates and Cumulative Malaria Cases in tropical countries. 
http://www.cis.org.au/policy/Spring01/PolicySpring01_1.html 

YEAR 

1976 1980 1984 1988 1992 1996 2000 2004 2007 

         

DDT House Spray Rate per 1,000 population (HSR) 

6000 5,000 1,800 1,600      

         

Cumulative Malaria Cases (x 1,000) 

 11 15 30 43 63 28 36 44 

 

http://www.cis.org.au/policy/Spring01/PolicySpring01_1.html�
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2.1.1 Environmental fate 
Large quantities of DDT were released into the air during the period of agricultural or 

vector control applications. DDT is removed from the atmosphere by wet and dry 

deposition and diffusion into bodies of water (ATSDR, 2002).  DDT and its metabolites 

have been detected in all places (air, water, soil and living organisms) around the world 

(Turusov, 2002).   

Binelli and Provini (2003) established that DDT enters rivers and streams mainly 

through industrial point sources, runoff from agricultural fields and from atmospheric 

deposition due to volatilization as shown in Figure 2. 

 
Figure 2. Pesticide fate processes. http://extoxnet.orst.edu/tibs/movement.htm 

 

According to the World Health Organization (WHO) in 1989: “Volatilization loss will vary 

with the amount of DDT applied, proportion of soil organic matter, proximity to soil-air 

interface and the amount of sunlight”. The rate of volatilization can be low (<20% over 5 

years) or as high as 50% in 5 months (Jorgensen, et al., 1991). As illustrated in Figure 

http://extoxnet.orst.edu/tibs/movement.htm�
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2, DDT is able to leach into groundwater over long periods of time, especially from soils 

with little soil organic matter (Matsumura, 1985). In addition, it is very important to 

remember that DDT is retained to a greater degree by soils and soil fractions with 

higher proportions of soil organic matter due to its extremely low solubility in water 

(0.025 mg/L (25°C) - see Table 5), (WHO, 1989), but DDT in organic solvents is slightly 

soluble in ethanol, very soluble in ethyl ether and acetone (ATSDR, 2002).  Table 5 

summarizes the physico-chemical properties of DDT isomers and its known 

environmental breakdown products. 

The half-life of DDT is a function of the sediment and soil conditions and ranges from 3 

to 30 years (Dimond and Owen, 1996). Low water solubility, high stability and semi-

volatility favor its long-range transport. However, the U.S. EPA (1989) reported that the 

half-life of DDT is 28 days in river water and 56 days in the lake water. The main 

pathways for this loss are: adsorption to water-borne particles and sedimentation, 

photodegradation, volatilization and aquatic organism that absorb and store it and its 

metabolites (ATSDR, 1994a). 

2.1.2 Toxicology 

DDT concentration tends to be fatal in adult animals only at very high concentrations by 

affecting the central nervous system (Cramer, 1972). Ingestion in humans can cause 

prickling of the tongue, nausea, dizziness, confusion, and headaches (Beard, 2006).  

Therefore, there are concerns that small quantities of DDT found in soils could be 

transferred to crops and then ingested by humans.  IARC in 1991 classified DDT as 

carcinogenic to humans.  

DDT is highly toxic to many aquatic invertebrate species (Johnson and Finley, 1980), 

and fish species (Hudson et al., 1984).  Moreover, DDT can bioaccumulate in fish and 

other aquatic species, leading to long-term exposure (WHO, 1989).  Table 6 shows the 

biological magnification of DDT up the food chain.  
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Table 5. Basic Properties of DDT, ATSDR (2002)  

Structure Name/Synonym Properties 

 

1,1,1-trichloro-2,2-
bis(p-chlorophenyl) 
ethane.                  
p,p’-DDT                         
4,4’-DDT 

Melting point: 109°C Solubility 
(water):  0.025 mg/L (25°C)     
Log Kow/Log Koc:     6.91 / 5.18          
Henry’s Law const.:   8.4 x 10-1 
Pa m3/mol 

 

1,1,1-trichloro-2-(o-
chlorophenyl)-2-(p-
chlorophenyl) ethane. 
o,p’-DDT                 
2,4’-DDT 

 

Melting point: 74.2°C Solubility 
(water):  0.085 mg/L (25°C)     
Log Kow/Log Koc:     6.79 / 5.35          
Henry’s Law const.:   6.0 x 10-2 
Pa m3/mol 

 

1,1,-dichloro-2,2-bis(p-
chlorophenyl) 
ethylene.                
p,p’-DDE                 
4,4’-DDE 

Melting point: 89°C Solubility 
(water):    0.12 mg/L (25°C)     
Log Kow/Log Koc:     6.51 / 4.70          
Henry’s Law const.:   2.12  Pa 
m3/mol 

 

1,1-dichloro-2-(o-
chlorophenyl)-2-(p-
chlorophenyl) 
ethylene.               
o,p’-DDE                  
2,4’-DDE 

Melting point: no data.                
Solubility (water): 0.14 mg/L 
(25°C)                                     
Log Kow/Log Koc:     6.00 / 5.19          
Henry’s Law const.:   1.82 Pa 
m3/mol 

 

1,1,-dichloro-2,2-bis(p-
chlorophenyl) ethane. 
p,p’-DDD                 
4,4’-DDD                 
TDE 

Melting point: 109 - 110°C.               
Solubility (water):  0.090 mg/L 
(25°C)                                     
Log Kow/Log Koc:     6.02 / 5.18          
Henry’s Law const.:   4.1 x 10-1 
Pa m3/mol 

 

1,1-dichloro-2-(o-
chlorophenyl)-2-(p-
chlorophenyl) ethane. 
o,p’-DDD                 
2,4’-DDD 

Melting point: 76-78°C Solubility 
(water):    0.10 mg/L (25°C)     
Log Kow/Log Koc:     5.87 / 5.19          
Henry’s Law const.:   8.3 x 10-1 
Pa m3/mol 
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Table 6. Biological Magnification of DDT in a Food Chain. http://www.utc.edu/Faculty/Deborah-
McAllister/educ575/wq04MichaelKavur/image004.jpg 

DDT   in  … P  P M  

D
 D

 T
   

  C
 O

 N
 C

 E
 N

 T
 R

 A
 T

 I 
O

 N
 : 

   
  I

 N
 C

 R
 E

 A
 S

 E
   

O
F 

  1
0 

   
M

 I 
L 

L 
I O

 N
   

T 
I M

 E
 S

 

      

  FISH-EATING BIRDS 25  

       

   LARGE FISH 2 

      

  SMALL  FISH 0.5 

      

 ZOOPLANKTON 0.04 

      

W A T E R 0.000003 

 

 

2.2 Soil 

Yong (1992) defines soil as “loose material composed of weathered rock, others 

minerals, and also partly decaying organic matter, that covers large parts of the land 

surface”. According to this definition it is very important to determine: i) the chemical 

and physical properties of soil to determine the operating parameters of remediation 

process, and ii) mechanism of the interaction between the soil and contaminant.  

 

2.2.1 Chemical and physical properties of soil 

The basic chemical and physical properties of the soil include:  texture, structure, color, 

bulk density, drainage, calcium carbonate content, pH and acidity, and salinity. The soil 

particle classification according to MAFRI is shown in Table 7. 

http://www.utc.edu/Faculty/Deborah-McAllister/educ575/wq04MichaelKavur/image004.jpg�
http://www.utc.edu/Faculty/Deborah-McAllister/educ575/wq04MichaelKavur/image004.jpg�
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Table 7. Soil particle classification. 
http://www.gov.mb.ca/agriculture/soilwater/soilmgmt/fsm01s01.html 

SOIL PARTICLE 
CLASIFICATION 

TYPE m m 
G r a v e l more than   2.00 
S a n d between      0.05 – 2.00 
S i l t between      0.002 - 0.05 
C l a y less  than     0.002 

 
 
The texture of a soil which cannot be altered, is the relative proportion of clay particles 

[<0.002 mm diameter (clay is considered as a “heavy” soil because of the difficulty to 

physically move it)], silt [0.002 - 0.05 mm (medium material)], and sand [0.05 – 2.00 mm 

in diameter (“light” soils are easily tilled)].  Loams are medium textured soils made up of 

a mixture of clay, silt and sand. In agriculture, soil texture is less than 2.0 mm in 

diameter.  Particles larger than 2.0 mm are classified as gravel and stones (MAFRI). 

The structure lets soil particles cling together to form aggregates.  There are peculiar 

soil structures such as prismatic, columnar, angular and subangular blocky, platy and 

granular.  The most common structures of agricultural soils are either granular or blocky 

structure (MAFRI).  

The colour is used as a soil classification criterion; for example, dark coloured topsoil 

indicates high organic matter content, whereas light-colored topsoil have low organic 

matter content (MAFRI).  

Bulk density which is the apparent density of a soil, tends to be higher in sandy soils 

(approximately 1.3 g/cm3) than in clayey soils (approximately 1.1 g/cm3).  In addition, 

the bulk density of compacted soil can be as high as 1.8 g/cm3 (MAFRI).  

Soil drainage is described in terms of the duration and frequency of time when the soil is 

not saturated. In fact, it is quantified by the speed and extent of water removal from the 

soil due to runoff (surface drainage) and downward flow through the soil profile (internal 

drainage).  For example, sands in low-lying areas with high water tables are poorly 

drained (MAFRI).  

http://www.gov.mb.ca/agriculture/soilwater/soilmgmt/fsm01s01.html�


 13 

Calcium carbonate content is expressed as the calcium carbonate equivalent and can 

range from 0% in extremely leached soil profiles to over 40% in the high lime tills.  

When calcium carbonate is contacted with HCl, it decomposes into carbon dioxide 

(CO2).  The depth at which this reaction occurs, gives an indication of internal soil and 

soil development (MAFRI).  

Soil acidity is identified by its pH value. Soil pH affects the structure, chemical, and 

biological properties of soil.  Since, soil pH affects crop fields, the crops also vary in 

their tolerance to various components of acidity.  In practical terms, the soil is 

considered to be:  very strongly acid when its pH is less than 5.1, strongly acid when its 

pH is between 5.1 and 5.5, moderately acid when its pH is between 5.6 and 6.0, neutral 

when its pH is between 6.5 and 7.5, alkaline when its pH is between 7.5 and 8.5, and 

finally alkali when its pH is more than 8.5.  The extent and severity of soil acidity can be 

determined with careful sampling of fields.  In some places in Canada such as Ontario, 

Saskatchewan, Alberta and northeast British Columbia, the pH of the soil is 6.0 or less 

under natural conditions (Canola-council) 

Saline soils can be recognized by spotty growth of crops or by a white crust of salt that 

accumulates over the soil surface usually in low-lying areas. Salinity is the result of 

excess groundwater moving downward and laterally through the soil and dissolving and 

transporting soluble salts. The soil in Canada’s prairie regions is relatively high in 

soluble salts. The dominant salts contain calcium, magnesium, sodium and sulphate 

(Canola-council). 

2.2.2 Interactions between soil and contaminant 

The mechanism of interaction is based on: i) precipitation, ii) complexation, and iii) 

sorption. Inorganic pollutants may undergo precipitation and complexation reactions, but 

sorption is the dominant mechanism with organic pollutants (Tan, 2000)  

Sorption processes lead to the partitioning of the solutes (ions, molecules, and 

compound) between the soil particles and the liquid phase. These involve both chemical 

and physical processes.  Chemical sorption occurs by chemical bonding, while physical 
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sorption involves the attraction of pollutants to the soil constituent’s surfaces (from the 

aqueous solutions present inside the pore) due to electrostatic or hydrophobic 

interactions (Tan, 2000).  

Sorption is a mechanism that retards contaminant migration in soil and groundwater. 

Sorption of organic contaminants in soil occurs via hydrophobic binding with soil organic 

matter (Karickhoff et al., 1979). For example, Shin et al. (1970) have shown that the 

adsorption of DDT is closely related to the organic matter content of the soils such as 

lipids, resins, polysaccharides, polyuronides, and humic matter which link with the DDT.  

Humic material represents a major adsorbent for DDT; the degree of sorption, however, 

is strongly connected with the degree of humification. A concentration-dependent 

sorption isotherm can be used to characterize sorption equilibrium. This concentration 

dependent sorption is often fitted with a Freundlich isotherm (Hamaker and Thompson, 

1972).  

In addition to contaminant-soil sorption, the interaction of surfactants with the soil must 

be considered. Nonionic surfactant molecules can sorb directly onto solid surfaces or 

can interact with sorbed surfactant molecules. The sorption mechanism depends on the 

surfactant dose and the nature of the sorbent (Edwards et al., 1994). Clunie et al. 

(1983) have made a special comparison between doses; for example, at low doses, the 

surfactant molecules may be sorb into a mineral surface or to a clean sediment with 

very few sorbed surfactant molecules. Sorption occurs mainly due to van der Waals 

interactions between the hydrophobic and the hydrophilic moieties of the surfactant and 

the surface.  At higher surfactant doses, sorption usually entails the formation of more 

structured arrangements including the formation of monomer surfactant clusters on the 

surface or a second layer, that are governed mainly by interactions between 

hydrophobic moieties of the surfactant molecules.  

2.3 Remediation of DDT from soils 

The following summarizes some of the main techniques that have been applied or 

tested for DDT and related compounds: 
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2.3.1 Physical soil remediation 

2.3.1.1 Excavation 

This technique entails the removal of contaminated soil generally to disposal at a 

landfill. The process requires only short time, but it is very expensive because the 

excavation requires heavy machinery. After the excavation, it is necessary to replace it 

with new soil at extra cost (Heinegg et al., 2002), as well as to dispose the excavated 

contaminated soil in an acceptable manner, which is often a hazardous waste landfill.  

Landfilling and excavation involve obvious disposal and leaching problems (Evdokimov 

and Wandruszka, 1998). 

2.3.1.2 Soil washing 

This technique uses water, surfactant, or surfactant combined with solvents, and 

mechanical processes to scrub soils.  The soil washing process separates fine soil (clay 

and silt) from coarse soil (sand and gravel).  Soil washing can be cost-effective because 

it reduces the quantity of material that would require further treatment by another 

technology (Khan et al., 2004). 

The two possible mechanisms to consider in remediation technologies using surfactants 

are micellar solubilization and mobilization by surface tension reduction. It is possible 

increase the efficiency of remediation of this technique when interfacial tension is 1 

mN/m or lower. Under those conditions, a free hydrocarbon phase can flow 

spontaneously (Ganeshalingam et al., 1994). Using leaching, aqueous solutions 

containing the surfactants Triton X-100 removed 45% and polypropylene 

glycolethoxylate (PPG) removed 25% of DDT residues (Parfitt et al., 1995) 

2.3.1.3 Soil vapor 

Soil vapor also known as soil venting or vacuum extraction includes the installation of 

wells and pipes in the soil, through which soil contaminants are extracted.  Vacuum is 

applied through the well near the source of contamination to evaporate the volatile 

constituents of the contaminated mass which are subsequently withdrawn through an 
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extraction well. The extracted vapors are treated with carbon adsorption before being 

released into the atmosphere (USEPA, 1995a).  Due to its low volatility, DDT is not 

expected to be successfully remediated with this technique. 

2.3.2 Biological soil remediation 

2.3.2.1 Microbial 

Microbial remediation refers to the use of microbes in degrading contaminants into less 

toxic form.  Cost is generally low, but the timeframe can be very long (Heinegg et al., 

2002). Bioremediation of DDT is generally unsuccessful and is not considered an 

economic remediation option due to serious limitations such as low aqueous solubility, 

high hydrophobicity and high degree of chlorination (resulting in low biodegradability).  

When degradation does occur, DDT degradation rates are extremely slow and the 

resultant transformation products (DDD and DDE) are more toxic and recalcitrant than 

the parent compound (Aislabie et al., 1997). As noted in section 1.1, the allowable 

concentration for the transformation product DDE is significantly lower than for DDT, 

meaning that biodegradation can actually increase the contamination problem. 

2.3.2.2 Phytoremediation 

This process uses plants to extract contaminants or to degrade them in the soil.  Cost is 

generally low, but the timeframe is long and the effectiveness for DDT has not been 

conclusively demonstrated (Heinegg et al., 2002). 

2.3.2.3 Fungal remediation 

This technique is new and it involves the use of certain species of fungus to degrade 

contaminants (Heinegg et al., 2002). According Brown et. al. (1995), fungi utilize 

extracellular enzymes to cleave complex structures and make them more metabolically 

available. Thus, fungi are able to biodegrade complex polyaromatic hydrocarbons that 

are extremely recalcitrant to normal bacterial based processes. For example, White-rot 

fungi are organisms which can degrade lignin. Lignin is found in woody plants and is a 

very complex structure polymer. The complexity and irregularity of the lignin make it 
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resistant to absorption and degradation by intracellular enzymes. Because of low levels 

of key sources of carbon, nitrogen or sulfur nutrients, white-rot fungi produce enzyme 

(called lignin peroxidase) into extra-cellular environment to degrade lignin (Harjanto et. 

al., 2000).  

 

2.3.3 Thermal and oxidative remediation 

Vitrification is a method of stabilization/solidification that uses a powerful source of 

energy to melt soil or other earthen materials at extremely high temperatures of 1600 – 

2000°C, immobilizing most inorganics and destroying organic pollutants by pyrolysis 

(Acard and Alshawabkeh, 1993). 

In thermal desorption, the contaminated soil is excavated, screened, and heated to 

temperatures of 100 – 160 °C, to release it from the soil. Thermal desorption does not 

aim to destroy the organic but rather to change the form to a more treatable one; 

however, incineration (vitrification) aims to destroy the contaminants (Alpaslan and 

Yukselen, 2002). 

Incineration is an accepted method for the clean-up of DDT, but it is expensive due to 

the energy costs involved. Although, it leads to the total destruction of the organic 

structure, it is a source of secondary pollution including NOx, SO2 and particulate matter 

(Evdokimov and Wandruszka, 1998). 

Other oxidative approaches have received some limited testing.  For example, using 

supercritical fluid oxidation, the removal efficiency of DDT is > 99% (Modell, 1985).  

Using Fenton reaction chemistry (low pH, hydrogen peroxide, ferrous iron) in a slurry 

system, relatively low concentrations of H2O2 were sufficient to degrade about 50% of 

the DDT, while with higher concentration the degradation percentage was 75%. (Villa 

and Nogueira, 2006).  Ultrasonic-driven advanced oxidation using 20 kHz high power 

ultrasound of 375 W/L has been used to degrade 75% of DDT (Thangavadivel et al., 

2009).  However, none of these approaches have found widespread acceptance, 

probably due to technical and economic barriers. 
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2.3.4 Removal efficiency 

Analysis of the removal efficiency for some techniques used in the remediation of 

organochlorine insecticides showed that: i) thermal desorption could attain a removal 

efficiency > 98% (Troxler et al., 1993), ii) biological treatment by activated rotating 

biological contractor achieved a removal efficiency of chlordane between 75-96% 

(Sabatini et al., 1990), and iii) chemical destruction by superoxide radical in the 

presence of pyridine yielded a removal efficiency up to 99% (Matsunaga et al., 1991).  

Therefore, relatively high removal efficiencies are possible, although costs may be high. 

2.4 Range cost of treatment 

The costs shown below are general for polychlorinated biphenyls (PCBs) and not 

necessarily applicable specifically for DDT. As discussed in the previous sections, some 

techniques are not very effective for DDT, but the data shows below by Davila et. al. 

(1993) is useful for providing order of magnitude comparisons. 

Type of treatment       Range of cost$ / ton 

Incineration     $280 –1000 
 
Thermal desorption    $  90 – 380 

Chemical dehalogenaton   $225 – 580 

Solvent extraction    $110 – 540 

Vitrification     $100 –1000 

Solidification/Stabilization   $  50 – 310 

Soil washing     $  60 – 230 

 
Consequently, after examining the different techniques to remediate DDT from soil, it is 

very important to keep in mind that in the period 1940 – 1970, DDT and other 

chlorinated compounds were used to control pests, but caused serious pollution 

problems that persist in nowadays because they are highly hydrophobic and have low 

mobility in the soil where they accumulate.  
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Moreover, the soils contaminated with DDT require economical remediation strategies 

because of cheap land value and rural location sites.  Although, soil washing may be 

the most economical process to clean up DDT, DDT has very low water solubility, and 

so it is necessary to consider using surfactants to improve the soil-washing process.  

For example, as illustrated in Table 8, a surfactant can capture the hydrophobic 

contaminant and remove it.  For this reason, surfactants are particularly attractive for 

this soil washing process since they have low toxicity and fare more biodegradable than 

many organic solvent based systems (Xu et al., 2005).  

Table 8. Surfactant's behavior (the surfactant is capturing the hydrophobic contaminant and 
removing it) http://www.pgbeautygroomingscience.com/2-in-1-shampoos.html 
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Finally, due to lack of specific information from the technical literature on the formulation 

of optimum surfactant mixtures, including data on interfacial tensions, the objective of 

this thesis is to investigate the effect on the recovery of the major fraction of the 

pollutant. These batch experiments must reproduce the same effects observed in 

leaching columns, which simulate the process at larger scales or field applications. 

Furthermore, lack of data about solubilization, emulsion stability, toxicity and 

biodegradability in many combinations requires more study.  
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2.5 Surfactant 

The primary reason to use surfactant is to remove the pollutant in a short time period 

with less wash water required (Ganeshalingam et al., 1994).  Surfactants (surface active 

compounds) are amphiphilic compounds (containing hydrophobic and hydrophilic 

portions; see Table 9) that reduce the free energy of the systems by replacing the bulk 

molecules of higher energy at an interface (Mulligan et. al., 2000). In other words, 

surfactants are a class of natural and synthetic chemicals that promote the wetting, 

solubilization, and emulsification of various types of organic and inorganic contaminants 

(Wang and Mulligan, 2004).  

Table 9. Possible interactions of surfactants and hydrophobic contaminants such as DDT. 
http://www.funsci.com/fun3_en/exper2/exper2.htm 

I 

 

Surfactant’s scheme of molecule. 

II 

 

Water’s surface tension decreases 
because of surfactant in the solution. 
The hydrophilic head is in the water, but 
the hydrophobic tail is outside. 

III 

 

The hydrophobic tail of the surfactant is 
inserted into DDT to remove it. The 
surfactant can be showed as micelles, 
cylindrical or laminar forms. 

IV 

 

The hydrophobic head drives the DDT in 
the water. 

 

There are four classes of surfactants: non-ionic, anionic, cationic, and amphoteric. Non-

ionic and anionic surfactants are most favored for remediation techniques (Keller and 

Rickabaugh, 1992). Cationic surfactants are not normally used for soil washing because 

of their germicidal properties (Ganeshalingam et al., 1994). Cationic surfactants are 

http://www.funsci.com/fun3_en/exper2/exper2.htm�
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mainly used in household products as an active ingredient in fabric softeners and a few 

applications as shampoos (Rosen, 1989). 

Non-ionic surfactants are supposed to be less toxic and more biodegradable than 

anionic and cationic ones. Differences may occur between classes of surfactants as 

well as within classes. For example, the non-ionic surfactant Tween 80 was found to be 

more biodegradable than Brij surfactants (Franzetti et al, 2008). Figure 3 illustrates the 

typical behavior of a surfactant in aqueous solution, as a function of the concentration.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic diagram of the variation of interfacial and surface tension, solubility with 
surfactant concentration ((Mulligan et. al, 2000) 

 

Surfactants have the ability to increase aqueous contaminant concentrations by 

partitioning the solute into the hydrophobic interior of the micelles and forming spheroids 

or lamellar structures with organic pseudo-phase interiors (Wang and Mulligan, 2004).  

The micelles are generally spherical but may be cylindrical lamellar structures at higher 

concentrations as shown in Figure 4.  
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Figure 4. Schematic diagram of micelles. http://barrett-
group.mcgill.ca/teaching/liquid_crystal/LC05.htm 

 

The concentration of surfactant at which the thermodynamics of the surfactant-solvent 

system favor micelle formation (Figure 5) is called the critical micelle concentration 

(CMC) (Haigh, 1996). At concentrations above the CMC, surfactants have the ability to 

solubilize significantly more of a hydrophobic organic compound than would dissolve in 

water alone (Haigh, 1996). According to Figure 5, single molecules (i.e. monomers) are 

present at low concentrations in aqueous solution. However, beyond the CMC, the 

surfactant molecules aggregate, form micelles and reduce the thermodynamic energy in 

the system (Ahn et. al 2008). 

 

 

 

 

 

Figure 5. Graph of critical micelle concentration (CMC).  (Haigh, 1996) 

http://barrett-group.mcgill.ca/teaching/liquid_crystal/LC05.htm�
http://barrett-group.mcgill.ca/teaching/liquid_crystal/LC05.htm�
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The CMC of surfactant in aqueous solution varies with surfactant structure, the 

temperature of the solution, the presence of electrolyte and various other organic 

compounds. However, generally anionic surfactants have much higher CMC’s in 

aqueous solutions than a non-ionic surfactant with an equivalent hydrophobic group 

(Rosen, 1989). 

The main factors that should be considered when selecting a surfactant are: i) 

effectiveness in removing the contaminant, ii) cost, iii) public and regulatory perception, 

iv) biodegradability and degradation products, v) toxicity to humans, animals and plants, 

and vi) ability to be recycled (Mulligan et al, 2000). In other words, the more important 

characteristics of a surfactant to consider are:  biodegradability, low toxicity, solubility at 

groundwater (or environmental) temperatures, low adsorptivity onto soil, effectiveness 

at concentrations lower than 3%, low soil dispersion, low surface tension and low CMC  

(shown in Table 10) (Kimball, 1992).  
 

2.6 DDT Recovery using surfactants 

According Trochimczuk et al., (2003), many low molecular weight organic compounds 

are removed from aqueous solutions by adsorption using porous materials such as 

activated carbon and/or polymeric resins. The driving force of this process is interaction 

of the solute molecules with the sorbent surface and can be attributed to weak 

hydrophobic interactions, e.g., van der Waals forces or stronger interactions such as 

dipole–dipole and hydrogen bonding. For this reason, the interaction between sorbent 

and sorbate can be modified, changing the character of the sorbent surface. This will 

significantly influence sorbent capacity and selectivity (Trochimczuk et al., 2003). In 

addition, activated carbons are the most widely used adsorbents due to their excellent 

adsorption abilities for organic pollutants. The high adsorption capacities of activated 

carbons are usually related to their high-surface-area, pore volume, and porosity. In 

addition, the adsorption capabilities of activated carbons strongly depend on the 

activation method and the nature of the source material (Ahmaruzzaman, 2008). 
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Table 10. Properties of common surfactants. 
http://www.piercenet.com/browse.cfm?fldID=5558F7E4-5056-8A76-4E55-4F3977738B63 

 

However, its high initial cost and the need for a costly regeneration system make it less 

economically viable as an adsorbent (Memon et al., 2007). In order to overcome this 

problem, exploitation of newer, cheaper and indigenous waste materials for the removal 

of pesticides, organic and inorganic contaminants has become the focus of intense 

research. In other words, the search for an inexpensive and easily available adsorbent 

has led to more economic and efficient adsorbent from agricultural waste origin,  

Surfactant Type Agg. # 
MW 

mono 
(micelle) 

CMC 
mM (%w/v) 

Cloud 
Point 

°C 
Dialyzable 

Triton X-100 Nonionic 140 647 (90K) 0.24 
(0.0155) 64 No 

Triton X-114 Nonionic – 537 ( – ) 0.21 
(0.0113) 23 No 

NP-40 Nonionic 149 617 (90K) 0.29 
(0.0179) 80 No 

Brij-35 Nonionic 40 1225 
(49K) 

0.09 
(0.1103) >100 No 

Brij-58 Nonionic 70 1120 
(82K) 

0.08 
(0.0086) >100 No 

Tween 20 Nonionic – 1228 ( – ) 0.06 
(0.0074) 95 No 

Tween 80 Nonionic 60 1310 
(76K) 

0.01 
(0.0016) – No 

Octyl 
glucoside Nonionic 27 292 (8K) 23-24 

(~0.70) >100 Yes 

Octyl 
thioglucoside Nonionic – 308 ( – ) 9 (0.2772) >100 Yes 

SDS Anionic 62 288 (18K) 6-8 (0.17-
0.23) >100 Yes 

CHAPS Zwitterionic 10 615 (6K) 8-10 (0.5-
0.6) >100 Yes 

CHAPSO Zwitterionic 11 631 (7K) 8-10 
(~0.505) 90 Yes 

Agg. # = Aggregation number, which is the number of molecules per micelle 

http://www.piercenet.com/browse.cfm?fldID=5558F7E4-5056-8A76-4E55-4F3977738B63�
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industrial by-products or natural materials such as chitosan, zeolites, clay, fly ash, red 

mud, sludges and oxides (Akhtar et al., 2007; Ahmaruzzaman, 2008).  

Materials investigated for the removal of OPP pollutants include rice bran (Akhtar et al., 

2005a), orange peel (Sivaraj et al., 2001), bagasse fly ash (Vinod et al., 2002), rice husk 

ash (Akhtar et al., 2006b), and other cellulosic materials such as sunflower stem and 

palm seed coat (Malik et al., 2005). Their lower cost, easy availability and easier 

regeneration have led to interest in their use as sorbents. 

Soil washing process using surfactants will likely be expensive if the surfactant solution 

is only used once and then sent for disposal or treatment with the DDT solubilized in it.  

Therefore, it would be beneficial if the DDT could be removed from the surfactant 

solution, allowing for recycle or reuse of the solution (Boussahel et al., 2009) used 

several adsorbents including sawdust, cork waste and activated carbon to adsorb DDT 

from aqueous solutions (in the absence of surfactants).  Therefore, it may be feasible to 

use an adsorbent such as activated carbon to remove DDT from the surfactant and 

allow reuse.  It might also serve to concentrate recovered DDT in a small volume of 

adsorbent, which could reduce the ultimate disposal costs. 

According to Baker et al. (1992), activated carbon has an extraordinarily large surface 

area and pore volume that gives it a unique adsorption capacity. Commercial food 

grade products range between 300 and 2,000 m2/g. Some have surface areas as high 

as 5,000 m2/g (Burdock, 1997) 

Activated carbon has both chemical and physical effects on substances where it is used 

as a treatment agent. These effects can be classified as: (a) adsorption; (b) mechanical 

filtration; (c) ion exchange; and (d) surface oxidation. 

2.6.1 Adsorption 

Adsorption is the most studied of these properties in activated carbon. Physical 

adsorption involves the electrostatic attraction between the adsorbent and the 

adsorbate. In Figure 6, the carbon matrix represents the adsorbent and both large and 

small molecules are adsorbate. Chemical adsorption is the product of a reaction 
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between the adsorbent and the adsorbate (Cheremishinoff and Moressi, 1978). 

Adsorption capacity depends on: a) physical and chemical characteristic of the 

adsorbent and adsorbate, b) concentration of the adsorbate in the liquid solution, c) 

characteristics of the liquid phase (pH, temperature, etc) and d) contact time between 

the adsorbent and adsorbate (Cheremishinoff and Moressi, 1978). 

 

 

 

 

 

 

 

 

 

 

Figure 6. Molecular screening in the micropores of an activated carbon filter. 
http://www.waterprofessionals.com/wastewater/activated_carbon_filters.html 

 

2.6.2 Mechanical filtration 

According to Ahmedna et al., (2000), mechanical filtration involves the physical 

separation of suspended solids from a liquid passing through carbon arrayed as a 

porous media in a column or bed.  In other words, the effectiveness of filtration depends 

on particle size, bulk density, and mechanical hardness.  Moreover, while a smaller 

particle size results in a clearer liquid, it also slows the speed of processing. Bulk 

density determines how much carbon can be contained in a given container, while 

mechanical hardness is important because the particles must have sufficient strength to 

block the particulate matter being filtered (Ahmedna et al., 2000), and to avoid 

compaction. 

http://www.waterprofessionals.com/wastewater/activated_carbon_filters.html�
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2.6.3  Ion exchange 

Ockerman (1991) defines ion exchange as a reversible chemical reaction between a 

solid and an aqueous solution that allows the interchange of ions. Ion exchange can be 

enhanced by chemical activation. For example, treatment of carbon with a base 

increases the capacity of carbon to exchange anions.  Additionally, if only the sites are 

strong acid groups, the acidification of the surface makes carbon a powerful cation 

exchanger (Jankowka et al., 1991). 

 

2.6.4 Surface Oxidation 

The surface of activated carbon has an electrical double layer (Mattson and Marks, 

1971). The type and net charge of functional groups bonded to the carbon surface is 

important in understanding the mechanism of adsorption between ionic adsorbates and 

the activated carbon (Ahmedna et al., 2000). Therefore, the diversity of functional 

groups on the carbon surface affects the surface behavior of carbon and thus enhances 

or reduces the affinity of carbon to the adsorbate via electrochemical mechanisms 

(Ahmedna et al., 2000).   

. 

2.7 Solubilization Considerations for DDT 

Investigations by Karagunduz et. al (2007) have demonstrated that higher weight 

solubilization ratio (WSR) values are needed for better solubilization of DDT. The 

solubility potential of a surfactant is characterized by the WSR which is defined as 

follows: 

WRS = [ CDDT – CDDT(CMC) ] / [ CS – CMC ]     (1) 

where, CDDT is the concentration of dissolved DDT (M/L3), CDDT(CMC)  is the concentration 

of DDT at CMC  (M/L3), CS is the surfactant concentration (M/L3) and CMC is the critical 

micelle concentration (M/L3). However, other options to quantify the solubilization 

potential of surfactants are available. It is very important to remember that the 



 28 

dissolution of hydrophobic organic contaminants (HOC) into a micellar phase is 

analogous to partitioning of HOC into organic matter. 

Jafvert and van Hoof (1994) have shown that the distribution coefficient of hydrophobic 

organic contaminant (HOC) between water and surfactant micelles (Kmc) can be 

determined using the following relationship: 

Kmc = MSR / Caq         (2) 

where, Caq is the molar aqueous (free- water) concentration and MSR is the molar 
solubility ratio defines as MSR = WSR x (MWS / MW DDT), where MW is the molecular 

weight.    

In the presence of surfactant, the solid-liquid distribution coefficient of DDT can be 

represented as follows: 

K*  =   =  S*
DDT/ C*

DDT    (3) 

Kile and Chiou (1989) considered that C*
DDT can be estimated using the following 

relationship: 

C*
DDT  = CaqDDT (1 + KmnCmn + KmcCmc)      (4) 

where Kmn is the solute distribution coefficient between surfactant monomers and water 

(L3/M), Kmc is the solute distribution coefficient between the surfactant micelle and water 

(L3/M), CaqDDT is the DDT concentration in the aqueous (water) phase (M/L3), Cmn is the 

concentration of surfactant monomers (M/L3), and Cmc is the concentration of surfactant 

micelles (M/L3).  

Karagunduz et. al (2007) reestablish that the sorption of DDT to solid phase can occur 

via a partitioning process and/or interaction with sorbed phase surfactant molecules. 

Chiou et. al (1979) noted that sorption of hydrophobic organic contaminants (HOC) can 

be described by a linear isotherm (Eq. 5). 

SDDT = KDCDDT         (5) 
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where CDDT is the aqueous phase concentration of DDT (M/L3), SDDT is DDT mass 

sorbed on the soil (M/M) and KD is the partition coefficient between soil and aqueous 

phase DDT concentration (L3/M).  

Rosen (1989) has mentioned that partitioning of organics to the sorbed surfactant phase 

is related to the amount of surfactant sorption, on solid particles which usually exhibits a 

Langmuir type of isotherms such as: 

SSS = bCSSm / (1 + bCS)        (6) 

where  b is Langmuir constant (L3/M), CS   is aqueous phase surfactant concentration at 

equilibrium (M/L3), Sm is maximum adsorbed surfactant mass (M/M) and SSS is the 
adsorbed surfactant mass (M/M), 

Studies by Karagunduz et al. (2007) showed that the sorption of DDT molecules from 

the aqueous phase (water) to sorbed phase of surfactant can be represented as follow: 

SSS,DDT = SSS Kss Caq,DDT        (7) 

where SSS is the mass of sorbed surfactant (M/M) and Kss is the DDT distribution 

coefficient between sorbed surfactant and water (L3/M). 

Due to the sorption of aqueous phase (Kmm > 0) surfactant monomers associated with 

DDT molecules, an additional sorption term is required to quantify the sorption of DDT 

(Karagunduz et al., 2007).  In other words, the total sorbed DDT mass will be a 

combination of Eqs. (5) and (7):  

S*
DDT  =  (KD + SSSKSS) Caq,DDT              

       S*
DDT  =  KD (1 + ƒSS/OCKSS/OC)                (8) 

where  KSS/OC  is equal to KSS/KOC, and  ƒSS/OC is equal to SSSƒOC. 

The relationship developed by Sun et al. (1995) is obtained by combining Eqs. (3), (4) 

and (8). 
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  K* = (KD + SSSKSS) / (1 + CmnKmn + CmcKmc)       (9) 

when K* is the apparent solute soil-water distribution coefficient (L3/M) which tends to 

decrease at high surfactant concentrations (Karagunduz et al., 2007). 

2.8 Surface Tension 

Surface tension is used to quantify the critical micelle concentration (CMC) of surfactant 

(Muherei and Junin, 2009). As shown in Figure 7, surfactants exhibit a rapid fall in 

surface tension with concentration until the CMC is reached, where the surface tension 

becomes constant. In other words, above the CMC, the surface becomes fully loaded, 

with no further change in surface tension (Chu and Chan 2003). 

 

Figure 7. Surface tension vs solute concentration. 
http://www.dur.ac.uk/sharon.cooper/lectures/colloids/interfacesweb2.html 

 

Because they can reduce surface tension most effectively and have a low CMC (see 

Table 10), nonionic surfactants are often used in remediation process (Chu and Chan, 

2003). The surface tension of the pure water @ 20°C in N/m is 0.072. 

 

http://www.dur.ac.uk/sharon.cooper/lectures/colloids/interfacesweb2.html�
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Chapter 3: Material and Methods 

3.1 Sampling 

Five soil samples were collected during the period from 28 August to 2 September 2008 

from areas near agricultural land in southern Ontario. The specific location cannot be 

disclosed due to industrial confidentiality agreements. The sample material was 

obtained one meter below ground surface with the intention of reducing the presence of 

decaying organic matter.  In the laboratory, the sample was dried and sieved with a # 12 

screen (1.7 mm or 0.0661 inches; USA # 12 or Tyler = 10 Mesh) to remove large 

particles.  Samples were stored at room temperature in clean 4L paint can containers, 

labelled #1 to #5. 

3.2 Reagents 

Hexane (purity>99.9%), ethanol (purity>99.9%), Tween 80 (purity>99%), Brij 35 

(purity>99.9%) and SDBS (sodium dodecylbenzene sulfonate) (purity>99%) were 

purchased from Sigma Aldrich Chemical Company. 

3.3 Surfactant Solution Preparation 

Surfactant stock solutions were prepared by mixing a known percentage of surfactant 

into deionized water for different surfactant concentrations. The solutions were stirred 

for 10 min until all of the surfactant dissolved. 

3.4 Soil Preparation 

For each test, the samples were prepared with 25 ppm of DDT in soil. For the soil in 

these experiments, preliminary analyses showed that DDT concentrations were very 

low (less than 1µg/g). This soil was considered to be “clean”, relative to the 

concentrations that would be used in subsequent experiments. The following procedure 

was used in batch test samples preparation: First, 5 ml of a 50 ppm DDT solution in 

hexane was added to 10 g of soil. The solvent was then allowed to evaporate 

completely to yield soil with concentration of 25 ppm of DDT. In a similar way, leaching 
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column experiment samples were prepared, where 18.75 ml of a 200 ppm DDT solution 

in hexane was added to 150 g soil.  Again the solvent was then evaporated completely.  

3.5 Analytical Methods 

3.5.1 COD Method  

Chemical oxygen demand (COD) of surfactant solutions was measured as a surrogate 

analysis of the total concentration of surfactants in the aqueous washing fluids before 

and after leaching. According to Contreras et al., (2002), aggressive oxidizing agent 

(potassium dichromate) is used in the COD test. The reaction is performed in hot 

sulphuric acid solution and catalyzed by silver cation where the electrons from organic 

matter are transferred to dichromate. For this reason, the COD value does not include 

ammonia and only carbonaceous compounds are completely oxidized (Contreras et al., 

2002).  Hach Test ’n’ tubes were used (0-1500 mg/L range) together with a Hach 

DR/2000 spectrophotometer and method number 435 (this method set at 620 nm for the 

high ranges where the amount of green Cr3+ are produced. Dilutions of about 1/20 of 

the surfactant solution were generally used to keep the concentration within the test kit 

range. The DDT concentration is negligible compared to surfactant concentrations, such 

that he majority of COD is attributed to surfactant. Blank experiments with water and 

surfactants contacted with soil did not indicate any significant interference by soil 

organics. 

3.5.2 Water capacity test 

Water capacity of soil samples was estimated by placing about 20 cm of soil into a 3.8 

cm diameter column on bottom of about 3 cm of glass wool and 3 cm of glass wool over 

the soil. A measured amount of tap water was added slowly until the soil was 

completely saturated with a little water on top.  The water that drained out of the bottom 

of the column was captured.  Later, the column was drained for 2-3 days.  After this, the 

water that was drained out was measured and compared with the total amount that was 

initially added. 
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3.5.3 Method to estimate the biodegradation rate of Brij 35 solution 

Biodegradation rates of aqueous surfactant solutions were estimated by placing 100 mL 

of the solution into an Erlenmeyer flask and adding about 10 g of soil. A second 

(control) flask was prepared without the soil. The soil was swirled around for a few 

minutes then left to settle for 0.5 hours, at which point the liquid was decanted into a 

clean flask. Both flasks were agitated on a magnetic stirrer for several days and 

samples were withdrawn for COD analysis. 

3.5.4 Tests with new soil 

New soil was characterized after cleaning and removing rare particles such as plastic, 

metal and stones. The soil was dried and sieved (US # 12) to remove large particles. 

Then 10 g soil was placed in a small container to which 25 ml hexane was added. The 

soil was by a mechanical stirrer at 60 rpm for 24 hours and then left to settle for 1 hour. 

Finally, 1 µl of the liquid phase was introduced into a gas chromatograph for analysis. 

3.5.5 Soil leaching batch test 

A soil leaching batch was prepared by adding 5 ml of 50 ppm DDT solution in hexane to 

10 g soil. The solvent was allowed to evaporate completely to leave behind 

approximately 25 ppm of DDT on the soil.  The contaminated soil with DDT was put in a 

vial to which 25 ml of surfactant solution was added. The contents were mixed at 60 

rpm for 24 hours and then left to settle for 1 hour. Then 10 ml of hexane was added to 

the 10 ml of leachate and stirred 30 more minutes in the roto-torque machine and then 

left to settle for another hour.  Five ml of the resulting emulsion at the top was put into a 

closed vial to which 2 ml of ethanol was added to break up the emulsion. The contents 

were shaken gently for 10 seconds and allowed to settle for 1 minute. One µl from the 

top organic phase was removed for GC analysis. 

3.5.6 Leaching column general test 

Soil leaching column was prepared by making up a 200 ppm DDT solution in hexane 

and adding was added 18.5 ml of it to 150 g soil. The solvent was allowed to evaporate 



 34 

completely to generate a soil sample containing approximately 25 ppm of DDT. Glass 

wool was put on the bottom of the column (2.5 cm x 30 cm). The contaminated soil with 

DDT was put into column and pressed down to make it compact, but not too hard. 

Again, glass wool was put on the top of the soil and then 250 ml of surfactant solution 

into column was added on top. Then 10 ml of hexane was added to the 10 ml of 

leachate from the first lot of 100 ml of recovered. The sample was stirred 30 minutes in 

the roto-torque machine and then left to settle for 1 hour. Five ml of the resulting 

emulsion at the top was put into a closed vial and 2 ml of ethanol was added to break 

up the emulsion. This was shaken gently for 10 seconds and allowed to settle for 1 

minute. One µl from the top organic phase was analyzed by GC. 

3.5.7 Leaching column global test 

The global test considered 500 ml of surfactant solution and 100 ml of top water. Similar 

procedure in section 3.5.6 was made for the other four lots.   

3.5.8 Gas Chromatographic Method  

DDT, DDD, and DDE analyses were completed using gas chromatography. The 

samples (1 µL) were injected into a gas chromatograph (HP5890) equipped with a 63Ni 

electron-capture detector (GC-ECD). The column used was an RTX-5 quartz capillary 

tube with an inner diameter of 0.53 mm, a film thickness of 0.50 µm and a length of 30 

m. The column head pressure was set to 5 PSI.  The carrier gas used was pure H2 and 

the flow rate was 1 ml min-1. The oven temperature started at 140°C and was increased 

to 280°C at 10°C min-1 with a final hold time of 2 min. Injector and detector interface 

temperatures were kept constant at 240 and 290°C, respectively. The peak height of 

speciation was used for quantification.  Standard solutions of DDT, DDE and DDD were 

prepared in hexane at five different concentrations ranging from 0 ppm, 10 ppm, 50 

ppm, 100 ppm and 200 ppm. Calibration was performed using linear regression 

analysis. 

Figure 8 shows the flow sheet of the soil washing process used for testing mixtures of 

surfactants in this work. 
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 Figure 8. Flow sheet of the soil washing process used in this work. COD: Chemical oxygen 
demand, GC: Gas Chromatographic. 

 

In other words, this flow sheet is the same to small and large scale. Initially, the soil was 

dried and sieved with a # 12 screen to remove larges particles such as plastic, metal 

and stones. First, the soil preparation is described in section 3.4 and soil washing with 

surfactant solutions is described in section 3.5.5 and 3.5.6. Second, sampling from 

washing considers both liquid and solid samples. The solid sample is dried a 105°C 

during 24 hours. Later, the exhausted soil was analyzed according section 3.5.4. 

Finally, the liquid samples were analyzed using section 3.5.1 (COD method) and 3.5.8 

(Gas chromatographic method).  
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3.5.9 Carbon Adsorption Experiment 

The removal of DDT, DDD, and DDE from surfactant solutions using activated carbon 

adsorption was tested by passing 500 mL (initial volume) of a 1% Brij + 0.1% SDBS 

surfactant solution (containing approximately 25 mg/L of each contaminant) through a 

column.  The column contained 4 or 5 g of activated carbon (Sigma-Aldrich). The liquid 

passing through the column was collected and again passed through the column. This 

process was repeated several times. Samples were collected for DDT analysis after 

each pass. The COD of the surfactant solution was tested at the beginning and end.  In 

one experiment, the carbon was reused for each pass, while in another case the carbon 

was replaced after each pass. 
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Chapter 4:  Results and Discussion 

4.1 Screening 

In this research, the first screening and selection of surfactants was developed by a 

review of the available literature. According to Keller and Rickabaugh (1992), longer 

alkyl chain compounds display lower CMC’s and so are potentially most effective. 

Based on this and considerations of environmental impact, expected performance, 

safety and cost, the nonionic surfactants Tween 80 and Brij 35 were selected for this 

study. Figure 9 shows the main structure of Tween and Brij surfactants. 

 

 

Figure 9. General formula: (A) Brij (polyethoxylates), (B) Tween (sorbitan derivates). R = alkyl 
chain, and n = number of ethoxylate groups present in the molecule. (Franzetti et. al, 2008) 

 

A comparison of the surfactant considered for this study is summarized in Table 11. 
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Table 11. Surfactant’s CMC. (Sigma, 2009) 

 
 
 

Item 

Surfactant 

Tween 80 Brij 35 Triton X-100 SDS PPG SDBS 

MW (g/mole) 1310 1225 625 288.4 1620 348.48 

C
M

C
 

mg/L 35 - 45 92 110 -150 963 - 2420   

%w/v 0.0016 0.1103 0.0155 0.17 - 0.23   

mM 0.012 0.05 - 0.10 0.2 - 0.9 7 - 10 0.04  

Hazardous? No Yes   No Yes 

Environmental A food-grade 
surfactant.  

Octyl phenyl 
structure may 

be an 
endocrine 
disruptor. 

Permitted in 
pharmaceuti

cals. 

Some 
grades are 

only 
available as 

solids. 

May have 
limited bio-

degradability 
due to 

benzene ring 
structure. 

Use for DDT? 

Removed 72% 
of 

phenanthrene 
(0.2% Tween 

80). 
Solubilized 

about 13% of 
DDT fro soil 

(0.75% Tween 
80) 

Increased 
DDT water 
solubility 
by 105.8 

Increased DDT 
water solubility 

by 106. 
Removed up 

to 45% of DDT 
(1% Triton X-

100) 

Increased 
DDT water 
solubility by 

105.4.  
Removed  

25% of DDT 
after 

repeated 
washing (1% 

SDS 
concentratio

n) 

Removed up 
to 25% of 
DDT (2% 

PPG) 

Solubilized 
13% of DDT 

from soil 
(0.75% 
SDBS) 

Adsorption to 
soil? Moderate Slight Moderate High  Very High 

0-Least, 1-Slight, 2-Moderate, 3-High, 4-Very High; SDS = sodium dodecyl sulfate; PPG = 
polypropylene glycol ethoxylate; SDBS = sodium dodecylbenzene sulfonate; Brij 35 = polyethylene 
glycol alkane ether; Triton X-100 = polyoxyethylene octyl phenyl ether; Tween 80 = polyoxyethylene 
sorbitan monoleate; SDS and SDBS are anionics; Brij 35, Tween 80, PPG and Triton X-100 are non-
ionics surfactants. 
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4.2 Soil analysis 

4.2.1 Soil pH 

A sample of soil was taken from sample container # 1 and mixed with a small amount of 

deionized water to form a slurry sample. The pH was measured with a calibrated pH 

meter, and found to be 8.1 which puts it in the category of alkaline soil. 

 4.2.2 Moisture content 

The original soil samples were sent to Maxxam Analytics (Waterloo, ON) for an 

independent analysis of DDT. It is very important to mention that the DDT data obtained 

by Maxxam are showed in Table 12 and Table 14.  

Table 12. Soil analysis by Maxxam. 

Maxxam 
Sample # Description 

Moisture 
Content 

(%) 
DDT (µg/g) 

101 Sample from site # 1 16 0.69 

102 Sample from site # 2 14 1.50 

103 Sample from site # 3 13 8.00 

104 Sample from site # 4 15 1.40 

105 Sample from site # 5 14 0.48 
 

 

The samples were obtained from different locations at the same larger site. The results 

in Table 12 show that the soil samples are very heterogeneous with a wide range of 

DDT content and other metabolites. Using our own method to analyze DDT, the 

heterogeneous values were showed in Table 13 and even when samples are taken from 

the same container there is some difference. For example, two samples from container 

# 1 have different values, 0.1940 and 0.2468 due to this heterogeneity and analytical 

variance. 
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Table 13. Soil analysis in this work (10 g soil/ 25 ml hexane) 

Container Maxxam  This work (duplicates) 
# (µg/g) ng/µL ave. (µg/g) ave. 
1 0.69 0.1940 0.2468 0.2204 0.4849 0.6171 0.5510 
2 1.50 0.4188 0.5330 0.4759 1.0470 1.3325 1.1897 
3 8.00 2.1470 2.9648 2.5559 5.3674 7.4121 6.3897 
4 1.40 0.3314 0.4218 0.3766 0.8285 1.0545 0.9415 
5 0.48 0.1871 0.1909 0.1890 0.4678 0.4772 0.4725 

 
This heterogeneity presents a challenge in performing experiments using the soil 

samples from the contaminated site. Taking everything into account, the variability of 

the DDT data is due primarily to the heterogeneity of the soil, and similar results were 

obtained by University of Guelph collaborators working with the same soil samples (data 

not shown). Comparison between Maxxam and our analytical method shows that the 

trends are similar, if the absolute values differ somewhat.  Maxxam values tend to be 

higher, likely because of a more aggressive extraction process used in their analysis 

(i.e. Soxhlet extraction), versus the solvent micro-extraction technique used in this work. 

The DDT analytical data showed in this thesis are reliable because each time that the 

sequence table to standard solution was worked out, the values in each standard 

solution (0 ppm, 10 ppm, 50 ppm, 100 ppm and 200 ppm) are similar. For example, if 

1µL of a 50 ppm standard solution in hexane was introduced into GC, the value is 

identical. 

Therefore, preliminary analyses in Table 13 show that DDT concentration is variable. 

For this reason, it was decided to work only with container # 5 because its DDT 

concentration was consistently very low (less than 1µg/g), and  this soil was considered 

to be “clean”, relative to the concentrations that would be required for further 

experimental work (25 mg/kg, as discussed in Section 3.5.5).  It was determined in 

preliminary experiments that these higher concentrations were necessary for adequate 

analytical sensitivity when testing surfactant leachates, and use of the original soil 

(without additional DDT) would not be practical. 
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4.3 Preliminary soil leaching test 

Initially, 20 g of soil from site # 3 was used with 48 mL of surfactant solution. After two 

days of extraction, the aqueous phase was decanted and the soil contacted again with 

pure water, which was then decanted. The soil samples were sent to Maxxam for DDT 

analysis. The results are shown in Table 14.  

Table 14. DDT remaining in the soil. 

Maxxam Sample 
# Description DDT + DDD + DDE 

(µg/g) 
1AS 1% Tween 80 solution. 10 
2AS 0.5% Tween 80 solution. 10 
3AS 1% Brij 35 solution 19 
4AS 0.5% Tween 80 + 50 mg/L  KCl 40 
5AS Water only 16 

 

According to Table 14, initially Tween 80 solution achieved a better efficiency for DDT 

removal than Brij 35 solution at small scale (10 g soil). The addition of KCl did not 

enhance removal, in contrast to the results of Paria (2007), and possibly interfered with 

DDT removal, so this approach was not pursued further.  Later, it will be seen that 

Tween 80 did not follow the same tendency in the subsequent tests because of its 

biodegradability into soil in large scale (150 g soil). 

4.4 Surfactant Analysis Methods 

In order to adequately assess the need for make-up amounts of Tween due to soil 

adsorption, a rapid method is needed to measure the concentration of the surfactant in 

leachates draining from the soil. This would be especially important for field applications 

of a washing process where quick feedback on the surfactant concentration in the wash 

stream would be desirable. 

An initial attempt was made to measure the Tween 80 concentration with UV 

spectrophotometry.  While pure standard solutions yielded UV absorbance peaks that 

could be used to quantify the surfactant, the presence of soil components extracted with 

the Tween 80 caused significant interference so that the approach was abandoned. 
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A “CTAS” method (cobalt thiocyanate active substances) was selected based on 

literature reports where it was applied to wastewater and industrial applications (Boyer 

et al., 1977; Holt et al., 1998).  In this method, cobalt thiocyanate (a blue compound) is 

allowed to interact and bind with the non-ionic surfactant molecules (Tween 80) to form 

tetrathiocyanatocobaltate(II) complex that is transferred to a nonaqueous phase 

(dichloromethane) and measured using visible spectrophotometry. The cation 

associated with this complex is usually ammonium ion (Schmitt, 2001). 

Two different applications of the method were attempted: 1) the aqueous surfactant was 

mixed with cobalt thiocyanate and then extracted into dichloromethane; and 2) the 

surfactant was extracted by dichloromethane by first (in an attempt to eliminate 

interfering compounds) and then complexed with cobalt thiocyanate in the organic 

phase in a slow process.  Four standard solutions of Tween 80 were prepared for 

calibration purposes for analysis of the leachate samples from soil washing 

experiments, as well as water-only blanks.                                      

After comparing the standard solutions with the leachates from soil washing 

experiments, it was concluded that the CTAS methods, while straightforward and rapid, 

were too non-specific for the non-ionic surfactant. Other soil components in the leachate 

were apparently complexing with the cobalt thiocyanate, leading to erroneously high 

readings. The water-only blanks did not have this problem with high readings. 

Therefore, it appears that the surfactant leaches hydrophobic compounds from the soil 

that interact with the CTAS reagent in addition to the surfactant itself.  The conclusion is 

that the CTAS method does not appear to be a useful analytical method for monitoring 

surfactant concentrations in the wash solution. 

According to Schmitt (2001), it is important to remember that the commercial nonionic 

surfactants do not absorb radiation in the visible spectrum, and the simplest form of 

spectrophotometric analysis of nonionics is the direct measurement of the UV 

absorbance of the sample, but because of the sensitivity of direct UV analysis to 

interference, it can only be used in well-defined situations.   
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In other words, the cobalt thiocyanate method is based upon formation of a 

tetrathiocyanatocobaltate(II) complex with materials containing polyether linkages which 

are extractable from water into organic solvents where ammonium ion is the cation 

associated with this complex. It was concluded that the CTAS methods did not work 

because of other soil components in the leachate were apparently complexed with the 

cobalt thiocyanate.  

Subsequently, a COD (chemical oxygen demand) method was tested using a Hach 

Test-N-Tube reagent kit (0-1500 mg/L range).  This method is fairly rapid (about 2 hours 

for a batch of samples) and can be performed in remote locations with portable 

equipment.  COD is based in oxidative processes and the electrons from organic matter 

are transferred to dichromate, and interfering compounds would have to be readily 

oxidizable under the test conditions. Standards and samples were diluted 1/20 to keep 

the results within the acceptable range for the test method, which would further dilute 

any interfering compounds. Comparison of standards and samples from column 

washing did not indicate any significant interferences from soil compounds, and so it 

was concluded that the COD method is an adequate quick analysis for surfactant 

solutions.  In other words, COD could be used as a surrogate indicator to analyze the 

changes in surfactant concentration during and after soil washing process. Typical COD 

values for the Tween 80 standards are shown in Table 15. 

Table 15. COD measurement as an indicator for surfactant concentration. 

Concentration COD (mg/L) after 1/20 dilution 
1.0 % Tween 80 1001 
0.5 % Tween 80 301 
0.1 % Tween 80 103 
0.01 % Tween 80 12 

0 ( deionized water) 0 
 

4.5 Surfactant Losses in Soil 

Efficacy of a soil washing process depends in-part on minimizing the loss of surfactant 

via adsorption on the soil, since any lost surfactant must eventually be replenished to 

maintain the enhanced solubility of DDT in the aqueous solution. Therefore, several 



 44 

tests were performed to quantify these losses (as characterized by COD change, as 

discussed in the previous section). 

Previous studies suggest that losses might be in the range of 5 mg surfactant per g soil 

(Ahn et al., 2008), but it is likely that this loss is highly variable and dependent on the 

nature of the specific soil, such as the amount of organic material.  Likewise, since the 

soil is a biologically active material, it is possible that some surfactant may be lost 

through biodegradation during the soil contact process.  Experiments focusing on these 

are discussed in the following sections. 

4.5.1 Soil Adsorption 

Approximately 2 pore volumes of a 1% Tween 80 solution were passed through a 

column (approximately 2 cm diameter by 15 cm high) filled with soil from sample #3 

(discussed above) six times in series (not recirculated), followed by 6 rinses with similar 

volumes of tap water. The concentration of surfactant in each wash was determined by 

the COD method, and the results are shown in Figure 10. 

Figure 10. Column washing adsorption test results. 
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Figure 10 indicates that approximately 25% of the surfactant (as measured by COD) 

was adsorbed during the first 2 surfactant washes (Surf 1 and 2, compared to the 1% 

Std value), but subsequent washes approached the same value of COD as the initial 

surfactant solution. Furthermore, the first rinse with tap water (Rinse 1) appeared to 

desorb a significant amount of surfactant, while subsequent rinses had very little effect.  

This result was repeated a second time (Run 2) which showed similar trends with a 

fresh sample of the same soil.  Even when adsorption occurs, the surfactant 

concentration in the solution leaving the column was above 0.5% (5000 mg/L), which is 

well above the CMC reported for Tween 80 (about 25 mg/L, Franzetti et al., 2006). 

Therefore, it would still be expected that significant amounts of DDT could be solubilized 

although a portion of the surfactant was lost through adsorption. 

In a second adsorption test, a fixed volume of 1% Tween 80 was contacted with varying 

amounts of soil (from the same soil sample as the previous adsorption tests), and the 

COD was analyzed after a few hours of contact.  The results are shown in Figure 11. 

Figure 11.  Second adsorption test: fixed amount of surfactant with varying amount of soil. 
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Figure 11 indicates that it requires about 5 L of surfactant solution (containing 1% 

Tween 80) to completely overcome the adsorption losses to 1 kg of soil, such that the 

remaining solution contains a significant amount of surfactant.  Lower levels, such as 1 

L/kg, are likely satisfactory since the adsorption does not deplete the surfactant 

concentration to a value below its CMC. At high values of surfactant applied (about 3 to 

100 L/kg), the adsorption of surfactant is approximately 5 mg/g soil, which agrees well 

with Ahn et al. (2008). However, at low levels (less than 3 L/kg), the adsorption 

apparently increases to between 15 and 80 mg/g, with the adsorption increasing as the 

amount applied decreases. This result does not fit with standard adsorption theory, and 

suggests that there is another process occurring, especially when the surfactant/soil 

ratio is very low. It is believed that these results are confounded by simultaneous 

biodegradation of the surfactant, and this was explored further. 

 

4.5.2 Surfactant Biodegradation 

Another loss mechanism for surfactant is through biodegradation. Although this is 

desirable, since it minimizes the long-term impact on the soil, it is undesirable if it occurs 

too fast and the solubilization of DDT is affected during the soil washing process.  A 

series of experiments were performed to assess the rate and extent of biodegradation in 

1% Tween 80 solutions that had been passed through a soil sample (to inoculate them 

with soil microbes). These results are summarized in Figure 12, where Test 2-S is a 

sterilized control, and Test 3 is a mixture of 0.5% Tween 80 and 0.5% Brij 35. 

The Test 1, Test 2 and Test 2-S were prepared with 1% Tween 80 solutions which 

original COD was 1600, but the Test 3 was prepared with a blend (0.5% Tween 80 + 

0.5% Brij 35 solution) in which the initial COD was only 440, due to the lower Tween 80 

concentration and lower inherent COD for Brij 35.  
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Figure 12.  Surfactant biodegradation test. Test-1 and Test 2: 1% Tween 80 non-sterilized; Test 2-S: 
sterilized control; Test-3: mixture of 0.5% Tween 80 and 0.5% Brij 35 non-sterilized. 
 
 
From Figure 12, a rapid decrease in COD is observed in the first 24 hours following 

contact with the soil (Test 1), after which the COD does not change significantly. In Test 

2, the Day 0 sample was not available for analysis, but the trends in the following days 

are similar to Test 1. Test 2-S involved a portion of the surfactant solution that was 

steam sterilized to eliminate microbial activity, but showed no significant difference from 

that observed during Test 2. In Test 3, a surfactant blend was used (0.5% Tween 80 + 

0.5% Brij 35), which suggested that the presence of Brij 35 (which is somewhat less 

biodegradable than Tween) appeared to stabilize the concentration.  Further tests are 

required to confirm this result and to assess the adsorption and DDT solubilization of a 

surfactant blend.   

4.6 Testing mixtures of surfactants 

4.6.1 Small Scale Batch Experiment 

According to the method described in section 3.5.5, the removal of DDT in a small scale 

was tested in the presence of several sets of surfactant combinations to yield the results 

shown in Table 16. 
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Table 16. Amount of DDT removed in batch system after 24 hrs. 

Solution ng/µL ave. 

2% Brij 35 + 0.5% SDBS 13.86 15.94 14.9 

2% Brij 35 + 2% Tween 80 13.16 15.44 14.3 

2% Brij 35 12.42 15.18 13.8 

0.5% Brij 35 + 2% Tween 80 11.43 13.97 12.7 

1% Brij 35 + 1% Tween 80 11.47 13.73 12.6 

1% Brij 35 + 4% Tween 80 11.25 13.75 12.5 

1.5% Brij 35 10.98 13.42 12.2 

0.5% Brij 35 + 0.5% Tween 80 9.09 11.11 10.1 

2% Brij35  + 0.5% SDBS + 0.5% EtOH 17.21 19.80 18.5 

1% Brij 35 + 2% EtOH 8.92 10.68 9.8 

2% Tween 80 5.22 6.38 5.8 

1% Tween 80 3.07 3.53 3.3 

1% Brij 35 + 1% EtOH 4.32 5.08 4.7 

  

From Table 16, some observations can be made:  2% Brij 35 alone can achieve a good 

efficiency for DDT removal (13.8 ng/µL), while 2% Tween 80 only removes 5.8 ng/µL.  

The lower performance of Tween 80 is possibly due to the presence of a sorbitan 

carbon group and longer carbon branches, which reduce the ability of the surfactant 

micellar core to dissolve organics (Jafvert et al., 1994).  In addition, this behavior is 

attributed to the strong interaction of Tween 80 with the soil (Karagunduz et al., 2007), 

although Tween 80 is also known to be more biodegradable than Brij 35, both in liquid 

and in solid phase (Franzetti et al., 2006).  For example, in 2% Brij 35 + 0.5% SDBS 

solutions (nonionic-anionic mixed surfactant system), the presence of anionic surfactant 

greatly decreased the partitioning loss of nonionic surfactant (Paria, 2007). This may 

have led to the increase in DDT removal efficiency to 14.9 ng/µL due to higher cloud 
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points and lower kraft points than those of the single surfactant (Paria, 2007). In the 2% 

Brij35 + 0.5% SDBS + 0.5% EtOH system, there is a good potential to increase both the 

performance of contaminant extraction and the pollutant degradation.  

Adding a solvent such as ethanol (EtOH) to the surfactant solution (both single or 

mixture of surfactants) can reduce the adsorption of surfactant to the soil particles and 

increase the efficiency of DDT removal from soil (Ganeshalingam et al., 1994).  Ethanol 

concentrations of 2% enhanced extraction compared with concentration of 1%. The 

data from Table 16 are shown in Figure 13.  The use of a co-solvent (ethanol) was 

tested for interest, although in practice it raises problems with potential air emissions 

due to evaporation and with worker safety due to flammability issues. 

Figure 13. Extraction in small scale. 
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4.6.2 Larger Scale Leaching Column Experiments 

Chandler et al., (1997) have shown that leachability depends on a number of physical 

parameters such as homogeneity, particle size, porosity, permeability of the solid phase 

influencing the flow rate and contact time between solution and solid, temperature, pH, 

redox condition, total organic carbon content, chemical reaction kinetics, chemical 

speciation of contaminants and complexation with other contaminants. 

Since soil leaching is a passive form of washing, it was the recommended remediation 

technique because materials handling and soil/liquid separation would be avoided 

unlike other processes for soil excavation and mixing/washing (Evangelista et al., 1990). 

Considering that the blend between Brij and SDBS gave the best results during the 

small scale experiments, this combination was tested in more detail in larger scale. The 

use of a co-solvent was abandoned because of the practical concerns.  It has also been 

reported that the surfactant may create a bridge to link the solvent, pollutant, air and 

water molecules together, resulting in a stable and inseparable emulsion that can cause 

the failure of the soil-washing process (Chu and Kwan, 2003). Following the methods 

described in section 3.5.6, the removal of DDT in a leaching column was tested for 

several sets of surfactant combinations to yield the results shown in Table 17. 

Table 17. Amount of DDT removed in leaching column experiments. 

Solution ng/µL ave. 

2% Brij 35 + 1% SDBS 44.43 47.17 45.8 

2% Brij 35 + 0.1% SDBS 36.10 40.30 38.2 

2% Brij 35 33.44 37.16 35.3 

2% Tween 80 23.83 27.97 25.9 

1% Brij 35 18.38 22.02 20.2 

0.1% Brij 35 + 1% SDBS 16.20 19.80 18.0 

1% Tween 80 15.36 18.04 16.7 

0.5% Brij 35 12.33 15.07 13.7 
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4.6.3 Mass Balance 

To assess DDT removal and the analytical methods, the following mass balances were 

performed: 

Mass (µg) = (GC value) * (volume lot / volume sample) * (volume emulsion/ volume 

considered) * (volume hexane after EtOH).    (10) 

Where “GC value” comes from the calibrated gas chromatograph (38.2 ng/µL), “volume 

lot” represents the total volume in first lot (102 mL), “volume sample” considers only 10 

mL from the first lot to be analyzed, “volume emulsion” is 10 mL of emulsion formed, 

“volume considered” is the 5 mL of emulsion to be mixed with 2 mL EtOH and then 

“volume hexane” after EtOH is the 4 mL of the final hexane phase where DDT content is 

recovered.  The aqueous phase is 3 mL. 

For example, the first 100 mL of leachate from the 2% Brij + 0.1% SDBS solution 

contained 38.2 ng/µL. In other words, 10 mL of leachate from the first lot was 

considered to be analyzed. This sample was combined with 10 mL of hexane and 

stirred in roto-torque machine during 30 minutes. As a result, there were 10 mL of 

emulsion. Then, 5 mL of the emulsion was combined with 2 mL ethanol to break the 

emulsion. It was produced two phases, the top-hexane phase (4 mL) and bottom-

aqueous phase (3 mL). Finally, 1 µL of sample from top-hexane phase was injected into 

GC. Using equation (10) we have: 

Mass (µg) = (38.2 ng/µL) * (102/10) * (10/5) * (4) = 3117.12 µg. 

To prepare 25 ppm DDT in soil, 3750 µg of DDT was added to 150 g soil. Thus the % 

DDT recovered = 3117.12/3750 = 0.831 or 83.1 % 

Using the information from Table 17 and following the above example, the following 

DDT recoveries from the first 100 mL of leachate were obtained and shown in Table 18. 
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Table 18. DDT recovery (First 100 ml of surfactant solution.) 

Solution % Recovered 

2% Brij 35 + 1% SDBS 99.7 

2% Brij 35 + 0.1% SDBS 83.1 

2% Brij 35  76.7 

2% Tween 80 56.3 

1% Brij 35 44.0 

0.1% Brij 35 + 1% SDBS 39.2 

1% Tween 80 36.3 

0.5% Brij 35 29.7 
 

The time required for passage of 100 mL of the surfactant solution is shown in Table 19. 

Table 19. Time required for the passage of 100 mL of aqueous surfactant solution through the 
leaching column. 

Solution min 

2% Brij 35 + 1% SDBS 1170 

2% Brij 35  + 0.1% SDBS 100 

2% Brij 35 86 

2% Tween 80 118 

1% Brij 35 70 

0.1% Brij 35 + 1% SDBS 840 

1% Tween 80 165 

0.5% Brij 35 60 
 
 

Considering Tables 18 and 19, it was noted that the combinations of 2% Brij 35 (non-

ionic surfactant) and 1% SDBS (anionic surfactant) yielded the highest % recovery, but 

the time required (Table 19) for the passage of 100 mL of aqueous surfactant solution 

through the 150 g soil (25 ppm DDT) in leaching column was very high. Since the 
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kinetics of the process can have an impact on overall cost, the rates of removal of DDT 

were obtained using this data (Table 20). 

 

Based on this, the solutions containing 1% SDBS are seen to have low DDT removal 

rates (Table 20). However, if the SDBS concentration is reduced to 0.1% SDBS or 

eliminated altogether, the time is also reduced so that the removed rate becomes more 

reasonable.  In addition, 1% and 2% Tween 80 solutions yield moderate recoveries and 

rates because it adsorbs moderately onto soil. Finally, 0.5% – 2% Brij require only a 

short time to pass through column because Brij 35 only weakly adsorbs onto soil. 

 
Table 20. Rate of removal of DDT in column leaching with different surfactant solutions. 

Solution ng/min 

2% Brij 35 + 1% SDBS 0.039 

2% Brij 35 + 0.1% SDBS 0.382 

2% Brij 0.410 

2% Tween 80 0.219 

1% Brij 35 0.289 

0.1% Brij 35 + 1% SDBS 0.021 

1% Tween 80 0.101 

0.5% Brij 35 0.228 
 

The effect of SDBS on flowrate through the column is likely due to its anionic behaviour.  

Anionic surfactants have been known to disperse and suspend clay particulates in soil. 

This behavior was observed in sample vials prepared during this work.  Suspension and 

dispersal of clay particles may cause blockage of flow channels in the leaching columns 

and therefore reduce flow rates. In any soil washing process that relies on gravity 

drainage, this will be a significant problem. Figure 14 shows graphically the values 

shown in Table 20. 
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Figure 14. Rate of removal of DDT. 

 

According to Figure 14, two combinations yield high removal rates of DDT, i.e. 2% Brij 

(0.410) and 2% Brij + 0.1% SDBS (0.382). For this reason, we have evaluated the 

reproducibility of these results following the same method as in the large scale leaching 

experiments.  

To study the variability of the data obtained from the first 100 mL of leachate from both 

solutions, the method described in section 3.5.6 was used to yield the values shown in 

Table 21. 

Table 21. Variations about the first 100 ml recovered leachate using two surfactant solutions 

Run ng/µL 

2% Brij 35 2% Brij 35 + 0.1% SDBS 
1 33.4 36.0  
2  37.1 40.3  
3 33.0 41.0  
4 36.5 35.6 
5 35.2 41.7  
6 35.1 37.6 

Average 35.0 38.7 
Variation +/- 1.6 +/- 2.6 
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According to Table 21, it can be seen that 2% Brij 35 solution can capture between 33.4 

ng (2725 µg of DDT) and 36.6 ng (2987 µg of DDT) in the first 100 ml recovered. In a 

similar way, 2% Brij 35 + 0.1% SDBS solution can capture between 36.1 ng (2946 µg of 

DDT) and 41.3 ng (3370 µg of DDT) in the first 100 ml recovered. 

Finally, a total mass balance for the 2% Brij 35 and 2% Brij 35 + 0.1% SDBS solutions 

yields the results in Tables 22 and 24, respectively. 

Table 22. Mass Balance 2% Brij solution 

Volume 2% Brij  (ng) % 
ml Run 1 Run 2 Run 3 Run 4 Average Recovered 

100 33.41 37.11 33.02 36.52 35.02 60.32 
200 14.90 15.84 15.41 12.58 14.68 23.56 
300 6.28 7.25 6.12 5.23 6.22 9.67 
400 3.21 3.25 2.53 2.32 2.83 4.45 
TW 1.70 1.84 0.90 0.65 1.27 2.01 

      100.00 
 

 

The results in Tables 22 and 23 indicate that 60.32% of the DDT is removed from the 

soil in the first 100 mL passed from the column and that the DDT concentration in the 

soil has been reduced from 25.0 to 9.92 ppm. 

Table 23. Removal Time using 2% Brij Solution 

Lot 
Time lot 

(min) 
Removal 

Time (min) 
ppm in 

soil 

 0 0 25.00 

100 86 86 9.92 

200 91 177 4.03 

300 101 278 1.61 

400 131 409 0.50 

TW 160 569 0.00 
 
 
The data from Table 23 are plotted in Figure 15. 
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Figure 15. Removal Time using 2% Brij solution. 

 

The decline in DDT concentration in the soil follows a first order kinetics (CA=exp (lnCAo 

– k*t)) where: K = 0.01048 min-1, confidence interval = +- 0.00015 and Chi-sqr = 

0.03198 (Method of fitting by Levenberq-Marquardt). 

 
 

Table 24. Mass Balance 2% Brij + 0.1 % SDBS solution 

Volume 2% Brij + 0.1% SDBS   (ng) % 
ml Run 1 Run 2 Run 3 Run 4 Average Recovered 

100 36.05 40.31 41.00 35.69 38.26 65.54 
200 12.77 12.44 13.45 13.60 13.07 20.85 
300 4.59 4.99 5.22 5.87 5.16 7.98 
400 3.09 2.66 2.01 2.50 2.56 4.01 
TW 0.92 0.84 1.20 1.18 1.03 1.62 

      100.00 
 

 

Following the same example above, 65.54% DDT is recovered in the first 100 mL from 

the column when 2% Brij 35 + 0.1% SDBS solutions is used. As shown in Table 25, only 

8.61 ppm DDT remains in the soil.  
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Table 25. Removal time using 2% Brij 35 + 0.1% SDBS solution 

Lot 
Time lot 

(min) 
Removal Time 

(min) 
ppm in 

soil 

 0 0 25.00 

100 71 71 8.61 

200 81 152 3.40 

300 82 234 1.41 

400 107 341 0.40 

TW 139 480 0.00 
 
 
The data from Table 25 is shown in Figure 16 
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Figure 16. Removal Time using 2% Brij + 0.1% SDBS solution. 

 

In similar way, the kinetics for DDT removed by a 2% Brij 35 + 0.1% SDBS solution 

shows first order behavior (CA=exp(lnCAo – k*t)), where K = 0.01418 min-1, confidence 

interval = +- 0.0005 and Chi-sqr = 0.16295  (Method of fitting by Levenberq-Marquardt). 

The “cleaned” soil after each leaching process contains less than 1 ppm DDT. The 

average range is between 0.2 to 0.7 ppm. 
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According to Tables 22 and 24, we can conclude that the 150 g soil contaminated with 

DDT will be in better condition after contact with the first 300 or 400 mL of surfactant 

solutions in each process. 

 
4.7 Recovery of Surfactant for Re-use 

Up to this point, the importance of surfactants in the process of stripping of DDT from the 

soil is known. For economic reasons it would be desirable to continue to re-use the same 

surfactants once again or keep them clean for new work. One of the possible ways to do 

this is to use activated carbon to selectively remove the more hydrophobic DDT from the 

surfactant solutions. Ahn et al. (2008) used activated carbon to remove the hydrophobic 

polyaromatic phenanthrene from a Triton X-100 nonionic surfactant solution. Therefore, it 

was hypothesized that a similar approach might be successful in removing DDT from the 

surfactants used here. 

 
To simulate the passage of surfactant solution through an activated carbon adsorption 

drum, such as might be used in the field, a volume of fresh contaminated surfactant 

solution was passed repeatedly through a column of activated carbon, as described in 

Section 3.5.9. DDT, DDD, and DDE concentrations were measured after each pass to 

yield the results are in Figure 17. In these experiments, 5 g of Sigma-Aldrich activated 

carbon were used in the column, while multiple volumes of 25 mL of contaminated 

surfactant solution were passed through the column. Figure 17 indicates that this 

activated carbon was capable of adsorbing the hydrophobic contaminants, although the 

amount removed was only about 50%. The shape of the curves in Figure 17 suggests 

that the adsorption capacity for the carbon was overwhelmed for this volume and 

concentration of fluid. In addition, the concentrations in the first pass are higher than 

expected and the curve does not follow a sigmoidal shape that might be expected for 

adsorption. This indicates either some type of adsorption interference by the surfactants 

or some analytical error.  



 59 

Based on these preliminary results, it was estimated that the adsorption capacity of this 

carbon is in the range of 0.25 to 0.3 mg/g for each of the three contaminants, or 

approximately 0.85 mg/g for the total of DDT and its related compounds.   

 

 
 
 
 
Figure 17:  Change in contaminant concentration in the effluent from an activated carbon 
adsorption column (5 g), using 1% Brij 35 + 0.1% SDBS aqueous solution, 25 mL per pass. 
 

To obtain a better understanding of the process, the adsorption experiment was 

repeated, but in this case a fresh amount of activated carbon (4 g) was used for each 

pass. An initial volume of 500 mL of surfactant solution was used so that it could be 

captured and re-used for each pass. This experiment was done to simulate the 

adsorption process in which a series of clean adsorption canisters were to be used in the 

field, and to determine more accurately when breakthrough might occur. These results 

are shown in Figure 18. 
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Figure 18:  Change in DDT-related contaminant concentration in a 1% Brij 35 + 0.1% SDBS solution 
passed through 4 g beds of activated carbon, replaced after each pass. 
 
 

Figure 18 indicates that relatively low values of contaminant concentration can be 

achieved when fresh activated carbon was used with each pass through the column. It is 

uncertain why the concentration appeared to increase for DDT and DDE in the first pass 

or two. This may have been due to a sampling and/or analytical artifact related to carbon 

fines in the samples being extracted for GC analysis. This apparent increase was noted 

in some other preliminary experiments, but since the focus of the work was on the low 

concentration endpoint shown in Figure 18, this problem was not pursued further during 

this work. Initially, 500 mL of contaminated surfactant solution was applied to the column 

in this work. After the 6th pass, approximately 305 mL of solution remained due to 

sampling losses for analysis. 

In this experiment, the adsorption capacity was found to be approximately 3 mg/g for 

each of the contaminants (for a total of approximately 9 mg/g).  This is much higher than 

the capacity estimated in the first experiment. One suggestion is that the adsorption is 

strongly kinetically controlled, due to the presence of the surfactants at concentrations 

that are much higher than the contaminants, on a relative basis. In repeating the flow 

through fresh carbon beds, there is additional time and fresh surface available to achieve 
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much higher loadings. This suggests that the kinetics of adsorption should be 

investigated in more detail for this system.  However, these experiments do suggest that 

it may be feasible to selectively capture DDT from the surfactant solutions, as reported 

by Ahn et al. (2008) for capture of phenanthrene from Triton X-100 surfactant solution, 

and further work is necessary to optimize this process. 

In the experiment shown in Figure 18, the surfactant solution COD was tested at the 

beginning and end, giving 363 and 736 mg/L, respectively.  It might be expected that the 

COD would decrease during the experiment, due to some adsorption of surfactants onto 

the carbon (as noted by Ahn et al., 2008). The COD level increase could be due to 

interference from carbon-extracted components, but the lack of a significant decrease 

suggested that surfactant losses were apparently not severe. However, this will require 

further investigation to quantify the surfactant losses. 
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Chapter 5: Summary, Conclusions and Recommendations 

5.1 Summary 

Since 1972, DDT has been banned for use in Canada, but it still persists in Canadian 

farmland at detectable levels because it is a highly stable compound in the environment.  

Significant efforts have been made to remediate DDT contaminated soils. Several 

processes have been used such as bioremediation, incineration, thermal desorption, but 

these processes are impractically slow or too expensive. 

Alternatively, a soil-washing process may extract and separate the contaminants from 

the soil, thereby reducing the quantity of contaminant for further treatment.  Since DDT 

has very low water solubility, it is necessary to consider using surfactants to improve the 

soil-washing process. These surfactants are amphiphilic molecules with both hydrophilic 

and hydrophobic portions that have the ability to increase aqueous contaminant 

concentrations by partitioning the solute into the hydrophobic interior of the micelles and 

forming spheroid or lamellar structures with organic pseudo-phase interiors.  The 

minimum concentration at which this occurs is called the critical micelle concentration 

(CMC). 

To determine the effectiveness of the soil-washing process, column experiments were 

performed with contaminated soil and selected surfactant solutions.  A single surfactant 

is selected based on various considerations such as effectiveness, cost, and 

environmental impact. Since the measurement of surfactant concentration in the wash 

solution is important, several methods were tested before finally selecting a simple COD 

analysis as a surrogate. Using the COD analysis, partitioning experiments were 

performed to quantify the adsorption of surfactant on the soil.  

For economic reasons it would be desirable to reuse the surfactant in a washing 

process. For this purpose, it was hypothesized that activated carbon can selectively 

remove the more hydrophobic DDT from the surfactant solutions. Preliminary results 

have shown that carbon adsorption can remove some DDT, but additional work is 

required to understand and optimize the process. 
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5.2 Conclusions and Recommendations 

►  The non-ionic surfactants performed reasonably well for remediation of DDT in the 

soils used in this work. The Brij 35 surfactant was found to be effective and is 

recommended for continued work in this area. While Tween 80 exhibited similar soil 

washing properties, its apparent rapid biodegradability may be a problem for practical 

use in the field. Although biodegradability is a positive feature, this must be balanced 

with suitable lifetime for use in soil washing applications. Additional studies on 

biodegradation rates may be required in a pilot-plant test, although a lack of specific 

analytical methods for surfactants makes this difficult. 

► The use of co-solvents in conjunction with the surfactant solutions can increase the 

capacity of extraction or cleanup of contaminated soil. However, if the risks of 

volatilization and flammability of the co-solvent would have to be addressed for field 

applications and may not be acceptable for environmental and safety reasons. 

► The presence of SDBS in the surfactant solution at concentrations much higher than 

0.1% causes significant flow problems in a soil column, possibly because of clay 

dispersion that slows the flow significantly or stops it altogether when the leachate 

reaches 150 ml in this work. While the presence of an anionic surfactant might prove 

beneficial for DDT removal, it may be limited due to this concern. However, if a 

mixing system was to be used instead (such as an agitated tank), the negative impact 

of SDBS on flow would not be important. 

► Cloud and Kraft points should be studied with more details in future experiments to 

explain how these properties can affect the DDT removal process. 

► Activated carbon appears to be a suitable approach for removal of DDT and its 

metabolites from surfactant solutions, to allow reuse or recirculation of the wash fluid.  

Additional confirmation work is required to determine the maximum capacity of the 

carbon, as well as the impact of other soil compounds that might be contained in the 

wash fluid. Likewise, surfactant losses due to adsorption on activated carbon should 

be quantified in more detail in a small pilot plant test using industrial materials. 
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Cost of remediation technologies 
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Metal-contaminated soil (Evanko and Dzombak, 1997) 

Type of treatment       Range of cost$ / ton 

Electrokinetic     $100 –180 
 

Pyrometal-lurgical    $230 – 590 

Containment     $  10 –  90 

Soil flushing     $  80 – 150 

Vitrification     $420 – 880 

Solidification/Stabilization   $  80 – 300 

Soil washing     $  80 – 240 

 

Polychlorinated biphenyls in soil (Davila et. al., 1993). 

Type of treatment       Range of cost$ / ton 

Incineration     $280 –1000 
 

Thermal desorption    $  90 – 380 

Chemical dehalogenaton   $225 – 580 

Solvent extraction    $110 – 540 

Vitrification     $100 –1000 

Solidification/Stabilization   $  50 – 310 

Soil washing     $  60 – 230 
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Descriptive methods step by step  
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Analytical Methods 

COD Method.  

Chemical oxygen demand (COD) of surfactant solutions was measured as a surrogate 

analysis of the total concentration of surfactants in the aqueous washing fluids, before 

and after leaching.  Hach Test ’n’ tubes were used (0-1500 mg/L range) together with a 

Hach DR/2000 spectrophotometer and method number 435. Dilutions of about 1/20 of 

the surfactant solution were generally used to keep the concentration within the test kit 

range. 

▲Put 0.1 mL sample + 1.9 mL water in vial. 

▲Put the vials into reactor digest for 2 hours at 150°C.  

▲Wait 10 minutes until the reactor reach 120°C. Later, wait 1 hour approximately until 

the vial reaches the temperature of the atmosphere. 

▲Turn on the colorimetric machine. 

▲Press: 435 READ/ENTER. The display will show: DIAL nm TO 435. 

▲Rotate the wavelength dial until the small display shows: 620 nm. 

▲Press: READ/ENTER.  

▲Place the COD Vial Adapter into the cell holder with the marker to the right.  

▲Clean the outside of the blank with a towel. 

▲Place the blank into the adapter with the Hach logo facing the front of the instrument. 

Place the cover on the adapter. 

▲Press: ZERO. The display will show: WAIT   then: 0. mg/L COD  

▲Clean the outside of the sample vial with a towel. 
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▲Place the sample vial into the adapter with the Hach logo facing the front of the 

instrument. Place the cover on the adapter. 

▲Press: READ/ENTER. The display will show: WAIT   then the result in mg/L COD will 

be displayed. 

 

Water capacity test. 

The water capacity of soil samples was estimated by placing about 20 cm of soil into a 

(3.8 cm diameter) column, on top of about 3 to 5 cm of glass wool. 

►Put about 3 – 5 cm of glass wool in the bottom of the column. 

►Add about 20 cm of soil to the column. Press the soil down so that it is compact, but 

not too hard.  

►Add a measured amount of tap water slowly until the soil is completely satured with a 

little water on top. Capture the water that drain out of the bottom of the column. 

►Let it drains for 2 – 3 days. After this, measure the total amount of water that drained 

out, and compare with the total amount that was initially added. 

 

Method to estimate the biodegradation rate of Brij 35 solution. 

Biodegradation rates of aqueous surfactant solutions were estimated by placing 100 mL 

of the solution into an Erlenmeyer flask and adding about 10 g of soil.  A second 

(control) flask was prepared without the soil.  The soil was swirled around for a few 

minutes then left to settle for 0.5 hours, at which point the liquid was decanted into a 

clean flask.  Both flasks were agitated on a magnetic stirrer for several days and 

samples were withdrawn for COD analysis. 

▲Make up a 1% solution of Brij 35 (200 mL total). 
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▲Put 100 mL in each of two Erlenmeyer flasks. 

▲To one flask, add about 10 g of soil from sample containers.  Swirl it around for a few 

minutes; later, let it settle for half an hour, and the liquid decants into another flask 

(leaving behind as much of the soil as practical). 

▲For the second flask, don’t add anything. 

▲Sample both flasks for COD. 

▲Place both flasks on a magnetic stir plate and agitate gently overnight. 

▲Continue agitation and sample for COD each day for the remainder of the week. 

Finally, it compares the change in COD between the two flasks.   

 

Test to new soil. 

►Clean and remove rare particles in soil. 

►Dry and homogenize the soil. 

►Put 10 g in small container. 

►Add 25 mL hexane into container. 

►Mix it in roto-torque machine at 400 rpm for 24 hours. 

►Let it rests for 1 hour. 

►Take 1 µL from the liquid phase and place into a gas chromatographer to analyze. 

 

Soil leaching batch test. 

▲Make up a 50 ppm DDT solution in hexane. 
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▲To 10 g of soil, add 5 mL of 50 ppm solution. 

▲Allow that the solvent evaporates completely. Now, the soil has 25 ppm of DDT. 

▲Put the contaminated soil with DDT in a vial. 

▲Add 25 mL of surfactant solution into vial. 

▲Mix it in roto-torque machine at 400 rpm for 24 hours. 

▲Let it rests for 1 hour. 

▲Add an equal amount of hexane to the 10 mL of leachate. 

▲Again mix for 30 minutes in roto-torque machine. 

▲Let it rests for 1 hour. 

▲Take 5 mL of the resulting emulsion at the top and place into a closed vial. 

▲Add 2 mL of ethanol to break emulsion.  

▲Shake gently for 10 seconds and let settle for 1 minute. 

▲Take 1 µL from the top phase and place into a gas chromatographer to analyze. 

 

Leaching column test. 

►Make up a 200 ppm DDT solution in hexane. 

►To 150 g of soil, add 18.5 mL of 200 ppm solution. 

►Allow that the solvent evaporates completely. Now, the soil has 25 ppm of DDT. 

►Put glass wool on the bottom of the column (2.5 cm x 30 cm); later, put the 150 g of 

contaminated soil with DDT into a column. Press the soil down so that it is compact, but 

not too hard. Finally, put glass wool on the top of soil.  



 82 

►Prepare 500 ml of surfactant solution. 

►Add 250 mL of surfactant solution into column, later 250 mL more of surfactant 

solution and finally add 140 mL of tap water.  

►Take two samples of 10 mL each one from the first lot (100 mL) of recovered. Later, 

take two more samples of 10 mL each one from the second lot (100 mL) of recovered 

until reach 500 mL of recovered. In total 10 samples. To make a mass balance 

considers the average from each lot. 

►Add 10 mL of hexane to each sample of 10 mL of leachate. 

►Mix it in roto-torque machine at 400 rpm for 30 minutes. 

►Let it rests for 1 hour. 

►Take 5 mL of the resulting emulsion at the top and place into a closed vial. 

►Add 2 mL of ethanol to break emulsion.  

►Shake gently for 10 seconds and let settle for 1 minute. 

►Take 1 µL from the top phase and place into a gas chromatographer to analyze. 

  

Gas Chromatographic Method  

DDT, DDD, and DDE analyses were completed using gas chromatography.   

The samples (1µL) were injected into the gas chromatograph (HP5890) equipped a 63Ni 

electron-capture detector (GC-ECD). The column used was an RTX-5 quartz capillary 

with an inner diameter of 0.53 mm, a film thickness of 0.50 µm, and a length of 30 m. 

The column head pressure was set to 5 PSI. The carrier gas used was pure H2 and the 

flow rate was 1 mL min-1. The oven temperature program started at 140°C; it was 

increased to 280°C at 10°C min-1 with a final hold time of 2 min. Injector and detector 
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interface temperatures were kept constant at 240 and 290°C respectively. The peak 

height of speciation was used for quantification. Standard solutions of DDT, DDE and 

DDD were made in hexane a five different concentration ranging from 0 ppm, 10 ppm, 

50 ppm, 100 ppm and 200 ppm. Calibration was performed using linear regression 

analysis. 
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Solution DDE DDD DDT 

Batch System (10 g soil) R. T. Area ng/µL R. T. Area ng/µL R. T. Area ng/µL 

2% Brij 35 + 0.5% SDBS + 0.5% EtOH 6.844 2.1e3  7.448 2.7e3  7.886 8.3e4 18.5 

2% Brij 35 + 0.5% SDBS 6.851 1.7e3  7.455 2.2e3  7.893 6.8e4 14.9 

2% Brij 35 + 2% Tween 80 6.815 3.8e3 0.34 7.374 3.2e3 0.44 7.857 7.8e4 14.3 

2% Brij 35 6.848 1.6e3  7.410 4..8e3 0.47 7.891 6.4e4 13.8 

0.5% Brij 35 + 2% Tween 80 6.805 3.0e3 0.23 7.365 2.0e3 0.23 7.847 7.8e4 12.7 

1% Brij 35 + 1% Tween 80 6.805 3.1e3 0.27 7.364 2.7e3 0.38 7.848 6.6e4 12.6 

1% Brij 35 + 4% Tween 80 6.806 3.1e3 0.25 7.366 2.0e3 0.24 7.848 7.9e4 12.5 

1.5% Brij 35 6.838 3.1e3 0.04 7.397 1.4e4 2.62 7.880 1.1e5 12.2 

0.5% Brij 35 + 0.5% Tween 80 6.802 2.4e3 0.21 7.362 2.3e3 0.32 7.845 5.3e4 10.1 

1% Brij 35 + 2% EtOH 6.840 2.6e3  7.400 1.2e4 2.14 7.882 9.1e4 9.8 

2% Tween 80 6.815 3.6e3 0.31 7.373 3.8e3 0.32 7.858 4.4e4 5.8 

1% Brij 35 + 1% EtOH 6.842 1.6e3  7.401 9.0e3 1.46 7.884 4.5e4 4.7 

1% Tween 80 6.806 2.1e3 0.13 7.364 2.6e3 0.26 7.851 2.3e4 3.3 
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Solution DDE DDD DDT 

Leaching Column (150 g soil)  R. T. Area ng/µL R. T. Area ng/µL R. T. Area ng/µL 

2% Brij 35 + 1% SDBS 6.777 7.6e3 0.58 7.367 1.3e3 0.08 7.713 3.6e5 45.8 

2% Brij 35 + 0.1% SDBS 6.703 9.6e3 0.35 7.257 4.8e4 2.70 7.739 4.3e5 38.2 

2% Brij 35 6.677 5.1e3 0.26 7.236 2.6e3 0.15 7.714 2.9e5 35.3 

2% Tween 80 6.801 9.2e3 0.62 7.358 1.4e4 1.30 7.843 2.0e5 25.9 

1% Brij 35  6.801 1.2e3 0.08 7.358 9.1e3 1.09 7.842 1.3e5 20.2 

0.1% Brij 35  + 1% SDBS 6.807 1.1e3 0.08 7.365 3.8e3 0.45 7.846 1.2e5 18.0 

1% Tween 80 6.795 5.8e3 0.37 7.352 1.0e4 0.95 7.837 1.4e5 16.7 

0.5% Brij 35 6.819 3.8e3 0.33 7.377 3.1e3 0.42 7.860 7.4e4 13.7 
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2% Brij:  

Run 1 

DDE DDD DDT 

R. T. Area ng/µL R. T. Area ng/µL R. T. Area ng/µL 

100 6.675 5.1e3 0.25 7.234 2.6e3 0.14 7.712 2.7e5 33.41 

200 6.676 2.6e3 0.10 7.234 1.6e3 0.06 7.713 1.2e5 14.90 

300 6.675 1.2e3 0.01 7.233 9.5e2  7.714 5.3e4 6.28 

400 6.674 7.9e2  7.232 5.1e2  7.713 2.71e4 3.21 

TW 6.671 4.7e2  7.229 5.9e2  7.711 1.5e4 1.70 

Run 2  

100 6.679 5.4e3 0.27 7.237 2.7e3 0.16 7.716 3.0e5 37.11 

200 6.679 2.8e3 0.11 7.236 2.0e3 0.10 7.716 1.3e5 15.84 

300 6.671 1.4e3 0.03 7.230 9.2e2  7.710 6.1e4 7.25 

400 6.674 8.2e2  7.232 6.6e2  7.713 2.7e4 3.25 

TW 6.665 5.4e2  7.224 5.8e2  7.705 1.6e4 1.84  
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2% Brij: 

Run 3 
DDE DDD DDT 

R. T. Area ng/µL R. T. Area ng/µL R. T. Area ng/µL 

100 6.724 4.7e3 0.24 7.217 4.2e2  7.761 3.0e5 33.02 

200 6.700 2.7e3 0.14 7.257 2.0e3 0.13 7.738 1.4e5 15.41 

300 6.689 1.5e3 0.07 7.246 1.2e3 0.05 7.727 6.2e4 6.12 

400 6.687 8.7e2 0.04 7.245 8.2e2 0.02 7.725 3.0e4 2.53 

TW 6.676 5.3e2 0.03 7.235 5.6e2 0.01 7.716 1.6e4 0.90 

Run 4  

100 6.706 4.7e3 0.24 7.264 1.6e3 0.09 7.744 3.2e5 36.52 

200 6.693 2.3e3 0.11 7.251 1.4e3 0.07 7.730 1.2e5 12.58 

300 6.682 1.3e3 0.06 7.240 1.2e3 0.06 7.721 5.4e4 5.23 

400 6.678 8.3e2 0.04 7.237 8.7e2 0.03 7.717 2.8e4 2.32 

TW 6.675 5.0e2 0.02 7.234 9.4e2 0.04 7.715 1.4e4 0.65 
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2% Brij + 
0.1% SDBS:   

Run 1 

DDE DDD DDT 

R. T. Area ng/µL R. T. Area ng/µL R. T. Area ng/µL 

100 6.706 9.7e3 0.33 7.260 4.5e4 2.51 7.742 4.1e5 36.05 

200 6.700 4.1e3 0.14 7.256 2.0e4 1.14 7.737 1.8e5 12.77 

300 6.692 1.7e3 0.06 7.249 9.3e3 0.52 7.731 5.4e4 4.59 

400 6.698 1.3e3 0.05 7.254 7.4e3 0.41 7.736 3.6e4 3.09 

TW 6.702 5.5e2 0.02 7.258 3.0e3 0.17 7.741 1.1e4 0.92 

Run 2  

100 6.700 1.1e4 0.36 7.254 5.3e4 2.96 7.736 4.5e5 40.31 

200 6.697 3.8e3 0.13 7.252 1.9e4 1.06 7.734 1.4e5 12.44 

300 6.691 2.0e3 0.06 7.247 9.2e3 0.52 7.729 5.8e4 4.99 

400 6.699 1.4e3 0.05 7.255 7.0e3 0.39 7.737 3.1e4 2.66 

TW 6.704 5.1e2 0.02 7.261 2.7e3 0.15 7.743 1.0e4 0.84 
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2% Brij + 0.1% 
SDBS: Run 3 

DDE DDD DDT 

R. T. Area ng/µL R. T. Area ng/µL R. T. Area ng/µL 

100 6.699 7.9e3 0.63 7.260 6.0e3 0.77 7.744 2.6e5 41.00 

200 6.673 2.6e3 0.14 7.231 2.7e3 0.18 7.710 1.3e5 13.45 

300 6.669 1.3e3 0.07 7.227 1.5e3 0.08 7.706 5.4e4 5.22 

400 6.682 8.6e2 0.04 7.239 8.0e2 0.02 7.721 2.6e4 2.01 

TW 6.679 6.3e2 0.03 7.236 1.3e3 0.07 7.718 1.8e4 1.20 

Run 4  

100 6.671 6.1e3 0.32 7.228 6.1e3 0.46 7.708 3.2e5 35.69 

200 6.675 2.7e3 0.14 7.232 2.6e3 0.17 7.712 1.3e5 13.60 

300 6.679 1.3e3 0.09 7.237 1.6e3 0.09 7.716 5.5e4 5.87 

400 6.674 9.3e2 0.04 7.231 1.3e3 0.07 7.712 3.0e4 2.50 

TW 6.670 6.7e2 0.03 7.228 1.3e3 0.07 7.709 1.8e4 1.18 
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